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Abstract

This note is a short summary of Information Theory From Coding to Learning by Yury Polyanskiy and
Yihong Wu plus self-contained preliminaries.
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1 Some Notations in Probability

We refer to [2] to have a basic setup in probability. First, we denote the collection of all probability measures
on space X as △(X ). For finite spaces we abbreviate △k ≡ △([k]), a (k − 1)-dimensional simplex.

Let (X , E) be a measurable space, (Y,F , ν) be a measure space, and f : Y → X be a measurable function.
We call f#ν := ν ◦ f−1 : E → [0,∞] the image of ν under f . It is easy to verify µ = f#ν is indeed a measure
and that for any g ∈ E+ (i.e. g is non-negative E-measurbale), one has

∫
X g(x)µ(dx) =

∫
Y (g ◦ f)(y) ν(dy).

Another measure built from construction is given by the following. Let (X , E , ν) be a measure space and
f ∈ E+. Define µ : E → [0,∞];µ(A) = ν(f1A) =

∫
A
f(x) ν(dx). One deduces from monotone convergence

theorem that (X , E , µ) is now a new measure space. µ is called the indefinite integral of f with respect to
ν. It is easy to check that for any g ∈ E+, one has

∫
X g(x)µ(dx) =

∫
X f(x)g(x) ν(dx).

Recall that for measures µ and ν on a measurable space (X , E), µ is said to be absolutely continuous with
respect to ν (µ ≪ ν) if ∀A ∈ E : ν(A) = 0 ⇒ µ(A) = 0. This is the case when for example µ is the indefinite
integral of f with respect to ν. The Radon-Nikodym theorem gives the converse:

Theorem 1.1 (Radon-Nikodym Theorem). Let (X , E , ν) be a σ-finite measure space and µ be a σ-finite measure
on E with µ ≪ ν. Then, there exists f ∈ E+ such that∫

X
g(x)µ(dx) =

∫
X
f(x)g(x) ν(dx) g ∈ E+

or equivalently,

µ(A) =

∫
A

f(x) ν(dx) A ∈ E (1)

The function f is unique in the following sense: if f ′ is another function with the above property then f =
f ′ ν − a.e.. Besides, f is denoted as dµ/dν, called the Radon-Nikodym derivative of µ with respect to ν.□

We thus sometimes use µ(dy) = f(x)ν(dx) to define measure µ for known f ∈ E+ and ν.The theorem can be
extended with the concept of signed measure.

Let (Ω,D,P) be a probability space and (X , E) be a measurable space. A map X : Ω → X is called a random
variable in (X , E) if it is measurable relative to D and E , i.e., X−1(A) = {X ∈ A} = {ω ∈ Ω : X(ω) ∈ A} is
an event for every A in E . A distribution of X is the probability measure µ = X#P on (X , E) as the image
of P under X, i.e., A ∈ E : µ(A) = P(X−1(A)) = P{X ∈ A}. Notice that the knowledge of how µ acts on a
π-system (a collection of subsets of X that is closed under intersection) that generates E characterizes µ.

Example 1.2 (cdf & pdf). When X = Ṙ = [−∞,∞] and E = BX , the Borel σ-algebra of X , the intervals
[−∞, x] with x in R form a convenient π-system. It is thus enough to specify µ = X#P = P ◦ X−1 by
evulating function c(x) = µ[−∞, x] = P{X ≤ x} for each x ∈ R. And c : R → [0, 1] is called the cumulative
distribution function (cdf) of X. For the probability measure µ on Ṙ, we call the Radon-Nikodym derivative
dµ/dν probabilitiy density function (pdf), where ν = Leb. ♢

Example 1.3 (pmf). When the space X where X takes values is now any countable set I, and the σ-algebra
E is the power set I = ℘(I), we use the π-system {i ∈ I} to specify the measure λ = X#P:

λi := λ(i) = P(X = i) = P{ω ∈ Ω : X(ω) = i}

Since λ is a measure on (I, I), we see 1 = λ(I) = λ
(⋃

i∈I i
)
=

∑
i∈I λi. Letting ν be the counting measure,

then the Radon-Nikodym derivative dλ/dν is called probabilitiy mass function (pmf). Because of the fact
that for each i ∈ I,

λi
eq.(1)
=====

∫
{i}

dλ

dν
(x) ν(dx)

ν counting mes
========== |{i}|︸︷︷︸

=1

dλ

dν
(i) =

dλ

dν
(i)

we see the distribution λ is often referred as pmf itself. ♢

More things need to be added: convergence and dist. etc.
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2 Information Measures

2.1 Entropy

R.A. Fisher was among the first to identify connection between information and “entropy” (or transformative
content) in thermodynamics. The second law of thermodynamics states that hot things always cool unless
you do something to stop them. Boltzmann and Gibbs gave a microscopic description: low temperatures are
accompanied by molecular inactivity and order, and entropy enters saying how chaotic a system is.

The theory of Information, an abstract object that can be described as quantitatively representing changes
of beliefs, formally started with Shannon’s foundational work ”A Mathematical Theory of Communication.”
We shall now examine some of his ideas.

Definition 2.1 (Shannon Entropy). Let X be a discrete r.v. with pmf PX(x), x ∈ X . The Shannon entropy
of X is defined as the expectation of function f(·) = log 1

PX(·) : X → [0,∞] of r.v. X : Ω → X . Namely,

H(X) ≡ H(PX) = E[f(X)] = E
[
log

1

PX(X)

]
=

∑
x∈X

PX(x)
1

logPX(x)

where 0 log 1
0
:= 0. The basis of logorithm determines the units of entropy: log2 ↔ bits; log256 ↔ bytes. ♦

Definition 2.2 (Joint Entropy). The joint entropy of n discrete r.v. Xn := (X1, · · · , Xn) is

H(Xn) ≡ H(X1, · · · , Xn) = E
[
log

1

PX1,··· ,Xn(X1, · · · , Xn)

]
Note that joint entropy is a special case of defn 2.1 applied to the r.v. Xn taking values in product space. ♦

Example 2.3 (X ∼ Unif(X )). The entropy of X is simply given by log-cardinality: H(X) = log |X |. ♢

Example 2.4 (X ∼ Ber(p)). Let X ∼ Ber(p), with PX(1) = p and PX(0) = p̄ := 1− p. Then

H(X) = h(p) := p log
1

p
+ p̄ log

1

p̄

Here h(·) is called the binary entropy function, which is continuous, concave on [0, 1], symmetric around
1
2 , and satisfies h′(p) = log p̄

p , with infinite slope at 0 and 1. The highest entropy is attainced at p = 1
2 (i.e.,

X ∼ Unif({0, 1})), while the lowest entropy is attained at p = 0 or 1 (i.e., deterministic). It is instructive to
compare the plot of the binary entropy function with the variance p(1− p) (Figure 1). ♢

Figure 1: Binary entropy (blue) and variance (red)
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Definition 2.5 (Conditional Entropy). Let X be a discrete r.v. and Y arbitrary. Denote by PX|Y=y(·) or
PX|Y (·|y) the conditional distribution of X given Y = y. The conditional entropy of X given Y is

H(X|Y ) = Ey∼PY
[H(PX|Y=y)] = Ey∼PY

[∑
x∈X

PX|Y (x|y) log
1

PX|Y (x|y)

]
= E

[
log

1

PX|Y (X|Y )

]
.

Note that X|Y = y is a discrete r.v. ♦

Similary to entropy, conditional etropy measures the remaining randomness of a r.v. when another is re-
vealed. As such, Y ⊥⊥ X ⇒ H(X|Y ) = H(X), because PX|Y=y = PX ⇒ H(PX|Y=y) = H(X) becomes a
constant. However, when Y depends on X, observing Y does lower the entropy of X.

Example 2.6 (Conditional entropy and noisy channel). Let Y be a noisy observation of X ∼ Ber(1/2) as
follows. 1. Y = X ⊕ Z, where ⊕ denotes binary addition (XOR) and Z ∼ Ber(δ) independently of X.

Review of Exclusive Or (XOR)

Exclusive Or is a map ⊕ : {0, 1} × {0, 1} → {0, 1} defined as

(1) 0⊕ 0 = 0

(2) 1⊕ 0 = 1

(3) 0⊕ 1 = 1

(4) 1⊕ 1 = 0

We observe that:
• for y = x⊕ z, y agreees with x if (1) or (3) happen; disagrees if (2) or (4) happen.
• y = 0 iff x and z agree; y = 1 iff x and z disagree.

By the first observation of above box, we see Y agrees with X with probability δ and disagrees with prob-
ability δ̄. The second observation shows that PX|Y=0 = Ber(δ) and PX|Y=1 = Ber(δ̄). Since h(δ) = h(δ̄),
H(X|Y ) = h(δ). Note that when δ = 1/2, Y is independent of X and H(X|Y ) = H(X) = 1 bits; when
δ = 0 or 1, X is completely determined by Y and hence H(X|Y ) = 0. ♢

We will need some facts in convexity to show several properties of entropy.

Review of Convexity

A subset S of a vector space V is called convex if x, y ∈ S ⇒ tx + (1 − t)y ∈ S for any t ∈ [0, 1].
In particular, any vector space and its linear subspace are convex. Examples include [0, 1] ⊂ R,
S = {probabilitiy dist. on X}, S = {PX : E[X] = 0}.

Let S ⊆ X be a convex set, then a function f : X → R is convex function if f(tx + (1 − t)y) ≤
tf(x)+(1−t)f(y)∀x, y ∈ S, t ∈ [0, 1], and strictly convex if f(tx+(1−t)y) < tf(x)+(1−t)f(y)∀x ̸=
y ∈ S, t ∈ [0, 1], and (strictly) concave if −f is (strictly) convex. Examples include:

• x 7→ x log x is strictly convex;
• P 7→

∫
x dP is (nonstrictly) convex;

• variance is (nonstrictly) concave (use Jensen’s inequality with (·)2’s convexity; consider
zero-expectation dist.)

Jensen Inequality: For any S-valued r.v. X,
• f is convex ⇒ f(EX) ≤ Ef(X);
• f is strictly convex ⇒ f(EX) < Ef(X), unless X is a constant (X = EX a.s.)
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Proposition 2.7 (Properties of Entorpy).

(a) (Positivity) H(X) ≥ 0 with equality iff X is a constant (no randomness).

(b) (Uniform dist. maximizes entropy) For finite X , H(X) ≤ H(Unif(X ))
2.3
=== log |X | with equality iff

X ∼ Unif(X ) (i.e. argmaxPX∈P(X ) H(PX) = Unif(X ))

(c) (Invariance under relabelling) H(X) = H(f(X)) for any bijective f .

(d) (Conditioning reduces entropy) H(X|Y ) ≤ H(X), with equality iff X ⊥⊥ Y .

(e) (Simple chain rule)
H(X,Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y )

(f) (Entropy under deterministic transform) H(X) = H(X, f(X)) ≥ H(f(X)) with equality iff f is one-to-
one on the support of PX .

(g) (Full chain rule)

H(X1, · · · , Xn) =

n∑
i=1

H(Xi|Xi−1) ≤
n∑

i=1

H(Xi)

Proof. (a) Recall f(·) in defn 2.1 and thus observe that log 1
PX(x) is a nonnegative r.v. with a nonnegative

expectation H(X). H(X) = 0 iff f(·) = log 1
PX(·) = 0 almost surely, namely, PX is a point mass.

(b) Apply Jensen’s inequality to the strictly concave function x 7→ log x:

H(X) = E
[
log

1

PX(X)

]
≤ logE

[
1

PX(X)

]
= log

∑
x∈X

PX(x)
1

PX(x)
= log |X |

(c) Since X is a discrete r.v. and f is a bijective map, we see the pmf of Y = f(X) is

PY (y) = P[Y = y] = P[f(X) = y] = P
[
X = f−1(y)

]
= PX [f−1(y)],

so
H(Y ) =

∑
y∈X

PY (y) log
1

PY (y)
=

∑
y∈X

PX [f−1(y)︸ ︷︷ ︸
=x

] log
1

PX [f−1(y)︸ ︷︷ ︸
=x

]
= H(X).

Intuitively, the summation (expectation) goes through all locations on X , the order of summation does
not matter as long as each location appears exactly once, a property ensured by the bijectivity.

(d) Abbreviate PX(x) as p(x), and similary for p(y), p(x|y). By law of total probabilitiy,

p(x) = EY [p(x|Y )] =
∑
y∈Y

p(y)p(x|y) (2)

We apply Jensen’s inequality to the strictly concave function x 7→ x log 1
x ,

H(X|Y ) =Ey∼PY

[∑
x∈X

p(x|y) log 1

p(x|y)

]
=

∑
y∈Y

∑
x∈X

p(y)p(x|y) log 1

p(x|y)
=

∑
x∈X

EY

[
p(x|Y ) log

1

p(x|Y )

]
≤

∑
x∈X

EY [p(x|Y )] log
1

EY [p(x|Y )]

eq.(2)
=====

∑
x∈X

p(x) log
1

p(x)
= H(X)
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(e) Telescoping PX,Y (X,Y ) = PY |X(Y |X)PX(X) and noting that both sides are positive PX,Y -almost
surely, we have

E
[
log

1

PX,Y (X,Y )

]
= E

[
log

1

PX(X)PY |X(Y |X)

]
= E

[
log

1

PX(X)

]
︸ ︷︷ ︸

H(X)

+E
[
log

1

PY |X(Y |X)

]
︸ ︷︷ ︸

H(Y |X)

(f) Use (c) and (e).

(g) Similary telescoping PX1X2···Xn
= PX1

PX2|X1
· · ·PXn|Xn−1

We end the section with Shannon’s axiomatic characterization of entropy: denote a probabilitiy distribution
on m letters by P = (p1, · · · , pm) and consider a functional Hm(p1, · · · , pm). If Hm obeys the following
axioms:

(a) Permutation Invariance;

(b) Expansible: Hm(p1, · · · , pm−1, 0) = Hm−1(p1, · · · , pm−1);

(c) Normalization: H2(
1
2 ,

1
2 ) = log 2;

(d) Subadditivity: H(X,Y ) ≤ H(X) + H(Y ). Equivalently, Hmn(r11, · · · , rmn) ≤ Hm(p1, · · · , pm) +
Hn(q1, · · · , qn) whenever

∑n
j=1 rij = pi and

∑m
i=1 rij = qj;

(e) Additivity: H(X,Y ) = H(X)+H(Y ) if X ⊥⊥ Y . Equivalently, Hmn(p1q1, · · · , pmqn) = Hm(p1, · · · , pm)+
Hn(q1, · · · , qn);

(f) Continuity: H2(p, 1− p) → 0 as p → 0;

then Hm(p1, · · · , pm) =
∑m

i=1 pi log
1
pi

is the only possible choice.

2.2 Divergence

We begin with a review:

A measurable space (X , E) is said to be standard Borel if there exists a metric on space X that makes it a
complete separable metric space in such a way that E is then the Borel σ-algebra of X . A Polish space (i.e.
separable (X , T ) metrizable with d s.t. (X , d) is complete and Td = T ) can thus be made into a standard
Borel space by equipping BT . Some of the nice properties of a standard Borel space are:

• All complete separable metric spaces, endowed with Borel σ-algebras are standard Borel. In particular,
countable alphabets and Rn abd R∞ (space of sequences) are standard Borel.

• If Xi, i = 1, · · · are standard Borel, then so is
∏∞

i=1 Xi.

• Singletons {x} are measurable sets.

• The diagonal {(x, x) : x ∈ X} is measurable in X × X .

We now introduce the concept of KL divergence, or relative entropy.

Definition 2.8 (Kullback-Leiber (KL) Divergence). Let P,Q be distributions on an alphabet (space where
the r.v. takes values) A, with Q called the reference measure. The KL divergence between P and Q is

D(P∥Q) :=

{
EQ

[
dP
dQ log dP

dQ

]
, P ≪ Q

+∞, otherwise

adopting again the convention that 0 log 0 = 0. ♦
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Two special cases are

• when A is a discrete (finite or countably infinite) alphabet:

D(P∥Q) =

{∑
a∈A:P (a),Q(a)>0 P (a) log P (a)

Q(a) , supp(P ) ⊂ supp(Q)

+∞, otherwise

• when A = Rk, P and Q have pdfs p and q w.r.t. Leb (see example 1.2):

D(P∥Q) =

{∫
p>0,q>0

p(x) log p(x)
q(x) dx, Leb{p > 0, q = 0} = 0

+∞, otherwise

They are special by [7] Lemma 2.4. When P ≪ Q in particular,

EQ

[
dP

dQ
log

dP

dQ

]
=

∫
A

dP

dQ
log

dP

dQ
dQ

indefinite int
=========

R-N derivative

∫
A
log

dP

dQ
dP = EP

[
log

dP

dQ

]
(3)

which coincides with the two cases with Q being counting measure and Lebesgue measure respectively. Note
that D(P∥Q) is +∞ when it is not the case P ≪ Q. However, it can also be +∞ even when P ≪ Q. For
example, D(Cauchy∥Gaussian) = ∞. Our first observation is that D(P∥Q) ̸= D(Q∥P ), so divergence is not
a distance. We also see that generalizing entropy, D is so called relative entropy.

Theorem 2.9 (H v.s. D). If distribution P is supported on a finite alphabet A, then

H(P ) = log |A| −D(P∥Unif(A))

Proof. Using the first special case, we have

D(P∥Unif(A)) =
∑

a∈A:P (a),Q(a)>0

P (a) log
P (a)

1/|A|
=

∑
a∈A

P (a)

(
log |A| − log

1

P (a)

)
= log |A| −H(P )

Example 2.10 (Binary divergence). Consider P = Ber(p) and Q = Ber(q) on A = {0, 1}. Then

D(P∥Q) = d(p∥q) := p log
p

q
+ p̄ log

p̄

q

Here is how d(p∥q) depends on p and q:

Figure 2: Binary divergence

It is easy to check the following quadratic lower bound, which is in fact a special case of Pinsker’s inequality:

d(p∥q) ≥ 2(p− q)2 log e ♢
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Example 2.11 (Real Gaussian). For two Gaussians on A = R,

D(N (m1, σ
2
1)∥N (m0, σ

2
0)) =

log e

2

(m1 −m0)
2

σ2
0

+
1

2

[
log

σ2
0

σ2
1

+

(
σ2
0

σ2
1

− 1

)
log e

]
Here, the first and second term compares the means and the variances, respectively. Similary, in the vector
case of A = Rk and assuming detΣ0 ̸= 0, we have

D(N (m1,Σ1)∥N (m0,Σ0))

=
log e

2
(m1 −m0)

⊤Σ−1
0 (m1 −m0) +

1

2

(
log detΣ0 − log detΣ1 + tr(Σ−1

0 Σ1 − I) log e
)

♢

We show a fundamental result.

Theorem 2.12 (Information Inequality).
D(P∥Q) ≥ 0

with equality iff P = Q.

Proof. In view of defn 2.8, it suffices to consider P ≪ Q. Let φ(x) := x log x, which is strictly convex on R+.
Applying Jensen’s inequality:

D(P∥Q) = EQ

[
φ

(
dP

dQ

)]
≥ φ

(
EQ

[
dP

dQ

])
= φ(1) = 0,

with equality iff dP/dQ = 1Q− a.e., namely, P = Q.

The definition of D(P∥Q) extends verbatim to measures P and Q (not necessarily probabilitiy measures),
in which case D(P∥Q) can be nagative. A sufficient condition for D(P∥Q) ≥ 0 is that P is a probabilitiy
measure and Q is a sub-probabilitiy measure, i.e.,

∫
dQ ≤ 1 =

∫
dP . The notion of differential entropy is

simply the divergence with respect to the Lebesgue measure:

Definition 2.13 (Differential entropy). The differential entropy of a random vector X is

h(X) ≡ h(PX) := −D(PX∥Leb)

In particular, if X has pdf p = dPX/dLeb (i.e., PX ≪ Leb), then h(X)
eq.(3)
===== −EPX

[log dPx

dLeb ] = E[log 1
p(X) ];

otherwise h(X) = −∞. The conditional differential entropy is

h(X|Y ) := E
[
log

1

pX|Y (X|Y )

]
where pX|Y is a conditional pdf. Compare this definition with conditional entropy. ♦

Example 2.14 (Gaussian). For X ∼ N (µ, σ2),

h(X) =
1

σ
√
2π

∫
R
exp

(
− (x− µ)2

2σ2

)
log

(
σ
√
2π exp

(
(x− µ)2

2σ2

))
dx

substitution
===========
t=(x−µ)/

√
2σ

√
2σ

σ
√
2π

∫
R
exp (−t2) log(σ

√
2π exp (t2)) dt

=
1√
π

∫
R
log(σ

√
2π)e−t2 dt+

1√
π

∫
R
log et

2

e−t2 dt

Gaussian integral
===========

int by parts
log(σ

√
2π) + log(e1/2) =

1

2
log(2πeσ2)
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More generally, for X ∼ N (µ,Σ) in Rd,

h(X) =
1

2
log((2πe)d detΣ) ♢

Warning: Even for continuous r.v. X, h(X) can be positive, negative, takes values of ±∞ or even undefined.
For the last case, consider a piecewise-constant pdf taking value e(−1)nn on the n-th interval of width ∆n =
c
n2 e

−(−1)nn. There are many differences between the Shannon entropy and the differential entropy. For
example, from Proposition 2.7 we know that deterministic processing cannot increase the Shannon entropy,
i.e., H(f(X)) ≤ H(X) for any discrete X, which is intuitively clear. However, this fails completely for
differential entropy (e.g. consider scaling, see proposition 2.15). Furthermore, for sums of independent
r.v., for integer-valued X and Y , H(X + Y ) is finite whenever H(X) and H(Y ) are, because H(X + Y ) ≤
H(X,Y ) = H(X) +H(Y ). This again fails for differential entropy. In fact, there exists real-valued X with
finite h(X) such that h(X + Y ) = ∞ for any independent Y such that h(Y ) > −∞; there also exist X and Y
with finite differential entropy such that h(X + Y ) does not exist.

Nevertheless, differential entropy shares many functional properties with the usual Shannon entropy.

Proposition 2.15 (Properties of differential entropy). Assuming that all differential entropies appearing below
exist and are finite (in particular all r.v. have pdfs and conditional pdfs).

(a) (Uniform dist. maximizes differential entropy) If P[Xn ∈ S] = 1 then h(Xn) ≤ log Leb(S), with equality
iff Xn is uniform on S.

(b) (Scaling and shifting) h(Xn + x) = h(Xn), h(αXn) = h(Xn) + k log |α| and for an invertible matrix A,
h(AXn) = h(Xn) + log |detA|.

(c) (Condtioning reduces differential entropy) h(X|Y ) ≤ h(X) (Y is arbitrary).

(d) (Chain rule) Let Xn has a joint pdf. Then h(Xn) =
∑n

k=1 h(Xk|Xk−1).

TO DO: Markov Kernel (along with standard Borel space, need to be put into the first section ”notations in
probabilitiy”); conditional divergence and data processing inequality; most importantly, Fisher information.
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