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Chapter 1

Introduction to Polytopes

1.1 Why study polytopes?

* Classical: Euclid’s Elements presents the platonic solids as a crowning achievement of Greek mathe-
matics.

* Useful: Linear optimization is equivalent to finding points in polytopes.

* Interdisciplinary: Provide combinatorial tools to other areas of mathematics (e.g. symplectic geometry,
algebraic geometry, number theory, etc.)

¢ Fun for some.

1.2 What is a polytope?

1.2.1 Affine subspaces

The nonempty affine subspaces, or flats, are the translates of linear subspaces (the vector subspaces of R?
containing the origin 0 € R%). The dimension of an affine subspace is the dimension of the corresponding
linear vector space. Affine subspaces of dimensions 0, 1,2, and d— 1 in R¢ are called points, lines, planes, and
hyperplanes, respectively. We take for granted the fact that affine subspaces can be described by as the affine
image of some real vector space a + V' (where V is a linear subspace) or as the set of all affine combinations
of a finite set of points,

F={meRd::c=)\Oa:0+...+)\nmnfor)\ie[R{,Z>\i=1}.

i=1

That is, every affine subspace can be described both as an intersection of affine hyperplanes, and as the
affine hull of a finite point set (i.e., as the intersection of all affine flats that contain the set). A setof n > 0
points is affinely independent if its affine hull has dimension n — 1, that is, if every proper subset has a
smaller affine hull.

Proposition 1.2.1. The two definitions of affine subspace a + V and {3 \;x; | >, A\; = 1} are equivalent.

Proof.

From a + V to Affine Combinations:

Given a + V, where a is a particular point and V is a vector space, any point in a + V' can be written as
a + v, where v € V. If we choose a basis {x1,xs,...,x;} for V, then any v € V can be expressed as a
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linear combination v = Zle Aix;, where )\; are scalars. Therefore, any point in @ + V' can be written as
a+ Z§=1 Nix;. Ifweset \g = 1 — Zle i, then we can write this as \ga + Zf=1 i (@ + z;), ensuring that
Zf:o A; = 1. This shows that every point in a + V' can be seen as an affine combination of points in the
subspace.

From Affine Combinations to a + V:

Conversely, consider a set defined by affine combinations {}}" , \;z; | >, \; = 1}. Let’s choose one of these
points, say xg, to play the role of a in the a + V definition. We can then view the differences x; — g as
elements of a vector space V, since they represent directions (or displacements) from x to other points in
the set. This shows that the set of affine combinations can be expressed as a + V, where a = x¢ and V is
the span of {z; — x}. O

1.2.2 Polytopes

A point set K < R? is convex if with any two points =,y € K it also contains the straight line segment
[,y] = { Az +(1—-Ny:0< A <1}

Clearly, every intersection of convex sets is convex, and R? itself is convex. Thus for any K < R, the
”smallest” convex set containing K, called the convex hull of K, can be constructed as the intersection of
all convex sets that contain K :

conv(K) := [ |{K' cR?: K € K’, K’ convex }

For any finite set {x;,...,x;} S K and parameters \q,..., Ay = 0 with \; + ... + Ay = 1, the convex hull
conv(K) must contain the point A\;x; + ... + Ay : this can be seen by induction on k, using

M xr + )\k_lm
T Ve D Vet

A1w1+...+)\kmk=(1)\k)( >+/\kxk

for \x < 1. When k = 1, the convex hull of a single point is itself. When k = 2, every convex set containing
a1 and x, must contain [z, z2], so their intersection has to contain [z, x2]. Then do the induction on &,
the size of finite subset in K, by above formula. This will show the = direction of the following relationship:

k
conv(K) = {)\1:1:1 + . x| {2k © KN 20,2& = 1}
i=1

But the right-hand side of this equation is easily seen to be convex, which proves the equality.
Now if K = {x1,...,x,} < R?is itself finite, then we get the definition of a polytope.

Definition 1.2.2. A polytope, or a V-polytope, is the convex hull of a finite set of points in some R<.

conv(K) = {A1m1+...+)\nmn:n> 1, 20,2)\1- = 1}.
i=1

We consider a generalization.

Definition 1.2.3. A cone is a nonempty set of vectors C < R¢ that with any finite set of vectors also
contains all their linear combinations with nonnegative coefficients. In particular, every cone contains O .
For an arbitrary subset Y < R%, we define its conical hull (or positive hull) cone (V) as the intersection of all
cones in R? that contain Y. Clearly C := cone(Y) is a cone for every Y. Similar to the situation for convex
hulls (Lecture 0 ), one can easily see that

cone(Y) ={y1 +...+ \ewi : {y1,-. -,y S Y, \; = 0}

6
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In the case where Y = {y1,...,y,} < R% s a finite set - this is the only case we will need here - this reduces
to
cone(Y) :={t1y1 + ... +tpyn : t; =0} = {Yt : ¢t > 0}

We define that cone(Y') = {0} if Y is the empty set, i.e., if n = 0. The vector sum (or Minkowski sum) of
two sets P, Q < R? is defined to be

P+Q:={z+y:xecPyecQ}

Definition 1.2.4. A V-polyhedron is any finitely generated convexconical combination: a set P < R? that
is given in the form
P = conv(V) 4 cone(Y) for some V € R¥™*" Y e R*™

as the Minkowski sum of a convex hull of a finite point set and the cone generated by a finite set of vectors.

Thus, comparing this to definition of a polytope we get that a V-polytope is a V polyhedron that is bounded,
that is, contains no ray {u + tv : t = 0} with v s 0. For this we only need to observe that conv (V') is always
bounded. This follows from a trivial computation: if « € conv(V'), then

min {v;, 1 1 <i<n} <ap <max{vy:1<i<n},

which encloses conv(V') in a bounded box.

The dimension of a polytope is the dimension of its affine hull. A d-polytope is a polytope of dimension d
in some R¢(e > d). Two polytopes P € R? and () < R® are affinely isomorphic, denoted by P =~ Q, if there
is an affine map f : RY — R that is a bijection between the points of the two polytopes. (Note that such a
map need not be injective or surjective on the “ambient spaces.”)

Example 1.2.5.

The standard d-simplex is A, := conv {ey, ... ,eqq1} S RIH!
The d-cube is Cy := conv{0,1}* = [0,1]? = R?. In fact, Cq = {x e R | 0 < z; < 1}.
The d-cross polytope is o4 := conv {+ey,..., +eys} € R

Two-dimensional polytopes are called polygons.
We consider another approach to define polyhedron and polytope.

Definition 1.2.6. An H-polyhedron is an intersection of finitely many closed halfspaces in some R?. An
‘H-polytope is an H-polyhedron that is bounded in the sense that it does not contain a ray {x + ty : t = 0}
for any y # 0. An H-polyhedron can be represented by

P=PAz)={zxeR?: Az <z} forsomeAeR™* % zeR™.

(Here” Ax < z ” is the usual shorthand for a system of inequalities, namely a1« < z1, ..., apx < 2, Where
ai,...,a,, are the rows of A, and z1, ..., z,, are the components of z.)

We now show that the two definitions are equivalent.

Theorem 1.2.7 (Main theorem for polytopes).
{H-polytope} = {V-polytope}.
A subset P < R is the convex hull of a finite point set (a V-polytope)
P = conv(V) for some V e R¥"
if and only if it is a bounded intersection of halfspaces (an #-polytope)

P=P(A,z) forsome AeR™*? ;e R™

7
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This result contains two implications, which are equally “geometrically clear” and nontrivial to prove, and
which in a certain sense are equivalent.

This theorem provides two independent characterizations of polytopes that are of different power, depending
on the problem we are studying. For example, consider the following four statements.

- Every intersection of a polytope with an affine subspace is a polytope.

- Every intersection of a polytope with a polyhedron is a polytope.

- The Minkowski sum of two polytopes is a polytope.

- Every projection of a polytope is a polytope.

The first two statements are trivial for a polytope presented in the form P = P(A, z) (where the first is a
special case of the second), but both are nontrivial for the convex hull of a finite set of points. Similarly the
last two statements are easy to see for the convex hull of a finite point set, but are nontrivial for bounded
intersections of halfspaces.

Theorem 1.2.7 is the version we really need, a very basic statement about polytopes; however, it is not the
most straightforward version to prove. Therefore we generalize it to a theorem about polyhedra, due to
Motzkin.

Theorem 1.2.8 (Main theorem for polyhedra).
{#H-polyhedron = V-polyhedron}.

A subset P < R? is a sum of a convex hull of a finite set of points plus a conical combination of vectors (a
V-polyhedron)
P = conv(V) 4 cone(Y) for some V e R™*" Y e R4*"

if and only if is an intersection of closed halfspaces (an #-polyhedron)

P=P(A,z) forsome AeR™*? zeR™.

First note that Theorem 1.2.7 follows from Theorem 1.2.8: we have already seen that polytopes are bounded
polyhedra, in both the V and the # versions.

Proof. Sketch of proof of 2. Let P = conv(V) + cone(Y') and identify V with the d x n with columns the
elements of V' and similarly Y with an d x m matrix. Note that

P={xeRdH/\elR",ueRmm:V)\—s—Yu,Zx\i=1,)\i207m20}.

Let
T

Q= A | erdtntml g e p
w

Note that @ is given by the half-spaces t—VA—Y > 0,2—VA-Yu <0,>\; = 1, \; = 0, u; = 0. Moreover,

P is a projection of Q. Thus this direction relies on showing that the projection of an #-polyhedron is an
‘H-polyhedron. This is done using Fourier-Motzkin elimination. O

Example 1.2.9. Suppose ( is the polyhedron given by
xl—xgé—l, 1’1+1‘2§5, —x1+x2<3, —-x1<0
and we wish to project onto the z;-axis. To do so we should eliminate the x,-variable. Note,

1+ 1< 2y < —21+5,21 + 3.

8



Theory of Polytopes Anthony Hong

Thus, the projection is given by
—T1 <O,x1+1<—x1+5,x1+1<x1+3
which becomes 0 < z; < 2. Fourier-Motzkin elimination generalizes this.

T2

A

> L1

T

Proof. Sketch of proof of . Let P = P(A, z). Consider Q) = { [ y e R¥"| Az <y ). We will show that

@ is a V-polyhedron. Note that P = @ n { [ ;: e RI+n

Yy = z}, where the latter is an affine hyperplane.

We will also show that the intersection of a V-polyhedron with an affine hyperplane is a V-polyhedron.
(1) @ is a V-polyhedron. Note that

o~ { wt |
S | o e e B B

reRY we Rgo}

where e1,...,eq € R? x 0 are the standard basis vectors and fi,...,f, € 0 x R™ are the standard basis
vectors.

(2) The intersection of a V-polyhedron with an affine hyperplane is a V-polyhedron. We are skipping the
proof. O

1.3 Farkas Lemma

The following version of Farkas lemma yields a characterization for the solvability of a system of inequalities
(we are using [12]’s numbering).

Proposition 1.3.1 (Farkas lemma I). Let A € R™*% and z € R™. Either
(i) there exists a point & € R? with Az < z, or

(i) there exists a row vector c € (IR’”)* withe > 0,¢cA =0 and ¢z < 0,
but not both.

The next version of Farkas Lemma states that either a system of equations has a positive solution or a vector
that certifies that such a solution does not exist.

Proposition 1.3.2 (Farkas lemma II). Let A € R™*¢ and z € R™. Either
(i) there exists a point € R with Az = 2z, > 0, or

(ii) there exists a row vector ¢ € (R’”)* with ¢A > 0 and cz < 0,

but not both.
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Proof. We have the following equivalences:

>
A z
(e1,e2,b) | —A |=0,(c1,e2,b)| —2z | <0

—fc1>0,c,20,b>0:(ci—c2)A—b=0,(c; —c3)2<0
—fc=ci—cy,b=0:cA—b=0,cz <0

«—fc:cA>0,cz<0.

Proposition 1.3.3 (Farkas lemma IV). Let V € R%" Y e R“*" and x € R?. Either

(i) there exist t,u > Owith 1t =1and x = Vit + Yu, or

(ii) there exists a row vector (o, a) € (Rd+1)* with av; < o forall i < n, ay; < 0 for all j < »’/, while
ax > «a, but not both.

Proof. The ”either” condition can be stated as
3 tY_ (0. 1T 0 t\ (1
u /)7 \L0 )" V'Y u ) \=z
which by version II of the Farkas lemma is equivalent to

B 40, —a) € (R (a,a)( ﬂv g ) > (0,0), (a,a)( i > <0

%
— Ha,—a) e (IR‘HI) i al—aV =20,aY <0,ax > «,
which is equivalent to the negation of the ”or” condition. O

1.4 Faces of polytopes

Definition 1.4.1. Let P < R? be a convex polytope. Let ¢ be a row vector. A linear inequality cx < cy is
valid for P if it is satisfied for all points « € P. A face of P is any set of the form

F=Pm{wERd:cw=co}

where cx < ¢y is a valid inequality for P. Thus, equivalently, if ¢ is a column vector, a face of P can also be
written as

F={xeP:Vye P {y,c)<{zc)}

The dimension of a face is the dimension of its affine hull: dim(F) := dim(aff(F)).

10
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For the valid inequality Ox < 0, we get that P itself is a face of P. All other faces of P, satisfying F' c P,
are called proper faces. For the inequality Ox < 1, we see that (J is always a face of P. The faces of
dimensions 0, 1, dim(P) — 2, and dim(P) — 1 are called vertices, edges, ridges, and facets, respectively.
Thus, in particular, the vertices are the minimal nonempty faces, and the facets are the maximal proper
faces. The set of all vertices of P, the vertex set, will be denoted by vert (P).

Example 1.4.2. Let P = conv (0, ey, €32).

-Ifm = _1 ],then P,, = {0}.
-Ifm = 1 , then P,,, = conv (e, e3).
dfm=| V| then P,y = {ea).
F o]
-Ifm = 0 , then P,, = P.

Proposition 1.4.3 (Ziegler proposition 2.2). Let P < R be a polytope.

(i) Every polytope is the convex hull of its vertices: P = conv(vert(P)).

(ii) If a polytope can be written as the convex hull of a finite point set, then the set contains all the vertices
of the polytope: P = conv(V') implies that vert(P) < V.

Proof. Write P = conv(V') with V finite. If any v € V' can be written as a convex combination of elements in
V' :=V —{v} then P = conv (V'). Repeat until no longer possible until we get P = conv(W'). We claim that
W = verts(P).

D: Letv = AMw;y + -+ + Aw, € verts(P) with wy,...,w, € W,>.\; = 1, and \; > 0. Let ¢ be such that
P. = {v} and note that for all i, {c, w;){{c, v). It follows that

{e,v) = Z i e, wiy < {e,v)
a contradiction.

C: Letw € W and consider W/ = W —{w}. Since w ¢ conv (W’) there does not exist ¢ > 0 such that w = W't
and 1t = 1. Equivalently, there does not exist ¢ > 0 such that

Lol ]

By Farkas Lemma II, there exists ¢ such that ¢ > 0 and ¢ 110 < 0. Writing ¢ = (53, —b), then

[ 1
W/
BT —bW' > 0and S — bw < 0. It follows that bW’ < (3,...,5) and bw > j, i.e. P, = {w}. O

Proposition 1.4.4 (Ziegler proposition 2.3). Let P < R? be a polytope, and V := vert(P). Let F be a face
of P.

(i) The face F' is a polytope, with vert(F) = F n V.

(ii) Every intersection of faces of P is a face of P.

(iii) The faces of F' are exactly the faces of P that are contained in F'.

@(iv) F = P naff(F).

We will need another construction: the vertex figure obtained by cutting a polytope by a hyperplane that
cuts off a single vertex.

For this, we consider a polytope P with V' = vert(P), and a vertex v € V. Let cx < ¢y be a valid inequality
with
{v}=Pn{x:cx=cy}.

11
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Figure 1.1: Vertex figure.

Furthermore, we choose some ¢; < ¢y with cv’ < ¢; for all v’ € vert(P)\v. Then we define a vertex figure of
P at v as the polytope
Plv:=Pn{x:cx=c}.

Note that the construction of P/v depends on the choice of ¢; and of the inequality cx < ¢p; however, the
following result shows that the combinatorial type of P/v is independent of this.

Proposition 1.4.5 (Ziegler Proposition 2.4). There is a bijection between the k-dimensional faces of P that
contain v, and the (k — 1)-dimensional faces of P/v, given by

7: F—Fn{z:cx=c},
o:Praff ({v}uF) «—F.

1.4.1 Face lattices

A partial ordering on a (nonempty) set S is a binary relation on S, denoted <, which satisfies the following
properties:

* reflexive: for all s€ S, s < s,
* antisymmetric: if s < s’ and s’ < sthen s = ¢/,
* transitive: if s < s’ and s’ < s” then s < s”.

When we fix a partial ordering < on S, we refer to S (or, more precisely, to the pair (S, <)) as a partially
ordered set, also abbreviated as poset.

It is important to notice that we do not assume all pairs of elements in S are comparable under < : for some
s and s’ we may have neither s < s’ nor s’ < s. If all pairs of elements can be compared (that is, for all s
and ¢’ in S either s < ¢’ or s’ < s ) then we say S is totally ordered with respect to <.

A chain in S is a totally ordered subset of S; its length is its number of elements minus 1.

Example 1.4.6. The usual ordering relation < on R or on Z* is a partial ordering of these sets. In fact it is
a total ordering on either set. This ordering on Z* is the basis for proofs by induction.

Example 1.4.7. On Z*, declare a < bifa | b. This partial ordering on Z* is different from the one in previous
example and is called ordering by divisibility. It is one of the central relations in number theory. (Proofs about
Z* in number theory sometimes work not by induction, but by starting on primes, then extending to prime
powers, and then extending to all positive integers using prime factorization. Such proofs view Z* through
the divisibility relation rather than through the usual ordering relation.) Unlike the ordering on Z* in

12
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previous example, Z* is not totally ordered by divisibility: most pairs of integers are not comparable under
the divisibility relation. For instance, 3 doesn’t divide 5 and 5 doesn’t divide 3 . The subset {1, 2,4, 8, 16, ...}
of powers of 2 is totally ordered under divisibility.

Definition 1.4.8. The face lattice of a convex polytope P is the poset L := L(P) of all faces of P, partially
ordered by inclusion.

Example 1.4.9.

(1) The Boolean lattice is the poset given by (2[4, ), where we use [d] to denote {1,--- ,d} and 2% is the
power set of X.

(2) Face lattice L(Cs) of cycle Cy using Hasse’s diagram of poset (the element in the poset that is higher
contains those that are lower). The top is the whole polytope, and the bottom is the empty face. The second
line has the edges, and the third line has the vertices.

d c

abed

NN
\\@/

a ad

d

a

(3) Exercise: show that L(4,) is the Boolean lattice.

For elements x,y € S with x < y, we denote by
[z,y] ={weS:z<w<y}

the interval between z and y. An interval in S is boolean if it is isomorphic to the poset B, = (2[’“], <) of
all subsets of a k-element set, for some k.

A poset is bounded if it has a unique minimal element, denoted 0, and a unique maximal element, denoted
1. The proper part of a bounded poset S is S := S\{0, 1}.

A poset is graded if it is bounded, and every maximal chain has the same length. In this case the length of
a maximal chain in the interval [0, z] is the rank of z, denoted by r(z). The rank 7(S) := (1) is also called
the length of S. For example, every chain is a graded poset, with »(C') = |C| — 1, and the boolean posets Bj,
are graded of length r (By) = k, for all k > —1.

A poset is a lattice if it is bounded, and every two elements z, y € S have a unique minimal upper bound in
S, called the join = v y, and every two elements z,y € S have a unique maximal lower bound in S, called
the meet x A y. (In fact, any two of these three conditions imply the third; also, if every pair of elements has
a join respectively meet, then also every finite subset has a join respectively meet.)

Example 1.4.10. The following poset is not a lattice.

13
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Theorem 1.4.11 (Ziegler Theorem 2.7.). Let P be a convex polytope.

(i) For every polytope P the face poset L(P) is a graded lattice of length dim(P) + 1, with rank function
r(F) = dim(F) + 1.

(ii) Every interval [G, F'] of L(P) is the face lattice of a convex polytope of dimension r(F) — r(G) — 1.

(iii) ("Diamond property”) Every interval of length 2 has exactly four elements. That is, if G < F with
r(F) —r(G) = 2, then there are exactly two faces H with G ¢ H c F, and the interval [G, F] looks like

Proof. To see that L(P) is a lattice it suffices to see that it has a unique maximal element 1 = P and a unique
minimal element 0 = ¢, and that meets exist, with ' A G = F' n G; this is true because F n G is a face of F'
and of G, and thus of P, by Proposition 1.4.4(ii). And clearly every face of P that is contained in F' and in
G must be contained in F' n G.

We continue with part (ii). For this we can assume that ' = P, by Proposition 1.4.4(iii). Now if G = &,
then everything is clear. If G # (7, then it has a vertex v € G by Proposition 1.4.3(i), which is a vertex of P
by Proposition 1.4.4(iii). Now the face lattice of P/v is isomorphic to the interval [{v}, P] of the face lattice
L(P), by Proposition 2.4. Thus we are done by induction on dim(G).

For part (i) it remains to see that the lattice L(P) is graded. If G < F are faces of P, then from G =
P naff(G) € P n aff(F) = F, which holds by Proposition 1.4.4(iv), we can conclude that aff(G) < aff(F),
and thus that dim(G) < dim(F'). So it suffices to show that if dim(F) — dim(G) > 2, then there is a face
H e L(P) with G ¢ H c F. But by part (ii) the interval [G, F] is the face lattice of a polytope of dimension
at least 1, so it has a vertex, which yields the desired H. Part (iii) is a special case of (ii): the "diamond” is
the face lattice of a 1-dimensional polytope. O
Definition 1.4.12. Two polytopes P, ) are combinatorially equivalent if L(P) ~ L(Q).

Example 1.4.13. Up to combinatorial equivalence, for each n there is exactly one polygon with n vertices.

Recall that last time we also defined the f-vector of P to be f(P) := (f_1, fo,- - -, fa), where f; is the number
of faces of dimension 4, and the f-polynomial of P to be fp(t) := Z;Lo fitt

Exercise 1.4.14. Do there exist two non-combinatorially equivalent 3 -dimensional polytopes with the same
f-vector?

1.4.2 f-vectors

Definition 1.4.15. The f-vector of P is f(P) := (f_1, fo,- .-, fa), where f; is the number of faces of dimen-
sion i. The f-polynomial of P is fp(t) := 30, fit'.

Example 1.4.16. Let P = conv (0,e1,e2). Then f(P) = (1,3,3,1) and fp(t) = 3 + 3t + t.
Example 1.4.17. Let P be an octahedron. Then f(P) = (1,6,12,8,1) and fp(t) = 6 + 12t + 8% + 3.

14



Theory of Polytopes Anthony Hong

Example 1.4.18. Consider the d-cube Cy = {z € R? | Vi, —1 < z; < 1}. Given v € R?, we have that

(Od)v ={zxeCy|vizs +  vgrsmax}.

Note that - If v; > 0 then z; = 1 maximizes v;z;.
- If v; < 0 then x; = —1 maximizes v;x;.
- If v; = 0 then z; can be anything.

For example, if v = (+,—,0,0,—,+,0,+,0), then

(Ca), = {(1,-1,a,b,-1,1,¢,1,d) | a,b,c,d € [-1,1]} ~ C4.

It follows that the faces of C; are in one-to-one correspondence with d-tuples in {£1,0}¢. Moreover, the

dimension of the face corresponding to a tuple is the number of 0s. Therefore, f; = ( d ) 29=k and

k
feult) =T ((§ )2t = @y
Exercise 1.4.19. Compute fa,,.

A key question in combinatorics asks the following:

Q: What is the structure of the collection of f-vectors of d-dimensional polytopes? (It is also interesting for
other manifolds.)

Example 1.4.20. For 2-dimensional polytopes, aka polygons, the answer is simple. The f-vectoris (1,n,n,1)
for some n. For 3-dimensional polytopes, the answer is more complicated, but settled.

Theorem 1.4.21 (Euler). Let P be a 3-dimensional polytope. Then
Jo—fi+ fa=2
Theorem 1.4.22 (Steinitz).

{fez’|3P f(P)=f}
={feZ’|faa=fa=1fo—fi+fa=2f2<2fo—4 fo <2fo—4}.

In arbitrary dimension, much less is known.

Theorem 1.4.23 (Euler-Poincaré equation). Let P be a d-dimensional polytope. Then —f 1 + fo + -+ +
(=1)ifs = 0.

Definition 1.4.24. A polytope is simplicial if all of its faces are combinatorially equivalent to standard
simplices.

Remark 1.4.25. Billera-Lee and Stanley proved the g-Theorem which gives a characterization for the f-
vector of simplicial polytopes. This could be a good topic for the long presentation. There are still contribu-
tions being done.

Theorem 1.4.26 ((Xue, 20+)). Let P be a d-dimensional polytope with d + s vertices, where s > 2 and
d+1 d d+1-—s
d>s.Thenforeveryk,fk(P)>(kJrl>+<k+1)—( k1 >

15
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Remark 1.4.27 ((Kalais’ 3¢ conjecture, '89)). If P is centrally symmetric (i.e. v is a vertex if and only if —v
is a vertex), then P has at least 3¢ nonempty faces, where d = dim(P).

Remark 1.4.28 (Open question). Is (1,10%,10°,10%,10%, 1) the f-vector of a 4-dimensional polytope?

1.5 Simplicial, Cyclic, and Simple Polytopes

We say that d+1 vectors are affinely independent if the smallest affine space containing them has dimension
d. If P is the convex hull of d + 1 affinely independent vectors, then P is a d-dimensional polytope and all
these vectors are vertices. A d-simplex is the convex hull of d + 1 affinely independent vectors.

Definition 1.5.1. A d-dimensional polytope is simplicial if all of its facets are (d — 1) simplices. One can
recognize affinely independent vectors by looking at determinants.

Lemma 1.5.2. Let ag,...,aq € R% Then ay, ..., aq are affinely independent if and only if
det[ Lot ];&o.
aO e ad

Definition 1.5.3. Let d € N. The moment curve in R is

pa R =Rt [t 82,1,

The cyclic polytope Cy (t1,...,t,) = conv{pug (t1),..., pa (t,)}, where t; <--- <t, and n > d.

The next theorem says that cyclic polytopes have the largest possible number of faces among all convex
polytopes with a given dimension and number of vertices.

Theorem 1.5.4 (Upper bound Theorem - McMullen). For any polytope P of dimension d and n verices we
have that f,(P) < fi (Cq (t1,...,t,)) for any k.

Theorem 1.5.5. Letd > 2.

(1) The cyclic polytope Cy (t1,. .., t,) is simplicial.

(2) For S < [n] with |S| = d we have that {p4 (t5) | s € S} forms a facet if and only if for all ¢ < j notin S,
Kk | keS,i<k<j} iseven.

Lemma 1.5.6 (Vandermonde determinant). Let ag,...,aq € R. Then
1 .- 1
ao P ad
det . . = 1_[ (a; —a;).
: : o<i<j<d
a/(oi P ag

proof of the theorem. (1) By the lemma, any d + 1 points pq (ti,),- .., a4 (t;,) are affinely independent. It
follows that all the u4 (¢;) are vertices and that all the facets are simplices.

(2) Let S < [n] with S = {s1,...,s4}. Let Hg be the hyperplane through pg4 (ts,), ..., pa (ts,). Observe that

det[; #d(lt31) . ,Ld(lt%)]—o}.

Let Fs be the defining equation of Hg. As we can see in Figure 1.2, Hg is a facet if and only if Fg (pq4 (¢;))
has the same sign for all i ¢ S. The sign of Fs (u4(t)) changes sign as it passes through its zeroes, which
are precisely the pg4 (t5,) (since Fg is a polynomial of degree d). It follows that for ¢ < j, Fis (14 (¢;)) has the

same sign as Fy (uq (ts,)) if and only if there is an even number of sign changes between them.

HS—{IERd

O
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Figure 1.2: Hg with moment curve.

Corollary 1.5.7. The combinatorial type of Cy (¢4, ...,t,) only depends on d, n.

Sketch of proof. Fix d,n. The V-description of the facets of any cyclic polytope is the same. Since the faces
are the intersections of the facets, the structure of the face lattice is the same.

Definition 1.5.8. A polytope of dimension d is simple if each vertex is contained in exactly d facets.

Example 1.5.9.
(1) The d-cube is simple.
(2) The pyramid with square base is not simple.

Exercise 1.5.10. Show that if P is simple, then every interval [F, G] of L(P) with f # @ is a Boolean lattice.
For these polytopes there is a more compact vector encoding the f-vector.

Definition 1.5.11. Let f(P) = (f-1, fo,--., fa).- The h-polynomial of P is hp(t) = fp(t — 1). The h-vector
of P is h(P) = (ho,. .., hq) consisting of the coefficients of hp.

Example 1.5.12.

(1) Let P be the octahedron. We saw that fp(t) = 6 + 12t + 8% + ¢>. It follows that hp(t) = 1 — ¢ + 5t2 + ¢3.
(2) Let P be the 3-cube. Then fp(t) = 8 + 12t + 6t2 + ¢3 and hp(t) = 1 + 3t + 3t + ¢3.

(3) We saw fc, (t) = (2 + t)?. It follows that h¢, (t) = (1 + t)%.

Theorem 1.5.13 (Dehn-Sommerville equations). Let P be a simple d-polytope. Then h; = hy_; for all 4, i.e.
hp(t) is palindromic.

Reason: if P is simple, then the h-polynomial is the Poincare polynomial of a smooth toric variety. This
equations reflect Poincaré duality. There is a method to compute the h-vector of a simple polytope.

(1) Find A : R™ — R linear such that A(u) # A(v) for all edges [u, v] of P.

(2) For each vertex u, define S(u) :=| {v € verts(P) | [u, v] is an edge, A(v) > A(u)} |.

Theorem 1.5.14. Let P be a simple polytope. Then hp(t) = 3. A,

ueverts(P)
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Example 1.5.15. Let P = conv {(w;, ws,w3) | w is a permutation of [3]}. Let A(z,y, 2) = = + 10%y + 10°2.
The following figure shows the orientation on the edges of P given by u — v if A(v) > A(u). It follows that
hp(t) = 1+ 4t + 2.

321
N
231 312
132 213
. s
123
1.6 Permutohedron
A permutahedron is defined as
P = conv {(wy,ws, - ,w,) | wis a permutation of [n]}
where we mean a sequence of numbers 1,--- ,n as a permutation instead of an element of the symmetric
group S,, in above definition, and (ws, - ,w,) is a point in R™, with components the 1-st, 2-nd, - -, n-th

number of the sequence w.

Alternatively, we can say w € S,, but mean the second row of its matrix notation instead of meaning its cycle
notation. For example, The cycle notation (1 2) € S5 is represented in matrix as

1 2 3
2 1 3

and is then abbreviated as w = (2 1 3) € S3 with w; = 2, ws = 1, and w3 = 3.

z
123
312
132

+..

T
Y
Y

Figure 1.3: conv(S3)
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Just as conv(.S3) can be represented in two dimensions, Figure 1.6 gives the three-dimensional representation
of conv(S,) in four dimensions.

Figure 1.4: conv(Sy)

Recall: There is a method to compute the h-vector of a simple polytope.
(1) Find X : R™ — R linear such that A\(u) # A(v) for all edges [u, v] of P.
(2) For each vertex u, define f(u) :=| {v € verts(P) | [u,v] is an edge, A(v) > A(u)} |.

Theorem 1.6.1. Let P be a simple polytope. Then hp(t) = ZueVem(P) B,

Let S,, denote the set of permutations of [n]. A descent of w € S,, is an i € [n — 1] such that w(i) > w(i + 1).
The Eulerian number A(d, i) :=| {w € S,, | w has exactly i descents } |.

Proposition 1.6.2. LetII,; := conv (.5, ) be the permutohedron. The h-polynomial is h, () = Zf;ol A(d, i)t
Proof. Let us choose a linear function A(z) = \z1 + -+ + Az, With Ay << .-+ << \,,. Then ) satisfies
condition (1). Let v = (i,i + 1)w be adjacent to w. Then, A(v) > ANw) < A\y-1(5) > Ay-1341) < w (i) >

w(i + 1) « i is a descent of w™!. Thus, B(w) = # {i | i is a descent of w™'} and the result follows. [

Exercise 1.6.3. Prove that verts (II;) = S,, and the edges of II,; are given by [w, (¢, + 1)w] for some .

1.7 Dual/Polar Polytopes

This is based on [12] section 2.3.
Definition 1.7.1. The polar of P < R? is the set

P2 ={ceR?|Vz e P{z,c) <1}
Notation: given m € R% and b € R, let H,, ;, = {z € R? | (m, z) < b}.
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Example 1.7.2. Let P = conv{(0,2),(—1,1),(-1,0),(0,—1),(1,—1)}. Then P2 < H,,; for all m € P. In
fact, taking the vertices is enough so that

PA = {(.’E,y) € Rd | 2%—95‘1'9,—95’—1/730—9 < 1}
= conv{(—.5,.5),(—1,0),(—1,-1),(0,—1),(1.5,.5)}

The following figure shows P and P*.

Yo

Figure 1.5: P and P2.

Example 1.7.3. Let P = conv{(0,1),(1,1),(1,0)}. Then P® = {ceR? |c; + 2 <1,¢1 <1,co < 1}. The

following figure shows P and P~.
(0,1)
il \ (1,0)

Figure 1.6: P and P~.

Theorem 1.7.4 (Ziegler Theorem 2.11).

(i) P < Q implies Q* < P~.

(i) P < PAA.

(V) If0 € P, then P = P22,

(vi) If 0 € int(P) and P = conv(V), then P2 = (), ., Hy 1.

(vii) If P = {2 | Az < 1}, then P is the convex hull of the rows of A.

Example 1.7.5. The cube is the polar to the octahedron. To observe (vi) and (vii), note that the vertices of
the octahedron are (+1,0,0), (0,£1,0), (0,0, +1). This gives us the inequalities of the cube.

Example 1.7.6. The cube is the polar to the octahedron. To observe (vi) and (vii), note that the vertices of
the octahedron are (+1,0,0), (0, +1,0), (0,0, +1). This gives us the inequalities of the cube.

Remark 1.7.7 (For those taking toric variety). A different way to define the polar is as
P*={ceR?|Vze P (z,c)>—1}.

This is prefered in toric geometry. The polytopes P> and P* are related by the linear isomorphism ¢(z) =
—z. This is because P2 is the convex hull of the outer normals of the facets of P whereas P* is the convex
hull of the inner normals.
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proof of the theorem. (i)-(ii) Exercises.

(v) By (ii) we only need to show that PA» < P. Suppose that ¢ € P22 but ¢ ¢ P. Let c € P2, By definition,
{¢,¢) < 1. Since ¢ ¢ P, there exists a hyperplane separating ¢ from P. Suppose that H,,; is such that
q¢ Hp,p and P < H,, ;. Further assume that the boundary of H,, ; is disjoint from P. Since 0 € P, we have
that b > 0. It follows that (m/b,z) < b/b = 1 for all z € P, i.e., m/b € P™. Since ¢ € PA?, we have that
{m/b, ¢) < 1. However, this contradicts that ¢ ¢ H,, .

(vi) Since V < P, it follows that P2 < ey Ho,1. For the opposite containment, let a be such that {(a,v) < 1
for all v € V. Suppose that {a,z) > 1 for some x € P. Since the linear functional (a, —) is maximized at
the face P, we can take a vertex of P, which also has to be in V. Now, {a,v) > {a,x) > 1, contradicting
{a,v) < 1. O

Next we want to compare the face lattices of P and P*.

Example 1.7.8. Let P be the cube and P2 be the octahedron. We can see that the face lattices are opposites.

Figure 1.7: P and P*.

Definition 1.7.9. Let (S, <) be a poset. The opposite poset (.5, <) is defined by x < y if and only if y < «.
Proposition 1.7.10. The face lattice of P2 is the opposite of the face lattice of P.
This corollary is a consequence of the following theorem.

Theorem 1.7.11 (Ziegler, Theorem 2.12). Let P = conv(V) = {x | Az < 1} and consider a face F =
conv (V') = {x | A7z <1, A’z = 1}, where A’, A” together form the rows of A. Then P2 has a dual face
FA = conv ( rows of A’) = {a | aV" < 1,aV’ = 1}. Moreover, every face of P? is of this form.

We wish to prove:

Theorem 1.7.12 (Ziegler, Theorem 2.11). (vii) If P = {x | Az < 1}, then P* is the convex hull of the rows
of A.

First, we need to introduce a version of the Farkas Lemma.

Lemma 1.7.13 (Farkas Lemma III). . Let A € R™*% 2z € R™,a € R% and z, € R. The polyhedron
P = {z € R?| Az < z} is nonempty if and only if

(1) there exists a vector ¢ > 0 such that cA = a and {¢, z) < zp, or

(2) there exists a vector ¢ > 0 such that cA = 0 and (¢, z) < 0, or both.

Proof of (vii). The containment 2 is straightforward since every row of A has to be in P2. For the opposite
containment, let a € P2, Since P # @ and condition (2) cannot hold, Farkas Lemma III implies that there
exists ¢ > 0 such that cA = a and {c¢, 1) < 1. This is close, but what we really need is ¢’ > 0 such that /A = a
and (¢, 1) = 1. To do so, we will find d = ¢ — ¢ > 0 with dA = 0 and {(d,1) = 1 — ¢ > 0 which leads us to
the desired ¢’ by scaling. Farkas Lemma II says that we can find d unless there exist z, y such that

Axr =1y and y<0.

However, this would imply that for all A > 0, Az € P contradicting that P is bounded.
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Chapter 2

Graph of Polytopes

2.1 G(P) and linear programming

Let P be a convex polytope. The vertices and the edges of P form an abstract, finite, undirected, simple
graph, called the graph of P and denoted by G(P).

For every face F' € L(P), we denote by G(F') the induced subgraph of G(P) on the subset vert(F') < vert(P)
of the vertices of G(P), that is, the graph of all vertices in F, and all edges of P between them. This coincides
with the graph of F, if F' is itself considered as a polytope.

Definition 2.1.1. A linear function ) : R — R is in general position with respect to a polytope P if for all
u,v € Vert(P), A(u) # A(v).

Definition 2.1.2. We will consider orientations of G(P), which assign a direction to every edge. An orien-
tation is acyclic if there is no directed cycle in it. This implies (because all our graphs are finite) that there
is a sink: a vertex that does not have an edge directed away from it. (Proof: Start at any vertex, and keep
on walking along directed edges until you close a directed cycle or get stuck in a sink.)

If ) is in general position with repsect to P, then it induces an orientation of G(P). Concretely, v — v if
Alu) > A(v).
Proposition 2.1.3. The orientation of G(P) induced by A in general position is acyclic and has a unique

sink. Moreover, \ is maximized over P at the sink.

Proof. If there was a cycle v; — -+ — v — vy, then A(vy) > -+ > A(vg) > A(v1), a contradiction. Every
acyclic graph has a sink. Suppose ¢ is a sink. Let N(¢) = {v € verts(P) | [t,v] edge } be the neighbors
of t. Recall that the vertex figure P/t is obtained by cutting P by a hyperplane that separates v from the
other vertices of P. The vertices of P/t are in 1-1 correspondence with the elements of N (¢). It follows that
P c t+ cone(v—t|ve N(t)). Now, since A(v) < A(¢) for all v € N(t) we have that given p € P,

Ap) = AD+ 3] A1) < A®)
veEN(t)

since A\(v — t) < 0 for all v € N (). It follows that ¢ is the unique sink and that it maximizes A. O

This proposition gives us a method to maximize \ over P.

Proposition 2.1.4 (Dantzig’s simplex algorithm).
(1) Start at a vertex v.
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(2) If v is a sink, then stop.
(3) Otherwise, move to a neighbor w of v such that A(w) > A(v).

This hides the fact that finding a vertex of P is nontrivial. The full simplex algorithm takes care of this.

2.2 The diameter of a polytope.

Definition 2.2.1. The diameter 6(P) of P is the the smallest § such that any two vertices in P can be
connected by a path with at most § edges.

The diameter of a polytope is a measure of how hard it is to optimize a linear function over it using the
simplex algorithm. Concretely, it gives a lower bound on the number of iterations needed.

Let A(d,n) be the maximum diameter of a d-dimensional polytope with at most n facets.
Example 2.2.2. A(2,n) = [n/2].

Question: What is the behavior of A(d, n) ?

Conjecture(Hirsch Conjecture, ’57). A(d,n) < n — d.

This was disproven:

Theorem 2.2.3 (Santos, ’10). The Hirsch Conjecture is false. Namely, there exists a 43-dimensional polytope
with 86 facets such that §(P) > 44.

Conjecture(Polynomial Hirsch Conjecture). There is a polynomial f(n) such that the diameter of every
polytope with n facets is bounded above by f(n).

2.3 Simple polytope and graph
Theorem 2.3.1 (Perles '70 - conjecture, Blind-Mani ’87). If P is simple then G(P) determines P up to
combinatorial equivalence.

In other words, if two simple polytopes have isomorphic graphs, then their face lattices are isomorphic as
well.

We will discuss Kalai’s simple proof of this result. A key observation will be that if P is simple, then for any
vertex v any k edges incident to v determine a face.

proof of the theorem. Let O(P) be the set of all orientations of G(P). Let us say that O € O(P) is good if
for all faces I of P, Ol has a unique sink. (Otherwise, we say that O is bad.) We say that a graph is
k-regular if all its vertices have degree k. The result follows from the following two claims.

Claim 1. Let U < verts(P). Then U is the vertex set of a k-dimensional face of P if and only if G(P)|,, is
k-regular and there exists a good orientation O for which U is a downset. Here the last condition means that
ifve U and u — v is an edge of O, then u € U.

o _ ind
Let f - Zveverts(P) 2indeg

Claim 2:
{ good orientations } = { orientations with max f°}.

Given O € O(P), note that
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| { nonempty faces of P} | <| {(F,v) | F face of P and v is a sink vertex of F'} |
= Z | {F | v is a sink vertex of F'} |

veverts(P)

Z Qindeg(v)

veverts(P)

where the last equality follows from the fact that P is simple. More concretely, for any vertex v any k edges
incident to v determine a face. It follows that if v has indegree k, then there are 2% faces of P with v as a
sink. Moreover, we have equality if and only if O is good. This gives us the most recent claim.

We are now ready to prove the first claim.

= Suppose that U are the vertices of a face F'. Since P is simple, it is immediate that G(P)|, is k-regular.
Let A\ be such that F' minimizes A\ over P. This A may not be in general position, but we can perturb by a
small amount to be so. The resulting orientation is good and U is a downset.

< Suppose that U and O are as desired. Since Oy is acyclic, let x be a sink and note that it has indegree
k. Let F be the k-dimensional face determined by these k edges. Since O is good, « is the unique sink of F.
Since u — « for all vertices along these k edges and U is a downset, then verts(F') € U. Now, we must have

that verts (F') = U since both G|;; and G|, ) are connected and k-regular. O

Theorem 2.3.2 (Balinksi’s Theorem). A graph is connected if there is a path between any two vertices.

Definition 2.3.3. A graph is d-connected if it stays connected after removing any < d — 1 vertices (and their
incident edges).

Theorem 2.3.4. If P is d-dimensional, then G(P) is d-connected.

In particular, this says that the degree of any vertex is > d.

Proof. To ease the proof, suppose that P < R?. Let V = verts(P) and S < V be such that |S| < d — 1. To
show that G(P) — S is connected we use induction on d. The base case d = 1 is immediate. For the inductive
case, let L = span(S) and consider two cases.

(1) Suppose L doesn’t intersect the interior of P. Then S are the vertices of a face P. & P. Consider the
face P_. and the orientation of G(P) given by the function A(z) = (—¢,z). By the argument we used in
the proof of Proposition 2.1.3, we have have that every vertex is either in P__,or it has a neighbor = ¢ S
whose {c, x)-value is smaller. Thus, there is a ¢ decreasing path from any vertex in V\S to a vertex in P_,.
By induction, G (P-.) is connected and we are done.

(2) Suppose L intersects the interior of P. Let H = {x | {¢,z) = ¢o} be a hyperplane containing S and at least
one v € V\S. Note that since L < H, then H also intersects the interior of P. This is possible because every
set of d points is contained in a hyperplane Consider the faces P. and P_.. Let P* = {zx € P | {c,x) = co}
and P~ = {x € P |{c,z) < ¢y}. Note that every vertex of P*has a c-increasing path to P.. Since G (P,) is
connected, by induction, it follows that G (P*)\S is connected. Similarly, G (P~)\S is connected. Since v
is in both graphs, we conclude that G(P)\S is connected. O

Question: Can we characterize the graphs of polytopes?

Theorem 2.3.5 (Steinitz’ Theorem). G is the graph of a 3-dimensional polytope if and only if it is simple,
planar, and 3-connected (Simple means that it has no loops or multiple edges.)

Proof. Proof of =. Let G be the graph of a 3-dimensional polytope P. It is immediate that it is simple. Also,
Balinksi’s Theorem implies it is 3-connected. Last, it is planar by blowing up a facet.
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Proof of <. See [2, Chapter 4]. O

Remark 2.3.6. No similar theorem is known, and it seems that no similarly effective theorem is possible, in
higher dimensions.
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Chapter 3

The Ehrhart Theory

We shift to [4] for the main reference. The main theme is to count the number of integer points inside a
polytope. We begin with some examples.

A convex polytope P is called integral if all of its vertices have integer coordinates, and P is called rational
if all of its vertices have rational coordinates. A unit d-cube

o:=[0,1]% = {(z1, 22, - ,xq) e R?: all 2, = 0 or 1}
= {(z1,22,...,24) ER*: 0 <z < Lforallk =1,2,...,d}

We now compute the discrete volume of an integer dilate of o. That is, we seek the number of integer points
tanz?forallt e Z.(. Here tP denotes the dilated polytope {(tz1,txs,...,tzq) : (v1,T2,...,24) € P} fora
polytope P. What is the discrete volume of P = o ? We dilate by the positive integer ¢, as depicted in Figure
3.1, and count:

Lp(t) :=# (tPnz%) =# (tonz?) =#([0,t]" n 2%) = (t + 1)*,

a polynomial in the integer variable ¢. Notice that the coefficients of this polynomial are the binomial
coefficients. The number of interior integer points in to° is Lo (t) = # (t0° nZ%) = # ((0,1) n 2%) =
(t — 1)?. Notice that this polynomial equals (—1)?L,(—t), the evaluation of the polynomial L, (t) at negative
integers, up to a sign.

1 6 m

Figure 3.1: The 6 dilate of o in dimension 2.
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The generating function of Lp is called Ehrhart series of P:

Ehrp(z) == 1+ Y| Lp(t)z'

t=1

The Ehrhart series of P = o takes on a special form.
1
Ehro(z) = 14 Y (t+1)%2" = Y (¢ + 1)%" = = > ¢!
t=>1 =0 7=

NN Ad k)
- (1 _ Z)d+1 ’

where A(d, k) is the Eulerian number, which counts the number of permutations with exactly k descents.

The standard simplex A in dimension d is

conv{0,eq,es,..., €4} = {(ml,mg...,xd)eRd:xl—|—x2+---+xd< 1 and all z;, 20}

(we now include zero as a vertex now). The dilate tA is

tA={(ml,xg,...,xd)eRd:x1+x2+-~-+md<tandallxk20}

The lattice-point enumerator of A is the polynomial La(t) = d ji_ t . Its evaluation at negative integers

yields (=1)?La(—t) = Lao(t). The Ehrhart series of A is Ehra(2) = g—yasr-

3.1 Triangulations
Because most of the proofs that follow work like a charm for a simplex, we first dissect a polytope into
simplices. This dissection is captured by the following definition.

A triangulation of a convex d-polytope P is a finite collection T of d-simplices with the following properties:

*P= UAeT A.
* For every A1, As € T, A1 n A, is a face common to both A; and As.

Figure 3.2 exhibits two triangulations of the 3-cube. We say that P can be triangulated using no new vertices
if there exists a triangulation 7" such that the vertices of every A € T are vertices of P.

Figure 3.2: Two (very different) triangulations of the 3-cube.
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Theorem 3.1.1 (Existence of triangulations). Every convex polytope can be triangulated using no new
vertices.

This theorem seems intuitively obvious, but it is not entirely trivial to prove.

In order to prove this, let us consider regular subdivisions.

Let P = conv(V) < R%. Choose h : V — R and let P’ = conv{ [

v
h(v) ] vE V}. We say that a face F' of
P'is lower if F' = P! for some ¢ € R%*! with ¢;,; < 0.
Let m : R¥*! — R be the projection onto the first d coordinates.

Proposition 3.1.2. The set {n(F) | F' lower face of P’} is a subdivision of P. If h is generic, then this
subdivision is a triangulation.

Proof. We will only provethe second claim. Suppose P < R? is d-dimensional. First, we will show that each
lower facet of P’ is a simplex, i.e., the convex hull of d + 1 affinely independent vectors. Suppose we have

d + 1 affinely independent vertices of P,v1,...,vq41. Let H € R?*! be the hyperplane given by the equation
1 1 e 1 1
U1 V2 te Vd+1 T
h(vi) h(v2) - h(vat1) Tasr

Note that for all 7, [ ¢ ] € H. Also, note that if we fix x, then there is a unique x4, that makes this

h (v;)

equation hold. Thus, if v # v; for all i, then since we chose the h(v) at random, then [ ] is not in H.

v

h(v)
This proves that P’ is simplicial, so all of its faces are simplices.
Next, we will show that ( J,., A = P. It suffices to show that int(P) < (Jr.r A. Let z € int(P) and
consider the vertical line £ < R9*! through x. Since £ n int (P') # @, then £ n P’ is a line segment with
endpoints (z,y) and (z,z2),y < 2. Since (z,y) € OF', then (z,y) € P, ., for some (c, c4+1). Note then that
{(eyeqi1), (z,y)) > {(e,car1), (z,2)) and since y < z this can only hold if c¢44; < 0. It follows that P, is a
lower face and = € 7 (P.).

The last property is left as an exercise

3.2 The Ehrhart Series of an Rational Polytope

By now, we have computed several instances of counting functions by setting up a generating function that
fits the particular problem in which we are interested. In this subsection, we set up such a generating
function for the latticepoint enumerator of an arbitrary rational polytope. Such a polytope is given by its
hyperplane description as an intersection of half-spaces and hyperplanes. The half-spaces are algebraically
given by linear inequalities, the hyperplanes by linear equations. If the polytope is rational, we can choose the
coefficients of these inequalities and equations to be integers (Exercise). To unify both descriptions, we can
introduce slack variables to turn the half-space inequalities into equalities. Furthermore, by translating our
polytope into the nonnegative orthant (we can always shift a polytope by an integer vector without changing
the lattice-point count), we may assume that all points in the polytope have nonnegative coordinates. In
summary, after a harmless integer translation, we can describe every rational polytope P as

'P:{XGRdZO:Ax:b}
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for some integral matrix A € Z™*¢ and some integer vector b € Z™. (Note that d is not necessarily the
dimension of P.) To describe the t" dilate of P, we simply scale a point x € P by 1, or alternatively,
multiply b by ¢ :

P = {XeRdZO:A§ :b} = {xelRiO:Ax:tb}

Hence the lattice-point enumerator of P is the counting function
Lp(t) = #{xez%,: Ax = tb}

Consider the polytope P given by (3.2), we denote the columns of A by ¢y, co,...,cq4. Letz = (21, 22,...,2m)

and expand the function
1

(1—2z) (1 —z¢)-- (1 —z%)ztP

in terms of geometric series:

:(ch)"l :(202)712 :(ch)nd

— — — 1
nici n2cC2 .. MndCd .
2z 2z I P
n1=0 n2=0 nq=0
Here we use the abbreviating notation z* := z{'z52 --- 2% for the vectors z = (21, 22,...,2m) € C™ and
a = (a1, as,...,a,)€ Z™. In multiplying out everything, a typical exponent will look like

nicy + ngcCy + -+ + ngcqg —tb = An — tb

where n = (ny,ng,...,ng) € Z‘;O. That is, if we take the constant term of our generating function (3.2), we
are counting integer vectors n € Zgo satisfying

An —tb =0, thatis, An =tb.
So this constant term will pick up exactly the number of lattice points n € Z% in tP :

Theorem 3.2.1 (Euler’s generating function). Suppose the rational polytope P is given by (3.2). Then the
lattice-point enumerator of P can be computed as follows:

Lp(t) = const <(1 e (1= ch) oo (1 — z0a) ztb>

We finish this section with rephrasing this constant-term identity in terms of Ehrhart series.

Corollary 3.2.2. Suppose the rational polytope P is given by (3.2). Then the Ehrhart series of P can be
computed as

1
EhrP(x) = const <(1 _ zcl) (1 _ ch) .. (1 — sz) (1 — ﬁ,))

Proof. By above theorem,

Ehrp(z) = t;)const ((1 0=z (1 ch)ztb) 2t

¢ 1 xt
= cons —
(I—z)(1—2z%) - (1-2z%) 2 ztb

0
~ eonst 1 1
T\ m e (1 —z) (1m0 1 - & )
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3.3 Discrete Volume of Cones

3.3.1 Cones

A pointed cone K < R is a set of the form

K= {V+/\1W1 + AW+ Ay Wiy AL A2, A 2 0}

where v, wy,ws,...,w,, € R? are such that there exists a hyperplane H for which H n K = {v}; that is,
K\{v} lies strictly on one side of H. The vector v is called the apex of K, and the w;, are the generators
of K. The cone is rational if v, w;,ws,...,w,, € Q% in which case we may choose w,ws,...,w,, € Z¢

by clearing denominators. The dimension of K is the dimension of the affine space spanned by K; if K is
of dimension d, we call it a d-cone. The d-cone K is simplicial if K has precisely d linearly independent
generators.

Just as polytopes have a description as an intersection of half-spaces, so do pointed cones: a rational pointed
d-cone is the d-dimensional intersection of finitely many half-spaces of the form
{xeRd:a1z1+a2x2+~~+ada¢d <b}

with integral parameters ay, as, .. ., aq,b € Z such that the corresponding hyperplanes of the form

{xeRd:alxl+a2x2+-~-+ada¢d:b}

meet in exactly one point.

Cones are important for many reasons. The most practical for us is a process called coning over a polytope.
Given a convex polytope P — R? with vertices v, va, ..., Vv,, we lift these vertices into R%*! by adding a 1
as their last coordinate. So, let

w1 = (vi,1),wa = (vo,1),...,w, = (Vp, 1)

Now we define the cone over P as

cone(P) = {A\ w1 + oW + - + X\ Wi : A, Ag, ., Ay = 0} € RET!
This pointed cone has the origin as apex, and we can recover our original polytope P (strictly speaking, the
translated set {(x, 1) : x € P} ) by cutting cone (P) with the hyperplane x4, = 1, as shown in Figure 3.3.

By analogy with the language of polytopes, we say that the hyperplane H = {x eR?:a-x= b} is a sup-
porting hyperplane of the pointed d-cone K if K lies entirely on one side of H, that is,

Kg{xeRd:a-xéb} or ICQ{XE[Rd:a-x>b}

A face of K is a set of the form K n H, where H is a supporting hyperplane of K. The (d — 1)-dimensional
faces are called facets, and the 1-dimensional faces edges, of K. The apex of K is its unique O -dimensional
face.

Just as polytopes can be triangulated into simplices, pointed cones can be triangulated into simplicial cones.
So, a collection T of simplicial d-cones is a triangulation of the d-cone K if it satisfies the following:

* K= USETS'
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I3

.

Figure 3.3: Coning over polytope

* For every 81,82 € T, 81 n S, is a face common to both S; and Ss.

We say that K can be triangulated using no new generators if there exists a triangulation 7" such that the
generators of every S € T are generators of K.

Theorem 3.3.1. Every pointed cone can be triangulated into simplicial cones using no new generators.

Proof. Given a pointed d-cone K with apex v, there exists a hyperplane H that intersects K only at v. Choose
w € K°; then

Pi=w-v+H)nK

is a (d — 1)-polytope whose vertices are determined by the generators of K. (This construction yields a
variant of Figure 3.4.) Now triangulate P using no new vertices. Each simplex A; in this triangulation gives
naturally rise to a simplicial cone

Sji={v+Ix:A=>0,x€ A},

and these simplicial cones, by construction, triangulate /. O

3.3.2 Integer-Point Transforms for Rational Cones

We want to encode the information contained by the lattice points in a set S — R<. It turns out that the
following multivariate generating function allows us to do this in an efficient way if S is a rational cone or
polytope:

05(z) = 05 (21,22, ...,24) i= Z z™
meSnzd

The generating function og simply lists all integer points in S in a special form: not as a list of vectors, but as
a formal sum of Laurent monomials. We call o the integer-point transform of S; the function o5 also goes
by the name moment generating function or simply generating function of S. The integer-point transform
os opens the door to both algebraic and analytic techniques.
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Example 3.3.2. As a warmup example, consider the 1-dimensional cone K = [0,0). Its integer-point

transform is our old friend
m m 1
ok(z) = ), AM= ) M=

me[0,00)nZ m=0

Example 3.3.3. Now we consider the 2-dimensional cone
K= {A(1,1) + A2(=2,3) : A1, A2 = 0} c R?

depicted in Figure 3.4. To obtain the integer-point transform oy, we tile K by copies of the fundamental
parallelogram

II := {)\1(1, 1) + )\2(—2,3) 0 < )\1,)\2 < 1} c R2

Figure 3.4: The cone K and its fundamental parallelogram.

More precisely, we translate II by nonnegative integer linear combinations of the generators (1,1) and
(—2,3), and these translates will exactly cover . How can we list the integer points in X as Laurent
monomials? Let’s first list all vertices of the translates of II. These are nonnegative integer combinations

of the generators (1,1) and (-2, 3), so we can list them using geometric series:

i 1
m _ Jj(1,1)+k(=2,3) _
Z ’ Z Z § (1 — z122) (1721_223)

m=;(1,1)+k(—2,3) j=0k=0
7,k=0

We now use the integer points (m,n) € II to generate a subset of Z2 by adding to (m,n) nonnegative linear
integer combinations of the generators (1, 1) and (—2, 3). Namely, we let

Ly = {(m,n) +5(1,1) + k(-2,3) : j,k € Zxo} .
It is immediate that K n Z2 is the disjoint union of the subsets L(m,n) as (m,n) ranges over Il n Z? =
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{(0,0),(0,1),(0,2),(-1,2),(~1,3)}. Hence

S gm0 +k(-23)
(m.m)e{(0,0),+(~1,3)} 4:k>0

_ Z ZTZS Z Zj(1’1)+k(72’3)

UK(Z) =

(m,n)G{(0,0),“-,(flﬁ)} j7k>0
:(1+Z2+z§+zflz§+zf1z§) Z z™
m=;(1,1)+k(—2,3)

3,k=0
14 29+ 25 + 2723 + 27123
—2
(1—z122) (1 — 21 %23)

Similar geometric series suffice to describe integer-point transforms for rational simplicial d-cones. The fol-
lowing result utilizes the geometric series in several directions simultaneously. We recall that a d-dimensional
cone is simplicial if it has d linearly independent generators.

Theorem 3.3.4. Suppose
K= {)\1W1 + XoWo + -+ AgWg A, Ao, oo, Ag = 0}

is a simplicial d-cone, where w1, wo, ..., wg € Z%. Then for v € R?, the integer-point transform o, x of the
shifted cone v + K is the rational function

2) — Uv+H(z)
O'v+/<( ) (1_Zw1)(1_ZW2)...(1_ZWd)

where II is the half-open parallelepiped
M= { w1 +dawo + -+ Agwg : 0 < A, A, .., Ag < 1}

The half-open parallelepiped II is called the fundamental parallelepiped of K.

Proof. In ovixc(2) = Xme(vik)nzae 2> We list each integer point m in v + K as the Laurent monomial z™.
Such a lattice point can, by definition, be written as

m=v+Mw;+ dawy + -+ A\gWy

for some numbers A, \a, ..., \q > 0. Because the w;, form a basis of R¢, this representation is unique. Let’s
write each \;, in terms of its integer and

fractional parts: A\ = |A\g] + {Ae}. Som = v + ({A}wy + {Datwa + -+ { gt wy) + [A1]wy + [ Ao wa +
.-+ + | X\a] wq, and we should note that since 0 < {\;} < 1, the vector

pi=v+{A}wi+{PDotwa+ -+ { g} wy

is in v + II. In fact, p € Z%, since m and || w;, are all integer vectors. Again, the representation of p in
terms of the wy, is unique. In summary, we have proved that every m € v + K n Z¢ can be uniquely written
as

m=p+kiwi + kowo + - + kgwy (3.4

for some p € (v + II) n Z¢ and some integers ky, ks, ..., kq = 0. On the other hand, let’s write the rational
function on the right-hand side of the theorem as a product of series:

(1 —zwi;f-r{((zl)—z‘”d) B I (Z ka) ( 2 dewrl)'

pE(V+H)ﬁZd k1=0 kqg=0

If we multiply everything out, a typical exponent will look exactly like (3.4). O
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Our proof contains a crucial geometric idea. Namely, we tile the cone v + K with translates of v + II
by nonnegative integral combinations of the wy. It is this tiling that gives rise to the nice integer-point
transform in theorem 3.3.4. Computationally, we therefore favor cones over polytopes due to our ability to
tile a simplicial cone with copies of the fundamental domain, as above.

theorem 3.3.4 shows that the real complexity of computing the integerpoint transform o . x is embedded in
the location of the lattice points in the parallelepiped v + II.

By mildly strengthening the hypothesis of theorem 3.3.4, we obtain a slightly easier generating function.

Corollary 3.3.5. Suppose
K= {awi + dawa + -+ AgWa s A, Ao,y Mg = 0}

is a simplicial d-cone, where w1, wo, ..., wq € Z%, and v € R¢, such that the boundary of v + K contains no
integer point. Then

ov+11(2)
1—2zw1) (1 —z%2)- - (1 —zWa)’

UV-HC(Z) = (
where II is the open parallelepiped

IIZ=={A1VV1‘+ AQVV2'+ ---+—AdVVd 10 < A17A27"‘7Ad < 1}

Proof. The proof of theorem 3.3.4 goes through almost verbatim, except that v + II now has no boundary
lattice points, so that there is no harm in choosing II to be open. O

Since a general pointed cone can always be triangulated into simplicial cones, the integer-point transforms
add up in an inclusion-exclusion manner (note that the intersection of simplicial cones in a triangulation is
again a simplicial cone). Hence we have the following corollary.

Corollary 3.3.6. For a pointed cone
K={v+Mwi+Xwo+ -+ Xy Wy, t A1, A2, .00, Ay, = 0}

with v e R%, wy, wo, ..., w,, € Z%, the integer-point transform o (z) evaluates to a rational function in the
coordinates of z.

Philosophizing some more, one can show that the original infinite sum o (z) converges only for z in a subset
of C?, whereas the rational function that represents ox gives us its meromorphic continuation.

Example 3.3.7. Consider K = cone {—1,1} = R, which is not pointed. Then,

JK(z)=Zzt+Zz_t—1=O.

t=0 t=0

In general, o (z) = 0 for any non-pointed cone.

3.4 From cones to polytopes

summary

- Given S < R%, let 05(2) = Y gz 2™
- Lp(t) = |tP nZ4|.

-Ehrp(2) = 3,2 Lr(t)2".
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Let P = conv {vy,...,v,} € R% where vy,..., v, € Z%; such polytopes are called integral polytopes. Note
that Lp(t) = o¢p(1). The cone over this polytope is

C(P) = cone {[ v ][ v ]}

(you can think about it in this way: placing the vertices of the polytopes on the plane and then leveling them
up by 1.) Note that tP =~ C(P) n {z € R™* | 14, = t}. By cutting the cone with the hyperplane z4,1 = 2,
we obtain a copy of P dilated by a factor of 2. More generally, we can cut the cone with the hyperplane
zq+1 = t and obtain tP, as suggested by the Figure 3.5.

I3

lewed = 2 ConelP (\}zeﬂi&':de:?—‘g

Cone(PI N zel’k‘“'rzas 1}

peamde S @

\/L
e (P N % 2<H?A4‘124,+|=’°}>

Figure 3.5: Integral dilates

Now let’s form the integer-point transform o oe(p) of cone(P). By what we just said, we should look at
different powers of z4,; : there is one term (namely, 1), with zg +1, corresponding to the origin; the terms
with z} 41 correspond to lattice points in P (listed as Laurent monomials in z1, z2,. .., 24 ), the terms with
22 41 correspond to points in 2P, etc. See Figure 3.5.

In short,
Ocone (P) (21,22, 2d+1)
=op (21,...,zd)zd0+1 +op (zl,...,zd)zéﬂ + oop (zl,...,zd)z§+1 + .-
=1+ ZO’ﬁ) (21,4 2d) 2541
t>1
Specializing further for enumeration purposes, we recall that op(1,1,...,1) = # (P n Z%), and so
Uconc(’P) (1a 17 ceey 17 Zd+1) =1+ Z Utp(la 17 ey 1)zlti+1
i>1
:1+Z#(thZd)zé+1
i>1
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But by definition, the enumerators on the right-hand side are just evaluations of Ehrhart’s counting function,
that is, ocone(py (1,1, ..., 1, 2441) is nothing but the Ehrhart series of P :

Proposition 3.4.1. For P integral, Ehrp(2) = o¢(py(1,...,1,2).
Let us now focus on the case in which P is a simplex.

Proposition 3.4.2. For P € R? an integral d-simplex we have that

ho + hiz + -+ hq2?
Ehrp(z) = T

where each h; is a non-negative integer. In particular, the numerator is a polynomial of degree at most d.

Proof. If P = conv {v1,...,v4+1}, then C(P) = cone {wy, ..., w441}, where the last entry of each w; is 1, is
simplicial. By Theorem 3.3.4,
on(l,...,1,2) on(l,...,1,2)
1,...,1 = =
cer L2 = G A T e Ao (L L) (=2

It follows from Proposition 3.4.1 that

Z hkzk
EhrP(Z) = (:[kiow

where hj counts the number of lattice points in IT with last entry k. Now,
d+1

[ e[ - 2]y ]

where each \; € [0,1). Note then that 2441 = A\ + -+ + A\g41 < d + 1. It follows that h;, = 0 whenever
k>=d+1. O

Lemma 3.4.3. A function f : N — C is a polynomial of degree d if and only if
9(2)
fn)z" =
2,70 = e

where g is a polynomial of degree < d with g(1) # 0.
Proof. see [5] 4.1.4. O

We obtain the following consequences:

Corollary 3.4.4. If P is an integral d-simplex, then Lp is a polynomial of degree d.

Theorem 3.4.5 (Ehrhart’s Theorem). If P is an integral d-dimensional polytope, then Lp(t) is a polynomial
of degree d.

Proof. Triangulate P. O
Example 3.4.6. We compute Lp(t) for P, = conv{—3,2} < R and for P, = conv{0,e1,e; + ea,2e3} by
interpolation.

Lp, (t) is a polynomial of degree 1 and is thus of the form at + 1 (1 is because op(0) has to be 1). Now we
pick say ¢t = 1 and count that |P n Z| = 6. We plug in (1, 6) for at + 1 to get a = 5. Then Lp, (¢) = 5t + 1.

Similarly, we plug in (0,1), (1,5), (2,12) to at®> + bt + c to get Lp, (t) = 3> + 3t + 1.
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3.4.1 More on Ehrhart theory of integral polytopes

The numerator of Ehrp(z) is called the h*-polynomial of P.

Theorem 3.4.7 (Stanley’s non-negativity theorem). Suppose P is an integral d-dimensional polytope with
Ehrhart series .,
haz® + -+ hg
Ehrp(z) = BN
Then all h; are non-negative integers.

Note that we have proven this in the case in which P is a simplex. The general proof triangulates, but this
alone is not enough because Ehrp g = Ehrp + Ehrg —Ehrp~q. For the details you can see [4] Theorem
3.12.

Proposition 3.4.8. Let P be integral and (hy, ..., hq) be its h*-vector. We have that

t+d t+d—1 t
Lp(t)_ho( d )+h1< d >+-~-+hd<d)
Proof. We have that

Z Lp(t)zt = EhI‘p(Z) = W = (hdZd + -+ ho) (Z (j —Cil_ d>>

>0 j=0
where the last equality follows from our computation of the h*-polynomial of a simplex. Now, the coefficient

of 2 on the RHS is 3, ., i (*5%). O

There are many open problems about the h*-polynomial, namely about their structure. Easy facts:
* hg=1.
* hy =|Pnz%—d-1. (Exercise)

3.5 From Discrete to the Continuous Volume of a Polytope

Given a geometric object S = RY, its volume, defined by the integral vol S := { 5 dx, is one of the fundamental
data of S. By the definition of the integral, say in the Riemannian sense, we can think of computing vol S by
approximating S with d-dimensional boxes that get smaller and smaller. To be precise, if we take the boxes
with side length %, then they each have volume tid We might further think of the boxes as filling out the

. S . d . . .
space between grid points in the lattice ( %Z) . This means that volume computation can be approximated
. . . L d
by counting boxes, or equivalently, lattice points in (+Z)

1S =1li ! S 1Zd
VO 7ti)rrogt—d~# N n

It is a short step to counting integer points in dilates of S, because
1\
# (Sm (tz> > = # (tSnz%)

IFrom Wikipedia: "Eugene Ehrhart (29 April 1906 - 17 January 2000) was a French mathematician who introduced Ehrhart polyno-
mials in the 1960s. Ehrhart received his high school diploma at the age of 22 . He was a mathematics teacher in several high schools,
and did mathematics research on his own time. He started publishing in mathematics in his 40s, and finished his PhD thesis at the age
of 60.”

Let’s summarize:
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Lemma 3.5.1. Suppose S ¢ R? is d-dimensional. Then

o1 d
VolSztg%t—d'#(tSmZ )
We emphasize here that S is d-dimensional, because otherwise (since S could be lower-dimensional although

living in d-space), by our current definition, vol S = 0. We will extend our volume definition later to give
nonzero relative volume to objects that are not full-dimensional.

Part of the magic of Ehrhart’s theorem lies in the fact that for an integral d-polytope P, we do not have to
take a limit to compute vol P; we need to compute ”only” the d + 1 coefficients of a polynomial.

Corollary 3.5.2. Suppose P — R?is an integral convex d-polytope with Ehrhart polynomial cqt? +cq_ 141+
-+ c1t + 1 (by Corollary 3.4.4). Then ¢4 = vol P.

Proof. By Lemma 3.5.1,
td ittt t+1
Vol P = Lim cqt”™ + cqg—1 + + cit + _
t—0o0 td

Note that +1 is because Lp(0) = 1. O

Cd

Remark 3.5.3. On the one hand, this should not come as a surprise, because the number of integer points
in some object should grow roughly like the volume of the object as we make it bigger and bigger. On the
other hand, the fact that we can compute the volume as one term of a polynomial should be very surprising:
the polynomial is a counting function and as such is something discrete, yet by computing it (and its leading
term), we derive some continuous data. Even more, we can - at least theoretically - compute this continuous
datum (the volume) of the object by calculating a few values of the polynomial and then interpolating; this
can be described as a completely discrete operation!

We finish this section by showing how to retrieve the continuous volume of an integral polytope from its
Ehrhart series.

Corollary 3.5.4. Suppose P — R? is an integral convex d-polytope, and

hﬁzd + h:’i‘ilzd_1 +--+hfz+1
(1— 2)d+1

EhI‘"p(Z) =

ThenvolP = 1 (k% + h¥%_| + -+ hF +1).

Proof. Use the expansion of Lemma. The leading coefficient is

1
a(hj+h§_1+---+h’{‘+1)

O
Example 3.5.5 (Reeve’s tetrahedron). Let 7;, be the tetrahedron with vertices (0, 0,0), (1,0,0), (0,1,0), and
(1,1, h), where h is a positive integer (see Figure 3.6).

To interpolate the Ehrhart polynomial L, (¢) from its values at various points, we use the figure to deduce
the following:
4=L7(1)=vol(Ty) +ca+c1+1

h+9=L5(2) =vol (Th) - 22 +¢o-22 +¢1-2+1

Using the volume formula for a pyramid, we know that
1 . h
vol (Tp) = §( base area )( height ) = G
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(2,2,2h)

Figure 3.6: Reeve’s tetrahedron 7, (and 273)

Thush+1=h+2co — 1, which givesus co =1l and ¢; =2 — %. Therefore,

h h
Lﬁ(t)=€t3+t2+<2—6)t+l
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Chapter 4

Reciprocity of Ehrhart Polynomials

4.1 Introduction

Example 4.1.1. Let P = [0, 1]¢ = o4, then

int(P) = {x | Vi,0 < z; < 1}
tint(P) = {z | Vi,0 < z; < t}.

It follows that Ly, p)(t) = (t — 1)? (we did this example at the beginning of last chapter). Note that
Lp(—t) = (=t + 1)% = (=1)“Liyy(py (t).

Example 4.1.2. Now, let P = A; < R4*!, then
d+1
int(P) = {l“ Z x, =1,2; > 0}
=1

d+1
tint(P) = {x‘ 2 x; =t,x; > O}
i=1
d+1

It follows tht L;,(p)(t) equals the number of positive integral solutions to » ;" ; = t. Note that x is such a
solution if and only if y = (z; — 1,..., 2441 — 1) is @ non-negative integral solution to Zj:ll yi=t—d—1.1t
follows that L (p)(t) = (*;'). Note that

Lp(—t) = (—t; d) _ (t+d)(=t+ dd!— 1o (=t +1)

= (R )y

Theorem 4.1.3 (Ehrhart-Macdonald Reciprocity (for Integral Polytopes)). Suppose P is a convex integral
polytope. Then the evaluation of the polynomial Lp at negative integers yields

Lp(—t) = (=147 Lpo ().

This theorem belongs to a class of famous reciprocity theorems. A common theme in combinatorics is to
begin with an interesting object P, and

1. define a counting function f(¢) attached to P that makes physical sense for positive integer values of ¢;
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2. recognize the function f as a polynomial in ¢;

3. substitute negative integral values of ¢ into the counting function f, and recognize f(—t) as a counting
function of a new mathematical object Q.

For us, P is a polytope, and ( is its interior.

4.2 Ehrhart-Macdonald Reciprocity (for Integral Polytopes)

To prove Theorem 4.1.3, we will first look at reciprocity for cones.

Theorem 4.2.1 (Stanley’s reciprocity for integral cones). Let K be a d-dimensional cone generated by
W1,...,Wg € Z% Then,

1 1
0K ( ) = (=)o) (21, - - 2a)

Z1 ’ ’ Zd
(This holds as rational functions in 21, ..., z4.)
Example 4.2.2. Let K = cone{ej,es}. Then by Theorem 3.3.4, ok (z) = m, and by Cor 3.3.5,

z(l’l) 21z
Uint(K)(Z) = =z@0)(1—zO.D) = (1,Z11)(f722)- Note that

1 Z122

(1=(1/2) (1= (1/z) (1-z)1-z2)

Let us do the preparation to prove the Theorem 4.2.1.

Theorem 4.2.3. Let K be a d-dimensional cone generated by linearly independent w1, ..., wq € Z% (so K
is simplicial), i.e., K = {\jw1 + AW + -+ AgWg: Ai,..., g = 0}. f vissuch that d(v + K) n Z¢ = &
(i.e., v for which the boundary of the shifted simplicial cone v + K contains no integer points), then

1 1
Ov+K (7 B ) = (_l)dU—V+K (Zla SERE) Zd)
z1 Zd

Proof. On the one hand,

1 1 Wi ... zWd 1 1

1 1 Uv+H<Zl7"'7zd) dz z JV+H(21""7zd)

S =T |~ () .
21 Zd :

On the other hand,
0—v+0I (’Zla R Zd)
(1 _Zwl)...(l _de)

O—vik (21,...,24) =
We leave as an exercise to show that
v+II=—(—v+I)+w + - +wy
Figure 4.1 shows the situation in the case d = 2.

Translating this equation to generating functions implies that

Ovarr (21,.-,2a) =27 270 (Cyym) (21, 2a)
1 1
=z" . g% gl —,...,— |,
21 Zd
in other words,
1 1 _ _
Ovill (,..., =z "z Vi (21,0, 24) -
21 Zd
The desired result now follows. O
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v + 11

;7

~ 11 —(—v+10) —(—v+1II) +wy + ws

Figure 4.1: From —v + I to v + 11

We also need this lemma.

Lemma 4.2.4. Let K be as in the theorem 4.2.3. We triangulate it into simplicial cones K3, - - , K,,. Then
there exists v such that int(K) n Z¢ = (v + K) n Z% and

Vi, 0(v+K)nZ'=@and 0(—v + K;) nZ% = @.
Moreover, K N Z% = (—v + K) n Z°.
Proof. Exercise. O

Proof of theorem 4.2.1. Triangulate K into simplicial cones K71, ..., K,,. Shift K by a tiny vector v such that
the previous lemma holds. Then, K n Z¢ = (—v + K) n Z¢. Now, putting all together,

1 1 1 1 - 1 1
OK\ — e s | TO—~v+K | T 5y :ZU—V-FKJ' DR
Z1 Zd Z1 Zd Jra Z1 Zd

m
= (D)"Y ovik, (21, 2a) = (1) %0v ik (21, 24) -
j=1

= (—1)%0ime(x) (215 -+ 2a) -

We are almost ready to prove the Ehrhart-Macdonald reciprocity theorem.
Lemma 4.2.5. For any polynomial f(t), we have that > ,_ f(t)z" + >, f(t)2" = 0.

We are now ready.
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Proof of Ehrhart-Macdonald reciprocity. Let P be an integral d-dimensional polytope. Then, by Theorem
4.2.1, we have that

1 1
—,... = (=1)%*1g, .
UC(P)<217 ’Zd+1) (—1) Tint(C(P)) (21, ,Zd41)

It follows that

UC(P)(L ey ].7 Z) = (_1)d+10i11t(C(P))(17 ey 1, Z)

and so

Ehrp(1/z) = (=1)"" Ehripy(p)(2)
= (—1)%*! Z Ling(py(t)z"

t=0

= (-1)? Z Line(py(—t)2~"

t>0

where the last equation holds by the lemma. The result follows from comparing the coefficients of z=¢. [

A polytope is rational if all its vertices are in Q. A quasipolynomial Q(t) is a function N — N such that
there exists a positive integer k£ and polynomials py, . .., px—1 such that Q(¢) = p;(t) if and only if ¢ = 7 mod k.
The minimal such % is called the period of Q.

Theorem 4.2.6 (Ehrhart’s theorem for rational polytopes). If P is a rational d-dimensional polytope, then
Lp(t) is a quasipolynomial in ¢ of degree d. Its period divides the least common multiple of the denominators
of the coordinates of the vertices of P.

Proof. See [4] Theorem 3.23. O

Example 4.2.7. Let P = conv{(0,0), (1/2,0), (0,1/2)}. Note then that

t even.
t odd.

Note that this polynomial has degree d = 2 and period 2.

Theorem 4.2.8 (Stanley reciprocity). Suppose K is a rational d-cone with the origin as apex. Then

11 1
oK (av" © ) = (_1)dJIC° (217223"'7'2(1)'

zZ1 22 Zd
Proof. See [4] Theorem 4.3. O

Theorem 4.2.9 (Ehrhart-Macdonald reciprocity). Suppose P is a convex rational polytope. Then the evalu-
ation of the quasipolynomial Lp at negative integers yields

Lp(=t) = (=) P Lps(1).
Proof. See [4] Theorem 4.1 and its proof in section 4.3. O
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4.2.1 Application: From lattice points to faces

Theorem 4.2.10 (Euler-Poincaré equation). Let P be a d-dimensional polytope and f;, be the number of
k-dimensional faces. Then fo + --- + (=1)4f; = 1.

Proof. We use Ehrhart-Macdonald reciprocity. Since P = | |, .. int(F),
Lp(t) = Z Lint(F)(t) = Z (—1)dim(F)LF(—t).
F face F face

Since Ly(0) = 1 it follows that
d

T Y

F face k=0
O
4.3 Volumes
Let us start by computing the volumes of pyramids.
Proposition 4.3.1. Given a d-dimensional pyramid P with base B and height » we have that
hVol,_1(B
Voly(P) = 1Yot (B)
d
Proof. It is equivalent to assume the base is B x {h} and apex 0 . We have that
h hoyd—1 d h
t t t hVolg_1(B)
VOld(P) = L VOldfl <hB) dt = o F VOldfl(B)dt = WVOld,l(B) . = #
O
Corollary 4.3.2. Let P = conv (0, v1,...,v4) < R be a simplex. Then
1
Voly(P) = a ’det[ v e Vg ]‘
Proof. Let Q4 := conv (0, ey, ...,e4) and note that () is a d-dimensional pyramid with base );_; and height
1. It follows that ) )
Volg (Qa) = gVOIdfl (Qa—1)=---= a
For general P, use the change of basis z = Au, where A= [ v; --- w4 |. We then have that
1
Voly(P) — f du — f | det(A)|du = | det(A)].
P Qu d!
O

Definition 4.3.3. The Minkowski sum of P,Q isthesum P+ Q ={p+q|p€e P,q€ Q}.

Exercise 4.3.4. Prove that if youadd P + --- + P in k times, you obtain a polytope equivalent to kP. Prove
that if P, () are polytopes, then P + () is again a polytope. What are the vertices of P + Q?

Example 4.3.5. Given P = [0,1]?,Q = conv{(0,0),(1,0),(0,1)}, and r,s € R, consider the polytope
Z =rP+sQ = {rp+sq|pe P,qe Q}. We then have that Voly(Z) = 72 Voly(P) + s> Vola(Q) + 2rs.
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ol n ol .
rD-'-SB =3
o | o 10 " -
rF S

Figure 4.2: Minkowski sum.

Theorem 4.3.6. Let P,Q < R be polytopes. The function Voly(rP + sQ) is a homogeneous polynomial in
r and s of degree d, i.e., f(Ar, As) = \f(r,s).

Definition 4.3.7. By the theorem, we write
d /4 , o
Voly(rP + sQ) = Z () MV (P’L7 Qd—z) i gd—i
i=o \!
The scalars MV (P?, Q4~") are called the mixed volumes of P and Q.

Example 4.3.8. In the example above, we have
2
Voly(Z) = Voly(P)r?s® + (1) 1-rtst 4 Vol(Q)r%s2.

Thus, MV (P2, Q%) = Voly(P), MV (P, Q?) = Vol»(Q), and MV (P!, Q') = 1.
Let’s do some preparatory work to prove the theorem.

Proposition 4.3.9. Let P < R? be a d-dimensional polytope with facet description P = {z | {a;, z) < b;,i € [m]}
where each [a;| = 1 and let F; be the face of P defined by (a;, ) = b;. Then, Voly(P) = 137" b; Voly_1 (F})
and >\, Volg_1 (F})a; = 0.

Proof. Let q € int(P) and P; = conv (Fj,q), i.e. P; is the pyramid with base F; and apex ¢. Let h; be the
height of P;, then h; = b; — {a;, q). Note that P = | |" | P,. Then,

%Vold_l (FL) = Z VOld_Tl(F;) (bz - <ai7Q>)

=1
i b; Volg_1 (F, < ZVoldlal >

Note that this last equation holds for any ¢ € int(P). Since % > | b; Voly_ (F}) is also a constant, then we
must have that the last term doesn’t depend on ¢. This is only possible if > | Vol (F;) a; = 0. O

VOld(P) = i VOld (R)

Il
I Ms

Q.M—‘

Recall that P, = {z € P | Vy € P,{c,x) = {c,y)} is the face of the polytope in direction a.

Lemma 4.3.10. (7P + sQ)q = 7P, + sQq-

Proof. Suppose that p = max,ep{a, ) and ¢ = max,eq{a, z). Then, for any rz + sy € rP + s) we have that
{a,rx + sy) < rp + sq.

Also, if z, € P and y, € Q maximize these functions, then rz, + sy, maximizes the left hand side. O
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proof of Theorem 4.3.6. Proceed by induction on d.

Base case:
Ifd =1, then P = [z,y] and Q = [z,w]. Then, rP + sQ = [rx + sz,ry + sw] and so

((1)) Vol (Q)s + G) Vol (P)r = Voly (rP + Q)

Inductive case:
Suppose the result holds for d — 1. Write the facet description Z = rP + sQ = {z | {a;, ) < b;,i € [m]}.
Suppose

P, ={reP|la,z)=p;} and Q,, = {z € Q | {a;,z) = q;},

then by the preceding lemma, we have that rp; + sq; = b;. Now, by Proposition 4.3.9, we have that

1 m
Vola(rP +5Q) = - Db Vola_1 (Za,)
=1

Note that b; is linear in r,s. By induction, Vol;_; (Z,,) is a homogeneous polynomial in r, s of degree
d—1. O

We recall the combinatorial (operational) and arithmetic defininition of multinomial coefficient before we
give the general analog of Theorem 4.3.6.
Proposition 4.3.11. Let by, ..., b, be nonnegative integers, and let n = by + by + - - - + bg. The multinomial

coefficient ( is:

b17b27"'7bk’

(1) the number of ways to put n interchangeable objects into k boxes, so that box ¢ has b; objects in it, for
1<i<k.

(2) the number of ways to choose b; interchangeable objects from n objects, then to choose b, from what
remains, then to choose b3 from what remains, ..., then to choose b;_; from what remains.

(3) the number of unique permutations of a word with n letters and k distinct letters, such that the i th
letter occurs b; times.

() Cum) i)l ) ()

n!
bilby! - by

(4) the product

(5) the quotient

Proof. (1) and (2) are clearly equivalent, and (2) and (4) are equivalent from the definition of the binomial
coefficient. (4) and (5) are equivalent by simple algebra. There are a few ways to see that (3) is equivalent
to the others. Arguing combinatorially, note that a permutation of a word as in (3) corresponds to choices of
spots to put each of the repeated letters in; out of the spots 1,...,n, choose b; of those spots to put the first
letter in, then by spots out of the remaining n — by to put the second letter in, and so on. So (3) is equivalent
to (2). (One can also count permutations directly, by taking n ! permutations and dividing by factors that
account for duplicates: divide by a factor of b; ! to account for the fact that permuting all of the first letters
doesn’t change the permutation, divide by b, ! to do the same for the second letters, and so on, which gives
the formula from (5).) O
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Theorem 4.3.12 (Multinomial Theorem). Show the following equality: for n,p € N,

n!

n o __ 2 ni n
(m1+...+wp) = ﬁxl ...szP’
o nlnp
ny+--+np=mn
mi, - ,np € Ng

where Ny = {0,1,2,---} is the set of all nonnegative integers. Note that there are (”+£_1) such tuples
(n1,- -+ ,n,) solving the equation ny + - - - + n, = n, so there are ("*5 ~!) terms in the RHS of above identity.

If we force n; € N = {1,2,---} then this number of solutions changes to (;‘:i)

Example 4.3.13. Let p = 2 and n = 3. Then the equation n; + ny = 3 has solution (3,0), (1, 2), (2,1), (0, 3).

(1 + 22)® = 23 + 322wy + 32122 + 25
3! 3! 3! 3!
= wxlxlxl + ﬁxlxgxg + ﬁxlxlxg + ﬁazgxgxz
= 212121 + (212122 + T12271 + T22121) + (T2T1T2 + ToXoZy + T1TaX2) + ToToZs
2
= Z x)\lw)\21')\3
A2, A3=1

Theorem 4.3.14 (H. Minkowski). Let Py,..., P, be polytopes in R¢, and ; > 0, = 1,...,m. Then,

MV (r1 P, + - -+ + r, Py,) is a homogeneous polynomial of degree n in rq,..., 7.,
Vold(r1P1+-~-+rum)= Z MV(P)\I,...,P)\d)T,\l~--7“,\d,
)\17 .,kd—l
the summation being carried out independently over the \;,i = 1,...,d. There are m? summands in the
summation.
Proof. See [1] Theorem 3.2. O

Definition 4.3.15. Arranging the coefficients on the RHS of above equality such that MV (Py(»,), ..., Pr(ry)) =
MV (Py,, ..., Py,) for any permutation 7 of A, ..., Aq, we call MV (Py,, ..., P,) the (d-dimensional) mixed
volume of Py, ..., Py,.
Note that there are in total ﬁ such mixed volumes to be enforced to be equal, where j,!’s are for those
indices that are repeated. Since r;(x,)* Tx(xy) = TA, "+ TAy> WE SEE

VOld(T1P1+"'+T'mP'm,): Z (’L i >MV(P1711,...,P;£")T'711""I";;{L
1" " s tm

Gt i =d

Be awaring of the definition 4.3.15, one can deduce the basic properties of the mixed volume in the following
theorem.

Theorem 4.3.16.

(1) The mixed volume MV (Py,--- , P,) is invariant if the P; are replaced by their images under a volume-
preserving transformation of R™ (for example, a translation).

(2) MYV is symmetric and linear in each variable.
(3) MV > 0. Furthermore, MV (P4, --- , P,,) = 0if one of the P, has dimension zero, and MV (P4, ..., P,) >

0 if every P; has dimension n.
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(4) The mixed volume of any collection of polytopes can be computed as

MV (P,...,P, nii k> Vol, (ZH)

Ie ["]) el

Example 4.3.17. Let us verify that MV (P, Q) = 1 for the P, Q) from Example 4.3.5.

V(P,Q) = — 5 (Vola(P) + Volo(@Q) + 5 Volo(P + Q) = —5 (14 1/2) + 5(7/2) = 1

Exercise 4.3.18. Prove that MV (P%) = Voly(P).

4.4 Volumes and polynomials.

Definition 4.4.1. The Newton polytope P; of a Laurent polynomial f = > _,.caz® € C[27",... 2 "] is
the convex hull of the support of f, i.e. Py := conv{a e Z? | c, # 0}.

Example 4.4.2. For f(z,y) = 3z® — y + 6, Py is depicted in Figure 4.3.

P3I2+Iz 1=

Figure 4.3: Newton Polynomial
Theorem 4.4.3 (Bernstein’s Theorem). If the system f(x,y) = g(z,y) = 0 has a finite number of solutions
in (C\{0}))?, then it has < 2MV (P, P,) solutions. We have equality when the system is generic.

Example 4.4.4. Let f = 322 —y + 6 and g = 2? + 2y — 3 and note that P; = P,. Then, 2« MV (P, P,) =
2 % Vol (Py) = 2. This agrees with the intuition for the number of solutions of the system f = g = 0.

We can use Bernstein’s theorem to prove a small case of Bezout’s theorem.

Theorem 4.4.5 (Bezout’s Theorem). Let f,g € C[z,y] be polynomials of degrees m,n respectively. If the
system f = g = 0 has finitely many solutions then it has < mn solutions. We have equality when the system
is generic.

Proof. By Bernstein’s theorem, the maximum happens when f, g are generic, so let’s assume this. Let A =
conv{(0,0),(1,0),(0,1)}. Then, Py = mA and P, = nA. By

Bernstein’s theorem, we have that the number of solutions is 2 MV (mA,nA). Now, by Theorem 4.3.16(4),
we have that

2MV(mA,nA) = (—1) (Vola(nA) + Vola(mA)) + Vola(mA + nA)
= [(n+m)* —n —m] Voly(A) = mn

The general statement of Bernstein’s Theorem is as follows. O
Theorem 4.4.6 (Bernstein’s Theorem). Let fi,..., f, € C[zi',...,z;"'| be Laurent polynomials. If the
system f; = --- = f, = 0 has finitely many solutions in (C\{0})", then it has < nIMV (Py,,..., Py,)

solutions. We have equality when the system is generic.
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4.5 The volume of the permutohedron
An equivalent way to describe the permutohedron is
II, = COHV{()\U(l), ey )‘a(n)) | o€ Sn}

= conv{S,} —(1,---,1)
where A = (0,1,...,n—1).
Example 4.5.1. Let

(1 2 3 4
7=\ 4 2 3)°

Then the vertex is (1,4,2,3) — (1,1,1,1) = (0, 3,1, 2).
Remark 4.5.2. One can obtain other interesting polytopes by considering different A, e.g. A = (0,0,1,1,2,2).
Let us denote by A;; = conv {e;, e;}.

Proposition 4.5.3.

Proof. Let Q = ZKKK” A
First let us show that IT,, < Q.

To do so it suffices to show Vtx(II,,) < @Q, i.e., every vertex of II,, is in Q). Since Minkowski sum of polytopes
is again a polytope and is thus convex, and II,, is the smallest convex set containing its vertices.

Let o € S,, and consider the vertex v = (67 — 1,...,0, — 1) = 0 — 1. Note that
€, if 0; > 0j
(Aij), = -
€j, if 0; <0y

(there’sno o; =ojaso € S,)

face of A;; in direction v
= set of farthest points P can reach in direction v.

See Figure 4.4 to get some intuition about how this is true.

(175,) (o5, 2)

(2)0,)

>
( 2, ’;D)

Figure 4.4: A clear dichotomy between ¢; and o;.
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In particular, (Aij), = e; if 0; < o; which implies (A;,-1y, )» = (o1, if 07 < 0(-1), = k. There are (k—1)
possible o, i.e., there are (k — 1) possible ways for i to be mapped by o.

Now, by Lemma 4.3.10, we have that

L 4.3.10 L
emma 4.o.
Q= Z Ny | —— (Aij)y = (Aij)w

I<i<j<n . I<i<j<n j=2i=1

n
- Z (Ai"w—l)j) - Z(] = Degr-y,
i=2 alli<j=o -1, v =2
J

which is a combination of unit vectors. Thus, v € Q and II,, < Q.

For the opposite containment @ < II,,, we need a lemma for the other representation of II,, (Lemma 4.5.4):

kila:k = (Z) and VS < [n], Z T > (|§|>}

an{xeR"

keS

To show Q < II,,, we let x € Q, i.e., x = ZKK].@ Aijei + (1 — Aijej) € Q, where \;; > 0. Then, we verify
that it satisfies condition in the lemma.

Z Tk = Z (Agjei + (1= Aijej)
k=1 j

n n k—1
=3 D M+ D (- /\m)}
k=1 Lj=k+1 j=1
n n n k—1
= 2 Z )\kj + Z (1 — )\zk)
k=1j=k+1 k=1 1i=1
= )\k;j + (1 — )\zk)
1<k<j<n 1<i<k<n
binomial n
= (Aij + (1= Aij)) (2>

For the second condition, let S < [n]. Then,

n k—1
Z$k=z<2 )\kj""Z(l_)\ik))
keS keS \j=k+1 i=1

Il
R
>
<
+
N
—
>
t/
+
N
N
—_
WV
T
o Un
~—

1<i<j<n 1<i<j<n 1<i<j<n
1€ S,j¢ S jeES,i¢ S i,j €S
| S —
Is|
(2)
Thus, z € II,, and Q < 1I,,. O

Lemma 4.5.4.
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Proof. Exercise. O

Definition 4.5.5. A zonotope is the Minkowski sum of line segments.
Note that II, is a zonotope.

Proposition 4.5.6. Every face of a zonotope is a zonotope.
Proof. Suppose Z = ", [u;,v;]. By Lemma 4.3.10 we have that Z. = }"" , [u;,v;],. Since

[wi, vil, (e, vi) = {c,uip
[U'i’ Ui]c = {UZ} > <07 Ui> < <C, ul> s

{vi}, (e, vi) > (e, ui)

the result follows. O

Next, note that IT; < R%, but I1, is (d—1)-dimensional. Thus, Vol, (II;) = 0 which is not interesting. Instead,
we consider
p: RS R p (2, 29) = (21, .., Ta1)

and compute Volg—; (p (I1z)). This is called the relative volume of 1.

Theorem 4.5.7 (Stanley). (d—1)!Volg_; (p (Il4)) = d®~2 = number of spanning trees of the complete graph

Kd.
We will prove this theorem using Bernstein’s theorem. Since p is a linear function, it follows from Proposition
4.5.3 that
p(Ma) = >, p(Lij).
1<i<j<d
Then,
Volg—1 (p (Ila)) = > MV (p (Liyj) s -2 (Lig 1jas)) »

1115 50d—1Jd—1

where the sum is over all (d — 1)-tuples of pairs ij such that 1 <i < j < d.

L ifij1,...,9q_1jq—1 are the edges of a spanning tree of K,
Lemma4.5.8. MV (p (Li,j,), .-, P (Liy_1jus)) = {(d—l)! ‘

0, otherwise,
where K is the complete graph on d vertices.

Example 4.5.9.
(1) Let us describe the system of equations corresponding to

MV (p (L12) ,p (L23) ,p (L34)) -

We have tht p (L;4) = p([es, e4]) = [e;, 0] and this is the Newon polytope of Az; + p. The system is then
Az + ppxg =0,
Aoz + pox3 =0,
Asx3 4+ pu3 =0

where all the \;, u; are non-zero. Note that we can solve for z, x5, 23 and so the system has a unique
solution. By Bernstein’s theorem we have that

AIMV (p (L12),p (L23) ,p (L34)) = 1,

as anticipated by the lemma.
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(2) The system of equations corresponding to MV (p (Li2) ,p (L14) ,p (L24)) is

ATy + pre = 0,

)\le + H2 = Oa )
A3To + u3 =0
where all the \;, u; are non-zero. This sistem has no solution because z; = —pus/A2 and zo = —pus/A3

implies that A\jz1 + p122 # 0. By Bernstein’s theorem we have that 4/IMV (p (L12),p (L14) ,p (L24)) = 0, as
anticipated by the lemma.

(3) The system of equations corrresponding to MV (p (L12),p (L13),p(23)) is
A2y + M1y = 0,
Ao + woxs =0,
A3xo + psxs =0

where all the \;, u; are non-zero. The only solution to this system is z; = x5 = x3 = 0, but this is not in
(C\{0})3. By Bernstein’s theorem we have that 4!MV (p(12), p(13), p(23)) = 0, as anticipated by the lemma.

Sketch of proof. By Bernstein’s theorem, we have that d!MV (p (411) ,...,p (¢4—1j4—1)) is the number of so-
lutions in (C\{0})?~! of the system

/\ilxl + Wi Ty = 0,
/\1‘2581 + Ui Xj, = 0,

)‘id,—1xjd—1 t Hig Tjy_, = 0

g =1
where all the \;, u; are non-zero. Suppose 7171, ...,44_1jq_1 are the edges of a spanning tree of K; Then, or
each vertex v there is a unique path to d. Now, the edge wd tells us that a solution must satisfy 2, = —{<.

Substituting backwards along the path gives the unique value of z,, and this value is nonzero.

Instead, suppose that i1j1,...,iq—1j4—1 are not the edges of a spanning tree of K;. Then, some of the
vertices form a cycle. First, suppose that the graph is missing 2 or more vertices. Then the missing vertices
give co-many solutions and there are no isolated solutions; thus the mixed volume is zero. (Alternatively,
ZZ; ikJjr is < (d—2) dimensional and by Theorem 4.3.16 (4) we have that the mixed volume is zero.) Next,
ff the only missing vertex is d, then we obtain a system whose unique solution is {0}¢~! and so the mixed
volume is zero. Finally, if the the only missing vertex is v # d, then the system has no solution and so the
mixed volume is zero. O

Proof. Proof of Theorem 4.5.7. The number of spanning trees of K, is d°~2. By Lemma 4.5.8, we have that

Volp(l)) = ) :

—1)!
T spanning tree of Ky (d )

and the result follows. O
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Chapter 5

Zonotopes

We ended last chapter with some discussions on zonotopes, which are the Minkowski sums of line segments.

In order to understand zonotopes (and polytopes in general) it is useful to look at the normal fan.

5.1 Normal fans

Definition 5.1.1. A fan F = C},...,C, in R? is a collection of polyhedral cones
C; = cone (vi1,...,Vik,) S R?

such that every nonempty face of a cone is also a cone in ¥, and, the intersection of any two cones in ¥ is a
face of both.

Definition 5.1.2. The normal fan V' (P) = {Np | F face of P} of a polytope P is the fan whose cones are
Np ={ceR*|FcP.},

i.e., the directions that are maximized by F'.

Example 5.1.3. Let P = conv{(0,0),(2,0),(2,2),(1,2),(0,1)}. Then, the normal fan of P is depicted below.
Normal fans of zonotopes are given by hyperplane arrangements.

Definition 5.1.4. A (central) hyperplane arrangement A = {H,,..., H,} in R? is a collection of hyper-
planes
H;={ze R* | {a;,z) = 0}.

Note that arrangements decompose R? into a fan. Concretely, a cone C of the fan is determined by deciding
for each H; whether {a;,z) > 0,{a;,z) < 0, or {a;,z) = 0 for all z € int(C). One can show that every
zonotope is a translation of a zonotope of the form Z = " , [0, v;], so let us restrict to these.

Proposition 5.1.5. The normal fan of a zonotope Z = "' | [0, v;] is the fan of the hyperplane arrangement
{Hy,...,H,}, where
H; = {z e R | (v;,z) = 0}.

Proof. Consider a face Z. of Z. Recall that Z. = > | [u;, v;],, where

[0,v;], {c,v;y=0
[0, 'Ui]c = {0}, <C, 1},‘> < 0.
{vi}, {c,v;) >0
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It follows that ¢, ¢’ are in the same cone of N'(Z) if and only if (¢, v;) and (¢, v;) have the same sign for all
i. In turn, this holds if and only if ¢, ¢ are in the same cone of the hyperplane arrangement determined by
A. O

Theorem 5.1.6 (Shephard). The zonotope Z = " | [0,v;] € R? can be tiled into {0} together with the
translates of the half-open parallelepipeds Z§=1 (0,5, ], one for each linearly independent v; , ..., v;, € R%

Example 5.1.7. Consider the permutohedron II; = [0, (1,—1,0)] + [0, (1,0,—1)] + [0, (0,1, —1)]+ (1,2, 3).
The subdivision is depicted below.

Figure 5.1: decomposition of cube

Proof. We proceed by induction on n. If n = 1, then Z = [0,v1] = {0} U (0,v], as desired. Now, suppose
that n > 1. By induction, we have a decomposition as in the statement of 7' = 22:11 [0,v;]. Define the
hyperplane

H = {zeR*|{v,,z) =0},

and let p : R? — H be the orthogonal projection onto H. Then, Z” = Z?z_ll [0,p (v;)] is a zonotope in H and
so by induction we can decompose it as in the satement. Each open parallelepiped in the decomposition of
Z" is of the form }_,_; (0,p (v;)], where the p (v;) are linearly independent. Now, given such a parallelepiped,
lift it to a parallelepiped in Z by taking (0,v,] + >.,.; (0,v;]. Consider a linear combination

AnUn + Z/\i’l}i =0

el

:>0+Z/\ip(’l}i) =0

el

and since the p (v;) are linearly independent, we must have that \; = 0 for all ¢ € I. Since v, # 0 then
An = 0and so {v,}u{v; | i € I} are linearly independent. One can show that the union of the parallelepipeds
obtained from Z’ and Z” is a tiling of Z. O

Lemma 5.1.8. Suppose wy,...,wy € Z% are linearly independent, and let IT = ZLI (0, w;]. Then,

Voly(TT) = |H ) Zd| = |det (w1, ..., wq)l,

and for every positive ¢ € Z,
[tIl n Z%| = (Voly(IT)) t°.
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Proof. Since II is half-open, then we can tile ¢IT using ¢ translates of II. It follows that

Lu(t) = Il n 2% = t* |1 n 29|,

Since wy, . .., wq € Z%, we have that Lyy(t) is a polynomial with leading coefficient

Voly(IT) = |det (w1, ..., wq)|-
Since the polynomials have to be equal, the result follows. O

Combining the Lemma and Shephard’s theorem we obtain the following.
Corollary 5.1.9. Let Z = )", [0,v;] < R®. Then,
(1) Voly(Z) = > |det (vy,, ..., v;,)|, where the sum is over all bases v;,, ..., v;,.

(2) The Ehrhart polynomial Lz(t) = Y win ina. VOUZ(W)tWI, where Z(W) = Yvew [0,vi] and the
Vol(Z(W)) is taken in the affine span of Z(WW).

5.2 Generalized permutohedra

The permutohedron II,, = R” is the convex hull of n ! points obtained by permuting the coordinates of
any vector (aq,...,a,) with strictly increasing coordinates a; < --- < a,. Label the vertices of II,, as
My = (aw—l(l), e aw_l(n)), one for each w € S,,. The edges of this permutohedron are |7, mys;|, Where
s; = (,7 + 1) is an adjacent transposition.

Remark 5.2.1. For any w € S,, and s; we have that m,, — Tysi = kuw.; (ew(i) — ew(iﬂ)), where k, ; € Z~o.

Definition 5.2.2. A generalized permutohedron P is the convex hull of n ! points v,, € R™ such that for
any w € S, and adjacent transposition s, we have that

Vw — Vws; = kw,i (ew(i) - ew(i+1)) )
where k,,; € Ry (i.e, ky ; can be zero).

Remark 5.2.3. This can be summarized as ”P is a generalized permutohedron if and only if all of its edges
are parallel to e; — e; for some ,j .

Example 5.2.4. The following are generalized permutohedra, 115, @1, Q2.

Figure 5.2: Examples of generalized permutohedra

Recall that:

- The normal fan N (P) of a polytope P is the fan whose cones are Np(P) where F is a face of P and
Np(P)={ceR?|Fc P}

- The normal fan of the zonotope Z = "' , [0, v;] is the fan of the hyperplane arrangement {H;, ..., H,},
where H; = {z € R? | (v;,z) = 0}.
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Definition 5.2.5. We say that a fan F is refined by a fan 7’ if any cone in F is a union of cones in F".

Proposition 5.2.6. A polytope P = R™ is a generalized permutohedron if and only if A'(P) is a coarsening
of N (II,,). (This fan is also known as the braid arrangement fan.)

Example 5.2.7. This can be verified for the polytopes in Example 5.2.4.
This proposition holds in a more general setting.

Proposition 5.2.8. Let P, < R™ be n-dimensional polytopes and assume () is simple. The following are
equivalent:

(1) N(Q) refines N (P).

(2) The vertices of P can be labelled z,,, v € verts(Q) (possibly redundantly) so that for any edge [u, v] of Q,
there exist k € R such that
Ty — Ty = k(u —v). (5.1

Exercise 5.2.9. Let [u,v] be an edge of an n-dimensional polytope Q < R™. Show that N,(Q) n N,(Q) <
{z | {x,u—v)=0}.

Proof. (1) = (2) Suppose that N'(Q) refines N'(P). Given a vertex z € P, label it by z, for every vertex
v € @ such that N, (Q) € N,(P). Now, consider an edge [u,v] of Q. If z,, = z,, then (15.1) holds trivially.
On the other hand, if =, # z,, then N,(Q), N,(Q) lie in different cones N, (P) # N, (P). Since N,(Q)
and N, (Q) are adjacent and NV (Q) refines N'(P), then N, (P) and N, (P) must share a codimension 1 face
and the hyperplane defining it must be the same as the one separating N, (IT) from N, (IT). This hyperplane
corresponds to an edge [u,v] of Q and, by the exercise, the normal vector of this hyperplane is u — v. The
exercise also implies that x,, — x, is a positive multiple of u — v, as desired.

(2) = (1) To prove this result we need to recall the following. If \ is generic, then it induces an orientation
of the graph of P, G(P). Concretely, u — v if A(v) > A(u). The orientation of G(P) induced by this A is
acyclic and has a unique sink (a vertex with no outgoing edges). Moreover, ) is maximized over P at the
sink.

Fix a vertex v € Q and let ¢ € N, (Q) be such that A\(z) = (¢, z) is generic. Then, the orientation of G(Q)
induced by ¢ is acyclic and has a unique sink u. For any other vertex v # u there exists a unique directed
path (v; = v,v9,...,vr = u) from v to u. Thus,

Avr) <o < A(vg) = ?E%A(x).

Note that by (5.1) we have that

A(@oyy) = A(@0,) = kX (vig1 —v3) = 0

It follows that A (z,,) < A (z,). Since this inequality holds for any generic A\, we have that N, (Q) € N, (P).
Since the same statement is true for any vertex of ), one deduces (1). O

Definition 5.2.10. A polytope P is a deformation of a simple polytope @ if it satisfies any of the conditions
above.

Proposition 5.2.11. P is a deformation of () if and only if P is a Minkowski summand of a dilation ¢Q, i.e.,
there exist a polytope P’ and ¢ € R~ such that P + P’ = tQ.

Proof. See [8] Theorem 15.3. O
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5.2.1 The normal fans of permutohedra

Recall that P is a generalized permutohedron if and only if A/(P) is refined by the normal fan of the permu-
tohedron.

Let us describe the normal fan of the permutohedron II,; as a fan in RY/R1 =~ R9~!, This is because II; <
{z e R? | {1,2) = n(n + 1)/2} and so it is natural to describe the normal fan in the orthogonal complement
of this affine plane, translated to the origin.

Proposition 5.2.12. There is a cone op € N (II;) for each ordered set partition P = (A4,..., Ax) of [d].
Concretely, the cone corresponding to P is

op cone{EeiS=A1u~~uAmforsomem<k}

€S

{v|xiza; oieA,,jeA,m< L.

For example, the cone corresponding to the ordered set partition (36,124, 5) is
cone {e3+eg,e1+estest+estes)={x|r3=026>201=10=042>w5}.

Proof. Since Il is a zonotope, the normal fan of this polytope is the fan for the hyperplane arrangement
consisting of the hyperplanes
{w |z =z}
for each i < j. Concretely, the interiors of the cones of this fan are obtained by choosing for each i < j one
of the following
T =25,T; < Tj,Ti > Tj.

In order to obtain a nonempty cone, we must be able to arrange these equations into a line, as in the
inequality definition of op. O

5.3 Graphic zonotope

Definition 5.3.1. Let G = (V = [n], E) be a graph without loops or multiple edges. The graphic zonotope
Z(@) is the Minkowski sum of the line segments [e;, e;] for (i,j) € E, i < j.

Example 5.3.2. The permutahedron II,, is the graphic zonotope of the complete graph K,,.
Proposition 5.3.3. The zonotopal generalized permutohedra are exactly the graphic zonotopes.

It is useful to note that
Z(G) = D) leneil= > (ei+[0,¢;—eil).
(h.)eE (1.7)eE
i<j 1<j
Proof. We have seen that the normal fan of the zonotope Z = > | [0,v;] is the fan of the hyperplane
arrangement {H, ..., H,}, where H; = {z € R% | (v;, z) = 0}. It follows that the N'(Z(Q)) is the fan of the
hyperplane arrangement {H;; | (i,j) € E}, where H;; = {z € R | {e; — ¢;,z) = 0}. This is a coarsening of
the normal fan of the permutohedron II,,. O

Proposition 5.3.4. Let G be a connected graph. The volume of Z(G) equals the number of spanning trees
of G. The number of lattice points of Z(G) equals the number of forests in G.

The proof of this proposition is a direct application of Corollary 5.1.9. To do so we prove this result for the
translated polytope > (; j)er [0, ¢; — e;].

1<j
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Proof. Let U = span{e; —e; | (i,j) € E}. To prove the volume claim by applying Corollary 5.1.9 we need
to show that e;, — e;,,...,e,, — e;, form a basis for U if and only the edges (i1,j1),..., (i4,jq) form a
spanning tree of G. First, note the following (1) If some collection of edges (i1,51),..., (i, jx) forms a
cycle, then > (e;, —e;,) + - (ej, —ei,) = 0, i.e. the corresponding vectors are linearly dependent. (2) If
the sub-graph formed by some collection of edges (i1,J1),- .-, (ix, jr) is missing vertex v of GG, then since
G is connected there is an edge (u,v) € E and the corresponding e, — e, is linearly independent from the
VECLOIS €5, — €4y, ..., Ey, — €4 -

Suppose the edges (i1,51),---, (i4, jq) do not form a spanning tree of G. Then, either there is a cycle or a
vertex is missing. In the first case we have, by (1), that the vectors are linearly dependent. In the second
case we have, by (2), that the vectors are not spanning. In either case we see that the vectors do not form a
basis for U.

Conversely, suppose that the edges (i1,71),. .., (i4,jq) form a spanning tree of G. First, note that the cor-
responding vectors must be spanning. Concretely, given e, — e, not in the list if we add the edge (u,v) to
the spanning tree this creates a cycle containing (u,v). By (1) we must have that e, — ¢, is in the span of
the vectors. Now, if the vectors are spanning but not linearly independent, then we can delete some of the
vectors until we obtain a basis. However, since we have a spanning tree we must have disconnected a vertex
from the graph, a contradiction to spanning independence, by (2). The volume claim follows from showing
that

|det (ejl = €iyy ey Cyy — eid)\ =1,
which is left as an exercise. The argument above can be adapted to show that e;, —e;,,...,¢e,, — ¢;, are
linearly independent if and only the edges (i1, 1), - ., (i4, jq) form a forest in G. Applying Corollary 5.1.9(2)
with ¢ = 1 we obtain the number of lattice points claim. O

5.3.1 Minkowski sums of simplices

Given I < [d], let Ay := conv {e; | i € I} which is a standard simplex. Given Z a collection of subsets of [d]
and list of positive real numbers § = (y; | I € Z) consider the polytope

Az yg:i= 2 yrAr.

IeT

If |I| = 2 and y; = 1 for all I € Z, then A7 is a graphic zonotope.

Proposition 5.3.5. A7 j; is a generalized permutohedron.

Proof. Recall that for any pair of polytopes P, and scalars r, s we have (rP + sQ), = rP, + sQ,. Thus,
every edge of Az ; is parallel to a sum of an edge of exactly one A; together with a collection of vertices of

the remaining A ;. Note that the edges of A; are parallel to e; — ¢; for some ¢, j € I. It follows that Az ; is a
deformation of the permutahedron, i.e., a generalized permutohedron. O

Recall that Given I < [d], let A; := conv {e; | i € I} which is a standard simplex. Given Z a collection of
subsets of [d] and list of positive real numbers § = (y; | I € Z) consider the polytope

Azy = Z yrAr.
Iel

We showed last time that these polytopes are generalized permutohedra.

Definition 5.3.6. We say that a collection B of nonempty subsets of a finite set S is a building set if it
satisfies the following conditions.

BN IfI,JeBandInJ # @, thenl uJeB.
(B2) Foralli e S, {i} € B.
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Example 5.3.7. Let G be a graph with no loops or multiple edges with vertex set S. The set
B(G) ={J < S|J # @, G| is connected }

is a building set.

Sums of simplices where 7 is a building set are called nestohedra. Note that condition (B2) does not impose
any additional restrictions on the structure of Az ; since it only translates the polytope. This condition is
there only for convenience.

The next result computes the dimension and face lattice of a nestohedron. It also shows that these polytopes
are simple. To understand the statement we need some definitions.

Definition 5.3.8. Let B be a building set on [d]. The collection B, consists of the inclusion-maximal
elements of B. A subset N ¢ B\B,,,.x is a nested if it satisfies the following conditions:

(N1) Forany I,J € N, either I = J,J = I,or I nJ = &.

(N2) For any k > 2 and [, ..., I} € N pairwise disjoint, the union Iy u --- U I}, ¢ B.

Define the nested complex Cj as the simplicial complex whose faces are the nested sets of 5.
A building set on S in connected if B,,,, = {S}.

Example 5.3.9. The smallest connected building set on [d] is B = {{1},{2},...,{d}, [d]}. The corresponding
nestohedron is Ap ; is the standard simplex.

Example 5.3.10. Consider the building set B = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}. The resulting nestohe-
dron is depicted below.

ANMNAN
Figure 5.3: nestohedra

The maximal elements are Bpax = {{1,2,3}}. The nested complex is depicted below.
|

12
23

Figure 5.4: nested complex

Remark 5.3.11. One way to obtain the nested complex is as follows.

(1) Start with the simplicial complex whose facets are { ( d[i] 1 ) }
(2) Choose an ordering of the non-singleton elements of B\By,.x from larger sets to smaller sets.

(3) For each I € B\Bnax and following this order perform a stellar subdivision of the simplex A = {{i} | i e
I}. This means, add the vertex I to the complex and replace A by the |I| simplices A; = {I} U ({{i} |
i€ I\{j}}) for each j € I (and their subsets).

The resulting complex is the nested complex.
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Theorem 5.3.12. Let 3 is a building set on [d]. The nestohedron Ap j; is a simple polytope of dimension
d — | Bmax|- The dual of Ag 5 is isomorphic, as a simplicial complex, to the nested complex Cp.

Proof. Let P = Ap ;. We want to show that each N € Cg corresponds to a cone of the normal fan of P. First,
start with a cone C' in N (P). Since P is a generalized permutohedron, then C is a union of the cones in
Proposition ref16.1. Pick a op = C of maximal dimension, where P = (A4,..., A;) is a partition of [d], and
let c € op. Now,

(Ar), = Arna;s

where j(I) is the minimal index such that I n A; # @. Note that if I < J, then j(I) > j(J). Define

N ={I € B\Bmax | j(I) > j(J) forany J 2 I,J € B}.

We claim that N is a nested set. (N1) Suppose I,J € Naresuchthatl nJ # @&,I ¢ J,and J & I. By (B1)
it follows that 7 v J € B. Since A;; 5 N (I U J) # @, then either A; ;) NI # D or Aj o) nJ # 2.
However, this contradicts that j(I) > j(I v J) and j(J) > j(I u J). (N2) Can be proven in a very similar
way to (N1).

It follows that N is a nested set, as desired. For the converse, let N be a nested set. In order to obtain a cone
of N(P) we need to provide an ordered set partition. For each I € N U By , let

Ar=1[]JJ
JcI
JeN

We claim these sets partition [d].
(DIfxe A;nAythenz e I nJandsoby (N1) (WLOG) J c 1. If J < I, then z ¢ A, which is not possible.

(2) Letz € [d]. Note then that = € I for some I € Byax. If z ¢ Aj, then z € J for some J € N such that J < I.
Let J be the smallest such set. Then, z € A ;.

Pick a linear order of Ay, < --- < Ay, of these sets satisfying that Ay, < Ay, if I; < I;. It follows that there
is a cone op € N (I1;) corresponding to this ordered set partition. The face corresponding to N is then given
by the smallest cone of A'(P) containing op.

There are some missing details that are left to the reader:
- The two processes are inverses of each other.

- N < N’ if and only if the cone corresponding to N is contained in the cone corresponding to N’. O

5.4 Catalan Numbers and Triangulations

Tom Davis’s pdf gives a a set of combinatorial problems equivalently defining Catalan numbers. We recall
that the Catalan number is C,, = n%rl (27?) For more of such equivalence, one may consult [11] section 6.2.

Proposition 5.4.1. The number of lattice paths from (0,0) to (n,n), which only use the steps (1,0), (0, 1),
and which do not pass above the diagonal equals the n-th Catalan number C,,.

Proof. First, all paths can be encoded in a sequence of nN ’s and nFE ’s. Thus, the number of latttice paths
from (0,0) to (n,n) (which may go above the diagonal) is ( 2: ) Next, let us count the number of bad

paths. To do so, let us show that the bad paths are in bijection with the lattice paths from (0,0) to (n—1, n+1).
Given a bad path, it must cross the diagonal and touch the next diagonal y = x + 1. The first time it touches
y = x + 1, reflect the remaining path over y = x + 1. Note that in the section of the path that is not reflected,
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there is one more N step than E steps. It follows that in the section of the path that is reflected, there is one
more E step than N steps. Since reflecting swaps E < N, it follows that the reflected path has n + 1 N steps
and n — 1E steps. So, instead of reaching (n,n), all bad paths after reflection end at (n —1,n + 1), as desired.
Now, the count for number of paths ending at (n — 1,n + 1) is

(=) -0

We conclude that the number of good paths is
2n Y\ 2n 1 2n\ c
n n+l ) n+1\n /7"

Proposition 5.4.2. The Catalan numbers satisfy the recurrence Cy = 1 and C,, ;1 = Z?:o C;C,_; forn = 0.

O

Proof. To obtain each good path from (0, 0) to (n + 1,n + 1), we can follow the procedure below.
(1) Start with a good path from (0, 0) to (i,) for some i € [n]. There are C; such paths.
(2) Take an E step to reach (i + 1, 7).
(3) Take a path from (i + 1,4) to (n,n — 1) that stays above y = x — 1. There are C,,_; such paths.
(4) Take an N step toreach (n+ 1,n + 1).
It follows that the number of good paths from (0,0) to (n + 1,n+ 1) is .\, C;Cp;. O

Proposition 5.4.3. The number of triangulations of an (n + 2)-gon that only use diagonals is C,,.

Proof. Let T,, be the number of triangulations of an (n + 2)-gon. We will show that 7,, satisfies the same
recurrence as the Catalan numbers. Clearly, 7o = 1 and 77 = 1. Now, let n > 1 and consider an (n + 1 + 2)-
gon P. Pick one side of the P and call it the base. Label the vertices of P as 0, ..., n + 2 counterclockwise so
that the base is the side between n + 1 and n + 2. To obtain a triangulation of P, we can follow the procedure
below.

(1) Pick a vertex v among the ones labeled 0, ...,n and add the triangle with vertices v,n + 1,n + 2.

(2) The remaining part of P that needs to be triangulated consists of two polygons, one with n + 1 as a
vertex and the other with n + 2 as a vertex. Note that the polygon P, with n + 1 as a vertex is an
(v + 2)-gon and the polygon P, with n + 2 as a vertex is an (n + 2 — v)-gon.

(3) Triangulate each of these polygons separatedly.
This shows that 7,11 = >, TiTh—;. O

The collection of polygonal subdivisions of an (n + 2)-gon tile a sphere.

Question:
Is there a polytope that agrees with this tiled sphere?

Theorem 5.4.4 (Loday). Let B be the building set corresponding to the graph which is a path. The nestohe-
dron Ap; agrees with this tiled sphere. This polytope is called Loday’s associahedron.

Example 5.4.5. Consider the path with 3 vertices. The resulting nestohedron is given in example 5.3.10.

Remark 5.4.6. This is not the only polytope that agrees with this tiled sphere. There are many polytopes
that do so and not all of them are isomorphic.
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Figure 5.5: Polygonal subdivisions.

Lemma 5.4.7. The tilings of the staircase shape (n,n — 1,...,1) with n rectangles are in bijection with the
triangulations of an (n + 2)-gon.

Example 5.4.8.

A v
[ - X 0O, N« (2] V23
\
125 0,2 3v) 2 ' 2 &> 0' ql')
! Nl 345 (3,3)x (4,9 A
3 1o ble ool olo ole olo
b b1t by tCi1+ 023+ B
Sketch of proof. Label the vertices of an (n + 2 )-gon P as 1,...,n counterclockwise. Given a triangulation
T of P we can obtain a tiling of the staircase shape as follows. For each triangle in T with vertices i < j < k,
add the rectangle [i,j — 1] x [j, k — 1]. This gives a bijection. O

Proof of Loday’s theorem. Let B be the building set corresponding to the graph which is a path with n vertices.
Let us prove that the vertices of P = Ag ; are in bijection with the tilings of the staircase shape (n,n—1,...,1)
with n rectangles. Label the corners of the steps 1,...,n and fix a tiling of the staircase shape. The i-
th rectangle in such a subdivision is the rectangle that contains the i-th corner of the triangular shape.
Associate to the tiling the vector ¢t = (¢1,...,t,) where ¢; equals the number of boxes in the i-th rectangle.
The face P, is the vertex t.

One can show that every vertex of P can be obtained in this way. Roughly, given ¢ such that P, is a vertex
do the following.
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(1) Let ¢; be the largest entry. Then place the rectangle with corners at ¢ and (1,n).

(2) Remove this rectangle from the shape as well as entry ¢; from c and repeat the process with each
connected component.

One can then show that the higher dimensional faces of this polytope agree with those of the tiled sphere. [
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Chapter 6

Polytopes in Algebraic Geometry

6.1 Polytopes arising from a torus action
The projective space is P" = (C"*!\ {0})/C*, where X - (ao,...,a,) = (Aao,...,Aay). Denote the coordi-
nates of P” by [ag : -+ - : ap].

A polynomial f € C[xo,...,z,] is homogeneous if f (\xq, ..., \z,) = A\?f (z0,...,x,) for all A € C*. This
is equivalent to saying that f is a sum of monomials of the same degree. An ideal I < C[xq,...,x,] is
homogeneous if it is generated by homogeneous polynomials.

A projective variety is V(I) = {x € P" | f(x) = 0 for all f € I}, where I is a homogeneous ideal. A mor-
phism between two varieties ¢ : X — Y is a map such that each entry is a polynomial. A projetive variety is
irreducible if its defining ideal is prime. Today we will only work with irreducible varieties.

An (algebraic) torus is T’ = (C*)d. Note that this is a group with respect to point-wise multiplication:
(t1,... ta) - (1, 1) = (tat],. .. tatl) .
The torus T acts on P? by
(t1,.. . tq) - [ag: -+ :aq] = [ao : tray -~ : tgaq]. (6.1)

However, there are many other ways in which a torus can act on P". For example, given T' = (C*)d and
Wo, . . ., wy € Z% we have the action

(toy..-stn) - [ap: - :an] =[t"° tag: t“ ay -+t ay].

An action of T on X is algebraic if T' x X — X is a morphism (i.e. a polynomial map). In fact, every
algebraic action of 7" on P" is of this form, see [7] section 1.1.

We are interested in projective varieties X < P™ that are invariant under an action of a torus 7, i.e.

reX,telT =1t -xeX.

Let us call them T-varieties.

Example 6.1.1. Suppose T acts on P™ and a € P". The orbit of a is the set T - a = {t - a | t € T'}. Denote by
T - a the smallest projective variety containing 7 - a, then T - a is a T-variety. In fact, it is a projective toric
variety. Let us look at some instances of for the action on P? in (6.1).
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(DIfa=[1:1:1],thenT a = {beP?|Vi,b; #0}. Moreover, T - a = P2. This is clearly T-invariant.

(2 Ifa=[1:0:0],thenT -a = {a}. Moreover, T - a = V ({1, x2)) = {a}. It is straightforward that this is
T-invariant.

(ANIfa=[1:1:0],thenT a={beP?|by=0,b1,bo # 0}. We have that T - a = V ((z2)). One can verify
that [1:0: 0] € T - a by noting that

[1:0:0] = lim (¢1,t2)-[1:1:0].
to—0
Since (t1,t2) - [ap : a1 : 0] satisfies that x5 = 0, then this orbit closure is T-invariant.
Proposition 6.1.2. If T" acts on P" and a € P™, then T - a is T-invariant.

Proof. Since T'x X — X is a morphism, then it is continuous. Since every point in 7T - a is obtained as a
limit it follows that for any s e T, b€ T - a,

s-b—s-(limt-a> = lim (st) - a.

t—t* t—t¥
O
Definition 6.1.3.
* An action of T on X < P" is effective (a.k.a. faithful) if
t=1l=Vre X, t-z=ux.
* Suppose we have an effective action ot 7 on P". The weights of this action are the wy,...,w, € Z¢

such that
t-lag,-..,an] = [apt,...,apnt“"].

* If X ¢ P" is T-invariant, the weights of this action are the w; from above such that there exists a € X
with a; # 0.

* The moment polytope of X < P" with respect to a given T-action is p(X) = conv{ weights of the
T-action on X}.

We saw how to obtain a polytope from a projective toric variety, via moment polytopes. We can see many
properties of the variety encoded into the polytope.

Example 6.1.4. Consider the orbit closure T'- [1 : 1 : 0]. Note that

T-[1:1:0]=V({ag))=T-[1:1:0luT-[1:0:0]uT-[0:1:0].

This is reflected in the decomposition
w(T-[1:1:0]) =conv{0,e;} = {0} u{er} u(0,e1).
Proposition 6.1.5. Suppose 7' is an action on a projective toric variety X.
(1) dim(X) = dim(u(X)).
(2) If X is a smooth, then the h-polynomial of ;(X) equals the Poincaré polynomial of X.

A consequence of (1) above is a criterion for when a T-variety is toric with respect to the T-action.
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Corollary 6.1.6. Let X be a T-variety. The variety X is a projective toric variety if and only if dim(X) =
dim(p(X)).

Proof. If X is a toric variety then, by (1) above, dim(X) = dim(u(X)). Conversely, if dim(X) = dim(u(X)),
let a € X be generic. Such a point has the property that dim(T - a) is as large as possible. Since T - ¢ and X
are irreducible varieties and have the same dimension they must agree. It follows that X is a toric variety. [

Definition 6.1.7. The degree of a projective variety X < P™ is the number of points in X n H, where H is
a generic linear space such that dim(H) = n — dim(X).

Example 6.1.8. This notion generalizes the notion of degree of a polynomial. Consider the polynomial

f (zo,71,22) = 329 —2% and the variety V(f) < P2. Then to obtain de degree we can look at the intersection

of V(f) with a line. In the chart zo = 1, the equation is xo = 2% and we can see that there are two points in
such an intersection. Thus, the degree of V(f) is 2.

Theorem 6.1.9. The degree of a projective toric variety X is equal to dim(X)! Vol(u(X)).
One can show that this is equivalent to Bernstein’s theorem.
Definition 6.1.10. Let X = V(I) < P™ be a projective variety. The Hilbert series of I is
Hi(t) = ). dime ((C [0, ..., 2] /1),,) t™
m=0
Here (C[xo,...,2,] /I),, denotes the m-th graded piece of C [xo,...,x,] /I, which is a C vector space.

Example 6.1.11. Let I be the trivial ideal so that C [z, ...,z,] /I = C|[xo,...,xy,]. Then, (C[xo,...,xy]),,
consists of the homogeneous polynomials of degree m and this is generated as a C-vector space by the

monomials of degree m. It follows that dim (C [xzo, ..., xy]),, = ( " -:nm ) We conclude that
n+m\ ,. 1
me =3 (")) =

mz=0
This agrees with the Ehrhart series of the simplex (see Example 8.7) and this is no accident.

Proposition 6.1.12. Let X = V(I) < P™ be a projective toric variety. The Hilbert series of I agrees with
Ehrhart series of p(X).

6.2 Moment polytopes in the Grassmannian

Definition 19.4. The Grassmannian Gr(k, d) is the set of k-dimensional linear subspaces of C?. For example,
Gr(1,d) = Pa-1,

We give the Grassmannian the structure of a variety as follows. Given v1,...,v; € C? linearly independent
form the matrix V' = (vy,...,vg), i.e. the v; s are the columns of V. Given I = {i; <is <--- < iy} €

( [Z] ),let

The Pliicker embedding is the map

pr (v1,...,v;) = det( rows of V indexed by I).

p: Gr(k,d) — p()-1
span (v1,...,v%) — [pr (v1,...,0%)] [d \"
I€< k )
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Exercise 6.2.1. The Pliicker embedding is well-defined and one-to-one.

Theorem 6.2.2. The image of Gr(k, d) under this map is a variety.

Proof. The image is cut out by an ideal called the Pliicker ideal. See [2] section 9.1 for a proof. O
111 1\"
Example 6.2.3. Consider the Grassmannian Gr(2,4) and the matrix V = ( 01 2 3 ) . The Pliicker

coordinates are

p12(V) = 1,p13(V) = 2,p14(V) = 3,p23(V) = 1,p24(V) = 2,p34(V) = 1.

The point in P® corresponding to Vis [1:2:3:1:2:1].

The Grassmannian is a T-variety. The torus T' = (C*)d acts on Gr(k,d) by any of the following equivalent

ways:
()] (1)

* ¢ colspan(V) = colspan (diag (¢1,...,tq) V).

. t'[pl

* Gr(k,d) = GL4/Py, where Py is a maximal parabolic subgroup. Identifying 7" with the subgroup of
diagonal matrices in GLg4, the action of T of GL, of left multiplication induces an action of 7" on
Gr(k,d).

Note that ¢;, - - - ¢;, = t®1 7% where e; is the i-th standard basis vector of R<. It follows that the weights
of the action are the e;, + --- + ¢;, for I = {iy,...,ix}. Thus,

I—{z’l,...,ik}e( [Z] )}

This polytope is called a hypersimplex and is denoted by Ay, 4.

w(Gr(k,d)) = conv {eil + ey,

Example 6.2.4. The moment polytope n(Gr(2,4)) is depicted below.
Definition 6.2.5. A matroid polytope is a generalized permutohedron such that the vertices are 0/1-vectors.
Exercise 6.2.6. The hypersimplex Ay, 4 is a matroid polytope.

Remark 6.2.7. Given V' € Gr(k,d), there is a combinatorial object called a matroid associated to V. One
of the ways to describe this object is as a polytope, called a matroid polytope. It is a theorem of Gelfand-
Goresky-MacPherson-Serganova that the moment polytope of T - V' is the matroid polytope for the matroid
associated to V.

6.3 The moment polytope of the flag variety

Definition 6.3.1. The (complete) flag variety is

d—1
Fl(d) = {(Vl,...,le) € H Gr(k,d) | Vi, V; < VM}.
k=1

An embedding of HZ: Gr(k, d) into P¥ yields an embedding of F1(d) into P". To obtain the former note
the following.
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(1) The Segre embedding is the morphism

Ipr—l % Ips—l N Iprs—l

([wo -t o] Yot tysea]) = [@iy; |0<i<r,0<j<s].
(2) Applying this map multiple times gives the embedding

I]])7’171 X oo X U])"”d*l — P’I"l“-Td*l.

We obtain an embedding as follows
a=1 d d d d
n Gr(k,d) — Pt x ... x plad)=1 o p(D)-(ad)-1,
k=1
Theorem 6.3.2. The image of Fl(d) under these maps is a variety.
Proof. See [2] section 9.1 for a proof. O
We consider the action of 7' on Fl(d) given diagonally by the action on each Gr(k, d), i.e.,

t-(Vl,...,Vd,l)=(t-V1,...,t-Vd,1).

Following the embedding carefully one can verify that the weights of the T-action on Fl(d) are
d J
{ZZ@UH wESd}.
j=1li=1

Exercise 6.3.3. Do this computation for d = 3 and verify that u(F1(3)) = II3.

Proposition 6.3.4. The moment polytope of the flag variety Fl(d) is the permutohedron I1,.
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Chapter 7

Computing the Discrete Continuously

7.1 Brion’s Theorem
We denote the Laurent polynomials in d variables with coefficients in C as
Clz*] := C[zf, -, 27).

and the field of fractions of polynomial ring C[z1,--- , z4] (i.e., the set of all rational functions {f(z)/g(z) :
f.g € Clz],g # 0}) is denoted as C(z). We also let CL, be the set of all (formal) Laurent series og(z) of
rational cones S in R9. Recall that

os(z) = Z z™ = Z 27y

meSnzd meSnzd

Since the multiplication of a rational function and a Laurent series makes sense, we realize CL; as a module
over C[z*]. C(z) is also a module over C[z*] in the obvious sense.

We notice that Theorem 3.3.4 evaluates the Laurent series ox(z) € CL, of a simplicial points cone K as a
rational function in C(z). We want to extend that result of evaluation as a rational function in C(z).

Lemma 7.1.1. There is a unique linear map ¢ : CL; — C(z) that maps an integer-point transform og(z)
(viewed as a Laurent series) of a rational simplicial cone

K={v+Awi+dowo + -+ AWk : A1, Ao, ..., A\ = 0} c R?
to the rational function
O'H(Z)
(1—2z"1) (1 —zW2).-- (1 —zWr)’

where o11(z) is the integer-point transform of the half-open parallelepiped

= {v+ Wi+ AaWo + -+ Wit 0 <A, Ao, A < 1)

Proof. As we said, we proved in Theorem 3.3.4 that
(1—2") (1 —2") - (1 — 2") o (2) = ou(2) 7.1)
We remark that (7.1) is an identity in the module CL, over C [z*]: the factor (1 — z%1) (1 — z%2)--- (1 — z"*)
on the left-hand side and the right-hand side oy1(z) are Laurent polynomials in C [z%], whereas o (z) is in

CLg.
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If K is now a general rational cone, we can triangulate it into simplicial cone, each of which comes with a
version of (7.1). The integer-point transform ok (z) € CL, of our general cone K can naturally be written in
an inclusion-exclusion form as a sum (with positive and negative terms) of integer-point transforms of these
simplicial cones and their faces, which are also simplicial cones. Applying the same sum to the identities of
the form (7.1) for these simplicial cones gives an identity

9(z)ox(z) = f(2)

for some Laurent monomials f(z) and g(z). This yields our sought-after linear map: we define

That this map ¢ is linear follows by construction, and that it is unique follows from the uniqueness of the
rational-function form of ox(z) when K is simplicial. O
We will prove the following result in this section.

Theorem 7.1.2 (Brion’s theorem for simplices). Suppose A is a rational simplex. Then we have the following
identity of rational functions:

oalz)= ). ox,(2)

v a vertex of A
The notation K+ stands for the tangent cone of a face F of P, defined as
Kri={x+My—x):xeF,yeP,AeRx}.

We note that » = spanP. For a vertex v of P, the tangent cone K, is often called a vertex cone; it is
pointed, and we show an example in Figure 7.1. For a k-face F of P with k£ > 0, the tangent cone K is not
pointed. For example, the tangent cone of an edge of a 3-polytope is a wedge.

\

Figure 7.1: Tangent cones.
The summation over vertices comes from the summation over all faces of A where the summand for the
faces that are not vertices are zero due to the following proposition.

Proposition 7.1.3. Let ¢ : CL; — C(z) be the linear map in Lemma 7.1.1, and let £ < R? be a rational
cone that contains a line. Then

¢ (ox(z)) =0

In particular, if F is a face of a polytope P that is not a vertex. Then
¢ (oK (2)) = 0.
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Proof. Let K < R be a rational cone that contains a line. This implies that there exists a vector w € Z%\{0}
such that w + K = K. Translated into the language of Laurent series, this means that z% o (z) = ox(z), and
thus, since ¢ is linear,

2" ¢ (ox(2)) = ¢ (0x(2)) -

But this gives the identity (1 — z%) ¢ (0x(2z)) = 0 in the world C(z) of rational functions. Since 1 — z% is not
a zero divisor in this world, we conclude that ¢ (ox(z)) = 0.

The particular case where F is a face of a polytope P that is not a vertex is due to the observations that for
every face F of P, the tangent cones K contains the affine space span F = {x + A(y —x) : x,y € P, A € R}
(called the apex of the tangent cones K r; see Figure 7.2 and Figure 7.1) and that affine space contains no
line if and only if it has dimension 0.

Figure 7.2: span of face

proof of theorem 7.1.2. We shall assume the Brianchon-Gram identity (which holds for rational polytopes
in general and was proved in the case of simplices in [4] section 11.4; it’s generally a result of reciprocity):
for a d-simplex A,

Ia(x) = ), (1)1, (x)

FCA

where the sum is taken over all nonempty faces F of A. Then,

Z 1a(m)z™ = Z Z (—l)dim}-l;gf(m)zm

meZzZd meZd FSA
oa(z) = Y. (1) o, (z) by defn. of o5(z).
FCA

Applying the linear map ¢ : CL; — C(z) to above equality and noticing that ¢ evaluates os(z) as os(z) for
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simplicial S:

oa(z) = ¢ (oa(z) = Y (=176 (0x,(2))

FCA
=0
—
prop. 7.1.3 i
2R 3 ()Y e (o, (2)
veVtxA
K+ simplicial
—— ) k(2
veVtxA

In fact, Brion’s theorem holds for rational convex polytopes in general.

Theorem 7.1.4 (Brion’s theorem). Suppose P is a rational convex polytope. Then we have the following
identity of rational functions:

op(z) = . ox,(2)

v a vertex of P

Proof. See [4] Theorem 11.7. O

7.2 Fourier-Poisson and Euler-Maclaurin

We return to our recurring theme of computation of volume of polytopes. Recall that the discrete volume
of a polytope P has the following form

Pz =Lp(1)= > 1p(m)= > 1, (7.2)
mez4 mePnZ3
where Lp(t) = [tP n Z%|. The continuous volume of P is
Volu(P) = [ dy = 1n(0) 73)
Rd

where 1p(y) = {z. 1p(y)e 2™¥*dx. [10] and [4] then introduce two approaches of exponentiation for
summation to compute the discrete volumes. We can name them as Fourier-Poisson approach and Euler-
Maclaurin approach.

The Poisson summation formula tells us that for any "sufficiently nice” function f : R* — C we have:
D ) =) f(©).
neza ez
In particular, if we were to naively set f(n) := 1p(n), the indicator function of a polytope P, then we would
get:
D pm) = ) 1p(9), (7.4)
neza Lezad

which is technically false for functions, due to the fact that the indicator function 1 is discontinuous on R<.
But when we do counting, Donald Knuth says we sometimes don’t need to take care of those requirements
to use some formulae because they serve as guessing tools. The end justifies the means.

[10] in chapter 10 defines the integer point transform of a rational polytope P by

0’73(2’) = Z 62‘11'z'<n.,z>7

nePnz4
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a discretization of the Fourier transform of P. Under the change of variable q; := €%, ... g4 := €*™%4 it is
able to use the notations g;" g3? - - - ¢* = e?™mistF2minaza .= ¢2min.2) 1o define the multinomial notation
for a monomial in several variables

qn = q;llqu .. qulLd.
and recover the original defininition used in [4]

op(q) = Y. q"

nePnz

One may check [10] chapter 8, 10 for more on Fourier-Poisson approach, where Brion’s theorem is also
written in Fourier series.

We return to Euler-Maclaurin approach in [4]. We consider the following exponentiation of the difference

between (7.2) and (7.3):
Z em* ff e’ *dy. (7.5)
P

mePnNZ3

where we have replaced the variable z that we have commonly used in generating functions by the expo-

nential variable (z1, 2o, ..., 2q4) = (e*!,e"2,...,e"). Note that on setting x = 0 in (7.5), we get quantity
>o1- J dy (7.6)
mePnze P

7.3 A continuous version of Brion’s Theorem

We give an integral analogue of Theorem 7.1.4 for simple rational polytopes. We begin by translating Brion’s
integer-point transforms

op(z) = > ox,(2)

v a vertex of P
into an exponential form:
oplexpz) = > ox,(expz)

v a vertex of P

where we used the notation expz = (e*!,e*2,...,e*?). For the continuous analogue of Brion’s theorem, we
replace the sum on the left-hand side,

op(expz) = Z (expz)™ = Z exp(m - z)
mePnZ4 mePnz4
by an integral.

Theorem 7.3.1 (Brion’s theorem: continuous form). Suppose P is a simple rational convex d-polytope. For

each vertex cone K, of P, fix a set of generators wy(v), wa(v), ..., wq(v) € Z%. Then
f exp(x - z)dx — (—1)" Z exp(v~z)\illet (W1(v),...,wa(v))]
P v a vertex of P szl (Wk(v) ’ Z)

for all z such that the denominators on the right-hand side do not vanish.

Proof. We begin with the assumption that P is an integral polytope; we will see in the process of the proof
that this assumption can be relaxed. Let’s write out the exponential form of Brion’s theorem (Theorem
7.1.4), using the assumption that the vertex cones are simplicial (because P is simple). By Theorem 3.3.4,

(v-2z)or, (expz)
op(expz) = exp(m - z) = P ¥ (7.7)
” mePZmZd vavertzex of P HZ:l (1 — exXp (Wk(v) ’ Z))
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where

II, = {)\1W1(V) + )\2W2(V) + -+ )\de(V) HUED VD O W 1}
is the fundamental parallelepiped of the vertex cone K,. We would like to rewrite (7.7) with the lattice Z¢
replaced by the refined lattice (127) d, because then, the left-hand side of (7.7) will give rise to the sought-
after integral by letting n approach infinity. The right-hand side of (7.7) changes accordingly; now every
integral point has to be scaled down by %:

Z exp(m-z) = Z exp(V - z) ZmEHVmZd €xp (,L? : Z)

d wi (v) (78)
mer(}TZ)d v a vertex of P Hk:l (1 — exp (k'riz . Z))

The proof of this identity is in essence the same as that of Theorem 3.3.4; we leave it as an exercise. Now
our sought-after integral is

Riemann integral 1
Z exp(m - z)

J exp(X - z)dx =—= lim —
P

n—o0 ’n,d
mEPm(%Z)d

(7.9)

~ lim > exp(V %) Simennze P (5 - 2)
= lim — y
noen v a vertex of P Hk:l (1 — exp (WkT(v) z))

At this point, we can see that our assumption that P has integral vertices can be relaxed to the rational case,
since we may compute the limit only for n ’s that are multiples of the denominator of P. The numerators of
the terms on the right-hand side have a simple limit:

lim exp(v - z) Z exp (% . z) =exp(v-z) Z 1

n— 00
mell, nZ4 mell, nZ4

= exp(v . Z) |det (Wl (V)7 cee 7Wd(v))|

where the last identity follows from Lemma 5.1.8. Hence (7.9) simplifies to

f exp(x-z)dx = Y c:ixp(‘.f ~2) |det (W1 (v), .. .v,vviigv))\
P v a vertex of P Hk:l lim, e n (1 — exp (kT . Z))

lim n <1 — exp (W’;EV) z)) = —wi(v) -z

and the theorem follows. O

Finally, using L’'H6pital’s rule,

It is an exercise to show that for each vertex cone K.,
sexp(v - z)|det (wi(v),...,wa(v))]
d
szl (Wi (v) - 2)

and above theorem shows that the Fourier-Laplace transform of P equals the sum of the Fourier-Laplace
transforms of the vertex cones. In other words,

ij exp(x - 2)dx = (~1)

Lexp(x-z)dx: > Lvexp(x-z)dx

v a vertex of P

We also remark that |det (w1 (v),...,w4(v))| has a geometric meaning: it is the volume of the fundamental
parallelepiped of the vertex cone K, .
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The curious reader might wonder what happens to the statement of Theorem 7.3.1 if we scale each of the
generators wy(v) by a different factor. It is immediate ( [4] Exercise 12.7) that the right-hand side of
Theorem 7.3.1 remains invariant.

There is an important difference between the vertex cone generating functions (integrals) that appear in
the continuous version of Brion’s theorem (Theorem 7.3.1) and the vertex cone generating functions (sums)
that appear in the discrete Brion theorem (Theorem 7.1.4). To see the difference, consider the following
example:

Let Ky be the first quadrant in R?, having generators (1,0) and (0,1). Let K; be the cone defined as the
nonnegative real span of (1,0) and (1, k). For k = 2!%°, say, we see that for all practical purposes, K is very
close to Ky in its geometry, in the sense that their angles are almost the same for computational purposes,
and thus their continuous Brion generating functions are almost the same, computationally.

However, o, (2) is quite far from o, (), since the latter has 2!%° terms in its numerator, while the former
has only 1 as its trivial numerator. Thus, tangent cones that are "arbitrarily close” geometrically may simul-
taneously be ”arbitrarily far” from each other in the discrete sense dictated by the integer points in their
fundamental domains.

Exercise 7.3.2. Given a unimodular cone
K={v+Mwi+ XaWwa+ -+ XgWq : A, Aa, ..., Ag = 0},
where v, w1, W, ..., wq € Z% such that wy, ws, ..., Wy are a basis for Z¢ show that

ZV

ST T

and |det (wyq,...,wgq)| = 1.

7.4 Computing the Discrete Continuously

Our reference [4] bears the name Computing the Continuous Discretely, but we shall in this section do the re-
verse. We will prove Khovanskii-Pukhlikov Theorem for a certain class of polytopes, namely the unimodular
polytopes in subsection 7.4.1.

7.4.1 Unimodular polytopes

We refer to [6] for unimodular polytopes.

Definition 7.4.1 (Unimodular Polytope). A convex polytope A — R™ is called unimodular if
* (Simplicity) there are n edges meeting at each vertex,

* (Rationality) the edges meeting at the vertex r are rational in the sense that every edge E}, is of the
form 7 + tuy, where ¢t € [0,7] and u;, € Z™,

* (Smoothness) for each vertex with edges F1, ..., F, the corresponding vectors u1, . .., u, spanning the
edges can be chosen to form a Z-basis of Z".
The following lemma will prove very useful for proving that a given set of vectors ug, ..., u, is indeed a
Z-basis:
Lemma 7.4.2. The vectors uy,...,u, € Z"™ form a Z-basis of Z" if and only if
| |
det ul s Unp = i].

| |
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Proof. Since uy,...,u, < Z™ form a Z-basis of Z™ iff the matrix is invertible, and the matrix is invertible iff
its determinant is a unit, which in Z are exactly +1, the result follows. O

Remark 7.4.3. The name unimodular comes from the fact that a square integer matrix having determinant
+1 or —1 is called a unimodular matrix. Unimodular matrices form a subgroup of the general linear group
under matrix multiplication. Pascal matrices and permutation matrices are unimodular.

Permutation matrices are unimodular, although there are only two elements in Ss:

6% (o)

Pascal matrices are unimodular too. Recall that Pascal triangle can be put into a lower-triangular matrix

1 0 0 O
1 1 0 0
| 1210
1 3 3 1
That is, L;; = (;) = ﬁlﬁ,, j < i. We use L,, to denote its n x n truncated version. Then observe that the

determinant of a triangular matrix is the product of its diagonal. In this case, the determinant is then just 1.

The matrix A, = L,LI has ("}7) = (1?) = =)' and |A,| = 1. Consider Ay = G ;) and see Figure 7.3

ALl

for the lattice generated by (1, 1) and (1, 2).

)

7 /

Figure 7.3: Lattice generated by (1,1) and (1, 2)

Unimodular polytopes are, in the context of symplectic toric manifolds, sometimes also referred to as Delzant
polytopes.
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More examples of unimodular polytopes in R?:

AN

The pictures above represent polytopes in R? with standard lattice Z2, i.e., standard horizontal and vertical
cartesian axes with same scale. The dotted vertical line in the trapezoidal example is there just to stress that
it is a picture of a rectangle plus an isosceles triangle. For "taller” triangles, smoothness would be violated.
"Wider” triangles may still be unimodular as in the examples below, denoted H, ; ,, as long as the slope
of the hypothenuse satisfies an integrality condition given by n = 0,1,2,... The positive real parameters a
and b are the width and height of the left rectangle. We call these examples Hirzebruch trapezoids. In
particular, H, 3¢ is just a rectangle.

0,0) (a,0)

Ha,b,n

0,0) | (a + nb,0)

Examples of polytopes that are not unimodular: Once again, the pictures above represent polytopes in R? with

standard lattice Z2. The picture on the left fails the smoothness condition on the upper vertex (see Figure
7.4), whereas the one in the middle fails the smoothness condition on the two right vertices, and the one
on the right fails the smoothness condition on all vertices. Moreover, the following pyramid in R? fails the
simplicity condition.
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7.4.2 Todd operator

\

—1) and (2,-1).

Recall the Bernoulli numbers Bj, defined by the generating function

z Bk k
- Dy
e? —1 = k!

F

We now introduce a differential operator via essentially the same generating function, namely

Toddy, := Z(—l)k% <C;l>k.

k=0

This Todd operator is often abbreviated as

d
Todd;, = —4—

d
1—e ar

(12.3)

(7.10)

but we should keep in mind that this is only a shorthand notation for the infinite series (7.10). We first show
that the exponential function is an eigenfunction of the Todd operator.

Lemma 7.4.4. For z € C\{0} with |z| < 27,

Toddy, e*" = :
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Proof.

By (d\"
Todd), e*" = Z(—l)kk—i€ (dh) e*h

k=0

B, .
_ Z(_1>kkiigzk62h
k=0 ’

B
— e2h Z (_Z)kk_i:c
k=0 ’
ezh —Z
e~z —1

The condition |z| < 27 is needed in the last step, by [4] Exercise 2.14. O

7.4.3 Khovanskii-Pukhlikov Theorem

we apply the Todd operator to a perturbation of the continuous volume. Namely, consider a simple full-
dimensional polytope P, which we may write as

P={X€Rd:AX<b}
Then we define the perturbed polytope
Ph) := {xeRd:Ax<b+h}

for a small vector h € R™ (we will quantify the word small in a moment). A famous theorem due to Askold
Khovanskii and Aleksandr Pukhlikov says that the integer-point count in P can be obtained by applying the
Todd operator to vol(P(h)). Here we prove the theorem for a certain class of polytopes, which we need to
define first.

Theorem 7.4.5 (Khovanskii-Pukhlikov theorem). For a unimodular d polytope P,
# (P n 2%) = Toddy vol(P(h))|,_,
More generally,

op(expz) = Toddy f exp(x - z)dx
P(h)

h=0

Proof. We use Theorem 7.3.1, the continuous version of Brion’s theorem; note that if 7 is unimodular, then
P is automatically simple. For each vertex cone K, of P, denote its generators by wy(v), wa(v),..., wg(v) €
Z?. Then Theorem 7.3.1 states that

expl(v - 2) Jdet (W1 (), ..., wa(¥))]
v a vertex of P HZ:l (Wk(V) ’ Z)

_ (_1)d Z exp(v i Z)

d
v a vertex of P Hk:l (Wk(v) ’ Z)

J exp(x - z)dx = (—1)¢
i (7.11)

where the last identity follows from Exercise 7.3.2. A similar formula holds for P(h), except that we have
to account for the shift of the vertices. The vector h shifts the facet-defining hyperplanes. This shift of the
facets induces a shift of the vertices; let’s say that the vertex v gets moved along each edge direction wy, (the
vectors that generate the vertex cone Ky ) by hj(v), so that P(h) has now the vertex v — ZZ:1 hi (V)W (V).
If h is small enough, P(h) will still be simple, and we can apply Theorem 7.3.1 to P(h) :

IThe cautious reader may consult [12] p. 66 to confirm this fact.
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exp ((V - ZZ=1 hk(v)wk(v)> . Z>

v a vertex of P szl (Wi (v) - 2)
J exp (v 7 — ZZ=1 hi(V)wg(v) - z>
= (_1) d
v a vertex of P Hk:l (Wi(v) - 2)
_(_p)d exp(v - z) HZ:I exp (—hi(v)wg(v) - z)
( ) vave%x of P Hizl (Wi(v) - 2)

Strictly speaking, this formula holds only for h € Q™, so that the vertices of P(h) are rational. Since we will
eventually set h = 0, this is a harmless restriction. Now we apply the Todd operator:

Toddy, J exp(x - z)dx
P(h)

h=0
d
e Toads SO D Ty exp (he(v)wi(v) -2)
( ) vver§0f7D § HZ:l (Wk(v) 'Z) h

_ (—1) Z exp(v - z)

d
v vertex of P Hk:l (W’f(v) ’ Z)

0

d
x n Toddy,, (v) exp (—hi(V)Wi(V) - z)

k=1 hi(v)=0
By a multivariate version of Lemma 7.4.4,

Toddy J exp(x - z)dx

P(h) h=0

d
exp(v - z) —wi(v) -z

=0t ) Hl—ex w(> 2)

v vertex of P Hk 1 Wk? k:=1 b N

d 1
= Z exp(v - z) 1_[
v vertex of P k=1 1 —exp (Wk (V) ’ Z)

However, Brion’s theorem (Theorem 7.1.4), together with the fact that P is unimodular, says that the right-
hand side of this last formula is precisely the integer-point transform of P (see also (7.11)), and thus

Toddy, J exp(x - z)dx = op(expz)

P(h)

Finally, setting z = 0 gives

as claimed. O

We note that {, (h) exp(x-z)dx is, by definition, the continuous FourierLaplace transform of P(h). Upon being
acted on by the discretizing operator Todd j, the integral {, () exp(x-z)dx gives us the discrete integer-point
transform op(z).
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7.5 Note

1. The classical Euler-Maclaurin formula states that

J F@)yde + 1O +i Do [f(zm 1)(ﬂf)]n

B TE j Bayea ({212 (o) do

where By, (z) denotes the k™ Bernoulli polynomial. It was discovered independently by Leonhard Euler
and Colin Maclaurin. This formula provides an explicit error term, whereas [4] Theorem 12.2 provides
a summation formula with no error term.

2. The Todd operator was introduced by Friedrich Hirzebruch in the 1950s [9], following a more compli-
cated definition by John A. Todd some twenty years earlier. The Khovanskii-Pukhlikov theorem can be
interpreted as a combinatorial analogue of the algebrogeometric Hirzebruch-Riemann-Roch theorem,
in which the Todd operator plays a prominent role.

3. Theorem 7.3.1, the continuous form of Brion’s theorem, was generalized by Alexander Barvinok to
every polytope [3]. In fact, [3] contains a certain extension of Brion’s theorem to irrational polytopes
as well.
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