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Introduction Symplectic Geometry

Symplectic Geometry

M a smooth manifold. E → M a vector bundle. A geometric structure
on M involves a smooth section T of a tensor bundle,
T ∈ Γ

(
E⊗

k
F ⊗F (E∗)⊗

j
F

)
, where F = R,C, or H.

Examples of geometric structures:
• Riemannian geometry: Inner product at each point.
• Symplectic geometry: closed nondegenerate skew-symmetric bilinear form

𝜔, i.e., ker𝜔p = 0 and d𝜔 = 0.
• Kähler geometry: Compatible symplectic, complex, and Riemannian

structures.

Examples of symplectic manifolds:
• (Cn, 𝜔0) = (R2n, 𝜔0).
• Cotangent bundles T ∗M.
• Flag 𝔣𝔩(n) = GL(n,C)/B = U(n)/T n.
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Introduction Symplectic Geometry

Symplectic Geometry

Figure 1: Geometries (Venn diagram from [1]).
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Introduction Symplectic Geometry

Hamiltonian Actions

A diffeomorphism 𝜑 : (M1, 𝜔1) → (M2, 𝜔2) is called a symplectomorphism if

𝜑∗𝜔2 = 𝜔1.

Suppose Lie group G acts on (M , 𝜔) via symplectomorphisms:

Ψ : G→ Sympl(M , 𝜔)

(M , 𝜔) is called a Hamiltonian G-space if it has a moment map 𝜇 : M → 𝔤∗

defined below.
Moment Map Characterization:
• Hamiltonian condition: For any X ∈ 𝔤, d𝜇X = 𝜄X#𝜔, where 𝜇X (p) = ⟨𝜇(p),X ⟩

and X# = the vector field generated by one-paramater subgroup exp tX .
• Equivariance condition: 𝜇 ◦ Ψg = Ad∗g ◦𝜇.

Comoment Map Characterization (for connected Lie groups):
• Hamiltonian condition: 𝜇∗ (X ) := 𝜇X is Hamiltonian for X#.
• Equivariance condition: 𝜇∗ is a Lie algebra homomorphism, i.e.,

𝜇∗ [X ,Y ] = {𝜇∗ (X ), 𝜇∗ (Y )}. where {·, ·} is the Poisson bracket.
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Introduction Symplectic Geometry

Example 1 (Sphere)

Consider the sphere S2. A point P on it can be written as

(sin 𝜙 cos 𝜃, sin 𝜙 sin 𝜃, cos 𝜙),

so it has “height" cos 𝜙. We thus define the height function as H (𝜃, h) = h on
the sphere with symplectic form 𝜔 = d𝜃 ∧ dh, the standard form for chart
(U, (𝜃, h)).

x

y

z

(r , 𝜙, 𝜃 )

r h = cos 𝜙

𝜃

𝜙
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Introduction Symplectic Geometry

Consider the circle action on the sphere below. What’s its moment map 𝜇? Hint: height
function, but why?

Ψ : S1 −→ Sympl
(
S2, 𝜔

)
ei 𝜃 ↦−→ rotation by angle 𝜃 around z-axis

x

y

z

(r , 𝜙, 𝜃 )

r h = cos 𝜙

𝜃

𝜙

Figure 2: Circle action on a sphere and spherical coordinates.
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Introduction Three Theorems: Reduction, Convexity, and Unimodularity

Three Theorems: Reduction, Convexity, and
Unimodularity

Reduction Theorem (Meyer [2], Marsden-Weinstein [3])
• Conserved quantities reduce phase space.
• Applications: classical mechanics [4, 5].

Convexity Theorem (Atiyah [6], Guillemin-Sternberg [7])
• Image of the moment maps are convex polytopes.
• Schur-Horn theorem and Horn’s conjecture on Hermitian spectra.
• Generalization to semisimple Lie group actions (Weinstein [8]).

Unimodularity Theorem (Delzant [9])
• {Symplectic toric manifolds}/∼ ←→ {Unimodular polytopes}/∼.
• Non-compact symplectic toric manifolds (Karshon-Lerman [10]).
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Introduction One Motivation: Counting Integer-points in Polytopes

One Motivation: Counting Integer-points in Polytopes
Pukhlikov-Khovanskii ([11]): Let Δ = {x ∈ Rn | ⟨x , vi ⟩ ≥ 𝜆i , i = 1, · · · ,m} and
Δh = {x ∈ Rn | ⟨x , vi ⟩ ≥ 𝜆i + hi , i = 1, · · · ,m}. Then

#(Δ ∩ Zn) = Toddh (vol(Δh)) |h=0

A

BC

D

E F

A′

B′

C′

D′

E ′

F ′

Figure 3: Perturbation Δh of a polytope Δ.
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Marsden-Weinstein-Meyer Theorem

Marsden-Weinstein-Meyer Theorem

Theorem 2 (Meyer [2], Marsden-Weinstein [3])

Let (M , 𝜔,G, 𝜇) be a Hamiltonian G-space for a compact Lie group G. Suppose G acts
freely on 𝜇−1 (0). Then:

The quotient space Mred = 𝜇−1 (0)/G is a smooth manifold.

The projection 𝜋 : 𝜇−1 (0) → Mred defines a principal G-bundle.

There exists a symplectic form 𝜔red on Mred such that i∗𝜔 = 𝜋∗𝜔red.

Figure 4: A line bundle. Pic. taken from Wolfram.
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Marsden-Weinstein-Meyer Theorem Examples

More Hamiltonian G-spaces

Theorem 3 (Commuting Actions)

Let (M , 𝜔,G, 𝜇) be a Hamiltonian G-space and (Mred, 𝜔red) be the symplectic
reduction. Suppose that another Lie group H acts on (M , 𝜔) in a Hamiltonian
way with moment map 𝜙 : M → 𝔥∗. If H-action commutes with the G-action
and 𝜙 is G-invariant, then the action of H on Mred admits a Hamiltonian action
of H with moment map 𝜙red .

Theorem 4 (Lie Subgroup Actions)

Let G be any Lie group and H a closed subgroup of G, with 𝔤 and 𝔥 the
respective Lie algebras. The projection i∗ : 𝔤∗ → 𝔥∗ is the map dual to the
inclusion i : 𝔥 ↩→ 𝔤. Suppose that (M , 𝜔,G, 𝜙) is a Hamiltonian G-space. The
restriction of the G-action to H is Hamiltonian with moment map

i∗ ◦ 𝜙 : M −→ 𝔥∗
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Marsden-Weinstein-Meyer Theorem Examples

Complex Projective Space

The complex projective space CPn =

(
Cn+1 \ {0}

)
/C∗ is obtained from

Cn+1\{0} by making the identifications (z0, · · · , zn) ∼ (𝜆z0, · · · , 𝜆zn) for all
𝜆 ∈ C\{0}; [z0 : · · · : zn] is the equivalence class of (z0, · · · , zn). For
j = 0, 1, · · · , n, let

Uj =
{
[z0 : · · · : zn] ∈ CPn | zi ≠ 0

}
𝜑j : Uj → Cn 𝜑j ( [z0 : · · · : zn]) =

(
z0

zj
, · · · ,

zj−1

zj
,
zj+1

zj
, · · · , zn

zj

)
.

This gives a complex atlas for CPn. It can be shown that
𝜔 = i

2𝜕𝜕 log
(
∥z ∥2 + 1

)
is Kähler and thus symplectic on Cn and that

𝜔k := 𝜑∗k𝜔 agrees with 𝜔l on Uk ∩Ul . Thus, these 𝜔j ’s glue together to
define a symplectic form 𝜔FS, called Fubini-Study form, on CPn.
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Marsden-Weinstein-Meyer Theorem Examples

Complex Projective Space
G = S1-Action ΦG on Cn+1:

ei 𝜃 · (z0, . . . , zn) = (ei 𝜃z0, . . . , e
i 𝜃zn),

𝜇(z) = −1
2
∥z ∥2 + 1

2
.

H = T n+1-Action ΦH on Cn+1:

(t0, . . . , tn) · (z0, . . . , zn) = (t0z0, . . . , tnzn),

𝜙(z) = −1
2

(
|z0 |2, . . . , |zn |2

)
+ ( constant )

(Cn+1, 𝜔0,S
1, 𝜇) reduces to (S2n+1/S1, 𝜔red), which is symplectomorphic to

(CPn, 𝜔FS) via an f . The other Hamiltonian group action over Cn+1 descends
naturally to the reduced space. The symplectomorphism f then transfers these
data to the complex projective space (CPn, 𝜔FS). It is now a Hamiltonian
T n+1-space.
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Marsden-Weinstein-Meyer Theorem Examples

Complex Projective Space

Sympl
Hamiltonian←−−−−−−−−−−−− Grp
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Atiyah-Guillemin-Sternberg Theorem

Atiyah-Guillemin-Sternberg Theorem

Any compact connected abelian Lie group must be a torus G = Tm = Rm/Zm.

Theorem 5 (Atiyah [6], Guillemin-Sternberg [7])

Let (M , 𝜔) be a compact connected symplectic manifold, and let Tm be an m
torus. Suppose that 𝜓 : Tm → Sympl(M , 𝜔) is a Hamiltonian action with
moment map 𝜇 : M → Rm. Then:
(1) the levels of 𝜇 are connected;
(2) the image of 𝜇 is convex;
(3) the image of 𝜇 is the convex hull of the images of the fixed points of the

action.
The image 𝜇(M) of the moment map is hence called the moment polytope.
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Atiyah-Guillemin-Sternberg Theorem

Atiyah-Guillemin-Sternberg Theorem

Figure 5: Circle action S1 over sphere (S2, 𝜔 = d𝜃 ∧ dh) by rotations with height
function as the moment map 𝜇(𝜃, h) = H (𝜃, h) = h. The image polytope is
Im(𝜇) = [−1, 1].
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Atiyah-Guillemin-Sternberg Theorem

Atiyah-Guillemin-Sternberg Theorem

Figure 6: A three-torus, where an observer sees the back of his own head. Pic. taken
from Wikipedia.
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Atiyah-Guillemin-Sternberg Theorem

Atiyah-Guillemin-Sternberg Theorem

proof sketch.
Atiyah’s proof of theorem 5 uses induction over m = dim Tm. Consider the
statements:

Am: “the levels of 𝜇 are connected, for any Tm-action;"
Bm: “the image of 𝜇 is convex, for any Tm-action."

Then
The connectedness statement (1)⇐⇒ Am holds for all m,
The convexity statement (2)⇐⇒ Bm holds for all m.

The base case A1 uses the fact that 𝜇X is a Morse-Bott function. For the
induction Am−1 =⇒ Am, see [12].
We show B1, the induction Bm−1 =⇒ Bm, and verify that the vertices
supporting image polytope are the fixed points of the action.
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Atiyah-Guillemin-Sternberg Theorem Convexity

Convexity

Base case B1: For m = 1, Tm = S1 and 𝔤∗ = R. Since M is connected,
𝜇(M) is also connected. In R, connectedness implies convexity.
Induction Bm−1 =⇒ Bm: Denote H = Tm−1 and G = Tm, so Lie(H) = 𝔥∗

and Lie(G) = 𝔤∗. Choose an injective matrix A ∈ Zm×(m−1) , so it can be
either seen as a map A : Rm−1 � 𝔥→ 𝔤 � Rm (so
At : Rm � 𝔤∗ → 𝔥∗ � Rm−1) or as a map

A : Tm−1 −→ Tm(
e2𝜋i 𝜃1 , · · · , e2𝜋i 𝜃m−1

)
↦−→

(
e2𝜋i

∑m−1
j=1 a1j 𝜃j , · · · , e2𝜋i

∑m−1
j=1 amj 𝜃j

)
.

Consider the action of an (m − 1)-subtorus

𝜓A : Tm−1 −→ Sympl(M , 𝜔)
𝜃 ↦−→ 𝜓A𝜃

Reduced Hamiltonian action: The (m − 1)-torus action 𝜓A on M has a
moment map 𝜇A = At 𝜇.
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Atiyah-Guillemin-Sternberg Theorem Convexity

Convexity

Connected level set: Fix p0 ∈ 𝜇−1
A (𝜉). The level set

𝜇−1
A (𝜉) =

{
p ∈ M | 𝜇(p) − 𝜇 (p0) ∈ kerAt }

is connected and ker At is 1-dimensional. This will force the convexity.

Rational approximation: p, q ∈ M arbitrary. Use compactness of 𝜇(M) to
choose sequences approaching them. Then use rationality to choose A.
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Atiyah-Guillemin-Sternberg Theorem Examples

Examples

Example 6

(CPn, 𝜔FS, T
n+1, 𝜙red ◦ f ) has action

(t0, · · · , tn) · [z0 : · · · : zn] ↦→ [t0z0 : · · · : tnzn]

with moment map 𝜙red ◦ f ( [z0 : · · · : zn]) = − 1
2∥z ∥2

(
|z0 |2 , · · · , |zn |2

)
.

Figure 7: Moment polytope Im(𝜙red ◦ f ) when n = 2.
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Atiyah-Guillemin-Sternberg Theorem Examples

Examples

Example 7

(CPn, 𝜔FS, T
n, 𝜈)(
ei 𝜃1 , · · · , ei 𝜃n

)
· [z0 : z1 : · · · : zn] =

[
z0 : ei 𝜃1z1 : · · · : ei 𝜃n zn

]
with moment map 𝜈( [z0 : z1 : · · · : zn]) = − 1

2∥z ∥2
(
|z1 |2 , · · · , |zn |2

)
= −1

2 (x1, · · · , xn)

Figure 8: Moment polytopes Im(𝜈) when n = 2, 3.
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Delzant’s Classification Theorem

Symplectic Toric Manifolds

An action of a group G on a manifold M is called effective if each group
element g ≠ e moves at least one p ∈ M, that is,⋂

p∈M
Gp = {e}

where Gp = {g ∈ G | g · p = p} is the stabilizer of p.

Theorem 8

Let (M , 𝜔, Tm, 𝜇) be a Hamiltonian Tm-space. If the Tm-action is effective,
then dimM ≥ 2m.
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Delzant’s Classification Theorem

Symplectic Toric Manifolds

A (symplectic) toric manifold is a compact connected symplectic manifold
(M , 𝜔) equipped with an effective Hamiltonian action of a torus T of dimension
equal to half the dimension of the manifold:

dim T =
1
2
dimM

and with a choice of a corresponding moment map 𝜇.

Example 9

Complex projective space CPn is a symplectic toric manifold through the
action T n but not T n+1.
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Delzant’s Classification Theorem

Delzant’s Classification Theorem

Definition 10 (Unimodular Polytope)

A convex polytope Δ ⊂ Rn is called Delzant, or unimodular if it satisfies

(Simplicity) there are n edges meeting at each vertex,

(Rationality) the edges meeting at the vertex p are rational in the sense that every
edge Ek is of the form p + tuk where t ∈ [0,T ] and uk ∈ Zn,

(Smoothness) for each vertex with edges E1, . . . ,En the corresponding vectors
u1, . . . , un spanning the edges can be chosen to form a Z-basis of Zn.

Example 11 (Examples of Unimodular Polytopes)

The following examples of unimodular polytopes are from [1].
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Delzant’s Classification Theorem

Delzant’s Classification Theorem

Example 12 (Non-examples of Unimodular Polytopes)

The following non-examples of unimodular polytopes are from [1].

Definition 13 (Symplectic Toric Isomorphisms)

Two symplectic toric manifolds, (Mk , 𝜔k , T
n, 𝜇k ) , k = 1, 2, are isomorphic if

there exists an equivariant symplectomorphism 𝜑 : M1 → M2, i.e., a
symplectomorphism 𝜑 such that 𝜑( [𝜃] · p) = [𝜃] · 𝜑(p).
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Delzant’s Classification Theorem

Delzant’s Classification Theorem

Theorem 14 (Delzant, [9])

Symplectic toric manifolds are classified by Delzant polytopes. More
specifically, the bijective correspondence between these two sets is given by
the moment map:

{symplectic toric manifolds}
{isomorphisms} ←→ {Delzant polytopes}

{translations}(
M2n, 𝜔, T n, 𝜇

)
↦−→ 𝜇 (M) .

Steps of the proof.
1 The map is well-defined: M is toric =⇒ 𝜇(M) is Delzant. This is a

consequence of the equivariant Darboux theorem (see [13] for example).
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Delzant’s Classification Theorem

Delzant’s Classification Theorem

2 The map is surjective: let M ↦→ 𝜇(M) be denoted by f and define
g : Δ→ MΔ where Δ is Delzant and MΔ is toric with 𝜔Δ, T

n, 𝜇Δ. The
constant involved in 𝜇Δ can be chosen such that 𝜇 (MΔ) = Δ, i.e.,
f ◦ g = id. This will prove the surjectivity of f . This part follows from
Delzant’s construction of MΔ.

3 The map is injective: we also need to show g ◦ f = id. [13, Sections 2.4
and 2.5] show how Lerman did a different construction, i.e., a symplectic
toric manifold EΔ from a given Δ such that 𝜇(EΔ) = Δ (so surjectivity is
fulfilled); but also that if we start with M and let Δ = 𝜇(M), then EΔ is
isomorphic to M (this shows injectivity). We will not include Lerman’s
construction here.
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Application and Generalization Hermitian Spectra

Hermitian Spectra

Theorem 15 (Schur-Horn Theorem, [14])

Let d1, . . . , dn and 𝜆1, . . . , 𝜆n be real numbers. There is an n × n Hermitian
matrix with diagonal entries d1, . . . , dn and eigenvalues 𝜆1, . . . , 𝜆n if and only if
the vector (d1, . . . , dn) lies in the convex hull of the set of vectors whose
coordinates are all possible permutations of (𝜆1, . . . , 𝜆n).

Theorem 16 (Birkhoff-von Neumann Theorem)

A bistochastic matrix = a convex combination of permutation matrices.

Consider T : H → 𝔲(n)∗; 𝜉 ↦→ tr(i𝜉 · ). Then T is an intertwining operator or
U(n)-equivariant isomorphism for conjugation representation and coadjoint
representation of unitary group, i.e., ∀A ∈ U(n), Ad∗ (A) ◦ T = T ◦ Ψ(A). Lie
group theory gives orbits H𝜆’s C∞-structures and KKS-form gives it symplectic
structures. H𝜆 is a Hamiltonian U(n)-space. Now apply AGS theorem.
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Application and Generalization Hermitian Spectra

Hermitian Spectra

More general Hermitian spectra problems like {(𝜆, 𝜇, 𝜈) |H𝜆 + H𝜇 + H𝜈 = 0};
see Knutson and Tao’s work [15, 16].

Figure 9: A honeycomb. Pic. taken from [16].
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Application and Generalization Semisimple Lie Group Actions

Semisimple Lie Group Actions

Knutson used in his paper [15] the following Kirwan’s generalization of AGS
theorem for nonabelian Lie groups.

Theorem 17 (Kirwan, [17])

Let (M , 𝜔,G, 𝜙) be a compact Hamiltonian G-manifold with G a compact Lie
group. Then the intersection of the image 𝜙(M) with the positive Weyl
chamber 𝔱∗+ let 𝔱∗+ be a positive Weyl chamber for a maximal compact
subgroup K of G is a convex polytope.

Weinstein generalized that to noncompact cases.

Theorem 18 (Weinstein, [8])

Let G be a semisimple Lie group, let 𝔱∗+ be a positive Weyl chamber for a
maximal compact subgroup K of G, and let U be a coadjoint-invariant open
subset of the set D ⊂ 𝔤∗ such that U ∩ 𝔱∗+ is convex. If (M , 𝜇) is a connected,
proper, Hamiltonian (G,U)-space, then 𝜇(M) ∩ 𝔱∗+ is a closed, convex, locally
polyhedral subset of t∗+ ∩U, and 𝜇−1 (𝜉) is connected for each 𝜉 ∈ U.
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Application and Generalization Geometric Representation Theory

Geometric Representation Theory

Kirillov-Kostant Souriau form on coadjoint orbit.

Symplectic toric manifolds.

(M , 𝜔) is prequantizable if there is a Hermitian line bundle L → M and a
connection ∇ on L whose curvature form is 𝜔. Geometric quantization
associates M with a prequantum Hilbert space Q(M , 𝜔) that satisfies several
axioms:
(1) Multiplicity: Q(M1 ×M2) = Q(M1) ⊗ Q(M2);
(2) Duality: Q(M ,−𝜔) = Q∗ (M , 𝜔);
(3) Finiteness: M compact =⇒ dimQ(M) < ∞;
(4) Functoriality: G compact Lie group. To every Hamiltonian action

Φ : G→ Sympl(M , 𝜔) corresponds a unitary representation 𝜌 of G on
Q(M). This is illustrated by the following Kostant’s formulation of
Bott-Borel-Weil theorem.
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Theorem 19 (Bott-Borel-Weil Theorem; Kostant’s Formulation)

For a compact connected Lie group, there is a one-to-one correspondence
between irreducible unitary representations of G and prequantizable coadjoint
orbits.

There is another axiom:

(5) Reduction: (M , 𝜔,G, 𝜇) Hamiltonian. X = 𝜇−1 (0)/G reduced space. 𝜌 be
the corresponded BBW representation. Then let Q(M)G be the invariant
subspace {v ∈ Q(M) |𝜌g (v ) = v ,∀g}. Then the axiom is that
Q(X ) = Q(M)G.
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Guillemin and Sternberg [18] proposed a counting formula on corresponded
unitary irreducible representations. Before that, we recall the familiar version
of Schur’s lemma in finite dimensional vector space over C that the subspace
of all intertwining operators between irreducible representations 𝜑 and 𝜌 is

HomG (𝜑, 𝜌) =
{

0, 𝜑 ≁ 𝜌 (1)
C id, 𝜑 = 𝜌 (2)

Note that (2) requires F = C and finite dimension while (1) do not need that.
(2) says that dimC HomG (𝜑, 𝜑) = 1.

Lemma 20 (Schur’s lemma for a Hilbert space representation; see here)

Let 𝜑 be an irreducible representation of group G on a Hilbert space H . The
subspace of all bounded operators in HomG (𝜑, 𝜑) is C id.
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Multiplicity conjecture: For compact connected Lie group G and
Hamiltonian G-space (M , 𝜔,G, 𝜇) and MO = reduced space of M ×O−,

Multiplicity of 𝜌O in Q(M) = Riemann-Roch number of MO

Toric case: M = Cd , G abelian, i.e., = T n, coadjoint orbits O are just
constants 𝜉 in (Rn)∗. Let Δ be a Delzant polytope by eqs. ⟨x , ui ⟩ ≥ 𝜆i ,
i = 1, · · · , d and 𝜋 : Rd → Rn; ei ↦→ ui . There induce a map 𝜋 : T d → T n

with kernel N. (Cd , 𝜔0, T
d , 𝜇) restricts to (Cd , 𝜔0,N , i∗ ◦ 𝜇). Let 𝜆0 = i∗ (𝜆).

Reduce (Cd , 𝜔0,N , i∗ ◦ 𝜇) at level −𝜆0 will get us Delzant’s construction
(MΔ, 𝜇Δ). This is the symplectic manifold such that 𝜇Δ (MΔ) = Δ. In
previous context, MO = MΔ.
RHS is defined using Chern class from which Todd class is extracted,
and this is equal to Toddh (vol(Δh)) |h=0.
LHS is #𝜌𝜆0 in Q(Cd ) = #(Δ ∩ (Zn)∗) = #(Δ ∩ Zn).
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Pukhlikov-Khovanskii [11] equated these two:

#(Δ ∩ Zn) = Toddh (vol(Δh)) |h=0

So the Multiplicity conjecture is true for symplectic toric case.

This was conjectured in 1980s by Guillemin and Sternberg [18] and was
proven in 1990s by Eckhard Meinrenken as well as Youliang Tian and
Weiping Zhang. It is now known as quantization commutes with
reduction.
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Questions?
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