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Chapter 1

Introduction to Polytopes

1.1 Why study polytopes?

• Classical: Euclid’s Elements presents the platonic solids as a crowning achievement of Greek mathe-
matics.

• Useful: Linear optimization is equivalent to finding points in polytopes.

• Interdisciplinary: Provide combinatorial tools to other areas of mathematics (e.g. symplectic geometry,
algebraic geometry, number theory, etc.)

• Fun for some.

1.2 What is a polytope?

1.2.1 Affine subspaces

The nonempty affine subspaces, or flats, are the translates of linear subspaces (the vector subspaces of Rd

containing the origin 0 P Rd). The dimension of an affine subspace is the dimension of the corresponding
linear vector space. Affine subspaces of dimensions 0, 1, 2, and d´1 in Rd are called points, lines, planes, and
hyperplanes, respectively. We take for granted the fact that affine subspaces can be described by as the affine
image of some real vector space a`V (where V is a linear subspace) or as the set of all affine combinations
of a finite set of points,

F “

#

x P Rd : x “ λ0x0 ` . . . ` λnxn for λi P R,
n
ÿ

i“1

λi “ 1

+

.

That is, every affine subspace can be described both as an intersection of affine hyperplanes, and as the
affine hull of a finite point set (i.e., as the intersection of all affine flats that contain the set). A set of n ě 0
points is affinely independent if its affine hull has dimension n ´ 1, that is, if every proper subset has a
smaller affine hull.

Proposition 1.2.1. The two definitions of affine subspace a ` V and t
ř

λixi |
ř

λi “ 1u are equivalent.

Proof.
From a ` V to Affine Combinations:
Given a ` V , where a is a particular point and V is a vector space, any point in a ` V can be written as
a ` v, where v P V . If we choose a basis tx1,x2, . . . ,xku for V , then any v P V can be expressed as a
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linear combination v “
řk

i“1 λixi, where λi are scalars. Therefore, any point in a ` V can be written as
a `

řk
i“1 λixi. If we set λ0 “ 1 ´

řk
i“1 λi, then we can write this as λ0a `

řk
i“1 λi pa ` xiq, ensuring that

řk
i“0 λi “ 1. This shows that every point in a ` V can be seen as an affine combination of points in the

subspace.

From Affine Combinations to a ` V :
Conversely, consider a set defined by affine combinations t

řn
i“0 λixi |

ř

λi “ 1u. Let’s choose one of these
points, say x0, to play the role of a in the a ` V definition. We can then view the differences xi ´ x0 as
elements of a vector space V , since they represent directions (or displacements) from x0 to other points in
the set. This shows that the set of affine combinations can be expressed as a ` V , where a “ x0 and V is
the span of txi ´ x0u.

1.2.2 Polytopes

A point set K Ď Rd is convex if with any two points x,y P K it also contains the straight line segment
rx,ys “ tλx ` p1 ´ λqy : 0 ď λ ď 1u.

Clearly, every intersection of convex sets is convex, and Rd itself is convex. Thus for any K Ď Rd, the
”smallest” convex set containing K, called the convex hull of K, can be constructed as the intersection of
all convex sets that contain K :

convpKq :“
č

␣

K 1 Ď Rd : K Ď K 1,K 1 convex
(

For any finite set tx1, . . . ,xku Ď K and parameters λ1, . . . , λk ě 0 with λ1 ` . . . ` λk “ 1, the convex hull
convpKq must contain the point λ1x1 ` . . . ` λkxk : this can be seen by induction on k, using

λ1x1 ` . . . ` λkxk “ p1 ´ λkq

ˆ

λ1

1 ´ λk
x1 ` . . . `

λk´1

1 ´ λk
xk´1

˙

` λkxk

for λk ă 1. When k “ 1, the convex hull of a single point is itself. When k “ 2, every convex set containing
x1 and x2 must contain rx1,x2s, so their intersection has to contain rx1,x2s. Then do the induction on k,
the size of finite subset in K, by above formula. This will show the Ě direction of the following relationship:

convpKq “

#

λ1x1 ` . . . ` λkxk

ˇ

ˇ

ˇ
tx1, . . . ,xku Ď K,λi ě 0,

k
ÿ

i“1

λi “ 1

+

But the right-hand side of this equation is easily seen to be convex, which proves the equality.

Now if K “ tx1, . . . ,xnu Ď Rd is itself finite, then we get the definition of a polytope.

Definition 1.2.2. A polytope, or a V-polytope, is the convex hull of a finite set of points in some Rd.

convpKq “

#

λ1x1 ` . . . ` λnxn : n ě 1, λi ě 0,
n
ÿ

i“1

λi “ 1

+

.

We consider a generalization.

Definition 1.2.3. A cone is a nonempty set of vectors C Ď Rd that with any finite set of vectors also
contains all their linear combinations with nonnegative coefficients. In particular, every cone contains 0 .
For an arbitrary subset Y Ď Rd, we define its conical hull (or positive hull) cone pY q as the intersection of all
cones in Rd that contain Y . Clearly C :“ conepY q is a cone for every Y . Similar to the situation for convex
hulls (Lecture 0 ), one can easily see that

conepY q “ tλ1y1 ` . . . ` λkyk : ty1, . . . ,yku Ď Y, λi ě 0u
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In the case where Y “ ty1, . . . ,ynu Ď Rd is a finite set - this is the only case we will need here - this reduces
to

conepY q :“ tt1y1 ` . . . ` tnyn : ti ě 0u “ tY t : t ě 0u

We define that conepY q “ t0u if Y is the empty set, i.e., if n “ 0. The vector sum (or Minkowski sum) of
two sets P,Q Ď Rd is defined to be

P ` Q :“ tx ` y : x P P,y P Qu

Definition 1.2.4. A V-polyhedron is any finitely generated convexconical combination: a set P Ď Rd that
is given in the form

P “ convpV q ` conepY q for some V P Rdˆn, Y P Rdˆn1

,

as the Minkowski sum of a convex hull of a finite point set and the cone generated by a finite set of vectors.

Thus, comparing this to definition of a polytope we get that a V-polytope is a V polyhedron that is bounded,
that is, contains no ray tu ` tv : t ě 0u with v ‰ 0. For this we only need to observe that convpV q is always
bounded. This follows from a trivial computation: if x P convpV q, then

min tvik : 1 ď i ď nu ď xk ď max tvik : 1 ď i ď nu ,

which encloses convpV q in a bounded box.

The dimension of a polytope is the dimension of its affine hull. A d-polytope is a polytope of dimension d
in some Repe ě dq. Two polytopes P Ď Rd and Q Ď Re are affinely isomorphic, denoted by P – Q, if there
is an affine map f : Rd ÝÑ Re that is a bijection between the points of the two polytopes. (Note that such a
map need not be injective or surjective on the ”ambient spaces.”)

Example 1.2.5.
The standard d-simplex is ∆d :“ conv te1, . . . , ed`1u Ď Rd`1

The d-cube is Cd :“ convt0, 1ud “ r0, 1sd Ď Rd. In fact, Cd “
␣

x P Rd | 0 ď xi ď 1
(

.
The d-cross polytope is ˛d :“ conv t˘e1, . . . ,˘edu Ď Rd.
Two-dimensional polytopes are called polygons.

We consider another approach to define polyhedron and polytope.

Definition 1.2.6. An H-polyhedron is an intersection of finitely many closed halfspaces in some Rd. An
H-polytope is an H-polyhedron that is bounded in the sense that it does not contain a ray tx ` ty : t ě 0u

for any y ‰ 0. An H-polyhedron can be represented by

P “ P pA, zq “
␣

x P Rd : Ax ď z
(

for some A P Rmˆd, z P Rm.

(Here ” Ax ď z ” is the usual shorthand for a system of inequalities, namely a1x ď z1, . . . ,amx ď zm, where
a1, . . . ,am are the rows of A, and z1, . . . , zm are the components of z.)

We now show that the two definitions are equivalent.

Theorem 1.2.7 (Main theorem for polytopes).

tH-polytopeu “ tV-polytopeu.

A subset P Ď Rd is the convex hull of a finite point set (a V-polytope)

P “ convpV q for some V P Rdˆn

if and only if it is a bounded intersection of halfspaces (an H-polytope)

P “ P pA, zq for some A P Rmˆd, z P Rm

7
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This result contains two implications, which are equally ”geometrically clear” and nontrivial to prove, and
which in a certain sense are equivalent.

This theorem provides two independent characterizations of polytopes that are of different power, depending
on the problem we are studying. For example, consider the following four statements.
- Every intersection of a polytope with an affine subspace is a polytope.
- Every intersection of a polytope with a polyhedron is a polytope.
- The Minkowski sum of two polytopes is a polytope.
- Every projection of a polytope is a polytope.

The first two statements are trivial for a polytope presented in the form P “ P pA, zq (where the first is a
special case of the second), but both are nontrivial for the convex hull of a finite set of points. Similarly the
last two statements are easy to see for the convex hull of a finite point set, but are nontrivial for bounded
intersections of halfspaces.

Theorem 1.2.7 is the version we really need, a very basic statement about polytopes; however, it is not the
most straightforward version to prove. Therefore we generalize it to a theorem about polyhedra, due to
Motzkin.

Theorem 1.2.8 (Main theorem for polyhedra).

tH-polyhedron “ V-polyhedronu.

A subset P Ď Rd is a sum of a convex hull of a finite set of points plus a conical combination of vectors (a
V-polyhedron)

P “ convpV q ` conepY q for some V P Rdˆn, Y P Rdˆn1

if and only if is an intersection of closed halfspaces (an H-polyhedron)

P “ P pA, zq for some A P Rmˆd, z P Rm.

First note that Theorem 1.2.7 follows from Theorem 1.2.8: we have already seen that polytopes are bounded
polyhedra, in both the V and the H versions.

Proof. Sketch of proof of Ě. Let P “ convpV q ` conepY q and identify V with the d ˆ n with columns the
elements of V and similarly Y with an d ˆ m matrix. Note that

P “

!

x P Rd |Dλ P Rn, µ P Rm|x “ V λ ` Y µ,
ÿ

λi “ 1, λi ě 0, µi ě 0
)

.

Let

Q “

$

&

%

»

–

x
λ
µ

fi

fl P Rd`n`m

∣∣∣∣∣∣ x P P

,

.

-

.

Note that Q is given by the half-spaces x´V λ´Y µ ě 0, x´V λ´Y µ ď 0,
ř

λi “ 1, λi ě 0, µi ě 0. Moreover,
P is a projection of Q. Thus this direction relies on showing that the projection of an H-polyhedron is an
H-polyhedron. This is done using Fourier-Motzkin elimination.

Example 1.2.9. Suppose Q is the polyhedron given by

x1 ´ x2 ď ´1, x1 ` x2 ď 5, ´x1 ` x2 ď 3, ´x1 ď 0

and we wish to project onto the x1-axis. To do so we should eliminate the x2-variable. Note,

x1 ` 1 ď x2 ď ´x1 ` 5, x1 ` 3.
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Thus, the projection is given by

´x1 ď 0, x1 ` 1 ď ´x1 ` 5, x1 ` 1 ď x1 ` 3

which becomes 0 ď x1 ď 2. Fourier-Motzkin elimination generalizes this.

x2

x1

Proof. Sketch of proof of Ď. Let P “ P pA, zq. Consider Q “

"„

x
y

ȷ

P Rd`n

∣∣∣∣ Ax ď y

*

. We will show that

Q is a V-polyhedron. Note that P “ Q X

"„

x
y

ȷ

P Rd`n

∣∣∣∣ y “ z

*

, where the latter is an affine hyperplane.

We will also show that the intersection of a V-polyhedron with an affine hyperplane is a V-polyhedron.
(1) Q is a V-polyhedron. Note that

Q “

"„

x
Ax ` w

ȷ∣∣∣∣ x P Rd, w P Rn
ě0

*

“ cone
"„

˘e1
˘Ae1

ȷ

, . . . ,

„

˘ed
˘Aed

ȷ

,

„

0
f1

ȷ

, . . . ,

„

0
fn

ȷ*

where e1, . . . , ed P Rd ˆ 0 are the standard basis vectors and f1, . . . , fn P 0 ˆ Rn are the standard basis
vectors.
(2) The intersection of a V-polyhedron with an affine hyperplane is a V-polyhedron. We are skipping the
proof.

1.3 Farkas Lemma

The following version of Farkas lemma yields a characterization for the solvability of a system of inequalities
(we are using [12]’s numbering).

Proposition 1.3.1 (Farkas lemma I). Let A P Rmˆd and z P Rm. Either
(i) there exists a point x P Rd with Ax ď z, or
(ii) there exists a row vector c P pRmq

˚ with c ě O, cA “ O and cz ă 0,
but not both.

The next version of Farkas Lemma states that either a system of equations has a positive solution or a vector
that certifies that such a solution does not exist.

Proposition 1.3.2 (Farkas lemma II). Let A P Rmˆd and z P Rm. Either
(i) there exists a point x P Rd with Ax “ z,x ě 0, or
(ii) there exists a row vector c P pRmq

˚ with cA ě 0 and cz ă 0,
but not both.

9
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Proof. We have the following equivalences:

Dx : Ax “ z,x ě 0

ðñ Dx : Ax ď z, p´Aqx ď ´z,´x ď 0

ðñ Dx :

¨

˝

A
´A
´Id

˛

‚x ď

¨

˝

z
´z
0

˛

‚

FL I
ðñ Ec1 ě 0, c2 ě 0, b ě 0 :

pc1, c2, bq

¨

˝

A
´A
´Id

˛

‚“ 0, pc1, c2, bq

¨

˝

z
´z
0

˛

‚ă 0

ðñ Ec1 ě 0, c2 ě 0, b ě 0 : pc1 ´ c2qA ´ b “ 0, pc1 ´ c2q z ă 0

ðñ Ec “ c1 ´ c2, b ě 0 : cA ´ b “ 0, cz ă 0

ðñ Ec : cA ě 0, cz ă 0.

Proposition 1.3.3 (Farkas lemma IV). Let V P Rdˆn, Y P Rdˆn1

, and x P Rd. Either
(i) there exist t,u ě 0 with 1t “ 1 and x “ V t ` Y u, or
(ii) there exists a row vector pα,aq P

`

Rd`1
˘˚

with avi ď α for all i ď n, ayj ď 0 for all j ď n1, while
ax ą α, but not both.

Proof. The ”either” condition can be stated as

D

ˆ

t
u

˙

ě

ˆ

0
0

˙

:

ˆ

1 0

V Y

˙ˆ

t
u

˙

“

ˆ

1
x

˙

which by version II of the Farkas lemma is equivalent to

FL II
ðñ Epα,´aq P

`

Rd`1
˘˚

: pα,´aq

ˆ

1 0

V Y

˙

ě p0, 0q, pα,´aq

ˆ

1
x

˙

ă 0

ðñ Epα,´aq P
`

Rd`1
˘˚

: α1 ´ aV ě 0,aY ď 0,ax ą α,

which is equivalent to the negation of the ”or” condition.

1.4 Faces of polytopes

Definition 1.4.1. Let P Ď Rd be a convex polytope. Let c be a row vector. A linear inequality cx ď c0 is
valid for P if it is satisfied for all points x P P . A face of P is any set of the form

F “ P X
␣

x P Rd : cx “ c0
(

where cx ď c0 is a valid inequality for P . Thus, equivalently, if c is a column vector, a face of P can also be
written as

F “ tx P P : @y P P, xy, cy ď xx, cyu

The dimension of a face is the dimension of its affine hull: dimpF q :“ dimpaffpF qq.

10
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For the valid inequality 0x ď 0, we get that P itself is a face of P . All other faces of P , satisfying F Ă P ,
are called proper faces. For the inequality 0x ď 1, we see that H is always a face of P . The faces of
dimensions 0, 1,dimpP q ´ 2, and dimpP q ´ 1 are called vertices, edges, ridges, and facets, respectively.
Thus, in particular, the vertices are the minimal nonempty faces, and the facets are the maximal proper
faces. The set of all vertices of P , the vertex set, will be denoted by vert pP q.

Example 1.4.2. Let P “ conv p0, e1, e2q.

- If m “

„

´1
´1

ȷ

, then Pm “ t0u.

- If m “

„

1
1

ȷ

, then Pm “ conv pe1, e2q.

- If m “

„

0
1

ȷ

, then Pm “ te2u.

- If m “

„

0
0

ȷ

, then Pm “ P .

Proposition 1.4.3 (Ziegler proposition 2.2). Let P Ď Rd be a polytope.
(i) Every polytope is the convex hull of its vertices: P “ convpvertpP qq.
(ii) If a polytope can be written as the convex hull of a finite point set, then the set contains all the vertices
of the polytope: P “ convpV q implies that vertpP q Ď V .

Proof. Write P “ convpV q with V finite. If any v P V can be written as a convex combination of elements in
V 1 :“ V ´ tvu then P “ conv pV 1q. Repeat until no longer possible until we get P “ convpW q. We claim that
W “ vertspP q.

Ě: Let v “ λ1w1 ` ¨ ¨ ¨ ` λnwn P vertspP q with w1, . . . , wn P W,
ř

λi “ 1, and λi ě 0. Let c be such that
Pc “ tvu and note that for all i, xc, wiy xxc, vy. It follows that

xc, vy “
ÿ

λi xc, wiy ă xc, vy

a contradiction.

Ď: Let w P W and consider W 1 “ W ´twu. Since w R conv pW 1q there does not exist t ě 0 such that w “ W 1t
and 1t “ 1. Equivalently, there does not exist t ě 0 such that

„

1

W 1

ȷ

t “

„

1
w

ȷ

.

By Farkas Lemma II, there exists c such that c

„

1

W 1

ȷ

ě 0 and c

„

1
w

ȷ

ă 0. Writing c “ pβ,´bq, then

β1 ´ bW 1 ě 0 and β ´ bw ă 0. It follows that bW 1 ď pβ, . . . , βq and bw ą β, i.e. Pb “ twu.

Proposition 1.4.4 (Ziegler proposition 2.3). Let P Ď Rd be a polytope, and V :“ vertpP q. Let F be a face
of P .
(i) The face F is a polytope, with vertpF q “ F X V .
(ii) Every intersection of faces of P is a face of P .
(iii) The faces of F are exactly the faces of P that are contained in F .
(iv) F “ P X affpF q.

We will need another construction: the vertex figure obtained by cutting a polytope by a hyperplane that
cuts off a single vertex.

For this, we consider a polytope P with V “ vertpP q, and a vertex v P V . Let cx ď c0 be a valid inequality
with

tvu “ P X tx : cx “ c0u .

11
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Figure 1.1: Vertex figure.

Furthermore, we choose some c1 ă c0 with cv1 ă c1 for all v1 P vertpP qzv. Then we define a vertex figure of
P at v as the polytope

P {v :“ P X tx : cx “ c1u .

Note that the construction of P {v depends on the choice of c1 and of the inequality cx ď c0; however, the
following result shows that the combinatorial type of P {v is independent of this.

Proposition 1.4.5 (Ziegler Proposition 2.4). There is a bijection between the k-dimensional faces of P that
contain v, and the pk ´ 1q-dimensional faces of P {v, given by

π : F ÞÝÑ F X tx : cx “ c1u ,

σ : P X aff
`

tvu Y F 1
˘

ÐÝ F 1.

1.4.1 Face lattices

A partial ordering on a (nonempty) set S is a binary relation on S, denoted ď, which satisfies the following
properties:

• reflexive: for all s P S, s ď s,

• antisymmetric: if s ď s1 and s1 ď s then s “ s1,

• transitive: if s ď s1 and s1 ď s2 then s ď s2.

When we fix a partial ordering ď on S, we refer to S (or, more precisely, to the pair pS,ďqq as a partially
ordered set, also abbreviated as poset.

It is important to notice that we do not assume all pairs of elements in S are comparable under ď : for some
s and s1 we may have neither s ď s1 nor s1 ď s. If all pairs of elements can be compared (that is, for all s
and s1 in S either s ď s1 or s1 ď s ) then we say S is totally ordered with respect to ď.

A chain in S is a totally ordered subset of S; its length is its number of elements minus 1.

Example 1.4.6. The usual ordering relation ď on R or on Z` is a partial ordering of these sets. In fact it is
a total ordering on either set. This ordering on Z` is the basis for proofs by induction.

Example 1.4.7. On Z`, declare a ď b if a
ˇ

ˇ b. This partial ordering on Z` is different from the one in previous
example and is called ordering by divisibility. It is one of the central relations in number theory. (Proofs about
Z` in number theory sometimes work not by induction, but by starting on primes, then extending to prime
powers, and then extending to all positive integers using prime factorization. Such proofs view Z` through
the divisibility relation rather than through the usual ordering relation.) Unlike the ordering on Z` in

12
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previous example, Z` is not totally ordered by divisibility: most pairs of integers are not comparable under
the divisibility relation. For instance, 3 doesn’t divide 5 and 5 doesn’t divide 3 . The subset t1, 2, 4, 8, 16, . . .u
of powers of 2 is totally ordered under divisibility.

Definition 1.4.8. The face lattice of a convex polytope P is the poset L :“ LpP q of all faces of P , partially
ordered by inclusion.

Example 1.4.9.
(1) The Boolean lattice is the poset given by p2rds,Ďq, where we use rds to denote t1, ¨ ¨ ¨ , du and 2X is the
power set of X.
(2) Face lattice LpC2q of cycle C2 using Hasse’s diagram of poset (the element in the poset that is higher
contains those that are lower). The top is the whole polytope, and the bottom is the empty face. The second
line has the edges, and the third line has the vertices.

a b

cd

abcd

ab bc cd ad

a b c d

∅

(3) Exercise: show that Lp△dq is the Boolean lattice.

For elements x, y P S with x ď y, we denote by

rx, ys :“ tw P S : x ď w ď yu

the interval between x and y. An interval in S is boolean if it is isomorphic to the poset Bk “
`

2rks,Ď
˘

of
all subsets of a k-element set, for some k.

A poset is bounded if it has a unique minimal element, denoted 0̂, and a unique maximal element, denoted
1̂. The proper part of a bounded poset S is S̄ :“ Szt0̂, 1̂u.

A poset is graded if it is bounded, and every maximal chain has the same length. In this case the length of
a maximal chain in the interval r0̂, xs is the rank of x, denoted by rpxq. The rank rpSq :“ rp1̂q is also called
the length of S. For example, every chain is a graded poset, with rpCq “ |C| ´ 1, and the boolean posets Bk

are graded of length r pBkq “ k, for all k ě ´1.

A poset is a lattice if it is bounded, and every two elements x, y P S have a unique minimal upper bound in
S, called the join x _ y, and every two elements x, y P S have a unique maximal lower bound in S, called
the meet x^ y. (In fact, any two of these three conditions imply the third; also, if every pair of elements has
a join respectively meet, then also every finite subset has a join respectively meet.)

Example 1.4.10. The following poset is not a lattice.

13
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Theorem 1.4.11 (Ziegler Theorem 2.7.). Let P be a convex polytope.
(i) For every polytope P the face poset LpP q is a graded lattice of length dimpP q ` 1, with rank function
rpF q “ dimpF q ` 1.
(ii) Every interval rG,F s of LpP q is the face lattice of a convex polytope of dimension rpF q ´ rpGq ´ 1.
(iii) (”Diamond property”) Every interval of length 2 has exactly four elements. That is, if G Ď F with
rpF q ´ rpGq “ 2, then there are exactly two faces H with G Ă H Ă F , and the interval rG,F s looks like

Proof. To see that LpP q is a lattice it suffices to see that it has a unique maximal element 1̂ “ P and a unique
minimal element 0̂ “ H, and that meets exist, with F ^G “ F XG; this is true because F XG is a face of F
and of G, and thus of P , by Proposition 1.4.4(ii). And clearly every face of P that is contained in F and in
G must be contained in F X G.

We continue with part (ii). For this we can assume that F “ P , by Proposition 1.4.4(iii). Now if G “ H,
then everything is clear. If G ‰ H, then it has a vertex v P G by Proposition 1.4.3(i), which is a vertex of P
by Proposition 1.4.4(iii). Now the face lattice of P {v is isomorphic to the interval rtvu, P s of the face lattice
LpP q, by Proposition 2.4. Thus we are done by induction on dimpGq.

For part (i) it remains to see that the lattice LpP q is graded. If G Ă F are faces of P , then from G “

P X affpGq Ď P X affpF q “ F , which holds by Proposition 1.4.4(iv), we can conclude that affpGq Ă affpF q,
and thus that dimpGq ă dimpF q. So it suffices to show that if dimpF q ´ dimpGq ě 2, then there is a face
H P LpP q with G Ă H Ă F . But by part (ii) the interval rG,F s is the face lattice of a polytope of dimension
at least 1 , so it has a vertex, which yields the desired H. Part (iii) is a special case of (ii): the ”diamond” is
the face lattice of a 1-dimensional polytope.

Definition 1.4.12. Two polytopes P,Q are combinatorially equivalent if LpP q » LpQq.

Example 1.4.13. Up to combinatorial equivalence, for each n there is exactly one polygon with n vertices.

Recall that last time we also defined the f -vector of P to be fpP q :“ pf´1, f0, . . . , fdq, where fi is the number
of faces of dimension i, and the f -polynomial of P to be fP ptq :“

řd
i“0 fit

i

Exercise 1.4.14. Do there exist two non-combinatorially equivalent 3 -dimensional polytopes with the same
f -vector?

1.4.2 f-vectors

Definition 1.4.15. The f -vector of P is fpP q :“ pf´1, f0, . . . , fdq, where fi is the number of faces of dimen-
sion i. The f -polynomial of P is fP ptq :“

řd
i“0 fit

i.

Example 1.4.16. Let P “ conv p0, e1, e2q. Then fpP q “ p1, 3, 3, 1q and fP ptq “ 3 ` 3t ` t2.

Example 1.4.17. Let P be an octahedron. Then fpP q “ p1, 6, 12, 8, 1q and fP ptq “ 6 ` 12t ` 8t2 ` t3.

14
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Example 1.4.18. Consider the d-cube Cd “
␣

x P Rd | @i,´1 ď xi ď 1
(

. Given v P Rd, we have that

pCdqv “ tx P Cd | v1x1 ` ¨ ¨ ¨ vdxd maxu .

Note that - If vi ą 0 then xi “ 1 maximizes vixi.
- If vi ă 0 then xi “ ´1 maximizes vixi.
- If vi “ 0 then xi can be anything.

For example, if v “ p`,´, 0, 0,´,`, 0,`, 0q, then

pCdqv “ tp1,´1, a, b,´1, 1, c, 1, dq | a, b, c, d P r´1, 1su » C4.

It follows that the faces of Cd are in one-to-one correspondence with d-tuples in t˘1, 0ud. Moreover, the

dimension of the face corresponding to a tuple is the number of 0 s. Therefore, fk “

ˆ

d
k

˙

2d´k and

fCd
ptq “

řd
0

ˆ

d
k

˙

2d´ktk “ p2 ` tqd.

Exercise 1.4.19. Compute f∆d
.

A key question in combinatorics asks the following:

Q: What is the structure of the collection of f -vectors of d-dimensional polytopes? (It is also interesting for
other manifolds.)

Example 1.4.20. For 2-dimensional polytopes, aka polygons, the answer is simple. The f -vector is p1, n, n, 1q

for some n. For 3-dimensional polytopes, the answer is more complicated, but settled.

Theorem 1.4.21 (Euler). Let P be a 3-dimensional polytope. Then

f0 ´ f1 ` f2 “ 2.

Theorem 1.4.22 (Steinitz).
␣

f P Z5 | DP, fpP q “ f
(

“
␣

f P Z5 | f´1 “ f3 “ 1, f0 ´ f1 ` f2 “ 2, f2 ď 2f0 ´ 4, f0 ď 2f2 ´ 4
(

.

In arbitrary dimension, much less is known.

Theorem 1.4.23 (Euler-Poincaré equation). Let P be a d-dimensional polytope. Then ´f´1 ` f0 ` ¨ ¨ ¨ `

p´1qdfd “ 0.

Definition 1.4.24. A polytope is simplicial if all of its faces are combinatorially equivalent to standard
simplices.

Remark 1.4.25. Billera-Lee and Stanley proved the g-Theorem which gives a characterization for the f -
vector of simplicial polytopes. This could be a good topic for the long presentation. There are still contribu-
tions being done.

Theorem 1.4.26 ((Xue, 20+)). Let P be a d-dimensional polytope with d ` s vertices, where s ě 2 and

d ě s. Then for every k, fkpP q ě

ˆ

d ` 1
k ` 1

˙

`

ˆ

d
k ` 1

˙

´

ˆ

d ` 1 ´ s
k ` 1

˙

.
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Remark 1.4.27 ((Kalais’ 3d conjecture, ’89)). If P is centrally symmetric (i.e. v is a vertex if and only if ´v
is a vertex), then P has at least 3d nonempty faces, where d “ dimpP q.

Remark 1.4.28 (Open question). Is
`

1, 103, 105, 105, 103, 1
˘

the f -vector of a 4-dimensional polytope?

1.5 Simplicial, Cyclic, and Simple Polytopes

We say that d`1 vectors are affinely independent if the smallest affine space containing them has dimension
d. If P is the convex hull of d ` 1 affinely independent vectors, then P is a d-dimensional polytope and all
these vectors are vertices. A d-simplex is the convex hull of d ` 1 affinely independent vectors.

Definition 1.5.1. A d-dimensional polytope is simplicial if all of its facets are pd ´ 1q simplices. One can
recognize affinely independent vectors by looking at determinants.

Lemma 1.5.2. Let a0, . . . , ad P Rd. Then a0, . . . , ad are affinely independent if and only if

det

„

1 ¨ ¨ ¨ 1
a0 ¨ ¨ ¨ ad

ȷ

‰ 0.

Definition 1.5.3. Let d P N. The moment curve in Rd is

µd : R Ñ Rd, t ÞÑ
“

t, t2, . . . , td
‰

.

The cyclic polytope Cd pt1, . . . , tnq “ conv tµd pt1q , . . . , µd ptnqu, where t1 ă ¨ ¨ ¨ ă tn and n ą d.

The next theorem says that cyclic polytopes have the largest possible number of faces among all convex
polytopes with a given dimension and number of vertices.

Theorem 1.5.4 (Upper bound Theorem - McMullen). For any polytope P of dimension d and n verices we
have that fkpP q ď fk pCd pt1, . . . , tnqq for any k.

Theorem 1.5.5. Let d ě 2.
(1) The cyclic polytope Cd pt1, . . . , tnq is simplicial.
(2) For S Ď rns with |S| “ d we have that tµd ptsq | s P Su forms a facet if and only if for all i ă j not in S,
|tk | k P S, i ă k ă ju| is even.

Lemma 1.5.6 (Vandermonde determinant). Let a0, . . . , ad P R. Then

det

»

—

—

—

–

1 ¨ ¨ ¨ 1
a0 ¨ ¨ ¨ ad
...

...
ad0 ¨ ¨ ¨ add

fi

ffi

ffi

ffi

fl

“
ź

0ďiăjďd

paj ´ aiq .

proof of the theorem. (1) By the lemma, any d ` 1 points µd pti0q , . . . , µd ptidq are affinely independent. It
follows that all the µd ptiq are vertices and that all the facets are simplices.

(2) Let S Ď rns with S “ ts1, . . . , sdu. Let HS be the hyperplane through µd pts1q , . . . , µd ptsdq. Observe that

HS “

"

x P Rd

∣∣∣∣det „ 1 1 ¨ ¨ ¨ 1
x µd pts1q ¨ ¨ ¨ µd ptsdq

ȷ

“ 0

*

.

Let FS be the defining equation of HS . As we can see in Figure 1.2, HS is a facet if and only if FS pµd ptiqq

has the same sign for all i R S. The sign of FS pµdptqq changes sign as it passes through its zeroes, which
are precisely the µd ptsiq (since FS is a polynomial of degree dq. It follows that for i ă j, FS pµd ptiqq has the
same sign as FS

`

µd

`

tsj
˘˘

if and only if there is an even number of sign changes between them.

16



Theory of Polytopes Anthony Hong

Figure 1.2: HS with moment curve.

Corollary 1.5.7. The combinatorial type of Cd pt1, . . . , tnq only depends on d, n.

Sketch of proof. Fix d, n. The V -description of the facets of any cyclic polytope is the same. Since the faces
are the intersections of the facets, the structure of the face lattice is the same.

Definition 1.5.8. A polytope of dimension d is simple if each vertex is contained in exactly d facets.

Example 1.5.9.
(1) The d-cube is simple.
(2) The pyramid with square base is not simple.

Exercise 1.5.10. Show that if P is simple, then every interval rF,Gs of LpP q with f ‰ ∅ is a Boolean lattice.

For these polytopes there is a more compact vector encoding the f -vector.

Definition 1.5.11. Let fpP q “ pf´1, f0, . . . , fdq. The h-polynomial of P is hP ptq “ fP pt ´ 1q. The h-vector
of P is hpP q “ ph0, . . . , hdq consisting of the coefficients of hP .

Example 1.5.12.
(1) Let P be the octahedron. We saw that fP ptq “ 6 ` 12t ` 8t2 ` t3. It follows that hP ptq “ 1 ´ t ` 5t2 ` t3.
(2) Let P be the 3-cube. Then fP ptq “ 8 ` 12t ` 6t2 ` t3 and hP ptq “ 1 ` 3t ` 3t2 ` t3.
(3) We saw fCd

ptq “ p2 ` tqd. It follows that hCd
ptq “ p1 ` tqd.

Theorem 1.5.13 (Dehn-Sommerville equations). Let P be a simple d-polytope. Then hi “ hd´i for all i, i.e.
hP ptq is palindromic.

Reason: if P is simple, then the h-polynomial is the Poincare polynomial of a smooth toric variety. This
equations reflect Poincaré duality. There is a method to compute the h-vector of a simple polytope.
(1) Find λ : Rn Ñ R linear such that λpuq ‰ λpvq for all edges ru, vs of P .
(2) For each vertex u, define βpuq :“| tv P vertspP q | ru, vs is an edge, λpvq ą λpuqu |.

Theorem 1.5.14. Let P be a simple polytope. Then hP ptq “
ř

uPvertspP q t
βpuq.
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Example 1.5.15. Let P “ conv tpw1, w2, w3q | w is a permutation of r3su. Let λpx, y, zq “ x ` 102y ` 105z.
The following figure shows the orientation on the edges of P given by u Ñ v if λpvq ą λpuq. It follows that
hP ptq “ 1 ` 4t ` t2.

321

231

132

123

213

312

1.6 Permutohedron

A permutahedron is defined as

P “ conv tpw1, w2, ¨ ¨ ¨ , wnq | w is a permutation of rnsu

where we mean a sequence of numbers 1, ¨ ¨ ¨ , n as a permutation instead of an element of the symmetric
group Sn in above definition, and pw1, ¨ ¨ ¨ , wnq is a point in Rn, with components the 1-st, 2-nd, ¨ ¨ ¨ , n-th
number of the sequence w.

Alternatively, we can say w P Sn but mean the second row of its matrix notation instead of meaning its cycle
notation. For example, The cycle notation p1 2q P S3 is represented in matrix as

ˆ

1 2 3
2 1 3

˙

and is then abbreviated as w “ p2 1 3q P S3 with w1 “ 2, w2 “ 1, and w3 “ 3.

x

y

z

123
213

132

321
231

312

Figure 1.3: convpS3q
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Just as convpS3q can be represented in two dimensions, Figure 1.6 gives the three-dimensional representation
of convpS4q in four dimensions.

4321
4312

42314132

4123 4213
3214

3124
3142

34123421

3241

2341
2431

2413
2143

21342314

1324

1342

1243

1423 1432
1234

Figure 1.4: convpS4q

Recall: There is a method to compute the h-vector of a simple polytope.
(1) Find λ : Rn Ñ R linear such that λpuq ‰ λpvq for all edges ru, vs of P .
(2) For each vertex u, define βpuq :“| tv P vertspP q | ru, vs is an edge, λpvq ą λpuqu |.

Theorem 1.6.1. Let P be a simple polytope. Then hP ptq “
ř

uPvertspP q t
βpuq.

Let Sn denote the set of permutations of rns. A descent of w P Sn is an i P rn ´ 1s such that wpiq ą wpi ` 1q.
The Eulerian number Apd, iq :“| tw P Sn | w has exactly i descents u |.

Proposition 1.6.2. Let Πd :“ conv pSnq be the permutohedron. The h-polynomial is hΠd
ptq “

řd´1
i“0 Apd, iqti.

Proof. Let us choose a linear function λpxq “ λ1x1 ` ¨ ¨ ¨ ` λnxn with λ1 ăă ¨ ¨ ¨ ăă λn. Then λ satisfies
condition (1). Let v “ pi, i ` 1qw be adjacent to w. Then, λpvq ą λpwq ô λw´1piq ą λw´1pi`1q ô w´1piq ą

w´1pi ` 1q ô i is a descent of w´1. Thus, βpwq “ # ti | i is a descent of w´1
(

and the result follows.

Exercise 1.6.3. Prove that verts pΠdq “ Sn and the edges of Πd are given by rw, pi, i ` 1qws for some i.

1.7 Dual/Polar Polytopes

This is based on [12] section 2.3.

Definition 1.7.1. The polar of P Ď Rd is the set

P∆ “
␣

c P Rd | @x P P, xx, cy ď 1
(

Notation: given m P Rd and b P R, let Hm,b “
␣

x P Rd | xm,xy ď b
(

.
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Example 1.7.2. Let P “ convtp0, 2q, p´1, 1q, p´1, 0q, p0,´1q, p1,´1qu. Then P∆ Ď Hm,1 for all m P P . In
fact, taking the vertices is enough so that

P∆ “
␣

px, yq P Rd | 2y,´x ` y,´x,´y, x ´ y ď 1
(

“ convtp´.5, .5q, p´1, 0q, p´1,´1q, p0,´1q, p1.5, .5qu

The following figure shows P and P∆.

Figure 1.5: P and P∆.

Example 1.7.3. Let P “ convtp0, 1q, p1, 1q, p1, 0qu. Then P∆ “
␣

c P R2 | c1 ` c2 ď 1, c1 ď 1, c2 ď 1
(

. The
following figure shows P and P∆.

Figure 1.6: P and P∆.

Theorem 1.7.4 (Ziegler Theorem 2.11).
(i) P Ď Q implies Q∆ Ď P∆.
(ii) P Ď P∆∆.
(v) If 0 P P , then P “ P∆∆.
(vi) If 0 P intpP q and P “ convpV q, then P∆ “

Ş

vPV Hv,1.
(vii) If P “ tx | Ax ď 1u, then P∆ is the convex hull of the rows of A.

Example 1.7.5. The cube is the polar to the octahedron. To observe (vi) and (vii), note that the vertices of
the octahedron are p˘1, 0, 0q, p0,˘1, 0q, p0, 0,˘1q. This gives us the inequalities of the cube.

Example 1.7.6. The cube is the polar to the octahedron. To observe (vi) and (vii), note that the vertices of
the octahedron are p˘1, 0, 0q, p0,˘1, 0q, p0, 0,˘1q. This gives us the inequalities of the cube.

Remark 1.7.7 (For those taking toric variety). A different way to define the polar is as

P˚ “
␣

c P Rd | @x P P, xx, cy ě ´1
(

.

This is prefered in toric geometry. The polytopes P∆ and P˚ are related by the linear isomorphism φpxq “

´x. This is because P∆ is the convex hull of the outer normals of the facets of P whereas P˚ is the convex
hull of the inner normals.
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proof of the theorem. (i)-(ii) Exercises.

(v) By (ii) we only need to show that P∆∆ Ď P . Suppose that q P P∆∆ but q R P . Let c P P∆. By definition,
xc, qy ď 1. Since q R P , there exists a hyperplane separating q from P . Suppose that Hm,b is such that
q R Hm,b and P Ď Hm,b. Further assume that the boundary of Hm,b is disjoint from P . Since 0 P P , we have
that b ą 0. It follows that xm{b, xy ă b{b “ 1 for all x P P , i.e., m{b P P∆. Since q P P∆∆, we have that
xm{b, qy ď 1. However, this contradicts that q R Hm,b.

(vi) Since V Ď P , it follows that P∆ Ď
Ş

vPV Hv,1. For the opposite containment, let a be such that xa, vy ď 1
for all v P V . Suppose that xa, xy ą 1 for some x P P . Since the linear functional xa,´y is maximized at
the face Pa we can take a vertex of Pa which also has to be in V . Now, xa, vy ě xa, xy ą 1, contradicting
xa, vy ď 1.

Next we want to compare the face lattices of P and P∆.

Example 1.7.8. Let P be the cube and P∆ be the octahedron. We can see that the face lattices are opposites.

Figure 1.7: P and P∆.

Definition 1.7.9. Let pS,ďq be a poset. The opposite poset pS,ĺq is defined by x ĺ y if and only if y ď x.

Proposition 1.7.10. The face lattice of P∆ is the opposite of the face lattice of P .

This corollary is a consequence of the following theorem.

Theorem 1.7.11 (Ziegler, Theorem 2.12). Let P “ convpV q “ tx | Ax ď 1u and consider a face F “

conv pV 1q “ tx | A2x ď 1, A1x “ 1u, where A1, A2 together form the rows of A. Then P∆ has a dual face
F∆ “ conv p rows of A1q “ ta | aV 2 ď 1, aV 1 “ 1u. Moreover, every face of P∆ is of this form.

We wish to prove:

Theorem 1.7.12 (Ziegler, Theorem 2.11). (vii) If P “ tx | Ax ď 1u, then P∆ is the convex hull of the rows
of A.

First, we need to introduce a version of the Farkas Lemma.

Lemma 1.7.13 (Farkas Lemma III). . Let A P Rmˆd, z P Rm, a P Rd, and z0 P R. The polyhedron
P “

␣

x P Rd | Ax ď z
(

is nonempty if and only if
(1) there exists a vector c ě 0 such that cA “ a and xc, zy ď z0, or
(2) there exists a vector c ě 0 such that cA “ 0 and xc, zy ă 0, or both.

Proof of (vii). The containment Ě is straightforward since every row of A has to be in P∆. For the opposite
containment, let a P P∆. Since P ‰ ∅ and condition (2) cannot hold, Farkas Lemma III implies that there
exists c ě 0 such that cA “ a and xc, 1y ď 1. This is close, but what we really need is c1 ě 0 such that c1A “ a
and xc1, 1y “ 1. To do so, we will find d “ c1 ´ c ě 0 with dA “ 0 and xd, 1y “ 1 ´ c ą 0 which leads us to
the desired c1 by scaling. Farkas Lemma II says that we can find d unless there exist x, y such that

Ax “ 1y and y ă 0.

However, this would imply that for all λ ą 0, λx P P contradicting that P is bounded.
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Chapter 2

Graph of Polytopes

2.1 GpP q and linear programming

Let P be a convex polytope. The vertices and the edges of P form an abstract, finite, undirected, simple
graph, called the graph of P and denoted by GpP q.

For every face F P LpP q, we denote by GpF q the induced subgraph of GpP q on the subset vertpF q Ď vertpP q

of the vertices of GpP q, that is, the graph of all vertices in F , and all edges of P between them. This coincides
with the graph of F , if F is itself considered as a polytope.

Definition 2.1.1. A linear function λ : Rd Ñ R is in general position with respect to a polytope P if for all
u, v P VertpP q, λpuq ‰ λpvq.

Definition 2.1.2. We will consider orientations of GpP q, which assign a direction to every edge. An orien-
tation is acyclic if there is no directed cycle in it. This implies (because all our graphs are finite) that there
is a sink: a vertex that does not have an edge directed away from it. (Proof: Start at any vertex, and keep
on walking along directed edges until you close a directed cycle or get stuck in a sink.)

If λ is in general position with repsect to P , then it induces an orientation of GpP q. Concretely, u Ñ v if
λpuq ą λpvq.

Proposition 2.1.3. The orientation of GpP q induced by λ in general position is acyclic and has a unique
sink. Moreover, λ is maximized over P at the sink.

Proof. If there was a cycle v1 Ñ ¨ ¨ ¨ Ñ vk Ñ v1, then λ pv1q ą ¨ ¨ ¨ ą λ pvkq ą λ pv1q, a contradiction. Every
acyclic graph has a sink. Suppose t is a sink. Let Nptq “ tv P vertspP q | rt, vs edge u be the neighbors
of t. Recall that the vertex figure P {t is obtained by cutting P by a hyperplane that separates v from the
other vertices of P . The vertices of P {t are in 1-1 correspondence with the elements of Nptq. It follows that
P Ď t ` conepv ´ t | v P Nptqq. Now, since λpvq ď λptq for all v P Nptq we have that given p P P ,

λppq “ λptq `
ÿ

vPNptq

λpv ´ tq ď λptq,

since λpv ´ tq ă 0 for all v P Nptq. It follows that t is the unique sink and that it maximizes λ.

This proposition gives us a method to maximize λ over P .

Proposition 2.1.4 (Dantzig’s simplex algorithm).
(1) Start at a vertex v.
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(2) If v is a sink, then stop.
(3) Otherwise, move to a neighbor w of v such that λpwq ą λpvq.

.

This hides the fact that finding a vertex of P is nontrivial. The full simplex algorithm takes care of this.

2.2 The diameter of a polytope.

Definition 2.2.1. The diameter δpP q of P is the the smallest δ such that any two vertices in P can be
connected by a path with at most δ edges.

The diameter of a polytope is a measure of how hard it is to optimize a linear function over it using the
simplex algorithm. Concretely, it gives a lower bound on the number of iterations needed.

Let ∆pd, nq be the maximum diameter of a d-dimensional polytope with at most n facets.

Example 2.2.2. ∆p2, nq “ tn{2u.

Question: What is the behavior of ∆pd, nq ?

Conjecture(Hirsch Conjecture, ’57). ∆pd, nq ď n ´ d.

This was disproven:

Theorem 2.2.3 (Santos, ’10). The Hirsch Conjecture is false. Namely, there exists a 43-dimensional polytope
with 86 facets such that δpP q ě 44.

Conjecture(Polynomial Hirsch Conjecture). There is a polynomial fpnq such that the diameter of every
polytope with n facets is bounded above by fpnq.

2.3 Simple polytope and graph

Theorem 2.3.1 (Perles ’70 - conjecture, Blind-Mani ’87). If P is simple then GpP q determines P up to
combinatorial equivalence.

In other words, if two simple polytopes have isomorphic graphs, then their face lattices are isomorphic as
well.

We will discuss Kalai’s simple proof of this result. A key observation will be that if P is simple, then for any
vertex v any k edges incident to v determine a face.

proof of the theorem. Let OpP q be the set of all orientations of GpP q. Let us say that O P OpP q is good if
for all faces F of P, O|vertspF q has a unique sink. (Otherwise, we say that O is bad.) We say that a graph is
k-regular if all its vertices have degree k. The result follows from the following two claims.

Claim 1. Let U Ď vertspP q. Then U is the vertex set of a k-dimensional face of P if and only if GpP q|U is
k-regular and there exists a good orientation O for which U is a downset. Here the last condition means that
if v P U and u Ñ v is an edge of O, then u P U .

Let fO “
ř

vPvertspP q 2
indeg(v) .

Claim 2:
t good orientations u “

␣

orientations with max fO( .

Given O P OpP q, note that

24



Theory of Polytopes Anthony Hong

| t nonempty faces of P u | ď| tpF, vq | F face of P and v is a sink vertex of F u |

“
ÿ

vPvertspP q

| tF | v is a sink vertex of F u |

“
ÿ

vPvertspP q

2indegpvq

where the last equality follows from the fact that P is simple. More concretely, for any vertex v any k edges
incident to v determine a face. It follows that if v has indegree k, then there are 2k faces of P with v as a
sink. Moreover, we have equality if and only if O is good. This gives us the most recent claim.

We are now ready to prove the first claim.

ñ Suppose that U are the vertices of a face F . Since P is simple, it is immediate that GpP q|U is k-regular.
Let λ be such that F minimizes λ over P . This λ may not be in general position, but we can perturb by a
small amount to be so. The resulting orientation is good and U is a downset.

ð Suppose that U and O are as desired. Since OU is acyclic, let x be a sink and note that it has indegree
k. Let F be the k-dimensional face determined by these k edges. Since O is good, x is the unique sink of F .
Since u Ñ x for all vertices along these k edges and U is a downset, then vertspF q Ď U . Now, we must have
that verts pF q “ U since both G|U and G|vertspF q are connected and k-regular.

Theorem 2.3.2 (Balinksi’s Theorem). A graph is connected if there is a path between any two vertices.

Definition 2.3.3. A graph is d-connected if it stays connected after removing any ď d´1 vertices (and their
incident edges).

Theorem 2.3.4. If P is d-dimensional, then GpP q is d-connected.

In particular, this says that the degree of any vertex is ě d.

Proof. To ease the proof, suppose that P Ď Rd. Let V “ vertspP q and S Ď V be such that |S| ď d ´ 1. To
show that GpP q ´S is connected we use induction on d. The base case d “ 1 is immediate. For the inductive
case, let L “ spanpSq and consider two cases.

(1) Suppose L doesn’t intersect the interior of P . Then S are the vertices of a face Pc Ĺ P . Consider the
face P´c and the orientation of GpP q given by the function λpxq “ x´c, xy. By the argument we used in
the proof of Proposition 2.1.3, we have have that every vertex is either in P´c,or it has a neighbor x R S
whose xc, xy-value is smaller. Thus, there is a c decreasing path from any vertex in V zS to a vertex in P´c.
By induction, G pP´cq is connected and we are done.

(2) Suppose L intersects the interior of P . Let H “ tx | xc, xy “ c0u be a hyperplane containing S and at least
one v P V zS. Note that since L Ď H, then H also intersects the interior of P . This is possible because every
set of d points is contained in a hyperplane Consider the faces Pc and P´c. Let P` “ tx P P | xc, xy ě c0u

and P´ “ tx P P | xc, xy ď c0u. Note that every vertex of P`has a c-increasing path to Pc. Since G pPcq is
connected, by induction, it follows that G pP`q zS is connected. Similarly, G pP´q zS is connected. Since v
is in both graphs, we conclude that GpP qzS is connected.

Question: Can we characterize the graphs of polytopes?

Theorem 2.3.5 (Steinitz’ Theorem). G is the graph of a 3-dimensional polytope if and only if it is simple,
planar, and 3-connected (Simple means that it has no loops or multiple edges.)

Proof. Proof of ñ. Let G be the graph of a 3-dimensional polytope P . It is immediate that it is simple. Also,
Balinksi’s Theorem implies it is 3-connected. Last, it is planar by blowing up a facet.
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Proof of ð. See [2, Chapter 4].

Remark 2.3.6. No similar theorem is known, and it seems that no similarly effective theorem is possible, in
higher dimensions.
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Chapter 3

The Ehrhart Theory

We shift to [4] for the main reference. The main theme is to count the number of integer points inside a
polytope. We begin with some examples.

A convex polytope P is called integral if all of its vertices have integer coordinates, and P is called rational
if all of its vertices have rational coordinates. A unit d-cube

˝ :“ r0, 1sd “ tpx1, x2, ¨ ¨ ¨ , xdq P Rd : all xk “ 0 or 1u

“
␣

px1, x2, . . . , xdq P Rd : 0 ď xk ď 1 for all k “ 1, 2, . . . , d
(

We now compute the discrete volume of an integer dilate of ˝. That is, we seek the number of integer points
t ˝ XZd for all t P Zą0. Here tP denotes the dilated polytope tptx1, tx2, . . . , txdq : px1, x2, . . . , xdq P Pu for a
polytope P. What is the discrete volume of P “ ˝ ? We dilate by the positive integer t, as depicted in Figure
3.1, and count:

LPptq :“ #
`

tP X Zd
˘

“ #
`

t ˝ XZd
˘

“ #
`

r0, tsd X Zd
˘

“ pt ` 1qd,

a polynomial in the integer variable t. Notice that the coefficients of this polynomial are the binomial
coefficients. The number of interior integer points in t˝˝ is L˝˝ ptq “ #

`

t ˝˝ XZd
˘

“ #
`

p0, tqd X Zd
˘

“

pt ´ 1qd. Notice that this polynomial equals p´1qdL˝p´tq, the evaluation of the polynomial L˝ptq at negative
integers, up to a sign.

Figure 3.1: The 6th dilate of ˝ in dimension 2.
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The generating function of LP is called Ehrhart series of P:

EhrPpzq :“ 1 `
ÿ

tě1

LPptqzt

The Ehrhart series of P “ ˝ takes on a special form.

Ehr˝pzq “ 1 `
ÿ

tě1

pt ` 1qdzt “
ÿ

tě0

pt ` 1qdzt “
1

z

ÿ

tě1

tdzt

“

řd
k“1 Apd, kqzk´1

p1 ´ zqd`1
.

where Apd, kq is the Eulerian number, which counts the number of permutations with exactly k descents.

The standard simplex ∆ in dimension d is

convt0, e1, e2, . . . , edu “
␣

px1, x2 . . . , xdq P Rd : x1 ` x2 ` ¨ ¨ ¨ ` xd ď 1 and all xk ě 0
(

(we now include zero as a vertex now). The dilate t∆ is

t∆ “
␣

px1, x2, . . . , xdq P Rd : x1 ` x2 ` ¨ ¨ ¨ ` xd ď t and all xk ě 0
(

The lattice-point enumerator of ∆ is the polynomial L∆ptq “

ˆ

d ` t
d

˙

. Its evaluation at negative integers

yields p´1qdL∆p´tq “ L∆˝ ptq. The Ehrhart series of ∆ is Ehr∆pzq “ 1
p1´zqd`1 .

3.1 Triangulations

Because most of the proofs that follow work like a charm for a simplex, we first dissect a polytope into
simplices. This dissection is captured by the following definition.

A triangulation of a convex d-polytope P is a finite collection T of d-simplices with the following properties:

• P “
Ť

∆PT ∆.

• For every ∆1,∆2 P T,∆1 X ∆2 is a face common to both ∆1 and ∆2.

Figure 3.2 exhibits two triangulations of the 3-cube. We say that P can be triangulated using no new vertices
if there exists a triangulation T such that the vertices of every ∆ P T are vertices of P.

Figure 3.2: Two (very different) triangulations of the 3-cube.
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Theorem 3.1.1 (Existence of triangulations). Every convex polytope can be triangulated using no new
vertices.

This theorem seems intuitively obvious, but it is not entirely trivial to prove.

In order to prove this, let us consider regular subdivisions.

Let P “ convpV q Ď Rd. Choose h : V Ñ R and let P 1 “ conv

"„

v
hpvq

ȷ
∣∣∣∣ v P V

*

. We say that a face F of

P 1 is lower if F “ P 1
c for some c P Rd`1 with cd`1 ă 0.

Let π : Rd`1 Ñ Rd be the projection onto the first d coordinates.

Proposition 3.1.2. The set tπpF q | F lower face of P 1u is a subdivision of P . If h is generic, then this
subdivision is a triangulation.

Proof. We will only provethe second claim. Suppose P Ď Rd is d-dimensional. First, we will show that each
lower facet of P 1 is a simplex, i.e., the convex hull of d ` 1 affinely independent vectors. Suppose we have
d` 1 affinely independent vertices of P, v1, . . . , vd`1. Let H Ď Rd`1 be the hyperplane given by the equation

»

–

1 1 ¨ ¨ ¨ 1 1
v1 v2 ¨ ¨ ¨ vd`1 x

h pv1q h pv2q ¨ ¨ ¨ h pvd`1q xd`1

fi

fl

Note that for all i,
„

vi
h pviq

ȷ

P H. Also, note that if we fix x, then there is a unique xd`1 that makes this

equation hold. Thus, if v ‰ vi for all i, then since we chose the hpvq at random, then
„

v
hpvq

ȷ

is not in H.

This proves that P 1 is simplicial, so all of its faces are simplices.

Next, we will show that
Ť

∆PT ∆ “ P . It suffices to show that intpP q Ď
Ť

∆PT ∆. Let x P intpP q and
consider the vertical line L Ď Rd`1 through x. Since L X int pP 1q ‰ ∅, then L X P 1 is a line segment with
endpoints px, yq and px, zq, y ă z. Since px, yq P BP 1, then px, yq P P 1

pc,cd`1q
for some pc, cd`1q. Note then that

xpc, cd`1q , px, yqy ą xpc, cd`1q , px, zqy and since y ă z this can only hold if cd`1 ă 0. It follows that P 1
c is a

lower face and x P π pP 1
cq.

The last property is left as an exercise

3.2 The Ehrhart Series of an Rational Polytope

By now, we have computed several instances of counting functions by setting up a generating function that
fits the particular problem in which we are interested. In this subsection, we set up such a generating
function for the latticepoint enumerator of an arbitrary rational polytope. Such a polytope is given by its
hyperplane description as an intersection of half-spaces and hyperplanes. The half-spaces are algebraically
given by linear inequalities, the hyperplanes by linear equations. If the polytope is rational, we can choose the
coefficients of these inequalities and equations to be integers (Exercise). To unify both descriptions, we can
introduce slack variables to turn the half-space inequalities into equalities. Furthermore, by translating our
polytope into the nonnegative orthant (we can always shift a polytope by an integer vector without changing
the lattice-point count), we may assume that all points in the polytope have nonnegative coordinates. In
summary, after a harmless integer translation, we can describe every rational polytope P as

P “
␣

x P Rd
ě0 : Ax “ b

(
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for some integral matrix A P Zmˆd and some integer vector b P Zm. (Note that d is not necessarily the
dimension of P.) To describe the tth dilate of P, we simply scale a point x P P by 1

t , or alternatively,
multiply b by t :

tP “

!

x P Rd
ě0 : A

x

t
“ b

)

“
␣

x P Rd
ě0 : Ax “ tb

(

Hence the lattice-point enumerator of P is the counting function

LPptq “ #
␣

x P Zd
ě0 : Ax “ tb

(

Consider the polytope P given by (3.2), we denote the columns of A by c1, c2, . . . , cd. Let z “ pz1, z2, . . . , zmq

and expand the function
1

p1 ´ zc1q p1 ´ zc2q ¨ ¨ ¨ p1 ´ zcdq ztb

in terms of geometric series:
¨

˚

˝

ÿ

n1ě0

“pzc1 q
n1

hkkikkj

zn1c1

˛

‹

‚

¨

˚

˝

ÿ

n2ě0

“pzc2 q
n2

hkkikkj

zn2c2

˛

‹

‚

¨ ¨ ¨

¨

˚

˝

ÿ

ndě0

“pzcd q
nd

hkkikkj

zndcd

˛

‹

‚

1

ztb
.

Here we use the abbreviating notation za :“ za1
1 za2

2 ¨ ¨ ¨ zam
m for the vectors z “ pz1, z2, . . . , zmq P Cm and

a “ pa1, a2, . . . , amq P Zm. In multiplying out everything, a typical exponent will look like

n1c1 ` n2c2 ` ¨ ¨ ¨ ` ndcd ´ tb “ An ´ tb

where n “ pn1, n2, . . . , ndq P Zd
ě0. That is, if we take the constant term of our generating function (3.2), we

are counting integer vectors n P Zd
ě0 satisfying

An ´ tb “ 0, that is, An “ tb.

So this constant term will pick up exactly the number of lattice points n P Zd
ě0 in tP :

Theorem 3.2.1 (Euler’s generating function). Suppose the rational polytope P is given by (3.2). Then the
lattice-point enumerator of P can be computed as follows:

LPptq “ const

ˆ

1

p1 ´ zc1q p1 ´ zc2q ¨ ¨ ¨ p1 ´ zcdq ztb

˙

We finish this section with rephrasing this constant-term identity in terms of Ehrhart series.

Corollary 3.2.2. Suppose the rational polytope P is given by (3.2). Then the Ehrhart series of P can be
computed as

EhrPpxq “ const

˜

1

p1 ´ zc1q p1 ´ zc2q ¨ ¨ ¨ p1 ´ zcdq
`

1 ´ x
zb

˘

¸

Proof. By above theorem,

EhrPpxq “
ÿ

tě0

const

ˆ

1

p1 ´ zc1q p1 ´ zc2q ¨ ¨ ¨ p1 ´ zcdq ztb

˙

xt

“ const

˜

1

p1 ´ zc1q p1 ´ zc2q ¨ ¨ ¨ p1 ´ zcdq

ÿ

tě0

xt

ztb

¸

“ const

ˆ

1

p1 ´ zc1q p1 ´ zc2q ¨ ¨ ¨ p1 ´ zcdq

1

1 ´ x
zb

˙

.
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3.3 Discrete Volume of Cones

3.3.1 Cones

A pointed cone K Ď Rd is a set of the form

K “ tv ` λ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λmwm : λ1, λ2, . . . , λm ě 0u

where v,w1,w2, . . . ,wm P Rd are such that there exists a hyperplane H for which H X K “ tvu; that is,
Kztvu lies strictly on one side of H. The vector v is called the apex of K, and the wk are the generators
of K. The cone is rational if v,w1,w2, . . . ,wm P Qd, in which case we may choose w1,w2, . . . ,wm P Zd

by clearing denominators. The dimension of K is the dimension of the affine space spanned by K; if K is
of dimension d, we call it a d-cone. The d-cone K is simplicial if K has precisely d linearly independent
generators.

Just as polytopes have a description as an intersection of half-spaces, so do pointed cones: a rational pointed
d-cone is the d-dimensional intersection of finitely many half-spaces of the form

␣

x P Rd : a1x1 ` a2x2 ` ¨ ¨ ¨ ` adxd ď b
(

with integral parameters a1, a2, . . . , ad, b P Z such that the corresponding hyperplanes of the form

␣

x P Rd : a1x1 ` a2x2 ` ¨ ¨ ¨ ` adxd “ b
(

meet in exactly one point.

Cones are important for many reasons. The most practical for us is a process called coning over a polytope.
Given a convex polytope P Ă Rd with vertices v1,v2, . . . ,vn, we lift these vertices into Rd`1 by adding a 1
as their last coordinate. So, let

w1 “ pv1, 1q ,w2 “ pv2, 1q , . . . ,wn “ pvn, 1q

Now we define the cone over P as

conepPq “ tλ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λnwn : λ1, λ2, . . . , λn ě 0u Ă Rd`1

This pointed cone has the origin as apex, and we can recover our original polytope P (strictly speaking, the
translated set tpx, 1q : x P Pu ) by cutting cone pPq with the hyperplane xd`1 “ 1, as shown in Figure 3.3.

By analogy with the language of polytopes, we say that the hyperplane H “
␣

x P Rd : a ¨ x “ b
(

is a sup-
porting hyperplane of the pointed d-cone K if K lies entirely on one side of H, that is,

K Ď
␣

x P Rd : a ¨ x ď b
(

or K Ď
␣

x P Rd : a ¨ x ě b
(

A face of K is a set of the form K X H, where H is a supporting hyperplane of K. The pd ´ 1q-dimensional
faces are called facets, and the 1-dimensional faces edges, of K. The apex of K is its unique 0 -dimensional
face.

Just as polytopes can be triangulated into simplices, pointed cones can be triangulated into simplicial cones.
So, a collection T of simplicial d-cones is a triangulation of the d-cone K if it satisfies the following:

• K “
Ť

SPT S.
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Figure 3.3: Coning over polytope

• For every S1,S2 P T,S1 X S2 is a face common to both S1 and S2.

We say that K can be triangulated using no new generators if there exists a triangulation T such that the
generators of every S P T are generators of K.

Theorem 3.3.1. Every pointed cone can be triangulated into simplicial cones using no new generators.

Proof. Given a pointed d-cone K with apex v, there exists a hyperplane H that intersects K only at v. Choose
w P K˝; then

P :“ pw ´ v ` Hq X K

is a pd ´ 1q-polytope whose vertices are determined by the generators of K. (This construction yields a
variant of Figure 3.4.) Now triangulate P using no new vertices. Each simplex ∆j in this triangulation gives
naturally rise to a simplicial cone

Sj :“ tv ` λx : λ ě 0,x P ∆ju ,

and these simplicial cones, by construction, triangulate K.

3.3.2 Integer-Point Transforms for Rational Cones

We want to encode the information contained by the lattice points in a set S Ă Rd. It turns out that the
following multivariate generating function allows us to do this in an efficient way if S is a rational cone or
polytope:

σSpzq “ σS pz1, z2, . . . , zdq :“
ÿ

mPSXZd

zm

The generating function σS simply lists all integer points in S in a special form: not as a list of vectors, but as
a formal sum of Laurent monomials. We call σS the integer-point transform of S; the function σS also goes
by the name moment generating function or simply generating function of S. The integer-point transform
σS opens the door to both algebraic and analytic techniques.
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Example 3.3.2. As a warmup example, consider the 1-dimensional cone K “ r0,8q. Its integer-point
transform is our old friend

σKpzq “
ÿ

mPr0,8qXZ

zm “
ÿ

mě0

zm “
1

1 ´ z

Example 3.3.3. Now we consider the 2-dimensional cone

K :“ tλ1p1, 1q ` λ2p´2, 3q : λ1, λ2 ě 0u Ă R2

depicted in Figure 3.4. To obtain the integer-point transform σK, we tile K by copies of the fundamental
parallelogram

Π :“ tλ1p1, 1q ` λ2p´2, 3q : 0 ď λ1, λ2 ă 1u Ă R2

Figure 3.4: The cone K and its fundamental parallelogram.

More precisely, we translate Π by nonnegative integer linear combinations of the generators p1, 1q and
p´2, 3q, and these translates will exactly cover K. How can we list the integer points in K as Laurent
monomials? Let’s first list all vertices of the translates of Π. These are nonnegative integer combinations
of the generators p1, 1q and p´2, 3q, so we can list them using geometric series:

ÿ

m“jp1,1q`kp´2,3q

j,kě0

zm “
ÿ

jě0

ÿ

kě0

zjp1,1q`kp´2,3q “
1

p1 ´ z1z2q
`

1 ´ z´2
1 z32

˘

We now use the integer points pm,nq P Π to generate a subset of Z2 by adding to pm,nq nonnegative linear
integer combinations of the generators p1, 1q and p´2, 3q. Namely, we let

Lpm,nq :“ tpm,nq ` jp1, 1q ` kp´2, 3q : j, k P Zě0u .

It is immediate that K X Z2 is the disjoint union of the subsets Lpm,nq as pm,nq ranges over Π X Z2 “
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tp0, 0q, p0, 1q, p0, 2q, p´1, 2q, p´1, 3qu. Hence

σKpzq “
ÿ

pm,nqPtp0,0q,¨¨¨ ,p´1,3qu

ÿ

j,kě0

zpm,nq`jp1,1q`kp´2,3q

“
ÿ

pm,nqPtp0,0q,¨¨¨ ,p´1,3qu

zm1 zn2
ÿ

j,kě0

zjp1,1q`kp´2,3q

“
`

1 ` z2 ` z22 ` z´1
1 z22 ` z´1

1 z32
˘

ÿ

m“jp1,1q`kp´2,3q

j,kě0

zm

“
1 ` z2 ` z22 ` z´1

1 z22 ` z´1
1 z32

p1 ´ z1z2q
`

1 ´ z´2
1 z32

˘

Similar geometric series suffice to describe integer-point transforms for rational simplicial d-cones. The fol-
lowing result utilizes the geometric series in several directions simultaneously. We recall that a d-dimensional
cone is simplicial if it has d linearly independent generators.

Theorem 3.3.4. Suppose

K :“ tλ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λdwd : λ1, λ2, . . . , λd ě 0u

is a simplicial d-cone, where w1,w2, . . . ,wd P Zd. Then for v P Rd, the integer-point transform σv`K of the
shifted cone v ` K is the rational function

σv`Kpzq “
σv`Πpzq

p1 ´ zw1q p1 ´ zw2q ¨ ¨ ¨ p1 ´ zwdq

where Π is the half-open parallelepiped

Π :“ tλ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λdwd : 0 ď λ1, λ2, . . . , λd ă 1u

The half-open parallelepiped Π is called the fundamental parallelepiped of K.

Proof. In σv`Kpzq “
ř

mPpv`KqXZd zm, we list each integer point m in v ` K as the Laurent monomial zm.
Such a lattice point can, by definition, be written as

m “ v ` λ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λdwd

for some numbers λ1, λ2, . . . , λd ě 0. Because the wk form a basis of Rd, this representation is unique. Let’s
write each λk in terms of its integer and
fractional parts: λk “ tλku ` tλku. So m “ v ` ptλ1uw1 ` tλ2uw2 ` ¨ ¨ ¨ ` tλduwdq ` tλ1uw1 ` tλ2uw2 `

¨ ¨ ¨ ` tλduwd, and we should note that since 0 ď tλku ă 1, the vector

p :“ v ` tλ1uw1 ` tλ2uw2 ` ¨ ¨ ¨ ` tλduwd

is in v ` Π. In fact, p P Zd, since m and tλkuwk are all integer vectors. Again, the representation of p in
terms of the wk is unique. In summary, we have proved that every m P v ` K X Zd can be uniquely written
as

m “ p ` k1w1 ` k2w2 ` ¨ ¨ ¨ ` kdwd (3.4)

for some p P pv ` Πq X Zd and some integers k1, k2, . . . , kd ě 0. On the other hand, let’s write the rational
function on the right-hand side of the theorem as a product of series:

σv`Πpzq

p1 ´ zw1q ¨ ¨ ¨ p1 ´ zwdq
“

¨

˝

ÿ

pPpv`ΠqXZd

zp

˛

‚

˜

ÿ

k1ě0

zk1w1

¸

¨ ¨ ¨

˜

ÿ

kdě0

zkdwd

¸

.

If we multiply everything out, a typical exponent will look exactly like (3.4).
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Our proof contains a crucial geometric idea. Namely, we tile the cone v ` K with translates of v ` Π
by nonnegative integral combinations of the wk. It is this tiling that gives rise to the nice integer-point
transform in theorem 3.3.4. Computationally, we therefore favor cones over polytopes due to our ability to
tile a simplicial cone with copies of the fundamental domain, as above.

theorem 3.3.4 shows that the real complexity of computing the integerpoint transform σv`K is embedded in
the location of the lattice points in the parallelepiped v ` Π.

By mildly strengthening the hypothesis of theorem 3.3.4, we obtain a slightly easier generating function.

Corollary 3.3.5. Suppose

K :“ tλ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λdwd : λ1, λ2, . . . , λd ě 0u

is a simplicial d-cone, where w1,w2, . . . ,wd P Zd, and v P Rd, such that the boundary of v ` K contains no
integer point. Then

σv`Kpzq “
σv`Πpzq

p1 ´ zw1q p1 ´ zw2q ¨ ¨ ¨ p1 ´ zwdq
,

where Π is the open parallelepiped

Π :“ tλ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λdwd : 0 ă λ1, λ2, . . . , λd ă 1u

Proof. The proof of theorem 3.3.4 goes through almost verbatim, except that v ` Π now has no boundary
lattice points, so that there is no harm in choosing Π to be open.

Since a general pointed cone can always be triangulated into simplicial cones, the integer-point transforms
add up in an inclusion-exclusion manner (note that the intersection of simplicial cones in a triangulation is
again a simplicial cone). Hence we have the following corollary.

Corollary 3.3.6. For a pointed cone

K “ tv ` λ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λmwm : λ1, λ2, . . . , λm ě 0u

with v P Rd,w1,w2, . . . ,wm P Zd, the integer-point transform σKpzq evaluates to a rational function in the
coordinates of z.

Philosophizing some more, one can show that the original infinite sum σKpzq converges only for z in a subset
of Cd, whereas the rational function that represents σK gives us its meromorphic continuation.

Example 3.3.7. Consider K “ cone t´1, 1u “ R, which is not pointed. Then,

σKpzq “
ÿ

tě0

zt `
ÿ

tě0

z´t ´ 1 “ 0.

In general, σKpzq “ 0 for any non-pointed cone.

3.4 From cones to polytopes

summary

- Given S Ď Rd, let σSpzq “
ř

mPSXZd zm.

- LP ptq “
ˇ

ˇtP X Zd
ˇ

ˇ.

- EhrP pzq “
ř

tě0 LP ptqzt.
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Let P “ conv tv1, . . . ,vnu Ď Rd, where v1, . . . ,vn P Zd; such polytopes are called integral polytopes. Note
that LP ptq “ σtP p1q. The cone over this polytope is

CpP q :“ cone
"„

v1

1

ȷ

, . . . ,

„

vn

1

ȷ*

(you can think about it in this way: placing the vertices of the polytopes on the plane and then leveling them
up by 1.) Note that tP – CpP q X

␣

x P Rd`1 | xd`1 “ t
(

. By cutting the cone with the hyperplane xd`1 “ 2,
we obtain a copy of P dilated by a factor of 2. More generally, we can cut the cone with the hyperplane
xd`1 “ t and obtain tP, as suggested by the Figure 3.5.

Figure 3.5: Integral dilates

Now let’s form the integer-point transform σconepPq of conepPq. By what we just said, we should look at
different powers of zd`1 : there is one term (namely, 1), with z0d`1, corresponding to the origin; the terms
with z1d`1 correspond to lattice points in P (listed as Laurent monomials in z1, z2, . . . , zd ), the terms with
z2d`1 correspond to points in 2P, etc. See Figure 3.5.

In short,
σcone pPq pz1, z2, . . . , zd`1q

“ σP pz1, . . . , zdq z0d`1 ` σP pz1, . . . , zdq z1d`1 ` σ2P pz1, . . . , zdq z2d`1 ` ¨ ¨ ¨

“ 1 `
ÿ

tě1

σtP pz1, . . . , zdq ztd`1

Specializing further for enumeration purposes, we recall that σPp1, 1, . . . , 1q “ #
`

P X Zd
˘

, and so

σconepPq p1, 1, . . . , 1, zd`1q “ 1 `
ÿ

tě1

σtPp1, 1, . . . , 1qztd`1

“ 1 `
ÿ

tě1

#
`

tP X Zd
˘

ztd`1
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But by definition, the enumerators on the right-hand side are just evaluations of Ehrhart’s counting function,
that is, σconepPq p1, 1, . . . , 1, zd`1q is nothing but the Ehrhart series of P :

Proposition 3.4.1. For P integral, EhrP pzq “ σCpP qp1, . . . , 1, zq.

Let us now focus on the case in which P is a simplex.

Proposition 3.4.2. For P Ď Rd an integral d-simplex we have that

EhrP pzq “
h0 ` h1z ` ¨ ¨ ¨ ` hdz

d

p1 ´ zqd`1

where each hk is a non-negative integer. In particular, the numerator is a polynomial of degree at most d.

Proof. If P “ conv tv1, . . . , vd`1u, then CpP q “ cone tw1, . . . , wd`1u, where the last entry of each wi is 1, is
simplicial. By Theorem 3.3.4,

σCpP qp1, . . . , 1, zq “
σΠp1, . . . , 1, zq

p1 ´ p1, . . . , 1, zqw1q p1 ´ p1, . . . , 1, zqwdq
“

σΠp1, . . . , 1, zq

p1 ´ zqd`1

It follows from Proposition 3.4.1 that

EhrP pzq “

ř

kě0 hkz
k

p1 ´ zqd`1

where hk counts the number of lattice points in Π with last entry k. Now,

„

x
xd`1

ȷ

P Π ô

„

x
xd`1

ȷ

“

d`1
ÿ

i“1

λi

„

vi
1

ȷ

where each λi P r0, 1q. Note then that xd`1 “ λ1 ` ¨ ¨ ¨ ` λd`1 ă d ` 1. It follows that hk “ 0 whenever
k ě d ` 1.

Lemma 3.4.3. A function f : N Ñ C is a polynomial of degree d if and only if

ÿ

ně0

fpnqzn “
gpzq

p1 ´ zqd`1

where g is a polynomial of degree ď d with gp1q ‰ 0.

Proof. see [5] 4.1.4.

We obtain the following consequences:

Corollary 3.4.4. If P is an integral d-simplex, then LP is a polynomial of degree d.

Theorem 3.4.5 (Ehrhart’s Theorem). If P is an integral d-dimensional polytope, then LP ptq is a polynomial
of degree d.

Proof. Triangulate P .

Example 3.4.6. We compute LP ptq for P1 “ convt´3, 2u Ď R and for P2 “ convt0, e1, e1 ` e2, 2e2u by
interpolation.

LP1ptq is a polynomial of degree 1 and is thus of the form at ` 1 (1 is because σP p0q has to be 1). Now we
pick say t “ 1 and count that |P X Z| “ 6. We plug in p1, 6q for at ` 1 to get a “ 5. Then LP1ptq “ 5t ` 1.

Similarly, we plug in p0, 1q, p1, 5q, p2, 12q to at2 ` bt ` c to get LP2ptq “ 3
2 t

2 ` 5
2 t ` 1.
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3.4.1 More on Ehrhart theory of integral polytopes

The numerator of EhrP pzq is called the h˚-polynomial of P .

Theorem 3.4.7 (Stanley’s non-negativity theorem). Suppose P is an integral d-dimensional polytope with
Ehrhart series

EhrP pzq “
hdz

d ` ¨ ¨ ¨ ` h0

p1 ´ zqd`1

Then all hi are non-negative integers.

Note that we have proven this in the case in which P is a simplex. The general proof triangulates, but this
alone is not enough because EhrPYQ “ EhrP `EhrQ ´EhrPXQ. For the details you can see [4] Theorem
3.12.

Proposition 3.4.8. Let P be integral and ph0, . . . , hdq be its h˚-vector. We have that

LP ptq “ h0

ˆ

t ` d

d

˙

` h1

ˆ

t ` d ´ 1

d

˙

` ¨ ¨ ¨ ` hd

ˆ

t

d

˙

Proof. We have that

ÿ

tě0

LP ptqzt “ EhrP pzq “
hdz

d ` ¨ ¨ ¨ ` h0

p1 ´ zqd`1
“
`

hdz
d ` ¨ ¨ ¨ ` h0

˘

˜

ÿ

jě0

ˆ

j ` d

d

˙

¸

where the last equality follows from our computation of the h˚-polynomial of a simplex. Now, the coefficient
of zt on the RHS is

ř

i`j“t hi

`

j`d
d

˘

.

There are many open problems about the h˚-polynomial, namely about their structure. Easy facts:

• h0 “ 1.

• h1 “
ˇ

ˇP X Zd
ˇ

ˇ ´ d ´ 1. (Exercise)

3.5 From Discrete to the Continuous Volume of a Polytope

Given a geometric object S Ă Rd, its volume, defined by the integral vol S :“
ş

S
dx, is one of the fundamental

data of S. By the definition of the integral, say in the Riemannian sense, we can think of computing vol S by
approximating S with d-dimensional boxes that get smaller and smaller. To be precise, if we take the boxes
with side length 1

t , then they each have volume 1
td

. We might further think of the boxes as filling out the

space between grid points in the lattice
`

1
tZ

˘d
. This means that volume computation can be approximated

by counting boxes, or equivalently, lattice points in
`

1
tZ

˘d
:

volS “ lim
tÑ8

1

td
¨ #

˜

S X

ˆ

1

t
Z

˙d
¸

It is a short step to counting integer points in dilates of S, because

#

˜

S X

ˆ

1

t
Z

˙d
¸

“ #
`

tS X Zd
˘

Let’s summarize:
1From Wikipedia: ”Eugène Ehrhart (29 April 1906 - 17 January 2000) was a French mathematician who introduced Ehrhart polyno-

mials in the 1960s. Ehrhart received his high school diploma at the age of 22 . He was a mathematics teacher in several high schools,
and did mathematics research on his own time. He started publishing in mathematics in his 40s, and finished his PhD thesis at the age
of 60.”
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Lemma 3.5.1. Suppose S Ă Rd is d-dimensional. Then

volS “ lim
tÑ8

1

td
¨ #

`

tS X Zd
˘

We emphasize here that S is d-dimensional, because otherwise (since S could be lower-dimensional although
living in d-space), by our current definition, vol S “ 0. We will extend our volume definition later to give
nonzero relative volume to objects that are not full-dimensional.

Part of the magic of Ehrhart’s theorem lies in the fact that for an integral d-polytope P, we do not have to
take a limit to compute volP; we need to compute ”only” the d ` 1 coefficients of a polynomial.

Corollary 3.5.2. Suppose P Ă Rd is an integral convex d-polytope with Ehrhart polynomial cdtd`cd´1t
d´1`

¨ ¨ ¨ ` c1t ` 1 (by Corollary 3.4.4). Then cd “ volP.

Proof. By Lemma 3.5.1,

volP “ lim
tÑ8

cdt
d ` cd´1t

d´1 ` ¨ ¨ ¨ ` c1t ` 1

td
“ cd

Note that `1 is because LP p0q “ 1.

Remark 3.5.3. On the one hand, this should not come as a surprise, because the number of integer points
in some object should grow roughly like the volume of the object as we make it bigger and bigger. On the
other hand, the fact that we can compute the volume as one term of a polynomial should be very surprising:
the polynomial is a counting function and as such is something discrete, yet by computing it (and its leading
term), we derive some continuous data. Even more, we can - at least theoretically - compute this continuous
datum (the volume) of the object by calculating a few values of the polynomial and then interpolating; this
can be described as a completely discrete operation!

We finish this section by showing how to retrieve the continuous volume of an integral polytope from its
Ehrhart series.

Corollary 3.5.4. Suppose P Ă Rd is an integral convex d-polytope, and

EhrPpzq “
h˚
dz

d ` h˚
d´1z

d´1 ` ¨ ¨ ¨ ` h˚
1z ` 1

p1 ´ zqd`1

Then volP “ 1
d!

`

h˚
d ` h˚

d´1 ` ¨ ¨ ¨ ` h˚
1 ` 1

˘

.

Proof. Use the expansion of Lemma. The leading coefficient is

1

d!

`

h˚
d ` h˚

d´1 ` ¨ ¨ ¨ ` h˚
1 ` 1

˘

Example 3.5.5 (Reeve’s tetrahedron). Let Th be the tetrahedron with vertices p0, 0, 0q, p1, 0, 0q, p0, 1, 0q, and
p1, 1, hq, where h is a positive integer (see Figure 3.6).

To interpolate the Ehrhart polynomial LTh
ptq from its values at various points, we use the figure to deduce

the following:
4 “ LTh

p1q “ vol pThq ` c2 ` c1 ` 1

h ` 9 “ LTh
p2q “ vol pThq ¨ 23 ` c2 ¨ 22 ` c1 ¨ 2 ` 1

Using the volume formula for a pyramid, we know that

vol pThq “
1

3
p base area qp height q “

h

6
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Figure 3.6: Reeve’s tetrahedron Th (and 2Th)

Thus h ` 1 “ h ` 2c2 ´ 1, which gives us c2 “ 1 and c1 “ 2 ´ h
6 . Therefore,

LTh
ptq “

h

6
t3 ` t2 `

ˆ

2 ´
h

6

˙

t ` 1
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Chapter 4

Reciprocity of Ehrhart Polynomials

4.1 Introduction

Example 4.1.1. Let P “ r0, 1sd “ ˝d, then

intpP q “ tx | @i, 0 ă xi ă 1u

t intpP q “ tx | @i, 0 ă xi ă tu .

It follows that LintpP qptq “ pt ´ 1qd (we did this example at the beginning of last chapter). Note that
LP p´tq “ p´t ` 1qd “ p´1qdLintpP qptq.

Example 4.1.2. Now, let P “ ∆d Ď Rd`1, then

intpP q “

#

x
ˇ

ˇ

ˇ

d`1
ÿ

i“1

xi “ 1, xi ą 0

+

t intpP q “

#

x
ˇ

ˇ

ˇ

d`1
ÿ

i“1

xi “ t, xi ą 0

+

It follows tht LintpP qptq equals the number of positive integral solutions to
řd`1

i“1 xi “ t. Note that x is such a
solution if and only if y “ px1 ´ 1, . . . , xd`1 ´ 1q is a non-negative integral solution to

řd`1
i“1 yi “ t´ d´ 1. It

follows that Lint pP qptq “
`

t´1
d

˘

. Note that

LP p´tq “

ˆ

´t ` d

d

˙

“
p´t ` dqp´t ` d ´ 1q ¨ ¨ ¨ p´t ` 1q

d!

“ p´1qd
pt ´ 1qpt ´ 2q ¨ ¨ ¨ pt ´ dq

d!
“ p´1qdLintpP qptq

Theorem 4.1.3 (Ehrhart-Macdonald Reciprocity (for Integral Polytopes)). Suppose P is a convex integral
polytope. Then the evaluation of the polynomial LP at negative integers yields

LPp´tq “ p´1qdimPLP˝ ptq.

This theorem belongs to a class of famous reciprocity theorems. A common theme in combinatorics is to
begin with an interesting object P , and

1. define a counting function fptq attached to P that makes physical sense for positive integer values of t;
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2. recognize the function f as a polynomial in t;

3. substitute negative integral values of t into the counting function f , and recognize fp´tq as a counting
function of a new mathematical object Q.

For us, P is a polytope, and Q is its interior.

4.2 Ehrhart-Macdonald Reciprocity (for Integral Polytopes)

To prove Theorem 4.1.3, we will first look at reciprocity for cones.

Theorem 4.2.1 (Stanley’s reciprocity for integral cones). Let K be a d-dimensional cone generated by
w1, . . . ,wd P Zd. Then,

σK

ˆ

1

z1
, . . . ,

1

zd

˙

“ p´1qdσintpKq pz1, . . . , zdq

(This holds as rational functions in z1, . . . , zd.)

Example 4.2.2. Let K “ cone te1, e2u. Then by Theorem 3.3.4, σKpzq “ 1
p1´z1qp1´z2q

, and by Cor 3.3.5,

σintpKqpzq “ zp1,1q

p1´zp1,0qqp1´zp0,1qq
“ z1z2

p1´z1qp1´z2q
. Note that

1

p1 ´ p1{z1qq p1 ´ p1{z2qq
“

z1z2
p1 ´ z1q p1 ´ z2q

Let us do the preparation to prove the Theorem 4.2.1.

Theorem 4.2.3. Let K be a d-dimensional cone generated by linearly independent w1, . . . ,wd P Zd (so K
is simplicial), i.e., K “ tλ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λdwd : λ1, . . . , λd ě 0u. If v is such that Bpv ` Kq X Zd “ ∅
(i.e., v for which the boundary of the shifted simplicial cone v ` K contains no integer points), then

σv`K

ˆ

1

z1
, . . . ,

1

zd

˙

“ p´1qdσ´v`K pz1, . . . , zdq

Proof. On the one hand,

σv`K

ˆ

1

z1
, . . . ,

1

zd

˙

“
σv`Π

´

1
z1
, . . . , 1

zd

¯

`

1 ´ 1
zw1

˘

¨ ¨ ¨
`

1 ´ 1
zwd

˘ “ p´1qd
zw1 ¨ ¨ ¨ zwdσv`Π

´

1
z1
, . . . , 1

zd

¯

p1 ´ zw1q ¨ ¨ ¨ p1 ´ zwdq
.

On the other hand,

σ´v`K pz1, . . . , zdq “
σ´v`Π pz1, . . . , zdq

p1 ´ zw1q ¨ ¨ ¨ p1 ´ zwdq

We leave as an exercise to show that

v ` Π “ ´p´v ` Πq ` w1 ` ¨ ¨ ¨ ` wd

Figure 4.1 shows the situation in the case d “ 2.

Translating this equation to generating functions implies that

σv`Π pz1, . . . , zdq “ zw1 ¨ ¨ ¨ zwdσ´p´v`Πq pz1 . . . , zdq

“ zw1 ¨ ¨ ¨ zwdσ´v`Π

ˆ

1

z1
, . . . ,

1

zd

˙

,

in other words,

σv`Π

ˆ

1

z1
, . . . ,

1

zd

˙

“ z´w1 ¨ ¨ ¨ z´wdσ´v`Π pz1, . . . , zdq .

The desired result now follows.
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Figure 4.1: From ´v ` Π to v ` Π

We also need this lemma.

Lemma 4.2.4. Let K be as in the theorem 4.2.3. We triangulate it into simplicial cones K1, ¨ ¨ ¨ ,Km. Then
there exists v such that intpKq X Zd “ pv ` Kq X Zd and

@j, B pv ` Kjq X Zd “ ∅ and B p´v ` Kjq X Zd “ ∅.

Moreover, K X Zd “ p´v ` Kq X Zd.

Proof. Exercise.

Proof of theorem 4.2.1. Triangulate K into simplicial cones K1, . . . ,Km. Shift K by a tiny vector v such that
the previous lemma holds. Then, K X Zd “ p´v ` Kq X Zd. Now, putting all together,

σK

ˆ

1

z1
, . . . ,

1

zd

˙

“ σ´v`K

ˆ

1

z1
, . . . ,

1

zd

˙

“

m
ÿ

j“1

σ´v`Kj

ˆ

1

z1
, . . . ,

1

zd

˙

“ p´1qd
m
ÿ

j“1

σv`Kj
pz1, . . . , zdq “ p´1qdσv`K pz1, . . . , zdq .

“ p´1qdσintpKq pz1, . . . , zdq .

We are almost ready to prove the Ehrhart-Macdonald reciprocity theorem.

Lemma 4.2.5. For any polynomial fptq, we have that
ř

tě0 fptqzt `
ř

tă0 fptqzt “ 0.

We are now ready.
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Proof of Ehrhart-Macdonald reciprocity. Let P be an integral d-dimensional polytope. Then, by Theorem
4.2.1, we have that

σCpP q

ˆ

1

z1
, . . . ,

1

zd`1

˙

“ p´1qd`1σintpCpP qq pz1, . . . , zd`1q .

It follows that

σCpP qp1, . . . , 1, zq “ p´1qd`1σintpCpP qqp1, . . . , 1, zq

and so

EhrP p1{zq “ p´1qd`1 EhrintpP qpzq

“ p´1qd`1
ÿ

tě0

LintpP qptqzt

“ p´1qd
ÿ

tą0

LintpP qp´tqz´t

where the last equation holds by the lemma. The result follows from comparing the coefficients of z´t.

A polytope is rational if all its vertices are in Qd. A quasipolynomial Qptq is a function N Ñ N such that
there exists a positive integer k and polynomials p0, . . . , pk´1 such that Qptq “ piptq if and only if t ” i mod k.
The minimal such k is called the period of Q.

Theorem 4.2.6 (Ehrhart’s theorem for rational polytopes). If P is a rational d-dimensional polytope, then
LP ptq is a quasipolynomial in t of degree d. Its period divides the least common multiple of the denominators
of the coordinates of the vertices of P .

Proof. See [4] Theorem 3.23.

Example 4.2.7. Let P “ convtp0, 0q, p1{2, 0q, p0, 1{2qu. Note then that

LP ptq “

$

&

%

t
2 p t

2 `1q
2 , t even.

t´1
2 p t´1

2 `1q
2 , t odd.

Note that this polynomial has degree d “ 2 and period 2.

Theorem 4.2.8 (Stanley reciprocity). Suppose K is a rational d-cone with the origin as apex. Then

σK

ˆ

1

z1
,
1

z2
, . . . ,

1

zd

˙

“ p´1qdσK˝ pz1, z2, . . . , zdq .

Proof. See [4] Theorem 4.3.

Theorem 4.2.9 (Ehrhart-Macdonald reciprocity). Suppose P is a convex rational polytope. Then the evalu-
ation of the quasipolynomial LP at negative integers yields

LPp´tq “ p´1qdimPLP˝ptq.

Proof. See [4] Theorem 4.1 and its proof in section 4.3.
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4.2.1 Application: From lattice points to faces

Theorem 4.2.10 (Euler-Poincaré equation). Let P be a d-dimensional polytope and fk be the number of
k-dimensional faces. Then f0 ` ¨ ¨ ¨ ` p´1qdfd “ 1.

Proof. We use Ehrhart-Macdonald reciprocity. Since P “
Ů

F face intpF q,

LP ptq “
ÿ

F face

Lint pF qptq “
ÿ

F face

p´1qdimpF qLF p´tq.

Since LF p0q “ 1 it follows that

1 “
ÿ

F face

p´1qdimpF q “

d
ÿ

k“0

p´1qkfk

4.3 Volumes

Let us start by computing the volumes of pyramids.

Proposition 4.3.1. Given a d-dimensional pyramid P with base B and height h we have that

VoldpP q “
hVold´1pBq

d
.

Proof. It is equivalent to assume the base is B ˆ thu and apex 0 . We have that

VoldpP q “

ż h

0

Vold´1

ˆ

t

h
B

˙

dt “

ż h

0

td´1

hd´1
Vold´1pBqdt “

td

dhd´1
Vold´1pBq

ˇ

ˇ

ˇ

ˇ

h

0

“
hVold´1pBq

d
.

Corollary 4.3.2. Let P “ conv p0, v1, . . . , vdq Ď Rd be a simplex. Then

VoldpP q “
1

d!

ˇ

ˇdet
“

v1 ¨ ¨ ¨ vd
‰
ˇ

ˇ .

Proof. Let Qd :“ conv p0, e1, . . . , edq and note that Q is a d-dimensional pyramid with base Qd´1 and height
1. It follows that

Vold pQdq “
1

d
Vold´1 pQd´1q “ ¨ ¨ ¨ “

1

d!
.

For general P , use the change of basis x “ Au, where A “
“

v1 ¨ ¨ ¨ vd
‰

. We then have that

VoldpP q “

ż

P

dx “

ż

Qd

|detpAq|du “
1

d!
|detpAq|.

Definition 4.3.3. The Minkowski sum of P,Q is the sum P ` Q “ tp ` q | p P P, q P Qu.

Exercise 4.3.4. Prove that if you add P ` ¨ ¨ ¨ ` P in k times, you obtain a polytope equivalent to kP . Prove
that if P,Q are polytopes, then P ` Q is again a polytope. What are the vertices of P ` Q?

Example 4.3.5. Given P “ r0, 1s2, Q “ convtp0, 0q, p1, 0q, p0, 1qu, and r, s P Rě0, consider the polytope
Z “ rP ` sQ “ trp ` sq | p P P, q P Qu. We then have that Vol2pZq “ r2 Vol2pP q ` s2 Vol2pQq ` 2rs.
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Figure 4.2: Minkowski sum.

Theorem 4.3.6. Let P,Q Ď Rd be polytopes. The function VoldprP ` sQq is a homogeneous polynomial in
r and s of degree d, i.e., fpλr, λsq “ λdfpr, sq.

Definition 4.3.7. By the theorem, we write

VoldprP ` sQq “

d
ÿ

i“0

ˆ

d

i

˙

MV
`

P i, Qd´i
˘

risd´i

The scalars MV
`

P i, Qd´i
˘

are called the mixed volumes of P and Q.

Example 4.3.8. In the example above, we have

Vol2pZq “ Vol2pP qr2s0 `

ˆ

2

1

˙

¨ 1 ¨ r1s1 ` VolpQqr0s2.

Thus, MVpP 2, Q0q “ Vol2pP q, MVpP 0, Q2q “ Vol2pQq, and MVpP 1, Q1q “ 1.

Let’s do some preparatory work to prove the theorem.

Proposition 4.3.9. Let P Ď Rd be a d-dimensional polytope with facet description P “ tx | xai, xy ď bi, i P rmsu

where each }ai} “ 1 and let Fi be the face of P defined by xai, xy “ bi. Then, VoldpP q “ 1
d

řm
i“1 bi Vold´1 pFiq

and
řm

i“1 Vold´1 pFiq ai “ 0.

Proof. Let q P intpP q and Pi “ conv pFi, qq, i.e. Pi is the pyramid with base Fi and apex q. Let hi be the
height of Pi, then hi “ bi ´ xai, qy. Note that P “

Ům
i“1 Pi. Then,

VoldpP q “

m
ÿ

i“1

Vold pPiq “

m
ÿ

i“1

hi

d
Vold´1 pFiq “

m
ÿ

i“1

Vold´1 pFiq

d
pbi ´ xai, qyq

“
1

d

m
ÿ

i“1

bi Vold´1 pFiq ´

C

1

d

m
ÿ

i“1

Vold´1 ai pFiq , q

G

.

Note that this last equation holds for any q P intpP q. Since 1
d

řm
i“1 bi Vold´1 pFiq is also a constant, then we

must have that the last term doesn’t depend on q. This is only possible if
řm

i“1 Vold´1 pFiq ai “ 0.

Recall that Pa “ tx P P | @y P P, xc, xy ě xc, yyu is the face of the polytope in direction a.

Lemma 4.3.10. prP ` sQqa “ rPa ` sQa.

Proof. Suppose that p “ maxxPP xa, xy and q “ maxxPQxa, xy. Then, for any rx ` sy P rP ` sQ we have that

xa, rx ` syy ď rp ` sq.

Also, if x˚ P P and y˚ P Q maximize these functions, then rx˚ ` sy˚ maximizes the left hand side.
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proof of Theorem 4.3.6. Proceed by induction on d.

Base case:
If d “ 1, then P “ rx, ys and Q “ rz, ws. Then, rP ` sQ “ rrx ` sz, ry ` sws and so

ˆ

1

0

˙

Vol1pQqs `

ˆ

1

1

˙

Vol1pP qr “ Vol1prP ` sQq

Inductive case:
Suppose the result holds for d ´ 1. Write the facet description Z “ rP ` sQ “ tx | xai, xy ď bi, i P rmsu.
Suppose

Pai “ tx P P | xai, xy “ piu and Qai “ tx P Q | xai, xy “ qiu ,

then by the preceding lemma, we have that rpi ` sqi “ bi. Now, by Proposition 4.3.9, we have that

VoldprP ` sQq “
1

d

m
ÿ

i“1

bi Vold´1 pZai
q

Note that bi is linear in r, s. By induction, Vold´1 pZai
q is a homogeneous polynomial in r, s of degree

d ´ 1.

We recall the combinatorial (operational) and arithmetic defininition of multinomial coefficient before we
give the general analog of Theorem 4.3.6.

Proposition 4.3.11. Let b1, . . . , bk be nonnegative integers, and let n “ b1 ` b2 ` ¨ ¨ ¨ ` bk. The multinomial

coefficient
ˆ

n
b1, b2, . . . , bk

˙

is:

(1) the number of ways to put n interchangeable objects into k boxes, so that box i has bi objects in it, for
1 ď i ď k.

(2) the number of ways to choose b1 interchangeable objects from n objects, then to choose b2 from what
remains, then to choose b3 from what remains, ..., then to choose bk´1 from what remains.

(3) the number of unique permutations of a word with n letters and k distinct letters, such that the i th
letter occurs bi times.

(4) the product
ˆ

n
b1

˙ˆ

n ´ b1
b2

˙ˆ

n ´ b1 ´ b2
b3

˙

¨ ¨ ¨

ˆ

bk´1 ` bk
bk´1

˙ˆ

bk
bk

˙

.

(5) the quotient
n!

b1!b2! ¨ ¨ ¨ bk!
.

Proof. (1) and (2) are clearly equivalent, and (2) and (4) are equivalent from the definition of the binomial
coefficient. (4) and (5) are equivalent by simple algebra. There are a few ways to see that (3) is equivalent
to the others. Arguing combinatorially, note that a permutation of a word as in (3) corresponds to choices of
spots to put each of the repeated letters in; out of the spots 1, . . . , n, choose b1 of those spots to put the first
letter in, then b2 spots out of the remaining n´ b1 to put the second letter in, and so on. So (3) is equivalent
to (2). (One can also count permutations directly, by taking n ! permutations and dividing by factors that
account for duplicates: divide by a factor of b1 ! to account for the fact that permuting all of the first letters
doesn’t change the permutation, divide by b2 ! to do the same for the second letters, and so on, which gives
the formula from (5).)
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Theorem 4.3.12 (Multinomial Theorem). Show the following equality: for n, p P N,

px1 ` ¨ ¨ ¨ ` xpqn “
ÿ

n1 ` ¨ ¨ ¨ ` np “ n
n1, ¨ ¨ ¨ , np P N0

n!

n1! ¨ ¨ ¨np!
xn1
1 ¨ ¨ ¨xnp

p ,

where N0 “ t0, 1, 2, ¨ ¨ ¨ u is the set of all nonnegative integers. Note that there are
`

n`p´1
p

˘

such tuples
pn1, ¨ ¨ ¨ , npq solving the equation n1 ` ¨ ¨ ¨ ` np “ n, so there are

`

n`p´1
p

˘

terms in the RHS of above identity.
If we force ni P N “ t1, 2, ¨ ¨ ¨ u then this number of solutions changes to

`

n´1
p´1

˘

.

Example 4.3.13. Let p “ 2 and n “ 3. Then the equation n1 ` n2 “ 3 has solution p3, 0q, p1, 2q, p2, 1q, p0, 3q.

px1 ` x2q3 “ x3
1 ` 3x2

1x2 ` 3x1x
2
2 ` x3

2

“
3!

3!0!
x1x1x1 `

3!

1!2!
x1x2x2 `

3!

2!1!
x1x1x2 `

3!

0!3!
x2x2x2

“ x1x1x1 ` px1x1x2 ` x1x2x1 ` x2x1x1q ` px2x1x2 ` x2x2x1 ` x1x2x2q ` x2x2x2

“

2
ÿ

λ1,λ2,λ3“1

xλ1xλ2xλ3

Theorem 4.3.14 (H. Minkowski). Let P1, . . . , Pm be polytopes in Rd, and ri ě 0, i “ 1, . . . ,m. Then,
MV pr1P1 ` ¨ ¨ ¨ ` rmPmq is a homogeneous polynomial of degree n in r1, . . . , rm,

Vold pr1P1 ` ¨ ¨ ¨ ` rmPmq “

m
ÿ

λ1,...,λd“1

MV pPλ1
, . . . , Pλd

q rλ1
¨ ¨ ¨ rλd

,

the summation being carried out independently over the λi, i “ 1, . . . , d. There are md summands in the
summation.

Proof. See [1] Theorem 3.2.

Definition 4.3.15. Arranging the coefficients on the RHS of above equality such that MV
`

Pπpλ1q, . . . , Pπpλdq

˘

“

MV pPλ1 , . . . , Pλd
q for any permutation π of λ1, . . . , λd, we call MV pPλ1 , . . . , Pλd

q the (d-dimensional) mixed
volume of Pλ1 , . . . , Pλd

.

Note that there are in total d!
j1!¨¨¨jd!

such mixed volumes to be enforced to be equal, where jk!’s are for those
indices that are repeated. Since rπpλ1q ¨ ¨ ¨ rπpλdq “ rλ1

¨ ¨ ¨ rλd
, we see

Vold pr1P1 ` ¨ ¨ ¨ ` rmPmq “
ÿ

i1`¨¨¨`im“d

ˆ

d

i1, ¨ ¨ ¨ , im

˙

MV
`

P i1
1 , . . . , P im

m

˘

ri11 ¨ ¨ ¨ rimm

Be awaring of the definition 4.3.15, one can deduce the basic properties of the mixed volume in the following
theorem.

Theorem 4.3.16.

(1) The mixed volume MV pP1, ¨ ¨ ¨ , Pnq is invariant if the Pi are replaced by their images under a volume-
preserving transformation of Rn (for example, a translation).

(2) MV is symmetric and linear in each variable.

(3) MV ě 0. Furthermore, MV pP1, ¨ ¨ ¨ , Pnq “ 0 if one of the Pi has dimension zero, and MV pP1, . . . , Pnq ą

0 if every Pi has dimension n.
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(4) The mixed volume of any collection of polytopes can be computed as

MV pP1, . . . , Pnq “
1

n!

n
ÿ

k“1

p´1qn´k
ÿ

IPprns
k q

Voln

˜

ÿ

iPI

Pi

¸

Example 4.3.17. Let us verify that MVpP,Qq “ 1 for the P,Q from Example 4.3.5.

MVpP,Qq “ ´
1

2
pVol2pP q ` Vol2pQqq `

1

2
Vol2pP ` Qq “ ´

1

2
p1 ` 1{2q `

1

2
p7{2q “ 1

Exercise 4.3.18. Prove that MV
`

P d
˘

“ VoldpP q.

4.4 Volumes and polynomials.

Definition 4.4.1. The Newton polytope Pf of a Laurent polynomial f “
ř

αPZd cαx
α P C

“

x˘1
1 , . . . , x˘1

d

‰

is
the convex hull of the support of f , i.e. Pf :“ conv

␣

α P Zd | cα ‰ 0
(

.

Example 4.4.2. For fpx, yq “ 3x2 ´ y ` 6, Pf is depicted in Figure 4.3.

Figure 4.3: Newton Polynomial

Theorem 4.4.3 (Bernstein’s Theorem). If the system fpx, yq “ gpx, yq “ 0 has a finite number of solutions
in pCzt0uqq2, then it has ď 2MV pPf , Pgq solutions. We have equality when the system is generic.

Example 4.4.4. Let f “ 3x2 ´ y ` 6 and g “ x2 ` 2y ´ 3 and note that Pf “ Pg. Then, 2 ˚ MV pPf , Pgq “

2 ˚ Vol pPf q “ 2. This agrees with the intuition for the number of solutions of the system f “ g “ 0.

We can use Bernstein’s theorem to prove a small case of Bezout’s theorem.

Theorem 4.4.5 (Bezout’s Theorem). Let f, g P Crx, ys be polynomials of degrees m,n respectively. If the
system f “ g “ 0 has finitely many solutions then it has ď mn solutions. We have equality when the system
is generic.

Proof. By Bernstein’s theorem, the maximum happens when f, g are generic, so let’s assume this. Let ∆ “

convtp0, 0q, p1, 0q, p0, 1qu. Then, Pf “ m∆ and Pg “ n∆. By

Bernstein’s theorem, we have that the number of solutions is 2MVpm∆, n∆q. Now, by Theorem 4.3.16(4),
we have that

2MVpm∆, n∆q “ p´1q pVol2pn∆q ` Vol2pm∆qq ` Vol2pm∆ ` n∆q

“
“

pn ` mq2 ´ n ´ m
‰

Vol2p∆q “ mn

The general statement of Bernstein’s Theorem is as follows.

Theorem 4.4.6 (Bernstein’s Theorem). Let f1, . . . , fn P C
“

x˘1
1 , . . . , x˘1

d

‰

be Laurent polynomials. If the
system f1 “ ¨ ¨ ¨ “ fn “ 0 has finitely many solutions in pCzt0uqn, then it has ď n!MV pPf1 , . . . , Pfnq

solutions. We have equality when the system is generic.
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4.5 The volume of the permutohedron

An equivalent way to describe the permutohedron is

Πn “ conv
␣`

λσp1q, . . . , λσpnq

˘

| σ P Sn

(

“ convtSnu ´ p1, ¨ ¨ ¨ , 1q

where λ “ p0, 1, . . . , n ´ 1q.

Example 4.5.1. Let

σ “

ˆ

1 2 3 4
1 4 2 3

˙

.

Then the vertex is p1, 4, 2, 3q ´ p1, 1, 1, 1q “ p0, 3, 1, 2q.

Remark 4.5.2. One can obtain other interesting polytopes by considering different λ, e.g. λ “ p0, 0, 1, 1, 2, 2q.

Let us denote by ∆ij “ conv tei, eju.

Proposition 4.5.3.
Πn “

ÿ

1ďiăjďn

∆ij .

Proof. Let Q “
ř

1ďiăjďn ∆ij .

First let us show that Πn Ď Q.

To do so it suffices to show VtxpΠnq Ď Q, i.e., every vertex of Πn is in Q. Since Minkowski sum of polytopes
is again a polytope and is thus convex, and Πn is the smallest convex set containing its vertices.

Let σ P Sn and consider the vertex v “ pσ1 ´ 1, . . . , σn ´ 1q “ σ ´ 1. Note that

p∆ijqv “

#

ei, if σi ą σj

ej , if σi ă σj

pthere’s no σi “ σj as σ P Snq

“ face of ∆ij in direction v

“ set of farthest points P can reach in direction v.

See Figure 4.4 to get some intuition about how this is true.

Figure 4.4: A clear dichotomy between σi and σj .
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In particular, p∆ijqv “ ej if σi ă σj which implies p∆ipσ´1qkqv “ epσ´1qk if σi ă σpσ´1qk “ k. There are pk´1q

possible σi, i.e., there are pk ´ 1q possible ways for i to be mapped by σ.

Now, by Lemma 4.3.10, we have that

Qv “

˜

ÿ

1ďiăjďn

∆ij

¸

v

Lemma 4.3.10
ùùùùùùùùùù

ÿ

1ďiăjďn

p∆ijqv “

n
ÿ

j“2

j´1
ÿ

i“1

p∆ijqv

“

n
ÿ

j“2

ÿ

all iăj“σ
pσ´1qj

´

∆iσ
pσ´1qj

¯

v
“

n
ÿ

j“2

pj ´ 1qepσ´1qj

which is a combination of unit vectors. Thus, v P Q and Πn Ď Q.

For the opposite containment Q Ď Πn, we need a lemma for the other representation of Πn (Lemma 4.5.4):

Πn “

#

x P Rn
ˇ

ˇ

ˇ

n
ÿ

k“1

xk “

ˆ

n

2

˙

and @S Ď rns,
ÿ

kPS

xk ě

ˆ

|S|

2

˙

+

To show Q Ď Πn, we let x P Q, i.e., x “
ř

1ďiăjďn λijei ` p1 ´ λijejq P Q, where λij ě 0. Then, we verify
that it satisfies condition in the lemma.

n
ÿ

k“1

xk “

n
ÿ

k“1

ÿ

1ďiăjďn

p

“

#

0, k ‰ i, j

λij , k “ i

1 ´ λij, k “ j
hkkkkkkkkkkikkkkkkkkkkj

λijei ` p1 ´ λijejqqk

“

n
ÿ

k“1

«

n
ÿ

j“k`1

λkj `

k´1
ÿ

j“1

p1 ´ λikq

ff

“

n
ÿ

k“1

n
ÿ

j“k`1

λkj `

n
ÿ

k“1

k´1
ÿ

i“1

p1 ´ λikq

“
ÿ

1ďkăjďn

λkj `
ÿ

1ďiăkďn

p1 ´ λikq

“
ÿ

1ďiăjďn

pλij ` p1 ´ λijqq
binomial

ùùùùùù

ˆ

n

2

˙

For the second condition, let S Ď rns. Then,

ÿ

kPS

xk “
ÿ

kPS

˜

n
ÿ

j“k`1

λkj `

k´1
ÿ

i“1

p1 ´ λikq

¸

“
ÿ

1 ď i ă j ď n
i P S, j R S

λij `
ÿ

1 ď i ă j ď n
j P S, i R S

p1 ´ λijq `
ÿ

1 ď i ă j ď n
i, j P S

1

looooooomooooooon

p|S|
2 q

ě

ˆ

|S|

2

˙

Thus, x P Πn and Q Ď Πn.

Lemma 4.5.4.

Πn “

#

x P Rn
ˇ

ˇ

ˇ

n
ÿ

k“1

xk “

ˆ

n

2

˙

and @S Ď rns,
ÿ

kPS

xk ě

ˆ

|S|

2

˙

+
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Proof. Exercise.

Definition 4.5.5. A zonotope is the Minkowski sum of line segments.

Note that Πd is a zonotope.

Proposition 4.5.6. Every face of a zonotope is a zonotope.

Proof. Suppose Z “
řn

i“1 rui, vis. By Lemma 4.3.10 we have that Zc “
řn

i“1 rui, visc. Since

rui, visc “

$

’

&

’

%

rui, vis , xc, viy “ xc, uiy

tuiu , xc, viy ă xc, uiy ,

tviu , xc, viy ą xc, uiy

the result follows.

Next, note that Πd Ď Rd, but Πd is pd´1q-dimensional. Thus, Vold pΠdq “ 0 which is not interesting. Instead,
we consider

p : Rd Ñ Rd´1, p px1, . . . , xdq “ px1, . . . , xd´1q

and compute Vold´1 pp pΠdqq. This is called the relative volume of Πd.

Theorem 4.5.7 (Stanley). pd´1q! Vold´1 pp pΠdqq “ dd´2 “ number of spanning trees of the complete graph
Kd.

We will prove this theorem using Bernstein’s theorem. Since p is a linear function, it follows from Proposition
4.5.3 that

p pΠdq “
ÿ

1ďiăjďd

p pLijq .

Then,
Vold´1 pp pΠdqq “

ÿ

i1j1,...,id´1jd´1

MV
`

p pLi1j1q , . . . , p
`

Lid´1jd´1

˘˘

,

where the sum is over all pd ´ 1q-tuples of pairs ij such that 1 ď i ă j ď d.

Lemma 4.5.8. MV
`

p pLi1j1q , . . . , p
`

Lid´1jd´1

˘˘

“

#

1
pd´1q! , if i1j1, . . . , id´1jd´1 are the edges of a spanning tree of Kd

0, otherwise,
where Kd is the complete graph on d vertices.

Example 4.5.9.
(1) Let us describe the system of equations corresponding to

MV pp pL12q , p pL23q , p pL34qq .

We have tht p pLi4q “ p prei, e4sq “ rei, 0s and this is the Newon polytope of λxi ` µ. The system is then
$

&

%

λ1x1 ` µ1x2 “ 0,
λ2x1 ` µ2x3 “ 0,
λ3x3 ` µ3 “ 0

,

where all the λi, µi are non-zero. Note that we can solve for x1, x2, x3 and so the system has a unique
solution. By Bernstein’s theorem we have that

4!MV pp pL12q , p pL23q , p pL34qq “ 1,

as anticipated by the lemma.
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(2) The system of equations corresponding to MV pp pL12q , p pL14q , p pL24qq is
$

&

%

λ1x1 ` µ1x2 “ 0,
λ2x1 ` µ2 “ 0,
λ3x2 ` µ3 “ 0

,

where all the λi, µi are non-zero. This sistem has no solution because x1 “ ´µ2{λ2 and x2 “ ´µ3{λ3

implies that λ1x1 ` µ1x2 ‰ 0. By Bernstein’s theorem we have that 4!MV pp pL12q , p pL14q , p pL24qq “ 0, as
anticipated by the lemma.

(3) The system of equations corrresponding to MV pp pL12q , p pL13q , pp23qq is
$

&

%

λ1x1 ` µ1x2 “ 0,
λ2x1 ` µ2x3 “ 0,
λ3x2 ` µ3x3 “ 0

,

where all the λi, µi are non-zero. The only solution to this system is x1 “ x2 “ x3 “ 0, but this is not in
pCzt0uq3. By Bernstein’s theorem we have that 4!MVppp12q, pp13q, pp23qq “ 0, as anticipated by the lemma.

Sketch of proof. By Bernstein’s theorem, we have that d!MV pp pi1j1q , . . . , p pid´1jd´1qq is the number of so-
lutions in pCzt0uqd´1 of the system

$

’

’

’

’

’

&

’

’

’

’

’

%

λi1x1 ` µi1xj1 “ 0,
λi2x1 ` µi2xj2 “ 0,
...
λid´1

xjd´1
` µid´1

xjd´1
“ 0

xd “ 1

,

where all the λi, µi are non-zero. Suppose i1j1, . . . , id´1jd´1 are the edges of a spanning tree of Kd Then, or
each vertex v there is a unique path to d. Now, the edge wd tells us that a solution must satisfy xw “ ´

µd

λw
.

Substituting backwards along the path gives the unique value of xv and this value is nonzero.

Instead, suppose that i1j1, . . . , id´1jd´1 are not the edges of a spanning tree of Kd. Then, some of the
vertices form a cycle. First, suppose that the graph is missing 2 or more vertices. Then the missing vertices
give 8-many solutions and there are no isolated solutions; thus the mixed volume is zero. (Alternatively,
řd´1

k“1 ikjk is ď pd´2q dimensional and by Theorem 4.3.16 (4) we have that the mixed volume is zero.) Next,
ff the only missing vertex is d, then we obtain a system whose unique solution is t0ud´1 and so the mixed
volume is zero. Finally, if the the only missing vertex is v ‰ d, then the system has no solution and so the
mixed volume is zero.

Proof. Proof of Theorem 4.5.7. The number of spanning trees of Kd is dd´2. By Lemma 4.5.8, we have that

Vol pp pΠdqq “
ÿ

T spanning tree of Kd

1

pd ´ 1q!

and the result follows.
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Chapter 5

Zonotopes

We ended last chapter with some discussions on zonotopes, which are the Minkowski sums of line segments.

In order to understand zonotopes (and polytopes in general) it is useful to look at the normal fan.

5.1 Normal fans

Definition 5.1.1. A fan F “ C1, . . . , Cn in Rd is a collection of polyhedral cones

Ci “ cone pvi1, . . . , viki
q Ď Rd

such that every nonempty face of a cone is also a cone in Σ, and, the intersection of any two cones in Σ is a
face of both.

Definition 5.1.2. The normal fan N pP q “ tNF | F face of P u of a polytope P is the fan whose cones are

NF “
␣

c P Rd | F Ď Pc

(

,

i.e., the directions that are maximized by F .

Example 5.1.3. Let P “ convtp0, 0q, p2, 0q, p2, 2q, p1, 2q, p0, 1qu. Then, the normal fan of P is depicted below.
Normal fans of zonotopes are given by hyperplane arrangements.

Definition 5.1.4. A (central) hyperplane arrangement A “ tH1, . . . ,Hnu in Rd is a collection of hyper-
planes

Hi “
␣

x P Rd | xai, xy “ 0
(

.

Note that arrangements decompose Rd into a fan. Concretely, a cone C of the fan is determined by deciding
for each Hi whether xai, xy ą 0, xai, xy ă 0, or xai, xy “ 0 for all x P intpCq. One can show that every
zonotope is a translation of a zonotope of the form Z “

řn
i“1 r0, vis, so let us restrict to these.

Proposition 5.1.5. The normal fan of a zonotope Z “
řn

i“1 r0, vis is the fan of the hyperplane arrangement
tH1, . . . ,Hnu, where

Hi “
␣

x P Rd | xvi, xy “ 0
(

.

Proof. Consider a face Zc of Z. Recall that Zc “
řn

i“1 rui, visc, where

r0, visc “

$

’

&

’

%

r0, vis , xc, viy “ 0

t0u, xc, viy ă 0.

tviu , xc, viy ą 0
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It follows that c, c1 are in the same cone of N pZq if and only if xc, viy and xc1, viy have the same sign for all
i. In turn, this holds if and only if c, c1 are in the same cone of the hyperplane arrangement determined by
A.

Theorem 5.1.6 (Shephard). The zonotope Z “
řn

i“1 r0, vis Ď Rd can be tiled into t0u together with the
translates of the half-open parallelepipeds

řk
j“1 p0, vik s, one for each linearly independent vi1 , . . . , vik P Rd.

Example 5.1.7. Consider the permutohedron Π3 “ r0, p1,´1, 0qs ` r0, p1, 0,´1qs ` r0, p0, 1,´1qs` p1, 2, 3q.
The subdivision is depicted below.

Figure 5.1: decomposition of cube

Proof. We proceed by induction on n. If n “ 1, then Z “ r0, v1s “ t0u Y p0, v1s, as desired. Now, suppose
that n ą 1. By induction, we have a decomposition as in the statement of Z 1 “

řn´1
i“1 r0, vis. Define the

hyperplane
H “

␣

x P Rd | xvn, xy “ 0
(

,

and let p : Rd Ñ H be the orthogonal projection onto H. Then, Z2 “
řn´1

i“1 r0, p pviqs is a zonotope in H and
so by induction we can decompose it as in the satement. Each open parallelepiped in the decomposition of
Z2 is of the form

ř

iPI p0, p pviqs, where the p pviq are linearly independent. Now, given such a parallelepiped,
lift it to a parallelepiped in Z by taking p0, vns `

ř

iPI p0, vis. Consider a linear combination

λnvn `
ÿ

iPI

λivi “ 0

ñ 0 `
ÿ

iPI

λip pviq “ 0

and since the p pviq are linearly independent, we must have that λi “ 0 for all i P I. Since vn ‰ 0 then
λn “ 0 and so tvnuYtvi | i P Iu are linearly independent. One can show that the union of the parallelepipeds
obtained from Z 1 and Z2 is a tiling of Z.

Lemma 5.1.8. Suppose w1, . . . , wd P Zd are linearly independent, and let Π “
řd

i“1 p0, wis. Then,

VoldpΠq “
ˇ

ˇΠ X Zd
ˇ

ˇ “ |det pw1, . . . , wdq| ,

and for every positive t P Z,
ˇ

ˇtΠ X Zd
ˇ

ˇ “ pVoldpΠqq td.
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Proof. Since Π is half-open, then we can tile tΠ using td translates of Π. It follows that

LΠptq “
ˇ

ˇtΠ X Zd
ˇ

ˇ “ td
ˇ

ˇΠ X Zd
ˇ

ˇ .

Since w1, . . . , wd P Zd, we have that LΠptq is a polynomial with leading coefficient

VoldpΠq “ |det pw1, . . . , wdq| .

Since the polynomials have to be equal, the result follows.

Combining the Lemma and Shephard’s theorem we obtain the following.

Corollary 5.1.9. Let Z “
řn

i“1 r0, vis Ď Rd. Then,

(1) VoldpZq “
ř

|det pvi1 , . . . , vidq|, where the sum is over all bases vi1 , . . . , vid .

(2) The Ehrhart polynomial LZptq “
ř

W Wlin. ind. VolpZpW qqt|W |, where ZpW q “
ř

viPW r0, vis and the
VolpZpW qq is taken in the affine span of ZpW q.

5.2 Generalized permutohedra

The permutohedron Πn Ď Rn is the convex hull of n ! points obtained by permuting the coordinates of
any vector pa1, . . . , anq with strictly increasing coordinates a1 ă ¨ ¨ ¨ ă an. Label the vertices of Πn as
πw “

`

aw´1p1q, . . . , aw´1pnq

˘

, one for each w P Sn. The edges of this permutohedron are rπw, πwsis, where
si “ pi, i ` 1q is an adjacent transposition.

Remark 5.2.1. For any w P Sn and si we have that πw ´ πwsi “ kw,i

`

ewpiq ´ ewpi`1q

˘

, where kw,i P Zą0.

Definition 5.2.2. A generalized permutohedron P is the convex hull of n ! points vw P Rn such that for
any w P Sn and adjacent transposition si we have that

vw ´ vwsi “ kw,i

`

ewpiq ´ ewpi`1q

˘

,

where kw,i P Rě0 (i.e, kw,i can be zero).

Remark 5.2.3. This can be summarized as ”P is a generalized permutohedron if and only if all of its edges
are parallel to ei ´ ej for some i, j ”.

Example 5.2.4. The following are generalized permutohedra, Π2, Q1, Q2.

Figure 5.2: Examples of generalized permutohedra

Recall that:

- The normal fan N pP q of a polytope P is the fan whose cones are NF pP q where F is a face of P and
NF pP q “

␣

c P Rd | F Ď Pc

(

.

- The normal fan of the zonotope Z “
řn

i“1 r0, vis is the fan of the hyperplane arrangement tH1, . . . ,Hnu,
where Hi “

␣

x P Rd | xvi, xy “ 0
(

.
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Definition 5.2.5. We say that a fan F is refined by a fan F 1 if any cone in F is a union of cones in F 1.

Proposition 5.2.6. A polytope P Ď Rn is a generalized permutohedron if and only if N pP q is a coarsening
of N pΠnq. (This fan is also known as the braid arrangement fan.)

Example 5.2.7. This can be verified for the polytopes in Example 5.2.4.

This proposition holds in a more general setting.

Proposition 5.2.8. Let P,Q Ď Rn be n-dimensional polytopes and assume Q is simple. The following are
equivalent:

(1) N pQq refines N pP q.

(2) The vertices of P can be labelled xv, v P vertspQq (possibly redundantly) so that for any edge ru, vs of Q,
there exist k P Rě0 such that

xu ´ xv “ kpu ´ vq. (5.1)

Exercise 5.2.9. Let ru, vs be an edge of an n-dimensional polytope Q Ď Rn. Show that NupQq X NvpQq Ď

tx | xx, u ´ vy “ 0u.

Proof. (1) ñ p2q Suppose that N pQq refines N pP q. Given a vertex x P P , label it by xv for every vertex
v P Q such that NvpQq Ď NxpP q. Now, consider an edge ru, vs of Q. If xu “ xv, then (15.1) holds trivially.
On the other hand, if xu ‰ xv, then NupQq, NvpQq lie in different cones NxupP q ‰ Nxv pP q. Since NupQq

and NvpQq are adjacent and N pQq refines N pP q, then NxupP q and Nxv pP q must share a codimension 1 face
and the hyperplane defining it must be the same as the one separating NupΠq from NvpΠq. This hyperplane
corresponds to an edge ru, vs of Q and, by the exercise, the normal vector of this hyperplane is u ´ v. The
exercise also implies that xu ´ xv is a positive multiple of u ´ v, as desired.

(2) ñ p1q To prove this result we need to recall the following. If λ is generic, then it induces an orientation
of the graph of P,GpP q. Concretely, u Ñ v if λpvq ą λpuq. The orientation of GpP q induced by this λ is
acyclic and has a unique sink (a vertex with no outgoing edges). Moreover, λ is maximized over P at the
sink.

Fix a vertex u P Q and let c P NupQq be such that λpxq “ xc, xy is generic. Then, the orientation of GpQq

induced by c is acyclic and has a unique sink u. For any other vertex v ‰ u there exists a unique directed
path pv1 “ v, v2, . . . , vk “ uq from v to u. Thus,

λ pv1q ă ¨ ¨ ¨ ă λ pvkq “ max
xPQ

λpxq.

Note that by (5.1) we have that

λ
`

xvi`1

˘

´ λ pxviq “ kλ pvi`1 ´ viq ě 0

It follows that λ pxvq ď λ pxuq. Since this inequality holds for any generic λ, we have that NupQq Ď NxupP q.
Since the same statement is true for any vertex of Q, one deduces (1).

Definition 5.2.10. A polytope P is a deformation of a simple polytope Q if it satisfies any of the conditions
above.

Proposition 5.2.11. P is a deformation of Q if and only if P is a Minkowski summand of a dilation tQ, i.e.,
there exist a polytope P 1 and t P Rą0 such that P ` P 1 “ tQ.

Proof. See [8] Theorem 15.3.
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5.2.1 The normal fans of permutohedra

Recall that P is a generalized permutohedron if and only if N pP q is refined by the normal fan of the permu-
tohedron.

Let us describe the normal fan of the permutohedron Πd as a fan in Rd{R1 – Rd´1. This is because Πd Ď
␣

x P Rd | x1, xy “ npn ` 1q{2u and so it is natural to describe the normal fan in the orthogonal complement
of this affine plane, translated to the origin.

Proposition 5.2.12. There is a cone σP P N pΠdq for each ordered set partition P “ pA1, . . . , Akq of rds.
Concretely, the cone corresponding to P is

σP “ cone

#

ÿ

iPS

ei | S “ A1 Y ¨ ¨ ¨ Y Am for some m ă k

+

“ tx | xi ě xj ô i P Am, j P Aℓ,m ď ℓu .

For example, the cone corresponding to the ordered set partition p36, 124, 5q is

cone te3 ` e6, e1 ` e2 ` e3 ` e4 ` e6u “ tx | x3 “ x6 ě x1 “ x2 “ x4 ě x5u .

Proof. Since Πd is a zonotope, the normal fan of this polytope is the fan for the hyperplane arrangement
consisting of the hyperplanes

tx | xi “ xju

for each i ă j. Concretely, the interiors of the cones of this fan are obtained by choosing for each i ă j one
of the following

xi “ xj , xi ă xj , xi ą xj .

In order to obtain a nonempty cone, we must be able to arrange these equations into a line, as in the
inequality definition of σP .

5.3 Graphic zonotope

Definition 5.3.1. Let G “ pV “ rns, Eq be a graph without loops or multiple edges. The graphic zonotope
ZpGq is the Minkowski sum of the line segments rei, ejs for pi, jq P E, i ă j.

Example 5.3.2. The permutahedron Πn is the graphic zonotope of the complete graph Kn.

Proposition 5.3.3. The zonotopal generalized permutohedra are exactly the graphic zonotopes.

It is useful to note that
ZpGq “

ÿ

pi,jqPE
iăj

rei, ejs “
ÿ

pi,jqPE
iăj

pei ` r0, ej ´ eisq .

Proof. We have seen that the normal fan of the zonotope Z “
řn

i“1 r0, vis is the fan of the hyperplane
arrangement tH1, . . . ,Hnu, where Hi “

␣

x P Rd | xvi, xy “ 0
(

. It follows that the N pZpGqq is the fan of the
hyperplane arrangement tHij | pi, jq P Eu, where Hij “

␣

x P Rd | xei ´ ej , xy “ 0
(

. This is a coarsening of
the normal fan of the permutohedron Πn.

Proposition 5.3.4. Let G be a connected graph. The volume of ZpGq equals the number of spanning trees
of G. The number of lattice points of ZpGq equals the number of forests in G.

The proof of this proposition is a direct application of Corollary 5.1.9. To do so we prove this result for the
translated polytope

ř

pi,jqPE
iăj

r0, ej ´ eis.
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Proof. Let U “ span tej ´ ei | pi, jq P Eu. To prove the volume claim by applying Corollary 5.1.9 we need
to show that ej1 ´ ei1 , . . . , evd

´ eid form a basis for U if and only the edges pi1, j1q , . . . , pid, jdq form a
spanning tree of G. First, note the following (1) If some collection of edges pi1, j1q , . . . , pik, jkq forms a
cycle, then

ř

pej1 ´ ei1q ` ¨ ¨ ¨ pejd ´ eidq “ 0, i.e. the corresponding vectors are linearly dependent. (2) If
the sub-graph formed by some collection of edges pi1, j1q , . . . , pik, jkq is missing vertex v of G, then since
G is connected there is an edge pu, vq P E and the corresponding ev ´ eu is linearly independent from the
vectors ej1 ´ ei1 , . . . , evk ´ eik .

Suppose the edges pi1, j1q , . . . , pid, jdq do not form a spanning tree of G. Then, either there is a cycle or a
vertex is missing. In the first case we have, by (1), that the vectors are linearly dependent. In the second
case we have, by (2), that the vectors are not spanning. In either case we see that the vectors do not form a
basis for U .

Conversely, suppose that the edges pi1, j1q , . . . , pid, jdq form a spanning tree of G. First, note that the cor-
responding vectors must be spanning. Concretely, given eu ´ ev not in the list if we add the edge pu, vq to
the spanning tree this creates a cycle containing pu, vq. By (1) we must have that eu ´ ev is in the span of
the vectors. Now, if the vectors are spanning but not linearly independent, then we can delete some of the
vectors until we obtain a basis. However, since we have a spanning tree we must have disconnected a vertex
from the graph, a contradiction to spanning independence, by (2). The volume claim follows from showing
that

|det pej1 ´ ei1 , . . . , evd ´ eidq| “ 1,

which is left as an exercise. The argument above can be adapted to show that ej1 ´ ei1 , . . . , evd ´ eid are
linearly independent if and only the edges pi1, j1q , . . . , pid, jdq form a forest in G. Applying Corollary 5.1.9(2)
with t “ 1 we obtain the number of lattice points claim.

5.3.1 Minkowski sums of simplices

Given I Ď rds, let ∆I :“ conv tei | i P Iu which is a standard simplex. Given I a collection of subsets of rds

and list of positive real numbers ȳ “ pyI | I P Iq consider the polytope

∆I,ȳ :“
ÿ

IPI
yI∆I .

If |I| “ 2 and yI “ 1 for all I P I, then ∆I is a graphic zonotope.

Proposition 5.3.5. ∆I,ȳ is a generalized permutohedron.

Proof. Recall that for any pair of polytopes P,Q and scalars r, s we have prP ` sQqa “ rPa ` sQa. Thus,
every edge of ∆I,ȳ is parallel to a sum of an edge of exactly one ∆I together with a collection of vertices of
the remaining ∆J . Note that the edges of ∆I are parallel to ei ´ ej for some i, j P I. It follows that ∆I,ȳ is a
deformation of the permutahedron, i.e., a generalized permutohedron.

Recall that Given I Ď rds, let ∆I :“ conv tei | i P Iu which is a standard simplex. Given I a collection of
subsets of rds and list of positive real numbers ȳ “ pyI | I P Iq consider the polytope

∆I,ȳ :“
ÿ

IPI
yI∆I .

We showed last time that these polytopes are generalized permutohedra.

Definition 5.3.6. We say that a collection B of nonempty subsets of a finite set S is a building set if it
satisfies the following conditions.

(B1) If I, J P B and I X J ‰ ∅, then I Y J P B.

(B2) For all i P S, tiu P B.
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Example 5.3.7. Let G be a graph with no loops or multiple edges with vertex set S. The set

BpGq “ tJ Ď S|J ‰ ∅, G|J is connected u

is a building set.

Sums of simplices where I is a building set are called nestohedra. Note that condition (B2) does not impose
any additional restrictions on the structure of ∆I,ȳ since it only translates the polytope. This condition is
there only for convenience.

The next result computes the dimension and face lattice of a nestohedron. It also shows that these polytopes
are simple. To understand the statement we need some definitions.

Definition 5.3.8. Let B be a building set on rds. The collection Bmax consists of the inclusion-maximal
elements of B. A subset N Ă BzBmax is a nested if it satisfies the following conditions:

(N1) For any I, J P N, either I Ď J, J Ď I, or I X J “ ∅.

(N2) For any k ě 2 and I1, . . . , Ik P N pairwise disjoint, the union I1 Y ¨ ¨ ¨ Y Ik R B.

Define the nested complex CB as the simplicial complex whose faces are the nested sets of B.

A building set on S in connected if Bmax “ tSu.

Example 5.3.9. The smallest connected building set on rds is B “ tt1u, t2u, . . . , tdu, rdsu. The corresponding
nestohedron is ∆B,1 is the standard simplex.

Example 5.3.10. Consider the building set B “ tt1u, t2u, t3u, t1, 2u, t2, 3u, t1, 2, 3uu. The resulting nestohe-
dron is depicted below.

Figure 5.3: nestohedra

The maximal elements are Bmax “ tt1, 2, 3uu. The nested complex is depicted below.

Figure 5.4: nested complex

Remark 5.3.11. One way to obtain the nested complex is as follows.

(1) Start with the simplicial complex whose facets are
"ˆ

rds

d ´ 1

˙*

.

(2) Choose an ordering of the non-singleton elements of BzBmax from larger sets to smaller sets.

(3) For each I P BzBmax and following this order perform a stellar subdivision of the simplex ∆ “ ttiu | i P

Iu. This means, add the vertex I to the complex and replace ∆ by the |I| simplices ∆j “ tIu Y pttiu |

i P Iztjuuq for each j P I (and their subsets).

The resulting complex is the nested complex.
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Theorem 5.3.12. Let B is a building set on [d]. The nestohedron ∆B,ȳ is a simple polytope of dimension
d ´ |Bmax|. The dual of ∆B,ȳ is isomorphic, as a simplicial complex, to the nested complex CB.

Proof. Let P “ ∆B,ȳ. We want to show that each N P CB corresponds to a cone of the normal fan of P . First,
start with a cone C in N pP q. Since P is a generalized permutohedron, then C is a union of the cones in
Proposition ref16.1. Pick a σP Ă C of maximal dimension, where P “ pA1, . . . , Akq is a partition of rds, and
let c P σP . Now,

p∆Iqc “ ∆IXAjpIq
,

where jpIq is the minimal index such that I X Aj ‰ ∅. Note that if I Ď J , then jpIq ě jpJq. Define

N “ tI P BzBmax | jpIq ą jpJq for any J Ľ I, J P Bu .

We claim that N is a nested set. (N1) Suppose I, J P N are such that I X J ‰ ∅, I Ę J , and J Ę I. By (B1)
it follows that I Y J P B. Since AjpIYJq X pI Y Jq ‰ ∅, then either AjpIYJq X I ‰ ∅ or AjpIYJq X J ‰ ∅.
However, this contradicts that jpIq ą jpI Y Jq and jpJq ą jpI Y Jq. (N2) Can be proven in a very similar
way to (N1).

It follows that N is a nested set, as desired. For the converse, let N be a nested set. In order to obtain a cone
of N pP q we need to provide an ordered set partition. For each I P N Y Bmax , let

AI “ Iz
ď

JĎI
JPN

J.

We claim these sets partition rds.

(1) If x P AI XAJ then x P I XJ and so by (N1) (WLOG) J Ď I. If J Ĺ I, then x R AI , which is not possible.

(2) Let x P rds. Note then that x P I for some I P Bmax. If x R AI , then x P J for some J P N such that J Ĺ I.
Let Ĵ be the smallest such set. Then, x P AĴ .

Pick a linear order of AI1 ă ¨ ¨ ¨ ă AIk of these sets satisfying that AIi ă AIj if Ii Ĺ Ij . It follows that there
is a cone σP P N pΠdq corresponding to this ordered set partition. The face corresponding to N is then given
by the smallest cone of N pP q containing σP .

There are some missing details that are left to the reader:

- The two processes are inverses of each other.

- N Ď N1 if and only if the cone corresponding to N is contained in the cone corresponding to N1.

5.4 Catalan Numbers and Triangulations

Tom Davis’s pdf gives a a set of combinatorial problems equivalently defining Catalan numbers. We recall
that the Catalan number is Cn “ 1

n`1

`

2n
n

˘

. For more of such equivalence, one may consult [11] section 6.2.

Proposition 5.4.1. The number of lattice paths from p0, 0q to pn, nq, which only use the steps p1, 0q, p0, 1q,
and which do not pass above the diagonal equals the n-th Catalan number Cn.

Proof. First, all paths can be encoded in a sequence of nN ’s and nE ’s. Thus, the number of latttice paths

from p0, 0q to pn, nq (which may go above the diagonal) is
ˆ

2n
n

˙

. Next, let us count the number of bad

paths. To do so, let us show that the bad paths are in bijection with the lattice paths from p0, 0q to pn´1, n`1q.
Given a bad path, it must cross the diagonal and touch the next diagonal y “ x ` 1. The first time it touches
y “ x` 1, reflect the remaining path over y “ x` 1. Note that in the section of the path that is not reflected,
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there is one more N step than E steps. It follows that in the section of the path that is reflected, there is one
more E step than N steps. Since reflecting swaps E ô N , it follows that the reflected path has n ` 1 N steps
and n´1E steps. So, instead of reaching pn, nq, all bad paths after reflection end at pn´1, n`1q, as desired.
Now, the count for number of paths ending at pn ´ 1, n ` 1q is

ˆ

n ´ 1 ` n ` 1
n ´ 1

˙

“

ˆ

2n
n ´ 1

˙

“

ˆ

2n
n ` 1

˙

.

We conclude that the number of good paths is
ˆ

2n
n

˙

´

ˆ

2n
n ` 1

˙

“
1

n ` 1

ˆ

2n
n

˙

“ Cn.

Proposition 5.4.2. The Catalan numbers satisfy the recurrence C0 “ 1 and Cn`1 “
řn

i“0 CiCn´i for n ě 0.

Proof. To obtain each good path from p0, 0q to pn ` 1, n ` 1q, we can follow the procedure below.

(1) Start with a good path from p0, 0q to pi, iq for some i P rns. There are Ci such paths.

(2) Take an E step to reach pi ` 1, iq.

(3) Take a path from pi ` 1, iq to pn, n ´ 1q that stays above y “ x ´ 1. There are Cn´i such paths.

(4) Take an N step to reach pn ` 1, n ` 1q.

It follows that the number of good paths from p0, 0q to pn ` 1, n ` 1q is
řn

i“0 CiCn´i.

Proposition 5.4.3. The number of triangulations of an pn ` 2q-gon that only use diagonals is Cn.

Proof. Let Tn be the number of triangulations of an pn ` 2q-gon. We will show that Tn satisfies the same
recurrence as the Catalan numbers. Clearly, T0 “ 1 and T1 “ 1. Now, let n ě 1 and consider an pn ` 1 ` 2q-
gon P . Pick one side of the P and call it the base. Label the vertices of P as 0, . . . , n` 2 counterclockwise so
that the base is the side between n`1 and n`2. To obtain a triangulation of P , we can follow the procedure
below.

(1) Pick a vertex v among the ones labeled 0, . . . , n and add the triangle with vertices v, n ` 1, n ` 2.

(2) The remaining part of P that needs to be triangulated consists of two polygons, one with n ` 1 as a
vertex and the other with n ` 2 as a vertex. Note that the polygon P1 with n ` 1 as a vertex is an
pv ` 2q-gon and the polygon P2 with n ` 2 as a vertex is an pn ` 2 ´ vq-gon.

(3) Triangulate each of these polygons separatedly.

This shows that Tn`1 “
řn

i“0 TiTn´i.

The collection of polygonal subdivisions of an pn ` 2q-gon tile a sphere.

Question:
Is there a polytope that agrees with this tiled sphere?

Theorem 5.4.4 (Loday). Let B be the building set corresponding to the graph which is a path. The nestohe-
dron ∆B,1 agrees with this tiled sphere. This polytope is called Loday’s associahedron.

Example 5.4.5. Consider the path with 3 vertices. The resulting nestohedron is given in example 5.3.10.

Remark 5.4.6. This is not the only polytope that agrees with this tiled sphere. There are many polytopes
that do so and not all of them are isomorphic.
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Figure 5.5: Polygonal subdivisions.

Lemma 5.4.7. The tilings of the staircase shape pn, n ´ 1, . . . , 1q with n rectangles are in bijection with the
triangulations of an pn ` 2q-gon.

Example 5.4.8.

Sketch of proof. Label the vertices of an ( n ` 2 )-gon P as 1, . . . , n counterclockwise. Given a triangulation
T of P we can obtain a tiling of the staircase shape as follows. For each triangle in T with vertices i ă j ă k,
add the rectangle ri, j ´ 1s ˆ rj, k ´ 1s. This gives a bijection.

Proof of Loday’s theorem. Let B be the building set corresponding to the graph which is a path with n vertices.
Let us prove that the vertices of P “ ∆B,1 are in bijection with the tilings of the staircase shape pn, n´1, . . . , 1q

with n rectangles. Label the corners of the steps 1, . . . , n and fix a tiling of the staircase shape. The i-
th rectangle in such a subdivision is the rectangle that contains the i-th corner of the triangular shape.
Associate to the tiling the vector t “ pt1, . . . , tnq where ti equals the number of boxes in the i-th rectangle.
The face Pt is the vertex t.

One can show that every vertex of P can be obtained in this way. Roughly, given c such that Pc is a vertex
do the following.

64



Theory of Polytopes Anthony Hong

(1) Let ci be the largest entry. Then place the rectangle with corners at i and p1, nq.

(2) Remove this rectangle from the shape as well as entry ci from c and repeat the process with each
connected component.

One can then show that the higher dimensional faces of this polytope agree with those of the tiled sphere.
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Chapter 6

Polytopes in Algebraic Geometry

6.1 Polytopes arising from a torus action

The projective space is Pn “
`

Cn`1z t0uq{C˚, where λ ¨ pa0, . . . , anq “ pλa0, . . . , λanq. Denote the coordi-
nates of Pn by ra0 : ¨ ¨ ¨ : ans.

A polynomial f P C rx0, . . . , xns is homogeneous if f pλx0, . . . , λxnq “ λdf px0, . . . , xnq for all λ P C˚. This
is equivalent to saying that f is a sum of monomials of the same degree. An ideal I Ď C rx0, . . . , xns is
homogeneous if it is generated by homogeneous polynomials.

A projective variety is V pIq “ tx P Pn | fpxq “ 0 for all f P Iu, where I is a homogeneous ideal. A mor-
phism between two varieties ϕ : X Ñ Y is a map such that each entry is a polynomial. A projetive variety is
irreducible if its defining ideal is prime. Today we will only work with irreducible varieties.

An (algebraic) torus is T “ pC˚q
d. Note that this is a group with respect to point-wise multiplication:

pt1, . . . , tdq ¨
`

t1
1, . . . , t

1
d

˘

“
`

t1t
1
1, . . . , tdt

1
d

˘

.

The torus T acts on Pd by

pt1, . . . , tdq ¨ ra0 : ¨ ¨ ¨ : ads “ ra0 : t1a1 ¨ ¨ ¨ : tdads . (6.1)

However, there are many other ways in which a torus can act on Pn. For example, given T “ pC˚q
d and

w0, . . . , wn P Zd we have the action

pt0, . . . , tnq ¨ ra0 : ¨ ¨ ¨ : ans “ rtw0 : a0 : tw1a1 ¨ ¨ ¨ : twnans .

An action of T on X is algebraic if T ˆ X Ñ X is a morphism (i.e. a polynomial map). In fact, every
algebraic action of T on Pn is of this form, see [7] section 1.1.

We are interested in projective varieties X Ď Pn that are invariant under an action of a torus T , i.e.

x P X, t P T ùñ t ¨ x P X.

Let us call them T -varieties.

Example 6.1.1. Suppose T acts on Pn and a P Pn. The orbit of a is the set T ¨ a “ tt ¨ a | t P T u. Denote by
T ¨ a the smallest projective variety containing T ¨ a, then T ¨ a is a T -variety. In fact, it is a projective toric
variety. Let us look at some instances of for the action on P2 in (6.1).
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(1) If a “ r1 : 1 : 1s, then T ¨ a “
␣

b P P2 | @i, bi ‰ 0
(

. Moreover, T ¨ a “ P2. This is clearly T -invariant.

(2) If a “ r1 : 0 : 0s, then T ¨ a “ tau. Moreover, T ¨ a “ V pxx1, x2yq “ tau. It is straightforward that this is
T -invariant.

(3) If a “ r1 : 1 : 0s, then T ¨ a “
␣

b P P2 | b2 “ 0, b1, b2 ‰ 0
(

. We have that T ¨ a “ V pxx2yq. One can verify
that r1 : 0 : 0s P T ¨ a by noting that

r1 : 0 : 0s “ lim
t2Ñ0

pt1, t2q ¨ r1 : 1 : 0s.

Since pt1, t2q ¨ ra0 : a1 : 0s satisfies that x2 “ 0, then this orbit closure is T -invariant.

Proposition 6.1.2. If T acts on Pn and a P Pn, then T ¨ a is T -invariant.

Proof. Since T ˆ X Ñ X is a morphism, then it is continuous. Since every point in T ¨ a is obtained as a
limit it follows that for any s P T, b P T ¨ a,

s ¨ b “ s ¨

ˆ

lim
tÑt˚

t ¨ a

˙

“ lim
tÑt˚

pstq ¨ a.

Definition 6.1.3.

• An action of T on X Ď Pn is effective (a.k.a. faithful) if

t “ 1 ðñ @x P X, t ¨ x “ x.

• Suppose we have an effective action ot T on Pn. The weights of this action are the ω0, . . . , ωn P Zd

such that
t ¨ ra0, . . . , ans “ ra0t

ω0 , . . . , ant
ωns .

• If X Ď Pn is T -invariant, the weights of this action are the ωi from above such that there exists a P X
with ai ‰ 0.

• The moment polytope of X Ď Pn with respect to a given T -action is µpXq “ convt weights of the
T -action on Xu.

We saw how to obtain a polytope from a projective toric variety, via moment polytopes. We can see many
properties of the variety encoded into the polytope.

Example 6.1.4. Consider the orbit closure T ¨ r1 : 1 : 0s. Note that

T ¨ r1 : 1 : 0s “ V pxx2yq “ T ¨ r1 : 1 : 0s \ T ¨ r1 : 0 : 0s \ T ¨ r0 : 1 : 0s.

This is reflected in the decomposition

µpT ¨ r1 : 1 : 0sq “ conv t0, e1u “ t0u \ te1u \ p0, e1q .

Proposition 6.1.5. Suppose T is an action on a projective toric variety X.

(1) dimpXq “ dimpµpXqq.

(2) If X is a smooth, then the h-polynomial of µpXq equals the Poincaré polynomial of X.

A consequence of (1) above is a criterion for when a T -variety is toric with respect to the T -action.
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Corollary 6.1.6. Let X be a T-variety. The variety X is a projective toric variety if and only if dimpXq “

dimpµpXqq.

Proof. If X is a toric variety then, by (1) above, dimpXq “ dimpµpXqq. Conversely, if dimpXq “ dimpµpXqq,
let a P X be generic. Such a point has the property that dimpT ¨ aq is as large as possible. Since T ¨ a and X
are irreducible varieties and have the same dimension they must agree. It follows that X is a toric variety.

Definition 6.1.7. The degree of a projective variety X Ď Pn is the number of points in X X H, where H is
a generic linear space such that dimpHq “ n ´ dimpXq.

Example 6.1.8. This notion generalizes the notion of degree of a polynomial. Consider the polynomial
f px0, x1, x2q “ x2

0x2´x2
1 and the variety V pfq Ď P2. Then to obtain de degree we can look at the intersection

of V pfq with a line. In the chart x0 “ 1, the equation is x2 “ x2
1 and we can see that there are two points in

such an intersection. Thus, the degree of V pfq is 2 .

Theorem 6.1.9. The degree of a projective toric variety X is equal to dimpXq! VolpµpXqq.

One can show that this is equivalent to Bernstein’s theorem.

Definition 6.1.10. Let X “ V pIq Ď Pn be a projective variety. The Hilbert series of I is

HIptq “
ÿ

mě0

dimC ppC rx0, . . . , xns {Iqmq tm.

Here pC rx0, . . . , xns {Iqm denotes the m-th graded piece of C rx0, . . . , xns {I, which is a C vector space.

Example 6.1.11. Let I be the trivial ideal so that C rx0, . . . , xns {I “ C rx0, . . . , xns. Then, pC rx0, . . . , xnsqm
consists of the homogeneous polynomials of degree m and this is generated as a C-vector space by the

monomials of degree m. It follows that dim pC rx0, . . . , xnsqm “

ˆ

n ` m
m

˙

. We conclude that

HIptq “
ÿ

mě0

ˆ

n ` m

m

˙

tm “
1

p1 ´ tqn
.

This agrees with the Ehrhart series of the simplex (see Example 8.7) and this is no accident.

Proposition 6.1.12. Let X “ V pIq Ď Pn be a projective toric variety. The Hilbert series of I agrees with
Ehrhart series of µpXq.

6.2 Moment polytopes in the Grassmannian

Definition 19.4. The Grassmannian Grpk, dq is the set of k-dimensional linear subspaces of Cd. For example,
Grp1, dq “ Pd´1.

We give the Grassmannian the structure of a variety as follows. Given v1, . . . , vk P Cd linearly independent
form the matrix V “ pv1, . . . , vkq, i.e. the vi s are the columns of V . Given I “ ti1 ă i2 ă ¨ ¨ ¨ ă iku P
ˆ

rds

k

˙

, let

pI pv1, . . . , vkq “ detp rows of V indexed by Iq.

The Plücker embedding is the map

p : Grpk, dq ãÑ Ppd
kq´1

span pv1, . . . , vkq ÞÑ rpI pv1, . . . , vkqs

IP

¨

˝

rds

k

˛

‚

.
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Exercise 6.2.1. The Plücker embedding is well-defined and one-to-one.

Theorem 6.2.2. The image of Grpk, dq under this map is a variety.

Proof. The image is cut out by an ideal called the Plücker ideal. See [2] section 9.1 for a proof.

Example 6.2.3. Consider the Grassmannian Grp2, 4q and the matrix V “

ˆ

1 1 1 1
0 1 2 3

˙T

. The Plücker

coordinates are

p12pV q “ 1, p13pV q “ 2, p14pV q “ 3, p23pV q “ 1, p24pV q “ 2, p34pV q “ 1.

The point in P5 corresponding to V is r1 : 2 : 3 : 1 : 2 : 1s.

The Grassmannian is a T -variety. The torus T “ pC˚q
d acts on Grpk, dq by any of the following equivalent

ways:

• t ¨

„

pI

∣∣∣∣ I P

ˆ

rds

k

˙ȷ

“

„

ti1 ¨ ¨ ¨ tikpI

∣∣∣∣ I P

ˆ

rds

k

˙ȷ

.

• t ¨ colspanpV q “ colspan pdiag pt1, . . . , tdqV q.

• Grpk, dq “ GLd{Pk, where Pk is a maximal parabolic subgroup. Identifying T with the subgroup of
diagonal matrices in GLd, the action of T of GLd of left multiplication induces an action of T on
Grpk, dq.

Note that ti1 ¨ ¨ ¨ tik “ tei1`¨¨¨`eik , where ei is the i-th standard basis vector of Rd. It follows that the weights
of the action are the ei1 ` ¨ ¨ ¨ ` eik for I “ ti1, . . . , iku. Thus,

µpGrpk, dqq “ conv

"

ei1 ` ¨ ¨ ¨ ` eik

∣∣∣∣ I “ ti1, . . . , iku P

ˆ

rds

k

˙*

.

This polytope is called a hypersimplex and is denoted by ∆k,d.

Example 6.2.4. The moment polytope µpGrp2, 4qq is depicted below.

Definition 6.2.5. A matroid polytope is a generalized permutohedron such that the vertices are 0{1-vectors.

Exercise 6.2.6. The hypersimplex ∆k,d is a matroid polytope.

Remark 6.2.7. Given V P Grpk, dq, there is a combinatorial object called a matroid associated to V . One
of the ways to describe this object is as a polytope, called a matroid polytope. It is a theorem of Gelfand-
Goresky-MacPherson-Serganova that the moment polytope of T ¨ V is the matroid polytope for the matroid
associated to V .

6.3 The moment polytope of the flag variety

Definition 6.3.1. The (complete) flag variety is

Flpdq “

#

pV1, . . . , Vd´1q P

d´1
ź

k“1

Grpk, dq | @i, Vi Ď Vi`1

+

.

An embedding of
śd´1

k“1 Grpk, dq into PN yields an embedding of Flpdq into PN . To obtain the former note
the following.
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(1) The Segre embedding is the morphism

Pr´1 ˆ Ps´1 Ñ Prs´1

prx0 : ¨ ¨ ¨ : xr´1s , ry0 : ¨ ¨ ¨ : ys´1sq ÞÑ rxiyj | 0 ď i ă r, 0 ď j ă ss .

(2) Applying this map multiple times gives the embedding

Pr1´1 ˆ ¨ ¨ ¨ ˆ Prd´1 Ñ Pr1¨¨¨rd´1.

We obtain an embedding as follows

d´1
ź

k“1

Grpk, dq ãÑ Ppd
1q´1

ˆ ¨ ¨ ¨ ˆ Pp d
d´1q´1

ãÑ Ppd
1q¨¨¨p d

d´1q´1.

Theorem 6.3.2. The image of Flpdq under these maps is a variety.

Proof. See [2] section 9.1 for a proof.

We consider the action of T on Flpdq given diagonally by the action on each Grpk, dq, i.e.,

t ¨ pV1, . . . , Vd´1q “ pt ¨ V1, . . . , t ¨ Vd´1q .

Following the embedding carefully one can verify that the weights of the T -action on Flpdq are
#

d
ÿ

j“1

j
ÿ

i“1

ewi
| w P Sd

+

.

Exercise 6.3.3. Do this computation for d “ 3 and verify that µpFlp3qq “ Π3.

Proposition 6.3.4. The moment polytope of the flag variety Flpdq is the permutohedron Πd.
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Chapter 7

Computing the Discrete Continuously

7.1 Brion’s Theorem

We denote the Laurent polynomials in d variables with coefficients in C as

Crz˘s :“ Crz˘
1 , ¨ ¨ ¨ , z˘

d s.

and the field of fractions of polynomial ring Crz1, ¨ ¨ ¨ , zds (i.e., the set of all rational functions tfpzq{gpzq :
f, g P Crzs, g ‰ 0u) is denoted as Cpzq. We also let CLd be the set of all (formal) Laurent series σSpzq of
rational cones S in Rd. Recall that

σSpzq “
ÿ

mPSXZd

zm “
ÿ

mPSXZd

zm1
1 ¨ ¨ ¨ zmd

d .

Since the multiplication of a rational function and a Laurent series makes sense, we realize CLd as a module
over Crz˘s. Cpzq is also a module over Crz˘s in the obvious sense.

We notice that Theorem 3.3.4 evaluates the Laurent series σKpzq P CLd of a simplicial points cone K as a
rational function in Cpzq. We want to extend that result of evaluation as a rational function in Cpzq.

Lemma 7.1.1. There is a unique linear map ϕ : CLd Ñ Cpzq that maps an integer-point transform σSpzq

(viewed as a Laurent series) of a rational simplicial cone

K “ tv ` λ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λkwk : λ1, λ2, . . . , λk ě 0u Ď Rd

to the rational function
σΠpzq

p1 ´ zw1q p1 ´ zw2q ¨ ¨ ¨ p1 ´ zwkq
,

where σΠpzq is the integer-point transform of the half-open parallelepiped

Π :“ tv ` λ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λkwk : 0 ď λ1, λ2, . . . , λk ă 1u .

Proof. As we said, we proved in Theorem 3.3.4 that

p1 ´ zw1q p1 ´ zw2q ¨ ¨ ¨ p1 ´ zwkqσKpzq “ σΠpzq (7.1)

We remark that (7.1) is an identity in the module CLd over C rz˘s: the factor p1 ´ zw1q p1 ´ zw2q ¨ ¨ ¨ p1 ´ zwkq

on the left-hand side and the right-hand side σΠpzq are Laurent polynomials in C rz˘s, whereas σKpzq is in
CLd.
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If K is now a general rational cone, we can triangulate it into simplicial cone, each of which comes with a
version of (7.1). The integer-point transform σKpzq P CLd of our general cone K can naturally be written in
an inclusion-exclusion form as a sum (with positive and negative terms) of integer-point transforms of these
simplicial cones and their faces, which are also simplicial cones. Applying the same sum to the identities of
the form (7.1) for these simplicial cones gives an identity

gpzqσKpzq “ fpzq

for some Laurent monomials fpzq and gpzq. This yields our sought-after linear map: we define

ϕ pσKpzqq :“
fpzq

gpzq
P Cpzq

That this map ϕ is linear follows by construction, and that it is unique follows from the uniqueness of the
rational-function form of σKpzq when K is simplicial.

We will prove the following result in this section.

Theorem 7.1.2 (Brion’s theorem for simplices). Suppose ∆ is a rational simplex. Then we have the following
identity of rational functions:

σ∆pzq “
ÿ

v a vertex of ∆

σKvpzq

The notation KF stands for the tangent cone of a face F of P, defined as

KF :“ tx ` λpy ´ xq : x P F ,y P P, λ P Rě0u .

We note that KP “ spanP. For a vertex v of P, the tangent cone Kv is often called a vertex cone; it is
pointed, and we show an example in Figure 7.1. For a k-face F of P with k ą 0, the tangent cone KF is not
pointed. For example, the tangent cone of an edge of a 3-polytope is a wedge.

Figure 7.1: Tangent cones.

The summation over vertices comes from the summation over all faces of ∆ where the summand for the
faces that are not vertices are zero due to the following proposition.

Proposition 7.1.3. Let ϕ : CLd Ñ Cpzq be the linear map in Lemma 7.1.1, and let K Ď Rd be a rational
cone that contains a line. Then

ϕ pσKpzqq “ 0

In particular, if F is a face of a polytope P that is not a vertex. Then

ϕ pσKF pzqq “ 0.
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Proof. Let K Ď Rd be a rational cone that contains a line. This implies that there exists a vector w P Zdzt0u

such that w ` K “ K. Translated into the language of Laurent series, this means that zwσKpzq “ σKpzq, and
thus, since ϕ is linear,

zwϕ pσKpzqq “ ϕ pσKpzqq .

But this gives the identity p1 ´ zwqϕ pσKpzqq “ 0 in the world Cpzq of rational functions. Since 1 ´ zw is not
a zero divisor in this world, we conclude that ϕ pσKpzqq “ 0.

The particular case where F is a face of a polytope P that is not a vertex is due to the observations that for
every face F of P, the tangent cones KF contains the affine space spanF “ tx ` λpy ´ xq : x,y P P, λ P Ru

(called the apex of the tangent cones KF ; see Figure 7.2 and Figure 7.1) and that affine space contains no
line if and only if it has dimension 0.

Figure 7.2: span of face

proof of theorem 7.1.2. We shall assume the Brianchon-Gram identity (which holds for rational polytopes
in general and was proved in the case of simplices in [4] section 11.4; it’s generally a result of reciprocity):
for a d-simplex ∆,

1∆pxq “
ÿ

FĎ∆

p´1qdimF1KF pxq

where the sum is taken over all nonempty faces F of ∆. Then,

ÿ

mPZd

1∆pmqzm “
ÿ

mPZd

ÿ

FĎ∆

p´1qdimF1KF pmqzm

σ∆pzq “
ÿ

FĎ∆

p´1qdimFσKF pzq by defn. of σSpzq.

Applying the linear map ϕ : CLd Ñ Cpzq to above equality and noticing that ϕ evaluates σSpzq as σSpzq for
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simplicial S:

σ∆pzq “ ϕ pσ∆pzqq “
ÿ

FĎ∆

p´1qdimFϕ pσKF pzqq

prop. 7.1.3
ùùùùùùùù

ÿ

vPVtx∆

p´1q

“0
hkkikkj

dimvϕ pσKvpzqq

Kv simplicial
ùùùùùùùùù

ÿ

vPVtx∆

σKvpzq

In fact, Brion’s theorem holds for rational convex polytopes in general.

Theorem 7.1.4 (Brion’s theorem). Suppose P is a rational convex polytope. Then we have the following
identity of rational functions:

σPpzq “
ÿ

v a vertex of P
σKvpzq

Proof. See [4] Theorem 11.7.

7.2 Fourier-Poisson and Euler-Maclaurin

We return to our recurring theme of computation of volume of polytopes. Recall that the discrete volume
of a polytope P has the following form

|P X Zd| “ LPp1q “
ÿ

mPZd

1Ppmq “
ÿ

mPPXZd

1, (7.2)

where LPptq “ |tP X Zd|. The continuous volume of P is

VoldpPq “

ż

Rd

dy “ 1̂Pp0q, (7.3)

where 1̂Ppyq “
ş

Rd 1Ppyqe´2πiy¨xdx. [10] and [4] then introduce two approaches of exponentiation for
summation to compute the discrete volumes. We can name them as Fourier-Poisson approach and Euler-
Maclaurin approach.

The Poisson summation formula tells us that for any ”sufficiently nice” function f : Rd Ñ C we have:
ÿ

nPZd

fpnq “
ÿ

ξPZd

f̂pξq.

In particular, if we were to naively set fpnq :“ 1Ppnq, the indicator function of a polytope P, then we would
get:

ÿ

nPZd

1Ppnq “
ÿ

ξPZd

1̂Ppξq, (7.4)

which is technically false for functions, due to the fact that the indicator function 1P is discontinuous on Rd.
But when we do counting, Donald Knuth says we sometimes don’t need to take care of those requirements
to use some formulae because they serve as guessing tools. The end justifies the means.

[10] in chapter 10 defines the integer point transform of a rational polytope P by

σPpzq :“
ÿ

nPPXZd

e2πixn,zy,
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a discretization of the Fourier transform of P. Under the change of variable q1 :“ e2πiz1 , . . . , qd :“ e2πizd , it is
able to use the notations qn1

1 qn2
2 ¨ ¨ ¨ qnd

d “ e2πin1z1`¨¨¨`2πindzd :“ e2πixn,zy to define the multinomial notation
for a monomial in several variables

qn :“ qn1
1 qn2

2 ¨ ¨ ¨ qnd

d .

and recover the original defininition used in [4]

σPpqq :“
ÿ

nPPXZd

qn.

One may check [10] chapter 8, 10 for more on Fourier-Poisson approach, where Brion’s theorem is also
written in Fourier series.

We return to Euler-Maclaurin approach in [4]. We consider the following exponentiation of the difference
between (7.2) and (7.3):

ÿ

mPPXZd

em¨x ´

ż

P
ey¨xdy. (7.5)

where we have replaced the variable z that we have commonly used in generating functions by the expo-
nential variable pz1, z2, . . . , zdq “ pex1 , ex2 , . . . , exdq. Note that on setting x “ 0 in (7.5), we get quantity

ÿ

mPPXZd

1 ´

ż

P
dy (7.6)

7.3 A continuous version of Brion’s Theorem

We give an integral analogue of Theorem 7.1.4 for simple rational polytopes. We begin by translating Brion’s
integer-point transforms

σPpzq “
ÿ

v a vertex of P
σKvpzq

into an exponential form:
σPpexp zq “

ÿ

v a vertex of P
σKvpexp zq

where we used the notation exp z “ pez1 , ez2 , . . . , ezdq. For the continuous analogue of Brion’s theorem, we
replace the sum on the left-hand side,

σPpexp zq “
ÿ

mPPXZd

pexp zqm “
ÿ

mPPXZd

exppm ¨ zq

by an integral.

Theorem 7.3.1 (Brion’s theorem: continuous form). Suppose P is a simple rational convex d-polytope. For
each vertex cone Kv of P, fix a set of generators w1pvq,w2pvq, . . . ,wdpvq P Zd. Then

ż

P
exppx ¨ zqdx “ p´1qd

ÿ

v a vertex of P

exppv ¨ zq |det pw1pvq, . . . ,wdpvqq|
śd

k“1 pwkpvq ¨ zq

for all z such that the denominators on the right-hand side do not vanish.

Proof. We begin with the assumption that P is an integral polytope; we will see in the process of the proof
that this assumption can be relaxed. Let’s write out the exponential form of Brion’s theorem (Theorem
7.1.4), using the assumption that the vertex cones are simplicial (because P is simple). By Theorem 3.3.4,

σPpexp zq “
ÿ

mPPXZd

exppm ¨ zq “
ÿ

v a vertex of P

exppv ¨ zqσΠvpexp zq
śd

k“1 p1 ´ exp pwkpvq ¨ zqq
(7.7)
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where
Πv “ tλ1w1pvq ` λ2w2pvq ` ¨ ¨ ¨ ` λdwdpvq : 0 ď λ1, λ2, . . . , λd ă 1u

is the fundamental parallelepiped of the vertex cone Kv. We would like to rewrite (7.7) with the lattice Zd

replaced by the refined lattice
`

1
nZ

˘d
, because then, the left-hand side of (7.7) will give rise to the sought-

after integral by letting n approach infinity. The right-hand side of (7.7) changes accordingly; now every
integral point has to be scaled down by 1

n :

ÿ

mPPXp 1
nZq

d

exppm ¨ zq “
ÿ

v a vertex of P

exppv ¨ zq
ř

mPΠvXZd exp
`

m
n ¨ z

˘

śd
k“1

´

1 ´ exp
´

wkpvq

n ¨ z
¯¯ (7.8)

The proof of this identity is in essence the same as that of Theorem 3.3.4; we leave it as an exercise. Now
our sought-after integral is

ż

P
exppx ¨ zqdx

Riemann integral
ùùùùùùùùùùù lim

nÑ8

1

nd

ÿ

mPPXp 1
nZq

d

exppm ¨ zq

“ lim
nÑ8

1

nd

ÿ

v a vertex of P

exppv ¨ zq
ř

mPΠvXZd exp
`

m
n ¨ z

˘

śd
k“1

´

1 ´ exp
´

wkpvq

n ¨ z
¯¯

(7.9)

At this point, we can see that our assumption that P has integral vertices can be relaxed to the rational case,
since we may compute the limit only for n ’s that are multiples of the denominator of P. The numerators of
the terms on the right-hand side have a simple limit:

lim
nÑ8

exppv ¨ zq
ÿ

mPΠvXZd

exp
´m

n
¨ z
¯

“ exppv ¨ zq
ÿ

mPΠvXZd

1

“ exppv ¨ zq |det pw1pvq, . . . ,wdpvqq|

where the last identity follows from Lemma 5.1.8. Hence (7.9) simplifies to
ż

P
exppx ¨ zqdx “

ÿ

v a vertex of P

exppv ¨ zq |det pw1pvq, . . . ,wdpvqq|
śd

k“1 limnÑ8 n
´

1 ´ exp
´

wkpvq

n ¨ z
¯¯

Finally, using L’Hôpital’s rule,

lim
nÑ8

n

ˆ

1 ´ exp

ˆ

wkpvq

n
¨ z

˙˙

“ ´wkpvq ¨ z

and the theorem follows.

It is an exercise to show that for each vertex cone Kv,
ż

Kv

exppx ¨ zqdx “ p´1qd
exppv ¨ zq |det pw1pvq, . . . ,wdpvqq|

śd
k“1 pwkpvq ¨ zq

and above theorem shows that the Fourier-Laplace transform of P equals the sum of the Fourier-Laplace
transforms of the vertex cones. In other words,

ż

P
exppx ¨ zqdx “

ÿ

v a vertex of P

ż

Kv

exppx ¨ zqdx

We also remark that |det pw1pvq, . . . ,wdpvqq| has a geometric meaning: it is the volume of the fundamental
parallelepiped of the vertex cone Kv.
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The curious reader might wonder what happens to the statement of Theorem 7.3.1 if we scale each of the
generators wkpvq by a different factor. It is immediate ( [4] Exercise 12.7) that the right-hand side of
Theorem 7.3.1 remains invariant.

There is an important difference between the vertex cone generating functions (integrals) that appear in
the continuous version of Brion’s theorem (Theorem 7.3.1) and the vertex cone generating functions (sums)
that appear in the discrete Brion theorem (Theorem 7.1.4). To see the difference, consider the following
example:

Let K0 be the first quadrant in R2, having generators p1, 0q and p0, 1q. Let K1 be the cone defined as the
nonnegative real span of p1, 0q and p1, kq. For k “ 2100, say, we see that for all practical purposes, K1 is very
close to K0 in its geometry, in the sense that their angles are almost the same for computational purposes,
and thus their continuous Brion generating functions are almost the same, computationally.

However, σK0pzq is quite far from σK1pzq, since the latter has 2100 terms in its numerator, while the former
has only 1 as its trivial numerator. Thus, tangent cones that are ”arbitrarily close” geometrically may simul-
taneously be ”arbitrarily far” from each other in the discrete sense dictated by the integer points in their
fundamental domains.

Exercise 7.3.2. Given a unimodular cone

K “ tv ` λ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λdwd : λ1, λ2, . . . , λd ě 0u ,

where v,w1,w2, . . . ,wd P Zd such that w1,w2, . . . ,wd are a basis for Zd show that

σKpzq “
zv

śd
k“1 p1 ´ zwkq

and |det pw1, . . . ,wdq| “ 1.

7.4 Computing the Discrete Continuously

Our reference [4] bears the name Computing the Continuous Discretely, but we shall in this section do the re-
verse. We will prove Khovanskii-Pukhlikov Theorem for a certain class of polytopes, namely the unimodular
polytopes in subsection 7.4.1.

7.4.1 Unimodular polytopes

We refer to [6] for unimodular polytopes.

Definition 7.4.1 (Unimodular Polytope). A convex polytope ∆ Ă Rn is called unimodular if

• (Simplicity) there are n edges meeting at each vertex,

• (Rationality) the edges meeting at the vertex τ are rational in the sense that every edge Ek is of the
form τ ` tuk where t P r0, T s and uk P Zn,

• (Smoothness) for each vertex with edges E1, . . . , En the corresponding vectors u1, . . . , un spanning the
edges can be chosen to form a Z-basis of Zn.

The following lemma will prove very useful for proving that a given set of vectors u1, . . . , un is indeed a
Z-basis:

Lemma 7.4.2. The vectors u1, . . . , un P Zn form a Z-basis of Zn if and only if

det

»

–

| |

u1 ¨ ¨ ¨ un

| |

fi

fl “ ˘1
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Proof. Since u1, . . . , un Ă Zn form a Z-basis of Zn iff the matrix is invertible, and the matrix is invertible iff
its determinant is a unit, which in Z are exactly ˘1, the result follows.

Remark 7.4.3. The name unimodular comes from the fact that a square integer matrix having determinant
`1 or ´1 is called a unimodular matrix. Unimodular matrices form a subgroup of the general linear group
under matrix multiplication. Pascal matrices and permutation matrices are unimodular.

Permutation matrices are unimodular, although there are only two elements in S2:
ˆ

1 0
0 1

˙ ˆ

0 1
1 0

˙

.

Pascal matrices are unimodular too. Recall that Pascal triangle can be put into a lower-triangular matrix

L “

¨

˚

˚

˚

˚

˚

˝

1 0 0 0 ¨ ¨ ¨

1 1 0 0 ¨ ¨ ¨

1 2 1 0 ¨ ¨ ¨

1 3 3 1 ¨ ¨ ¨

...
...

...
...

. . .

˛

‹

‹

‹

‹

‹

‚

That is, Lij “
`

i
j

˘

“ i!
j!pi´jq! , j ď i. We use Ln to denote its n ˆ n truncated version. Then observe that the

determinant of a triangular matrix is the product of its diagonal. In this case, the determinant is then just 1.

The matrix An “ LnL
T
n has

`

i`j
i

˘

“
`

i`j
j

˘

“
pi`jq!
i!j! and |An| “ 1. Consider A2 “

ˆ

1 1
1 2

˙

and see Figure 7.3

for the lattice generated by p1, 1q and p1, 2q.

Figure 7.3: Lattice generated by p1, 1q and p1, 2q

Unimodular polytopes are, in the context of symplectic toric manifolds, sometimes also referred to as Delzant
polytopes.
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More examples of unimodular polytopes in R2:

The pictures above represent polytopes in R2 with standard lattice Z2, i.e., standard horizontal and vertical
cartesian axes with same scale. The dotted vertical line in the trapezoidal example is there just to stress that
it is a picture of a rectangle plus an isosceles triangle. For ”taller” triangles, smoothness would be violated.
”Wider” triangles may still be unimodular as in the examples below, denoted Ha,b,n, as long as the slope
of the hypothenuse satisfies an integrality condition given by n “ 0, 1, 2, . . . The positive real parameters a
and b are the width and height of the left rectangle. We call these examples Hirzebruch trapezoids. In
particular, Ha,b,0 is just a rectangle.

Examples of polytopes that are not unimodular: Once again, the pictures above represent polytopes in R2 with

standard lattice Z2. The picture on the left fails the smoothness condition on the upper vertex (see Figure
7.4), whereas the one in the middle fails the smoothness condition on the two right vertices, and the one
on the right fails the smoothness condition on all vertices. Moreover, the following pyramid in R3 fails the
simplicity condition.
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Figure 7.4: Lattice generated by p0,´1q and p2,´1q.

7.4.2 Todd operator

Recall the Bernoulli numbers Bk defined by the generating function

z

ez ´ 1
“

ÿ

kě0

Bk

k!
zk

We now introduce a differential operator via essentially the same generating function, namely

Toddh :“
ÿ

kě0

p´1qk
Bk

k!

ˆ

d

dh

˙k

. (12.3)

This Todd operator is often abbreviated as

Toddh “

d
dh

1 ´ e´ d
dh

(7.10)

but we should keep in mind that this is only a shorthand notation for the infinite series (7.10). We first show
that the exponential function is an eigenfunction of the Todd operator.

Lemma 7.4.4. For z P Czt0u with |z| ă 2π,

Toddh e
zh “

zezh

1 ´ e´z
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Proof.

Toddh e
zh “

ÿ

kě0

p´1qk
Bk

k!

ˆ

d

dh

˙k

ezh

“
ÿ

kě0

p´1qk
Bk

k!
zkezh

“ ezh
ÿ

kě0

p´zqk
Bk

k!

“ ezh
´z

e´z ´ 1
.

The condition |z| ă 2π is needed in the last step, by [4] Exercise 2.14.

7.4.3 Khovanskii-Pukhlikov Theorem

we apply the Todd operator to a perturbation of the continuous volume. Namely, consider a simple full-
dimensional polytope P, which we may write as

P “
␣

x P Rd : Ax ď b
(

Then we define the perturbed polytope

Pphq :“
␣

x P Rd : Ax ď b ` h
(

for a small vector h P Rm (we will quantify the word small in a moment). A famous theorem due to Askold
Khovanskìı and Aleksandr Pukhlikov says that the integer-point count in P can be obtained by applying the
Todd operator to volpPphqq. Here we prove the theorem for a certain class of polytopes, which we need to
define first.

Theorem 7.4.5 (Khovanskii-Pukhlikov theorem). For a unimodular d polytope P,

#
`

P X Zd
˘

“ Toddh volpPphqq|h“0

More generally,

σPpexp zq “ Toddh

ż

Pphq

exppx ¨ zqdx

ˇ

ˇ

ˇ

ˇ

ˇ

h“0

Proof. We use Theorem 7.3.1, the continuous version of Brion’s theorem; note that if P is unimodular, then
P is automatically simple. For each vertex cone Kv of P, denote its generators by w1pvq,w2pvq, . . . ,wdpvq P

Zd. Then Theorem 7.3.1 states that
ż

P
exppx ¨ zqdx “ p´1qd

ÿ

v a vertex of P

exppv ¨ zq |det pw1pvq, . . . ,wdpvqq|
śd

k“1 pwkpvq ¨ zq

“ p´1qd
ÿ

v a vertex of P

exppv ¨ zq
śd

k“1 pwkpvq ¨ zq

(7.11)

where the last identity follows from Exercise 7.3.2. A similar formula holds for Pphq, except that we have
to account for the shift of the vertices. The vector h shifts the facet-defining hyperplanes. This shift of the
facets induces a shift of the vertices; let’s say that the vertex v gets moved along each edge direction wk (the
vectors that generate the vertex cone Kv ) by hkpvq, so that Pphq has now the vertex v ´

řd
k“1 hkpvqwkpvq.

If h is small enough, Pphq will still be simple, and we can apply Theorem 7.3.1 to Pphq :

1The cautious reader may consult [12] p. 66 to confirm this fact.
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ż

Pphq

exppx ¨ zqdx “ p´1qd
ÿ

v a vertex of P

exp
´´

v ´
řd

k“1 hkpvqwkpvq

¯

¨ z
¯

śd
k“1 pwkpvq ¨ zq

“ p´1qd
ÿ

v a vertex of P

exp
´

v ¨ z ´
řd

k“1 hkpvqwkpvq ¨ z
¯

śd
k“1 pwkpvq ¨ zq

“ p´1qd
ÿ

v a vertex of P

exppv ¨ zq
śd

k“1 exp p´hkpvqwkpvq ¨ zq
śd

k“1 pwkpvq ¨ zq

Strictly speaking, this formula holds only for h P Qm, so that the vertices of Pphq are rational. Since we will
eventually set h “ 0, this is a harmless restriction. Now we apply the Todd operator:

Toddh

ż

Pphq

exppx ¨ zqdx

ˇ

ˇ

ˇ

ˇ

ˇ

h“0

“ p´1qd
ÿ

v vertex of P
Toddh

exppv ¨ zq
śd

k“1 exp p´hkpvqwkpvq ¨ zq
śd

k“1 pwkpvq ¨ zq

ˇ

ˇ

ˇ

ˇ

ˇ

h“0

“ p´1qd
ÿ

v vertex of P

exppv ¨ zq
śd

k“1 pwkpvq ¨ zq

ˆ

d
ź

k“1

Toddhkpvq exp p´hkpvqwkpvq ¨ zq

ˇ

ˇ

ˇ

ˇ

ˇ

hkpvq“0

By a multivariate version of Lemma 7.4.4,

Toddh

ż

Pphq

exppx ¨ zqdx

ˇ

ˇ

ˇ

ˇ

ˇ

h“0

“ p´1qd
ÿ

v vertex of P

exppv ¨ zq
śd

k“1 pwkpvq ¨ zq

d
ź

k“1

´wkpvq ¨ z

1 ´ exp pwkpvq ¨ zq

“
ÿ

v vertex of P
exppv ¨ zq

d
ź

k“1

1

1 ´ exp pwkpvq ¨ zq

However, Brion’s theorem (Theorem 7.1.4), together with the fact that P is unimodular, says that the right-
hand side of this last formula is precisely the integer-point transform of P (see also (7.11)), and thus

Toddh

ż

Pphq

exppx ¨ zqdx

ˇ

ˇ

ˇ

ˇ

ˇ

h“0

“ σPpexp zq

Finally, setting z “ 0 gives

Toddh

ż

Pphq

dx

ˇ

ˇ

ˇ

ˇ

ˇ

h“0

“
ÿ

mPPXZd

1

as claimed.

We note that
ş

Pphq
exppx¨zqdx is, by definition, the continuous FourierLaplace transform of Pphq. Upon being

acted on by the discretizing operator Todd h, the integral
ş

Pphq
exppx ¨zqdx gives us the discrete integer-point

transform σPpzq.
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7.5 Note

1. The classical Euler-Maclaurin formula states that

n
ÿ

k“1

fpkq “

ż n

0

fpxqdx `
fp0q ` fpnq

2
`

p
ÿ

m“1

B2m

p2mq!

”

f p2m´1qpxq

ın

0

`
1

p2p ` 1q!

ż n

0

B2p`1ptxuqf p2p`1qpxqdx

where Bkpxq denotes the kth Bernoulli polynomial. It was discovered independently by Leonhard Euler
and Colin Maclaurin. This formula provides an explicit error term, whereas [4] Theorem 12.2 provides
a summation formula with no error term.

2. The Todd operator was introduced by Friedrich Hirzebruch in the 1950s [9], following a more compli-
cated definition by John A. Todd some twenty years earlier. The Khovanskii-Pukhlikov theorem can be
interpreted as a combinatorial analogue of the algebrogeometric Hirzebruch-Riemann-Roch theorem,
in which the Todd operator plays a prominent role.

3. Theorem 7.3.1, the continuous form of Brion’s theorem, was generalized by Alexander Barvinok to
every polytope [3]. In fact, [3] contains a certain extension of Brion’s theorem to irrational polytopes
as well.
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