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Abstract

In this thesis, we review the classical results of symplectic geometry, focusing on the Marsden-Weinstein-
Meyer Theorem, the Atiyah-Guillemin-Sternberg Theorem, and Delzant’s classification of the symplectic
toric manifolds. We begin with preliminaries covering symplectic manifolds, compatible triples, Morse the-
ory, Lie groups, and Hamiltonian actions, including examples like circle actions and complex projective space
with Fubini-Study form. The thesis concludes with some applications and generalizations of these classical
theorems: Horn’s conjecture on Hermitian spectra, Kirwan [Kir84] and Weinstein [Wei01]’s generalization
of the convexity theorem, and the principle of quantization commuting with reduction.
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1 Introduction

Symplectic geometry, a field that emerged from classical mechanics, provides the geometric framework for
Hamiltonian mechanics. Its origins can be traced to the study of phase space and canonical transforma-
tions, which found formal structure through the works of Poincaré, Lie, and Hamilton. The development of
symplectic geometry accelerated in the 20th century, notably with the introduction of the Marsden-Weinstein-
Meyer Reduction Theorem [MW74; Mey73] and the Atiyah-Guillemin-Sternberg Convexity Theorem [Ati82;
GS82a]. These theorems illustrate how symmetry and integrable structures shape the topology and geometry
of symplectic manifolds.

The reduction theorem, discovered independently by Meyer [Mey73] and Marsden and Weinstein [MW74],
concerns the symplectic reduction Mred of a Hamiltonian G-space M . It demonstrates how conserved quan-
tities arising from symmetry allow us to reduce the dimension of the phase space, yielding simpler manifolds
that retain crucial geometric and dynamical information. This theorem has applications in classical mechan-
ics [Mar+07; MMR90] and in geometric representation theory, where symplectic reduction parallels the
construction of representation spaces.

The convexity theorem, developed independently by Atiyah [Ati82] and Guillemin and Sternberg [GS82a],
describes the image of moment maps associated with torus actions on compact symplectic manifolds. The
theorem asserts that these images are convex polytopes, establishing a striking link between geometry and
combinatorics. Delzant [Del88] extended these ideas by classifying symplectic toric manifolds in terms of
rational, simple, and smooth polytopes—now called Delzant polytopes. In particular, given such a polytope
∆, one constructs a symplectic toric manifold (M∆, ω∆) via symplectic reduction from (Cd, ω0) by a subtorus
N ⊂ T d, yielding a moment map µ∆ such that µ∆(M∆) = ∆. This classification also laid the foundation for
the study of toric varieties using symplectic geometry.

Karshon and Lerman later classified the non-compact analogues of symplectic toric manifolds using mani-
folds with corners equipped with degree-two cohomology classes and unimodular local embeddings [KL15].
My interest in this topic was sparked in Professor Laura Escobar’s course on polytopes, where I encountered
Pukhlikov and Khovanskii’s paper [PK93]. Their work gives a combinatorial formula for counting lattice
points in Delzant polytopes using Todd operators, which relates to a representation-theoretic conjecture
posed by Guillemin and Sternberg in the 1980s [GS82b].

This multiplicity conjecture asserts that for a Hamiltonian G-space (M,ω,G, µ) where G is a compact con-
nected Lie group, and for a prequantizable coadjoint orbit O corresponding to an irreducible unitary repre-
sentation ρO in Bott-Borel-Weil sense, the multiplicity of ρO in the quantized Hilbert space Q(M) equals the
Riemann-Roch number of the reduced space MO = (M × O−) �G, where O− is the symplectic manifold O
equipped with its negative Kirillov-Kostant-Souriau form. This principle is now referred to as quantization
commutes with reduction, and was proven independently by Meinrenken and by Tian and Zhang in the 1990s.
For a survey and some reformulations of this principle, see for example [Woo10; Rod20; Ma21].

In the toric case, where M = Cd and G = Tn is abelian, coadjoint orbits reduce to points λ0 ∈ (Rn)∗, and
due to Delzant’s construction the reduced space MO =M∆ corresponds to a given Delzant polytope ∆. The
multiplicity of ρλ0 in Q(Cd) equals the number of lattice points in ∆, i.e., #(∆∩Zn). On the other hand, the
Riemann-Roch number is computed by the application of a Todd operator to a perturbed volume polynomial:

Toddh(vol(∆h))|h=0 , where ∆h = {x ∈ Rn | ⟨x, ui⟩ ≥ λi + hi}.

Pukhlikov and Khovanskii [PK93] verified the identity

#(∆ ∩ Zn) = Toddh(vol(∆h))|h=0 ,
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confirming the conjecture in the symplectic toric case.

We will not delve into the details of prequantization or the full proof from [PK93], as these are covered
in other sources. Instead, this paper presents the construction of the symplectic toric manifold M∆ from a
given Delzant polytope ∆, following [ACL12]. We begin with preliminaries on symplectic structures, outline
the convexity and reduction theorems, and then present Delzant’s construction. We conclude by discussing
examples, applications, and potential generalizations.

I would like to express my sincere gratitude to Professor Xiang Tang for his invaluable guidance throughout
this project, Professor Laura Escobar for introducing me to the fascinating world of polytopes, and Professor
Renato Feres for his inspiring teaching of Riemannian geometry.

2 Preliminaries

2.1 Geometric Structures

Given a vector bundle E → M over smooth manifold M , a geometric structure attached to M amounts to
the assignment of some smooth section T ∈ Γ

(
E⊗

k
F ⊗F (E

∗)
⊗jF
)

, where F = R,C, or H. Three geometric
structures will be needed in this thesis: symplectic structure, Riemannian structure, and almost complex
structure.

Symplectic Manifolds

Let V be a finite-dimensional real vector space and Ω : V × V → R be a bilinear map. The map Ω̃ : V → V ∗

is the linear map defined by Ω̃(v)(u) = Ω(v, u). If its kernel ker(Ω̃) = {v ∈ V | ∀u ∈ V, Ω̃(v)(u) = 0} is the
zero subspace of V , or equivalently Ω̃ is bijective, then we say Ω is nondegenerate. The pair (V,Ω) is called
a symplectic vector space.

Let ω ∈ Ω2(M) = Γ
(∧2

T ∗M
)

be an alternating 2-form on a manifold M . ω is closed if it satisfies dω = 0,
where d is the exterior derivative. ω is symplectic if ω is closed and ωp is nondegenerate for all p ∈ M .
A symplectic manifold is a pair (M,ω) where M is a smooth manifold and ω is a symplectic form. A
symplectomorphism φ : (M1, ω1) → (M2, ω2) is a diffeomorphism between two symplectic manifolds such
that φ∗ω2 = ω1.

Example 2.1. Let M = R2n with coordinates x1, · · · , xn, y1, · · · , yn. It is a symplectic manifold with form
ω0 =

∑n
i=1 dxi∧dyi, called the standard symplectic form. Under the identification Cn ≃ R2n, zk = xk+iyk,

we see this symplectic manifold is the same as (Cn, ω0) where ω0 = i
2

∑n
k=1 dzk ∧ dz̄k. ♣

Riemannian Manifolds

A Riemannian metric on a smooth manifold M is a smooth section g ∈ Γ(Σ2T ∗M), meaning that at each
point x ∈ M , gx : TxM × TxM → R is a symmetric, positive-definite bilinear form. The pair (M, g) is then
called a Riemannian manifold. A Riemannian metric always exists for a smooth manifold.

A fundamental object associated with a Riemannian manifold is the Levi-Civita connection ∇, which is the
unique affine connection on M satisfying metric property (for all X,Y, Z ∈ X(M), ∇X⟨Y,Z⟩ = ⟨∇XY,Z⟩+
⟨Y,∇XZ⟩) and symmetric property (for allX,Y ∈ X(M),∇XY −∇YX = [X,Y ]). A key consequence of the
Levi-Civita connection is the existence of geodesics, which are curves γ : I →M satisfying: ∇γ̇ γ̇ = 0. These
curves represent locally distance-minimizing paths and generalize the notion of “straight lines” to curved
spaces. The exponential map expp : TpM →M is then defined by mapping a tangent vector v ∈ TpM to the
point reached by traveling along the unique geodesic with initial velocity v for unit time: expp(v) = γv(1),
where γv is the unique (maximal) geodesic satisfying γv(0) = p and γ̇v(0) = v. The exponential map provides
local normal coordinates and is a fundamental tool in Riemannian geometry.
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Almost Complex Structures

An almost complex structure J on a manifold M is a smooth field of complex structures on the tangent
spaces:

x 7−→ Jx : TxM → TxM linear, and J2
x = −Id.

The pair (M,J) is then called an almost complex manifold. Let (M,ω) be a symplectic manifold. An almost
complex structure J on M is called compatible (with ω or ω-compatible) if gx(u, v) := ωx (u, Jxv) defines a
Riemannian metric on M . The triple (ω, g, J) is called a compatible triple when g( · , · ) = ω( · , J ·). Given ω
and g on M , there exists a canonical almost complex structure J on M which is compatible to them. Since
Riemannian metrics always exist, we see that any symplectic manifold has a compatible almost complex
structure.

2.2 Morse Theory

We recall a concept from general Riemannian manifold theory and then examine that for our symplectic
manifold.

Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇ and let f ∈ C∞(M) be a smooth
function. Then ∇f ∈ Γ(T (0,1)TM) = Ω1(M) is just the 1-form df :

∇f(X) = ∇Xf = Xf = df(X). (1)

The 2-tensor ∇2f = ∇(df) is called the (covariant) Hessian of f . By adopting a notational stipulation that
∇2
X,Y F (· · · ) := ∇2F (· · · , X, Y ) (this is different from [Lee18, pp.99]), we see

∇2f(X,Y ) = ∇2
X,Y f = ∇X(∇Y f)−∇(∇XY )f = X(Y f)− (∇XY )f = X(Y f)− df(∇XY ).

Proposition 2.2. Show that ∇2f(X,Y ) = ⟨∇X grad f, Y ⟩ = ⟨∇X grad f, Y ⟩.

Proof.
∇2f(X,Y ) = ∇X⟨grad f, Y ⟩ − ⟨grad f,∇XY ⟩

= ⟨∇X grad f, Y ⟩+ ⟨grad f,∇XY ⟩ − ⟨grad f,∇XY ⟩ by metric property

= ⟨∇X grad f, Y ⟩.
■

Now let M be a compact manifold and f ∈ C∞(M). The collection of all critical points is called the critical
set Crit(f) = {p ∈M | df(p) = 0}. Let x ∈ Crit(f) and consider the Hessian map Hessx(f) : TxM ×TxM →
R defined by

Hessx(f)(Xx, Yx) = X(Y f)(p) = Xx(Y f). (2)

where X and Y are any vector fields whose value at x are Xx and Yx.

Remark 2.3.

(a) Recall that if X ∈ X(M) and f ∈ C∞(M), then Xf is a smooth function M → R defined as p 7→ Xxf .
Xx is a tangent vector, or a derivation. df(X) is also a smooth function defined by p 7→ dfx(Xx).
These two functions are the same Xf = df(X).

(b) The gradient grad f vanishes exactly at critical points: (grad f)x = ĝ−1(dfx) = 0
ĝ iso⇐⇒ dfx = 0 ⇐⇒

p ∈ Crit(f).

(c) For p ∈ Crit(f), Hessx(f) is well-defined, symmetric, and bilinear: Hessx(f) is symmetric asX(Y f)(p)−
Y (Xf)(p) = ([X,Y ]f)(p) = dfx[X,Y ]x = 0 =⇒ X(Y f)(p) = Y (Xf)(p). Since X(Y f)(p) = Xx(Y f),
the RHS of eq.(2) is independent of the choice of X. Since Y (Xf)(p) = Yx(Xf), the RHS of eq.(2) is
also independent of the choice of Y . Bilinearity is trivial.
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(d) Note that if ∇ is a connection on the manifold M , then for x ∈ Crit(f),

(∇2f)x(Xx, Yx) = Xx(Y f)− dfx((∇XY )x)︸ ︷︷ ︸
=0 as x∈Cirt(f)

= Xx(Y f).

♠

Definition 2.4. A critical point x ∈ Crit(f) is called nondegenerate if the bilinear form Hessx(f) is nonde-
generate. A function f ∈ C∞(M) is called a Morse function if Crit(f) is discrete and each x ∈ Crit(f) is
nondegenerate. Since any infinite set of points in a compact space must have an accumulation point, a Morse
function on a compact manifold M must only have finitely many critical points.

A function f ∈ C∞(M) is called a Morse-Bott function if Crit(f) decomposes into finitely many connected
submanifolds of M , which we shall call the critical manifolds, and for each x ∈ Crit(f),

TxCrit(f) = ker ̂Hessx(f) = {v ∈ TxM | Hessx(f)(v, w) = 0,∀w ∈ TxM}.

In this definition, we identified the bilinear form Hessx(f) : TxM × TxM → R with an operator ̂Hessx(f) :
TxM → TxM using a Riemannian metric ⟨ · , · ⟩ on M . That is,

Hessx(f)(v, w) =
〈
̂Hessx(f)(v), w

〉
x

Then

{v ∈ TxM | Hessx(f)(v, w) = 0,∀w ∈ TxM} =
{
v
∣∣∣〈 ̂Hessx(f)(v), w

〉
x
= 0,∀w

}
= {v| ̂Hessx(f)(v) = 0}

= ker ̂Hessx(f)(v).

It is also easy to see this operator is self-adjoint:〈
̂Hessx(f)(v), w

〉
x
=
〈
v, ̂Hessx(f)(w)

〉
x
∀v, w ∈ TxM,

so the matrix of Hessx(f) is symmetric and its eigenvectors comtribute to a basis of TxM .

Notice that the definition of a Morse function is a special case of a Morse-Bott function where the critical
manifolds are all zero dimensional, and hence for any x ∈ Crit(f) we have ker ̂Hessx(f) = 0, and therefore
the Hessian is nondegenerate.

It is useful to consider the following definition from dynamics to understand the Morse-Bott function.

Definition 2.5. Let M be a compact Riemannian manifold, let f : M → M be a diffeomorphism, and let L
be an f -invariant subset of M . We say that L is a normally hyperbolic invariant manifold if for any point
x ∈ L the tangent space TxM splits as a direct sum of three subbundles:

TxM = TxL⊕ E+
x ⊕ E−x

where, with respect to some Riemannian metric on M :

(1) the restriction of df to E+, called the stable bundle, is a contraction;

(2) the restriction of df to E−, called the unstable bundle, is an expansion;

(3) the restriction of df to TL is relatively neutral.
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In other words, there must exist constants 0 < κ < δ−1 < 1 and 0 < c such that:

(1) dfxE
+
x = E+

f(x)and dfxE
−
x = E−f(x) for all x ∈ L

(2) ∥dfnv∥ ≤ cκn∥v∥ for all v ∈ E+ and n > 0

(3) ∥df−nv∥ ≤ cκn∥v∥ for all v ∈ E− and n > 0

(4) ∥df−nv∥ ≤ cδn∥v∥ for all v ∈ TL and n > 0.

If f is a Morse-Bott function then its critical manifolds are all normally hyperbolic invariant manifolds with
respect to the negative gradient flow. The negative gradient flow is the family of diffeomorphisms ϕt :M →
M defined by d

dt

∣∣
t=t0

ϕ(x)(t) = (− grad f)(ϕt0(x)) and ϕ0 = id for t0 ∈ R. Remark 2.3 (b) implies that for
x ∈ C, (− grad f)(x) = 0. Thus, at time zero, d

dt

∣∣
t=0

ϕ(x)(t) = (− grad f)(ϕ0(x)) = (− grad f)(id(x)) =
(− grad f)(x) = 0. The trajectory ϕt(x) never moves, i.e., ϕt(x) = x, and Crit(f) is first of all a ϕt-invariant
subset of M .

Then for any critical manifold C, and for any point x ∈ C, the tangent space TxM decomposes as a direct
sum:

TxM = TxC ⊕ E+
x ⊕ E−x

where TxC = ker ̂Hessx(f) =zero eigenspace (eigenspace with zero eigenvalue); E+
x is spanned by the

positive eigenspaces of ̂Hessx(f); and E−x is spanned by the negative eigenspaces of ̂Hessx(f). Note that we
can use eigenvectors of ̂Hessx(f) as a basis for TxM because ̂Hessx(f) is self-adjoint.

Lemma 2.6 (Morse-Bott Lemma, [BH04]). Let f : M → R be a Morse-Bott function on a compact n-dim
manifold M , C a connected component of Crit (f) of dimension d, and x ∈ C. Then there exists an open
neighborhood U of p and a smooth chart φ : U → Rd ×Rn−d, such that:

(a) φ(x) = 0;

(b) φ(U ∩ C) =
{
(x, y) ∈ Rd ×Rn−d | y = 0

}
; and

(c)
(
f ◦ φ−1

)
(x, y) = f(C)− y21 − y22 −· · ·− y2k+ y2k+1+ · · ·+ y2n−d where k ≤ n− d is the index of Hessx(f)

(the dimension of the subspace of TxM on which the form is negative definite) and f(C) is the common
value of f on C.

Thus, the Hessian is locally a quadratic form with eigenvalues 0,±2. †

Let ϕt be the negative gradient flow on compact manifold M . Let x ∈ C ⊆ Crit(f). We introduce the
following definition.

Definition 2.7. The set of points x ∈M whose trajectories ϕt(x) converge to some point in C as t→∞ form a
manifold called the stable manifold, denotedW s(C). Additionally, for any point x ∈ C, TxW s(C) = TxC⊕E+

x .
Similarly, the set of points x ∈ M whose trajectories ϕt(x) converge to some point in C as t → −∞ form
a manifold called the unstable manifold, denoted Wu(C). Additionally, for any point x ∈ C, TxW

u(C) =
TxC ⊕ E−x .

The index of a connected critical submanifold C is defined by

n−(C) = dimWu(C)− dimC = codimW s(C)

and agrees with the dimension of the negative eigenspace of the Hessian of f on the normal bundle of C.
Similarly, the coindex of C is defined by

n+(C) = dimW s(C)− dimC = codimWu(C)

†In their local form, the ovariant Hessian ∇2f is given by Hessx(f) = ∇i∂jfdx
i ⊗ dxj =

(
∂2f

∂xi∂xj
− Γk

ij
∂f
∂xk

)
dxi ⊗ dxj ; the

symmetric bilinear form Hessx(f) is given by ∂2f
∂xi∂xj

dxi ⊗ dxj . The matrix (∂i∂jf)ij is of the form
[
0 0 0
0 −2Ik 0
0 0 2In−k−d

]
.
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and agrees with the dimension of the positive eigenspace of the Hessian on the normal bundle of C.

A simple calculation shows that †

d

dt

∣∣∣∣
t=t0

f ◦ ϕ(x)(t) = −∥ grad f(ϕt0(x))∥2 ≤ 0.

By differentiating the gradient equation d
dtϕt(x) = − grad f(ϕt(x)), one can see ∥ grad f(ϕt(x))∥2 → 0 as

t→∞, which gives a limit x∞ for a given point critical point x. It is nontrivial to show that this limit point
lies in the critical set. † Therefore,

M =
⋃

C⊆Cirt(f)

W s(C).

Similarly, M is the union of all the unstable manifolds:

M =
⋃

C⊆Cirt(f)

Wu(C).

The reasons for developing these Morse-Bott function theory is to show the following lemma, which will be
directly responsible for showing connectedness of preimage of moment map of Hamiltonian Tm-actions over
compact symplectic manifold, i.e., the connectedness part of Atiyah-Guillemin-Sternberg theorem.

Lemma 2.8. Suppose M is a compact connected manifold and f :M → R is a Morse-Bott function such that for
any of the critical manifolds C of f we have n±(C) ̸= 1. Then for every c ∈ R the level set f−1(c) is connected.

Proof. See [MS17, Lemma 5.51]. ■

2.3 Lie Groups

We recall some notions from Lie groups that will be used later. The Lie algebra g of a Lie group G is the
tangent space at the identity element e ∈ G, equipped with a Lie bracket operation [·, ·] : g× g→ g satisfying
bilinearity, antisymmetry, and the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ g.

The exponential map exp : g → G provides a local diffeomorphism near zero, mapping a Lie algebra
element X to the corresponding one-parameter subgroup exp tX in G.

Denote g∗ as the dual space of the Lie algebra. Let a ∈ G be an arbitrary element. The differential of the
conjugation map g 7→ g · a · g−1 at e is denoted as Adg, which is an element of the general linear group
GL(g). The map Ad : g 7→ Adg is called the adjoint representation of G on its Lie algebra g. The coadjoint
representation is then defined on the dual space g∗ by:

⟨Ad∗g ξ,X⟩ = ⟨ξ,Adg−1 X⟩, ∀ξ ∈ g∗, X ∈ g.

where ⟨ · , · ⟩ is the natural pairing.

Compact Lie groups will be of primary interest in this paper. In particular, any compact connected abelian Lie
group is a torus Tn, whose action on compact symplectic manifolds will be analyzed in the Atiyah-Guillemin-
Sternberg theorem in the next section.

†Letting γ(t) = f ◦ ϕ(x)(t), see that LHS= dγt0 (d/dt|t=t0 ) = dfϕt0 (x) ◦ dϕ
(x)
t0

(d/dt|t=t0 ) = dfϕt0 (x)(d/dt|t=t0ϕ
(x)(t)) =RHS,

where we plugged in X = grad f into df(X) = ⟨grad f,X⟩ for the last step.
†See Otis Chodosh’s reply on Stackexchange for a proof.
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Orbits

We recall some more properties of orbit map θ(p) : G→M ; g 7→ g · p for an action G on M :

Proposition 2.9.

(1) [Lee12, Proposition 7.26, Problem 21-17]: for a smooth left action θ of a Lie group G on smooth manifold
M and a point p ∈M , the orbit map θ(p) : G→M is smooth and has constant rank, so the isotropy group
Gp =

(
θ(p)

)−1
(p) is a properly embedded Lie subgroup of G. Each orbit G · p = Im

(
θ(p)

)
is an immersed

submanifold of M , which is embedded if the action is proper. Note that if the action is transitive, then
θ(p) is a surjective and thus a smooth submersion by the global rank theorem ([Lee12, Theorem 4.14]),
which by submersion Level set theorem ([Lee12, Corollary 5.13]) implies that Gp =

(
θ(p)

)−1
(p) also has

dimension= dimM − dimG. If Gp = {e}, then θ(p) is an injective smooth immersion.

(2) [Lee12, Corollary 21.6] says that continuous action by compact Lie group on manifold is proper, and
[Lee12, Proposition 21.7] says that the orbit map is then a proper map and G · p = Im

(
θ(p)

)
is closed

in M . Since (1) claims that if we have Gp = {e} then θ(p) is an injective smooth immersion, [Lee12,
Proposition 4.22] shows that θ(p) is an embedding and thus its image G · p = Im

(
θ(p)

)
is a properly

embedded submanifold (where we also used [Lee12, Theorem 5.5].)

Remark 2.10. Suppose θ is a smooth left action of Lie group G on smooth manifold M and p ∈M . Then by
(1) above (specifically [Lee12, Problem 21-17]), Op = G · p is a smooth manifold. Consider a new orbit map
φ : G×Op → Op defined by restricting the action θ. Then by the smoothness and contant rank of φ(p) given
by (1) above (specifically [Lee12, Proposition 7.26]), we see this surjective map φ is a smooth submersion
due to [Lee12, Theorem 4.14]. Thus, TpOp = Tφ(p)(e)Op = Im

(
dφ

(p)
e

)
.

Another way to show this claim is by using [Lee12, Theorem 21.18] applied to G-homogeneous space Op
and considering the commutative diagram below:

G ∋ g

G/Gp G · p

φ(p)
π

F

g·Gp 7−−−→g·p

Then dφ
(p)
e = d(F ◦ π)e = dFπ(e)︸ ︷︷ ︸

diffeo

◦ dπe︸︷︷︸
C∞ subm-

is a smooth submersion. Thus, TpOp = Im
(
dφ

(p)
e

)
. ♠

The following results will also be useful.

Lemma 2.11. If an action θ : G×M →M is free then g1 · p = g2 · p =⇒ g1 = g2. In this case, the orbit map
θ(p) : G→ G · p; g 7→ g · p is bijective.

Theorem 2.12. [Quotient Manifold Theorem, [Lee12, Theorem 21.10]] Suppose G is a Lie group acting
smoothly, freely, and properly on smooth manifold M . Then the orbit space M/G is a topological manifold
of dimension dimM − dimG, and has a unique smooth structure with the property that the quotient map
π :M →M/G is a smooth submersion.

Proposition 2.13. [[Lee12, Proposition 5.38]] Suppose M is a smooth manifold and S ⊆ M is an embedded
submanifold. If Φ : U → N is any local defining map for S, i.e., S ∩ U is a regular level set of Φ, then
TpS = ker dΦp : TpM → TΦ(p)N for each p ∈ S ∩N .

We note a convenient alternative characterization of the vector field X#(p), which is called the infinitesimal
generator of group action Ψ : G ×M → M as at [Lee12, pp.529]. Consider the orbit map Ψ(p) : G →
M ; g 7→ g · p. Then the orbit Op through p is the image of Ψ(p). Since γ(t) = exp tX is a smooth curve in G

8
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whose velocity is γ′(0) = Xe, it follows from [Lee12] corollary 3.25 that for each p ∈M we have

dΨ(p)
e (Xe) = (Ψ(p) · γ)′(0) = d

dt

∣∣∣∣
t=0

Ψexp tX(p) = X#(p) (3)

Let Ψ : G×M →M be a smooth action of a Lie group over smooth manifold M .

• The orbit
Op = G · p = {g · p | g ∈ G}

is an embedded submanifold with tangent space at p equals

TpOp =
{
X#(p) | X ∈ g

}
(4)

due to Remark 2.10 and eq.(3).

• The stabilizer subgroup of each p ∈M ,

Gp = {g ∈ G | g · p = p}

is a Lie subgroup H =
(
Ψ(p)

)−1
(p) of G which by [Lee12] Theorem 8..46 has Lie algebra h equal to

gp :=h = {X ∈ g : Xe ∈ TeH}

=
{
X ∈ g : Xe ∈ ker dΨ(p)

e

}
=
{
X ∈ g | X#(p) = 0

}
⊆ g

(5)

where the next-to-last step is due to property 2.9 (1) and proposition 2.13; and the last step is due to
eq.(3).

Principal G-bundle

Definition 2.14. A smooth fiber bundle π : P → M with fiber Lie group G is a smooth principal G-bundle if
G acts smoothly and freely on P and the fiber-preserving local trivializations

ΦU : π−1(U)→ U ×G

are G-equivariant:
ΦU (g · x) = g · ΦU (x), ∀x ∈ π−1(U)

where on the RHS, G acts on U ×G by
g · (x, h) = (x, gh)

Example 2.15.

1. A trivial fiber bundle is one that admits a local trivialization over the entire base space (a global
trivialization). It is said to be smoothly trivial if it is a smooth bundle and the global trivialization is a
diffeomorphism.

2. Every product space M × F is a fiber bundle with projection π1 :M × F →M , called a product fiber
bundle. It has a global trivialization given by the identity map M × F → M × F , so every product
bundle is trivial. If F = G a Lie group, then it is a product G-bundle, a principal G-bundle.

3. Every rank-k vector bundle is a fiber bundle with model fiber Rk.

4. If G is a Lie group and H is a closed subgroup, then the quotient G/H can be given the structure of a
manifold such that the projection map π : G→ G/H is a principal H-bundle.

9
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5. The group S1 of unit complex numbers acts on the complex vector space Cn+1 by multiplication. This
action induces an action of S1 on the unit sphere S2n+1 in Cn+1. The complex projective space CPn

can be defined as the orbit space of S2n+1 by S1. The natural projection S2n+1 → CPn with fiber S1

turn out to be a principal S1-bundle. When n = 1,S3 → CP 1 with fiber S1 is called the Hopf bundle.

♣

Theorem 2.16. If a Lie group G acts smoothly, properly, and freely on a smooth manifold M , then M/G is a
manifold and the map π :M →M/G is a principal G-bundle.

Proof. Use quotient manifold theorem. ■

Haar Measure

Recall that the Haar measure is the unique positively oriented left-invariant n-form µ(g) on compact con-
nected Lie group G such that

∫
G
µ(g) = 1 if we choose a left-invariant orientation (see [Lee12] Proposition

15.19 and 16.10).

Consider the symplectic action of compact connected Lie group G on (M,ω). Let m′ be an arbitrary Rie-
mannian metric on M . For each p ∈ M and Xp, Yp ∈ TpM , define the new metric m by averaging over
G:

mp (Xp, Yp) :=

∫
g∈G

(
ψ∗gm

′)
p
(Xp, Yp) dµ(g) (6)

The property of this metric that we shall use is its ψh-invariance, or simply G-invariance:

∀h ∈ G, (ψ∗hm)p (Xp, Yp) = mp (Xp, Yp) .

Indeed,

(ψ∗hm)p (Xp, Yp) = mψh(p) (d(ψh)p (Xp) ,d(ψh)p (Yp))

=

∫
g∈G

m′ψg(ψh(p))
(
d(ψg)ψh(p)d(ψh)p (Xp) ,d(ψg)ψh(p)d(ψh)p (Yp)

)
dµ(g)

=

∫
g∈G

m′ψgh(p) (d(ψgh)p(Xp),d(ψgh)p(Yp)) dµ(g)

=

∫
k∈G

(ψ∗km
′)p (Xp, Yp) dµ(k) by letting k = gh

= mp(Xp, Yp).

Proposition 2.17. Show that there exists a compatible almost complex structure J on (M,ω) which is invariant
under the G-action, that is, ψ∗gJ = Jψ∗g , for all g ∈ G.

Proof. Let m′ be any Riemannian metric on M and define m as in eq.(6). We have shown the ψh-invariance
of this metric. There is a canonical compatible structure (ω,m, J). Now, using ψg as symplectomorphism
and compatibility, we have

mp(X,Y ) = ωp (X, JpY ) = ψ∗gωp (X, JpY ) = ωψg(p) (d(ψg)pX,d(ψg)pJpY )
)

∥
(ψ∗gm)p(X,Y ) = mψg(p) (d(ψg)pX,d(ψg)pY ) = ωψg(p)

(
d(ψg)pX, Jψg(p)d(ψg)pY

)
for any vectors X,Y in any tangent space TpM . By the nondegeneracy of ω, we must have d(ψg)pJpY =
Jψg(p)d(ψg)pY . That is, ψ∗gJ = Jψ∗g for all g ∈ G. ■

10
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2.4 Hamiltonian G-spaces

Let (M,ω) be a symplectic manifold and let G be a Lie group acting on it by symplectomorphisms Ψ : G →
Sympl(M,ω), which is a group homomorphism such that the evaluation map evΨ(g, p) := Ψg(p) is smooth.

Definition 2.18. The action Ψ is a Hamiltonian action if there exists a map, called moment map, µ :
M −→ g∗ satisfying (i) Hamiltonian condition, i.e., ∀X ∈ g, dµX = ιX#ω, where µX is a smooth function
µX(p) := ⟨µ(p), X⟩; (ii) Equivariance condition: ∀g ∈ G, µ◦Ψg = Ad∗g ◦µ. The tuple (M,ω,G, µ) is then called
a Hamiltonian G-space.

Remark 2.19. We note that now X# does not arise from any X ∈ g like what the general case does. R as
an additive Lie group has exponential map R ∋ x 7→ x ∈ R. S1 has exponential map R ∋ θ 7→ eiθ ∈ S1. The
only difference between S1 and R actions is that the former is 2π-periodic.

When G = R, we have g = g∗ = R For the generator X = 1 of g, we have µX(p) = µ(p) · 1, i.e., µX = µ. The
vector field X#(p) = d

dt

∣∣
t=0

Ψexp t·1(p) =
d
dt

∣∣
t=0

Ψt(p) is the standard vector field on M generated by S1 (or
R). Then dµ = ιX#ω. ♠

Remark 2.20. For abelian group actions, the conjugations become identity maps. So do their differential
Adg at identity and thus the coadjoint Ad∗g. So the equivariance condition becomes invariance µ ◦ Ψg = µ.
We shall see this in the next remark. ♠

Proposition 2.21. For connected Lie groups, there is also an equivalent characterization of Hamiltonian actions
via comoment map µ∗(X) := µX with the two conditions rephrased as: (i) µ∗(X) = µX is a Hamiltonian
function for the vector field X#; (ii) µ∗ is a Lie algebra homomorphism: µ∗[X,Y ] = {µ∗(X), µ∗(Y )} where
{·, ·} is the Poisson bracket on C∞(M).

Proof. See Appendix. ■

Let’s look at a classical exmaple.

Example 2.22 (Circle Action on S2). Consider the sphere S2. A point p on it can be written in spherical
coordinates as

(sinϕ cos θ, sinϕ sin θ, cosϕ),

so it has “height” cosϕ. We thus define the height function as H(θ, h) = h on the sphere with symplectic
form ω = dθ ∧ dh, the standard form for chart (U, (θ, h)).

Consider the circle action on the sphere by horizontal rotation by the circle:

Ψ : S1 −→ Sympl
(
S2, ω

)
eiθ 7−→ rotation by angle θ around z-axis

The flow lines of the action are indicated by the yellow lines with arrows in Figure 1.

Thus, X# = ∂
∂θ . Note that a point p on the sphere has the same vertical height after the horizontal rotation,

i.e., H(p) = H(Ψg(p)). In view of Remark 2.20, this hints us to guess the moment map for this circle action
is the height function. Indeed, the Hamiltonian condition is also true:

ιX#ω(v) = ω(X#, v)

= dθ ∧ dh

(
∂

∂θ
, v

)
= dθ

(
∂

∂θ

)
dh(v)− dθ(v)dh

(
∂

∂θ

)
= dh(v) = dH(v).

♣

11
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Figure 1: Circle action on sphere.

Here is another circle action, this time on the prototypical symplectic manifold Cn ∼= R2n.

Example 2.23 (Circle Action on Cn). In Example 2.1, we see Cn can be equipped with a symplectic form
ω = i

2

∑
dzj ∧ dz̄j . Under the transformations{

zj = xj + iyj

z̄j = xj − iyj
and

{
xj = rj cos θj

yj = rj sin θj

we can also write it as
∑

dxj ∧ dyj and
∑
rjdrj ∧ dθj . Also recall that{

∂
∂xj = cos θj ∂

∂rj −
sin θj

rj
∂
∂θj

∂
∂yj = sin θj ∂

∂rj +
cos θj

rj
∂
∂θj

Consider the following S1-action on (Cn, ω):

t ∈ S1 7−→ Ψt = multiplication by t

We claim that Ψ is Hamiltonian with moment map

µ : Cn −→ R

z 7−→ −∥z∥
2

2
+ constant

In view of remark 2.19, i.e., when the Lie group G is R we pick the generator X = 1 of g to write µX and
X#:

dµX = dµ = −1

2
d
(∑

r2j

)
and

X#(z) =
d

dθ

∣∣∣∣
θ=0

Ψexp θ·1(z) =
d

dθ

∣∣∣∣
θ=0

eiθz︷ ︸︸ ︷
Ψeiθ (z) = iz.

12
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Note that X#(z) = iz should not be misinterpreted (see footnote †). Then,

X#(z) = iz = i(xj + iyj)nj = (−yj + ixj)nj
x+yi↔(x,y)
=========

n∑
j=1

(
−yj ∂

∂xj
+ xj

∂

∂xj

)

=

n∑
j=1

(
(−rj sin θj)

(
cos θj

∂

∂rj
− sin θj

rj
∂

∂θj

)
+ (rj cos θj)

(
sin θj

∂

∂rj
+

cos θj

rj
∂

∂θj

))
=

∂

∂θ1
+

∂

∂θ2
+ · · ·+ ∂

∂θn

and

(ιX#ω) (v) =
(∑

rjdrj ∧ dθj
)
(X#, v) =

∑rj drj(X#)︸ ︷︷ ︸
=0

dθj(v)− rjdrj(v) dθj(X#)︸ ︷︷ ︸
=1


=⇒ ιX#ω = −

∑
rjdrj = −1

2

∑
d((rj)2)

If we choose the constant in definition of µ to be 1
2 , then µ−1(0) = S2n−1 is the unit sphere. The orbit space

of the zero level of the moment map is

µ−1(0)/S1 = S2n−1/S1 ∼= CPn−1

We will see in the next section that CPn−1 arisen in this way is called a reduced space. Notice also that
the image of the moment map is half-space. We use this simple example (Cn, ω,S1, µ) as a precursor of the
major theorems in this expository paper. Under assumptions,

• [Marsden-Weinstein-Meyer] reduced spaces are symplectic manifolds;

• [Atiyah-Guillemin-Sternberg] the image of the moment map is a convex polytope;

• [Delzant] Hamiltonian Tn-spaces are classified by the image of the moment map.

♣

There are some more examples of Hamiltonian G-spaces. We will use them in the next section. For the
proofs showing the moment maps are valid, see appendix.

Example 2.24. Let G be any Lie group and H a closed subgroup of G, with g and h the respective Lie
algebras. The projection i∗ : g∗ → h∗ is the map dual to the inclusion i : h ↪→ g. Suppose that (M,ω,G, ϕ) is
a Hamiltonian G-space. The restriction of the G-action to H is Hamiltonian with moment map

i∗ ◦ ϕ :M −→ h∗

♣

Example 2.25. Suppose that a Lie groupG acts in a Hamiltonian way on two symplectic manifolds (Mj , ωj) , j =
1, 2, with moment maps µj : Mj → g∗. The diagonal action of G on M1 ×M2 is Hamiltonian with moment
map µ :M1 ×M2 → g∗ given by

µ (p1, p2) = µ1 (p1) + µ2 (p2) , for pj ∈Mj

♣
†The vector field X#(z) = iz we computed above should not be interpreted as i

(
z1 ∂

∂z1
+ z2 ∂

∂z2
+ · · ·+ zn ∂

∂zn

)
. Recall

∂
∂zj

= 1
2

(
∂

∂xj
− i ∂

∂yj

)
and ∂

∂z̄j
= 1

2

(
∂

∂xj
+ i ∂

∂yj

)
. Thus we instead have

(
iz1, · · · , izn

)
=

(
ix1 − y1, · · · , ixn − yn

)
≡(

−y1, · · · ,−yn, x1, · · · , xn
)
=

∑n
j=1

(
−yj ∂

∂xj
+ xj ∂

∂yj

)
=

∑n
j=1

(
izj ∂

∂zj
− izj ∂

∂z̄j

)
.

13
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Example 2.26. Let Tn = {(t1, · · · , tn) ∈ Cn : |tj | = 1 , for all j} be a torus acting on Cn by

(t1, · · · , tn) · (z1, · · · , zn) =
(
tk11 z1, · · · , tknn zn

)
where k1, · · · , kn ∈ Z are fixed. This action is Hamiltonian with moment map µ : Cn → (tn)

∗ ∼= Rn given by

µ (z1, · · · , zn) = −
1

2

(
k1 |z1|2 , · · · , kn |zn|2

)
(+constant)

♣

Now suppose (M,ω,G, µ) is a Hamiltonian G-space. Note that the equivariance of µ and linearity of co-
adjoint action (so zero is sent to zero) imply that

Lemma 2.27. If µ(p) = 0. then for any g ∈ G,µ ◦Ψg(p) = 0. Thus, the G-action on M induces a G-action on
µ−1(0).

Next lemma computes the image and kernel of differential of µ and we will use this to see µ−1(0) is a closed
submanifold of M with codim = dimG.

Lemma 2.28. For any p ∈M ,

(1) ker (dµp) = (TpOp)ωp := {v ∈ TpM | ωp(v, w) = 0 for any w ∈ TpOp}, called the symplectic orthocom-
plement of TpOp in (TpM,ωp);

(2) Im (dµp) = g0p := {ξ ∈ g∗ | ⟨ξ,X⟩ = 0 for any X ∈ gp}, called the annihilator of gp in g∗.

Proof. (1): For any v ∈ TpM and any X ∈ g one has

ωp
(
X#(p), v

)
= (ιX#ω)p (v) =

(
dµX

)
p
(v) = ⟨dµp(v), X⟩

The last step comes from the following observation:

(
dµX

)
p
(v)

[Lee12] 3.25
==============
γ w/γ(0)=p,γ′(0)=v

d

dt

∣∣∣∣
t=0

µX(γ(t)) =
d

dt

∣∣∣∣
t=0

X(µ(γ(t)))

X linear
====== X

(
d

dt

∣∣∣∣
t=0

µ(γ(t))

)
[Lee12] 3.25
========= X(dµp(v)) = ⟨dµp(v), X⟩

(2): It is easy to see Im (dµp) ⊆ g0p, so (2) follows from a dimensionality argument:

dim Im (dµp) = dimTpM − dimker (dµp)
(1)
=== dimTpOp = dim Im (Ap) ,

where Ap is the linear map Ap : g → TpM,X 7→ X#(p). Thus, dim Im (Ap) = dim g − dimker (Ap) =
dim g− dim gp = dim g0p. ■

Corollary 2.29.
The action is locally free at p, i.e., stabilizer subgroup Gp is discrete
⇐⇒ gp = {0}
⇐⇒ dµp is surjective
⇐⇒ p is a regular point of µ.

Proof. For the first ⇐⇒ , just note that (1) [Lee12] Proposition 21.28; (2) gp = Lie(Gp) ∼= Te(Gp); and (3)
zero dimensional vector space is exactly 0.

For the second ⇐⇒ : When gp = {X ∈ g|X#(p) = 0} = 0, we see that any annihilator has nothing to
annihilate, i.e., g0p includes the whole g∗, which as a vector space is identified with the tangent space of
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itself, i.e., Im(dµp). Conversely, suppose ∀ξ ∈ g∗, ξ(X) = 0, then it has to be the case X = 0 (for if not
then there is some basis element bj with nonzero coefficient ai of which X consists. Then we can construct
a linear map ξ that only evaluates bi nontrivially to see ξ(X) ̸= 0.)

The last ⇐⇒ is just the definition. ■

Corollary 2.30.
G acts freely on µ−1(0)
=⇒ 0 is a regular value of µ by Corollary 2.29
=⇒ µ−1(0) is a closed submanifold ofM with codim = dimG by regular level set theorem (see [Lee12] Cor.5.14)
=⇒ Tpµ

−1(0) = ker dµp for p ∈ µ−1(0) by Proposition 2.13 by Lemma 2.28 (a)
=⇒ Tpµ

−1(0) and TpOp are symplectic orthocomplements in TpM .
The inclusion Op ⊆ µ−1(0) (see Lemma 2.27) implies the inclusion TpOp ⊆ Tpµ

−1(0) = (TpOp)ωp . Thus, the
tangent space to the orbit through p ∈ µ−1(0) is an isotropic subspace of TpM . Hence, orbits in µ−1(0) are
isotropic.

The following lemma is called linear reduction. It will be used for the main reduction theorem in the next
section.

Lemma 2.31. Let (V, ω) be a symplectic vector space. Suppose that I is an isotropic subspace, that is, ω|I ≡ 0.
Then ω induces a canonical symplectic form Ω on Iω/I.

Proof. Let u, v ∈ Iω, and [u], [v] ∈ Iω/I. Define Ω([u], [v]) = ω(u, v).

- Ω is well-defined: ω(u+ i, v + j) = ω(u, v) + ω(u, j)︸ ︷︷ ︸
0

+ω(i, v)︸ ︷︷ ︸
0

+ω(i, j)︸ ︷︷ ︸
0

, ∀i, j ∈ I.

- Ω is nondegenerate: Suppose that [u] ∈ Iω/I has ω([u], [v]) = 0, for all [v] ∈ Iω/I. Then ω(u, v) = 0, for all
v ∈ Iω. Then u ∈ (Iω)

ω
= I, i.e., [u] = 0. ■

3 Two Classical Theorems of Symplectic Geometry: Reduction and
Convexity

We prove two classical theorems of symplectic geometry in this section. They are Marsden-Weinstein-Meyer
theorem [MW74; Mey73] and Atiyah-Guillemin-Sternberg theorem [Ati82; GS82a], both of them crucial for
constructing a symplectic toric manifold from Delzant’s polytope.

3.1 Marsden-Weinstein-Meyer Theorem

Theorem 3.1 (Marsden-Weinstein-Meyer). Let (M,ω,G, µ) be a Hamiltonian G-space for a compact Lie group
G. Let i : µ−1(0) ↪→M be the inclusion map. Assume that G acts freely on µ−1(0). Then

(1) the orbit space Mred = µ−1(0)/G is a manifold,

(2) π : µ−1(0)→Mred is a principal G-bundle, and

(3) there is a symplectic form ωred on Mred satisfying i∗ω = π∗ωred.

Definition 3.2. The pair (Mred, ωred) is called the reduction of (M,ω) with respect to G,µ, or the reduced
space.

Proof.

Special Cases:
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The simplest case for a compact Lie group is G = S1 and the simplest case for M is when dimM = 2. For
example, the action S1 ×Cn → Cn with n = 1 gives µ−1(0)/S1 = S1/S1 a single point with zero dimension.

The next simplest example is when G = S1 and dimM = 4. In this case the moment map is µ :M → R and
the embedded submanifold µ−1(0) has dimension 3. Let p ∈ µ−1(0). Choose local coordinates on M :

• θ along the orbit through p;

• µ given by the moment map; and

• η1, η2 pullback of coordinates on two-dimensional µ−1(0)/S1.

To see how these four coordinates determine a point p in µ−1(0) ⊆M , we first observe that µ :M → R cuts
M into slices of level sets µ−1(c), and each of them is a 3-manifold. For µ−1(0), Lemma 2.27 shows that G
acts on µ−1(0) by the same Ψ. Thus, each point p in µ−1(0) is classified in different orbitsOp = G·p ⊆ µ−1(0).
Now, note that Lemma 2.11 says that the orbit map Ψ(p) corresponds each value of Lie group G with one
point in Op. In all, µ determines whether or not p is in µ−1(0); η1, η2 determines which orbit Op in the orbit
space µ−1(0)/S1 does p lie; θ determines the location of that p is its orbit Op.

Using these coordinates, we can write the symplectic form as

ω = Adθ ∧ dµ+Bjdθ ∧ dηj + Cjdµ ∧ dηj +Ddη1 ∧ dη2

Since dµ = ι( ∂∂θ )
ω, we must have A = 1, Bj = 0. Hence,

ω = dθ ∧ dµ+ Cjdµ ∧ dηj +Ddη1 ∧ dη2

Since ω is symplectic, we must have D ̸= 0. Therefore, i∗ω = Ddη1∧dη2 is the pullback of a symplectic form
on Mred.

General Cases:

Due to Corollary 2.30, we see µ−1(0) is a smooth manifold of dimension dimM − dimG. For the first two
parts of the theorem it is enough to apply Theorem 2.16 to the free action of compact Lie group G on µ−1(0).
Mred has dimension dimM − 2 dimG. Again Corollary 2.30 tells us that at p ∈ µ−1(0) the tangent space to
the orbit TpOp is an isotropic subspace of the symplectic vector space (TpM,ωp), i.e., TpOp ⊆ (TpOp)ωp , and
(TpOp)ωp = ker dµp = Tpµ

−1(0). The Lemma 2.31 gives a canonical symplectic structure on the quotient
Tpµ

−1(0)/TpOp. The point [p] ∈Mred = µ−1(0)/G has tangent space T[p]Mred ≃ Tpµ−1(0)/TpOp. And π has
differential

dπp : Tpµ
−1(0) ∋ v 7→ [v] ∈ T[p]Mred ≃ Tpµ−1(0)/TpOp. (7)

Thus the Lemma defines a nondegenerate 2-form ωred on Mred. This is well-defined because ω is G-invariant.
Therefore, i∗ω, which is simply ω|Tpµ−1(0), is equal to π∗ωred, where

µ−1(0)
i
↪→ M

↓ π
Mred

Hence, using naturality of exterior derivative ([Lee12, Proposition 14.26]) twice and noticing closedness of
ω, we see

π∗dωred = dπ∗ωred = di∗ω = i∗dω = 0.

Then the closedness of ωred follows from the injectivity of π∗. ■

The following proposition shows a way to naturally realize the reduced symplectic manifold as a new Hamil-
tonian space.
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Proposition 3.3. Let (M,ω,G, µ) be a Hamiltonian G-space and (Mred, ωred) be the symplectic reduction.
Suppose that another Lie group H acts on (M,ω) in a Hamiltonian way with moment map ϕ : M → h∗. If
H-action commutes with the G-action and ϕ is G-invariant, then the action of H on Mred admits a Hamiltonian
action of H with moment map ϕred.

Proof. The H-action is defined in a natural way:

H ×Mred →Mred

h · Op 7→ Oh·p

This is well-defined, i.e, whatever representative in the orbit Op is used to get Oh·p, the result is the same.
In symbols, for any q = g · p ∈ Op = G · p for some g ∈ G, we have h · q = g · (h · p) ∈ Oh·p.

Since ϕ is G-invariant and thus ϕ is constant on each orbit, we can define ϕred : Mred → h∗ by ϕred(Op) =
ϕ(p). That is, ϕred ◦ π = ϕ ◦ i. We now show that (Mred, ωred, H, ϕred) is a Hamiltonian H-space.

Hamiltonian condition: Starting from the Hamiltonian condition on M , i.e., dϕX = ιX#ω, and restricting
this equation to µ−1(0), we have

d
(
i∗ϕX

)
= ιX# (i∗ω) .

Observe that ϕXred(Op) = ϕX(p) =⇒ ϕXred ◦ π = ϕX ◦ i. Then

d(i∗ϕX)p = d(ϕX ◦ i)p = d(ϕXred ◦ π)p = d
(
ϕXred

)
π(p)
◦ dπp( · )

Since i∗ω = π∗ωred, we have

[ιX# (i∗ω)]p = [ιX# (π∗ωred)]p = (ωred)π(p) (dπp(X
#),dπp( · ))

Since π is a submersion, i.e, the map in (7) is surjective, we see every element in TpMred is of the form
dπp( · ). Thus,

dϕXred = ιX#ωred.

Equivariance condition: We want to show ∀h ∈ H, Op ∈Mred,

ϕred (h · Op) = Ad∗h (ϕred (Op))

LHS is ϕred(Oh·p) = ϕ(h · p), and RHS is Ad∗h (ϕ(p)). They are equal because of the equivariance of ϕ. ■

In the next subsection, we will realize (CPn, ωFS) as a reduced space and use this proposition to give it
Hamiltonian actions.

3.2 Example: Reduction for Product Groups

Let G1 and G2 be two Lie groups and let G = G1 ×G2. Then

g = g1 ⊕ g2 and g∗ = g∗1 ⊕ g∗2

Suppose each Gi symplectically acts on (M,ω) with moment map ψi :M → gi.

Remark 3.4. Recall that if we let θ be a flow on M , we say a smooth tensor field A on M is invariant
under θ if for each t, the map θt pulls A back to itself wherever it is defined, i.e., (θ∗tA)p = d(θt)

∗
p

(
Aθt(p)

)
=

Ap, ∀(t, p) ∈ D(θ). For functions, we have θ∗t f(p) = f(θt(p)). [Lee12, Theorem 12.37] claims that A is
invariant under the flow θ of V ∈ X(M) if and only if LVA = 0. ♠

Remark 3.5. Now note that θ(t, p) = Ψexp tX(p) is a flow on M . The integral curves of θ are trajectories of
X#, which is the Hamiltonian vector field of µX . Also,
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• f is invariant under θ defn.⇐⇒ ∀(t, p), f(p) = (θ∗t f)(p) := f(θt(p)) = f(Ψexp tX(p))
12.37⇐⇒ LX#f = 0;

• f is G-invariant ⇐⇒ f(p) = f(Ψg(p)).

The second invariance is stronger than the first invariance.

However, for connected Lie group G, we can use the fact that the exponential map is a local diffeomorphism
to write any element g of G as a product of elements of the form exp(X1) · · · exp(Xk). Then

f(g · p) = f(exp(X1) · · · exp(Xk) · p) = f(exp(X1)(exp(X2) · · · exp(Xk) · p))
1st condition
========= f(exp(X2) · · · exp(Xk) · p) = · · · = f(p).

Then in this case, the two kinds of invariance are the same. ♠

We shall see how the following assumptions can help us reduce the action.

• A1: The actions of G1 and G2 on M commute.

• A2: ψ1 is G2-invariant and ψ2 is G1-invariant.

• A3: The action of G1 ×G2 on M (defined as in the following lemma) is free and proper.

Lemma 3.6. If we assume A1, then there is a well-defined action of G1 × G2 on M given by (g1, g2) · z =
g1 · (g2 · p) = g2 · (g1 · p). We claim that

ψ := ψ1 × ψ2 :M → g = g∗1 ⊕ g∗2

is an action of G1 ×G2 on M satisfying the Hamiltonian condition.

Proof. For X ∈ g1 and Y ∈ g2, we have exp(t(X,Y )) = (exp(tX), exp(tY )) and thus (X,Y )#(p) = X#(p) +
Y #(p). Note that ψ(X,Y )(p) = ⟨ψ(p), (X,Y )⟩ = ⟨(ψ1(p), ψ2(p)), (X,Y )⟩ = ⟨ψ1(p), X⟩+ ⟨ψ2(p), Y ⟩ = ψX1 (p)+
ψY2 (p). Therefore, dψ(X,Y ) = dψX1 + dψY2 = ιX#ω + ιY #ω = ι(X,Y )#ω. ■

There are some remarks we want to make for assumption A2.

Remark 3.7. If the symplectic manifold arises as the cotangent bundle of a manifold, i.e, M = T ∗X and the
actions are lifted from commuting actions on X, then we assert that the condition A2 automatically holds:

In the cotangent case, we can use the explicit formula for the equivariant moment maps ψ1 and ψ2. Let
g2 ∈ G,αp ∈ T ∗pX where p = (x, v) and ξ ∈ g1. Then

⟨ψ1 (g2 · αp) , ξ⟩ =
〈
g2 · αp, ξ#(g2 · p)

〉
=
〈
g2 · αp, g2 · ξ#(p)

〉
=
〈
αp, ξ

#(p)
〉
= ⟨ψ1 (αp) , ξ⟩ .

There is a similar argument for ψ2. This proves our assertion. ♠

Remark 3.8. In a sense, one needs to only assume that “half” of A2 holds. Namely, we claim that if ψ2 is G1-
invariant and G2 is connected, then ψ1 is G2-invariant. Indeed, d ⟨ψ2, η⟩ · ξ# = (dψη2 )(ξ

#) = (ιη#ω)(ξ
#) = 0

for all ξ ∈ g1 and η ∈ g2 and hence

0
G1−inv.
====== −Lξ#ψ

η
2 = −LX

ψ
ξ
1

ψη2

(14)
==== {ψξ1, ψ

η
2} = LXψη2 ψ

ξ
1 = Lη#ψ

ξ
1

Remark 3.5 shows that when G2 is connected, Lη#ψ
ξ
1 = 0 gives G2-invariance of ψξ1 and thus ψ1, as ξ is

arbitrary. ♠

Now we have the ingredients needed to get a moment map.
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Proposition 3.9. Under hypotheses A1 and A2, ψ is a moment map for the action of G = G1 ×G2 on M .

Proof. The Hamiltonian condition is already proved in the Lemma.

For all p ∈M and (g1, g2) ∈ G1 ×G2 we have

(ψ1 × ψ2) ((g1, g2) · p) = (ψ1(g1 · g2 · p), ψ2(g1 · g2 · p))
= (g1 · ψ1(p), g2 · ψ2(p))

= (g1, g2) · (ψ1 × ψ2) (p)

where we have used equivariance of each of ψ1 and ψ2, the fact that the actions commute (A1), and condition
A2, the invariance of ψ1 and ψ2. ■

We need a stronger version of Proposition 3.3:

Lemma 3.10. Under hypotheses A1, A2, and A3, the space (Mred = Z1/G1 = ψ−11 (0)/G1, ωred), reduced from
(M,ω,G, ψ1 × ψ2), can be realized as a Hamiltonian space with G2-action g2 · Op := Og2·p and moment map
µ2 :M1 → g∗2; Op 7→ ψ2(p). The action is also free and proper.

Proof. See [Mar+07, Lemma 4.1.2]. ■

Now, we can take the (second) reduced space µ−12 (0)/G2 from the (first) reduced space Mred = ψ−11 (0)/G1.
The main result is the following:

Theorem 3.11. Under hypotheses A1, A2, and A3, there is a natural symplectomorphism such that

µ−12 (0)/G2 ≃ (ψ1 × ψ2)
−1(0, 0)/G1 ×G2.

Proof. See [Mar+07, Theorem 4.1.3]. ■

This technique of performing reduction with respect to one factor of a product group at a time is called
reduction in stages. It may be extended to reduction by a normal subgroupH ⊂ G and by the corresponding
quotient group G/H and can also be extended to semidirect products; see [Mar+07, Chapter 3 and 4].

3.3 Example: Complex Projective Space and Fubini-Study Form

Consider the real-valued function on Cn

f : z 7−→ log
(
∥z∥2 + 1

)
(8)

which can be shown to be strictly plurisubharmonic and then the 2-form

ω =
i

2
∂∂̄ log

(
∥z∥2 + 1

)
is Kähler and thus symplectic, where ∂ and ∂ are Dolbeault operators.

Recall that CPn is obtained from Cn+1\{0} by making the identifications (z0, · · · , zn) ∼ (λz0, · · · , λzn) for
all λ ∈ C\{0}; [z0 : · · · : zn] is the equivalence class of (z0, · · · , zn).

For j = 0, 1, · · · , n, let

Uj = {[z0 : · · · : zn] ∈ CPn | zi ̸= 0}

φj : Uj → Cn φj ([z0 : · · · : zn]) =
(
z0
zj
, · · · , zj−1

zj
,
zj+1

zj
, · · · , zn

zj

)
.
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{(Ui,Cn, φi) , i = 0, · · · , n} is a complex atlas (i.e., the transition maps are biholomorphic). In particular, it
was shown that the transition diagram associated with (U0,Cn, φ0) and (U1,Cn, φ1) has the form

U0 ∩ U1

V0,1 V1,0

φ0 φ1

φ0,1

where V0,1 = V1,0 = {(x1, · · · , xn) ∈ Cn | x1 ̸= 0} and φ0,1 (x1, · · · , xn) =
(

1
x1
, x2

x1
, · · · , xnx1

)
. We can easily

show that φ0,l is biholomorphic and for x ∈ Cn,

(φ∗0,1f)(x) = f(φ0,1(x)) = log

(
1 +

∑n
i=2 |xi|2

|x1|2
+ 1

)
= log

(
1 +

∑n
i=1 |xi|2

|x1|2

)
= log

(
|x|2 + 1

)
+ log

1

|x1|2
= log

(
|x|2 + 1

)
− log x1 − log x1

which implies

φ∗0,1∂∂f = ∂∂φ∗0,1f = ∂∂
(
log
(
|x|2 + 1

)
− log x1 − log x1

)
= ∂∂ log

(
|x|2 + 1

)
where the sum log x1 + log x1 of a holomorphic function and an anti-holomorphic function is killed by ∂ and
∂ due to [Sil06, Definition 14.4]. Thus,

φ∗0,1ω = φ∗0,1
i

2
∂∂̄f =

i

2
∂∂̄f = ω

Now for on U0 ∩ U1, we have φ1 = φ0,1 ◦ φ0 =⇒ φ∗1 = φ∗0 ◦ φ∗0,1 and

ω1 = φ∗0 ◦ φ∗0,1ω = φ∗0ω = ω0

In general, for Uk ∩ Ul, we have

φk,l(x1, · · · , xn) = φl ◦ φ−1k (x1, · · · , xn)
= φl([x1zk : · · · : xkzk : zk : xk+1zk : · · · : xlzk : · · · : xnzk])

=

(
x1zk
xlzk ,

· · ·
,

zk
xlzk ,

, · · · ,
,

xl−1zk
xlzk ,

xl+1zk
xlzk ,

· · ·
,

xnzk
xlzk

)
=

(
x1
xl ,
· · ·

,

1

xl ,
· · ·

,

xn
xl

)
and one can show ωk = ωl on Uk ∩ Ul. Therefore, φ∗iω’s “glue together” to define a Kähler structure on CPn.
This is called the Fubini-Study form on complex projective space and is denoted as ωFS.

Recall the S1-action on
(
Cn+1, ω0

)
by the multiplication by eit. This action is Hamiltonian with a moment

map µ : Cn+1 → R given by

µ(z) = −1

2
∥z∥2 + 1

2

We show that the reduction µ−1(0)/S1 ≃ S2n+1/S1 ≃ CPn has the Fubini-Study symplectic form ωFS as its
reduced symplectic form ωred.

Let pr : Cn+1\{0} → CPn ≃ Cn+1\{0}/C∗ denote the standard projection. For every z ∈ Cn+1 \ {0}, the
point pr(z) = [z] is in some chart (Uk, φk). Note that the composition φk ◦ pr : Cn+1 \ {0} → Cn is given by

(z0, · · · , zn) 7→
(
z0
zk ,
· · ·

,

ẑk
zk ,
· · ·

,

zn
zk

)
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which is clearly holomorphic. Thus,

pr∗ ωFS(z) = pr∗ φ∗kω(z) = (φk ◦ pr)∗ω(z) =
i

2
∂∂̄f ◦ φk ◦ pr(z) =

i

2
∂∂̄ log

∑
j ̸=k

|zj |2

|zk|2
+ 1

 =
i

2
∂∂̄ log ∥z∥2.

We prove that this form has the same restriction to S2n+1 as ω0.

It is not hard to compute that

∂f =

n∑
j=1

∂f

∂zj
dzj , ∂̄f =

n∑
j=1

∂f

∂z̄j
dz̄j , ∂∂̄f =

n∑
j,k=1

∂2f

∂zj∂z̄k
dzj ∧ dz̄k.

Let f be log ∥z∥2 = log (
∑n
k=0 zkz̄k) (note that this is different from (8)). Then

∂f

∂zj
=

1

∥z∥2
∂

∂zj

(
n∑
k=0

zkz̄k

)
=

z̄j
∥z∥2

,
∂2f

∂zj∂z̄k
=

∂

∂z̄k

(
z̄j
∥z∥2

)
=
∥z∥2δjk − z̄jzk

∥z∥4

Thus,

∂∂̄f =

n∑
j,k=0

(
1

∥z∥2
δjk −

z̄jzk
∥z∥4

)
dzj ∧ dz̄k.

When ∥z∥ = 1, we see

i

2
∂∂̄f =

i

2

n∑
j,k=0

(δjk − z̄jzk) dzj ∧ dz̄k = ω0 +
1

2i

n∑
j,k=0

z̄jzkdzj ∧ dz̄k︸ ︷︷ ︸
R

.

Thus we just need to show that the 2-form R is 0 on S2n+1. But suppose that w = (w0, · · · , wn) is a tangent
vector at z = (z0, · · · , zk). Then we have

(∗) : w · z =
∑
j

w̄jzj = 0.

We compute that

(ιwR)z =
1

2i

n∑
j,k=0

z̄jzk (dzj(w)dz̄k − dz̄k(w)dz̄j)

=
1

2i

n∑
j,k=0

z̄jzk(wjdz̄k − w̄kdzj)

=
1

2i

n∑
k=0

n∑
j=0

zk z̄jwj︸︷︷︸ dz̄k − 1

2i

n∑
j=0

n∑
k=0

z̄j zkw̄k︸ ︷︷ ︸ dzj
(∗)
=== 0.

This shows R is zero when ∥z∥ = 1. We have shown (pr ◦i)∗ωFS = i∗ pr∗ ωFS = i∗ω0. To show (CPn, ωFS)
is symplectomorphic to (Mred, ωred) = (µ−1(0)/S1, ωred) = (S2n+1/S1, ωred), we first note the following
bijection ℓ

S2n+1/S1 = {O(z0,··· ,zn)||z0|
2 + · · ·+ |zn|2 = 1} −→ {[z0 : · · · : zn] |zj not all 0} = CPn

O(z0,··· ,zn) 7−→ [z0 : · · · : zn]

O(w0,··· ,wn) where wj =
zj√

|z0|2 + · · ·+ |zn|2
←− [ [z0 : · · · : zn]
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is a diffeomorphism such that ℓ ◦ π = pr ◦i where i : S2n+1 → Cn+1 \ {0}, pr : Cn+1 \ {0} → CPn,
π : S2n+1 → S2n+1/S1. ℓ is then the desired symplectomorphism:

π∗ℓ∗ωFS = (ℓ ◦ π)∗ωFS = (pr ◦i)∗ωFS = i∗ω0
Marsden-Weinstein-Meyer
================ π∗ωred

=⇒ℓ∗ωFS = ωred using the lemma below plus surjective submersion π

Lemma: Consider a smooth surjective map π : M → N and a smooth submersion dπp : TpM → TpN . Then
π∗ω = ω∗η =⇒ ω = η.
proof : ∀a, b ∈ TqN , ∃u, v ∈ TpM s.t. π(p) = q and dπpu = a,dπpv = b. Then

ωq(a, b) = ωq(dπpu,dπpv) = ηq(dπpu,dπpv) = ηq(a, b) =⇒ ω = η.

Proposition 3.12. The natural actions of Tn+1 and U(n+ 1) on (CPn, ωFS) are Hamiltonian.

Proof. We have the symplectomorphism τ : (CPn, ωFS) → (Mred = S2n+1/S1, ωred), the reduced space from
Hamiltonian G-space (M = Cn+1, ω,G = S1, µ). Now Proposition 3.3 says (Mred, ωred) can be realized as
Hamiltonian H-spaces (Mred , ωred , H, ϕred ) for (M,ω,H = Tn+1, ϕ) and (M,ω,H = U(n + 1), ϕ) if we can
verify two conditions required in the proposition for each of these two H-actions.

1. The action of H = Tn+1 = {(t0, · · · , tn) ∈ Cn+1 : |tj | = 1} on M = Cn+1 and the moment map ϕ are
given by Example 2.26:

h · p = (t0, · · · , tn) · (z0, · · · , zn) = (t0z0, · · · , tnzn)

ϕ (z0, · · · , zn) = −
1

2

(
|z0|2 , · · · , |zn|2

)
(+ constant ).

Two conditions to verify are:

• commutativity of G and H actions: this is due to commutativity of complex multiplication:

h · (g · p) = (t0, · · · , tn) · (eiθ · (z0, · · · , zn)) = (t0, · · · , tn) · (eiθz0, · · · , eiθzn)
= (t0e

iθz0, · · · , tneiθzn) = (eiθt0z0, · · · , eiθtnzn)
= eiθ · ((t0, · · · , tn) · (z0, · · · , zn)) = g · (h · p).

• ϕ is G-invariant:

ϕ(g · p) = −1

2

(∣∣eiθz0∣∣2 , · · · , ∣∣eiθzn∣∣2) (+ constant ) = −1

2

(
|z0|2 , · · · , |zn|2

)
(+ constant ) = ϕ(p).

The conclusion of the proposition is that (S2n+1/S1, ωred, T
n+1, ϕred) is a Hamiltonian H-space, i.e., the

action is given by

Φ : Tn+1 × S2n+1/S1 → S2n+1/S1

(t0, · · · , tn) · O(z0,··· ,zn) 7→ O(t0z0,··· ,tnzn)

and ϕred below is its moment map,

ϕred : S2n+1/S1 = {O(z0,··· ,zn)||z0|
2 + · · ·+ |zn|2 = 1} −→ h∗ = Rn+1

O(z0,··· ,zn) 7−→ ϕ(z0, · · · , zn) = −
1

2

(
|z0|2 , · · · , |zn|2

)
(+ constant ).
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We claim (CPn, ωFS, T
n+1, ϕred ◦ τ) is a Hamiltonian H-space with action

Ψ : Tn+1 × CPn → CPn

(t0, · · · , tn) · [z0 : · · · : zn] 7→ [t0z0 : · · · : tnzn]

and moment map

ϕred ◦ f : CPn −→ S2n+1/S1 −→ h∗ = Rn+1

[z0 : · · · : zn] 7−→ O(w0,··· ,wn) 7−→ ϕ(w1, · · · , wn)

= −1

2

(
|z0|2 , · · · , |zn|2

)
|z0|2 + · · ·+ |zn|2

(+ constant) = − 1

2∥z∥2
(
|z0|2 , · · · , |zn|2

)
(+ constant).

In fact, Hamiltonian condition is satisfied as ωFS(X, · ) = f∗ωred(X, · ) = f∗(d(ϕXred)) = d(ϕXred ◦ f) =
d(ϕred ◦f)X ; we verify the equivariance condition: ℓ◦Φh ◦f = Ψh =⇒ (ϕred ◦f)(Ψh) = ϕred ◦f ◦Ψh =
ϕred ◦ f ◦ ℓ ◦ Φh ◦ f = ϕred ◦ Φh ◦ f = Ad∗h ◦ϕred ◦ f = Ad∗h(ϕred ◦ f).

2. The action of U(n+ 1) on (CPn, ωFS) is

U · [z0 : · · · : zn] = [U(z0 : · · · : zn)T ]

The moment map is

[z0 : · · · : zn] 7→
i

2∥z∥2
zz∗

where we identify the Lie algebra u(n + 1) with its dual via the inner product (A,B) = tr(A∗B). One
uses a similar process as that of Tn+1 ↷ Mred descending to Tn+1 ↷ CPn to show above action with
the moment map form a Hamiltonian H-sapce. Solution 5.21 from here gives an attempt to show this
directly; without evoking Proposition 3.3, checking Hamiltonian and equivariance conditions can be
rather tedious.

■

3.4 Atiyah-Guillemin-Sternberg Theorem

From now on, we will concentrate on actions of a torus G = Tm = Rm/Zm. Recall that any compact
connected abelian Lie group must be a torus.

Theorem 3.13 (Atiyah-Guillemin-Sternberg Theorem). Let (M,ω) be a compact connected symplectic mani-
fold, and let Tm be an m torus. Suppose that ψ : Tm → Sympl(M,ω) is a Hamiltonian action with moment
mapµ :M → Rm. Then:

(1) the levels of µ are connected;

(2) the image of µ is convex;

(3) the image of µ is the convex hull of the images of the fixed points of the action.

The image µ(M) of the moment map is hence called the moment polytope.

In the following writeup, we will follow [MS17] to present Atiyah’s approach. Guillemin-Sternberg approach
[GS82a] is sketched in this note. Some of the proofs of the same lemmas in the following sections are more
concisely done in this note.

The following proposition is adapted from [MS17, Lemma 5.53].
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Proposition 3.14. Consider the symplectic action of Tm on (M,ω). For any subgroup G ⊆ Tm, the fixed-point
set for G,

Fix(G) =
⋂
θ∈G

Fix (ψθ)

is a symplectic submanifold of M .

Proof. Let x ∈ Fix(G) and, for θ ∈ G, denote the differential of the symplectomorphism ψθ at x by

Ψθ = d(ψθ)p : TpM → Tψθ(p)M = TpM.

Because of Proposition 2.17, these maps commute with Jx. Now consider the exponential map expx :
TxM → M on the Riemannian manifold (M, g) with respect to the invariant metric g(v, w) = ω(v, Jw)
(obtained by eq.(6)). Thus, ψ∗θg = g, which means ψθ is an isometry. By the naturality of exponential map
([Lee18, Proposition 5.20]), we have

expx (Ψθξ) = ψθ (expx(ξ))

for θ ∈ G and ξ ∈ TxM . Hence the fixed points of ψθ near x correspond to the fixed points of Ψθ on the
tangent space TxM : if y = expx ξ for some ξ is fixed by ψθ, then expx(ξ) = y = ψθ(y) = expx(Ψθξ). By
uniqueness of geodesic, Ψθξ = ξ. Conversely, if Ψθξ = ξ, then y = expx ξ is a fixed point of ψθ.

In other words,
Tx Fix(G) =

⋂
θ∈G

ker (1−Ψθ)

Now, let x ∈ Fix(G) and ξ ∈ Tx Fix(G). Since ΨθJx = JxΨθ, we have ΨθJxξ = JxΨθξ = Jxξ. Thus,
Jxξ ∈

⋂
θ∈G ker (1−Ψθ) = Tx Fix(G). Therefore, Jx : Tx Fix(G)→ Tx Fix(G) and Tx Fix(G) is a symplectic

vector space (see lemma below), and we conclude that Fix(G) is a symplectic submanifold. ■

Lemma 3.15. Given (V,Ω, g, J) and subspace W ≤ V such that JW ⊆ W , show that W is a symplectic vector
space.

Proof. We aim to show Ω|W×W is nondegenerate. That is, if u ∈ W is some vector such that Ω(u, v) = 0 for
every v ∈W , then u = 0. Notice that Jw = v with w = J3v shows that J :W →W is surjective. Thus,

∀v ∈W, 0 = Ω(u, v) = g(u, Jv) = g(u,w) =⇒ ∀w ∈W, g(u,w) = 0 =⇒ u ⊥W =⇒ u ∈W⊥

Since u ∈W , we have u ∈W ∩W⊥ = {0} =⇒ u = 0. ■

Atiyah’s proof of theorem 3.13 uses induction over m = dim Tm. Consider the statements:
Am: “the levels of µ are connected, for any Tm-action;”
Bm: “the image of µ is convex, for any Tm-action.”

Then
The connectedness statement (1)⇐⇒ Am holds for all m,
The convexity statement (2)⇐⇒ Bm holds for all m.

The proof of the induction Am−1 =⇒ Am is from this note, which is the same as the proof from [MS17].
We will show in this paper A1, B1, and the induction Bm−1 =⇒ Bm.
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Connectedness

Lemma 3.16. Let Tm acts on (M,ω) by ψ in symplectomorphism with moment map µ :M → Rm. If X ∈ Rm,
then µX is a Morse-Bott function with even-dimensional critical manifolds of even index and coindex. Also, the
critical set

Crit(µX) =
⋂
θ∈TX

Fix(ψθ) (9)

is a symplectic manifold. Here, TX is the closure of the one-parameter subgroup exp(tX) generated by X in Tm.

Proof. Observe that

p ∈ Crit(µX) ⇐⇒ dµX(p) = ιX#(p)ω = 0

⇐⇒ X#(p) = 0 by nondegeneracy of ω

⇐⇒ d

dt

∣∣∣∣
t=0

ψexp tX(p) = 0.

Note that the last condition shows that ψexp tX(p) = p. Thus, p ∈ Fix(ψθ) for any θ = exp tX. By continuity,
this is also true for any θ ∈ TX . Conversely, p ∈

⋂
θ∈TX Fix(ψθ) =⇒ p ∈ Fix(ψexp tX) for some t, i.e.,

ψexp tX(p) = p. This gives p ∈ Crit(µX) by above displayed equations.

Now, since TX ⊆ Tm is a subgroup, and the RHS of the eq.(9) is just Fix(TX), we see Proposition 3.14
concludes that Crit(µX) is a symplectic manifold.

Now, we show µX is a Morse-Bott function with even-dimensional critical manifolds of even index and
coindex. We can assume that X has components independent over Q, so that TX = Tm and Crit(µX) =

Fix(Tm). We aim to show ker ̂Hessx(µX) =
⋂
θ∈Tm ker(id−dψθ(x)). From the solution of Proposition 3.14,

this will show TxCrit(µ
X) = ker ̂Hessx(µX). First, denote that Hx = ̂Hessx(µX).

Notice that X# = XµX = −J gradµX . † This is a smooth vector field on M and thus a smooth function
M → TM , where gradµX : M → TM and J : TM → TM are also smooth functions. Let ∇ be the

Levi-Civita connection on M . Then for x ∈ Crit(µX), for any vector field Z on M , d(gradµX)
eq.(1)
=====

∇Z(gradµX) = ̂Hess(µX)(Z) = H(Z) on x, where the last step is from the observation 2.2 and Remark
2.3 (d). Thus, for x ∈ Crit(µX), the differential dX# of the function X# : M → TM is d(−J gradµX) =
−Jd(gradµX) = −JH.

We know d
dtψexp tX(x) = XµX (ψexp tX(x)).† Differentiating this flow equation with respect to x, we obtain

d

dt
dψexp tX(x) = dXµX (ψexp tX(x)) ◦ dψexp tX(x)

At the critical point x of µX , we from eq.(9) know that ψθ(x) = x for θ = exp tX, so

d

dt
dψexp tX(x) = −JxHx · dψexp tX(x)

This is a linear ODE of the form d
dtA(t) = MA(t) with constant matrix M = −JxHx and initial condition

A(0) = dψexp(0)X(x) = dψe(x) = idTxM . The unique solution to such a matrix ODE is given by the matrix
exponential A(t) = exp(tM) = exp (−tJxHx). Thus, we conclude

dψexp tX(x) = exp (−tJxHx) .
†This is because ω(−J gradµX , · ) = ω( · , J gradµX) = ⟨ · , gradµX⟩ = dµX( · ) =⇒ the Hamiltonian vector field for function

µX is −J gradµX . That is, X# = XµX = −J gradµX .
†This is because p = exp tX and X#(p) = d

dt

∣∣∣
s=0

ψexp sX(p) = d
dt

∣∣∣
s=0

ψexp sX(ψexp tX(p)) = d
dt

∣∣∣
s=0

ψexp(s+t)X(p) =

d
dt

∣∣∣
s=t

ψexp sX(p).
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Now, note that the fixed set of dψexp tX(x) = exp (−tJxHx) is ker JxHx: if we let B = JxHx, then

exp(−tB) = I − tB +
t2

2
B2 + · · · , (10)

so {v ∈ TxM | exp(−tB)v = v} = {v ∈ TxM |Bv = 0} = kerB. Since Jx is invertible (its inverse is just −Jx),
so ker JxHx = kerHx. Since X has rationally independent components, these are the common fixed points
of all dψθ(p), θ ∈ Tm. Thus,

ker ̂Hessx(µX) =
⋂
θ∈Tm

ker(id−dψθ(x)).

This shows µX is a Morse-Bott function.

From Proposition 2.17 and equation (10), we see that dψexp tX(x) = exp (−tJxHx) = exp(−tB) commutes
with J and this commutativity implies BJx = JxB and thus HxJx = JxHx. Hence by Lemma 3.17 below,
all the eigenspaces of Hx are invariant under Jx and are therefore even-dimensional. Thus, the critical
manifolds of µX , as symplectic manifolds, have even dimensions, with even index and coindex. ■

Lemma 3.17. Let (M,ω, J) be a symplectic manifold with a compatible almost complex structure J , and let
Hx : TxM → TxM be a self-adjoint operator. If JxHx = HxJx, then every eigenspace of Hx is invariant under
Jx and has even dimension.

Proof. Since JxHx = HxJx, the operator Jx preserves each eigenspace of Hx. If v is an eigenvector of Hx
with eigenvalue λ, then

Hx (Jxv) = Jx (Hxv) = Jx(λv) = λJxv

Thus, Jxv is also an eigenvector with the same eigenvalue λ. Since J2
x = −id, it follows that v and Jxv are

linearly independent (if Jv = kv, then JJv = J(kv) = kJv = k2v. But JJv = −v and k2 ≥ 0). Hence, the
eigenspace corresponding to λ contains such pairs and is even-dimensional. ■

We still need another concept to begin our proof of connectedness. We continue with our Hamiltonian
Tm-space setting.

Definition 3.18. We denote the components of the moment map µ :M → Rm as µ = (µ1, · · · , µm). We say that
µ is irreducible if the 1-forms dµ1, · · · ,dµm are linearly independent, i.e., given a scalar (α1, · · · , αm) ∈ Rm,
then

α1dµ1(x)(ξ) + · · ·+ αmdµm(x)(ξ) = 0

at all points x ∈ M and all vectors ξ ∈ TxM if and only if α1 = · · · = αm = 0. We say the µ is reducible
otherwise.

Definition 3.19. We say that a set of real numbers {θi | 1 ≤ i ≤ s, θi ∈ R} is rationally dependent if θi
θj

is
rational for all nonzero θi,j with 1 ≤ i, j ≤ s.

Statement A1.

A1: for m = 1, the level sets µ−1(c) of the moment map are connected.

Proof. For m = 1, Tm = S1. Let X ∈ g ∼= g∗ = R. Lemma 3.16 and Remark 2.19 says µ = µ1 is Morse-Bott
with critical manifolds of even index and coindex. Lemma 2.8 then concludes. ■

Induction: Am−1 =⇒ Am.

Assuming every level set of µ for an (m − 1)-dimensional toral action is connected, aim to show the
level sets of µ of an m-dimensional toral action is connected.
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Proof. As aforementioned, see this note or [MS17]. ■

Atiyah’s Approach: Convexity

In this section, we show part (2) (B1 and Bm−1 =⇒ Bm) and part (3) of the theorem.

Statement B1.

B1: for m = 1, the image of the moment map µ is convex.

Proof. For m = 1, Tm = S1 and g∗ = R. Since M is connected, µ(M) is also connected. In R, connectedness
implies convexity. ■

Induction: Bm−1 =⇒ Bm.

Assuming the image of µ for an (m − 1)-dimensional toral action is convex, aim to show that the
image of µ of an m-dimensional toral action is convex.

Proof. Denote H = Tm−1 and G = Tm, so Lie(H) = h∗ and Lie(G) = g∗. Choose an injective matrix
A ∈ Zm×(m−1), so it can be either seen as a map A : Rm−1 ∼= h→ g ∼= Rm (so At : Rm ∼= g∗ → h∗ ∼= Rm−1)
or as a map

A : Tm−1 −→ Tm(
e2πiθ1 , · · · , e2πiθm−1

)
7−→

(
e2πi

∑m−1
j=1 a1jθj , · · · , e2πi

∑m−1
j=1 amjθj

)
.

Consider the action of an (m− 1) subtorus

ψA : Tm−1 −→ Sympl(M,ω)

θ 7−→ ψAθ

It is a Hamiltonian action with moment map µA = Atµ by Lemma 3.20 below.

Given any p0 ∈ µ−1A (ξ), p ∈ µ−1A (ξ)⇐⇒ Atµ(p) = ξ = Atµ (p0), so

(∗) : µ−1A (ξ) = {p ∈M | µ(p)− µ(p0) ∈ kerAt}.

By Am−1, this level set of µA is connected. Also note that dim ImA = rankA = (m− 1)−dimkerA = m− 1,
so dimkerAt = m − dim ImA = 1. Now, if we connect p0 to p1 by a path pt in µ−1A (ξ), we obtain a path
µ (pt)−µ (p0) in kerAt. Since kerAt is 1-dimensional, we see µ (pt) must go through any convex combination
of µ (p0) and µ (p1), which shows that any point on the line segment from µ (p0) to µ (p1) must be in µ(M):

(1− t)µ (p0) + tµ (p1) ∈ µ(M), 0 ≤ t ≤ 1

Now suppose p, q are arbitrary two points in M . Since µ(M) ⊆ Rm is compact and thus closed, we consider
two sequences in µ(M), µ(pi)→ µ(p), µ(qi)→ µ(q). These points can be approximated arbitrarily closely by
rational points, so we assume these two sequences are in Qm ∩ µ(M). Each vi = µ(qi) − µ(pi) is a rational
vector and can be extended to a basis for Qm. It is not hard to see we can construct a matrix A ∈ Zm×(m−1)

such that kerAt = Rvi. Thus, (∗) implies pi, qi ∈ µ−1A (vi). Thus, ∀t ∈ [0, 1], (1 − t)µ (pi) + tµ (qi) ∈ µ(M).
Thus, ∀t ∈ [0, 1], (1− t)µ(p) + tµ(q) = limi→∞[(1− t)µ (pi) + tµ (qi)] ∈ µ(M). The image µ(M) is therefore
convex. ■

Lemma 3.20. The action ψA is Hamiltonian with moment map µA = Atµ :M → Rm−1.
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Proof. Note that At : g∗ → h∗ is the dual mapping of A : h → g. Thus, for f ∈ g∗ and ξ ∈ h, we have
⟨At(f), ξ⟩ = ⟨f,Aξ⟩. This gives µAξ(p) = µξA(p). Notice that the exponential map exp of the torus of
dimension ℓ sends (ξ1, · · · , ξℓ) to (e2πξ1 , · · · , e2πξℓ). exp thus coincides with the projection π : Rℓ → Rℓ/Zℓ.
It is easy to see the following diagram is commutative (with exp and A interpreted as above):

Rm−1 Rm

Tm−1 Tm

A

exp exp

A

Thus, A exp tξ = exp tAξ. † For ξ ∈ h,

ξ#(p) =
d

dt

∣∣∣∣
t=0

(ψA)exp tξ(p) =
d

dt

∣∣∣∣
t=0

ψA exp tξ(p) =
d

dt

∣∣∣∣
t=0

ψexp(tAξ)(p) = (Aξ)#(p)

Then, the Hamiltonian condition for µA is satisfied:

ω(ξ#, · ) = ω((Aξ)#, · ) = dµAξ = dµξA.

The equivariance condition becomes invariance condition for the torus being abelian (see Remark 2.20). It
is satisfied as well: for θ ∈ Tm−1,

µA ◦ ψ′θ(p) = Atµ ◦ (ψAθ(p)) = At(µ ◦ ψAθ(p)) = Atµ(p) = µA(p).

■

The remaining is to show statement (3) of Atiyah-Guillemin-Sternberg Theorem 3.13.

Vertices of the Convex Hull Im(µ)

The image of the moment map is also a convex hull supported by the images of the points fixed by
all the actions.

Proof. Proposition 3.14 shows that Fix(Tm) =
⋂
θ∈Tm Fix(ψθ) is a symplectic submanifold of M . Due to the

compactness of M , Fix(Tm) decomposes into finitely many connected symplectic submanifolds, C1, · · · , CN .

Notice that each component µi of the moment map µ is a Hamiltonian function of vector field E#
i . †

Therefore, we can apply Lemma 3.16 to get

N⋃
j

Cj
Proposition 3.14
===========

⋂
θ∈Tm

Fix(ψθ)
TEi⊆Tm
⊆

⋂
θ∈TEi

Fix(ψθ)
Lemma 3.16
======== Crit(µEi) = Crit(µi).

Thus, Cj ’s are in Crit(µi) =⇒ dµi = 0 on Cj ’s =⇒ µi constant on Cj ’s =⇒ µ constant on Cj ’s. In
symbols,

µ(Cj) = ηj ∈ Rm, 1 ≤ j ≤ N.

Since µ(M) is convex, the convex hull of {η1, · · · , ηN} ⊆ µ(M), which is the smallest convex set containing
these points, has to be contained inside µ(M).

†More explicitly, A exp tξ = A(e2πitξ1 , · · · , e2πitξm−1 ) =

(
e
2πi

∑m−1
j=1 a1jtξj , · · · , e2πi

∑m−1
j=1 amjtξj

)
, which is the same as

exp(tAξ) = exp(t
∑m−1

j=1 a1jξj , · · · , t
∑m−1

j=1 amjξj).
†let X = Ei = (0, · · · , 0, 1, 0, · · · , 0). Then µEi = ⟨µ(p), Ei⟩ = ⟨(µ1(p), · · · , µm(p)), (0, · · · , 0, 1, 0, · · · , 0)⟩ = µi(p). Thus,

µi = µEi is a Hamiltonian function of the vector field E#
i .
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We show the converse, i.e., µ(M) ⊆ conv{η1, · · · , ηN} =: K: we want to show that the points in Rm \K is
also in Rm \ µ(M).

Let α ∈ Rm \K, so there is a hyperplane ⟨n, x⟩ = c for some vector n and some real number c such that α is
on one side, say the side with all x such that ⟨n, x⟩ > c; while the wholeK is on the other side, {x|⟨n, x⟩} < c.
Thus, ∀x ∈ K, ⟨n, α⟩ > ⟨n, x⟩, which is equivalent of saying ∀j = 1, · · · , N , ⟨n, α⟩ > ⟨n, ηj⟩. † Now, the
vector n ∈ Rm can be approximated by a vector in Rm whose components are rationally independent (see
defn. 3.19) and we will use θ to denote it, so ⟨θ, α⟩ > ⟨θ, ηj⟩ for j = 1, · · · , N . Rational independency
implies T θ = Tm. Proposition 3.14 and Lemma 3.16 again give

N⋃
j=1

Cj =
⋂
τ∈Tn

Fix(ψτ ) = Crit(µθ).

Since M is compact, µθ must have maximum on some q ∈ M . In that case, the gradient vanishes at q. But
gradient vanishes exactly at critical set, so q ∈ Cj for some j. Since µ(Cj) = ηj , we see the maximum is
µθ(q) = ⟨µ(p), θ⟩ = ⟨ηj , θ⟩, which is smaller than ⟨θ, α⟩. Thus,

⟨θ, α⟩ > µθ(q) = max
p∈M

µθ(p) ≥ µθ(p) = ⟨µ(p), θ⟩ for any p ∈M.

This strict inequality over all p ∈ M shows that α cannot be any one of µ(p) (otherwise violating this
inequality). That is, α /∈ µ(M), or α ∈ Rm \ µ(M). ■

3.5 Example: Complex Projective Space Continued

We go back to (CPn, ωFS, T
n+1, ϕred ◦ f). It is good to see (CPn, ωFS, T

n+1, ϕred ◦ f) is a reduced space and
is equipped with a Hamiltonian torus action. We now compute the fixed set Fix(ψg) for all possible cases of
g = (eiθ0 , · · · , eiθn) in Tn+1. Specifically, we examine the cases when:

(1) All θi are distinct.

(2) Exactly two θi are equal.

(3) Exactly l of the θi are equal.

(4) All θi are equal (i.e., g ∈ the diagonal subgroup).

(1): If g = (eiθ0 , · · · , eiθn) and all θi are distinct, then there is no nonzero solution to the fixed point
condition:

[eiθ0z0, · · · , eiθnzn] = [z0, · · · , zn]
This is because no two coordinates can be scaled by the same complex phase unless the corresponding θi are
equal. Therefore:

Fix(ψg) = {[1 : 0 : · · · : 0], [0 : 1 : · · · : 0], · · · , [0 : 0 : · · · : 1]}
These are the coordinate points corresponding to each basis vector being nonzero while all others are zero.

(2) Suppose θi = θj for exactly one pair i ̸= j, and all other θk are distinct. Then the fixed set consists of:

• CP1, corresponding to the projectivization of the 2-plane spanned by the i-th and j-th coordinates:

CP1 = {[0 : · · · : 0 : zi : 0 : · · · : 0 : zj : 0 : · · · : 0] | [zi : zj ] ∈ CP1}

• All coordinate points, because each coordinate point has only one nonzero entry and is thus fixed under
any torus action:

{[1 : 0 : · · · : 0], [0 : 1 : · · · : 0], · · · , [0 : 0 : · · · : 1]}
† =⇒ is clear. The other direction is by noticing that λj⟨n, α⟩ > λj⟨n, ηj⟩ =⇒

∑
j λj⟨n, α⟩ >

∑
j λj⟨n, ηj⟩ =⇒ ⟨n, α⟩ >∑

j λj⟨n, ηj⟩ as
∑
λj = 1.
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Therefore:
Fix(ψg) = CP1 ∪ {[1 : 0 : · · · : 0], [0 : 1 : · · · : 0], · · · , [0 : 0 : · · · : 1]}.

(3) If exactly l of the θi are equal and the remaining n+ 1− l are distinct, then similarly,

Fix(ψg) = CPl−1 ∪ {[1 : 0 : · · · : 0], [0 : 1 : · · · : 0], · · · , [0 : 0 : · · · : 1]}

(4) If g = (eiθ, · · · , eiθ), then the action is trivial on all of CPn. Therefore:

Fix(ψg) = CPn

Combining all of these, we see

Fix(Tn+1) =
⋂

g∈Tn+1

Fix(ψg) = {[1 : 0 : · · · : 0], [0 : 1 : · · · : 0], · · · , [0 : 0 : · · · : 1]}

Recall the moment map is given by

ϕred ◦ f([z0 : z1 : · · · : zn]) = −
1

2∥z∥2
(
|z0|2 , · · · , |zn|2

)
(+

C︷ ︸︸ ︷
constant ) = −1

2
(x0, x1, · · · , xn) (+C)

where we let xi = |zi|2 /∥z∥2. Note that these xi’s have the properties that xi ≥ 0 and x0+x1+ · · ·+xn = 1.
This shows that (x0, x1, · · · , xn) lies on the standard n-simplex in Rn+1:

∆n =

{
(x0, x1, · · · , xn)

∣∣∣∣∣xi ≥ 0,

n∑
i=0

xi = 1

}

Then,

Im(ϕred ◦ f) = −
1

2
∆n(+C) = Conv

{(
−1

2
, 0, · · · , 0

)
+ C, · · · ,

(
0, 0, · · · ,−1

2

)
+ C

}
which is indeed supported by the images of fixed points in Fix(Tn+1).

-

+

+

+ 0

-0.5

-0.5

-0.5

Figure 2: Moment polytope Im(ϕred ◦ f) when n = 2.
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In contrast, if we consider the action η of Tn over (CPn, ωFS) by(
eiθ1 , · · · , eiθn

)
· [z0 : z1 : · · · : zn] =

[
z0 : eiθ1z1 : · · · : eiθnzn

]
with moment map

ν [z0 : z1 : · · · : zn] = −
1

2∥z∥2
(
|z1|2 , · · · , |zn|2

)
= −1

2
(x1, · · · , xn) ,

then the n+ 1 fixed points are
[1, 0, · · · , 0], · · · , [0, 0, · · · , 1]

and the image of ν is

Im(ν) = Conv

{
(0, · · · , 0) ,

(
−1

2
, 0, · · · , 0

)
, · · · ,

(
0, 0, · · · ,−1

2

)}
,

a pyramid with apex at origin and bottom a dilated standard (n− 1)-simplex in Rn.

-

+

+

+ 0

-0.5

-0.5

-0.5

+

+
0-0.5

-0.5

Figure 3: Moment polytopes Im(ν) when n = 2, 3.

4 Symplectic Toric Manifolds and Delzant Polytopes

4.1 Symplectic Toric Manifolds

An action of a group G on a manifold M is called effective if each group element g ̸= e moves at least one
p ∈M , that is, ⋂

p∈M
Gp = {e}

where Gp = {g ∈ G | g · p = p} is the stabilizer of p.

Theorem 4.1. Effectiveness of the action implies that the set of regular points of µ : M → Rm, i.e., the set of
points where dµp is surjective, is open and dense in M .
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Proof. We note from Proposition 2.29 that dµp surjective ⇐⇒ the action is locally free at p, i.e., the stabilizer
subgroup Gp is discrete and thus zero dimensional.

We then consider the set of p ∈ M whose stabilizer is zero-dimensional, that is the complement of those
points q ∈ M whose stabilizer is at least one-dimensional. As every connected component of a Lie group
has the same dimension, we can only consider below connected subgroups of dimension at least one. Notice
also that a stabilizer subgroup is closed.

Let K < G = Tm be a connected closed subgroup of dimension at least 1. It is thus comppact, Lie, and
abelian, so a torus T k of some periods. If we choose X ∈ Lie(K) ⊆ Lie(G) with components which are
incommensurable with those periods, then the one-parameter subgroup TX = {exp tξ|t ∈ R} is dense in K
(so by density and continuity, Fix(TX) = Fix(K)). Thus, by Lemma 3.16 we have

• Crit(µX) = Fix(TX) = Fix(K); and

• µX is a Morse-Bott function on M .

If µX is constant, the critical set Crit
(
µX
)

is the whole M ; if not constant, then Crit(µX) is a smooth
submanifold of lower dimension. In the latter case, at any p ∈M , dµX(p) has rank 0 (where p is critical) or
1 (where p is regular as 1 is full rank), meaning that the regular points, where dµX is surjective, are exactly
M\Crit

(
µX
)
. The complement of a lower-dimensional submanifold is always open (open submanifold

is the same dimension as the ambient manifold) and dense (measure of a lower-dimensional set is zero),
so the set of regular points is open and dense in M . In the former case that µX is constant, we have
0 = dµX = ω(ξ#, · ) =⇒ ξ# = 0 =⇒ γ(t) = ψexp tξ(p) is constant on p. ξ#(p) is zero for each p ∈ M ,
so for any t, ψexp tξ is an action fixing the whole M . Therefore, if we assume the effectiveness of the action,
this former case will be eliminated.

In all, G effective =⇒ {p ∈ M | K ⊊ Gp} = M \ Fix(K) = M \ Crit(µX) = Reg(µX) is an open dense
subset of M . Now, if we denote K the set of all stabilizer subgroups K of G with dimension at least one (so
in particular they are all closed connected subgroup with dimension at least one, and the above argument
can apply), then we can consider the set⋂

K∈K
{p ∈M | K ⊊ Gp} = {p ∈M | Gp contains no K in K} ⊆ {p ∈M | dim(Gp) = 0}

which is shown to be open dense in M if we show K is a countable collection and use Baire’s Category
theorem.

Suggested by Jordan Payette’s reply on stackexchange, to show that this collection is countable, there is two
instructive ways:

(1) Recall that stabilizers are compact Lie subgroups and have as such finitely many connected compo-
nents. The number of closed connected subgroups K < G is countable; this follows from arguing on
the possible closure of one-parameter subgroups ofG. Thus stabilizers subgroups belong to a countable
family.

(2) A result related to what Guillemin-Sternberg call the Koszul-Mostow theorem in their book Symplectic
Techniques in Physics [GS90] states that for a smooth group action by a compact Lie group on a compact
manifold, the number of conjugacy classes of stabilizer subgroups is finite. When the group is abelian,
it follows that the number of stabilizers is finite.

■

Corollary 4.2. Under the conditions of the convexity theorem, if the Tm-action is effective, then there must be
at least m+ 1 fixed points.
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Proof. If the Tm-action is effective, the theorem above implies that there must be a point pwhere the moment
map is a submersion, i.e., (dµ1)p , · · · , (dµm)p are linearly independent. Hence, µ(p) is an interior point of
µ(M), and µ(M) is a nondegenerate convex polytope. Any nondegenerate convex polytope in Rm must have
at least m+ 1 vertices. The vertices of µ(M) are images of fixed points. ■

Theorem 4.3. Let (M,ω, Tm, µ) be a Hamiltonian Tm-space. If the Tm-action is effective, then dimM ≥ 2m.

Proof. On an orbit O, the moment map µ(O) = ξ is constant by equivariance condition (or invariance
condition in light of Remark 2.20). For p ∈ O, the exterior derivative

dµp : TpM −→ g∗

maps TpO to 0. Thus

TpO ⊆ ker dµp
Lemma 2.28
======== (TpO)ω

which shows that orbits O of a Hamiltonian torus action are always isotropic submanifolds of M . Since
isotropic subspace has dimension less than half of that of the vector space (Corollary 4.7; the proof is at the
end of this subsection), we see dimO = dimTpO ≤ 1

2 dimTpM = 1
2 dimM . ■

Definition 4.4. A (symplectic) toric manifold is a compact connected symplectic manifold (M,ω) equipped
with an effective Hamiltonian action of a torus T of dimension equal to half the dimension of the manifold:

dim T =
1

2
dimM

and with a choice of a corresponding moment map µ.

Example 4.5. The action of Tn+1 over the complex projective space satisfies the conditions of the convexity
theorem. However, the action is not effective, as we have seen that elements in the diagonal subgroup
of Tn+1 acts trivially over the whole space, i.e., fixing the whole space. The action of Tn over the complex
projective space is effective because the only element in Tn that acts trivially is the identity. Besides, dim Tn =
1
2 dimCPn. Thus, there exists an effective action of a torus over CPn and CPn is a symplectic toric manifold.

♣

Lemma 4.6. Given a linear subspace Y of a symplectic vector space (V,Ω), its symplectic complement Y Ω is the
linear subspace defined by Y Ω := {v ∈ V | Ω(v, u) = 0 for all u ∈ Y }. Then, dimY + dimY Ω = dimV .

Proof. Let Y ⊆ V be a subspace, and consider the map

Φ : V −→ Y ∗ = Hom(Y,R)
v 7−→ Ω(v, ·)|Y

That is, Φ(v) = (v⌟ω) |Y . Suppose φ is an arbitrary element of Y ∗, and let φ̃ ∈ V ∗ be any extension of φ to
a linear functional on all of V . Since the map Ω̃ : V → V ∗ defined by v 7→ v⌟Ω is an isomorphism, there
exists v ∈ V such that v⌟Ω = φ̃. It follows that Φ(v) = φ, and therefore Φ is surjective. By the rank-nullity
law, Y Ω = KerΦ has dimension equal to dimV − dimY ∗ = dimV − dimY . ■

Corollary 4.7. Show that, if Y is isotropic, then dimY ≤ 1
2 dimV .

Proof. Since Y ⊆ Y Ω and thus dimY ≤ dimY Ω, Lemma 4.6 implies that dimV = dimY + dimY Ω ≥
dimY + dimY =⇒ 1

2 dimV ≥ dimY . ■
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4.2 Unimodular Polytopes

Native to algebraic geometry, toric manifolds have been studied by symplectic geometers as examples of
extremely symmetric Hamiltonian spaces, and as guinea pigs for new theorems. Delzant showed that sym-
plectic toric manifolds are classified (as Hamiltonian spaces) by a set of special polytopes.

Definition 4.8 (Unimodular Polytope). A convex polytope ∆ ⊂ Rn is called Delzant, or unimodular if it
satisfies

• (Simplicity) there are n edges meeting at each vertex,

• (Rationality) the edges meeting at the vertex p are rational in the sense that every edge Ek is of the form
p+ tuk where t ∈ [0, T ] and uk ∈ Zn,

• (Smoothness) for each vertex with edges E1, . . . , En the corresponding vectors u1, . . . , un spanning the
edges can be chosen to form a Z-basis of Zn.

The following lemma will prove very useful for proving that a given set of vectors u1, . . . , un is indeed a
Z-basis:

Lemma 4.9. The vectors u1, . . . , un ∈ Zn form a Z-basis of Zn if and only if

det

 | |
u1 · · · un
| |

 = ±1

Proof. Since u1, . . . , un ∈ Zn form a Z-basis of Zn if and only if the matrix is invertible, and the matrix is
invertible if and only if its determinant is a unit, which in Z are exactly ±1, the result follows. ■

Remark 4.10. The name unimodular comes from the fact that a square integer matrix having determinant
+1 or −1 is called a unimodular matrix. Unimodular matrices form a subgroup of the general linear group
under matrix multiplication. Pascal matrices and permutation matrices are unimodular. ♠

Example 4.11 (Unimodular matrices). Permutation matrices are unimodular, although there are only two
elements in S2: (

1 0
0 1

) (
0 1
1 0

)
.

Pascal matrices are unimodular too. Recall that Pascal triangle can be put into a lower-triangular matrix

L =


1 0 0 0 · · ·
1 1 0 0 · · ·
1 2 1 0 · · ·
1 3 3 1 · · ·
...

...
...

...
. . .


That is, Lij =

(
i
j

)
= i!

j!(i−j)! , j ≤ i. We use Ln to denote its n × n truncated version. Then observe that the
determinant of a triangular matrix is the product of its diagonal. In this case, the determinant is then just 1.
The matrix An = LnL

T
n has

(
i+j
i

)
=
(
i+j
j

)
= (i+j)!

i!j! and |An| = 1. Consider

A2 =

(
1 1
1 2

)
and see Figure 4 for the lattice generated by (1, 1) and (1, 2). ♣
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Figure 4: Lattice generated by (1, 1) and (1, 2)

Example 4.12 (Examples of unimodular polytope).

The pictures above represent polytopes in R2 with standard lattice Z2, i.e., standard horizontal and vertical
cartesian axes with same scale. The dotted vertical line in the trapezoidal example is there just to stress that
it is a picture of a rectangle plus an isosceles triangle. For “taller” triangles, smoothness would be violated.
“Wider” triangles may still be unimodular as in the examples below, denoted Ha,b,n, as long as the slope
of the hypothenuse satisfies an integrality condition given by n = 0, 1, 2, . . . The positive real parameters a
and b are the width and height of the left rectangle. We call these examples Hirzebruch trapezoids. In
particular, Ha,b,0 is just a rectangle. ♣

Example 4.13 (Non-examples of unimodular polytope).
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Once again, the pictures above represent polytopes in R2 with standard lattice Z2. The picture on the left
fails the smoothness condition on the upper vertex (see Figure 5), whereas the one in the middle fails the
smoothness condition on the two right vertices, and the one on the right fails the smoothness condition on
all vertices. Moreover, the following pyramid in R3 fails the simplicity condition.

Figure 5: Lattice generated by (0,−1) and (2,−1).

♣

Definition 4.14. A facet of a polytope is a (n − 1)-dimensional face. Let ∆ be a unimodular polytope with
n = dim∆ and d = number of facets. A lattice vector v ∈ Zn is primitive if it cannot be written as v = ku with
u ∈ Zn, k ∈ Z and |k| > 1, or equivalently, if the gcd of entries is equal to one; for instance, (1, 1), (4, 3), (1, 0)
are primitive, but (2, 2), (3, 6) are not.

36



Reduction, Convexity, and Unimodularity

Let vi ∈ Zn, i = 1, . . . , d, be the primitive inward-pointing normal vectors to the facets. Then we can describe ∆
as an intersection of half-spaces

∆ =
{
x ∈ (Rn)

∗ | ⟨x, vi⟩ ⩾ λi, i = 1, . . . , d
}

for some λi ∈ R.

Proposition 4.15. Let ∆ ⊆ Rn be a unimodular polytope and v some vertex of ∆. Then there are n facets
meeting at v and the primitive inward-pointing normal vectors to these facets form a Z-basis of Zn.

Proof. After a translation, we can assume that v = 0. Let u1, . . . , un be a Z-basis of Zn arising from the
unimodular conditions. Then there exists a matrix A ∈ GL(n,Z) such that Aui = ei for i = 1, . . . , n, where
e1, . . . , en is the standard basis of Zn. Denote by ∆′ := A∆ the transformed polytope.

One can show that ∆′ lies inside the cone based at v = 0 spanned by the vectors ei, see [Zie07, Lemma 3.6].
Now let

Hi := {x ∈ Rn | ⟨ei, x⟩ = 0}

be the hyperplane at v = 0 with primitive inner normal ei. Then by the above statement, ∆′ lies in the positive
half-space bounded byHi. Consider Fi := ∆′∩Hi. By convexity of ∆′ and by definition ofHi, v+

∑
j ̸=i tjej ∈

Fi for small enough tj > 0. Moreover, the affine hull of Fi is given by
{
v +

∑
j ̸=i tjej | tj ∈ R

}
. Thus Fi is

n− 1-dimensional and therefore a facet of ∆′. The primitive inner unit normal at the facet Fi is ei.

Since A is invertible, there are n facets of ∆ meeting at v with outer or inner unit normals A−1ei =: vi. Since
A ∈ GL(n,Z) these vi form a Z-basis of Zn. Let vi = lui for some ui ∈ Zn. Then ei = Avi = lAui and thus
l = ±1 and we conclude that vi is primitive. ■

Example 4.16. For an illustrative purpose, we use outward-pointing normals to draw an example:

∆ =
{
x ∈

(
R2
)∗ | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1

}
=
{
x ∈

(
R2
)∗ | ⟨x, (−1, 0)⟩ ≤ 0, ⟨x, (0,−1)⟩ ≤ 0, ⟨x, (1, 1)⟩ ≤ 1

}
=
{
x ∈

(
R2
)∗ | ⟨x, (1, 0)⟩ ≥ 0, ⟨x, (0, 1)⟩ ≥ 0, ⟨x, (−1,−1)⟩ ≥ 1

}
.

♣

4.3 Delzant Classification Theorem

Moment maps are unique up to elements of the dual of the Lie algebra which annihilate the commutator
ideal.

Remark 4.17. The two extreme cases are:

• G semisimple:
any symplectic action is Hamiltonian,
moment maps are unique.

• G commutative:
symplectic actions may not be Hamiltonian,
moment maps are unique up to any constant c ∈ g∗.

♠

We do not have a classification of symplectic manifolds, but we do have a classification of toric manifolds in
terms of combinatorial data. This is the content of the Delzant theorem.
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n1

n2

n3

(0, 1)

(0, 0) (1, 0)

Figure 6: Outward-pointing normals.

Definition 4.18. Two symplectic toric manifolds, (Mk, ωk, T
n, µk) , k = 1, 2, are isomorphic if there exists an

equivariant symplectomorphism φ :M1 →M2, i.e., a symplectomorphism φ such that φ([θ] · p) = [θ] · φ(p).

Remark 4.19. Let the actions be denoted by ϕi, i = 1, 2. We show that µ2 ◦ φ also serves as a moment map
for the action ϕ1. The equivariance condition is easy: in view of Remark 2.20, we see that

µx ◦ φ ◦ ϕ1g = µ2 ◦ ϕ2g ◦ φ = µ2 ◦ φ.

We show the Hamiltonian condition. For q ∈ M2, we have p ∈ M1 such that φ(p) = q. Thus, φ(ϕ1g(p)) =
ϕ2g(φ(p)) = ϕ2g(q). Then φ ◦ ϕ1g ◦ φ−1(q) = φ ◦ ϕ1g(p) = ϕ2g(p) and thus ϕ1g ◦ φ−1(q) = φ−1 ◦ ϕ2g(p). Let
γ(t) = ϕ2exp tX(q) to see

dφ−1(X#
ϕ2(q)) = d(φ−1 ◦ γ)

(
d

dt

∣∣∣∣
t=0

)
=

d

dt

∣∣∣∣
t=0

φ−1ϕ2exp tX(q) =
d

dt

∣∣∣∣
t=0

ϕ1exp tX(φ−1(q)) = X#
ϕ1(φ

−1(q)).

We have,

ω1(X
#
ϕ1(p), · ) = ω1(dφ

−1(X#
ϕ2(q)), · ) = ω2(dφ(dφ

−1(X#
ϕ2(q))),dφ( · )) = ω2(X

#
ϕ2(q),dφ( · )),

Since the moment map satisfies the defining condition dµXi = ιX#

ϕi
ωi, it follows that

d(µX1 )|p = d(µX2 )|q ◦ dφ|p = d(µX2 ◦ φ)p = d(µ2 ◦ φ)X |p.

Thus, µ2 ◦ φ also serve as a moment map for the action ϕ1. Since Tn is commutative, Remark 4.17 (when
G is abelian, moment maps are unique up to a constant in g∗) concludes that µ1 and µ2 ◦ φ only differ by a
constant:

µ1 = µ2 ◦ φ+ c, for some c ∈ (Lie(Tn))∗ ∼= Rn.

Notice that we will then get two moment polytopes differed by a translation:

µ1(M1) = µ2 ◦ φ(M2) + c = µ2(M2) + c.

♠

38



Reduction, Convexity, and Unimodularity

The main result in this chapter is the following Delzant’s theorem.

Theorem 4.20 (Delzant, [Del88]). Symplectic toric manifolds are classified by Delzant polytopes. More specif-
ically, the bijective correspondence between these two sets is given by the moment map:

{symplectic toric manifolds}
{isomorphisms}

←→ {Delzant polytopes}
{translations}(

M2n, ω, Tn, µ
)
7−→ µ (M) .

Steps of the proof.

1. The map is well-defined: M is toric =⇒ µ(M) is Delzant. This is a consequence of the equivariant
Darboux theorem (see [ACL12] for example).

2. The map is surjective: let M 7→ µ(M) be denoted by f and define g : ∆→M∆ where ∆ is Delzant and
M∆ is toric with ω∆, T

n, µ∆. The constant involved in µ∆ can be chosen such that µ (M∆) = ∆, i.e.,
f ◦ g = id. This will prove the surjectivity of f . We will show this using Delzant’s construction of M∆

in subsection 4.4.

3. The map is injective: we also need to show g◦f = id. [ACL12, Sections 2.4 and 2.5] show how Lerman
did a different construction, i.e., a symplectic toric manifold E∆ from a given ∆ such that µ(E∆) = ∆
(so surjectivity is fulfilled); but also that if we start with M and let ∆ = µ(M), then E∆ is isomorphic
to M (this shows injectivity). We will not include Lerman’s construction here.

4.4 Delzant’s Construction

Let ∆ be a Delzant polytope with d facets. Let vi ∈ Zn, i = 1, . . . , d, be the primitive inward-pointing normal
vectors to the facets. For some λi ∈ R,

∆ =
{
x ∈ (Rn)

∗ | ⟨x, vi⟩ ⩾ λi, i = 1, . . . , d
}
.

Let e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1) be the standard basis of Rd. Consider

Π : Rd −→ Rn

ei 7−→ vi.

It follows from Proposition 4.15 reformulating the Delzant conditions that Π is surjective and maps Zd onto
Zn. Therefore, Π induces a surjective map, still called Π, between tori:

Rd/(2πZd) Rn/(2πZn)

T d Tn 0

Π

= =

Let
N = kernel of Π

(
N is a Lie subgroup of T d

)
n = Lie algebra of N

Rd = Lie algebra of T d

Rn = Lie algebra of Tn.

The exact sequence of tori
0 −→ N

i−→ T d
Π−→ Tn −→ 0

39



Reduction, Convexity, and Unimodularity

induces an exact sequence of Lie algebras (by noticing that Lie homomorphisms have constant rank ([Lee12,
Theorem 7.5]) and then using global rank theorem ([Lee12, Theorem 4.14])):

0 −→ n
i−→ Rd

Π−→ Rn −→ 0

with dual exact sequence

0 −→ (Rn)
∗ Π∗

−−→
(
Rd
)∗ i∗−→ n∗ −→ 0

Now consider Cd with symplectic form ω0 = i
2

∑
dzk ∧ dz̄k, and standard Hamiltonian action of T d as in

Example 2.26 given by (
eiθ1 , . . . , eiθd

)
· (z1, . . . , zd) =

(
eiθ1z1, . . . , e

iθdzd
)

The moment map is ϕ : Cd −→
(
Rd
)∗

defined by

ϕ (z1, . . . , zd) =
1

2

(
|z1|2 , . . . , |zd|2

)
+ constant

where we will choose the constant to be (λ1, . . . , λd). By Example 2.24, the subtorus N acts on Cd in a
Hamiltonian way with moment map

i∗ ◦ ϕ : Cd −→ n∗

Let Z = (i∗ ◦ ϕ)−1 (0) be the zero-level set. Note that Z is connected, because (i∗)
−1

(0) is a linear subspace
of Rd and the fibers ϕ−1(x) are path-connected.

Lemma 4.21. The set Z is compact and N acts freely on Z.

We will give the proof of this shortly after we finish getting the reduced space from this using Marsden-
Weinstein-Meyer theorem.

0 ∈ n∗ is a regular value of i∗ ◦ ϕ (free implies locally free at all z ∈ Z, then use Proposition 2.29). Hence, Z
is a compact submanifold of Cd of dimension

dimR Z = 2d− (d− n)︸ ︷︷ ︸
dimn∗

= d+ n

The orbit space M∆ = Z/N is a compact manifold of dimension

dimRM∆ = d+ n− (d− n)︸ ︷︷ ︸
dimN

= 2n

The point-orbit map p : Z →M∆ is a principal N -bundle over M∆.

Consider the diagram

Z Cd

M∆

p

j

where j : Z ↪→ Cd is inclusion. The Marsden-Weinstein-Meyer theorem guarantees the existence of a
symplectic form ω∆ on M∆ satisfying

p∗ω∆ = j∗ω0

To show Lemma 4.21, we first observe ϕ(Z) = Π∗(∆), i.e., y ∈ ϕ(Z) ⇐⇒ y ∈ Π∗(∆).

We compute that

Im(ϕ) = ϕ(Cd) =

{
1

2

(
|z1|2 , . . . , |zd|2

)
+ (λ1, · · · , λd)

∣∣∣∣ (z1, · · · , zd) ∈ Cd
}

=

d∏
i=1

[λi,∞)
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Let y ∈
(
Rd
)∗

. Then

y ∈ ϕ(Z) = ϕ((i∗ ◦ ϕ)−1(0)) ⇐⇒ ∃z ∈ (i∗ ◦ ϕ)−1(0) s.t. ϕ(z) = y

⇐⇒ ∃z ∈ Cd s.t. ϕ(z) = y and i∗(y) = 0

⇐⇒ y ∈ ϕ(Cd) =
d∏
k=1

[λk,∞) and y ∈ ker(i∗)

⇐⇒ ⟨y, ek⟩ ⩾ λk,∀k and y ∈ Im(Π∗)

Suppose that the second condition holds, so that y = Π∗(x) for some x ∈ (Rn)∗. Then

⟨y, ek⟩ ⩾ λk,∀k ⇐⇒ ⟨Π∗(x), ek⟩ ⩾ λk,∀k
⇐⇒ ⟨x,Π(ek)⟩ ⩾ λk,∀k
⇐⇒ ⟨x, vk⟩ ⩾ λk,∀k
⇐⇒ x ∈ ∆

Thus,
y ∈ ϕ(Z)⇐⇒ y ∈ Π∗(∆) (11)

proof of the lemma 4.21. The set Z is clearly closed, hence in order to show that it is compact it suffices (by
the Heine-Borel theorem) to show that Z is bounded. Let ∆′ = Π∗(∆). Since we have that ∆′ is compact,
that ϕ is a proper map † and that ϕ(Z) = ∆′, we conclude that Z ⊆ µ−1(µ(Z)) must be bounded, and hence
compact.

It remains to show that N acts freely on Z. Pick a vertex τ of ∆, and let I = {k1, . . . , kn} be the set of indices
for the n facets meeting at τ . Pick z ∈ Z such that ϕ(z) = Π∗(τ). Then τ is characterized by n equations
⟨τ, vk⟩ = λk where k ranges in I:

⟨τ, vk⟩ = λk ⇐⇒ ⟨τ,Π(ek)⟩ = λk

⇐⇒ ⟨Π∗(τ), ek⟩ = λk

⇐⇒ ⟨ϕ(z), ek⟩ = λk

⇐⇒ k-th coordinate of ϕ(z) is equal to λk

⇐⇒ 1

2
|zk|2 + λk = λk

⇐⇒ zk = 0.

Hence, those z’s are points whose coordinates in the set I are zero, and whose other coordinates are nonzero.
Without loss of generality, we may assume that I = {1, . . . , n}. The stabilizer of such z for group T d is(

T d
)
z
=
{(
eiθ1 , . . . , eiθn , 1, . . . , 1

)
∈ T d

}
⊇ Nz (12)

By Proposition 4.15, the restriction of Π to the indices in I is still surjective and thus, for dimensional reasons,
bijective. † Therefore on the torus level, the restriction to

(
T d
)
z

is still bijective. Since N = ker(Π), we have

Nz = N ∩
(
T d
)
z
= {e}.

Thus N acts freely at each z that corresponds to a vertex. But for all the points in Z, the stabilizer subgroups
of such z’s are the largest. † Therefore, N acts freely over the whole Z. ■

†A map between topological spaces is called proper if inverse images of compact subsets are compact. One can use Heine-Borel
theorem again to show ϕ is proper.

†This is the crucial step where we used that the polytope is Delzant.
†Note that for a point z ∈ Z that does not correspond to a vertex, there is at least one equation ⟨p, vk⟩ = λk violated, i.e., zk ̸= 0

where ϕ(z) = Π∗(p). Then (T d)z will be larger for this nonzero zk forces another eiθk to be 1 in eq.(12).
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Given a Delzant polytope ∆, we have constructed a symplectic manifold (M∆, ω∆) where M∆ = Z/N is a
compact 2n-dimensional manifold and ω∆ is the reduced symplectic form. We show the following:

Proposition 4.22. The manifold (M∆, ω∆) inherits a Hamiltonian Tn-action with a moment map µ∆ having
image µ∆ (M∆) = ∆.

Proof. Let z be such that ϕ(z) = Π∗(τ) where τ is a vertex of ∆, as in the proof of Lemma 4.21. Let
σ : Tn →

(
T d
)
z

be the inverse for the earlier bijection Π :
(
T d
)
z
→ Tn. Since we have found a section in the

exact sequence

0 N T d Tn 0
i Π

σ←−

the exact sequence splits, i.e., N⊕Tn ∼= T d. Then k∗ : (Rd)∗ → (Rn)∗ induced from k : Rn → Rd is the same
as σ∗ = pr2 : (Rd)∗ ∼= n∗ ⊕ (Rn)

∗ → (Rn)
∗. By Lemma 2.24, (Cd, ω0, T

n, σ∗ ◦ ϕ) is a Hamiltonian Tn-space.
σ∗ ◦ ϕ is clearly constant on T d-orbits as is ϕ, and commutativity of the group gives commutativity between
T d and Tn actions. Thus, we conclude using Proposition 3.3 that (M∆, ω∆, T

n, (σ∗ ◦ ϕ)red) is a Hamiltonian
Tn-space with

(σ∗ ◦ ϕ)red ◦ π = σ∗ ◦ ϕ ◦ j
where j : Z → Cd is the inclusion and π : Z → Z/N is the projection to the orbit space. We denote
µ∆ = σ∗ ◦ ϕ. Due to eq.(11), the image of µ∆ is:

µ∆ (M∆) = (µ∆ ◦ π) (Z) = (σ∗ ◦ ϕ ◦ j) (Z) = σ∗ ◦ ϕ(Z) = σ∗ ◦Π∗(∆) = (Π ◦ σ)∗ (∆) = id(∆) = ∆

The above Tn-action is effective because T d, and hence Tn, acts freely on the open dense subset

ϕ−1 (Π∗ (∆o)) ⊂ Z

where ∆◦ denotes the interior of ∆. We conclude that (M∆, ω∆, T
n, µ∆) is the required toric manifold

corresponding to ∆. ■

5 Applications

5.1 Motivation/Example: Hermitian Spectra

The following theorem on specturm of Hermitian matrices is known prior to the Atiyah-Guillemin-Sternberg
convexity theorem and in fact served as a main motivation for the convexity theorem.

Theorem 5.1 (Schur-Horn Theorem, [Hor54]). Let d1, . . . , dn and λ1, . . . , λn be real numbers. There is an
n × n Hermitian matrix with diagonal entries d1, . . . , dn and eigenvalues λ1, . . . , λn if and only if the vec-
tor (d1, . . . , dn) lies in the convex hull of the set of vectors whose coordinates are all possible permutations of
(λ1, . . . , λn).

To see how the convexity theorem implies this result, we need to find appropriate spaces and equip them
with symplectic forms and actions.

LetH be the vector space of n×n complex Hermitian matrices ξ, i.e., ξ = ξ∗ = ξT = ξ̄T . Consider the unitary
group U(n) = {A ∈ GL(n,C) | AA∗ = I}. Its Lie algebra, denoted by u(n), is the set of skew-Hermitian
matrices ξ s.t. ξ∗ = −ξ. U(n) acts on H by conjugation, Ψ(A)(ξ) = AξA−1, and acts on the dual space u(n)∗

by coadjoint action Ad∗ : U(n)→ GL(u(n)∗). We can identify the dual space u(n)∗ with Hermitian matrices
H via the linear isomorphism T : H → u(n)∗; ξ 7→ tr(iξ · ). If we regard Ψ as a representation, it is easy to
see T is an intertwining operator, i.e., ∀A ∈ U(n), Ad∗(A) ◦ T = T ◦ Ψ(A). † In particular, it takes orbits in
H to coadjoint orbits in u(n)∗.

†The coadjoint action Ad∗g is defined by the duality condition:
〈
Ad∗g(ξ), X

〉
=

〈
ξ,Adg−1 (X)

〉
. Substituting the expressions for

Adg−1 (X) = g−1X(g−1)−1 (true for any matrix lie group), we get tr
(
iAd∗g(ξ)X

)
= tr

(
iξg−1Xg

)
. By the cyclic property of the

trace, tr
(
iξg−1Xg

)
= tr

(
igξg−1X

)
, which by the uniqueness of the trace pairing gives Ad∗g(ξ) = gξg−1.
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For each λ = (λ1, . . . , λn) ∈ Rn, let Hλ be the set of all n × n complex Hermitian matrices whose spectrum
is λ. Recall a linear algebra fact (see for example [RAG05, Theorem 10.18 or 10.19]) that a complex square
matrix A is Hermitian if and only if it is unitarily diagonalizable with real eigenvalues. Since conjugation
preserves spectrum, the orbit of the action Oξ = {AξA−1 | A ∈ (n)} is Hλ with λ = λ(ξ). By proposition 2.9
(1), Hλ is equipped with a manifold structure. In fact, when all of the eigenvalues in the spectrum λ are the
same, the orbit Hλ is a singleton; when all of them are distinct, the orbit Hλ is a complete flag, constructed
by n independent eigenvectors; when λ has some identical occurrences of eigenvalues, we get partial flags.

The canonical Kostant-Kirillov symplectic form ΩKKS on the coadjoint orbit (see Appendix) corresponding
to Hλ gives rise to a symplectic form Ω on Hλ via T : for X#

ξ , Y
#
ξ ∈ TξHλ = [u(n), ξ], Ωξ(X

#
ξ , Y

#
ξ ) =

i tr(ξ[Y, Y ]). Hλ is a Hamiltonian U(n)-space.

proof of the Schur-Horn theorem. Let T denote the Cartan subgroup of U(n) which consists of diagonal com-
plex matrices with diagonal entries of modulus 1. The Lie algebra t of T consists of diagonal skew-Hermitian
matrices and the dual space t∗ consists of diagonal Hermitian matrices, under the isomorphism T . In other
words, t consists of diagonal matrices with purely imaginary entries and t∗ consists of diagonal matrices with
real entries. The inclusion map t ↪→ u(n) induces a map S : H ∼= u(n)∗ → t∗, which projects a matrix ξ to the
diagonal matrix with the same diagonal entries as ξ. By Example 2.24, the set Hλ is a Hamiltonian T -space,
and the restriction of S to this set is a moment map for this action.

By the Atiyah-Guillemin-Sternberg theorem, S (Hλ) is a convex polytope. A matrix ξ ∈ H is fixed under
conjugation by every element of T if and only if ξ is diagonal. The only diagonal matrices in Hλ are the
ones with diagonal entries λ1, λ2, . . . , λn in some order. Thus, these matrices generate the convex polytope
S (Hλ). This is exactly the statement of the Schur-Horn theorem. ■

The Schur-Horn theorem, which characterizes the relationship between the diagonal entries and eigen-
values of Hermitian matrices, extends naturally within symplectic geometry. [Knu00] reformulates Horn’s
problem—the description of possible eigenvalues of sums of Hermitian matrices—via moment maps and
geometric invariant theory. The Atiyah-Guillemin-Sternberg convexity theorem generalizes Schur-Horn by
associating eigenvalue problems with moment polytope descriptions in Hamiltonian spaces.

More precisely, [Knu00] identifies the sum of Hermitian matrices as a moment map for the diagonal con-
jugation action of U(n), encoding the admissible eigenvalue spectra in the Horn polytope. Using Schu-
bert calculus and intersection theory on flag varieties, [Knu00] derives eigenvalue inequalities, recasting
classical combinatorial results such as Horn’s conjecture within a symplectic and representation-theoretic
framework. Combinatorially, [KT01] introduces honeycomb models, providing a graphical interpretation of
eigenvalue constraints through hexagonal tilings. These structures encode spectral inequalities and gener-
alize the Littlewood-Richardson rule, extending Schur-Horn from individual matrix spectra to eigenvalue
inequalities for sums. Together, these developments connect symplectic geometry, algebraic geometry, and
combinatorics, offering a unified perspective on spectral constraints.

5.2 Generalization of the Convexity Theorem

Knutson used in his paper [Knu00] the following Kirwan’s generalization of the Atiyah-Guillemin-Sternberg
convexity theorem for nonabelian Lie groups.

Theorem 5.2 (Kirwan, [Kir84]). Let (M,ω,G, ϕ) be a compact Hamiltonian G-manifold with G a compact Lie
group. Then the intersection of the image ϕ(M) with the positive Weyl chamber t∗+ let t∗+ be a positive Weyl
chamber for a maximal compact subgroup K of G is a convex polytope.

Weinstein in [Wei01] further generalized the convexity theorem that to noncompact cases. The paper also
includes a brief survey on generalizations of the convexity theorem.
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Let G be a Lie group and g be its Lie algebra. For X ∈ g, let TX be the 1-parameter subgroup of G generated
by X and let GX be the adjoint isotropy group {g ∈ G | Adg(X) = X}. We shall say that µ is stable if TX is
compact and strongly stable if GX is compact. Let D denote the set of all strongly stable elements of g.

Let U ⊆ g∗ be a coadjoint-invariant open subset. We define a Hamiltonian (G,U)-space (M,µ) to be a
symplectic manifold M with a symplectic G-action and a coadjoint-equivariant momentum map µ : M →
U ⊆ g∗. We shall consider µ as a map to U rather than to g∗ and will call the (G,U) space proper if µ is
a proper mapping and if the action of G on M is proper. By [Wei01, Lemma 2.12], the second condition
follows from the first if the coadjoint action of G on U is proper, which happens when G is semisimple and
U consists of strongly stable elements.

Theorem 5.3 (Weinstein, [Wei01]). Let G be a semisimple Lie group, let t∗+ be a positive Weyl chamber for a
maximal compact subgroup K of G, and let U be a coadjoint-invariant open subset of the set D ⊂ g∗ such that
U ∩ t∗+ is convex. If (M,µ) is a connected, proper, Hamiltonian (G,U)-space, then µ(M)∩ t∗+ is a closed, convex,
locally polyhedral subset of t∗+ ∩ U , and µ−1(ξ) is connected for each ξ ∈ U .

We do not include here the proof of this theorem for noncompact semisimple Lie group G, which leverages
a reduction to the known compact case on Hamiltonian (K,U ∩ E)-space N := µ−1(U ∩ E) where E = D ∩ t,
adopting the identification betwen t and t∗ using bi-invariant metric on K.

6 Conclusion: Reduction, Convexity, and Unimodularity in Symplectic
Geometry

This thesis has explored the role of reduction, convexity, and unimodularity in symplectic geometry, fo-
cusing on classical results in Hamiltonian group actions. The Marsden-Weinstein-Meyer theorem and the
Atiyah-Guillemin-Sternberg convexity theorem provide foundational tools for understanding the geometry
of moment maps and symplectic quotients. A key application of these ideas is the classification of symplectic
toric manifolds via Delzant polytopes, which serve as a geometric realization of unimodular polytopes in
this setting. By reviewing these results and their interplay, this work offers a structured exposition of well-
established theorems rather than original contributions. However, organizing these ideas cohesively helps
clarify their significance and the underlying connections between symplectic geometry and combinatorial
structures.

While the main results are classical, the discussion of Hamiltonian actions by semisimple Lie groups extends
the context beyond toric geometry, touching on the challenges that arise in noncompact settings. The struc-
ture of coadjoint orbits and momentum convexity remains an active area of research, with potential links
to geometric quantization and representation theory. Future work could further explore how these methods
apply to broader classes of symplectic manifolds, including settings where the torus action is replaced by
more general group actions, or where moment convexity properties extend beyond compact cases.
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Appendix

We record two formulas about Lie derivatives and brackets.

If X is a vector field and f ∈ C∞(M),df being the corresponding 1-form, then

Xf
[Lee12, Thm.4.24(iv)]
==============

=ιXdf︷ ︸︸ ︷
df(X)

[Lee12, Prop.12.32(a)]
============== LXf (13)

eq.(13) gives LXf g = ιXfdg (one could also see this by Cartan’s magic formula, noticing the convention
at [Lee12, pp.358] that ιV η = 0 for any zero-covector field η, i.e., a function). Then by definition of
Hamiltonian function, dg = ιXgω,

LXf g = ιXfdg

= ιXf ιXgω

= ω(Xg, Xf )

= −{f, g}

(14)

proof of equivalence between equivariance and lie algebra homomorphism.
First assume the G-action is Hamiltonian. Then for any X,Y ∈ g,{

µX , µY
}
(p)

eq.(13)
====== XµY (µ

X)(p)
dµY =ι

Y#ω
========= [Y #(µX)](p)

=

[
d

dt

∣∣∣∣
t=0

Ψexp tY (p)

]
(µX)

let f :t 7→Ψexp tY (p)
============= df0

(
d

dt

∣∣∣∣
t=0

)
(µX)

defn. of differential; see [Lee12, pp.55]
=======================

d

dt

∣∣∣∣
t=0

µX ◦ f

defn. of µX :M→R
=============

d

dt

∣∣∣∣
t=0

⟨µ(Ψexp tY (p)), X⟩

equivariance
=========

d

dt

∣∣∣∣
t=0

〈
Ad∗exp tY (µ(p)), X

〉
defn. of coadjoint
===========

d

dt

∣∣∣∣
t=0

⟨µ(p),Adexp−tY X⟩

by [Lee12, Prop.20.8(g), Thm.20.27]
======================

d

dt

∣∣∣∣
t=0

〈
µ(p),

 ∈GL(g)︷ ︸︸ ︷
exp(ad(−tY )︸ ︷︷ ︸

∈gl(g)

)

X

〉

=

〈
µ(p),

d

dt

∣∣∣∣
t=0

(
X − t ad(Y )(X) +

t2

2!
ad(Y )2(X)− · · ·

)〉
= ⟨µ(p),−[Y,X]⟩ = ⟨µ(p), [X,Y ]⟩
= µ[X,Y ](p)

(15)

Conversely, suppose µ∗ is a Lie algebra homomorphism. Since G is connected and the exponential map exp
is a local diffeomorphism ([Lee12, Proposition 20.8(f)]), any element g of G can be written as a product of
elements of the form exp(X). As a result, to prove G-equivariance it is enough to prove

µ(Ψexp tX(p)) = Ad∗exp(tX) µ(p)

We will need a result analogous to [Lee12, Proposition 9.13]:
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Lemma 6.1. Let M and N be two smooth manifolds and F : M → N be a smooth map. Let G be a Lie
group. Consider the smooth actions θ : G×M →M and η : G×N → N . Let X,Y ∈ g. Define

X#(p) =
d

dt

∣∣∣∣
t=0

θexp tX(p), Y #(q) =
d

dt

∣∣∣∣
t=0

ηexp tY (q).

If X# and Y # are F -related, i.e., dFp(X#
p ) = Y #

F (p), ∀p ∈M , then ηg ◦ F = F ◦ θg.

sketch of proof : We note that

X#((θexp t0X)(p)) =
d

dt

∣∣∣∣
t=0

θexp(t+t0)X(p) =
d

dt

∣∣∣∣
t=t0

θexp(t+t0)X(p)

which shows that the curve γ(t) : t 7→ θexp tX(p) has the property that γ(0) = p and (d/dt)γ(t) =
X#(γ(t)). By F -relatedness, it is easy to see σ = F ◦ γ is the curve with the property that σ(0) = F (p)
and (d/dt)σ(t) = Y #(σ(t)). Then t 7→ ηexp tY (p) coincide with σ(t) by uniquness from ODE theory.

Now consider the action Ψ : G ×M → M and Ad∗ : G × g∗ → g∗. Let X∗ be the vector field generated by
Ad∗exp tX , i.e.,

X∗(ξ) =
d

dt

∣∣∣∣
t=0

Ad∗exp tX(ξ)

Notice that in eq.(15), we have shown that

d

dt

∣∣∣∣
t=0

〈
Ad∗exp tX(ξ), Y

〉
︸ ︷︷ ︸

⟨X∗(ξ),Y ⟩

= ⟨ξ, [Y,X]⟩

Using this plus the first line of eq.(15) and the preservation of bracket of µ∗, we see that for Y ∈ g,

⟨X∗(µ(p)), Y ⟩ = ⟨µ(p), [Y,X]⟩ = µ[Y,X](p) =
{
µY , µX

}
(p) = [X#(µY )](p) = [X#⟨µ, Y ⟩](p)

With the evaluation map Y : ξ 7→ ξ(Y ), we see

⟨dµp(X#(p)), Y ⟩ =
(
dµp(X

#(p))
)
(Y ) = Y

(
dµp(X

#(p))
)
= dY µ(p)dµpX

#
p = d(Y ◦ µ)pX#

p

where the second-to-last equality is because Y is a linear map. Since Y ◦ µ : M → R is a smooth function,
eq.(13) equates the RHS of the last two equations:

d(Y ◦ µ)pX#
p = [X#(Y ◦ µ)](p) = [X#⟨µ, Y ⟩](p)

Thus,
dµp(X

#(p)) = X∗(µ(p))

Due to the lemma above, the⇐= direction is proved. ■

Example 2.24

First, by Cartan’s Closed Subgroup Theorem, H is a Lie subgroup. The map i∗ : g∗ → h∗ is the dual to
i : h→ g, so for f ∈ g∗ and X ∈ h, we have ⟨i∗f,X⟩ = ⟨f, iX⟩ = ⟨f,X⟩. Thus,

µX(p) = ⟨µ(p), X⟩ = ⟨i∗(ϕ(p)), X⟩ = ⟨ϕ(p), X⟩ = ϕX(p) =⇒ µX = ϕX .

The Hamiltonian condition then follows. For the equivariance condition, it can be mostly easily seen from
the comoment map characterization (see Proposition 2.21): ∀X ∈ h, µX = ϕX , so ϕ∗|h = µ∗. Now,
ϕ∗ : (g, [ · , · ]) → (C∞(M), { · , · }) is a Lie homomorphism, so does its restriction to h. This gives the
equivariance condition.
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Example 2.25

Let ω = (pr1)
∗
ω1 + (pr2)

∗
ω2 be the symplectic form on M1 ×M2 (it is easy to verify that it is a symplectic

form by computation; see [Sil06, Chapter 4])

Hamiltonian condition:

Let X ∈ g∗. ⟨µ(p1, p2), X⟩ = ⟨µ1(p1), X⟩+ ⟨µ2(p2), X⟩ =⇒ µX(p1, p2) = µX1 (pr1(p1, p2)) + µX2 (pr2(p1, p2)).
Then,

ω
(
X#, v

)
=ω1

(
d(pr1)X

#,d(pr1)v
)
+ ω2

(
d(pr2)X

#,d(pr2)v
)

=ω1 (XM1
(p1),d(pr1)v) + ω2 (XM2

(p2),d(pr2)v)

=
(
ιXM1

ω1

)
(d(pr1)v) +

(
ιXM2

ω2

)
(d(pr2)v)

=(dµX1 )(d(pr1)v) + (dµX2 )(d(pr2)v)

= dµX(v)

Equivariant condition:

Ad∗g−1 (µ (p1, p2)) = Ad∗g−1 (µ1 (p1) + µ2 (p2))

= Ad∗g−1 (µ1 (p1)) + Ad∗g−1 (µ2 (p2))

= µ1 (g · p1) + µ2 (g · p2)
= µ(g · (p1, p2))

Example 2.26

Let (E1, · · · , En) be the basis of tn ∼= Rn and (ε1, · · · , εn) be the basis of (tn)∗ ∼= Rn. For each component zj
in Cn, write:

zj = rje
iθj = rj cos θj + irj sin θj ,

where rj = |zj | represents the modulus and θj the argument of zj . In terms of these coordinates, we have

ω =
i

2

n∑
j=1

dzj ∧ dz̄j =

n∑
j=1

rjdrj ∧ dθj .

The proposed moment map becomes

µ(zj) = µ(rj , θj) = −
1

2

(
k1r

2
1, · · · , knr2n

)
+ constant = −1

2

n∑
i=1

kir
2
i ε
i + constant.

Hamiltonian condition:

Let X =
∑
j XjEj ∈ tn ∼= Rn and z = (z1, · · · , zn) ∈ Cn.

⟨µ(z), X⟩ = −1

2

n∑
j=1

kjr
2
j ε
j(X) + constant = −1

2

n∑
j=1

kjr
2
jXj + constant.

Then

dµX = −1

2

n∑
j=1

kjXjd
(
r2j
)
= −

n∑
j=1

kjXjrjdrj .
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Since d
dt

∣∣
t=0

exp tXj · zj = d
dθ

∣∣
θ=0

eitXjkjzj = iXjkjzj and by paying attention to remark ??, we see

X#(zj) = X#(rj , θj) =

n∑
j=1

ikjXjzj
∂

∂zj
− ikjXj z̄j

∂

∂z̄j
=

n∑
j=1

kjXj
∂

∂θj
.

Then

ιX#ω =

n∑
j=1

rj
(
0− dθj(X

#)drj
)
= −

n∑
j=1

rjdrj (kjXj) = −
n∑
j=1

kjXjrjdrj = dµX .

Equivariant condition:

Note that Tn is abelian so by Remark 2.20, we need to check µ((t1, · · · , tn) · (z1, · · · , zn)) = µ(z1, · · · , zn).
This is true because |tj | = 1 =⇒ |tkjj zj |2 = |zj |2.

Coadjoint Orbits

Let X# be the vector field generated by X ∈ g for the coadjoint representation of G on g∗. Then for any
Y ∈ g,

〈
X#
ξ , Y

〉
= ⟨ξ, [Y,X]⟩. For any ξ ∈ g∗, define a skew-symmetric bilinear form on g by ωξ(X,Y ) :=

⟨ξ, [X,Y ]⟩. By eq.(5), we have Lie(gξ) = {X ∈ g|X#
ξ = 0} = {X ∈ g|⟨ξ, [Y,X]⟩ = 0, ∀Y ∈ g} = ker ω̃ξ.

From eq.(4) we see the tangent space of an orbit is TξOξ = {X#
ξ |X ∈ g}. Then the 2-form Ωξ(X

#
ξ , Y

#
ξ ) =

ωξ(X,Y ) = ⟨ξ, [X,Y ]⟩ is nondegenerate. We will show that ωξ defines a closed 2-form on the orbit of ξ
in g∗ so that Ω is a symplectic form on the coadjoint orbit Oξ in g∗. This is known as the Lie-Poisson or
Kostant-Kirillov symplectic structure.

We still use X#, Y #, Z# to denote their restrictions on the orbit. Then, by [Lee12, Proposition 14.32], we
have

(dΩ)(X#, Y #, Z#) =X#(Ω(Y #, Z#))− Y #(Ω(X#, Z#)) + Z#(Ω(X#, Y #))

−Ω([X#, Y #], Z#)− Ω([Z#, X#], Y #)− Ω([Y #, Z#], X#)

=⟨X#
ξ , [Y,Z]⟩ − ⟨Y

#
ξ , [X,Z]⟩+ ⟨Z

#
ξ , [X,Y ]⟩

−⟨ξ, [[X,Y ], Z]⟩ − ⟨ξ, [[Z,X], Y ]⟩ − ⟨ξ, [[Y,Z], X]⟩ = 0

We evaluate X#(Ω(Y #, Z#)) pointwise: for every ξ on the coadjoint orbit,

X#
ξ (

f :Oξ→R;ξ 7→Ωξ(Y
#
ξ ,Z

#
ξ )︷ ︸︸ ︷

Ωξ(Y
#
ξ , Z

#
ξ ) ) =

d

dt

∣∣∣∣
t=0

f(

γ(t)︷ ︸︸ ︷
Ad∗exp tX(ξ)) because Xf = dfX =

d

dt

∣∣∣∣
t=0

f ◦ γ

=
d

dt

∣∣∣∣
t=0

f(ξ(Adexp−tX( · ))) = d

dt

∣∣∣∣
t=0

ξ(Adexp−tX([Y,Z]))

= ξ (−[X, [Y,Z]]) pass by linearity and use eq.(15)

The first line vanishes by writing all three components in this way and apply Jacobi identity. The second line
also vanishes by Jacobi identity as

− Ωξ([X
#
ξ , Y

#
ξ ], Z#

ξ )− Ω([Z#
ξ , X

#
ξ ], Y #

ξ )− Ω([Y #
ξ , Z

#
ξ ], X#

ξ )

=− ⟨ξ, [[X,Y ], Z]⟩ − ⟨ξ, [[Z,X], Y ]⟩ − ⟨ξ, [[Y,Z], X]⟩

This shows the 2-form is closed. For other proofs other than this algebraic one, see [Kir04, pp.6].
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