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Combinatorial Curvature

Curvature is a smooth concept, so the principle of defining discrete version is
to find common feature between two settings.

Figure 1: triangulation of a torus; taken
from Wikipedia "Triangulation (topology)"

Figure 2: The Stanford Bunny. [1]

1 Common feature: Euler characteristic 𝜒; define curvature by
Gauss-Bonnet theorem.

2 Common feature: Laplace operator L; define curvature by
Bochner-Weitzenböck formula.
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Ollivier-Ricci Curvature

1 Bakry and Émery on heat flow-type equations
2 Sturm [2] and Lott and Villani [3]’s generalization of Ricci curvature on

metric measure spaces with W2 distance.
3 Ollivier [4] uses W1 distance. His definition is “very easy to implement on

concrete examples."
4 Lin, Lu, and Yau obtained a modified Ollivier-Ricci curvature for graphs

[5].
5 For Cayley graphs in particular, there are also variants like conjugation

curvature.
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Gromov’s 𝛿-Hyperbolicity

Figure 3: Triangles of three characteristic surfaces of different curvatures.1

Figure 4: 𝛿-thin triangle illustration2

1Figure taken from Harrison Hartle’s blog.
2Figure taken from Wikimedia Commons.
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Wasserstein Distance

Definition (Coupling)
A coupling of two probability measures 𝜇 and 𝜈 on the measurable spaces
(X ,X) and (Y ,Y) respectively is any probability measure 𝜋 on the product
measurable space (X × Y ,X ⊗ Y) whose marginals are 𝜇 and 𝜈:

𝜋(A × Y ) = 𝜇(A), 𝜋(X × B) = 𝜈(B)

Definition (Wasserstein Distance)
Let (X , d) be a metric space and 𝜇, 𝜈 be two probability measures on X . The
Wasserstein distance between 𝜇 and 𝜈 is defined as

W (𝜇, 𝜈) := inf
𝜋∈𝛱 (𝜇,𝜈)

∫
X×X

d (x , y ) d𝜋(x , y ).

where 𝛱 (𝜇, 𝜈) is the set of all the couplings of 𝜇 and 𝜈. Finding such a
minimizer is called the Kantorovich problem.
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Wasserstein Distance on Graph
Let G = (V ,E) be a simple and connected graph and with a countable vertex
set V .

1 It can be realized as a metric space (V , d) where d is the number of
edges of the shortest path connecting two vertices.

2 Probability measure 𝜇 on (V , ℘(V ) = V) are determined by their value on
each vertex 𝜇(v ), so a vector (𝜇(v ))v ∈V represents a measure.

3 The coupling 𝜋 ∈ 𝛱 (𝜇, 𝜈) will be called a transport plan. It’s a map
𝜋 : V × V → [0, 1] satisfying marginality conditions

v ∈ V : 𝜇(v ) =
∑︁
w∈V

𝜋(v ,w) and w ∈ V : 𝜈(w) =
∑︁
v ∈V

𝜋(v ,w)

and is determined by its value on each (x , y ) ∈ V × V . So it is a matrix.
4 The (total) cost function of 𝜋 is

cost(𝜋) =
∑︁

v ,w∈V

d (v ,w)𝜋(v ,w)

The optimal transport minimizes total cost and gives Wasserstein
distance between measures 𝜇, 𝜈.
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Markov Chain
One way to think about Markov Chain is to consider a Markov kernel K
associating each point x of the space X a probability measure Kx on
measurable space (X ,X).
A naive example:

v1
v2

v3 v4

Figure 5: A random walker in a very small town

For each vertex vi , the random walker has probabilities of moving to one of
the four vertices. We thus have a kernel K . In this discrete case, it is also the
same as the transition matrix. In case of Riemannian manifold realized as a
geodesic metric space, things are much more intricate.
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Ollivier-Ricci Curvature

Definition (Ollivier-Ricci Curvature)
Let (X , d) be a metric space with a random walk m = (mx (·))x∈X . Let x , y ∈ X
be two distinct points. The coarse Ricci curvature of (X , d ,m) along (xy ) is

𝜅(x , y ) = 1 −
W (mx ,my )

d (x , y )

It approximates to Ricci curvature of Riemannian manifold (Mn, dg , vol) by
random walk

m𝜀
x (dy ) =

{
1

vol(B𝜀 (x ) ) vol(dy ), if y ∈ B𝜀 (x),
0, if y ∉ B𝜀 (x).

or

m𝜀
x (A) =

vol(B𝜀 (x) ∩ A)
vol(B𝜀 (x))

, A ∈ B(M)
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Ollivier-Ricci Curvature
Ollivier in [4] shows that for a unit tangent vector v at point p and a point y on
the maximal geodesic 𝛾v , one has

𝜅(x , y ) = 𝜀2Rc (v , v )
2(n + 2) + O

(
𝜀2 + 𝜀2dg (x , y )

)
with suffciently small dg (x , y ).
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Lin-Lu-Yau Curvature

In [5], Lin, Lu, and Yau similarly used a neighborhood-supported uniform
jumping to defined curvature on graph G = (V ,E):

v ∈ V : m𝛼
x (v ) =


𝛼 if v = x ,
1−𝛼
degx

if v ∈ Γ(x),
0 otherwise.

where Γ(x) is the neighborhood of x and degree degx is the cardinality of
Γ(x). We assume the graph is locally finite. Then we have the following notion
of curvature.
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Lin-Lu-Yau Curvature

Definition (Lin-Lu-Yau curvature)
For any x , y ∈ V , the 𝛼-curvature 𝜅𝛼 is given by

𝜅𝛼 (x , y ) = 1 −
W (m𝛼

x ,m
𝛼
y )

d (x , y )

where W is the Wasserstein distance in defn 1.8. Due to [5] lemma 2.1 on
concavity of 𝜅𝛼 (x , y ) with respect to 𝛼 and fixed x , y , we arrive at the
Lin-Lu-Yau curvature

𝜅(x , y ) = lim
𝛼→1

𝜅𝛼 (x , y )
1 − 𝛼

.

We look at an example: consider a random walk on the complete graph K5.
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Lin-Lu-Yau Curvature

Figure 6: Random walk on a complete graph

𝜋(x , x) = 1 − 𝛼

4
, 𝜋(x , y ) = 5𝛼 − 1

4
, 𝜋(x , any other vertex) = 0

𝜋(y , y ) = 1 − 𝛼

4
, 𝜋(y , any v) = 0, 𝜋(vi , vi ) =

1 − 𝛼

4
, 𝜋(vi , any other v) = 0
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Linear Optimization

In fact, Kantorovich problem on graph is a linear optimization problem. Let
Pij = 𝜋(vi , vj ) and

u = (mx (vi ))vi ∈B (x ) , v = (my (vj ))vj ∈B (y )

Then the set of all coupllings 𝛱 (𝜇, 𝜈) becomes

𝛱 (mx ,my ) = 𝛱 (u, v) =
{
P ∈ Mk×l (R) : P1l = u,PT1k = v

}
Let Dij = d (vi , vj ). Then, Kantorovich problem becomes

W (u, v) = min
P∈𝛱 (u,v)

⟨D,P⟩ = min
P∈𝛱 (u,v)

∑︁
i ,j

DijPij (1)
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Network Flow Problem

If we concatenate the rows of P and transpose it to get vector f, and do the
same to D to get c, and define b by values of two measures, we can get a
network flow problem (NFP).

𝛼

1−𝛼
k−1

...

1−𝛼
k−1

−𝛼

...

−1−𝛼
l−1

k nodes
l nodes

Figure 7: Bipartite-graphical representation of Kantorovich problem
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Network Flow Problem

In particular,

bi =

{
m𝛼

x (vi ) , 1 ⩽ i ⩽ k
−m𝛼

y (vi ) , k + 1 ⩽ i ⩽ k + l

where |B(x) | = k , |B(y ) | = l and we reorder the vertices so that
v1 = x , vk+1 = y .

f = [f1,k+1, · · · , f1,k+l ; f2,k+1, · · · , f2,k+l ; · · · ; fk ,k+1, · · · , fk ,k+l ]T .

c = [d (v1, vk+1), · · · , d (v1, vk+l );d (v2, vk+1), · · · , d (v2, vk+l );
· · · ;d (vk , vk+1), · · · , d (vk , vk+l )]T

and consider incidence matrix
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Network Flow Problem

Then we get the standard form NFP and its dual

min cT f
subject to Af = b

f ≥ 0

max pT b

subject to pT A ≤ cT
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Network Flow Problem

1 simplex method and dual simplex method (“linprog" of “scipy.optimize"
library)

2 “ot.emd2” imported from “ot" library (see POT: Python Optimal Transport)
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Examples of Groups and Their Cayley Graphs

definition (Cayley graph)
Let G be a group with a finite set of generators S with the following two
properties: (1) identity is not in S (i.e. e ∉ S); (2) (symmetric property)
element s is in S if and only if the inverse s−1 is in S (denoted as S = S−1).
Then Cayley graph Cay(G;S) with connection set S is a graph with V and
E defined as follows:

the vetex set V contains exactly all elements of G;
For x , y ∈ V , (xy ) ∈ E (or x ∼ y ) if and only if ∃s ∈ S s.t. y = xs.

We may use summation + to denote group operation when G is abelian. ♦

Example: Let the group be G = (Zn, +) and set connection set S as

S =

{
(x1, x2, · · · , xn) ∈ Zn

���� n∑︁
i=1

|xi | = 1

}
,

that is, the set of points with exactly one nonzero component ±1. In case
n = 1, the set S degenerates to {−1, 1}. Thus, x ∼ y if x − y = 1 or x − y = −1.
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Examples of Groups and Their Cayley Graphs

Figure 8: graph Z2

When n = 2, S = {(0,−1), (0, 1), (−1, 0), (1, 0)}. We observe that

1 W
(
m𝛼

(0,0) ,m
𝛼
(±2,±2)

)
. Dihedral group D4?

2 W
(
m𝛼

(0,0) ,m
𝛼
(2,3)

)
= W

(
m𝛼

(5,5) ,m
𝛼
(7,8)

)
.homomeneity of the Cayley graph?
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Algorithmic Improvment on Finding Curvatures of
Cayley Graphs

Main idea
For more complicated graph, need computational programs to assist
theoretical observation. Thus, our goals are (1) compute optimal transport
correctly and efficiently by programs; (2) detect patterns from results.

Let |S | = k . Each vertex x in the Cayley graph then has k edges connecting to
other vertices. Then the measure on x becomes

v ∈ V : m𝛼
x (v ) =


𝛼 if v = x ,
1−𝛼

k if v ∈ Γ(x),
0 otherwise.

Then the Wasserstein distances between m𝛼
x and m𝛼

y are determined by the
(k + 1) × (k + 1) cost matrix D. By revising Proposition 2.1 of [6], we see the
assignment problem (Monge problem) attains the minimum of the Kantorovich
problem on k-regular graph, that is, k = l = |B(x) | = |B(y ) | for each x and y .
One of the best solvers is Kuhn-Munkres algorithm.
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Algorithmic Improvment on Finding Curvatures of
Cayley Graphs

Figure 9: 𝛼-curvature of cyclic group with connection sets S1,3,S1,4; [7]
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Thank You
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