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1

Introduction

The focus of this book is non-asymptotic theory in high-dimensional statistics. As an area
of intellectual inquiry, high-dimensional statistics is not new: it has roots going back to the
seminal work of Rao, Wigner, Kolmogorov, Huber and others, from the 1950s onwards.
What is new—and very exciting—is the dramatic surge of interest and activity in high-
dimensional analysis over the past two decades. The impetus for this research is the nature
of data sets arising in modern science and engineering: many of them are extremely large,
often with the dimension of the same order as, or possibly even larger than, the sample
size. In such regimes, classical asymptotic theory often fails to provide useful predictions,
and standard methods may break down in dramatic ways. These phenomena call for the
development of new theory as well as new methods. Developments in high-dimensional
statistics have connections with many areas of applied mathematics—among them machine
learning, optimization, numerical analysis, functional and geometric analysis, information
theory, approximation theory and probability theory. The goal of this book is to provide a
coherent introduction to this body of work.

1.1 Classical versus high-dimensional theory

What is meant by the term “high-dimensional”, and why is it important and interesting
to study high-dimensional problems? In order to answer these questions, we first need to
understand the distinction between classical as opposed to high-dimensional theory.

Classical theory in probability and statistics provides statements that apply to a fixed class
of models, parameterized by an index n that is allowed to increase. In statistical settings, this
integer-valued index has an interpretation as a sample size. The canonical instance of such
a theoretical statement is the law of large numbers. In its simplest instantiation, it concerns
the limiting behavior of the sample mean of n independent and identically distributed d-
dimensional random vectors {Xi}ni=1, say, with mean μ = E[X1] and a finite variance. The law
of large numbers guarantees that the sample mean μ̂n := 1

n

∑n
i=1 Xi converges in probability

to μ. Consequently, the sample mean μ̂n is a consistent estimator of the unknown population
mean. A more refined statement is provided by the central limit theorem, which guarantees
that the rescaled deviation

√
n(μ̂n − μ) converges in distribution to a centered Gaussian with

covariance matrix Σ = cov(X1). These two theoretical statements underlie the analysis of a
wide range of classical statistical estimators—in particular, ensuring their consistency and
asymptotic normality, respectively.

In a classical theoretical framework, the ambient dimension d of the data space is typically

1



2 Introduction

viewed as fixed. In order to appreciate the motivation for high-dimensional statistics, it is
worthwhile considering the following:

Question Suppose that we are given n = 1000 samples from a statistical model in
d = 500 dimensions. Will theory that requires n → +∞with the dimension d remaining
fixed provide useful predictions?

Of course, this question cannot be answered definitively without further details on the
model under consideration. Some essential facts that motivate our discussion in this book
are the following:

1. The data sets arising in many parts of modern science and engineering have a “high-
dimensional flavor”, with d on the same order as, or possibly larger than, the sample
size n.

2. For many of these applications, classical “large n, fixed d” theory fails to provide useful
predictions.

3. Classical methods can break down dramatically in high-dimensional regimes.

These facts motivate the study of high-dimensional statistical models, as well as the associ-
ated methodology and theory for estimation, testing and inference in such models.

1.2 What can go wrong in high dimensions?

In order to appreciate the challenges associated with high-dimensional problems, it is worth-
while considering some simple problems in which classical results break down. Accordingly,
this section is devoted to three brief forays into some examples of high-dimensional phenom-
ena.

1.2.1 Linear discriminant analysis

In the problem of binary hypothesis testing, the goal is to determine whether an observed
vector x ∈ Rd has been drawn from one of two possible distributions, sayP1 versusP2. When
these two distributions are known, then a natural decision rule is based on thresholding the
log-likelihood ratio log P2[x]

P1[x] ; varying the setting of the threshold allows for a principled
trade-off between the two types of errors—namely, deciding P1 when the true distribution
is P2, and vice versa. The celebrated Neyman–Pearson lemma guarantees that this family of
decision rules, possibly with randomization, are optimal in the sense that they trace out the
curve giving the best possible trade-off between the two error types.

As a special case, suppose that the two classes are distributed as multivariate Gaussians,
say N(μ1,Σ) and N(μ2,Σ), respectively, differing only in their mean vectors. In this case, the
log-likelihood ratio reduces to the linear statistic

Ψ(x) :=
〈
μ1 − μ2, Σ

−1
(
x −

μ1 + μ2

2

)〉
, (1.1)

where 〈·, ·〉 denotes the Euclidean inner product in Rd. The optimal decision rule is based on
thresholding this statistic. We can evaluate the quality of this decision rule by computing the
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probability of incorrect classification. Concretely, if the two classes are equally likely, this
probability is given by

Err(Ψ) := 1
2P1[Ψ(X′) ≤ 0] + 1

2P2[Ψ(X′′) > 0],

where X′ and X′′ are random vectors drawn from the distributions P1 and P2, respectively.
Given our Gaussian assumptions, some algebra shows that the error probability can be writ-
ten in terms of the Gaussian cumulative distribution function Φ as

Err(Ψ) =
1
√

2π

∫ −γ/2

−∞
e−t2/2 dt︸�������������������︷︷�������������������︸

Φ(−γ/2)

, where γ =
√

(μ1 − μ2)TΣ−1(μ1 − μ2). (1.2)

In practice, the class conditional distributions are not known, but instead one observes
a collection of labeled samples, say {x1, . . . , xn1} drawn independently from P1, and
{xn1+1, . . . , xn1+n2} drawn independently from P2. A natural approach is to use these sam-
ples in order to estimate the class conditional distributions, and then “plug” these estimates
into the log-likelihood ratio. In the Gaussian case, estimating the distributions is equivalent
to estimating the mean vectors μ1 and μ2, as well as the covariance matrix Σ, and standard
estimates are the samples means

μ̂1 :=
1
n1

n1∑
i=1

xi and μ̂2 :=
1
n2

n1+n2∑
i=n1+1

xi, (1.3a)

as well as the pooled sample covariance matrix

Σ̂ :=
1

n1 − 1

n1∑
i=1

(xi − μ̂1) (xi − μ̂1)T +
1

n2 − 1

n1+n2∑
i=n1+1

(xi − μ̂2) (xi − μ̂2)T. (1.3b)

Substituting these estimates into the log-likelihood ratio (1.1) yields the Fisher linear dis-
criminant function

Ψ̂(x) =
〈
μ̂1 − μ̂2, Σ̂

−1
(
x −

μ̂1 + μ̂2

2

)〉
. (1.4)

Here we have assumed that the sample covariance is invertible, and hence are assuming
implicitly that ni > d.

Let us assume that the two classes are equally likely a priori. In this case, the error prob-
ability obtained by using a zero threshold is given by

Err(Ψ̂) := 1
2P1[Ψ̂(X′) ≤ 0] + 1

2P2[Ψ̂(X′′) > 0],

where X′ and X′′ are samples drawn independently from the distributions P1 and P2, re-
spectively. Note that the error probability is itself a random variable, since the discriminant
function Ψ̂ is a function of the samples {Xi}n1+n2

i=1 .
In the 1960s, Kolmogorov analyzed a simple version of the Fisher linear discriminant,

in which the covariance matrix Σ is known a priori to be the identity, so that the linear
statistic (1.4) simplifies to

Ψ̂id(x) =
〈
μ̂1 − μ̂2, x −

μ̂1 + μ̂2

2

〉
. (1.5)
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Working under an assumption of Gaussian data, he analyzed the behavior of this method
under a form of high-dimensional asymptotics, in which the triple (n1, n2, d) all tend to
infinity, with the ratios d/ni, for i = 1, 2, converging to some non-negative fraction α > 0,
and the Euclidean1 distance ‖μ1 − μ2‖2 converging to a constant γ > 0. Under this type of
high-dimensional scaling, he showed that the error Err(Ψ̂id) converges in probability to a
fixed number—in particular,

Err(Ψ̂id)
prob.
−→ Φ

(
−

γ2

2
√
γ2 + 2α

)
, (1.6)

where Φ(t) := P[Z ≤ t] is the cumulative distribution function of a standard normal variable.
Thus, if d/ni → 0, then the asymptotic error probability is simplyΦ(−γ/2), as is predicted by
classical scaling (1.2). However, when the ratios d/ni converge to a strictly positive number
α > 0, then the asymptotic error probability is strictly larger than the classical prediction,
since the quantity γ2

2
√

γ2+2α
is shifted towards zero.
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Figure 1.1 (a) Plots of the error probability Err(Ψ̂id) versus the mean shift parameter
γ ∈ [1, 2] for d = 400 and fraction α = 0.5, so that n1 = n2 = 800. Gray circles cor-
respond to the empirical error probabilities, averaged over 50 trials and confidence
bands shown with plus signs, as defined by three times the standard error. The solid
curve gives the high-dimensional prediction (1.6), whereas the dashed curve gives
the classical prediction (1.2). (b) Plots of the error probability Err(Ψ̂id) versus the
fraction α ∈ [0, 1] for d = 400 and γ = 2. In this case, the classical prediction
Φ(−γ/2) plotted as a dashed line remains flat, since it is independent of α.

Recalling our original motivating question from Section 1.1, it is natural to ask whether
the error probability of the test Ψ̂id, for some finite triple (d, n1, n2), is better described by the
classical prediction (1.2), or the high-dimensional analog (1.6). In Figure 1.1, we plot com-
parisons between the empirical behavior and theoretical predictions for different choices
of the mean shift parameter γ and limiting fraction α. Figure 1.1(a) shows plots of the
error probability Err(Ψ̂id) versus the mean shift parameter γ for dimension d = 400 and
fraction α = 0.5, meaning that n1 = n2 = 800. Gray circles correspond to the empirical

1 We note that the Mahalanobis distance from equation (1.2) reduces to the Euclidean distance when Σ = Id .
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performance averaged over 50 trials, whereas the solid and dashed lines correspond to the
high-dimensional and classical predictions, respectively. Note that the high-dimensional pre-
diction (1.6) with α = 0.5 shows excellent agreement with the behavior in practice, whereas
the classical prediction Φ(−γ) drastically underestimates the error rate. Figure 1.1(b) shows
a similar plot, again with dimension d = 400 but with γ = 2 and the fraction α ranging in
the interval [0.05, 1]. In this case, the classical prediction is flat, since it has no dependence
on α. Once again, the empirical behavior shows good agreement with the high-dimensional
prediction.

A failure to take into account high-dimensional effects can also lead to sub-optimality. A
simple instance of this phenomenon arises when the two fractions d/ni, i = 1, 2, converge
to possibly different quantities αi ≥ 0 for i = 1, 2. For reasons to become clear shortly, it
is natural to consider the behavior of the discriminant function Ψ̂id for a general choice of
threshold t ∈ R, in which case the associated error probability takes the form

Errt(Ψ̂id) = 1
2P1[Ψ̂id(X′) ≤ t] + 1

2P2[Ψ̂id(X′′) > t], (1.7)

where X′ and X′′ are again independent samples from P1 and P2, respectively. For this set-
up, it can be shown that

Errt(Ψ̂id)
prob.
−→

1
2
Φ

(
−
γ2 + 2t + (α1 − α2)

2
√
γ2 + α1 + α2

)
+

1
2
Φ

(
−
γ2 − 2t − (α1 − α2)

2
√
γ2 + α1 + α2

)
,

a formula which reduces to the earlier expression (1.6) in the special case when α1 = α2 = α

and t = 0. Due to the additional term α1 − α2, whose sign differs between the two terms, the
choice t = 0 is no longer asymptotically optimal, even though we have assumed that the two
classes are equally likely a priori. Instead, the optimal choice of the threshold is t = α2−α1

2 , a
choice that takes into account the different sample sizes between the two classes.

1.2.2 Covariance estimation

We now turn to an exploration of high-dimensional effects for the problem of covariance
estimation. In concrete terms, suppose that we are given a collection of random vectors
{x1, . . . , xn}, where each xi is drawn in an independent and identically distributed (i.i.d.)
manner from some zero-mean distribution in Rd, and our goal is to estimate the unknown
covariance matrix Σ = cov(X). A natural estimator is the sample covariance matrix

Σ̂ :=
1
n

n∑
i=1

xixT
i , (1.8)

a d × d random matrix corresponding to the sample average of the outer products
xixT

i ∈ Rd×d. By construction, the sample covariance Σ̂ is an unbiased estimate, meaning
that E[Σ̂] = Σ.

A classical analysis considers the behavior of the sample covariance matrix Σ̂ as the sam-
ple size n increases while the ambient dimension d stays fixed. There are different ways
in which to measure the distance between the random matrix Σ̂ and the population covari-
ance matrix Σ, but, regardless of which norm is used, the sample covariance is a consistent
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estimate. One useful matrix norm is the �2-operator norm, given by

|||Σ̂ − Σ|||2 := sup
u�0

‖(Σ̂ − Σ)u‖2

‖u‖2
. (1.9)

Under mild moment conditions, an argument based on the classical law of large numbers
can be used to show that the difference |||Σ̂ − Σ|||2 converges to zero almost surely as n →
∞. Consequently, the sample covariance is a strongly consistent estimate of the population
covariance in the classical setting.

Is this type of consistency preserved if we also allow the dimension d to tend to infinity?
In order to pose the question more crisply, let us consider sequences of problems (Σ̂,Σ)
indexed by the pair (n, d), and suppose that we allow both n and d to increase with their
ratio remaining fixed—in particular, say d/n = α ∈ (0, 1). In Figure 1.2, we plot the results
of simulations for a random ensemble Σ = Id, with each Xi ∼ N(0, Id) for i = 1, . . . , n. Using
these n samples, we generated the sample covariance matrix (1.8), and then computed its
vector of eigenvalues γ(Σ̂) ∈ Rd, say arranged in non-increasing order as

γmax(Σ̂) = γ1(Σ̂) ≥ γ2(Σ̂) ≥ · · · ≥ γd(Σ̂) = γmin(Σ̂) ≥ 0.

Each plot shows a histogram of the vector γ(Σ̂) ∈ Rd of eigenvalues: Figure 1.2(a) corre-
sponds to the case (n, d) = (4000, 800) or α = 0.2, whereas Figure 1.2(b) shows the pair
(n, d) = (4000, 2000) or α = 0.5. If the sample covariance matrix were converging to the
identity matrix, then the vector of eigenvalues γ(Σ̂) should converge to the all-ones vec-
tor, and the corresponding histograms should concentrate around 1. Instead, the histograms
in both plots are highly dispersed around 1, with differing shapes depending on the aspect
ratios.
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Figure 1.2 Empirical distribution of the eigenvalues of a sample covariance ma-
trix Σ̂ versus the asymptotic prediction of the Marčenko–Pastur law. It is speci-

fied by a density of the form fMP(γ) ∝
√

(tmax(α)−γ) (γ−tmin(α))
γ

, supported on the in-

terval [tmin(α), tmax(α)] = [(1 −
√
α)2, (1 +

√
α)2]. (a) Aspect ratio α = 0.2 and

(n, d) = (4000, 800). (b) Aspect ratio α = 0.5 and (n, d) = (4000, 2000). In both
cases, the maximum eigenvalue γmax(Σ) is very close to (1 +

√
α)2, consistent with

theory.

These shapes—if we let both the sample size and dimension increase in such a way that
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d/n → α ∈ (0, 1)—are characterized by an asymptotic distribution known as the Marčenko–
Pastur law. Under some mild moment conditions, this theory predicts convergence to a
strictly positive density supported on the interval [tmin(α), tmax(α)], where

tmin(α) := (1 −
√
α)2 and tmax(α) := (1 +

√
α)2. (1.10)

See the caption of Figure 1.2 for more details.
The Marčenko–Pastur law is an asymptotic statement, albeit of a non-classical flavor since

it allows both the sample size and dimension to diverge. By contrast, the primary focus of
this book are results that are non-asymptotic in nature—that is, in the current context, we
seek results that hold for all choices of the pair (n, d), and that provide explicit bounds on
the events of interest. For example, as we discuss at more length in Chapter 6, in the setting
of Figure 1.2, it can be shown that the maximum eigenvalue γmax(Σ̂) satisfies the upper
deviation inequality

P[γmax(Σ̂) ≥ (1 +
√

d/n + δ)2] ≤ e−nδ2/2 for all δ ≥ 0, (1.11)

with an analogous lower deviation inequality for the minimum eigenvalue γmin(Σ̂) in the
regime n ≥ d. This result gives us more refined information about the maximum eigenvalue,
showing that the probability that it deviates above (1 +

√
d/n)2 is exponentially small in

the sample size n. In addition, this inequality (and related results) can be used to show that
the sample covariance matrix Σ̂ is an operator-norm-consistent estimate of the population
covariance matrix Σ as long as d/n → 0.

1.2.3 Nonparametric regression

The effects of high dimensions on regression problems can be even more dramatic. In one
instance of the problem known as nonparametric regression, we are interested in estimating
a function from the unit hypercube [0, 1]d to the real line R; this function can be viewed
as mapping a vector x ∈ [0, 1]d of predictors or covariates to a scalar response variable
y ∈ R. If we view the pair (X,Y) as random variables, then we can ask for the function f that
minimizes the least-squares prediction error E[(Y − f (X))2]. An easy calculation shows that
the optimal such function is defined by the conditional expectation f (x) = E[Y | x], and it is
known as the regression function.

In practice, the joint distribution PX,Y of (X,Y) is unknown, so that computing f directly is
not possible. Instead, we are given samples (Xi,Yi) for i = 1, . . . , n, drawn in an i.i.d. manner
from PX,Y , and our goal is to find a function f̂ for which the mean-squared error (MSE)

‖ f̂ − f ‖2
L2 := EX[( f̂ (X) − f (X))2] (1.12)

is as small as possible.
It turns out that this problem becomes extremely difficult in high dimensions, a manifes-

tation of what is known as the curse of dimensionality. This notion will be made precise
in our discussion of nonparametric regression in Chapter 13. Here, let us do some simple
simulations to address the following question: How many samples n should be required as
a function of the problem dimension d? For concreteness, let us suppose that the covariate
vector X is uniformly distributed over [0, 1]d, so that PX is the uniform distribution, de-
noted by Uni([0, 1]d). If we are able to generate a good estimate of f̂ based on the samples
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X1, . . . , Xn, then it should be the case that a typical vector X′ ∈ [0, 1]d is relatively close to at
least one of our samples. To formalize this notation, we might study the quantity

ρ∞(n, d) := EX′,X

[
min

i=1,...,n
‖X′ − Xi‖∞

]
, (1.13)

which measures the average distance between an independently drawn sample X′, again
from the uniform distribution Uni([0, 1]d), and our original data set {X1, . . . , Xn}.

How many samples n do we need to collect as a function of the dimension d so as to ensure
that ρ∞(n, d) falls below some threshold δ? For illustrative purposes, we use δ = 1/3 in the
simulations to follow. As in the previous sections, let us first consider a scaling in which the
ratio d/n converges to some constant α > 0, say α = 0.5 for concreteness, so that n = 2d.
Figure 1.3(a) shows the results of estimating the quantity ρ∞(2d, d) on the basis of 20 trials.
As shown by the gray circles, in practice, the closest point (on average) to a data set based
on n = 2d samples tends to increase with dimension, and certainly stays bounded above 1/3.
What happens if we try a more aggressive scaling of the sample size? Figure 1.3(b) shows
the results of the same experiments with n = d2 samples; again, the minimum distance tends
to increase as the dimension increases, and stays bounded well above 1/3.
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Figure 1.3 Behavior of the quantity ρ∞(n, d) versus the dimension d, for different
scalings of the pair (n, d). Full circles correspond to the average over 20 trials, with
confidence bands shown with plus signs, whereas the solid curve provides the theo-
retical lower bound (1.14). (a) Behavior of the variable ρ∞(2d, d). (b) Behavior of the
variable ρ∞(d2, d). In both cases, the expected minimum distance remains bounded
above 1/3, corresponding to log(1/3) ≈ −1.1 (horizontal dashed line) on this loga-
rithmic scale.

In fact, we would need to take an exponentially large sample size in order to ensure that
ρ∞(n, d) remained below δ as the dimension increased. This fact can be confirmed by proving
the lower bound

log ρ∞(n, d) ≥ log
d

2(d + 1)
−

log n
d

, (1.14)

which implies that a sample size n > (1/δ)d is required to ensure that the upper bound
ρ∞(n, d) ≤ δ holds. We leave the proof of the bound (1.14) as an exercise for the reader.
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We have chosen to illustrate this exponential explosion in a randomized setting, where
the covariates X are drawn uniformly from the hypercube [0, 1]d. But the curse of dimen-
sionality manifests itself with equal ferocity in the deterministic setting, where we are given
the freedom of choosing some collection {xi}ni=1 of vectors in the hypercube [0, 1]d. Let us
investigate the minimal number n required to ensure that any vector x′ ∈ [0, 1]d is at most
distance δ in the �∞-norm to some vector in our collection—that is, such that

sup
x′∈[0,1]d

min
i=1,...,n

‖x′ − xi‖∞ ≤ δ. (1.15)

The most straightforward way of ensuring this approximation quality is by a uniform grid-
ding of the unit hypercube: in particular, suppose that we divide each of the d sides of the
cube into �1/(2δ)� sub-intervals,2 each of length 2δ. Taking the Cartesian products of these
sub-intervals yields a total of �1/(2δ)�d boxes. Placing one of our points xi at the center of
each of these boxes yields the desired approximation (1.15).

This construction provides an instance of what is known as a δ-covering of the unit hyper-
cube in the �∞-norm, and we see that its size must grow exponentially in the dimension. By
studying a related quantity known as a δ-packing, this exponential scaling can be shown to
be inescapable—that is, there is not a covering set with substantially fewer elements. See
Chapter 5 for a much more detailed treatment of the notions of packing and covering.

1.3 What can help us in high dimensions?

An important fact is that the high-dimensional phenomena described in the previous sections
are all unavoidable. Concretely, for the classification problem described in Section 1.2.1, if
the ratio d/n stays bounded strictly above zero, then it is not possible to achieve the optimal
classification rate (1.2). For the covariance estimation problem described in Section 1.2.2,
there is no consistent estimator of the covariance matrix in �2-operator norm when d/n re-
mains bounded away from zero. Finally, for the nonparametric regression problem in Sec-
tion 1.2.3, given the goal of estimating a differentiable regression function f , no consistent
procedure is possible unless the sample size n grows exponentially in the dimension d. All
of these statements can be made rigorous via the notions of metric entropy and minimax
lower bounds, to be developed in Chapters 5 and 15, respectively.

Given these “no free lunch” guarantees, what can help us in the high-dimensional setting?
Essentially, our only hope is that the data is endowed with some form of low-dimensional
structure, one which makes it simpler than the high-dimensional view might suggest. Much
of high-dimensional statistics involves constructing models of high-dimensional phenomena
that involve some implicit form of low-dimensional structure, and then studying the statisti-
cal and computational gains afforded by exploiting this structure. In order to illustrate, let us
revisit our earlier three vignettes, and show how the behavior can change dramatically when
low-dimensional structure is present.

2 Here �a� denotes the ceiling of a, or the smallest integer greater than or equal to a.
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1.3.1 Sparsity in vectors

Recall the simple classification problem described in Section 1.2.1, in which, for j = 1, 2,
we observe nj samples of a multivariate Gaussian with mean μ j ∈ Rd and identity covariance
matrix Id. Setting n = n1 = n2, let us recall the scaling in which the ratios d/nj are fixed
to some number α ∈ (0,∞). What is the underlying cause of the inaccuracy of the classical
prediction shown in Figure 1.1? Recalling that μ̂ j denotes the sample mean of the nj samples,
the squared Euclidean error ‖μ̂ j − μ j‖2

2 turns out to concentrate sharply around d
n j
= α. This

fact is a straightforward consequence of the chi-squared (χ2) tail bounds to be developed in
Chapter 2—in particular, see Example 2.11. When α > 0, there is a constant level of error,
for which reason the classical prediction (1.2) of the error rate is overly optimistic.

But the sample mean is not the only possible estimate of the true mean: when the true
mean vector is equipped with some type of low-dimensional structure, there can be much
better estimators. Perhaps the simplest form of structure is sparsity: suppose that we knew
that each mean vector μ j were relatively sparse, with only s of its d entries being non-
zero, for some sparsity parameter s � d. In this case, we can obtain a substantially better
estimator by applying some form of thresholding to the sample means. As an example, for a
given threshold level λ > 0, the hard-thresholding estimator is given by

Hλ(x) = xI[|x| > λ] =

⎧⎪⎪⎨⎪⎪⎩x if |x| > λ,
0 otherwise,

(1.16)

where I[|x| > λ] is a 0–1 indicator for the event {|x| > λ}. As shown by the solid curve in
Figure 1.4(a), it is a “keep-or-kill” function that zeroes out x whenever its absolute value
falls below the threshold λ, and does nothing otherwise. A closely related function is the
soft-thresholding operator

Tλ(x) = I[|x| > λ](x − λ sign(x)) =

⎧⎪⎪⎨⎪⎪⎩x − λ sign(x) if |x| > λ,
0 otherwise.

(1.17)

As shown by the dashed line in Figure 1.4(a), it has been shifted so as to be continuous, in
contrast to the hard-thresholding function.

In the context of our classification problem, instead of using the sample means μ̂ j in
the plug-in classification rule (1.5), suppose that we used hard-thresholded versions of the
sample means—namely

μ̃ j = Hλn (μ̂ j) for j = 1, 2 where λn :=

√
2 log d

n
. (1.18)

Standard tail bounds to be developed in Chapter 2—see Exercise 2.12 in particular—will
illuminate why this particular choice of threshold λn is a good one. Using these thresholded
estimates, we can then implement a classifier based on the linear discriminant

Ψ̃(x) :=
〈
μ̃1 − μ̃2, x −

μ̃1 + μ̃2

2

〉
. (1.19)

In order to explore the performance of this classifier, we performed simulations using the
same parameters as those in Figure 1.1(a); Figure 1.4(b) gives a plot of the error Err(Ψ̃)
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Figure 1.4 (a) Plots of the hard-thresholding and soft-thresholding functions at some
level λ > 0. (b) Plots of the error probability Err(Ψ̂id) versus the mean shift parameter
γ ∈ [1, 2] with the same set-up as the simulations in Figure 1.1: dimension d = 400,
and sample sizes n = n1 = n2 = 800. In this case, the mean vectors μ1 and μ2 each
had s = 5 non-zero entries, and the classification was based on hard-thresholded

versions of the sample means at the level λn =

√
2 log d

n . Gray circles correspond
to the empirical error probabilities, averaged over 50 trials and confidence intervals
defined by three times the standard error. The solid curve gives the high-dimensional
prediction (1.6), whereas the dashed curve gives the classical prediction (1.2). In
contrast to Figure 1.1(a), the classical prediction is now accurate.

versus the mean shift γ. Overlaid for comparison are both the classical (1.2) and high-
dimensional (1.6) predictions. In contrast to Figure 1.1(a), the classical prediction now gives
an excellent fit to the observed behavior. In fact, the classical limit prediction is exact when-
ever the ratio log

(
d
s

)
/n approaches zero. Our theory on sparse vector estimation in Chapter 7

can be used to provide a rigorous justification of this claim.

1.3.2 Structure in covariance matrices

In Section 1.2.2, we analyzed the behavior of the eigenvalues of a sample covariance matrix
Σ̂ based on n samples of a d-dimensional random vector with the identity matrix as its
covariance. As shown in Figure 1.2, when the ratio d/n remains bounded away from zero, the
sample eigenspectrum γ(Σ̂) remains highly dispersed around 1, showing that Σ̂ is not a good
estimate of the population covariance matrix Σ = Id. Again, we can ask the questions: What
types of low-dimensional structure might be appropriate for modeling covariance matrices?
And how can they can be exploited to construct better estimators?

As a very simple example, suppose that our goal is to estimate a covariance matrix known
to be diagonal. It is then intuitively clear that the sample covariance matrix can be im-
proved by zeroing out its non-diagonal entries, leading to the diagonal covariance estimate
D̂. A little more realistically, if the covariance matrix Σ were assumed to be sparse but the
positions were unknown, then a reasonable estimator would be the hard-thresholded ver-

sion Σ̃ := Tλn (Σ̂) of the sample covariance, say with λn =

√
2 log d

n as before. Figure 1.5(a)
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shows the resulting eigenspectrum γ(Σ̃) of this estimator with aspect ratio α = 0.2 and
(n, d) = (4000, 800)—that is, the same settings as Figure 1.2(a). In contrast to the Marčenko–
Pastur behavior shown in the former figure, we now see that the eigenspectrum γ(Σ̃) is
sharply concentrated around the point mass at 1. Tail bounds and theory from Chapters 2

and 6 can be used to show that |||Σ̃ − Σ|||2 �
√

log d
n with high probability.
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Figure 1.5 (a) Behavior of the eigenspectrum γ(Σ̃) for a hard-thresholded version
of the sample covariance matrix. Unlike the sample covariance matrix itself, it can
be a consistent estimator of a sparse covariance matrix even for scalings such that
d/n = α > 0. (b) Behavior of the sample covariance matrix for estimating se-
quences of covariance matrices of increasing dimension but all satisfying the con-
straint trace(Σ) ≤ 20. Consistent with theoretical predictions, the operator norm error
|||Σ̂−Σ|||2 for this sequence decays at the rate 1/

√
n, as shown by the solid line on the

log–log plot.

An alternative form of low-dimensional structure for symmetric matrices is that of fast
decay in their eigenspectra. If we again consider sequences of problems indexed by (n, d),
suppose that our sequence of covariance matrices have a bounded trace—that is, trace(Σ) ≤
R, independent of the dimension d. This requirement means that the ordered eigenvalues
γ j(Σ) must decay a little more quickly than j−1. As we discuss in Chapter 10, these types
of eigendecay conditions hold in a variety of applications. Figure 1.5(b) shows a log–log
plot of the operator norm error |||Σ̂ − Σ|||2 over a range of pairs (n, d), all with the fixed ratio
d/n = 0.2, for a sequence of covariance matrices that all satisfy the constraint trace(Σ) ≤
20. Theoretical results to be developed in Chapter 6 predict that, for such a sequence of
covariance matrices, the error |||Σ̂−Σ|||2 should decay as n−1/2, even if the dimension d grows
in proportion to the sample size n. See also Chapters 8 and 10 for discussion of other forms
of matrix estimation in which these types of rank or eigendecay constraints play a role.

1.3.3 Structured forms of regression

As discussed in Section 1.2.3, a generic regression problem in high dimensions suffers from
a severe curse of dimensionality. What type of structure can alleviate this curse? There are
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various forms of low-dimensional structure that have been studied in past and on-going work
on high-dimensional regression.

One form of structure is that of an additive decomposition in the regression function—say
of the form

f (x1, . . . , xd) =
d∑

j=1

gj(x j), (1.20)

where each univariate function gj : R → R is chosen from some base class. For such func-
tions, the problem of regression is reduced to estimating a collection of d separate univariate
functions. The general theory developed in Chapters 13 and 14 can be used to show how the
additive assumption (1.20) largely circumvents3 the curse of dimensionality. A very special
case of the additive decomposition (1.20) is the classical linear model, in which, for each
j = 1, . . . , d, the univariate function takes the form gj(x j) = θ j x j for some coefficients θ j ∈ R.
More generally, we might assume that each gj belongs to a reproducing kernel Hilbert space,
a class of function spaces studied at length in Chapter 12.

Assumptions of sparsity also play an important role in the regression setting. The sparse
additive model (SPAM) is based on positing the existence of some subset S ⊂ {1, 2, . . . , d}
of cardinality s = |S | such that the regression function can be decomposed as

f (x1, . . . , xd) =
∑
j∈S

g j(x j). (1.21)

In this model, there are two different classes of objects to be estimated: (i) the unknown
subset S that ranges over all

(
d
s

)
possible subsets of size s; and (ii) the univariate functions

{gj, j ∈ S } associated with this subset. A special case of the SPAM decomposition (1.21) is
the sparse linear model, in which f (x) =

∑d
j=1 θ j x j for some vector θ ∈ Rd that is s-sparse.

See Chapter 7 for a detailed discussion of this class of models, and the conditions under
which accurate estimation is possible even when d � n.

There are a variety of other types of structured regression models to which the meth-
ods and theory developed in this book can be applied. Examples include the multiple-index
model, in which the regression function takes the form

f (x1, . . . , xd) = h(Ax), (1.22)

for some matrix A ∈ Rs×d, and function h : Rs → R. The single-index model is the special
case of this model with s = 1, so that f (x) = h(〈a, x〉) for some vector a ∈ Rd. Another
special case of this more general family is the SPAM class (1.21): it can be obtained by
letting the rows of A be the standard basis vectors {e j, j ∈ S }, and letting the function h
belong to the additive class (1.20).

Taking sums of single-index models leads to a method known as projection pursuit re-
gression, involving functions of the form

f (x1, . . . , xd) =
M∑
j=1

gj (〈aj, x〉), (1.23)

for some collection of univariate functions {gj}Mj=1, and a collection of d vectors {aj}Mj=1. Such

3 In particular, see Exercise 13.9, as well as Examples 14.11 and 14.14.
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models can also help alleviate the curse of dimensionality, as long as the number of terms
M can be kept relatively small while retaining a good fit to the regression function.

1.4 What is the non-asymptotic viewpoint?

As indicated by its title, this book emphasizes non-asymptotic results in high-dimensional
statistics. In order to put this emphasis in context, we can distinguish between at least three
types of statistical analysis, depending on how the sample size behaves relative to the di-
mension and other problem parameters:

• Classical asymptotics. The sample size n is taken to infinity, with the dimension d and
all other problem parameters remaining fixed. The standard laws of large numbers and
central limit theorem are examples of this type of theory.

• High-dimensional asymptotics. The pair (n, d) is taken to infinity simultaneously, while
enforcing that, for some scaling function Ψ, the sequence Ψ(n, d) remains fixed, or con-
verges to some value α ∈ [0,∞]. For example, in our discussions of linear discrimi-
nant analysis (Section 1.2.1) and covariance estimation (Section 1.2.2), we considered
such scalings with the function Ψ(n, d) = d/n. More generally, the scaling function
might depend on other problem parameters in addition to (n, d). For example, in study-
ing vector estimation problems involving a sparsity parameter s, the scaling function
Ψ(n, d, s) = log

(
d
s

)
/n might be used. Here the numerator reflects that there are

(
d
s

)
possible

subsets of cardinality s contained in the set of all possible indices {1, 2, . . . , d}.
• Non-asymptotic bounds. The pair (n, d), as well as other problem parameters, are viewed

as fixed, and high-probability statements are made as a function of them. The previously
stated bound (1.11) on the maximum eigenvalue of a sample covariance matrix is a stan-
dard example of such a result. Results of this type—that is, tail bounds and concentration
inequalities on the performance of statistical estimators—are the primary focus of this
book.

To be clear, these modes of analysis are closely related. Tail bounds and concentration
inequalities typically underlie the proofs of classical asymptotic theorems, such as almost
sure convergence of a sequence of random variables. Non-asymptotic theory can be used
to predict some aspects of high-dimensional asymptotic phenomena—for instance, it can
be used to derive the limiting forms of the error probabilities (1.6) for linear discriminant
analysis. In random matrix theory, it can be used to establish that the sample eigenspectrum
of a sample covariance matrix with d/n = α lies within4 the interval [(1−

√
α)2, (1+

√
α)2]

with probability one as (n, d) grow—cf. Figure 1.2. Finally, the functions that arise in a
non-asymptotic analysis can suggest appropriate forms of scaling functions Ψ suitable for
performing a high-dimensional asymptotic analysis so as to unveil limiting distributional
behavior.

One topic not covered in this book—due to space constraints—is an evolving line of
work that seeks to characterize the asymptotic behavior of low-dimensional functions of a
given high-dimensional estimator; see the bibliography in Section 1.6 for some references.

4 To be clear, it does not predict the precise shape of the distribution on this interval, as given by the
Marčenko–Pastur law.
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For instance, in sparse vector estimation, one natural goal is to seek a confidence inter-
val for a given coordinate of the d-dimensional vector. At the heart of such analyses are
non-asymptotic tail bounds, which allow for control of residuals within the asymptotics.
Consequently, the reader who has mastered the techniques laid out in this book will be well
equipped to follow these types of derivations.

1.5 Overview of the book

With this motivation in hand, let us now turn to a broad overview of the structure of this
book, as well as some suggestions regarding its potential use in a teaching context.

1.5.1 Chapter structure and synopses

The chapters follow a rough division into two types: material on Tools and techniques (TT),
and material on Models and estimators (ME). Chapters of the TT type are foundational in
nature, meant to develop techniques and derive theory that is broadly applicable in high-
dimensional statistics. The ME chapters are meant to be complementary in nature: each
such chapter focuses on a particular class of statistical estimation problems, and brings to
bear the methods developed in the foundational chapters.

Tools and techniques
• Chapter 2: This chapter provides an introduction to standard techniques in deriving tail

bounds and concentration inequalities. It is required reading for all other chapters in the
book.

• Chapter 3: Following directly from Chapter 2, this chapter is devoted to more advanced
material on concentration of measure, including the entropic method, log-Sobolev in-
equalities, and transportation cost inequalities. It is meant for the reader interested in a
deeper understanding of the concentration phenomenon, but is not required reading for
the remaining chapters. The concentration inequalities in Section 3.4 for empirical pro-
cesses are used in later analysis of nonparametric models.

• Chapter 4: This chapter is again required reading for most other chapters, as it introduces
the foundational ideas of uniform laws of large numbers, along with techniques such as
symmetrization, which leads naturally to the Rademacher complexity of a set. It also cov-
ers the notion of Vapnik–Chervonenkis (VC) dimension as a particular way of bounding
the Rademacher complexity.

• Chapter 5: This chapter introduces the geometric notions of covering and packing in met-
ric spaces, along with the associated discretization and chaining arguments that underlie
proofs of uniform laws via entropic arguments. These arguments, including Dudley’s en-
tropy integral, are required for later study of nonparametric models in Chapters 13 and 14.
Also covered in this chapter are various connections to Gaussian processes, including the
Sudakov–Fernique and Gordon–Slepian bounds, as well as Sudakov’s lower bound.

• Chapter 12: This chapter provides a self-contained introduction to reproducing kernel
Hilbert spaces, including material on kernel functions, Mercer’s theorem and eigenvalues,
the representer theorem, and applications to function interpolation and estimation via ker-
nel ridge regression. This material is not a prerequisite for reading Chapters 13 and 14,
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but is required for understanding the kernel-based examples covered in these chapters on
nonparametric problems.

• Chapter 14: This chapter follows the material from Chapters 4 and 13, and is devoted to
more advanced material on uniform laws, including an in-depth analysis of two-sided and
one-sided uniform laws for the population and empirical L2-norms. It also includes some
extensions to certain Lipschitz cost functions, along with applications to nonparametric
density estimation.

• Chapter 15: This chapter provides a self-contained introduction to techniques for proving
minimax lower bounds, including in-depth discussions of Le Cam’s method in both its
naive and general forms, the local and Yang–Barron versions of the Fano method, along
with various examples. It can be read independently of any other chapter, but does make
reference (for comparison) to upper bounds proved in other chapters.

Models and estimators

• Chapter 6: This chapter is devoted to the problem of covariance estimation. It develops
various non-asymptotic bounds for the singular values and operator norms of random ma-
trices, using methods based on comparison inequalities for Gaussian matrices, discretiza-
tion methods for sub-Gaussian and sub-exponential variables, as well as tail bounds of the
Ahlswede–Winter type. It also covers the estimation of sparse and structured covariance
matrices via thresholding and related techniques. Material from Chapters 2, 4 and 5 is
needed for a full understanding of the proofs in this chapter.

• Chapter 7: The sparse linear model is possibly the most widely studied instance of a
high-dimensional statistical model, and arises in various applications. This chapter is de-
voted to theoretical results on the behavior of �1-relaxations for estimating sparse vectors,
including results on exact recovery for noiseless models, estimation in �2-norm and pre-
diction semi-norms for noisy models, as well as results on variable selection. It makes
substantial use of various tail bounds from Chapter 2.

• Chapter 8: Principal component analysis is a standard method in multivariate data analy-
sis, and exhibits a number of interesting phenomena in the high-dimensional setting. This
chapter is devoted to a non-asymptotic study of its properties, in both its unstructured and
sparse versions. The underlying analysis makes use of techniques from Chapters 2 and 6.

• Chapter 9: This chapter develops general techniques for analyzing estimators that are
based on decomposable regularizers, including the �1-norm and nuclear norm as special
cases. It builds on the material on sparse linear regression from Chapter 7, and makes uses
of techniques from Chapters 2 and 4.

• Chapter 10: There are various applications that involve the estimation of low-rank matri-
ces in high dimensions, and this chapter is devoted to estimators based on replacing the
rank constraint with a nuclear norm penalty. It makes direct use of the framework from
Chapter 9, as well as tail bounds and random matrix theory from Chapters 2 and 6.

• Chapter 11: Graphical models combine ideas from probability theory and graph theory,
and are widely used in modeling high-dimensional data. This chapter addresses various
types of estimation and model selection problems that arise in graphical models. It re-
quires background from Chapters 2 and 7.

• Chapter 13: This chapter is devoted to an in-depth analysis of least-squares estimation
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in the general nonparametric setting, with a broad range of examples. It exploits tech-
niques from Chapters 2, 4 and 5, along with some concentration inequalities for empirical
processes from Chapter 3.

1.5.2 Recommended background

This book is targeted at graduate students with an interest in applied mathematics broadly
defined, including mathematically oriented branches of statistics, computer science, electri-
cal engineering and econometrics. As such, it assumes a strong undergraduate background
in basic aspects of mathematics, including the following:

• A course in linear algebra, including material on matrices, eigenvalues and eigendecom-
positions, singular values, and so on.

• A course in basic real analysis, at the level of Rudin’s elementary book (Rudin, 1964),
covering convergence of sequences and series, metric spaces and abstract integration.

• A course in probability theory, including both discrete and continuous variables, laws of
large numbers, as well as central limit theory. A measure-theoretic version is not required,
but the ability to deal with the abstraction of this type is useful. Some useful books include
Breiman (1992), Chung (1991), Durrett (2010) and Williams (1991).

• A course in classical mathematical statistics, including some background on decision the-
ory, basics of estimation and testing, maximum likelihood estimation and some asymp-
totic theory. Some standard books at the appropriate level include Keener (2010), Bickel
and Doksum (2015) and Shao (2007).

Probably the most subtle requirement is a certain degree of mathematical maturity on the
part of the reader. This book is meant for the person who is interested in gaining a deep un-
derstanding of the core issues in high-dimensional statistics. As with anything worthwhile in
life, doing so requires effort. This basic fact should be kept in mind while working through
the proofs, examples and exercises in this book.

At the same time, this book has been written with self-study and/or teaching in mind. To wit,
we have often sacrificed generality or sharpness in theorem statements for the sake of proof
clarity. In lieu of an exhaustive treatment, our primary emphasis is on developing techniques
that can be used to analyze many different problems. To this end, each chapter is seeded
with a large number of examples, in which we derive specific consequences of more abstract
statements. Working through these examples in detail, as well as through some of the many
exercises at the end of each chapter, is the best way to gain a robust grasp of the material.
As a warning to the reader: the exercises range in difficulty from relatively straightforward
to extremely challenging. Don’t be discouraged if you find an exercise to be challenging;
some of them are meant to be!

1.5.3 Teaching possibilities and a flow diagram

This book has been used for teaching one-semester graduate courses on high-dimensional
statistics at various universities, including the University of California Berkeley, Carnegie
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Mellon University, Massachusetts Institute of Technology and Yale University. The book
has far too much material for a one-semester class, but there are various ways of working
through different subsets of chapters over time periods ranging from five to 15 weeks. See
Figure 1.6 for a flow diagram that illustrates some of these different pathways through the
book.

Chap. 2

Chap. 3 Chap. 4 Chap. 5

Chap. 6 Chap. 7

Chap. 8

Chap. 9

Chap. 10 Chap. 11

Chap. 12Chap. 13Chap. 14

Chap. 15

Figure 1.6 A flow diagram of Chapters 2–15 and some of their dependence struc-
ture. Various tours of subsets of chapters are possible; see the text for more details.

A short introduction. Given a shorter period of a few weeks, it would be reasonable to cover
Chapter 2 followed by Chapter 7 on sparse linear regression, followed by parts of Chapter 6
on covariance estimation. Other brief tours beginning with Chapter 2 are also possible.

A longer look. Given a few more weeks, a longer look could be obtained by supplementing
the short introduction with some material from Chapter 5 on metric entropy and Dudley’s
entropy integral, followed by Chapter 13 on nonparametric least squares. This supplement
would give a taste of the nonparametric material in the book. Alternative additions are pos-
sible, depending on interests.

A full semester course. A semester-length tour through the book could include Chapter 2 on
tail bounds, Chapter 4 on uniform laws, the material in Sections 5.1 through 5.3.3 on metric
entropy through to Dudley’s entropy integral, followed by parts of Chapter 6 on covariance
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estimation, Chapter 7 on sparse linear regression, and Chapter 8 on principal component
analysis. A second component of the course could consist of Chapter 12 on reproducing
kernel Hilbert spaces, followed by Chapter 13 on nonparametric least squares. Depending
on the semester length, it could also be possible to cover some material on minimax lower
bounds from Chapter 15.

1.6 Bibliographic details and background

Rao (1949) was one of the first authors to consider high-dimensional effects in two-sample
testing problems. The high-dimensional linear discriminant problem discussed in Section
1.2.1 was first proposed and analyzed by Kolmogorov in the 1960s. Deev, working in the
group of Kolmogorov, analyzed the high-dimensional asymptotics of the general Fisher lin-
ear discriminant for fractions αi ∈ [0, 1). See the book by Serdobolskii (2000) and the survey
paper by Raudys and Young (2004) for further detail on this early line of Russian research
in high-dimensional classification.

The study of high-dimensional random matrices, as treated briefly in Section 1.2.2, also
has deep roots, dating back to the seminal work from the 1950s onwards (e.g., Wigner, 1955,
1958; Marčenko and Pastur, 1967; Pastur, 1972; Wachter, 1978; Geman, 1980). The high-
dimensional asymptotic law for the eigenvalues of a sample covariance matrix illustrated in
Figure 1.2 is due to Marčenko and Pastur (1967); this asymptotic prediction has been shown
to be a remarkably robust phenomenon, requiring only mild moment conditions (e.g., Silver-
stein, 1995; Bai and Silverstein, 2010). See also the paper by Götze and Tikhomirov (2004)
for quantitative bounds on the distance to this limiting distribution.

In his Wald Memorial Lecture, Huber (1973) studied the asymptotics of robust regres-
sion under a high-dimensional scaling with d/n constant. Portnoy (1984; 1985) studied M-
estimators for high-dimensional linear regression models, proving consistency when the ra-
tio d log d

n goes to zero, and asymptotic normality under somewhat more stringent conditions.
See also Portnoy (1988) for extensions to more general exponential family models. The
high-dimensional asymptotics of various forms of robust regression estimators have been
studied in recent work by El Karoui and co-authors (e.g., Bean et al., 2013; El Karoui, 2013;
El Karoui et al., 2013), as well as by Donoho and Montanari (2013).

Thresholding estimators are widely used in statistical problems in which the estimand
is expected to be sparse. See the book by Johnstone (2015) for an extensive discussion of
thresholding estimators in the context of the normal sequence model, with various appli-
cations in nonparametric estimation and density estimation. See also Chapters 6 and 7 for
some discussion and analysis of thresholding estimators. Soft thresholding is very closely
related to �1-regularization, a method with a lengthy history (e.g., Levy and Fullagar, 1981;
Santosa and Symes, 1986; Tibshirani, 1996; Chen et al., 1998; Juditsky and Nemirovski,
2000; Donoho and Huo, 2001; Elad and Bruckstein, 2002; Candès and Tao, 2005; Donoho,
2006b; Bickel et al., 2009); see Chapter 7 for an in-depth discussion.

Stone (1985) introduced the class of additive models (1.20) for nonparametric regression;
see the book by Hastie and Tibshirani (1990) for more details. The SPAM class (1.21) has
been studied by many researchers (e.g., Meier et al., 2009; Ravikumar et al., 2009; Koltchin-
skii and Yuan, 2010; Raskutti et al., 2012). The single-index model (1.22), as a particular
instance of a semiparametric model, has also been widely studied; for instance, see the var-
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ious papers (Härdle and Stoker, 1989; Härdle et al., 1993; Ichimura, 1993; Hristache et al.,
2001) and references therein for further details. Friedman and Stuetzle (1981) introduced the
idea of projection pursuit regression (1.23). In broad terms, projection pursuit methods are
based on seeking “interesting” projections of high-dimensional data (Kruskal, 1969; Huber,
1985; Friedman and Tukey, 1994), and projection pursuit regression is based on this idea in
the context of regression.
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Basic tail and concentration bounds

In a variety of settings, it is of interest to obtain bounds on the tails of a random variable, or
two-sided inequalities that guarantee that a random variable is close to its mean or median. In
this chapter, we explore a number of elementary techniques for obtaining both deviation and
concentration inequalities. This chapter serves as an entry point to more advanced literature
on large-deviation bounds and concentration of measure.

2.1 Classical bounds

One way in which to control a tail probability P[X ≥ t] is by controlling the moments of
the random variable X. Gaining control of higher-order moments leads to correspondingly
sharper bounds on tail probabilities, ranging from Markov’s inequality (which requires only
existence of the first moment) to the Chernoff bound (which requires existence of the mo-
ment generating function).

2.1.1 From Markov to Chernoff

The most elementary tail bound is Markov’s inequality: given a non-negative random vari-
able X with finite mean, we have

P[X ≥ t] ≤
E[X]

t
for all t > 0. (2.1)

This is a simple instance of an upper tail bound. For a random variable X that also has a
finite variance, we have Chebyshev’s inequality:

P[|X − μ| ≥ t] ≤
var(X)

t2 for all t > 0. (2.2)

This is a simple form of concentration inequality, guaranteeing that X is close to its mean
μ = E[X] whenever its variance is small. Observe that Chebyshev’s inequality follows
by applying Markov’s inequality to the non-negative random variable Y = (X − μ)2. Both
Markov’s and Chebyshev’s inequalities are sharp, meaning that they cannot be improved in
general (see Exercise 2.1).

There are various extensions of Markov’s inequality applicable to random variables with
higher-order moments. For instance, whenever X has a central moment of order k, an appli-
cation of Markov’s inequality to the random variable |X − μ|k yields that

P[|X − μ| ≥ t] ≤
E[|X − μ|k]

tk for all t > 0. (2.3)

21
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Of course, the same procedure can be applied to functions other than polynomials |X − μ|k.
For instance, suppose that the random variable X has a moment generating function in a
neighborhood of zero, meaning that there is some constant b > 0 such that the function
ϕ(λ) = E[eλ(X−μ)] exists for all λ ≤ |b|. In this case, for any λ ∈ [0, b], we may apply
Markov’s inequality to the random variable Y = eλ(X−μ), thereby obtaining the upper bound

P[(X − μ) ≥ t] = P[eλ(X−μ) ≥ eλt] ≤
E[eλ(X−μ)]

eλt . (2.4)

Optimizing our choice of λ so as to obtain the tightest result yields the Chernoff bound—
namely, the inequality

logP[(X − μ) ≥ t] ≤ inf
λ∈[0,b]

{
logE[eλ(X−μ)] − λt

}
. (2.5)

As we explore in Exercise 2.3, the moment bound (2.3) with an optimal choice of k is
never worse than the bound (2.5) based on the moment generating function. Nonetheless,
the Chernoff bound is most widely used in practice, possibly due to the ease of manipulating
moment generating functions. Indeed, a variety of important tail bounds can be obtained as
particular cases of inequality (2.5), as we discuss in examples to follow.

2.1.2 Sub-Gaussian variables and Hoeffding bounds

The form of tail bound obtained via the Chernoff approach depends on the growth rate of the
moment generating function. Accordingly, in the study of tail bounds, it is natural to classify
random variables in terms of their moment generating functions. For reasons to become clear
in the sequel, the simplest type of behavior is known as sub-Gaussian. In order to motivate
this notion, let us illustrate the use of the Chernoff bound (2.5) in deriving tail bounds for a
Gaussian variable.

Example 2.1 (Gaussian tail bounds) Let X ∼ N(μ, σ2) be a Gaussian random variable with
mean μ and variance σ2. By a straightforward calculation, we find that X has the moment
generating function

E[eλX] = eμλ+ σ2λ2
2 , valid for all λ ∈ R. (2.6)

Substituting this expression into the optimization problem defining the optimized Chernoff
bound (2.5), we obtain

inf
λ≥0

{
logE[eλ(X−μ)] − λt

}
= inf

λ≥0

{
λ2σ2

2
− λt

}
= −

t2

2σ2 ,

where we have taken derivatives in order to find the optimum of this quadratic function. Re-
turning to the Chernoff bound (2.5), we conclude that anyN(μ, σ2) random variable satisfies
the upper deviation inequality

P[X ≥ μ + t] ≤ e−
t2

2σ2 for all t ≥ 0. (2.7)

In fact, this bound is sharp up to polynomial-factor corrections, as shown by our exploration
of the Mills ratio in Exercise 2.2. ♣
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Motivated by the structure of this example, we are led to introduce the following definition.

Definition 2.2 A random variable X with mean μ = E[X] is sub-Gaussian if there is
a positive number σ such that

E[eλ(X−μ)] ≤ eσ2λ2/2 for all λ ∈ R. (2.8)

The constant σ is referred to as the sub-Gaussian parameter; for instance, we say that X
is sub-Gaussian with parameter σ when the condition (2.8) holds. Naturally, any Gaussian
variable with variance σ2 is sub-Gaussian with parameter σ, as should be clear from the cal-
culation described in Example 2.1. In addition, as we will see in the examples and exercises
to follow, a large number of non-Gaussian random variables also satisfy the condition (2.8).

The condition (2.8), when combined with the Chernoff bound as in Example 2.1, shows
that, if X is sub-Gaussian with parameter σ, then it satisfies the upper deviation inequal-
ity (2.7). Moreover, by the symmetry of the definition, the variable −X is sub-Gaussian
if and only if X is sub-Gaussian, so that we also have the lower deviation inequality

P[X ≤ μ − t] ≤ e−
t2

2σ2 , valid for all t ≥ 0. Combining the pieces, we conclude that any
sub-Gaussian variable satisfies the concentration inequality

P[|X − μ| ≥ t] ≤ 2 e−
t2

2σ2 for all t ∈ R. (2.9)

Let us consider some examples of sub-Gaussian variables that are non-Gaussian.

Example 2.3 (Rademacher variables) A Rademacher random variable ε takes the values
{−1,+1} equiprobably. We claim that it is sub-Gaussian with parameter σ = 1. By taking
expectations and using the power-series expansion for the exponential, we obtain

E[eλε] =
1
2
{e−λ + eλ} =

1
2

{ ∞∑
k=0

(−λ)k

k!
+

∞∑
k=0

(λ)k

k!

}

=

∞∑
k=0

λ2k

(2k)!

≤ 1 +
∞∑

k=1

λ2k

2k k!

= eλ2/2,

which shows that ε is sub-Gaussian with parameter σ = 1 as claimed. ♣

We now generalize the preceding example to show that any bounded random variable is also
sub-Gaussian.
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Example 2.4 (Bounded random variables) Let X be zero-mean, and supported on some
interval [a, b]. Letting X′ be an independent copy, for any λ ∈ R, we have

EX[eλX] = EX[eλ(X−EX′ [X′])] ≤ EX,X′[eλ(X−X′)],

where the inequality follows from the convexity of the exponential, and Jensen’s inequality.
Letting ε be an independent Rademacher variable, note that the distribution of (X − X′) is
the same as that of ε(X − X′), so that we have

EX,X′[eλ(X−X′)] = EX,X′[Eε[eλε(X−X′)]]
(i)
≤ EX,X′[e

λ2(X−X′ )2
2 ],

where step (i) follows from the result of Example 2.3, applied conditionally with (X, X′) held
fixed. Since |X − X′| ≤ b − a, we are guaranteed that

EX,X′[e
λ2(X−X′ )2

2 ] ≤ e
λ2 (b−a)2

2 .

Putting together the pieces, we have shown that X is sub-Gaussian with parameter at most
σ = b − a. This result is useful but can be sharpened. In Exercise 2.4, we work through a
more involved argument to show that X is sub-Gaussian with parameter at most σ = b−a

2 .

Remark: The technique used in Example 2.4 is a simple example of a symmetrization argu-
ment, in which we first introduce an independent copy X′, and then symmetrize the problem
with a Rademacher variable. Such symmetrization arguments are useful in a variety of con-
texts, as will be seen in later chapters.

Just as the property of Gaussianity is preserved by linear operations, so is the property
of sub-Gaussianity. For instance, if X1 and X2 are independent sub-Gaussian variables with

parameters σ1 and σ2, then X1 + X2 is sub-Gaussian with parameter
√
σ2

1 + σ2
2. See Exer-

cise 2.13 for verification of this fact, as well as some related properties. As a consequence
of this fact and the basic sub-Gaussian tail bound (2.7), we obtain an important result, appli-
cable to sums of independent sub-Gaussian random variables, and known as the Hoeffding
bound:

Proposition 2.5 (Hoeffding bound) Suppose that the variables Xi, i = 1, . . . , n, are
independent, and Xi has mean μi and sub-Gaussian parameter σi. Then for all t ≥ 0,
we have

P
[ n∑

i=1

(Xi − μi) ≥ t
]
≤ exp

{
−

t2

2
∑n

i=1 σ
2
i

}
. (2.10)

The Hoeffding bound is often stated only for the special case of bounded random variables.
In particular, if Xi ∈ [a, b] for all i = 1, 2, . . . , n, then from the result of Exercise 2.4, it is
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sub-Gaussian with parameter σ = b−a
2 , so that we obtain the bound

P
[ n∑

i=1

(Xi − μi) ≥ t
]
≤ e−

2t2

n (b−a)2 . (2.11)

Although the Hoeffding bound is often stated in this form, the basic idea applies somewhat
more generally to sub-Gaussian variables, as we have given here.

We conclude our discussion of sub-Gaussianity with a result that provides three different
characterizations of sub-Gaussian variables. First, the most direct way in which to establish
sub-Gaussianity is by computing or bounding the moment generating function, as we have
done in Example 2.1. A second intuition is that any sub-Gaussian variable is dominated in a
certain sense by a Gaussian variable. Third, sub-Gaussianity also follows by having suitably
tight control on the moments of the random variable. The following result shows that all
three notions are equivalent in a precise sense.

Theorem 2.6 (Equivalent characterizations of sub-Gaussian variables) Given any
zero-mean random variable X, the following properties are equivalent:

(I) There is a constant σ ≥ 0 such that

E[eλX] ≤ e
λ2σ2

2 for all λ ∈ R. (2.12a)

(II) There is a constant c ≥ 0 and Gaussian random variable Z ∼ N(0, τ2) such that

P[|X| ≥ s] ≤ cP[|Z| ≥ s] for all s ≥ 0. (2.12b)

(III) There is a constant θ ≥ 0 such that

E[X2k] ≤
(2k)!
2kk!

θ2k for all k = 1, 2, . . .. (2.12c)

(IV) There is a constant σ ≥ 0 such that

E[e
λX2

2σ2 ] ≤
1

√
1 − λ

for all λ ∈ [0, 1). (2.12d)

See Appendix A (Section 2.4) for the proof of these equivalences.

2.1.3 Sub-exponential variables and Bernstein bounds

The notion of sub-Gaussianity is fairly restrictive, so that it is natural to consider various
relaxations of it. Accordingly, we now turn to the class of sub-exponential variables, which
are defined by a slightly milder condition on the moment generating function:
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Definition 2.7 A random variable X with mean μ = E[X] is sub-exponential if there
are non-negative parameters (ν, α) such that

E[eλ(X−μ)] ≤ e
ν2λ2

2 for all |λ| < 1
α

. (2.13)

It follows immediately from this definition that any sub-Gaussian variable is also sub-
exponential—in particular, with ν = σ and α = 0, where we interpret 1/0 as being the same
as +∞. However, the converse statement is not true, as shown by the following calculation:

Example 2.8 (Sub-exponential but not sub-Gaussian) Let Z ∼ N(0, 1), and consider the
random variable X = Z2. For λ < 1

2 , we have

E[eλ(X−1)] =
1
√

2π

∫ +∞

−∞
eλ(z2−1)e−z2/2 dz

=
e−λ

√
1 − 2λ

.

For λ > 1
2 , the moment generating function is infinite, which reveals that X is not sub-

Gaussian.
As will be seen momentarily, the existence of the moment generating function in a neigh-

borhood of zero is actually an equivalent definition of a sub-exponential variable. Let us
verify directly that condition (2.13) is satisfied. Following some calculus, we find that

e−λ
√

1 − 2λ
≤ e2λ2

= e4λ2/2, for all |λ| < 1
4 , (2.14)

which shows that X is sub-exponential with parameters (ν, α) = (2, 4). ♣

As with sub-Gaussianity, the control (2.13) on the moment generating function, when
combined with the Chernoff technique, yields deviation and concentration inequalities for
sub-exponential variables. When t is small enough, these bounds are sub-Gaussian in nature
(i.e., with the exponent quadratic in t), whereas for larger t, the exponential component of
the bound scales linearly in t. We summarize in the following:

Proposition 2.9 (Sub-exponential tail bound) Suppose that X is sub-exponential with
parameters (ν, α). Then

P[X − μ ≥ t] ≤
⎧⎪⎪⎨⎪⎪⎩e−

t2

2ν2 if 0 ≤ t ≤ ν2

α
,

e−
t

2α for t > ν2

α
.

As with the Hoeffding inequality, similar bounds can be derived for the left-sided event
{X − μ ≤ −t}, as well as the two-sided event {|X − μ| ≥ t}, with an additional factor of 2 in
the latter case.
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Proof By recentering as needed, we may assume without loss of generality that μ = 0.
We follow the usual Chernoff-type approach: combining it with the definition (2.13) of a
sub-exponential variable yields the upper bound

P[X ≥ t] ≤ e−λt E[eλX] ≤ exp
(
−λt +

λ2ν2

2

)
︸����������︷︷����������︸

g(λ,t)

, valid for all λ ∈ [0, α−1).

In order to complete the proof, it remains to compute, for each fixed t ≥ 0, the quantity
g∗(t) := infλ∈[0,α−1) g(λ, t). Note that the unconstrained minimum of the function g(·, t) occurs
at λ∗ = t/ν2. If 0 ≤ t < ν2

α
, then this unconstrained optimum corresponds to the constrained

minimum as well, so that g∗(t) = − t2

2ν2 over this interval.
Otherwise, we may assume that t ≥ ν2

α
. In this case, since the function g(·, t) is monotoni-

cally decreasing in the interval [0, λ∗), the constrained minimum is achieved at the boundary
point λ† = α−1, and we have

g∗(t) = g(λ†, t) = −
t
α
+

1
2α

ν2

α

(i)
≤ −

t
2α

,

where inequality (i) uses the fact that ν2

α
≤ t.

As shown in Example 2.8, the sub-exponential property can be verified by explicitly com-
puting or bounding the moment generating function. This direct calculation may be imprac-
ticable in many settings, so it is natural to seek alternative approaches. One such method is
based on control of the polynomial moments of X. Given a random variable X with mean
μ = E[X] and variance σ2 = E[X2] − μ2, we say that Bernstein’s condition with parameter b
holds if

|E[(X − μ)k]| ≤ 1
2 k!σ2bk−2 for k = 2, 3, 4, . . .. (2.15)

One sufficient condition for Bernstein’s condition to hold is that X be bounded; in partic-
ular, if |X − μ| ≤ b, then it is straightforward to verify that condition (2.15) holds. Even
for bounded variables, our next result will show that the Bernstein condition can be used
to obtain tail bounds that may be tighter than the Hoeffding bound. Moreover, Bernstein’s
condition is also satisfied by various unbounded variables, a property which lends it much
broader applicability.

When X satisfies the Bernstein condition, then it is sub-exponential with parameters de-
termined by σ2 and b. Indeed, by the power-series expansion of the exponential, we have

E[eλ(X−μ)] = 1 +
λ2σ2

2
+

∞∑
k=3

λk E[(X − μ)k]
k!

(i)
≤ 1 +

λ2σ2

2
+

λ2σ2

2

∞∑
k=3

(|λ| b)k−2,

where the inequality (i) makes use of the Bernstein condition (2.15). For any |λ| < 1/b, we
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can sum the geometric series so as to obtain

E[eλ(X−μ)] ≤ 1 +
λ2σ2/2
1 − b|λ|

(ii)
≤ e

λ2σ2/2
1−b|λ| , (2.16)

where inequality (ii) follows from the bound 1 + t ≤ et. Consequently, we conclude that

E[eλ(X−μ)] ≤ e
λ2(

√
2σ)2

2 for all |λ| < 1
2b ,

showing that X is sub-exponential with parameters (
√

2σ, 2b).

As a consequence, an application of Proposition 2.9 leads directly to tail bounds on a
random variable satisfying the Bernstein condition (2.15). However, the resulting tail bound
can be sharpened slightly, at least in terms of constant factors, by making direct use of the
upper bound (2.16). We summarize in the following:

Proposition 2.10 (Bernstein-type bound) For any random variable satisfying the
Bernstein condition (2.15), we have

E[eλ(X−μ)] ≤ e
λ2σ2/2
1−b|λ| for all |λ| < 1

b , (2.17a)

and, moreover, the concentration inequality

P[|X − μ| ≥ t] ≤ 2e−
t2

2 (σ2+bt) for all t ≥ 0. (2.17b)

We proved inequality (2.17a) in the discussion preceding this proposition. Using this
bound on the moment generating function, the tail bound (2.17b) follows by setting λ =

t
bt+σ2 ∈ [0, 1

b ) in the Chernoff bound, and then simplifying the resulting expression.

Remark: Proposition 2.10 has an important consequence even for bounded random vari-
ables (i.e., those satisfying |X − μ| ≤ b). The most straightforward way to control such vari-
ables is by exploiting the boundedness to show that (X−μ) is sub-Gaussian with parameter b
(see Exercise 2.4), and then applying a Hoeffding-type inequality (see Proposition 2.5). Al-
ternatively, using the fact that any bounded variable satisfies the Bernstein condition (2.16),
we can also apply Proposition 2.10, thereby obtaining the tail bound (2.17b), that involves
both the variance σ2 and the bound b. This tail bound shows that for suitably small t, the
variable X has sub-Gaussian behavior with parameter σ, as opposed to the parameter b that
would arise from a Hoeffding approach. Since σ2 = E[(X − μ)2] ≤ b2, this bound is never
worse; moreover, it is substantially better when σ2 � b2, as would be the case for a ran-
dom variable that occasionally takes on large values, but has relatively small variance. Such
variance-based control frequently plays a key role in obtaining optimal rates in statistical
problems, as will be seen in later chapters. For bounded random variables, Bennett’s in-
equality can be used to provide sharper control on the tails (see Exercise 2.7).

Like the sub-Gaussian property, the sub-exponential property is preserved under sum-
mation for independent random variables, and the parameters (ν, α) transform in a simple
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way. In particular, consider an independent sequence {Xk}nk=1 of random variables, such that
Xk has mean μk, and is sub-exponential with parameters (νk, αk). We compute the moment
generating function

E[eλ
∑n

k=1(Xk−μk)]
(i)
=

n∏
k=1

E[eλ(Xk−μk)]
(ii)
≤

n∏
k=1

eλ2ν2
k/2,

valid for all |λ| <
(

maxk=1,...,n αk
)−1, where equality (i) follows from independence, and in-

equality (ii) follows since Xk is sub-exponential with parameters (νk, αk). Thus, we conclude
that the variable

∑n
k=1(Xk − μk) is sub-exponential with the parameters (ν∗, α∗), where

α∗ := max
k=1,...,n

αk and ν∗ :=

√√
n∑

k=1

ν2
k .

Using the same argument as in Proposition 2.9, this observation leads directly to the upper
tail bound

P
[
1
n

n∑
i=1

(Xk − μk) ≥ t
]
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩e
− nt2

2(ν2
∗/n) for 0 ≤ t ≤ ν2

∗
nα∗

,

e−
nt

2α∗ for t > ν2
∗

nα∗
,

(2.18)

along with similar two-sided tail bounds. Let us illustrate our development thus far with
some examples.

Example 2.11 (χ2-variables) A chi-squared (χ2) random variable with n degrees of free-
dom, denoted by Y ∼ χ2

n, can be represented as the sum Y =
∑n

k=1 Z2
k where Zk ∼ N(0, 1)

are i.i.d. variates. As discussed in Example 2.8, the variable Z2
k is sub-exponential with pa-

rameters (2, 4). Consequently, since the variables {Zk}nk=1 are independent, the χ2-variate Y is
sub-exponential with parameters (ν, α) = (2

√
n, 4), and the preceding discussion yields the

two-sided tail bound

P
[∣∣∣∣∣∣1n

n∑
k=1

Z2
k − 1

∣∣∣∣∣∣ ≥ t
]
≤ 2e−nt2/8, for all t ∈ (0, 1). (2.19)

♣

The concentration of χ2-variables plays an important role in the analysis of procedures based
on taking random projections. A classical instance of the random projection method is the
Johnson–Lindenstrauss analysis of metric embedding.

Example 2.12 (Johnson–Lindenstrauss embedding) As one application of the concentra-
tion of χ2-variables, consider the following problem. Suppose that we are given N ≥ 2
distinct vectors {u1, . . . , uN}, with each vector lying in Rd. If the data dimension d is large,
then it might be expensive to store and manipulate the data set. The idea of dimensionality
reduction is to construct a mapping F : Rd → Rm—with the projected dimension m substan-
tially smaller than d—that preserves some “essential” features of the data set. What features
should we try to preserve? There is not a unique answer to this question but, as one in-
teresting example, we might consider preserving pairwise distances, or equivalently norms
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and inner products. Many algorithms are based on such pairwise quantities, including lin-
ear regression, methods for principal components, the k-means algorithm for clustering, and
nearest-neighbor algorithms for density estimation. With these motivations in mind, given
some tolerance δ ∈ (0, 1), we might be interested in a mapping F with the guarantee that

(1 − δ) ≤
‖F(ui) − F(uj)‖2

2

‖ui − uj‖2
2

≤ (1 + δ) for all pairs ui � uj. (2.20)

In words, the projected data set
{
F(u1), . . . , F(uN)

}
preserves all pairwise squared distances

up to a multiplicative factor of δ. Of course, this is always possible if the projected dimension
m is large enough, but the goal is to do it with relatively small m.

Constructing such a mapping that satisfies the condition (2.20) with high probability
turns out to be straightforward as long as the projected dimension is lower bounded as
m � 1

δ2 log N. Observe that the projected dimension is independent of the ambient dimension
d, and scales only logarithmically with the number of data points N.

The construction is probabilistic: first form a random matrix X ∈ Rm×d filled with inde-
pendent N(0, 1) entries, and use it to define a linear mapping F : Rd → Rm via u �→ Xu/

√
m.

We now verify that F satisfies condition (2.20) with high probability. Let xi ∈ Rd denote
the ith row of X, and consider some fixed u � 0. Since xi is a standard normal vector, the
variable 〈xi, u/‖u‖2〉 follows a N(0, 1) distribution, and hence the quantity

Y :=
‖Xu‖2

2

‖u‖2
2

=

m∑
i=1

〈xi, u/‖u‖2〉2 ,

follows a χ2 distribution with m degrees of freedom, using the independence of the rows.
Therefore, applying the tail bound (2.19), we find that

P
[∣∣∣∣∣∣ ‖Xu‖2

2

m ‖u‖2
2

− 1

∣∣∣∣∣∣ ≥ δ

]
≤ 2e−mδ2/8 for all δ ∈ (0, 1).

Rearranging and recalling the definition of F yields the bound

P
[‖F(u)‖2

2

‖u‖2
2

� [(1 − δ), (1 + δ)]
]
≤ 2e−mδ2/8, for any fixed 0 � u ∈ Rd.

Noting that there are
(

N
2

)
distinct pairs of data points, we apply the union bound to conclude

that

P
[‖F(ui − uj)‖2

2

‖ui − uj‖2
2

� [(1 − δ), (1 + δ)] for some ui � uj

]
≤ 2

(
N
2

)
e−mδ2/8.

For any ε ∈ (0, 1), this probability can be driven below ε by choosing m > 16
δ2 log(N/ε). ♣

In parallel to Theorem 2.13, there are a number of equivalent ways to characterize a sub-
exponential random variable. The following theorem provides a summary:
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Theorem 2.13 (Equivalent characterizations of sub-exponential variables) For a zero-
mean random variable X, the following statements are equivalent:

(I) There are non-negative numbers (ν, α) such that

E[eλX] ≤ e
ν2λ2

2 for all |λ| < 1
α

. (2.21a)

(II) There is a positive number c0 > 0 such that E[eλX] < ∞ for all |λ| ≤ c0.
(III) There are constants c1, c2 > 0 such that

P[|X| ≥ t] ≤ c1 e−c2t for all t > 0. (2.21b)

(IV) The quantity γ := supk≥2

[
E[Xk]

k!

]1/k
is finite.

See Appendix B (Section 2.5) for the proof of this claim.

2.1.4 Some one-sided results

Up to this point, we have focused on two-sided forms of Bernstein’s condition, which yields
bounds on both the upper and lower tails. As we have seen, one sufficient condition for
Bernstein’s condition to hold is a bound on the absolute value, say |X| ≤ b almost surely. Of
course, if such a bound only holds in a one-sided way, it is still possible to derive one-sided
bounds. In this section, we state and prove one such result.

Proposition 2.14 (One-sided Bernstein’s inequality) If X ≤ b almost surely, then

E[eλ(X−E[X])] ≤ exp
( λ2

2 E[X2]

1 − bλ
3

)
for all λ ∈ [0, 3/b). (2.22a)

Consequently, given n independent random variables such that Xi ≤ b almost surely,
we have

P
[ n∑

i=1

(Xi − E[Xi]) ≥ nδ
]
≤ exp

(
−

nδ2

2
(

1
n

∑n
i=1 E[X2

i ] + bδ
3

) ). (2.22b)

Of course, if a random variable is bounded from below, then the same result can be used
to derive bounds on its lower tail; we simply apply the bound (2.22b) to the random variable
−X. In the special case of independent non-negative random variables Yi ≥ 0, we find that

P
[ n∑

i=1

(Yi − E[Yi]) ≤ −nδ
]
≤ exp

(
−

nδ2

2
n

∑n
i=1 E[Y2

i ]

)
. (2.23)

Thus, we see that the lower tail of any non-negative random variable satisfies a bound of the
sub-Gaussian type, albeit with the second moment instead of the variance.
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The proof of Proposition 2.14 is quite straightforward given our development thus far.

Proof Defining the function

h(u) := 2
eu − u − 1

u2 = 2
∞∑

k=2

uk−2

k!
,

we have the expansion

E[eλX] = 1 + λE[X] + 1
2λ

2E[X2h(λX)].

Observe that for all scalars x < 0, x′ ∈ [0, b] and λ > 0, we have

h(λx) ≤ h(0) ≤ h(λx′) ≤ h(λb).

Consequently, since X ≤ b almost surely, we have E[X2h(λX)] ≤ E[X2]h(λb), and hence

E[eλ(X−E[X])] ≤ e−λE[X]{1 + λE[X] + 1
2λ

2E[X2]h(λb)}

≤ exp
{
λ2E[X2]

2
h(λb)

}
.

Consequently, the bound (2.22a) will follow if we can show that h(λb) ≤ (1 − λb
3 )−1 for

λb < 3. By applying the inequality k! ≥ 2(3k−2), valid for all k ≥ 2, we find that

h(λb) = 2
∞∑

k=2

(λb)k−2

k!
≤

∞∑
k=2

(
λb
3

)k−2

=
1

1 − λb
3

,

where the condition λb
3 ∈ [0, 1) allows us to sum the geometric series.

In order to prove the upper tail bound (2.22b), we apply the Chernoff bound, exploiting in-
dependence to apply the moment generating function bound (2.22a) separately, and thereby
find that

P
[ n∑

i=1

(Xi − E[Xi]) ≥ nδ
]
≤ exp

(
− λnδ +

λ2

2

∑n
i=1 E[X2

i ]

1 − bλ
3

)
, valid for bλ ∈ [0, 3).

Substituting

λ =
nδ∑n

i=1 E[X2
i ] + nδb

3

∈ [0, 3/b)

and simplifying yields the bound.

2.2 Martingale-based methods

Up until this point, our techniques have provided various types of bounds on sums of in-
dependent random variables. Many problems require bounds on more general functions of
random variables, and one classical approach is based on martingale decompositions. In
this section, we describe some of the results in this area along with some examples. Our
treatment is quite brief, so we refer the reader to the bibliographic section for additional
references.



2.2 Martingale-based methods 33

2.2.1 Background

Let us begin by introducing a particular case of a martingale sequence that is especially rel-
evant for obtaining tail bounds. Let {Xk}nk=1 be a sequence of independent random variables,
and consider the random variable f (X) = f (X1 . . . , Xn), for some function f : Rn → R. Sup-
pose that our goal is to obtain bounds on the deviations of f from its mean. In order to do
so, we consider the sequence of random variables given by Y0 = E[ f (X)], Yn = f (X), and

Yk = E
[
f (X) | X1, . . . , Xk

]
for k = 1, . . . , n − 1, (2.24)

where we assume that all conditional expectations exist. Note that Y0 is a constant, and the
random variables Yk will tend to exhibit more fluctuations as we move along the sequence
from Y0 to Yn. Based on this intuition, the martingale approach to tail bounds is based on the
telescoping decomposition

f (X) − E[ f (X)] = Yn − Y0 =

n∑
k=1

(Yk − Yk−1)︸�������︷︷�������︸
Dk

,

in which the deviation f (X) − E[ f (X)] is written as a sum of increments {Dk}nk=1. As we
will see, the sequence {Yk}nk=1 is a particular example of a martingale sequence, known as
the Doob martingale, whereas the sequence {Dk}nk=1 is an example of a martingale difference
sequence.

With this example in mind, we now turn to the general definition of a martingale sequence.
Let {Fk}∞k=1 be a sequence of σ-fields that are nested, meaning that Fk ⊆ Fk+1 for all k ≥ 1;
such a sequence is known as a filtration. In the Doob martingale described above, the σ-field
σ(X1, . . . , Xk) generated by the first k variables plays the role of Fk. Let {Yk}∞k=1 be a sequence
of random variables such that Yk is measurable with respect to the σ-field Fk. In this case,
we say that {Yk}∞k=1 is adapted to the filtration {Fk}∞k=1. In the Doob martingale, the random
variable Yk is a measurable function of (X1, . . . , Xk), and hence the sequence is adapted to
the filtration defined by the σ-fields. We are now ready to define a general martingale:

Definition 2.15 Given a sequence {Yk}∞k=1 of random variables adapted to a filtration
{Fk}∞k=1, the pair {(Yk,Fk)}∞k=1 is a martingale if, for all k ≥ 1,

E[|Yk|] < ∞ and E[Yk+1 | Fk] = Yk. (2.25)

It is frequently the case that the filtration is defined by a second sequence of random vari-
ables {Xk}∞k=1 via the canonical σ-fields Fk := σ(X1, . . . , Xk). In this case, we say that {Yk}∞k=1
is a martingale sequence with respect to {Xk}∞k=1. The Doob construction is an instance of
such a martingale sequence. If a sequence is martingale with respect to itself (i.e., with
Fk = σ(Y1, . . . ,Yk)), then we say simply that {Yk}∞k=1 forms a martingale sequence.

Let us consider some examples to illustrate:

Example 2.16 (Partial sums as martingales) Perhaps the simplest instance of a martingale
is provided by considering partial sums of an i.i.d. sequence. Let {Xk}∞k=1 be a sequence
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of i.i.d. random variables with mean μ, and define the partial sums S k :=
∑k

j=1 Xj. Defining
Fk = σ(X1, . . . , Xk), the random variable S k is measurable with respect to Fk, and, moreover,
we have

E[S k+1 | Fk] = E[Xk+1 + S k | X1, . . . , Xk]

= E[Xk+1] + S k

= μ + S k.

Here we have used the facts that Xk+1 is independent of Xk
1 := (X1, . . . , Xk), and that S k is

a function of Xk
1. Thus, while the sequence {S k}∞k=1 itself is not a martingale unless μ = 0,

the recentered variables Yk := S k − kμ for k ≥ 1 define a martingale sequence with respect
to {Xk}∞k=1. ♣

Let us now show that the Doob construction does lead to a martingale, as long as the under-
lying function f is absolutely integrable.

Example 2.17 (Doob construction) Given a sequence of independent random variables
{Xk}nk=1, recall the sequence Yk = E[ f (X) | X1, . . . , Xk] previously defined, and suppose that
E[| f (X)|] < ∞. We claim that {Yk}nk=0 is a martingale with respect to {Xk}nk=1. Indeed, in terms
of the shorthand Xk

1 = (X1, X2, . . . , Xk), we have

E[|Yk|] = E[|E[ f (X) | Xk
1]|] ≤ E[| f (X)|] < ∞,

where the bound follows from Jensen’s inequality. Turning to the second property, we have

E[Yk+1 | Xk
1] = E[E[ f (X) | Xk+1

1 ] | Xk
1]

(i)
= E[ f (X) | Xk

1] = Yk,

where we have used the tower property of conditional expectation in step (i). ♣

The following martingale plays an important role in analyzing stopping rules for sequential
hypothesis tests:

Example 2.18 (Likelihood ratio) Let f and g be two mutually absolutely continuous den-
sities, and let {Xk}∞k=1 be a sequence of random variables drawn i.i.d. according to f . For
each k ≥ 1, let Yk :=

∏k
�=1

g(X�)
f (X�)

be the likelihood ratio based on the first k samples. Then the
sequence {Yk}∞k=1 is a martingale with respect to {Xk}∞k=1. Indeed, we have

E[Yn+1 | X1, . . . , Xn] = E
[

g(Xn+1)
f (Xn+1)

] n∏
k=1

g(Xk)
f (Xk)

= Yn,

using the fact that E
[

g(Xn+1)
f (Xn+1)

]
= 1. ♣

A closely related notion is that of martingale difference sequence, meaning an adapted
sequence {(Dk,Fk)}∞k=1 such that, for all k ≥ 1,

E[|Dk|] < ∞ and E[Dk+1 | Fk] = 0. (2.26)

As suggested by their name, such difference sequences arise in a natural way from martin-
gales. In particular, given a martingale {(Yk,Fk)}∞k=0, let us define Dk = Yk − Yk−1 for k ≥ 1.
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We then have

E[Dk+1 | Fk] = E[Yk+1 | Fk] − E[Yk | Fk]

= E[Yk+1 | Fk] − Yk = 0,

using the martingale property (2.25) and the fact that Yk is measurable with respect to Fk.
Thus, for any martingale sequence {Yk}∞k=0, we have the telescoping decomposition

Yn − Y0 =

n∑
k=1

Dk, (2.27)

where {Dk}∞k=1 is a martingale difference sequence. This decomposition plays an important
role in our development of concentration inequalities to follow.

2.2.2 Concentration bounds for martingale difference sequences

We now turn to the derivation of concentration inequalities for martingales. These inequal-
ities can be viewed in one of two ways: either as bounds for the difference Yn − Y0, or as
bounds for the sum

∑n
k=1 Dk of the associated martingale difference sequence. Throughout

this section, we present results mainly in terms of martingale differences, with the under-
standing that such bounds have direct consequences for martingale sequences. Of particular
interest to us is the Doob martingale described in Example 2.17, which can be used to con-
trol the deviations of a function from its expectation.

We begin by stating and proving a general Bernstein-type bound for a martingale differ-
ence sequence, based on imposing a sub-exponential condition on the martingale differences.

Theorem 2.19 Let {(Dk,Fk)}∞k=1 be a martingale difference sequence, and suppose
that E[eλDk | Fk−1] ≤ eλ2ν2

k/2 almost surely for any |λ| < 1/αk. Then the following hold:

(a) The sum
∑n

k=1 Dk is sub-exponential with parameters
(√∑n

k=1 ν
2
k , α∗

)
where α∗ :=

maxk=1,...,n αk.
(b) The sum satisfies the concentration inequality

P
[∣∣∣∣∣∣ n∑

k=1

Dk

∣∣∣∣∣∣ ≥ t
]
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩2e
− t2

2
∑n

k=1 ν2
k if 0 ≤ t ≤

∑n
k=1 ν2

k
α∗

,

2e−
t

2α∗ if t >
∑n

k=1 ν2
k

α∗
.

(2.28)

Proof We follow the standard approach of controlling the moment generating function of∑n
k=1 Dk, and then applying the Chernoff bound. For any scalar λ such that |λ| < 1

α∗
, condi-
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tioning on Fn−1 and applying iterated expectation yields

E
[
eλ
(∑n

k=1 Dk

)]
= E

[
eλ
(∑n−1

k=1 Dk

)
E
[
eλDn | Fn−1

]]
≤ E

[
eλ

∑n−1
k=1 Dk

]
eλ2ν2

n/2, (2.29)

where the inequality follows from the stated assumption on Dn. Iterating this procedure
yields the bound E

[
eλ

∑n
k=1 Dk

]
≤ eλ2 ∑n

k=1 ν2
k/2, valid for all |λ| < 1

α∗
. By definition, we con-

clude that
∑n

k=1 Dk is sub-exponential with parameters
(√∑n

k=1 ν
2
k , α∗

)
, as claimed. The tail

bound (2.28) follows by applying Proposition 2.9.

In order for Theorem 2.19 to be useful in practice, we need to isolate sufficient and
easily checkable conditions for the differences Dk to be almost surely sub-exponential (or
sub-Gaussian when α = 0). As discussed previously, bounded random variables are sub-
Gaussian, which leads to the following corollary:

Corollary 2.20 (Azuma–Hoeffding) Let ({(Dk,Fk)}∞k=1) be a martingale difference se-
quence for which there are constants {(ak, bk)}nk=1 such that Dk ∈ [ak, bk] almost surely
for all k = 1, . . . , n. Then, for all t ≥ 0,

P
[∣∣∣∣∣∣ n∑

k=1

Dk

∣∣∣∣∣∣ ≥ t
]
≤ 2e

− 2t2∑n
k=1(bk−ak )2 . (2.30)

Proof Recall the decomposition (2.29) in the proof of Theorem 2.19; from the structure
of this argument, it suffices to show that E[eλDk | Fk−1] ≤ eλ2(bk−ak)2/8 almost surely for each
k = 1, 2, . . . , n. But since Dk ∈ [ak, bk] almost surely, the conditioned variable (Dk | Fk−1)
also belongs to this interval almost surely, and hence from the result of Exercise 2.4, it is
sub-Gaussian with parameter at most σ = (bk − ak)/2.

An important application of Corollary 2.20 concerns functions that satisfy a bounded
difference property. Let us first introduce some convenient notation. Given vectors x, x′ ∈ Rn

and an index k ∈ {1, 2, . . . , n}, we define a new vector x\k ∈ Rn via

x\kj :=

⎧⎪⎪⎨⎪⎪⎩x j if j � k,
x′k if j = k.

(2.31)

With this notation, we say that f : Rn → R satisfies the bounded difference inequality with
parameters (L1, . . . , Ln) if, for each index k = 1, 2, . . . , n,

| f (x) − f (x\k)| ≤ Lk for all x, x′ ∈ Rn. (2.32)

For instance, if the function f is L-Lipschitz with respect to the Hamming norm dH(x, y) =∑n
i=1 I[xi � yi], which counts the number of positions in which x and y differ, then the

bounded difference inequality holds with parameter L uniformly across all coordinates.
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Corollary 2.21 (Bounded differences inequality) Suppose that f satisfies the bounded
difference property (2.32) with parameters (L1, . . . , Ln) and that the random vector
X = (X1, X2, . . . , Xn) has independent components. Then

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2e
− 2t2∑n

k=1 L2
k for all t ≥ 0. (2.33)

Proof Recalling the Doob martingale introduced in Example 2.17, consider the associated
martingale difference sequence

Dk = E[ f (X) | X1, . . . , Xk] − E[ f (X) | X1, . . . , Xk−1]. (2.34)

We claim that Dk lies in an interval of length at most Lk almost surely. In order to prove this
claim, define the random variables

Ak := inf
x
E[ f (X) | X1, . . . , Xk−1, x] − E[ f (X) | X1, . . . , Xk−1]

and
Bk := sup

x
E[ f (X) | X1, . . . , Xk−1, x] − E[ f (X) | X1, . . . , Xk−1].

On one hand, we have

Dk − Ak = E[ f (X) | X1, . . . , Xk] − inf
x
E[ f (X) | X1, . . . , Xk−1, x],

so that Dk ≥ Ak almost surely. A similar argument shows that Dk ≤ Bk almost surely.
We now need to show that Bk − Ak ≤ Lk almost surely. Observe that by the independence

of {Xk}nk=1, we have

E[ f (X) | x1, . . . , xk] = Ek+1[ f (x1, . . . , xk, Xn
k+1)] for any vector (x1, . . . , xk),

where Ek+1 denotes expectation over Xn
k+1 := (Xk+1, . . . , Xn). Consequently, we have

Bk − Ak = sup
x
Ek+1[ f (X1, . . . , Xk−1, x, Xn

k+1] − inf
x
Ek+1[ f (X1, . . . , Xk−1, x, Xn

k+1]

≤ sup
x,y

∣∣∣Ek+1[ f (X1, . . . , Xk−1, x, Xn
k+1) − f (X1, . . . , Xk−1, y, Xn

k+1)]
∣∣∣

≤ Lk,

using the bounded differences assumption. Thus, the variable Dk lies within an interval of
length Lk at most surely, so that the claim follows as a corollary of the Azuma–Hoeffding
inequality.

Remark: In the special case when f is L-Lipschitz with respect to the Hamming norm,
Corollary 2.21 implies that

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2e−
2t2

nL2 for all t ≥ 0. (2.35)

Let us consider some examples to illustrate.
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Example 2.22 (Classical Hoeffding from bounded differences) As a warm-up, let us show
how the classical Hoeffding bound (2.11) for bounded variables—say Xi ∈ [a, b] almost
surely—follows as an immediate corollary of the bound (2.35). Consider the function
f (x1, . . . , xn) =

∑n
i=1(xi − μi), where μi = E[Xi] is the mean of the ith random variable.

For any index k ∈ {1, . . . , n}, we have

| f (x) − f (x\k)| = |(xk − μk) − (x′k − μk)|
= |xk − x′k| ≤ b − a,

showing that f satisfies the bounded difference inequality in each coordinate with parameter
L = b − a. Consequently, it follows from the bounded difference inequality (2.35) that

P
[∣∣∣∣∣∣ n∑

i=1

(Xi − μi)

∣∣∣∣∣∣ ≥ t
]
≤ 2e−

2t2

n(b−a)2 ,

which is the classical Hoeffding bound for independent random variables. ♣

The class of U-statistics frequently arise in statistical problems; let us now study their
concentration properties.

Example 2.23 (U-statistics) Let g : R2 → R be a symmetric function of its arguments.
Given an i.i.d. sequence Xk, k ≥ 1, of random variables, the quantity

U :=
1(
n
2

) ∑
j<k

g(Xj, Xk) (2.36)

is known as a pairwise U-statistic. For instance, if g(s, t) = |s − t|, then U is an unbiased
estimator of the mean absolute pairwise deviation E[|X1 − X2|]. Note that, while U is not a
sum of independent random variables, the dependence is relatively weak, and this fact can
be revealed by a martingale analysis. If g is bounded (say ‖g‖∞ ≤ b), then Corollary 2.21
can be used to establish the concentration of U around its mean. Viewing U as a function
f (x) = f (x1, . . . , xn), for any given coordinate k, we have

| f (x) − f (x\k)| ≤
1(
n
2

) ∑
j�k

|g(x j, xk) − g(x j, x′k)|

≤
(n − 1)(2b)(

n
2

) =
4b
n

,

so that the bounded differences property holds with parameter Lk =
4b
n in each coordinate.

Thus, we conclude that

P[|U − E[U]| ≥ t] ≤ 2e−
nt2

8b2 .

This tail inequality implies that U is a consistent estimate of E[U], and also yields finite
sample bounds on its quality as an estimator. Similar techniques can be used to obtain tail
bounds on U-statistics of higher order, involving sums over k-tuples of variables. ♣

Martingales and the bounded difference property also play an important role in analyzing
the properties of random graphs, and other random combinatorial structures.
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Example 2.24 (Clique number in random graphs) An undirected graph is a pair G = (V, E),
composed of a vertex set V = {1, . . . , d} and an edge set E, where each edge e = (i, j) is an
unordered pair of distinct vertices (i � j). A graph clique C is a subset of vertices such that
(i, j) ∈ E for all i, j ∈ C. The clique number C(G) of the graph is the cardinality of the
largest clique—note that C(G) ∈ [1, d]. When the edges E of the graph are drawn according
to some random process, then the clique number C(G) is a random variable, and we can
study its concentration around its mean E[C(G)].

The Erdös–Rényi ensemble of random graphs is one of the most well-studied models: it is
defined by a parameter p ∈ (0, 1) that specifies the probability with which each edge (i, j) is
included in the graph, independently across all

(
d
2

)
edges. More formally, for each i < j, let

us introduce a Bernoulli edge-indicator variable Xi j with parameter p, where Xi j = 1 means
that edge (i, j) is included in the graph, and Xi j = 0 means that it is not included.

Note that the
(

d
2

)
-dimensional random vector Z := {Xi j}i< j specifies the edge set; thus, we

may view the clique number C(G) as a function Z �→ f (Z). Let Z′ denote a vector in which
a single coordinate of Z has been changed, and let G′ and G be the associated graphs. It is
easy to see that C(G′) can differ from C(G) by at most 1, so that | f (Z′) − f (Z)| ≤ 1. Thus,
the function C(G) = f (Z) satisfies the bounded difference property in each coordinate with
parameter L = 1, so that

P[ 1
n |C(G) − E[C(G)]| ≥ δ] ≤ 2e−2nδ2

.

Consequently, we see that the clique number of an Erdös–Rényi random graph is very
sharply concentrated around its expectation. ♣

Finally, let us study concentration of the Rademacher complexity, a notion that plays a
central role in our subsequent development in Chapters 4 and 5.

Example 2.25 (Rademacher complexity) Let {εk}nk=1 be an i.i.d. sequence of Rademacher
variables (i.e., taking the values {−1,+1} equiprobably, as in Example 2.3). Given a collec-
tion of vectors A ⊂ Rn, define the random variable1

Z := sup
a∈A

[ n∑
k=1

akεk

]
= sup

a∈A
[〈a, ε〉]. (2.37)

The random variable Z measures the size ofA in a certain sense, and its expectationR(A) :=
E[Z(A)] is known as the Rademacher complexity of the set A.

Let us now show how Corollary 2.21 can be used to establish that Z(A) is sub-Gaussian.
Viewing Z(A) as a function (ε1, . . . , εn) �→ f (ε1, . . . , εn), we need to bound the maximum
change when coordinate k is changed. Given two Rademacher vectors ε, ε′ ∈ {−1,+1}n,
recall our definition (2.31) of the modified vector ε\k. Since f (ε\k) ≥ 〈a, ε\k〉 for any a ∈ A,
we have

〈a, ε〉 − f (ε\k) ≤ 〈a, ε − ε\k〉 = ak(εk − ε′k) ≤ 2|ak|.

Taking the supremum over A on both sides, we obtain the inequality

f (ε) − f (ε\k) ≤ 2 sup
a∈A

|ak|.

1 For the reader concerned about measurability, see the bibliographic discussion in Chapter 4.
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Since the same argument applies with the roles of ε and ε\k reversed, we conclude that
f satisfies the bounded difference inequality in coordinate k with parameter 2 supa∈A |ak|.
Consequently, Corollary 2.21 implies that the random variable Z(A) is sub-Gaussian with

parameter at most 2
√∑n

k=1 supa∈A a2
k . This sub-Gaussian parameter can be reduced to the

(potentially much) smaller quantity
√

supa∈A
∑n

k=1 a2
k using alternative techniques; in partic-

ular, see Example 3.5 in Chapter 3 for further details. ♣

2.3 Lipschitz functions of Gaussian variables

We conclude this chapter with a classical result on the concentration properties of Lipschitz
functions of Gaussian variables. These functions exhibit a particularly attractive form of
dimension-free concentration. Let us say that a function f : Rn → R is L-Lipschitz with
respect to the Euclidean norm ‖ · ‖2 if

| f (x) − f (y)| ≤ L ‖x − y‖2 for all x, y ∈ Rn. (2.38)

The following result guarantees that any such function is sub-Gaussian with parameter at
most L:

Theorem 2.26 Let (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables, and
let f : Rn → R be L-Lipschitz with respect to the Euclidean norm. Then the variable
f (X) − E[ f (X)] is sub-Gaussian with parameter at most L, and hence

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2e−
t2

2L2 for all t ≥ 0. (2.39)

Note that this result is truly remarkable: it guarantees that any L-Lipschitz function of a
standard Gaussian random vector, regardless of the dimension, exhibits concentration like a
scalar Gaussian variable with variance L2.

Proof With the aim of keeping the proof as simple as possible, let us prove a version of the
concentration bound (2.39) with a weaker constant in the exponent. (See the bibliographic
notes for references to proofs of the sharpest results.) We also prove the result for a function
that is both Lipschitz and differentiable; since any Lipschitz function is differentiable almost
everywhere,2 it is then straightforward to extend this result to the general setting. For a dif-
ferentiable function, the Lipschitz property guarantees that ‖∇ f (x)‖2 ≤ L for all x ∈ Rn. In
order to prove this version of the theorem, we begin by stating an auxiliary technical lemma:

2 This fact is a consequence of Rademacher’s theorem.
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Lemma 2.27 Suppose that f : Rn → R is differentiable. Then for any convex function
φ : R→ R, we have

E[φ( f (X) − E[ f (X)])] ≤ E
[
φ
(
π

2
〈∇ f (X), Y〉

)]
, (2.40)

where X,Y ∼ N(0, In) are standard multivariate Gaussian, and independent.

We now prove the theorem using this lemma. For any fixed λ ∈ R, applying inequal-
ity (2.40) to the convex function t �→ eλt yields

EX

[
exp

(
λ{ f (X) − E[ f (X)]}

)]
≤ EX,Y

[
exp

(
λ π

2
〈Y, ∇ f (X)〉

)]
= EX

[
exp

(
λ2 π2

8
‖∇ f (X)‖2

2

)]
,

where we have used the independence of X and Y to first take the expectation over Y
marginally, and the fact that 〈Y, ∇ f (x)〉 is a zero-mean Gaussian variable with variance
‖∇ f (x)‖2

2. Due to the Lipschitz condition on f , we have ‖∇ f (x)‖2 ≤ L for all x ∈ Rn, whence

E
[

exp
(
λ{ f (X) − E[ f (X)]}

)]
≤ e

1
8 λ2π2L2

,

which shows that f (X)−E[ f (X)] is sub-Gaussian with parameter at most πL
2 . The tail bound

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2 exp
(
−

2 t2

π2L2

)
for all t ≥ 0

follows from Proposition 2.5.

It remains to prove Lemma 2.27, and we do so via a classical interpolation method that
exploits the rotation invariance of the Gaussian distribution. For each θ ∈ [0, π/2], consider
the random vector Z(θ) ∈ Rn with components

Zk(θ) := Xk sin θ + Yk cos θ for k = 1, 2, . . . , n.

By the convexity of φ, we have

EX[φ( f (X) − EY[ f (Y)])] ≤ EX,Y[φ( f (X) − f (Y))]. (2.41)

Now since Zk(0) = Yk and Zk(π/2) = Xk for all k = 1, . . . , n, we have

f (X) − f (Y) =
∫ π/2

0

d
dθ

f (Z(θ)) dθ =
∫ π/2

0
〈∇ f (Z(θ)), Z′(θ)〉 dθ, (2.42)

where Z′(θ) ∈ Rn denotes the elementwise derivative, a vector with the components Z′
k(θ) =

Xk cos θ−Yk sin θ. Substituting the integral representation (2.42) into our earlier bound (2.41)
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yields

EX[φ( f (X) − EY[ f (Y)])] ≤ EX,Y

[
φ

( ∫ π/2

0
〈∇ f (Z(θ)), Z′(θ)〉 dθ

)]
= EX,Y

[
φ

(
1

π/2

∫ π/2

0

π

2
〈∇ f (Z(θ)), Z′(θ)〉 dθ

)]
≤

1
π/2

∫ π/2

0
EX,Y

[
φ
(
π

2
〈∇ f (Z(θ)), Z′(θ)〉

)]
dθ, (2.43)

where the final step again uses convexity of φ. By the rotation invariance of the Gaussian
distribution, for each θ ∈ [0, π/2], the pair (Zk(θ),Z′

k(θ)) is a jointly Gaussian vector, with
zero mean and identity covariance I2. Therefore, the expectation inside the integral in equa-
tion (2.43) does not depend on θ, and hence

1
π/2

∫ π/2

0
EX,Y

[
φ
(
π

2
〈∇ f (Z(θ)), Z′(θ)〉

)]
dθ = E

[
φ
(
π

2

〈
∇ f (X̃), Ỹ

〉 )]
,

where (X̃, Ỹ) are independent standard Gaussian n-vectors. This completes the proof of the
bound (2.40).

Note that the proof makes essential use of various properties specific to the standard
Gaussian distribution. However, similar concentration results hold for other non-Gaussian
distributions, including the uniform distribution on the sphere and any strictly log-concave
distribution (see Chapter 3 for further discussion of such distributions). However, without
additional structure of the function f (such as convexity), dimension-free concentration for
Lipschitz functions need not hold for an arbitrary sub-Gaussian distribution; see the biblio-
graphic section for further discussion of this fact.

Theorem 2.26 is useful for a broad range of problems; let us consider some examples to
illustrate.

Example 2.28 ( χ2 concentration) For a given sequence {Zk}nk=1 of i.i.d. standard normal
variates, the random variable Y :=

∑n
k=1 Z2

k follows a χ2-distribution with n degrees of free-
dom. The most direct way to obtain tail bounds on Y is by noting that Z2

k is sub-exponential,
and exploiting independence (see Example 2.11). In this example, we pursue an alternative
approach—namely, via concentration for Lipschitz functions of Gaussian variates. Indeed,
defining the variable V =

√
Y/
√

n, we can write V = ‖(Z1, . . . ,Zn)‖2/
√

n, and since the
Euclidean norm is a 1-Lipschitz function, Theorem 2.26 implies that

P[V ≥ E[V] + δ] ≤ e−nδ2/2 for all δ ≥ 0.

Using concavity of the square-root function and Jensen’s inequality, we have

E[V] ≤
√
E[V2] =

{
1
n

n∑
i=1

E[Z2
k ]
}1/2

= 1.

Recalling that V =
√

Y/
√

n and putting together the pieces yields

P[Y/n ≥ (1 + δ)2] ≤ e−nδ2/2 for all δ ≥ 0.
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Since (1 + δ)2 = 1 + 2δ + δ2 ≤ 1 + 3δ for all δ ∈ [0, 1], we conclude that

P[Y ≥ n(1 + t)] ≤ e−nt2/18 for all t ∈ [0, 3], (2.44)

where we have made the substitution t = 3δ. It is worthwhile comparing this tail bound to
those that can be obtained by using the fact that each Z2

k is sub-exponential, as discussed in
Example 2.11. ♣

Example 2.29 (Order statistics) Given a random vector (X1, X2, . . . , Xn), its order statistics
are obtained by reordering its entries in a non-decreasing manner—namely as

X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n). (2.45)

As particular cases, we have X(n) = maxk=1,...,n Xk and X(1) = mink=1,...,n Xk. Given another
random vector (Y1, . . . ,Yn), it can be shown that |X(k) − Y(k)| ≤ ‖X − Y‖2 for all k = 1, . . . , n,
so that each order statistic is a 1-Lipschitz function. (We leave the verification of this in-
equality as an exercise for the reader.) Consequently, when X is a Gaussian random vector,
Theorem 2.26 implies that

P[|X(k) − E[X(k)]| ≥ δ] ≤ 2e−
δ2
2 for all δ ≥ 0. ♣

Example 2.30 (Gaussian complexity) This example is closely related to our earlier dis-
cussion of Rademacher complexity in Example 2.25. Let {Wk}nk=1 be an i.i.d. sequence of
N(0, 1) variables. Given a collection of vectors A ⊂ Rn, define the random variable3

Z := sup
a∈A

[ n∑
k=1

akWk

]
= sup

a∈A
〈a, W〉 . (2.46)

As with the Rademacher complexity, the variable Z = Z(A) is one way of measuring the
size of the set A, and will play an important role in later chapters. Viewing Z as a function
(w1, . . . ,wn) �→ f (w1, . . . ,wn), let us verify that f is Lipschitz (with respect to Euclidean
norm) with parameter supa∈A ‖a‖2. Let w,w′ ∈ Rn be arbitrary, and let a∗ ∈ A be any vector
that achieves the maximum defining f (w). Following the same argument as Example 2.25,
we have the upper bound

f (w) − f (w′) ≤ 〈a∗, w − w′〉 ≤ D(A) ‖w − w′‖2,

where D(A) = supa∈A ‖a‖2 is the Euclidean width of the set. The same argument holds with
the roles of w and w′ reversed, and hence

| f (w) − f (w′)| ≤ D(A) ‖w − w′‖2.

Consequently, Theorem 2.26 implies that

P[|Z − E[Z]| ≥ δ] ≤ 2 exp
(
−

δ2

2D2(A)

)
. (2.47)

♣

3 For measurability concerns, see the bibliographic discussion in Chapter 4.
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Example 2.31 (Gaussian chaos variables) As a generalization of the previous example, let
Q ∈ Rn×n be a symmetric matrix, and let w, w̃ be independent zero-mean Gaussian random
vectors with covariance matrix In. The random variable

Z :=
n∑

i, j=1

Qi jwiw̃ j = wTQw̃

is known as a (decoupled) Gaussian chaos. By the independence of w and w̃, we have E[Z] =
0, so it is natural to seek a tail bound on Z.

Conditioned on w̃, the variable Z is a zero-mean Gaussian variable with variance ‖Qw̃‖2
2 =

w̃TQ2w̃, whence

P[|Z| ≥ δ | w̃] ≤ 2e
− δ2

2‖Qw̃‖22 . (2.48)

Let us now control the random variable Y := ‖Qw̃‖2. Viewed as a function of the Gaussian
vector w̃, it is Lipschitz with constant

|||Q|||2 := sup
‖u‖2=1

‖Qu‖2, (2.49)

corresponding to the �2-operator norm of the matrix Q. Moreover, by Jensen’s inequality,
we have E[Y] ≤

√
E[w̃TQ2w̃] = |||Q|||F, where

|||Q|||F :=

√√ n∑
i=1

n∑
j=1

Q2
i j (2.50)

is the Frobenius norm of the matrix Q. Putting together the pieces yields the tail bound

P[‖Qw̃‖2 ≥ |||Q|||F + t] ≤ 2 exp
(
−

t2

2|||Q|||22

)
.

Note that (|||Q|||F + t)2 ≤ 2|||Q|||2F + 2t2. Consequently, setting t2 = δ|||Q|||2 and simplifying
yields

P[w̃T Q2w̃ ≥ 2|||Q|||2F + 2δ|||Q|||2] ≤ 2 exp
(
−

δ

2|||Q|||2

)
.

Putting together the pieces, we find that

P[|Z| ≥ δ] ≤ 2 exp
(
−

δ2

4|||Q|||2F + 4δ|||Q|||2

)
+ 2 exp

(
−

δ

2|||Q|||2

)
≤ 4 exp

(
−

δ2

4|||Q|||2F + 4δ|||Q|||2

)
.

We have thus shown that the Gaussian chaos variable satisfies a sub-exponential tail
bound. ♣

Example 2.32 (Singular values of Gaussian random matrices) For integers n > d, let
X ∈ Rn×d be a random matrix with i.i.d. N(0, 1) entries, and let

σ1(X) ≥ σ2(X) ≥ · · · ≥ σd(X) ≥ 0
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denote its ordered singular values. By Weyl’s theorem (see Exercise 8.3), given another
matrix Y ∈ Rn×d, we have

max
k=1,...,d

|σk(X) − σk(Y)| ≤ |||X − Y|||2 ≤ |||X − Y|||F, (2.51)

where ||| · |||F denotes the Frobenius norm. The inequality (2.51) shows that each singular
value σk(X) is a 1-Lipschitz function of the random matrix, so that Theorem 2.26 implies
that, for each k = 1, . . . , d, we have

P[|σk(X) − E[σk(X)]| ≥ δ] ≤ 2e−
δ2
2 for all δ ≥ 0. (2.52)

Consequently, even though our techniques are not yet powerful enough to characterize the
expected value of these random singular values, we are guaranteed that the expectations are
representative of the typical behavior. See Chapter 6 for a more detailed discussion of the
singular values of random matrices. ♣

2.4 Appendix A: Equivalent versions of sub-Gaussian variables

In this appendix, we prove Theorem 2.6. We establish the equivalence by proving the circle
of implications (I) ⇒ (II) ⇒ (III) ⇒ (I), followed by the equivalence (I) ⇔ (IV).

Implication (I) ⇒ (II): If X is zero-mean and sub-Gaussian with parameter σ, then we claim
that, for Z ∼ N(0, 2σ2),

P[X ≥ t]
P[Z ≥ t]

≤
√

8e for all t ≥ 0,

showing that X is majorized by Z with constant c =
√

8e. On one hand, by the sub-
Gaussianity of X, we have P[X ≥ t] ≤ exp(− t2

2σ2 ) for all t ≥ 0. On the other hand, by
the Mills ratio for Gaussian tails, if Z ∼ N(0, 2σ2), then we have

P[Z ≥ t] ≥
( √

2σ
t

−
(
√

2σ)3

t3

)
e−

t2

4σ2 for all t > 0. (2.53)

(See Exercise 2.2 for a derivation of this inequality.) We split the remainder of our analysis
into two cases.

Case 1: First, suppose that t ∈ [0, 2σ]. Since the function Φ(t) = P[Z ≥ t] is decreasing,
for all t in this interval,

P[Z ≥ t] ≥ P[Z ≥ 2σ] ≥
(

1
√

2
−

1

2
√

2

)
e−1 =

1
√

8e
.

Since P[X ≥ t] ≤ 1, we conclude that P[X≥t]
P[Z≥t] ≤

√
8e for all t ∈ [0, 2σ].

Case 2: Otherwise, we may assume that t > 2σ. In this case, by combining the Mills
ratio (2.53) and the sub-Gaussian tail bound and making the substitution s = t/σ, we find
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that

sup
t>2σ

P[X ≥ t]
P[Z ≥ t]

≤ sup
s>2

e−
s2
4( √

2
s − (

√
2)3

s3

)
≤ sup

s>2
s3e−

s2
4

≤
√

8e,

where the last step follows from a numerical calculation.

Implication (II) ⇒ (III): Suppose that X is majorized by a zero-mean Gaussian with variance
τ2. Since X2k is a non-negative random variable, we have

E[X2k] =
∫ ∞

0
P[X2k > s] ds =

∫ ∞

0
P[|X| > s1/(2k)] ds.

Under the majorization assumption, there is some constant c ≥ 1 such that∫ ∞

0
P[|X| > s1/(2k)] ds ≤ c

∫ ∞

0
P[|Z| > s1/(2k)] ds = cE[Z2k],

where Z ∼ N(0, τ2). The polynomial moments of Z are given by

E[Z2k] =
(2k)!
2kk!

τ2k, for k = 1, 2, . . ., (2.54)

whence

E[X2k] ≤ cE[Z2k] = c
(2k)!
2kk!

τ2k ≤
(2k)!
2kk!

(cτ)2k, for all k = 1, 2, . . ..

Consequently, the moment bound (2.12c) holds with θ = cτ.

Implication (III) ⇒ (I): For each λ ∈ R, we have

E[eλX] ≤ 1 +
∞∑

k=2

|λ|kE[|X|k]
k!

, (2.55)

where we have used the fact E[X] = 0 to eliminate the term involving k = 1. If X is sym-
metric around zero, then all of its odd moments vanish, and by applying our assumption on
θ(X), we obtain

E[eλX] ≤ 1 +
∞∑

k=1

λ2k

(2k)!
(2k)!θ2k

2kk!
= e

λ2θ2
2 ,

which shows that X is sub-Gaussian with parameter θ.
When X is not symmetric, we can bound the odd moments in terms of the even ones as

E[|λX|2k+1]
(i)
≤ (E[|λX|2k]E[|λX|2k+2])1/2 (ii)

≤ 1
2 (λ2kE[X2k] + λ2k+2E[X2k+2]), (2.56)

where step (i) follows from the Cauchy–Schwarz inequality; and step (ii) follows from
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the arithmetic–geometric mean inequality. Applying this bound to the power-series expan-
sion (2.55), we obtain

E[eλX] ≤ 1 +
(1
2
+

1
2 · 3!

)
λ2E[X2] +

∞∑
k=2

( 1
(2k)!

+
1
2

[ 1
(2k − 1)!

+
1

(2k + 1)!

])
λ2kE[X2k]

≤
∞∑

k=0

2k λ
2kE[X2k]
(2k)!

≤ e
(
√

2λθ)2
2 ,

which establishes the claim.

Implication (I) ⇒ (IV): This result is obvious for s = 0. For s ∈ (0, 1), we begin with the
sub-Gaussian inequality E[eλX] ≤ e

λ2σ2
2 , and multiply both sides by e−

λ2σ2
2s , thereby obtaining

E[eλX− λ2σ2
2s ] ≤ e

λ2σ2(s−1)
2s .

Since this inequality holds for all λ ∈ R, we may integrate both sides over λ ∈ R, using
Fubini’s theorem to justify exchanging the order of integration. On the right-hand side, we
have ∫ ∞

−∞
exp

(
λ2σ2 (s − 1)

2s

)
dλ =

1
σ

√
2πs

1 − s
.

Turning to the left-hand side, for each fixed x ∈ R, we have∫ ∞

−∞
exp

(
λx −

λ2σ2

2s

)
dλ =

√
2πs
σ

e
sx2

2σ2 .

Taking expectations with respect to X, we conclude that

E[e
sX2

2σ2 ] ≤
σ

√
2πs

1
σ

√
2πs

1 − s
=

1
√

1 − s
,

which establishes the claim.

Implication (IV) ⇒ (I): Applying the bound eu ≤ u + e9u2/16 with u = λX and then taking
expectations, we find that

E[eλX] ≤ E[λX] + E[e
9λ2 X2

16 ] = E[e
sX2

2σ2 ] ≤
1

√
1 − s

,

valid whenever s = 9
8λ

2σ2 is strictly less than 1. Noting that 1√
1−s

≤ es for all s ∈ [0, 1
2 ] and

that s < 1
2 whenever |λ| < 2

3σ , we conclude that

E[eλX] ≤ e
9
8 λ

2σ2
for all |λ| < 2

3σ . (2.57a)

It remains to establish a similar upper bound for |λ| ≥ 2
3σ . Note that, for any α > 0,

the functions f (u) = u2

2α and f ∗(v) = αv2

2 are conjugate duals. Thus, the Fenchel–Young
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inequality implies that uv ≤ u2

2α + αv2

2 , valid for all u, v ∈ R and α > 0. We apply this
inequality with u = λ, v = X and α = c/σ2 for a constant c > 0 to be chosen; doing so yields

E[eλX] ≤ E[e
λ2σ2

2c + cX2

2σ2 ] = e
λ2σ2

2c E[e
cX2

2σ2 ]
(ii)
≤ e

λ2σ2
2c ec,

where step (ii) is valid for any c ∈ (0, 1/2), using the same argument that led to the bound
(2.57a). In particular, setting c = 1/4 yields E[eλX] ≤ e2λ2σ2

e1/4.
Finally, when |λ| ≥ 2

3σ , then we have 1
4 ≤

9
16λ

2σ2, and hence

E[eλX] ≤ e2λ2σ2+ 9
16 λ

2σ2 ≤ e3λ2σ2
. (2.57b)

This inequality, combined with the bound (2.57a), completes the proof.

2.5 Appendix B: Equivalent versions of sub-exponential variables

This appendix is devoted to the proof of Theorem 2.13. In particular, we prove the chain of
equivalences I ⇔ II ⇔ III, followed by the equivalence II ⇔ IV.

(II) ⇒ (I): The existence of the moment generating function for |λ| < c0 implies that
E[eλX] = 1+ λ2E[X2]

2 +o(λ2) as λ → 0. Moreover, an ordinary Taylor-series expansion implies

that e
σ2λ2

2 = 1 + σ2λ2

2 + o(λ2) as λ → 0. Therefore, as long as σ2 > E[X2], there exists some

b ≥ 0 such that E[eλX] ≤ e
σ2λ2

2 for all |λ| ≤ 1
b .

(I) ⇒ (II): This implication is immediate.

(III) ⇒ (II): For an exponent a > 0 and truncation level T > 0 to be chosen, we have

E[ea|X|I[ea|X| ≤ eaT ]] ≤
∫ eaT

0
P[ea|X| ≥ t] dt ≤ 1 +

∫ eaT

1
P
[
|X| ≥

log t
a

]
dt.

Applying the assumed tail bound, we obtain

E[ea|X|I[ea|X| ≤ eaT ]] ≤ 1 + c1

∫ eaT

1
e−

c2 log t
a dt = 1 + c1

∫ eaT

1
t−c2/a dt.

Thus, for any a ∈ [0, c2
2 ], we have

E[ea|X|I[ea|X| ≤ eaT ]] ≤ 1 +
c1

2
(1 − e−aT ) ≤ 1 +

c1

2
.

By taking the limit as T → ∞, we conclude that E[ea|X|] is finite for all a ∈ [0, c2
2 ]. Since

both eaX and e−aX are upper bounded by e|a| |X|, it follows that E[eaX] is finite for all |a| ≤ c2
2 .

(II) ⇒ (III): By the Chernoff bound with λ = c0/2, we have

P[X ≥ t] ≤ E[e
c0X

2 ] e−
c0 t
2 .

Applying a similar argument to −X, we conclude that P[|X| ≥ t] ≤ c1e−c2t with c1 =

E[ec0X/2] + E[e−c0X/2] and c2 = c0/2.
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(II) ⇔ (IV): Since the moment generating function exists in an open interval around zero,
we can consider the power-series expansion

E[eλX] = 1 +
∞∑

k=2

λkE[Xk]
k!

for all |λ| < a. (2.58)

By definition, the quantity γ(X) is the radius of convergence of this power series, from which
the equivalence between (II) and (IV) follows.

2.6 Bibliographic details and background

Further background and details on tail bounds can be found in various books (e.g., Saulis and
Statulevicius, 1991; Petrov, 1995; Buldygin and Kozachenko, 2000; Boucheron et al., 2013).
Classic papers on tail bounds include those of Bernstein (1937), Chernoff (1952), Bahadur
and Ranga Rao (1960), Bennett (1962), Hoeffding (1963) and Azuma (1967). The idea of
using the cumulant function to bound the tails of a random variable was first introduced by
Bernstein (1937), and further developed by Chernoff (1952), whose name is now frequently
associated with the method. The book by Saulis and Statulevicius (1991) provides a number
of more refined results that can be established using cumulant-based techniques. The original
work of Hoeffding (1963) gives results both for sums of independent random variables,
assumed to be bounded from above, as well as certain types of dependent random variables,
including U-statistics. The work of Azuma (1967) applies to general martingales that are
sub-Gaussian in a conditional sense, as in Theorem 2.19.

The book by Buldygin and Kozachenko (2000) provides a range of results on sub-Gaussian
and sub-exponential variates. In particular, Theorems 2.6 and 2.13 are based on results from
this book. The Orlicz norms, discussed briefly in Exercises 2.18 and 2.19, provide an ele-
gant generalization of the sub-exponential and sub-Gaussian families. See Section 5.6 and
the books (Ledoux and Talagrand, 1991; Buldygin and Kozachenko, 2000) for further back-
ground on Orlicz norms.

The Johnson–Lindenstrauss lemma, discussed in Example 2.12, was originally proved
by Johnson and Lindenstrauss (1984) as an intermediate step in a more general result about
Lipschitz embeddings. The original proof of the lemma was based on random matrices with
orthonormal rows, as opposed to the standard Gaussian random matrix used here. The use
of random projection for dimension reduction and algorithmic speed-ups has a wide range
of applications; see the sources (Vempala, 2004; Mahoney, 2011; Cormode, 2012; Kane and
Nelson, 2014; Woodruff, 2014; Bourgain et al., 2015; Pilanci and Wainwright, 2015) for
further details.

Tail bounds for U-statistics, as sketched out in Example 2.23, were derived by Hoeff-
ding (1963). The book by de la Peña and Giné (1999) provides more advanced results,
including extensions to uniform laws for U-processes and decoupling results. The bounded
differences inequality (Corollary 2.21) and extensions thereof have many applications in the
study of randomized algorithms as well as random graphs and other combinatorial objects.
A number of such applications can be found in the survey by McDiarmid (1989), and the
book by Boucheron et al. (2013).

Milman and Schechtman (1986) provide the short proof of Gaussian concentration for
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Lipschitz functions, on which Theorem 2.26 is based. Ledoux (2001) provides an example
of a Lipschitz function of an i.i.d. sequence of Rademacher variables (i.e., taking values
{−1,+1} equiprobably) for which sub-Gaussian concentration fails to hold (cf. p. 128 in his
book). However, sub-Gaussian concentration does hold for Lipschitz functions of bounded
random variables with an additional convexity condition; see Section 3.3.5 for further de-
tails.

The kernel density estimation problem from Exercise 2.15 is a particular form of non-
parametric estimation; we return to such problems in Chapters 13 and 14. Although we have
focused exclusively on tail bounds for real-valued random variables, there are many general-
izations to random variables taking values in Hilbert and other function spaces, as considered
in Exercise 2.16. The books (Ledoux and Talagrand, 1991; Yurinsky, 1995) contain further
background on such results. We also return to consider some versions of these bounds in
Chapter 14. The Hanson–Wright inequality discussed in Exercise 2.17 was proved in the
papers (Hanson and Wright, 1971; Wright, 1973); see the papers (Hsu et al., 2012b; Rudel-
son and Vershynin, 2013) for more modern treatments. The moment-based tail bound from
Exercise 2.20 relies on a classical inequality due to Rosenthal (1970). Exercise 2.21 outlines
the proof of the rate-distortion theorem for the Bernoulli source. It is a particular instance
of more general information-theoretic results that are proved using probabilistic techniques;
see the book by Cover and Thomas (1991) for further reading. The Ising model (2.74) dis-
cussed in Exercise 2.22 has a lengthy history dating back to Ising (1925). The book by Tala-
grand (2003) contains a wealth of information on spin glass models and their mathematical
properties.

2.7 Exercises

Exercise 2.1 (Tightness of inequalities) The Markov and Chebyshev inequalities cannot
be improved in general.

(a) Provide a non-negative random variable X for which Markov’s inequality (2.1) is met
with equality.

(b) Provide a random variable Y for which Chebyshev’s inequality (2.2) is met with equality.

Exercise 2.2 (Mills ratio) Let φ(z) = 1√
2π

e−z2/2 be the density function of a standard normal
Z ∼ N(0, 1) variate.

(a) Show that φ′(z) + zφ(z) = 0.
(b) Use part (a) to show that

φ(z)
(
1
z
−

1
z3

)
≤ P[Z ≥ z] ≤ φ(z)

(
1
z
−

1
z3 +

3
z5

)
for all z > 0. (2.59)

Exercise 2.3 (Polynomial Markov versus Chernoff) Suppose that X ≥ 0, and that the
moment generating function of X exists in an interval around zero. Given some δ > 0 and
integer k = 1, 2, . . ., show that

inf
k=0,1,2,...

E[|X|k]
δk ≤ inf

λ>0

E[eλX]
eλδ

. (2.60)
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Consequently, an optimized bound based on polynomial moments is always at least as good
as the Chernoff upper bound.

Exercise 2.4 (Sharp sub-Gaussian parameter for bounded random variable) Consider a
random variable X with mean μ = E[X], and such that, for some scalars b > a, X ∈ [a, b]
almost surely.

(a) Defining the function ψ(λ) = logE[eλX], show that ψ(0) = 0 and ψ′(0) = μ.
(b) Show that ψ′′(λ) = Eλ[X2] − (Eλ[X])2, where we define Eλ[ f (X)] := E[ f (X)eλX ]

E[eλX ] . Use this
fact to obtain an upper bound on supλ∈R |ψ′′(λ)|.

(c) Use parts (a) and (b) to establish that X is sub-Gaussian with parameter at most σ = b−a
2 .

Exercise 2.5 (Sub-Gaussian bounds and means/variances) Consider a random variable X
such that

E[eλX] ≤ e
λ2σ2

2 +λμ for all λ ∈ R. (2.61)

(a) Show that E[X] = μ.
(b) Show that var(X) ≤ σ2.
(c) Suppose that the smallest possible σ satisfying the inequality (2.61) is chosen. Is it then

true that var(X) = σ2? Prove or disprove.

Exercise 2.6 (Lower bounds on squared sub-Gaussians) Letting {Xi}ni=1 be an i.i.d. se-
quence of zero-mean sub-Gaussian variables with parameter σ, consider the normalized
sum Zn := 1

n

∑n
i=1 X2

i . Prove that

P[Zn ≤ E[Zn] − σ2δ] ≤ e−nδ2/16 for all δ ≥ 0.

This result shows that the lower tail of a sum of squared sub-Gaussian variables behaves in
a sub-Gaussian way.

Exercise 2.7 (Bennett’s inequality) This exercise is devoted to a proof of a strengthening
of Bernstein’s inequality, known as Bennett’s inequality.

(a) Consider a zero-mean random variable such that |Xi| ≤ b for some b > 0. Prove that

logE[eλXi ] ≤ σ2
i λ

2
{

eλb − 1 − λb
(λb)2

}
for all λ ∈ R,

where σ2
i = var(Xi).

(b) Given independent random variables X1, . . . , Xn satisfying the condition of part (a), let
σ2 := 1

n

∑n
i=1 σ

2
i be the average variance. Prove Bennett’s inequality

P
[ n∑

i=1

Xi ≥ nδ
]
≤ exp

{
−

nσ2

b2 h
(

bδ
σ2

)}
, (2.62)

where h(t) := (1 + t) log(1 + t) − t for t ≥ 0.
(c) Show that Bennett’s inequality is at least as good as Bernstein’s inequality.
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Exercise 2.8 (Bernstein and expectations) Consider a non-negative random variable that
satisfies a concentration inequality of the form

P[Z ≥ t] ≤ Ce−
t2

2(ν2+bt) (2.63)

for positive constants (ν, b) and C ≥ 1.

(a) Show that E[Z] ≤ 2ν(
√
π +

√
log C) + 4b(1 + log C).

(b) Let {Xi}ni=1 be an i.i.d. sequence of zero-mean variables satisfying the Bernstein condi-
tion (2.15). Use part (a) to show that

E
[∣∣∣∣∣∣1n

n∑
i=1

Xi

∣∣∣∣∣∣
]
≤

2σ
√

n

(√
π +

√
log 2

)
+

4b
n

(1 + log 2).

Exercise 2.9 (Sharp upper bounds on binomial tails) Let {Xi}ni=1 be an i.i.d. sequence of
Bernoulli variables with parameter α ∈ (0, 1/2], and consider the binomial random variable
Zn =

∑n
i=1 Xi. The goal of this exercise is to prove, for any δ ∈ (0, α), a sharp upper bound

on the tail probability P[Zn ≤ δn].

(a) Show that P[Zn ≤ δn] ≤ e−nD(δ ‖α), where the quantity

D(δ ‖α) := δ log
δ

α
+ (1 − δ) log

(1 − δ)
(1 − α)

(2.64)

is the Kullback–Leibler divergence between the Bernoulli distributions with parameters
δ and α, respectively.

(b) Show that the bound from part (a) is strictly better than the Hoeffding bound for all
δ ∈ (0, α).

Exercise 2.10 (Lower bounds on binomial tail probabilities) Let {Xi}ni=1 be a sequence of
i.i.d. Bernoulli variables with parameter α ∈ (0, 1/2], and consider the binomial random vari-
able Zn =

∑n
i=1 Xi. In this exercise, we establish a lower bound on the probability P[Zn ≤ δn]

for each fixed δ ∈ (0, α), thereby establishing that the upper bound from Exercise 2.9 is
tight up to a polynomial pre-factor. Throughout the analysis, we define m = �nδ�, the largest
integer less than or equal to nδ, and set δ̃ = m

n .

(a) Prove that 1
n logP[Zn ≤ δn] ≥ 1

n log
(

n
m

)
+ δ̃ logα + (1 − δ̃) log(1 − α).

(b) Show that

1
n

log
(
n
m

)
≥ φ(̃δ) −

log(n + 1)
n

, (2.65a)

where φ(̃δ) = −δ̃ log(̃δ) − (1 − δ̃) log(1 − δ̃) is the binary entropy. (Hint: Let Y be a
binomial random variable with parameters (n, δ̃) and show that P[Y = �] is maximized
when � = m = δ̃n.)

(c) Show that

P[Zn ≤ δn] ≥
1

n + 1
e−nD(δ ‖α), (2.65b)

where the Kullback–Leibler divergence D(δ ‖α) was previously defined (2.64).
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Exercise 2.11 (Upper and lower bounds for Gaussian maxima) Let {Xi}ni=1 be an i.i.d. se-
quence of N(0, σ2) variables, and consider the random variable Zn := max

i=1,...,n
|Xi|.

(a) Prove that

E[Zn] ≤
√

2σ2 log n +
4σ√

2 log n
for all n ≥ 2.

(Hint: You may use the tail bound P[U ≥ δ] ≤
√

2
π

1
δ
e−δ

2/2, valid for any standard normal
variate.)

(b) Prove that

E[Zn] ≥ (1 − 1/e)
√

2σ2 log n for all n ≥ 5.

(c) Prove that E[Zn]√
2σ2 log n

→ 1 as n → +∞.

Exercise 2.12 (Upper bounds for sub-Gaussian maxima) Let {Xi}ni=1 be a sequence of zero-
mean random variables, each sub-Gaussian with parameter σ. (No independence assump-
tions are needed.)

(a) Prove that

E
[

max
i=1,...,n

Xi

]
≤
√

2σ2 log n for all n ≥ 1. (2.66)

(Hint: The exponential is a convex function.)
(b) Prove that the random variable Z = max

i=1,...,n
|Xi| satisfies

E[Z] ≤
√

2σ2 log(2n) ≤ 2
√
σ2 log n, (2.67)

valid for all n ≥ 2.

Exercise 2.13 (Operations on sub-Gaussian variables) Suppose that X1 and X2 are zero-
mean and sub-Gaussian with parameters σ1 and σ2, respectively.

(a) If X1 and X2 are independent, show that the random variable X1 + X2 is sub-Gaussian

with parameter
√
σ2

1 + σ2
2.

(b) Show that, in general (without assuming independence), the random variable X1 + X2 is

sub-Gaussian with parameter at most
√

2
√
σ2

1 + σ2
2.

(c) In the same setting as part (b), show that X1 + X2 is sub-Gaussian with parameter at most
σ1 + σ2.

(d) If X1 and X2 are independent, show that X1X2 is sub-exponential with parameters (ν, b) =
(
√

2σ1σ2,
√

2σ1σ2).

Exercise 2.14 (Concentration around medians and means) Given a scalar random variable
X, suppose that there are positive constants c1, c2 such that

P[|X − E[X]| ≥ t] ≤ c1e−c2t2
for all t ≥ 0. (2.68)

(a) Prove that var(X) ≤ c1
c2

.
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(b) A median mX is any number such that P[X ≥ mX] ≥ 1/2 and P[X ≤ mX] ≥ 1/2. Show
by example that the median need not be unique.

(c) Show that whenever the mean concentration bound (2.68) holds, then for any median
mX , we have

P[|X − mX | ≥ t] ≤ c3e−c4t2
for all t ≥ 0, (2.69)

where c3 := 4c1 and c4 := c2
8 .

(d) Conversely, show that whenever the median concentration bound (2.69) holds, then
mean concentration (2.68) holds with c1 = 2c3 and c2 =

c4
4 .

Exercise 2.15 (Concentration and kernel density estimation) Let {Xi}ni=1 be an i.i.d. se-
quence of random variables drawn from a density f on the real line. A standard estimate of
f is the kernel density estimate

f̂n(x) :=
1
nh

n∑
i=1

K
(

x − Xi

h

)
,

where K:R→ [0,∞) is a kernel function satisfying
∫ ∞
−∞ K(t) dt = 1, and h > 0 is a bandwidth

parameter. Suppose that we assess the quality of f̂n using the L1-norm ‖ f̂n− f ‖1 :=
∫ ∞
−∞ | f̂n(t)−

f (t)| dt. Prove that

P[‖ f̂n − f ‖1 ≥ E[‖ f̂n − f ‖1] + δ] ≤ e−
nδ2

8 .

Exercise 2.16 (Deviation inequalities in a Hilbert space) Let {Xi}ni=1 be a sequence of in-
dependent random variables taking values in a Hilbert space H, and suppose that ‖Xi‖H ≤ bi

almost surely. Consider the real-valued random variable S n =
∥∥∥∑n

i=1 Xi

∥∥∥
H

.

(a) Show that, for all δ ≥ 0,

P[|S n − E[S n]| ≥ nδ] ≤ 2e−
nδ2

8b2 , where b2 = 1
n

∑n
i=1 b2

i .

(b) Show that P
[ S n

n ≥ a + δ
]
≤ e−

nδ2

8b2 , where a :=
√

1
n2

∑n
i=1 E[‖Xi‖2

H].

(Note: See Chapter 12 for basic background on Hilbert spaces.)

Exercise 2.17 (Hanson–Wright inequality) Given random variables {Xi}ni=1 and a positive
semidefinite matrix Q ∈ Sn×n

+ , consider the random quadratic form

Z =

n∑
i=1

n∑
j=1

Qi jXiX j. (2.70)

The Hanson–Wright inequality guarantees that whenever the random variables {Xi}ni=1 are
i.i.d. with mean zero, unit variance, and σ-sub-Gaussian, then there are universal constants
(c1, c2) such that

P[Z ≥ trace(Q) + σt] ≤ 2 exp
{
− min

( c1t
|||Q|||2

,
c2t2

|||Q|||2F

)}
, (2.71)

where |||Q|||2 and |||Q|||F denote the operator and Frobenius norms, respectively. Prove this
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inequality in the special case Xi ∼ N(0, 1). (Hint: The rotation invariance of the Gaussian
distribution and sub-exponential nature of χ2-variates could be useful.)

Exercise 2.18 (Orlicz norms) Let ψ : R+ → R+ be a strictly increasing convex function
that satisfies ψ(0) = 0. The ψ-Orlicz norm of a random variable X is defined as

‖X‖ψ := inf{t > 0 | E[ψ(t−1|X|)] ≤ 1}, (2.72)

where ‖X‖ψ is infinite if there is no finite t for which the expectation E[ψ(t−1|X|)] exists. For
the functions u �→ uq for some q ∈ [1,∞], then the Orlicz norm is simply the usual �q-norm
‖X‖q = (E[|X|q])1/q. In this exercise, we consider the Orlicz norms ‖ · ‖ψq defined by the
convex functions ψq(u) = exp(uq) − 1, for q ≥ 1.

(a) If ‖X‖ψq < +∞, show that there exist positive constants c1, c2 such that

P[|X| > t] ≤ c1 exp(−c2tq) for all t > 0. (2.73)

(In particular, you should be able to show that this bound holds with c1 = 2 and c2 =

‖X‖−q
ψq

.)
(b) Suppose that a random variable Z satisfies the tail bound (2.73). Show that ‖X‖ψq is

finite.

Exercise 2.19 (Maxima of Orlicz variables) Recall the definition of Orlicz norm from
Exercise 2.18. Let {Xi}ni=1 be an i.i.d. sequence of zero-mean random variables with finite
Orlicz norm σ = ‖Xi‖ψ. Show that

E
[

max
i=1,...,n

|Xi|
]
≤ σψ−1(n).

Exercise 2.20 (Tail bounds under moment conditions) Suppose that {Xi}ni=1 are zero-mean
and independent random variables such that, for some fixed integer m ≥ 1, they satisfy the
moment bound ‖Xi‖2m := (E[X2m

i ])
1

2m ≤ Cm. Show that

P
[∣∣∣∣∣∣1n

n∑
i=1

Xi

∣∣∣∣∣∣ ≥ δ

]
≤ Bm

(
1
√

nδ

)2m

for all δ > 0,

where Bm is a universal constant depending only on Cm and m.
Hint: You may find the following form of Rosenthal’s inequality to be useful. Under the
stated conditions, there is a universal constant Rm such that

E
[( n∑

i=1

Xi

)2m]
≤ Rm

{ n∑
i=1

E[X2m
i ] +

( n∑
i=1

E[X2
i ]
)m}

.

Exercise 2.21 (Concentration and data compression) Let X = (X1, X2, . . . , Xn) be a vec-
tor of i.i.d. Bernoulli variables with parameter 1/2. The goal of lossy data compression is
to represent X using a collection of binary vectors, say {z1, . . . , zN}, such that the rescaled
Hamming distortion

d(X) := min
j=1,...,N

ρH(X, z j) = min
j=1,...,N

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

I[Xi � z j
i ]

⎫⎪⎪⎬⎪⎪⎭
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is as small as possible. Each binary vector z j is known as a codeword, and the full collection
is called a codebook. Of course, one can always achieve zero distortion using a codebook
with N = 2n codewords, so the goal is to use N = 2Rn codewords for some rate R < 1. In this
exercise, we use tail bounds to study the trade-off between the rate R and the distortion δ.

(a) Suppose that the rate R is upper bounded as

R < D2(δ ‖ 1/2) = δ log2
δ

1/2
+ (1 − δ) log2

1 − δ

1/2
.

Show that, for any codebook {z1, . . . , zN} with N ≤ 2nR codewords, the probability of
the event {d(X) ≤ δ} goes to zero as n goes to infinity. (Hint: Let V j be a {0,1}-valued
indicator variable for the event ρH(X, z j) ≤ δ, and define V =

∑N
j=1 V j. The tail bounds

from Exercise 2.9 could be useful in bounding the probability P[V ≥ 1].)
(b) We now show that, if ΔR := R − D2(δ ‖ 1/2) > 0, then there exists a codebook that

achieves distortion δ. In order to do so, consider a random codebook {Z1, . . . ,ZN},
formed by generating each codeword Z j independently, and with all i.i.d. Ber(1/2) en-
tries. Let V j be an indicator for the event ρH(X,Z j) ≤ δ, and define V =

∑N
j=1 V j.

(i) Show that P[V ≥ 1] ≥ (E[V])2

E[V2] .
(ii) Use part (i) to show that P[V ≥ 1] → +∞ as n → +∞. (Hint: The tail bounds from

Exercise 2.10 could be useful.)

Exercise 2.22 (Concentration for spin glasses) For some positive integer d ≥ 2, consider a
collection {θ jk} j�k of weights, one for each distinct pair j � k of indices in {1, 2, . . . , d}. We
can then define a probability distribution over the Boolean hypercube {−1,+1}d via the mass
function

Pθ(x1, . . . , xd) = exp
{

1
√

d

∑
i� j

θ jk x jxk − Fd(θ)
}
, (2.74)

where the function Fd : R(d
2) → R, known as the free energy, is given by

Fd(θ) := log
( ∑

x∈{−1,+1}d
exp

{
1
√

d

∑
j�k

θ jk x jxk

})
(2.75)

serves to normalize the distribution. The probability distribution (2.74) was originally used
to describe the behavior of magnets in statistical physics, in which context it is known as
the Ising model. Suppose that the weights are chosen as i.i.d. random variables, so that
equation (2.74) now describes a random family of probability distributions. This family is
known as the Sherrington–Kirkpatrick model in statistical physics.

(a) Show that Fd is a convex function.
(b) For any two vectors θ, θ′ ∈ R(d

2), show that ‖Fd(θ) − Fd(θ′)‖2 ≤
√

d ‖θ − θ′‖2.
(c) Suppose that the weights are chosen in an i.i.d. manner as θ jk ∼ N(0, β2) for each j � k.

Use the previous parts and Jensen’s inequality to show that

P
[

Fd(θ)
d

≥ log 2 +
β2

4
+ t

]
≤ 2e−βdt2/2 for all t > 0. (2.76)
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Remark: Interestingly, it is known that, for any β ∈ [0, 1), this upper tail bound captures
the asymptotic behavior of Fd(θ)/d accurately, in that Fd(θ)

d

a.s.
−→ log 2 + β2/4 as d → ∞. By

contrast, for β ≥ 1, the behavior of this spin glass model is much more subtle; we refer the
reader to the bibliographic section for additional reading.



3

Concentration of measure

Building upon the foundation of Chapter 2, this chapter is devoted to an exploration of more
advanced material on the concentration of measure. In particular, our goal is to provide an
overview of the different types of methods available to derive tail bounds and concentration
inequalities. We begin in Section 3.1 with a discussion of the entropy method for concen-
tration, and illustrate its use in deriving tail bounds for Lipschitz functions of independent
random variables. In Section 3.2, we turn to some geometric aspects of concentration in-
equalities, a viewpoint that is historically among the oldest. Section 3.3 is devoted to the use
of transportation cost inequalities for deriving concentration inequalities, a method that is in
some sense dual to the entropy method, and well suited to certain types of dependent random
variables. We conclude in Section 3.4 by deriving some tail bounds for empirical processes,
including versions of the functional Hoeffding and Bernstein inequalities. These inequalities
play an especially important role in our later treatment of nonparametric problems.

3.1 Concentration by entropic techniques

We begin our exploration with the entropy method and related techniques for deriving con-
centration inequalities.

3.1.1 Entropy and its properties

Given a convex function φ : R → R, it can be used to define a functional on the space of
probability distributions via

Hφ(X) := E[φ(X)] − φ(E[X]),

where X ∼ P. This quantity, which is well defined for any random variable such that both
X and φ(X) have finite expectations, is known as the φ-entropy1 of the random variable X.
By Jensen’s inequality and the convexity of φ, the φ-entropy is always non-negative. As the
name suggests, it serves as a measure of variability. For instance, in the most extreme case,
we haveHφ(X) = 0 for any random variable such that X is equal to its expectation P-almost-
everywhere.

1 The notation Hφ(X) has the potential to mislead, since it suggests that the entropy is a function of X, and
hence a random variable. To be clear, the entropy Hφ is a functional that acts on the probability measure P, as
opposed to the random variable X.

58
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There are various types of entropies, depending on the choice of the underlying convex
function φ. Some of these entropies are already familiar to us. For example, the convex
function φ(u) = u2 yields

Hφ(X) = E[X2] − (E[X])2 = var(X),

corresponding to the usual variance of the random variable X. Another interesting choice is
the convex function φ(u) = − log u defined on the positive real line. When applied to the
positive random variable Z := eλX , this choice of φ yields

Hφ(eλX) = −λE[X] + logE[eλX] = logE[eλ(X−E[X])],

a type of entropy corresponding to the centered cumulant generating function. In Chapter 2,
we have seen how both the variance and the cumulant generating function are useful objects
for obtaining concentration inequalities—in particular, in the form of Chebyshev’s inequal-
ity and the Chernoff bound, respectively.

Throughout the remainder of this chapter, we focus on a slightly different choice of en-
tropy functional, namely the convex function φ : [0,∞) → R defined as

φ(u) := u log u for u > 0, and φ(0) := 0. (3.1)

For any non-negative random variable Z ≥ 0, it defines the φ-entropy given by

H(Z) = E[Z log Z] − E[Z] logE[Z], (3.2)

assuming that all relevant expectations exist. In the remainder of this chapter, we omit the
subscript φ, since the choice (3.1) is to be implicitly understood.

The reader familiar with information theory may observe that the entropy (3.2) is closely
related to the Shannon entropy, as well as the Kullback–Leibler divergence; see Exercise 3.1
for an exploration of this connection. As will be clarified in the sequel, the most attractive
property of the φ-entropy (3.2) is its so-called tensorization when applied to functions of
independent random variables.

For the random variable Z := eλX , the entropy has an explicit expression as a function of
the moment generating function ϕx(λ) = E[eλX] and its first derivative. In particular, a short
calculation yields

H(eλX) = λϕ′x(λ) − ϕx(λ) logϕx(λ). (3.3)

Consequently, if we know the moment generating function of X, then it is straightforward to
compute the entropy H(eλX). Let us consider a simple example to illustrate:

Example 3.1 (Entropy of a Gaussian random variable) For the scalar Gaussian variable
X ∼ N(0, σ2), we have ϕx(λ) = eλ2σ2/2. By taking derivatives, we find that ϕ′x(λ) = λσ2ϕx(λ),
and hence

H(eλX) = λ2σ2ϕx(λ) − 1
2λ

2σ2 ϕx(λ) = 1
2λ

2σ2 ϕx(λ). (3.4)
♣

Given that the moment generating function can be used to obtain concentration inequali-
ties via the Chernoff method, this connection suggests that there should also be a connection
between the entropy (3.3) and tail bounds. It is the goal of the following sections to make
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this connection precise for various classes of random variables. We then show how the en-
tropy based on φ(u) = u log u has a certain tensorization property that makes it particularly
well suited to dealing with general Lipschitz functions of collections of random variables.

3.1.2 Herbst argument and its extensions

Intuitively, the entropy is a measure of the fluctuations in a random variable, so that control
on the entropy should translate into bounds on its tails. The Herbst argument makes this
intuition precise for a certain class of random variables. In particular, suppose that there is a
constant σ > 0 such that the entropy of eλX satisfies an upper bound of the form

H(eλX) ≤ 1
2σ

2λ2 ϕx(λ). (3.5)

Note that by our earlier calculation in Example 3.1, any Gaussian variable X ∼ N(0, σ2)
satisfies this condition with equality for all λ ∈ R. Moreover, as shown in Exercise 3.7, any
bounded random variable satisfies an inequality of the form (3.5).

Of interest here is the other implication: What does the entropy bound (3.5) imply about
the tail behavior of the random variable? The classical Herbst argument answers this ques-
tion, in particular showing that any such variable must have sub-Gaussian tail behavior.

Proposition 3.2 (Herbst argument) Suppose that the entropy H(eλX) satisfies inequal-
ity (3.5) for all λ ∈ I, where I can be either of the intervals [0,∞) or R. Then X satisfies
the bound

logE[eλ(X−E[X])] ≤ 1
2λ

2σ2 for all λ ∈ I. (3.6)

Remarks: When I = R, then the inequality (3.6) is equivalent to asserting that the cen-
tered variable X − E[X] is sub-Gaussian with parameter σ. Via an application of the usual
Chernoff argument, the bound (3.6) with I = [0,∞) implies the one-sided tail bound

P[X ≥ E[X] + t] ≤ e−
t2

2σ2 , (3.7)

and with I = R, it implies the two-sided bound P[|X − E[X]| ≥ t] ≤ 2e−
t2

2σ2 . Of course, these
are the familiar tail bounds for sub-Gaussian variables discussed previously in Chapter 2.

Proof Recall the representation (3.3) of entropy in terms of the moment generating func-
tion. Combined with the assumed upper bound (3.5), we conclude that the moment generat-
ing function ϕ ≡ ϕx satisfies the differential inequality

λϕ′(λ) − ϕ(λ) logϕ(λ) ≤ 1
2σ

2λ2 ϕ(λ), valid for all λ ≥ 0. (3.8)

Define the function G(λ) = 1
λ

logϕ(λ) for λ � 0, and extend the definition by continuity to

G(0) := lim
λ→0

G(λ) = E[X]. (3.9)

Note that we have G′(λ) = 1
λ

ϕ′(λ)
ϕ(λ) −

1
λ2 logϕ(λ), so that the inequality (3.8) can be rewritten
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in the simple form G′(λ) ≤ 1
2σ

2 for all λ ∈ I. For any λ0 > 0, we can integrate both sides of
the inequality to obtain

G(λ) −G(λ0) ≤ 1
2σ

2(λ − λ0).

Letting λ0 → 0+ and using the relation (3.9), we conclude that

G(λ) − E[X] ≤ 1
2σ

2λ,

which is equivalent to the claim (3.6). We leave the extension of this proof to the case I = R
as an exercise for the reader.

Thus far, we have seen how a particular upper bound (3.5) on the entropy H(eλX) translates
into a bound on the cumulant generating function (3.6), and hence into sub-Gaussian tail
bounds via the usual Chernoff argument. It is natural to explore to what extent this approach
may be generalized. As seen previously in Chapter 2, a broader class of random variables
are those with sub-exponential tails, and the following result is the analog of Proposition 3.2
in this case.

Proposition 3.3 (Bernstein entropy bound) Suppose that there are positive constants
b and σ such that the entropy H(eλX) satisfies the bound

H(eλX) ≤ λ2{bϕ′x(λ) + ϕx(λ)(σ2 − bE[X])} for all λ ∈ [0, 1/b). (3.10)

Then X satisfies the bound

logE[eλ(X−E[X])] ≤ σ2λ2(1 − bλ)−1 for all λ ∈ [0, 1/b). (3.11)

Remarks: As a consequence of the usual Chernoff argument, Proposition 3.3 implies that
X satisfies the upper tail bound

P[X ≥ E[X] + δ] ≤ exp
(
−

δ2

4σ2 + 2bδ

)
for all δ ≥ 0, (3.12)

which (modulo non-optimal constants) is the usual Bernstein-type bound to be expected for
a variable with sub-exponential tails. See Proposition 2.10 from Chapter 2 for further details
on such Bernstein bounds.

We now turn to the proof of Proposition 3.3.

Proof As before, we omit the dependence of ϕx on X throughout this proof so as to simplify
notation. By rescaling and recentering arguments sketched out in Exercise 3.6, we may as-
sume without loss of generality that E[X] = 0 and b = 1, in which case the inequality (3.10)
simplifies to

H(eλX) ≤ λ2{ϕ′(λ) + ϕ(λ)σ2} for all λ ∈ [0, 1). (3.13)

Recalling the function G(λ) = 1
λ

logϕ(λ) from the proof of Proposition 3.2, a little bit of
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algebra shows that condition (3.13) is equivalent to the differential inequality G′ ≤ σ2 +
ϕ′

ϕ
.

Letting λ0 > 0 be arbitrary and integrating both sides of this inequality over the interval
(λ0, λ), we obtain

G(λ) −G(λ0) ≤ σ2(λ − λ0) + logϕ(λ) − logϕ(λ0).

Since this inequality holds for all λ0 > 0, we may take the limit as λ0 → 0+. Doing so and
using the facts that limλ0→0+ G(λ0) = G(0) = E[X] and logϕ(0) = 0, we obtain the bound

G(λ) − E[X] ≤ σ2λ + log ϕ(λ). (3.14)

Substituting the definition of G and rearranging yields the claim (3.11).

3.1.3 Separately convex functions and the entropic method

Thus far, we have seen how the entropic method can be used to derive sub-Gaussian and
sub-exponential tail bounds for scalar random variables. If this were the only use of the
entropic method, then we would have gained little beyond what can be done via the usual
Chernoff bound. The real power of the entropic method—as we now will see—manifests
itself in dealing with concentration for functions of many random variables.

As an illustration, we begin by stating a deep result that can be proven in a relatively
direct manner using the entropy method. We say that a function f : Rn → R is separately
convex if, for each index k ∈ {1, 2, . . . , n}, the univariate function

yk �→ f (x1, x2, . . . , xk−1, yk, xk+1, . . . , xn)

is convex for each fixed vector (x1, x2, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1. A function f is L-
Lipschitz with respect to the Euclidean norm if

| f (x) − f (x′)| ≤ L ‖x − x′‖2 for all x, x′ ∈ Rn. (3.15)

The following result applies to separately convex and L-Lipschitz functions.

Theorem 3.4 Let {Xi}ni=1 be independent random variables, each supported on the
interval [a, b], and let f : Rn → R be separately convex, and L-Lipschitz with respect
to the Euclidean norm. Then, for all δ > 0, we have

P[ f (X) ≥ E[ f (X)] + δ] ≤ exp
(
−

δ2

4L2(b − a)2

)
. (3.16)

Remarks: This result is the analog of the upper tail bound for Lipschitz functions of Gaus-
sian variables (cf. Theorem 2.26 in Chapter 2), but applicable to independent and bounded
variables instead. In contrast to the Gaussian case, the additional assumption of separate
convexity cannot be eliminated in general; see the bibliographic section for further discus-
sion. When f is jointly convex, other techniques can be used to obtain the lower tail bound
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as well; see Theorem 3.24 in the sequel for one such example.

Theorem 3.4 can be used to obtain order-optimal bounds for a number of interesting prob-
lems. As one illustration, we return to the Rademacher complexity, first introduced in Ex-
ample 2.25 of Chapter 2.

Example 3.5 (Sharp bounds on Rademacher complexity) Given a bounded subsetA ⊂ Rn,
consider the random variable Z = supa∈A

∑n
k=1 akεk, where εk ∈ {−1,+1} are i.i.d. Rade-

macher variables. Let us view Z as a function of the random signs, and use Theorem 3.4 to
bound the probability of the tail event {Z ≥ E[Z] + t}.

It suffices to verify the convexity and Lipschitz conditions of the theorem. First, since
Z = Z(ε1, . . . , εn) is the maximum of a collection of linear functions, it is jointly (and hence
separately) convex. Let Z′ = Z(ε′1, . . . , ε

′
n) where ε′ ∈ {−1,+1}n is a second vector of sign

variables. For any a ∈ A, we have

〈a, ε〉︸︷︷︸∑n
k=1 akεk

−Z′ = 〈a, ε〉 − sup
a′∈A

〈
a′, ε′

〉
≤
〈
a, ε − ε′

〉
≤ ‖a‖2 ‖ε − ε′‖2.

Taking suprema over a ∈ A yields that Z − Z′ ≤ (supa∈A ‖a‖2) ‖ε − ε′‖2. Since the same
argument may be applied with the roles of ε and ε′ reversed, we conclude that Z is Lipschitz
with parameter W(A) := supa∈A ‖a‖2, corresponding to the Euclidean width of the set.
Putting together the pieces, Theorem 3.4 implies that

P[Z ≥ E[Z] + t] ≤ exp
(
−

t2

16W2(A)

)
. (3.17)

Note that parameter W2(A) may be substantially smaller than the quantity
∑n

k=1 supa∈A a2
k

—indeed, possibly as much as a factor of n smaller! In such cases, Theorem 3.4 yields a
much sharper tail bound than our earlier tail bound from Example 2.25, which was obtained
by applying the bounded differences inequality. ♣

Another use of Theorem 3.4 is in random matrix theory.

Example 3.6 (Operator norm of a random matrix) Let X ∈ Rn×d be a random matrix,
say with Xi j drawn i.i.d. from some zero-mean distribution supported on the unit interval
[−1,+1]. The spectral or �2-operator norm of X, denoted by |||X|||2, is its maximum singular
value, given by

|||X|||2 = max
v∈Rd

‖v‖2=1

‖Xv‖2 = max
v∈Rd

‖v‖2=1

max
u∈Rn

‖u‖2=1

uTXv. (3.18)

Let us view the mapping X �→ |||X|||2 as a function f from Rnd to R. In order to apply
Theorem 3.4, we need to show that f is both Lipschitz and convex. From its definition (3.18),
the operator norm is the supremum of a collection of functions that are linear in the entries
X; any such supremum is a convex function. Moreover, we have∣∣∣|||X|||2 − |||X′|||2

∣∣∣ (i)
≤ |||X − X′|||2

(ii)
≤ |||X − X′|||F, (3.19)

where step (i) follows from the triangle inequality, and step (ii) follows since the Frobenius



64 Concentration of measure

norm of a matrix always upper bounds the operator norm. (The Frobenius norm |||M|||F of
a matrix M ∈ Rn×d is simply the Euclidean norm of all its entries; see equation (2.50).)
Consequently, the operator norm is Lipschitz with parameter L = 1, and thus Theorem 3.4
implies that

P[|||X|||2 ≥ E[|||X|||2] + δ] ≤ e−
δ2
16 .

It is worth observing that this bound is the analog of our earlier bound (2.52) on the oper-
ator norm of a Gaussian random matrix, albeit with a worse constant. See Example 2.32 in
Chapter 2 for further details on this Gaussian case. ♣

3.1.4 Tensorization and separately convex functions

We now return to prove Theorem 3.4. The proof is based on two lemmas, both of which are
of independent interest. Here we state these results and discuss some of their consequences,
deferring their proofs to the end of this section. Our first lemma establishes an entropy bound
for univariate functions:

Lemma 3.7 (Entropy bound for univariate functions) Let X,Y ∼ P be a pair of
i.i.d. variates. Then for any function g : R→ R, we have

H(eλg(X)) ≤ λ2E[(g(X) − g(Y))2eλg(X) I[g(X) ≥ g(Y)]] for all λ > 0. (3.20a)

If in addition X is supported on [a, b], and g is convex and Lipschitz, then

H(eλg(X)) ≤ λ2(b − a)2 E[(g′(X))2eλg(X)] for all λ > 0, (3.20b)

where g′ is the derivative.

In stating this lemma, we have used the fact that any convex and Lipschitz function has a
derivative defined almost everywhere, a result known as Rademacher’s theorem. Moreover,
note that if g is Lipschitz with parameter L, then we are guaranteed that ‖g′‖∞ ≤ L, so that
inequality (3.20b) implies an entropy bound of the form

H(eλg(X)) ≤ λ2L2(b − a)2 E[eλg(X)] for all λ > 0.

In turn, by an application of Proposition 3.2, such an entropy inequality implies the upper
tail bound

P[g(X) ≥ E[g(X)] + δ] ≤ e−
δ2

4L2(b−a)2 .

Thus, Lemma 3.7 implies the univariate version of Theorem 3.4. However, the inequal-
ity (3.20b) is sharper, in that it involves g′(X) as opposed to the worst-case bound L, and this
distinction will be important in deriving the sharp result of Theorem 3.4. The more general
inequality (3.20b) will be useful in deriving functional versions of the Hoeffding and Bern-
stein inequalities (see Section 3.4).
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Returning to the main thread, it remains to extend this univariate result to the multivariate
setting, and the so-called tensorization property of entropy plays a key role here. Given
a function f : Rn → R, an index k ∈ {1, 2, . . . , n} and a vector x\k = (xi, i � k) ∈ Rn−1, we
define the conditional entropy in coordinate k via

H(eλ fk(Xk) | x\k) := H(eλ f (x1,...,xk−1,Xk ,xk+1,...,xn)),

where fk : R → R is the coordinate function xk �→ f (x1, . . . , xk, . . . , xn). To be clear, for a
random vector X\k ∈ Rn−1, the entropy H(eλ fk(Xk) | X\k) is a random variable, and its expecta-
tion is often referred to as the conditional entropy.) The following result shows that the joint
entropy can be upper bounded by a sum of univariate entropies, suitably defined.

Lemma 3.8 (Tensorization of entropy) Let f : Rn → R, and let {Xk}nk=1 be independent
random variables. Then

H(eλ f (X1,...,Xn)) ≤ E
[ n∑

k=1

H(eλ fk(Xk) | X\k)
]

for all λ > 0. (3.21)

Equipped with these two results, we are now ready to prove Theorem 3.4.

Proof of Theorem 3.4 For any k ∈ {1, 2, . . . , n} and fixed vector x\k ∈ Rn−1, our assumptions
imply that the coordinate function fk is convex, and hence Lemma 3.7 implies that, for all
λ > 0, we have

H(eλ fk(Xk) | x\k) ≤ λ2(b − a)2 EXk [( f ′k (Xk))2eλ fk(Xk) | x\k]

= λ2(b − a)2 EXk

[(
∂ f (x1, . . . , Xk, . . . , xn)

∂xk

)2

eλ f (x1,...,Xk ,...,xn)
]
,

where the second line involves unpacking the definition of the conditional entropy.
Combined with Lemma 3.8, we find that the unconditional entropy is upper bounded as

H(eλ f (X)) ≤ λ2(b − a)2 E
[ n∑

k=1

(
∂ f (X)
∂xk

)2

eλ f (X)
]

(i)
≤ λ2(b − a)2L2 E[eλ f (X)].

Here step (i) follows from the Lipschitz condition, which guarantees that

‖∇ f (x)‖2
2 =

n∑
k=1

(
∂ f (x)
∂xk

)2

≤ L2

almost surely. Thus, the tail bound (3.16) follows from an application of Proposition 3.2.

It remains to prove the two auxiliary lemmas used in the preceding proof—namely, Lemma
3.7 on entropy bounds for univariate Lipschitz functions, and Lemma 3.8 on the tensoriza-
tion of entropy. We begin with the former property.
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Proof of Lemma 3.7
By the definition of entropy, we can write

H(eλg(X)) = EX
[
λg(X)eλg(X)] − EX

[
eλg(X)] log

(
EY[eλg(Y)]

)
(i)
≤ EX

[
λg(X)eλg(X)] − EX,Y

[
eλg(X)λg(Y)

]
= 1

2EX,Y

[
λ
{
g(X) − g(Y)

} {
eλg(X) − eλg(Y)}]

(ii)
= λE

[{
g(X) − g(Y)

} {
eλg(X) − eλg(Y)} I[g(X) ≥ g(Y)]

]
, (3.22)

where step (i) follows from Jensen’s inequality, and step (ii) follows from symmetry of X
and Y .

By convexity of the exponential, we have es − et ≤ es(s − t) for all s, t ∈ R. For s ≥ t, we
can multiply both sides by (s − t) ≥ 0, thereby obtaining

(s − t)(es − et) I[s ≥ t] ≤ (s − t)2es I[s ≥ t].

Applying this bound with s = λg(X) and t = λg(Y) to the inequality (3.22) yields

H(eλg(X)) ≤ λ2 E[(g(X) − g(Y))2eλg(X) I[g(X) ≥ g(Y)]], (3.23)

where we have recalled the assumption that λ > 0.
If in addition g is convex, then we have the upper bound g(x) − g(y) ≤ g′(x)(x − y), and

hence, for g(x) ≥ g(y),

(g(x) − g(y))2 ≤ (g′(x))2(x − y)2 ≤ (g′(x))2(b − a)2,

where the final step uses the assumption that x, y ∈ [a, b]. Combining the pieces yields the
claim.

We now turn to the tensorization property of entropy.

Proof of Lemma 3.8
The proof makes use of the following variational representation for entropy:

H(eλ f (X)) = sup
g
{E[g(X)eλ f (X)] | E[eg(X)] ≤ 1}. (3.24)

This equivalence follows by a duality argument that we explore in Exercise 3.9.
For each j ∈ {1, 2, . . . , n}, define Xn

j = (Xj, . . . , Xn). Let g be any function that satisfies
E[eg(X)] ≤ 1. We can then define an auxiliary sequence of functions {g1, . . . , gn} via

g1(X1, . . . , Xn) := g(X) − logE[eg(X) | Xn
2]

and

gk(Xk, . . . , Xn) := log
E[eg(X) | Xn

k ]
E[eg(X) | Xn

k+1]
for k = 2, . . . , n.

By construction, we have
n∑

k=1

gk(Xk, . . . , Xn) = g(X) − logE[eg(X)] ≥ g(X) (3.25)



3.2 A geometric perspective on concentration 67

and moreover E[exp(gk(Xk, Xk+1, . . . , Xn)) | Xn
k+1] = 1.

We now use this decomposition within the variational representation (3.24), thereby ob-
taining the chain of upper bounds

E[g(X)eλ f (X)]
(i)
≤

n∑
k=1

E[gk(Xk, . . . , Xn)eλ f (X)]

=

n∑
k=1

EX\k [EXk [g
k(Xk, . . . , Xn)eλ f (X) | X\k]]

(ii)
≤

n∑
k=1

EX\k [H(eλ fk(Xk) | X\k)],

where inequality (i) uses the bound (3.25), and inequality (ii) applies the variational
representation (3.24) to the univariate functions, and also makes use of the fact that
E[gk(Xk, . . . , Xn) | X\k] = 1. Since this argument applies to any function g such that E[eg(X)] ≤
1, we may take the supremum over the left-hand side, and combined with the variational rep-
resentation (3.24), we conclude that

H(eλ f (X)) ≤
n∑

k=1

EX\k [H(eλ fk(Xk) | X\k)],

as claimed.

3.2 A geometric perspective on concentration

We now turn to some geometric aspects of the concentration of measure. Historically, this
geometric viewpoint is among the oldest, dating back to the classical result of Lévy on
concentration of measure for Lipschitz functions of Gaussians. It also establishes deep links
between probabilistic concepts and high-dimensional geometry.

The results of this section are most conveniently stated in terms of a metric measure
space—namely, a metric space (X, ρ) endowed with a probability measure P on its Borel
sets. Some canonical examples of metric spaces for the reader to keep in mind are the set
X = Rn equipped with the usual Euclidean metric ρ(x, y) := ‖x − y‖2, and the discrete cube
X = {0, 1}n equipped with the Hamming metric ρ(x, y) =

∑n
j=1 I[x j � y j].

Associated with any metric measure space is an object known as its concentration func-
tion, which is defined in a geometric manner via the ε-enlargements of sets. The concentra-
tion function specifies how rapidly, as a function of ε, the probability of any ε-enlargement
increases towards one. As we will see, this function is intimately related to the concentration
properties of Lipschitz functions on the metric space.

3.2.1 Concentration functions

Given a set A ⊆ X and a point x ∈ X, define the quantity

ρ(x, A) := inf
y∈A

ρ(x, y), (3.26)
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which measures the distance between the point x and the closest point in the set A. Given a
parameter ε > 0, the ε-enlargement of A is given by

Aε := {x ∈ X | ρ(x, A) < ε}. (3.27)

In words, the set Aε corresponds to the open neighborhood of points lying at distance less
than ε from A. With this notation, the concentration function of the metric measure space
(X, ρ,P) is defined as follows:

Definition 3.9 The concentration function α : [0,∞) → R+ associated with metric
measure space (P,X, ρ) is given by

α P,(X,ρ)(ε) := sup
A⊆X

{1 − P[Aε] | P[A] ≥ 1
2 }, (3.28)

where the supremum is taken over all measurable subsets A.

When the underlying metric space (X, ρ) is clear from the context, we frequently use the ab-
breviated notation α P. It follows immediately from the definition (3.28) that α P(ε) ∈ [0, 1

2 ]
for all ε ≥ 0. Of primary interest is the behavior of the concentration function as ε increases,
and, more precisely, how rapidly it approaches zero. Let us consider some examples to il-
lustrate.

Example 3.10 (Concentration function for sphere) Consider the metric measure space
defined by the uniform distribution over the n-dimensional Euclidean sphere

Sn−1 := {x ∈ Rn | ‖x‖2 = 1}, (3.29)

equipped with the geodesic distance ρ(x, y) := arccos 〈x, y〉. Let us upper bound the concen-
tration function αSn−1 defined by the triplet (P,Sn−1, ρ), where P is the uniform distribution
over the sphere. For each y ∈ Sn−1, we can define the hemisphere

Hy := {x ∈ Sn−1 | ρ(x, y) ≥ π/2} = {x ∈ Sn−1 | 〈x, y〉 ≤ 0}, (3.30)

as illustrated in Figure 3.1(a). With some simple geometry, it can be shown that its ε-
enlargement corresponds to the set

Hε
y = {z ∈ Sn−1 | 〈z, y〉 < sin(ε)}, (3.31)

as illustrated in Figure 3.1(b). Note that P[Hy] = 1/2, so that the hemisphere (3.30) is a
candidate set for the supremum defining the concentration function (3.28). The classical
isoperimetric theorem of Lévy asserts that these hemispheres are extremal, meaning that
they achieve the supremum, viz.

αSn−1 (ε) = 1 − P[Hε
y]. (3.32)

Let us take this fact as given, and use it to compute an upper bound on the concentration
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Figure 3.1 (a) Idealized illustration of the sphere Sn−1. Any vector y ∈ Sn−1 defines
a hemisphere Hy = {x ∈ Sn−1 | 〈x, y〉 ≤ 0}, corresponding to those vectors whose
angle θ = arccos 〈x, y〉 with y is at least π/2 radians. (b) The ε-enlargement of the
hemisphere Hy. (c) A central slice Ty(ε) of the sphere of width ε.

function. In order to do so, we need to lower bound the probability P[Hε
y]. Since sin(ε) ≥ ε/2

for all ε ∈ (0, π/2], the enlargement contains the set

H̃ε
y := {z ∈ Sn−1 | 〈z, y〉 ≤ 1

2ε},

and hence P[Hε
y] ≥ P[H̃ε

y]. Finally, a geometric calculation, left as an exercise for the reader,
yields that, for all ε ∈ (0,

√
2), we have

P[H̃ε
y] ≥ 1 −

(
1 −

(
ε

2

)2)n/2

≥ 1 − e−nε2/8, (3.33)

where we have used the inequality (1 − t) ≤ e−t with t = ε2/4. We thus obtain that the
concentration function is upper bounded as αSn−1 (ε) ≤ e−nε2/8. A similar but more careful
approach to bounding P[Hy] can be used to establish the sharper upper bound

αSn−1 (ε) ≤
√

π

2
e−

nε2
2 . (3.34)

The bound (3.34) is an extraordinary conclusion, originally due to Lévy, and it is worth
pausing to think about it in more depth. Among other consequences, it implies that, if we
consider a central slice of the sphere of width ε, say a set of the form

Ty(ε) := {z ∈ Sn−1 | |〈z, y〉| ≤ ε/2}, (3.35)

as illustrated in Figure 3.1(c), then it occupies a huge fraction of the total volume: in par-
ticular, we have P[Ty(ε)] ≥ 1 −

√
2π exp(− nε2

2 ). Moreover, this conclusion holds for any
such slice. To be clear, the two-dimensional instance shown in Figure 3.1(c)—like any low-
dimensional example—fails to capture the behavior of high-dimensional spheres. In general,
our low-dimensional intuition can be very misleading when applied to high-dimensional set-
tings. ♣
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3.2.2 Connection to Lipschitz functions

In Chapter 2 and the preceding section of this chapter, we explored some methods for ob-
taining deviation and concentration inequalities for various types of Lipschitz functions. The
concentration function α P,(X,ρ) turns out to be intimately related to such results on the tail be-
havior of Lipschitz functions. In particular, suppose that a function f : X → R is L-Lipschitz
with respect to the metric ρ—that is,

| f (x) − f (y)| ≤ Lρ(x, y) for all x, y ∈ X. (3.36)

Given a random variable X ∼ P, let mf be any median of f (X), meaning a number such that

P[ f (X) ≥ mf ] ≥ 1/2 and P[ f (X) ≤ mf ] ≥ 1/2. (3.37)

Define the set A = {x ∈ X | f (x) ≤ mf }, and consider its ε
L -enlargement Aε/L. For any

x ∈ Aε/L, there exists some y ∈ A such that ρ(x, y) < ε/L. Combined with the Lipschitz
property, we conclude that | f (y) − f (x)| ≤ L ρ(x, y) < ε, and hence that

Aε/L ⊆ {x ∈ X | f (x) < mf + ε}. (3.38)

Consequently, we have

P[ f (X) ≥ mf + ε]
(i)
≤ 1 − P[Aε/L]

(ii)
≤ α P(ε/L),

where inequality (i) follows from the inclusion (3.38), and inequality (ii) uses the fact
P[A] ≥ 1/2, and the definition (3.28). Applying a similar argument to − f yields an analo-
gous left-sided deviation inequality P[ f (X) ≤ mf − ε] ≤ α P(ε/L), and putting together the
pieces yields the concentration inequality

P[| f (X) − mf | ≥ ε] ≤ 2α P(ε/L).

As shown in Exercise 2.14 from Chapter 2, such sharp concentration around the median is
equivalent (up to constant factors) to concentration around the mean. Consequently, we have
shown that bounds on the concentration function (3.28) imply concentration inequalities for
any Lipschitz function. This argument can also be reversed, yielding the following equiva-
lence between control on the concentration function, and the behavior of Lipschitz functions.

Proposition 3.11 Given a random variable X ∼ P and concentration function α P,
any 1-Lipschitz function on (X, ρ) satisfies

P[| f (X) − mf | ≥ ε] ≤ 2α P(ε), (3.39a)

where mf is any median of f . Conversely, suppose that there is a function β : R+ → R+
such that, for any 1-Lipschitz function on (X, ρ),

P[ f (X) ≥ E[ f (X)] + ε] ≤ β(ε) for all ε ≥ 0. (3.39b)

Then the concentration function satisfies the bound α P(ε) ≤ β(ε/2).
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Proof It remains to prove the converse claim. Fix some ε ≥ 0, and let A be an arbitrary
measurable set with P[A] ≥ 1/2. Recalling the definition of ρ(x, A) from equation (3.26),
let us consider the function f (x) := min{ρ(x, A), ε}. It can be seen that f is 1-Lipschitz, and
moreover that 1−P[Aε] = P[ f (X) ≥ ε]. On the other hand, our construction guarantees that

E[ f (X)] ≤ (1 − P[A])ε ≤ ε/2,

whence we have

P[ f (X) ≥ ε] ≤ P[ f (X) ≥ E[ f (X)] + ε/2] ≤ β(ε/2),

where the final inequality uses the assumed condition (3.39b).

Proposition 3.11 has a number of concrete interpretations in specific settings.

Example 3.12 (Lévy concentration on Sn−1) From our earlier discussion in Example 3.10,
the concentration function for the uniform distribution over the sphere Sn−1 can be upper
bounded as

αSn−1 (ε) ≤
√

π

2
e−

nε2
2 .

Consequently, for any 1-Lipschitz function f defined on the sphere Sn−1, we have the two-
sided bound

P[| f (X) − mf | ≥ ε] ≤
√

2π e−
nε2

2 , (3.40)

where mf is any median of f . Moreover, by the result of Exercise 2.14(d), we also have

P[| f (X) − E[ f (X)]| ≥ ε] ≤ 2
√

2π e−
nε2

8 . (3.41)
♣

Example 3.13 (Concentration for Boolean hypercube) Consider the Boolean hypercube
X = {0, 1}n equipped with the usual Hamming metric

ρH(x, y) :=
n∑

j=1

I[x j � y j].

Given this metric, we can define the Hamming ball

BH(r; x) = {y ∈ {0, 1}n | ρH(y, x) ≤ r}

of radius r centered at some x ∈ {0, 1}n. Of interest here are the Hamming balls centered at
the all-zeros vector 0 and all-ones vector 1, respectively. In particular, in this example, we
show how a classical combinatorial result due to Harper can be used to bound the concen-
tration function of the metric measure space consisting of the Hamming metric along with
the uniform distribution P.

Given two non-empty subsets A and B of the binary hypercube, one consequence of
Harper’s theorem is that we can always find two positive integers rA and rB, and associ-
ated subsets A′ and B′, with the following properties:

• the sets A′ and B′ are sandwiched as

BH(rA − 1; 0) ⊆ A′ ⊆ BH(rA; 0) and BH(rB − 1; 1) ⊆ B′ ⊆ BH(rB; 1);
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• the cardinalities are matched as card(A) = card(A′) and card(B) = card(B′);
• we have the lower bound ρH(A′, B′) ≥ ρH(A, B).

Let us now show that this combinatorial theorem implies that

α P(ε) ≤ e−
2ε2

n for all n ≥ 3. (3.42)

Consider any subset such thatP[A] = card(A)
2n ≥ 1

2 . For any ε > 0, define the set B = {0, 1}n \ Aε .

In order to prove the bound (3.42), it suffices to show that P[B] ≤ e−
2ε2

n . Since we always
have P[B] ≤ 1

2 ≤ e−
2
n for n ≥ 3, it suffices to restrict our attention to ε > 1. By construction,

we have

ρH(A, B) = min
a∈A,b∈B

ρH(a, b) ≥ ε.

Let A′ and B′ denote the subsets guaranteed by Harper’s theorem. Since A has cardinality
at least 2n−1, the set A′, which has the same cardinality as A, must contain all vectors with
at most n/2 ones. Moreover, by the cardinality matching condition and our choice of the
uniform distribution, we have P[B] = P[B′]. On the other hand, the set B′ is contained
within a Hamming ball centered at the all-ones vector, and we have ρH(A′, B′) ≥ ε > 1.
Consequently, any vector b ∈ B′ must contain at least n

2 + ε ones. Thus, if we let {Xi}ni=1 be

a sequence of i.i.d. Bernoulli variables, we have P[B′] ≤ P
[∑n

i=1 Xi ≥ n
2 + ε

]
≤ e−

2ε2
n , where

the final inequality follows from the Hoeffding bound.
Since A was an arbitrary set withP[A] ≥ 1

2 , we have shown that the concentration function
satisfies the bound (3.42). Applying Proposition 3.11, we conclude that any 1-Lipschitz
function on the Boolean hypercube satisfies the concentration bound

P[| f (X) − mf | ≥ ε] ≤ 2e−
2ε2

n .

Thus, modulo the negligible difference between the mean and median (see Exercise 2.14),
we have recovered the bounded differences inequality (2.35) for Lipschitz functions on the
Boolean hypercube. ♣

3.2.3 From geometry to concentration

The geometric perspective suggests the possibility of a variety of connections between
convex geometry and the concentration of measure. Consider, for instance, the Brunn–
Minkowski inequality: in one of its formulations, it asserts that, for any two convex bodies2

C and D in Rn, we have

[vol(λC + (1 − λ)D)]1/n ≥ λ[vol(C)]1/n + (1 − λ)[vol(D)]1/n for all λ ∈ [0, 1]. (3.43)

Here we use

λC + (1 − λ)D := {λc + (1 − λ)d | c ∈ C, d ∈ D}

to denote the Minkowski sum of the two sets. The Brunn–Minkowski inequality and its
variants are intimately connected to concentration of measure. To appreciate the connection,

2 A convex body in Rn is a compact and closed set.
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observe that the concentration function (3.28) defines a notion of extremal sets—namely,
those that minimize the measure P[Aε] subject to a constraint on the size of P[A]. Viewing
the volume as a type of unnormalized probability measure, the Brunn–Minkowski inequal-
ity (3.43) can be used to prove a classical result of this type:

Example 3.14 (Classical isoperimetric inequality in Rn) Consider the Euclidean sphere
Bn

2 := {x ∈ Rn | ‖x‖2 ≤ 1} in Rn. The classical isoperimetric inequality asserts that, for any
set A ⊂ Rn such that vol(A) = vol(Bn

2), the volume of its ε-enlargement Aε is lower bounded
as

vol(Aε) ≥ vol([Bn
2]ε), (3.44)

showing that the ball Bn
2 is extremal. In order to verify this bound, we note that

[vol(Aε)]1/n = [vol(A + εBn
2)]1/n ≥ [vol(A)]1/n + [vol(εBn

2)]1/n,

where the lower bound follows by applying the Brunn–Minkowski inequality (3.43) with
appropriate choices of (λ,C, D); see Exercise 3.10 for the details. Since vol(A) = vol(Bn

2)
and [vol(εBn

2)]1/n = ε vol(Bn
2), we see that

vol(Aε)1/n ≥ (1 + ε) vol(Bn
2)1/n = [vol((Bn

2)ε)]1/n,

which establishes the claim. ♣

The Brunn–Minkowski inequality has various equivalent formulations. For instance, it
can also be stated as

vol(λC + (1 − λ)D) ≥ [vol(C)]λ[vol(D)]1−λ for all λ ∈ [0, 1]. (3.45)

This form of the Brunn–Minkowski inequality can be used to establish Lévy-type concen-
tration for the uniform measure on the sphere, albeit with slightly weaker constants than the
derivation in Example 3.10. In Exercise 3.10, we explore the equivalence between inequal-
ity (3.45) and our original statement (3.43) of the Brunn–Minkowski inequality.

The modified form (3.45) of the Brunn–Minkowski inequality also leads naturally to a
functional-analytic generalization, due to Prékopa and Leindler. In turn, this generalized in-
equality can be used to derive concentration inequalities for strongly log-concave measures.

Theorem 3.15 (Prékopa–Leindler inequality) Let u, v,w be non-negative integrable
functions such that, for some λ ∈ [0, 1], we have

w(λx + (1 − λ)y) ≥ [u(x)]λ[v(y)]1−λ for all x, y ∈ Rn. (3.46)

Then ∫
w(x) dx ≥

(∫
u(x) dx

)λ(∫
v(x) dx

)1−λ

. (3.47)
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In order to see how this claim implies the classical Brunn–Minkowski inequality (3.45),
consider the choices

u(x) = IC(x), v(x) = ID(x) and w(x) = IλC+(1−λ)D(x),

respectively. Here IC denotes the binary-valued indicator function for the event {x ∈ C},
with the other indicators defined in an analogous way. In order to show that the classical
inequality (3.45) follows as a consequence of Theorem 3.15, we need to verify that

IλC+(1−λ)D(λx + (1 − λ)y) ≥ [IC(x)]λ[ID(y)]1−λ for all x, y ∈ Rn.

For λ = 0 or λ = 1, the claim is immediate. For any λ ∈ (0, 1), if either x � C or y � D, the
right-hand side is zero, so the statement is trivial. Otherwise, if x ∈ C and y ∈ D, then both
sides are equal to one.

The Prékopa–Leindler inequality can be used to establish some interesting concentration
inequalities of Lipschitz functions for a particular subclass of distributions, one which allows
for some dependence. In particular, we say that a distribution P with a density p (with
respect to the Lebesgue measure) is a strongly log-concave distribution if the function log p
is strongly concave. Equivalently stated, this condition means that the density can be written
in the form p(x) = exp(−ψ(x)), where the function ψ : Rn → R is strongly convex, meaning
that there is some γ > 0 such that

λψ(x) + (1 − λ)ψ(y) − ψ(λx + (1 − λ)y) ≥
γ

2
λ(1 − λ) ‖x − y‖2

2 (3.48)

for all λ ∈ [0, 1], and x, y ∈ Rn. For instance, it is easy to verify that the distribution of a stan-
dard Gaussian vector in n dimensions is strongly log-concave with parameter γ = 1. More
generally, any Gaussian distribution with covariance matrix Σ � 0 is strongly log-concave
with parameter γ = γmin(Σ−1) = (γmax(Σ))−1. In addition, there are a variety of non-Gaussian
distributions that are also strongly log-concave. For any such distribution, Lipschitz func-
tions are guaranteed to concentrate, as summarized in the following:

Theorem 3.16 Let P be any strongly log-concave distribution with parameter γ > 0.
Then for any function f : Rn → R that is L-Lipschitz with respect to Euclidean norm,
we have

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2e−
γ t2

4L2 . (3.49)

Remark: Since the standard Gaussian distribution is log-concave with parameter γ = 1, this
theorem implies our earlier result (Theorem 2.26), albeit with a sub-optimal constant in the
exponent.

Proof Let h be an arbitrary zero-mean function with Lipschitz constant L with respect to
the Euclidean norm. It suffices to show that E[eh(X)] ≤ e

L2
γ . Indeed, if this inequality holds,

then, given an arbitrary function f with Lipschitz constant K and λ ∈ R, we can apply
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this inequality to the zero-mean function h := λ( f − E[ f (X)]), which has Lipschitz constant
L = λK. Doing so yields the bound

E[eλ( f (X)−E[ f (X)])] ≤ e
λ2K2

γ for all λ ∈ R,

which shows that f (X)−E[ f (X)] is a sub-Gaussian random variable. As shown in Chapter 2,
this type of uniform control on the moment generating function implies the claimed tail
bound.

Accordingly, for a given zero-mean function h that is L-Lipschitz and for given λ ∈ (0, 1)
and x, y ∈ Rn, define the function

g(y) := inf
x∈Rn

{
h(x) +

γ

4
‖x − y‖2

2

}
,

known as the inf-convolution of h with the rescaled Euclidean norm. With this definition,
the proof is based on applying the Prékopa–Leindler inequality with λ = 1/2 to the triplet
of functions w(z) ≡ p(z) = exp(−ψ(z)), the density of P, and the pair of functions

u(x) := exp(−h(x) − ψ(x)) and v(y) := exp(g(y) − ψ(y)).

We first need to verify that the inequality (3.46) holds with λ = 1/2. By the definitions of u
and v, the logarithm of the right-hand side of inequality (3.46)—call it R for short—is given
by

R = 1
2 {g(y) − h(x)} − 1

2ψ(x) − 1
2ψ(y) = 1

2 {g(y) − h(x) − 2E(x, y)} − ψ(x/2 + y/2),

where E(x, y) := 1
2ψ(x) + 1

2ψ(y) − ψ(x/2 + y/2). Since P is a γ-log-concave distribution, the
function ψ is γ strongly convex, and hence 2E(x, y) ≥ γ

4 ‖x− y‖2
2. Substituting into the earlier

representation of R, we find that

R ≤
1
2

{
g(y) − h(x) −

γ

4
‖x − y‖2

2

}
− ψ(x/2 + y/2) ≤ −ψ(x/2 + y/2),

where the final inequality follows from the definition of the inf-convolution g. We have thus
verified condition (3.46) with λ = 1/2.

Now since
∫

w(x) dx =
∫

p(x) dx = 1 by construction, the Prékopa–Leindler inequality
implies that

0 ≥
1
2

log
∫

e−h(x)−ψ(x) dx +
1
2

log
∫

eg(y)−ψ(y) dy.

Rewriting the integrals as expectations and rearranging yields

E[eg(Y)] ≤
1

E[e−h(X)]
(i)
≤

1
eE[−h(X)]

(ii)
= 1, (3.50)

where step (i) follows from Jensen’s inequality, and convexity of the function t �→ exp(−t),
and step (ii) uses the fact that E[−h(X)] = 0 by assumption. Finally, since h is an L-Lipschitz
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function, we have |h(x) − h(y)| ≤ L ‖x − y‖2, and hence

g(y) = inf
x∈Rn

{
h(x) +

γ

4
‖x − y‖2

2

}
≥ h(y) + inf

x∈Rn

{
− L ‖x − y‖2 +

γ

4
‖x − y‖2

2

}
= h(y) −

L2

γ
.

Combined with the bound (3.50), we conclude that E[eh(Y)] ≤ exp( L2

γ
), as claimed.

3.3 Wasserstein distances and information inequalities

We now turn to the topic of Wasserstein distances and information inequalities, also known
as transportation cost inequalities. On one hand, the transportation cost approach can be
used to obtain some sharp results for Lipschitz functions of independent random variables.
Perhaps more importantly, it is especially well suited to certain types of dependent random
variables, such as those arising in Markov chains and other types of mixing processes.

3.3.1 Wasserstein distances

We begin by defining the notion of a Wasserstein distance. Given a metric space (X, ρ), a
function f : X → R is L-Lipschitz with respect to the metric ρ if

| f (x) − f (x′)| ≤ Lρ(x, x′) for all x, x′ ∈ X, (3.51)

and we use ‖ f ‖Lip to denote the smallest L for which this inequality holds. Given two prob-
ability distributions Q and P on X, we can then measure the distance between them via

Wρ(Q, P) = sup
‖ f ‖Lip≤1

[ ∫
f dQ −

∫
f dP

]
, (3.52)

where the supremum ranges over all 1-Lipschitz functions. This distance measure is referred
to as the Wasserstein metric induced by ρ. It can be verified that, for each choice of the metric
ρ, this definition defines a distance on the space of probability measures.

Example 3.17 (Hamming metric and total variation distance) Consider the Hamming met-
ric ρ(x, x′) = I[x � x′]. We claim that, in this case, the associated Wasserstein distance is
equivalent to the total variation distance

‖Q − P‖TV := sup
A⊆X

|Q(A) − P(A)|, (3.53)

where the supremum ranges over all measurable subsets A. To see this equivalence, note that
any function that is 1-Lipschitz with respect to the Hamming distance satisfies the bound
| f (x)− f (x′)| ≤ 1. Since the supremum (3.52) is invariant to constant offsets of the function,
we may restrict the supremum to functions such that f (x) ∈ [0, 1] for all x ∈ X, thereby
obtaining

WHam(Q, P) = sup
f : X→ [0,1]

∫
f (dQ − dP)

(i)
= ‖Q − P‖TV,
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where equality (i) follows from Exercise 3.13.
In terms of the underlying densities3 p and q taken with respect to a base measure ν, we

can write

WHam(Q, P) = ‖Q − P‖TV =
1
2

∫
|p(x) − q(x)|ν (dx),

corresponding to (one half) the L1(ν)-norm between the densities. Again, see Exercise 3.13
for further details on this equivalence. ♣

By a classical and deep result in duality theory (see the bibliographic section for details),
any Wasserstein distance has an equivalent definition as a type of coupling-based distance.
A distribution M on the product space X ⊗ X is a coupling of the pair (Q,P) if its marginal
distributions in the first and second coordinates coincide with Q and P, respectively. In order
to see the relation to the Wasserstein distance, let f : X → R be any 1-Lipschitz function,
and let M be any coupling. We then have∫

ρ(x, x′) dM(x, x′)
(i)
≥
∫

( f (x) − f (x′)) dM(x, x′)
(ii)
=

∫
f (dP − dQ), (3.54)

where the inequality (i) follows from the 1-Lipschitz nature of f , and the equality (ii) follows
since M is a coupling. The Kantorovich–Rubinstein duality guarantees the following impor-
tant fact: if we minimize over all possible couplings, then this argument can be reversed, and
in fact we have the equivalence

sup
‖ f ‖Lip≤1

∫
f (dQ − dP)︸����������������������︷︷����������������������︸

Wρ(P,Q)

= inf
M

∫
X×X

ρ(x, x′) dM(x, x′) = inf
M
EM[ρ(X, X′)], (3.55)

where the infimum ranges over all couplings M of the pair (P,Q). This coupling-based rep-
resentation of the Wasserstein distance plays an important role in many of the proofs to
follow.

The term “transportation cost” arises from the following interpretation of coupling-based
representation (3.55). For concreteness, let us consider the case where P and Q have den-
sities p and q with respect to Lebesgue measure on X, and the coupling M has density m
with respect to Lebesgue measure on the product space. The density p can be viewed as
describing some initial distribution of mass over the space X, whereas the density q can be
interpreted as some desired distribution of the mass. Our goal is to shift mass so as to trans-
form the initial distribution p to the desired distribution q. The quantity ρ(x, x′) dx dx′ can
be interpreted as the cost of transporting a small increment of mass dx to the new increment
dx′. The joint distribution m(x, x′) is known as a transportation plan, meaning a scheme for
shifting mass so that p is transformed to q. Combining these ingredients, we conclude that
the transportation cost associated with the plan m is given by∫

X×X
ρ(x, x′)m(x, x′) dx dx′,

and minimizing over all admissible plans—that is, those that marginalize down to p and q,

3 This assumption entails no loss of generality, since P and Q both have densities with respect to ν = 1
2 (P + Q).
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respectively—yields the Wasserstein distance.

3.3.2 Transportation cost and concentration inequalities

Let us now turn to the notion of a transportation cost inequality, and its implications for the
concentration of measure. Transportation cost inequalities are based on upper bounding the
Wasserstein distance Wρ(Q, P) in terms of the Kullback–Leibler (KL) divergence. Given two
distributions Q and P, the KL divergence between them is given by

D(Q ‖P) :=

⎧⎪⎪⎨⎪⎪⎩EQ
[

log dQ
dP

]
when Q is absolutely continuous with respect to P,

+∞ otherwise.
(3.56)

If the measures have densities4 with respect to some underlying measure ν—say q and p—
then the Kullback–Leibler divergence can be written in the form

D(Q ‖P) =
∫
X

q(x) log
q(x)
p(x)

ν (dx). (3.57)

Although the KL divergence provides a measure of distance between distributions, it is not
actually a metric (since, for instance, it is not symmetric in general).

We say that a transportation cost inequality is satisfied when the Wasserstein distance is
upper bounded by a multiple of the square-root KL divergence.

Definition 3.18 For a given metric ρ, the probability measure P is said to satisfy a
ρ-transportation cost inequality with parameter γ > 0 if

Wρ(Q, P) ≤
√

2γD(Q ‖P) (3.58)

for all probability measures Q.

Such results are also known as information inequalities, due to the role of the Kullback–
Leibler divergence in information theory. A classical example of an information inequality
is the Pinsker–Csiszár–Kullback inequality, which relates the total variation distance with
the KL divergence. More precisely, for all probability distributions P and Q, we have

‖P − Q‖TV ≤
√

1
2 D(Q ‖P). (3.59)

From our development in Example 3.17, this inequality corresponds to a transportation
cost inequality, in which γ = 1/4 and the Wasserstein distance is based on the Hamming
norm ρ(x, x′) = I[x � x′]. As will be seen shortly, this inequality can be used to recover
the bounded differences inequality, corresponding to a concentration statement for functions
that are Lipschitz with respect to the Hamming norm. See Exercise 15.6 in Chapter 15 for

4 In the special case of a discrete space X, and probability mass functions q and p, we have D(Q ‖P) =∑
x∈X q(x) log q(x)

p(x) .
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the proof of this bound.

By the definition (3.52) of the Wasserstein distance, the transportation cost inequality
(3.58) can be used to upper bound the deviation

∫
f dQ −

∫
f dP in terms of the Kullback–

Leibler divergence D(Q ‖P). As shown by the following result, a particular choice of dis-
tribution Q can be used to derive a concentration bound for f under P. In this way, a trans-
portation cost inequality leads to concentration bounds for Lipschitz functions:

Theorem 3.19 (From transportation cost to concentration) Consider a metric measure
space (P,X, ρ), and suppose that P satisfies the ρ-transportation cost inequality (3.58).
Then its concentration function satisfies the bound

α P,(X,ρ)(t) ≤ 2 exp
(
−

t2

2γ

)
. (3.60)

Moreover, for any X ∼ P and any L-Lipschitz function f : X → R, we have the concen-
tration inequality

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2 exp
(
−

t2

2γL2

)
. (3.61)

Remarks: By Proposition 3.11, the bound (3.60) implies that

P[| f (X) − mf | ≥ t] ≤ 2 exp
(
−

t2

2γL2

)
, (3.62)

where mf is any median of f . In turn, this bound can be used to establish concentration
around the mean, albeit with worse constants than the bound (3.61). (See Exercise 2.14 for
details on this equivalence.) In our proof, we make use of separate arguments for the median
and mean, so as to obtain sharp constants.

Proof We begin by proving the bound (3.60). For any set A with P[A] ≥ 1/2 and a given
ε > 0, consider the set

B := (Aε)c = {y ∈ X | ρ(x, y) ≥ ε ∀ x ∈ A}.

If P(Aε) = 1, then the proof is complete, so that we may assume that P(B) > 0.
By construction, we have ρ(A, B) := infx∈A infy∈B ρ(x, y) ≥ ε. On the other hand, let PA

and PB denote the distributions of P conditioned on A and B, and let M denote any cou-
pling of this pair. Since the marginals of M are supported on A and B, respectively, we
have ρ(A, B) ≤

∫
ρ(x, x′) dM(x, x′). Taking the infimum over all couplings, we conclude that

ε ≤ ρ(A, B) ≤ Wρ(PA, PB).
Now applying the triangle inequality, we have

ε ≤ Wρ(PA, PB) ≤ Wρ(P, PA) + Wρ(P, PB)
(ii)
≤

√
γD(PA ‖P) +

√
γD(PB ‖P)

(iii)
≤

√
2γ {D(PA ‖P) + D(PB ‖P)}1/2,
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where step (ii) follows from the transportation cost inequality, and step (iii) follows from the
inequality (a + b)2 ≤ 2a2 + 2b2.

It remains to compute the Kullback–Leibler divergences. For any measurable set C, we
have PA(C) = P(C ∩ A)/P(A), so that D(PA ‖P) = log 1

P(A) . Similarly, we have D(PB ‖P) =
log 1

P(B) . Combining the pieces, we conclude that

ε2 ≤ 2γ{log(1/P(A)) + log(1/P(B))} = 2γ log
(

1
P(A)P(B)

)
,

or equivalently P(A)P(B) ≤ exp
(
− ε2

2γ

)
. Since P(A) ≥ 1/2 and B = (Aε)c, we conclude that

P(Aε) ≥ 1 − 2 exp
(
− ε2

2γ

)
. Since A was an arbitrary set with P(A) ≥ 1/2, the bound (3.60)

follows.

We now turn to the proof of the concentration statement (3.61) for the mean. If one is not
concerned about constants, such a bound follows immediately by combining claim (3.60)
with the result of Exercise 2.14. Here we present an alternative proof with the dual goals of
obtaining the sharp result and illustrating a different proof technique. Throughout this proof,
we use EQ[ f ] and EP[ f ] to denote the mean of the random variable f (X) when X ∼ Q and
X ∼ P, respectively. We begin by observing that∫

f (dQ − dP)
(i)
≤ LWρ(Q, P)

(ii)
≤

√
2L2γD(Q ‖P),

where step (i) follows from the L-Lipschitz condition on f and the definition (3.52); and
step (ii) follows from the information inequality (3.58). For any positive numbers (u, v, λ),
we have

√
2uv ≤ u

2λ +
v
λ
. Applying this inequality with u = L2γ and v = D(Q ‖P) yields∫

f (dQ − dP) ≤
λγL2

2
+

1
λ

D(Q ‖P), (3.63)

valid for all λ > 0.
Now define a distribution Q with Radon–Nikodym derivative dQ

dP (x) = eg(x)/EP[eg(X)],
where g(x) := λ( f (x) − EP( f )) − L2γλ2

2 . (Note that our proof of the bound (3.61) ensures that
EP[eg(X)] exists.) With this choice, we have

D(Q ‖P) = EQ log
(

eg(X)

EP[eg(X)]

)
= λ{EQ( f (X)) − EP( f (X))} −

γL2λ2

2
− logEP[eg(X)].

Combining with inequality (3.63) and performing some algebra (during which the reader
should recall that λ > 0), we find that logEP[eg(X)] ≤ 0, or equivalently

EP[eλ( f (X)−EP[ f (X′)])] ≤ e
λ2γL2

2 .

The upper tail bound thus follows by the Chernoff bound. The same argument can be applied
to − f , which yields the lower tail bound.

3.3.3 Tensorization for transportation cost

Based on Theorem 3.19, we see that transportation cost inequalities can be translated into
concentration inequalities. Like entropy, transportation cost inequalities behave nicely for
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product measures, and can be combined in an additive manner. Doing so yields concentra-
tion inequalities for Lipschitz functions in the higher-dimensional space. We summarize in
the following:

Proposition 3.20 Suppose that, for each k = 1, 2, . . . , n, the univariate distribution
Pk satisfies a ρk-transportation cost inequality with parameter γk. Then the product
distribution P =

⊗n
k=1 Pk satisfies the transportation cost inequality

Wρ(Q, P) ≤

√√
2
( n∑

k=1

γk

)
D(Q ‖P) for all distributions Q, (3.64)

where the Wasserstein metric is defined using the distance ρ(x, y) :=
∑n

k=1 ρk(xk, yk).

Before turning to the proof of Proposition 3.20, it is instructive to see how, in conjunction
with Theorem 3.19, it can be used to recover the bounded differences inequality.

Example 3.21 (Bounded differences inequality) Suppose that f satisfies the bounded dif-
ferences inequality with parameter Lk in coordinate k. Then using the triangle inequality
and the bounded differences property, it can be verified that f is a 1-Lipschitz function with
respect to the rescaled Hamming metric

ρ(x, y) :=
n∑

k=1

ρk(xk, yk), where ρk(xk, yk) := Lk I[xk � yk].

By the Pinsker–Csiszár–Kullback inequality (3.59), each univariate distribution Pk satisfies
a ρk-transportation cost inequality with parameter γk =

L2
k

4 , so that Proposition 3.20 implies
that P =

⊗n
k=1 Pk satisfies a ρ-transportation cost inequality with parameter γ := 1

4

∑n
k=1 L2

k .
Since f is 1-Lipschitz with respect to the metric ρ, Theorem 3.19 implies that

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2 exp
(
−

2t2∑n
k=1 L2

k

)
. (3.65)

In this way, we recover the bounded differences inequality from Chapter 2 from a transporta-
tion cost argument. ♣

Our proof of Proposition 3.20 is based on the coupling-based characterization (3.55) of
Wasserstein distances.

Proof Letting Q be an arbitrary distribution over the product space Xn, we construct a
coupling M of the pair (P,Q). For each j = 2, . . . , n, let M j

1 denote the joint distribution over
the pair (X j

1,Y
j

1) = (X1, . . . , Xj,Y1, . . . ,Yj), and let M j| j−1 denote the conditional distribution
of (Xj,Yj) given (X j−1

1 ,Y j−1
1 ). By the dual representation (3.55), we have

Wρ(Q, P) ≤ EM1 [ρ1(X1, Y1)] +
n∑

j=2

EM j−1
1

[EM j| j−1 [ρ j(Xj,Yj)]],
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where M j denotes the marginal distribution over the pair (Xj,Yj). We now define our cou-
pling M in an inductive manner as follows. First, choose M1 to be an optimal coupling of the
pair (P1,Q1), thereby ensuring that

EM1 [ρ1(X1,Y1)]
(i)
= Wρ(Q1, P1)

(ii)
≤
√

2γ1D(Q1 ‖P1),

where equality (i) follows by the optimality of the coupling, and inequality (ii) follows from
the assumed transportation cost inequality for P1. Now assume that the joint distribution
over (X j−1

1 , Y j−1
1 ) has been defined. We choose conditional distribution M j| j−1(· | x j−1

1 , y j−1
1 ) to

be an optimal coupling for the pair (P j,Q j| j−1(· | y j−1
1 )), thereby ensuring that

EM j| j−1 [ρ j(Xj, Yj)] ≤
√

2γ jD(Q j| j−1(· | y j−1
1 ) ‖P j),

valid for each y j−1
1 . Taking averages over Y j−1

1 with respect to the marginal distribution
M j−1

1 —or, equivalently, the marginal Q j−1
1 —the concavity of the square-root function and

Jensen’s inequality implies that

EM j−1
1

[EM j| j−1 [ρ j(Xj, Yj)]] ≤
√

2γ jEQ j−1
1

D(Q j| j−1(· | Y j−1
1 ) ‖P j).

Combining the ingredients, we obtain

Wρ(Q, P) ≤
√

2γ1D(Q1 ‖P1) +
n∑

j=2

√
2γ jEQ j−1

1
[D(Q j| j−1(· | Y j−1

1 ) ‖P j)]

(i)
≤

√√
2
( n∑

j=1

γ j

) √√
D(Q1 ‖P1) +

n∑
j=2

EQ j−1
1

[D(Q j| j−1(· | Y j−1
1 ) ‖P j)]

(ii)
=

√√
2
( n∑

j=1

γ j

)
D(Q ‖P),

where step (i) by follows the Cauchy–Schwarz inequality, and equality (ii) uses the chain
rule for Kullback–Leibler divergence from Exercise 3.2.

In Exercise 3.14, we sketch out an alternative proof of Proposition 3.20, one which makes
direct use of the Lipschitz characterization of the Wasserstein distance.

3.3.4 Transportation cost inequalities for Markov chains

As mentioned previously, the transportation cost approach has some desirable features in ap-
plication to Lipschitz functions involving certain types of dependent random variables. Here
we illustrate this type of argument for the case of a Markov chain. (See the bibliographic
section for references to more general results on concentration for dependent random vari-
ables.)

More concretely, let (X1, . . . , Xn) be a random vector generated by a Markov chain, where
each Xi takes values in a countable spaceX. Its distribution P overXn is defined by an initial
distribution X1 ∼ P1, and the transition kernels

Ki+1(xi+1 | xi) = Pi+1(Xi+1 = xi+1 | Xi = xi). (3.66)
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Here we focus on discrete state Markov chains that are β-contractive, meaning that there
exists some β ∈ [0, 1) such that

max
i=1,...,n−1

sup
xi,x′i

‖Ki+1(· | xi) − Ki+1(· | x′i)‖TV ≤ β, (3.67)

where the total variation norm (3.53) was previously defined.

Theorem 3.22 Let P be the distribution of a β-contractive Markov chain (3.67) over
the discrete space Xn. Then for any other distribution Q over Xn, we have

Wρ(Q, P) ≤
1

1 − β

√
n
2

D(Q ‖P), (3.68)

where the Wasserstein distance is defined with respect to the Hamming norm ρ(x, y) =∑n
i=1 I[xi � yi].

Remark: See the bibliography section for references to proofs of this result. Using The-
orem 3.19, an immediate corollary of the bound (3.68) is that for any function f : Xn → R
that is L-Lipschitz with respect to the Hamming norm, we have

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2 exp
(
−

2(1 − β)2t2

nL2

)
. (3.69)

Note that this result is a strict generalization of the bounded difference inequality for inde-
pendent random variables, to which it reduces when β = 0.

Example 3.23 (Parameter estimation for a binary Markov chain) Consider a Markov chain
over binary variables Xi ∈ {0, 1}2 specified by an initial distribution P1 that is uniform, and
the transition kernel

Ki+1(xi+1 | xi) =

⎧⎪⎪⎨⎪⎪⎩ 1
2 (1 + δ) if xi+1 = xi,
1
2 (1 − δ) if xi+1 � xi,

where δ ∈ [0, 1] is a “stickiness” parameter. Suppose that our goal is to estimate the param-
eter δ based on an n-length vector (X1, . . . , Xn) drawn according to this chain. An unbiased
estimate of 1

2 (1 + δ) is given by the function

f (X1, . . . , Xn) :=
1

n − 1

n−1∑
i=1

I[Xi = Xi+1],

corresponding to the fraction of times that successive samples take the same value. We claim
that f satisfies the concentration inequality

P[| f (X) − 1
2 (1 + δ)| ≥ t] ≤ 2e−

(n−1)2(1−δ)2 t2
2n ≤ 2e−

(n−1)(1−δ)2 t2
4 . (3.70)

Following some calculation, we find that the chain is β-contractive with β = δ. More-
over, the function f is 2

n−1 -Lipschitz with respect to the Hamming norm. Consequently, the
bound (3.70) follows as a consequence of our earlier general result (3.69). ♣
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3.3.5 Asymmetric coupling cost

Thus far, we have considered various types of Wasserstein distances, which can be used to
obtain concentration for Lipschitz functions. However, this approach—as with most meth-
ods that involve Lipschitz conditions with respect to �1-type norms—typically does not yield
dimension-independent bounds. By contrast, as we have seen previously, Lipschitz condi-
tions based on the �2-norm often do lead to dimension-independent results.

With this motivation in mind, this section is devoted to consideration of another type of
coupling-based distance between probability distributions, but one that is asymmetric in its
two arguments, and of a quadratic nature. In particular, we define

C(Q,P) := inf
M

√√∫ n∑
i=1

(M[Yi � xi | Xi = xi])2 dP(x), (3.71)

where once again the infimum ranges over all couplings M of the pair (P,Q). This distance
is relatively closely related to the total variation distance; in particular, it can be shown that
an equivalent representation for this asymmetric distance is

C(Q,P) =

√∫ ∣∣∣∣∣∣1 − dQ
dP

(x)

∣∣∣∣∣∣2
+

dP(x), (3.72)

where t+ := max{0, t}. We leave this equivalence as an exercise for the reader. This repre-
sentation reveals the close link to the total variation distance, for which

‖P − Q‖TV =

∫ ∣∣∣∣∣∣1 − dQ
dP

∣∣∣∣∣∣ dP(x) = 2
∫ ∣∣∣∣∣∣1 − dQ

dP

∣∣∣∣∣∣
+

dP(x).

An especially interesting aspect of the asymmetric coupling distance is that it satisfies a
Pinsker-type inequality for product distributions. In particular, given any product distribution
P in n variables, we have

max{C(Q,P), C(P,Q)} ≤
√

2D(Q ‖P) (3.73)

for all distributions Q in n dimensions. This deep result is due to Samson; see the biblio-
graphic section for further discussion. While simple to state, it is non-trivial to prove, and
has some very powerful consequences for the concentration of convex and Lipschitz func-
tions, as summarized in the following:

Theorem 3.24 Consider a vector of independent random variables (X1, . . . , Xn), each
taking values in [0, 1], and let f : Rn → R be convex, and L-Lipschitz with respect to
the Euclidean norm. Then for all t ≥ 0, we have

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2e−
t2

2L2 . (3.74)

Remarks: Note that this is the analog of Theorem 2.26—namely, a dimension-independent
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form of concentration for Lipschitz functions of independent Gaussian variables, but formu-
lated for Lipschitz and convex functions of bounded random variables.

Of course, the same bound also applies to a concave and Lipschitz function. Earlier, we
saw that upper tail bounds can obtained under a slightly milder condition, namely that of
separate convexity (see Theorem 3.4). However, two-sided tail bounds (or concentration
inequalities) require these stronger convexity or concavity conditions, as imposed here.

Example 3.25 (Rademacher revisited) As previously introduced in Example 3.5, the Rade-
macher complexity of a set A ⊆ Rn is defined in terms of the random variable

Z ≡ Z(ε1, . . . , εn) := sup
a∈A

n∑
k=1

akεk,

where {εk}nk=1 is an i.i.d. sequence of Rademacher variables. As shown in Example 3.5, the
function (ε1, . . . , εn) �→ Z(ε1, . . . , εn) is jointly convex, and Lipschitz with respect to the
Euclidean norm with parameterW(A) := supa∈A ‖a‖2. Consequently, Theorem 3.24 implies
that

P[|Z − E[Z]| ≥ t] ≤ 2 exp
(
−

t2

2W2(A)

)
. (3.75)

Note that this bound sharpens our earlier inequality (3.17), both in terms of the exponent
and in providing a two-sided result. ♣

Let us now prove Theorem 3.24.

Proof As defined, any Wasserstein distance immediately yields an upper bound on a quan-
tity of the form

∫
f (dQ − dP), where f is a Lipschitz function. Although the asymmetric

coupling-based distance is not a Wasserstein distance, the key fact is that it can be used to
upper bound such differences when f : [0, 1]n → R is Lipschitz and convex. Indeed, for a
convex f , we have the lower bound f (x) ≥ f (y) + 〈∇ f (y), x − y〉, which implies that

f (y) − f (x) ≤
n∑

j=1

∣∣∣∣∣∣ ∂ f
∂y j

(y)

∣∣∣∣∣∣ I[x j � y j].

Here we have also used the fact that |x j − y j| ≤ I[x j � y j] for variables taking values in the
unit interval [0, 1]. Consequently, for any coupling M of the pair (P,Q), we have∫

f (y) dQ(y) −
∫

f (x) dP(x) ≤
n∑

j=1

∣∣∣∣∣∣ ∂ f
∂y j

(y)

∣∣∣∣∣∣ I[x j � y j] dM(x, y)

=

∫ n∑
j=1

∣∣∣∣∣∣ ∂ f
∂y j

(y)

∣∣∣∣∣∣M[Xj � y j | Yj = y j] dQ(y)

≤
∫
‖∇ f (y)‖2

√√ n∑
j=1

M2[Xj � y j | Yj = y j] dQ(y),

where we have applied the Cauchy–Schwarz inequality. By the Lipschitz condition and con-
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vexity, we have ‖∇ f (y)‖2 ≤ L almost everywhere, and hence∫
f (y) dQ(y) −

∫
f (x) dP(x) ≤ L

∫ { n∑
j=1

M2[Xj � y j | Yj = y j]
}1/2

dQ(y)

≤ L
[ ∫ n∑

j=1

M2[Xj � y j | Yj = y j] dQ(y)
]1/2

= LC(P,Q).

Consequently, the upper tail bound follows by a combination of the information inequal-
ity (3.73) and Theorem 3.19.

To obtain the lower bound for a convex Lipschitz function, it suffices to establish an upper
bound for a concave Lipschitz function, say g : [0, 1]n → R. In this case, we have the upper
bound

g(y) ≤ g(x) + 〈∇g(x), y − x〉 ≤ g(x) +
n∑

j=1

∣∣∣∣∣∣∂g(x)
∂x j

∣∣∣∣∣∣ I[x j � y j],

and consequently∫
g dQ(y) −

∫
g dP(x) ≤

n∑
j=1

∣∣∣∣∣∣∂g(x)
∂x j

∣∣∣∣∣∣ I[x j � y j] dM(x, y).

The same line of reasoning then shows that
∫

g dQ(y) −
∫

g dP(x) ≤ LC(Q,P), from which
the claim then follows as before.

We have stated Theorem 3.24 for the familiar case of independent random variables. How-
ever, a version of the underlying information inequality (3.73) holds for many collections of
random variables. In particular, consider an n-dimensional distribution P for which there
exists some γ > 0 such that the following inequality holds:

max{C(Q,P), C(P,Q)} ≤
√

2γD(Q ‖P) for all distributions Q. (3.76)

The same proof then shows that any L-Lipschitz function satisfies the concentration inequal-
ity

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2 exp
(
−

t2

2γL2

)
. (3.77)

For example, for a Markov chain that satisfies the β-contraction condition (3.67), it can be
shown that the information inequality (3.76) holds with γ =

( 1
1−

√
β

)2. Consequently, any
L-Lipschitz function (with respect to the Euclidean norm) of a β-contractive Markov chain
satisfies the concentration inequality

P[| f (X) − E[ f (X)]| ≥ t] ≤ 2 exp
(
−

(1 −
√
β)2t2

2L2

)
. (3.78)

This bound is a dimension-independent analog of our earlier bound (3.69) for a contractive
Markov chain. We refer the reader to the bibliographic section for further discussion of
results of this type.
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3.4 Tail bounds for empirical processes

In this section, we illustrate the use of concentration inequalities in application to empirical
processes. We encourage the interested reader to look ahead to Chapter 4 so as to acquire
the statistical motivation for the classes of problems studied in this section. Here we use the
entropy method to derive various tail bounds on the suprema of empirical processes—in par-
ticular, for random variables that are generated by taking suprema of sample averages over
function classes. More precisely letF be a class of functions (each of the form f : X → R),
and let (X1, . . . , Xn) be drawn from a product distribution P =

⊗n
i=1 Pi, where each Pi is

supported on some set Xi ⊆ X. We then consider the random variable5

Z = sup
f∈F

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

f (Xi)

⎫⎪⎪⎬⎪⎪⎭ . (3.79)

The primary goal of this section is to derive a number of upper bounds on the tail event
{Z ≥ E[Z] + δ}.

As a passing remark, we note that, if the goal is to obtain bounds on the random vari-
able sup f∈F

∣∣∣ 1
n

∑n
i=1 f (Xi)

∣∣∣, then it can be reduced to an instance of the variable (3.79) by
considering the augmented function class F̃ =F ∪ {−F }.

3.4.1 A functional Hoeffding inequality

We begin with the simplest type of tail bound for the random variable Z, namely one of the
Hoeffding type. The following result is a generalization of the classical Hoeffding theorem
for sums of bounded random variables.

Theorem 3.26 (Functional Hoeffding theorem) For each f ∈ F and i = 1, . . . , n,
assume that there are real numbers ai, f ≤ bi, f such that f (x) ∈ [ai, f , bi, f ] for all x ∈ Xi.
Then for all δ ≥ 0, we have

P[Z ≥ E[Z] + δ] ≤ exp
(
−

nδ2

4L2

)
, (3.80)

where L2 := sup f∈F
{ 1

n

∑n
i=1(bi, f − ai, f )2}.

Remark: In a very special case, Theorem 3.26 can be used to recover the classical Hoeffding
inequality in the case of bounded random variables, albeit with a slightly worse constant.
Indeed, if we letF be a singleton consisting of the identity function f (x) = x, then we have
Z = 1

n

∑n
i=1 Xi. Consequently, as long as xi ∈ [ai, bi], Theorem 3.26 implies that

P
[
1
n

n∑
i=1

(Xi − E[Xi]) ≥ δ

]
≤ e−

nδ2

4L2 ,

5 Note that there can be measurability problems associated with this definition ifF is not countable. See the
bibliographic discussion in Chapter 4 for more details on how to resolve them.
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where L2 = 1
n

∑n
i=1(bi − ai)2. We thus recover the classical Hoeffding theorem, although the

constant 1/4 in the exponent is not optimal.
More substantive implications of Theorem 3.26 arise when it is applied to a larger function

class F . In order to appreciate its power, let us compare the upper tail bound (3.80) to the
corresponding bound that can be derived from the bounded differences inequality, as applied
to the function (x1, . . . , xn) �→ Z(x1, . . . , xn). With some calculation, it can be seen that this
function satisfies the bounded difference inequality with constant Li := sup f∈F |bi, f − ai, f |
in coordinate i. Consequently, the bounded differences method (Corollary 2.21) yields a
sub-Gaussian tail bound, analogous to the bound (3.80), but with the parameter

L̃2 =
1
n

n∑
i=1

sup
f∈F

(bi, f − ai, f )2.

Note that the quantity L̃—since it is defined by applying the supremum separately to each
coordinate—can be substantially larger than the constant L defined in the theorem statement.

Proof It suffices to prove the result for a finite class of functionsF ; the general result can
be recovered by taking limits over an increasing sequence of such finite classes. Let us view
Z as a function of the random variables (X1, . . . , Xn). For each index j = 1, . . . , n, define the
random function

x j �→ Zj(x j) = Z(X1, . . . , Xj−1, x j, Xj+1, . . . , Xn).

In order to avoid notational clutter, we work throughout this proof with the unrescaled ver-
sion of Z, namely Z = sup f∈F

∑n
i=1 f (Xi). Combining the tensorization Lemma 3.8 with the

bound (3.20a) from Lemma 3.7, we obtain

H(eλZ(X)) ≤ λ2E
[ n∑

j=1

E[(Zj(Xj) − Zj(Yj))2 I[Zj(Xj) ≥ Zj(Yj)] eλZ(X) | X\ j]
]
. (3.81)

For each f ∈ F , define the set A( f ) := {(x1, . . . , xn) ∈ Rn | Z =
∑n

i=1 f (xi)}, corresponding
to the set of realizations for which the maximum defining Z is achieved by f . (If there are
ties, then we resolve them arbitrarily so as to make the setsA( f ) disjoint.) For any x ∈ A( f ),
we have

Zj(x j) − Zj(y j) = f (x j) +
n∑

i� j

f (xi) − max
f̃∈F

{
f̃ (y j) +

n∑
i� j

f̃ (xi)
}
≤ f (x j) − f (y j).

As long as Zj(x j) ≥ Zj(y j), this inequality still holds after squaring both sides. Considering
all possible sets A( f ), we arrive at the upper bound

(Zj(x j) − Zj(y j))2 I[Zj(x j) ≥ Zj(y j)] ≤
∑
f∈F

I[x ∈ A( f )]( f (x j) − f (y j))2. (3.82)
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Since ( f (x j) − f (y j))2 ≤ (bj, f − aj, f )2 by assumption, summing over the indices j yields

n∑
j=1

(Zj(x j) − Zj(y j))2 I[Zk(xk) ≥ Zk(yk)] eλZ(x) ≤
∑
h∈F

I[x ∈ A(h)]
n∑

k=1

(bk,h − ak,h)2eλZ(x)

≤ sup
f∈F

n∑
j=1

(bj, f − aj, f )2eλZ(x)

= nL2eλZ(x).

Substituting back into our earlier inequality (3.81), we find that

H(eλZ(X)) ≤ nL2λ2 E[eλZ(X)].

This is a sub-Gaussian entropy bound (3.5) with σ =
√

2n L, so that Proposition 3.2 implies
that the unrescaled version of Z satisfies the tail bound

P[Z ≥ E[Z] + t] ≤ e−
t2

4nL2 .

Setting t = nδ yields the claim (3.80) for the rescaled version of Z.

3.4.2 A functional Bernstein inequality

In this section, we turn to the Bernstein refinement of the functional Hoeffding inequality
from Theorem 3.26. As opposed to control only in terms of bounds on the function values,
it also brings a notion of variance into play. As will be discussed at length in later chapters,
this type of variance control plays a key role in obtaining sharp bounds for various types of
statistical estimators.

Theorem 3.27 (Talagrand concentration for empirical processes) Consider a count-
able class of functions F uniformly bounded by b. Then for all δ > 0, the random
variable (3.79) satisfies the upper tail bound

P[Z ≥ E[Z] + δ] ≤ 2 exp
(

−nδ2

8eE[Σ2] + 4bδ

)
, (3.83)

where Σ2 = sup f∈F
1
n

∑n
i=1 f 2(Xi).

In order to obtain a simpler bound, the expectation E[Σ2] can be upper bounded. Using
symmetrization techniques to be developed in Chapter 4, it can be shown that

E[Σ2] ≤ σ2 + 2bE[Z], (3.84)

where σ2 = sup f∈F E[ f 2(X)]. Using this upper bound on E[Σ2] and performing some alge-
bra, we obtain that there are universal positive constants (c0, c1) such that

P[Z ≥ E[Z] + c0γ
√

t + c1bt] ≤ e−nt for all t > 0, (3.85)
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where γ2 = σ2 + 2bE[Z]. See Exercise 3.16 for the derivation of this inequality from The-
orem 3.27 and the upper bound (3.84). Although the proof outlined here leads to poor con-
stants, the best known are c0 =

√
2 and c1 = 1/3; see the bibliographic section for further

details.
In certain settings, it can be useful to exploit the bound (3.85) in an alternative form: in

particular, for any ε > 0, it implies the upper bound

P[Z ≥ (1 + ε)E[Z] + c0σ
√

t + (c1 + c2
0/ε)bt] ≤ e−nt. (3.86)

Conversely, we can recover the tail bound (3.85) by optimizing over ε > 0 in the family of
bounds (3.86); see Exercise 3.16 for the details of this equivalence.

Proof We assume without loss of generality that b = 1, since the general case can be
reduced to this one. Moreover, as in the proof of Theorem 3.26, we work with the unrescaled
version—namely, the variable Z = sup f∈F

∑n
i=1 f (Xi)—and then translate our results back.

Recall the definition of the sets A( f ), and the upper bound (3.82) from the previous proof;
substituting it into the entropy bound (3.81) yields the upper bound

H(eλZ) ≤ λ2 E
[ n∑

j=1

E
[∑

f∈F

I[x ∈ A( f )]( f (Xj) − f (Yj))2eλZ | X\ j

]]
.

Now we have
n∑

i=1

∑
f∈F

I[X ∈ A( f )]( f (Xj) − f (Yj))2 ≤ 2 sup
f∈F

n∑
i=1

f 2(Xi) + 2 sup
f∈F

n∑
i=1

f 2(Yi)

= 2{Γ(X) + Γ(Y)},

where Γ(X) := sup f∈F
∑n

i=1 f 2(Xi) is the unrescaled version of Σ2. Combined with our earlier
inequality, we see that the entropy satisfies the upper bound

H(eλZ) ≤ 2λ2{E[ΓeλZ] + E[Γ]E[eλZ]}. (3.87)

From the result of Exercise 3.4, we haveH(eλ(Z+c)) = eλcH(eλZ) for any constant c ∈ R. Since
the right-hand side also contains a term eλZ in each component, we see that the same upper
bound holds for H(eλZ̃), where Z̃ = Z − E[Z] is the centered version. We now introduce a
lemma to control the term E[ΓeλZ̃].

Lemma 3.28 (Controlling the random variance) For all λ > 0, we have

E[ΓeλZ̃] ≤ (e − 1)E[Γ]E[eλZ̃] + E[Z̃eλZ̃]. (3.88)

Combining the upper bound (3.88) with the entropy upper bound (3.87) for Z̃, we obtain

H(eλZ̃) ≤ λ2{2eE[Γ]ϕ(λ) + 2ϕ′(λ)} for all λ > 0,

where ϕ(λ) := E[eλZ̃] is the moment generating function of Z̃. Since E[Z̃] = 0, we recog-
nize this as an entropy bound of the Bernstein form (3.10) with b = 2 and σ2 = 2eE[Γ].
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Consequently, by the consequence (3.12) stated following Proposition 3.3, we conclude that

P[Z̃ ≥ E[Z̃] + δ] ≤ exp
(
−

δ2

8eE[Γ] + 4δ

)
for all δ ≥ 0.

Recalling the definition of Γ and rescaling by 1/n, we obtain the stated claim of the theorem
with b = 1.

It remains to prove Lemma 3.28. Consider the function g(t) = et with conjugate dual
g∗(s) = s log s − s for s > 0. By the definition of conjugate duality (also known as Young’s
inequality), we have st ≤ s log s − s + et for all s > 0 and t ∈ R. Applying this inequality
with s = eλZ̃ and t = Γ − (e − 1)E[Γ] and then taking expectations, we find that

E[ΓeλZ̃] − (e − 1)E[eλZ̃]E[Γ] ≤ λE[Z̃eλZ̃] − E[eλZ̃] + E[eΓ−(e−1)E[Γ]].

Note that Γ is defined as a supremum of a class of functions taking values in [0, 1]. Therefore,
by the result of Exercise 3.15, we have E[eΓ−(e−1)E[Γ]] ≤ 1. Moreover, by Jensen’s inequality,
we have E[eλZ̃] ≥ eλE[Z̃] = 1. Putting together the pieces yields the claim (3.88).

3.5 Bibliographic details and background

Concentration of measure is an extremely rich and deep area with an extensive literature; we
refer the reader to the books by Ledoux (2001) and Boucheron et al. (2013) for more com-
prehensive treatments. Logarithmic Sobolev inequalities were introduced by Gross (1975)
in a functional-analytic context. Their dimension-free nature makes them especially well
suited for controlling infinite-dimensional stochastic processes (e.g., Holley and Stroock,
1987). The argument underlying the proof of Proposition 3.2 is based on the unpublished
notes of Herbst. Ledoux (1996; 2001) pioneered the entropy method in application to a
wider range of problems. The proof of Theorem 3.4 is based on Ledoux (1996), whereas the
proofs of Lemmas 3.7 and 3.8 follow the book (Ledoux, 2001). A result of the form in The-
orem 3.4 was initially proved by Talagrand (1991; 1995; 1996b) using his convex distance
inequalities.

The Brunn–Minkowski theorem is a classical result from geometry and real analysis;
see Gardner (2002) for a survey of its history and connections. Theorem 3.15 was proved
independently by Prékopa (1971; 1973) and Leindler (1972). Brascamp and Lieb (1976)
developed various connections between log-concavity and log-Sobolev inequalities; see the
paper by Bobkov (1999) for further discussion. The inf-convolution argument underlying the
proof of Theorem 3.16 was initiated by Maurey (1991), and further developed by Bobkov
and Ledoux (2000). The lecture notes by Ball (1997) contain a wealth of information on
geometric aspects of concentration, including spherical sections of convex bodies. Harper’s
theorem quoted in Example 3.13 is proven in the paper (Harper, 1966); it is a special case
of a more general class of results known as discrete isoperimetric inequalities.

The Kantorovich–Rubinstein duality (3.55) was established by Kantorovich and Rubin-
stein (1958); it is a special case of more general results in optimal transport theory (e.g.,
Villani, 2008; Rachev and Ruschendorf, 1998). Marton (1996a) pioneered the use of the
transportation cost method for deriving concentration inequalities, with subsequent contri-
butions from various researchers (e.g., Dembo and Zeitouni, 1996; Dembo, 1997; Bobkov
and Götze, 1999; Ledoux, 2001). See Marton’s paper (1996b) for a proof of Theorem 3.22.
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The information inequality (3.73) was proved by Samson (2000). As noted following the
statement of Theorem 3.24, he actually proves a much more general result, applicable to
various types of dependent random variables. Other results on concentration for dependent
random variables include the papers (Marton, 2004; Kontorovich and Ramanan, 2008).

Upper tail bounds on the suprema of empirical processes can be proved using chaining
methods; see Chapter 5 for more details. Talagrand (1996a) initiated the use of concentration
techniques to control deviations above the mean, as in Theorems 3.26 and 3.27. The theo-
rems and entropy-based arguments given here are based on Chapter 7 of Ledoux (2001);
the sketch in Exercise 3.15 is adapted from arguments in the same chapter. Sharper forms
of Theorem 3.27 have been established by various authors (e.g., Massart, 2000; Bous-
quet, 2002, 2003; Klein and Rio, 2005). In particular, Bousquet (2003) proved that the
bound (3.85) holds with constants c0 =

√
2 and c1 = 1/3. There are also various re-

sults on concentration of empirical processes for unbounded and/or dependent random vari-
ables (e.g., Adamczak, 2008; Mendelson, 2010); see also Chapter 14 for some one-sided
results in this direction.

3.6 Exercises

Exercise 3.1 (Shannon entropy and Kullback–Leibler divergence) Given a discrete ran-
dom variable X ∈ X with probability mass function p, its Shannon entropy is given by
H(X) := −

∑
x∈X p(x) log p(x). In this exercise, we explore the connection between the en-

tropy functional H based on φ(u) = u log u (see equation (3.2)) and the Shannon entropy.

(a) Consider the random variable Z = p(U), where U is uniformly distributed overX. Show
that

H(Z) =
1
|X|
{log |X| − H(X)}.

(b) Use part (a) to show that Shannon entropy for a discrete random variable is maximized
by a uniform distribution.

(c) Given two probability mass functions p and q, specify a choice of random variable Y
such that H(Y) = D(p ‖ q), corresponding to the Kullback–Leibler divergence between
p and q.

Exercise 3.2 (Chain rule and Kullback–Leibler divergence) Given two n-variate distribu-
tions Q and P, show that the Kullback–Leibler divergence can be decomposed as

D(Q ‖P) = D(Q1 ‖P1) +
n∑

j=2

EQ j−1
1

[D(Q j(· | X j−1
1 ) ‖P j(· | X j−1

1 ))],

where Q j(· | X j−1
1 ) denotes the conditional distribution of Xj given (X1, . . . , Xj−1) under Q,

with a similar definition for P j(· | X j−1
1 ).

Exercise 3.3 (Variational representation for entropy) Show that the entropy has the varia-
tional representation

H(eλX) = inf
t∈R
E[ψ(λ(X − t))eλX], (3.89)
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where ψ(u) := e−u − 1 + u.

Exercise 3.4 (Entropy and constant shifts) In this exercise, we explore some properties of
the entropy.

(a) Show that for any random variable X and constant c ∈ R,

H(eλ(X+c)) = eλcH(eλX).

(b) Use part (a) to show that, if X satisfies the entropy bound (3.5), then so does X + c for
any constant c.

Exercise 3.5 (Equivalent forms of entropy) Let Hϕ denote the entropy defined by the con-
vex function ϕ(u) = u log u − u. Show that Hϕ(eλX) = H(eλX), where H denotes the usual
entropy (defined by φ(u) = u log u).

Exercise 3.6 (Entropy rescaling) In this problem, we develop recentering and rescaling
arguments used in the proof of Proposition 3.3.

(a) Show that a random variable X satisfies the Bernstein entropy bound (3.10) if and only
if X̃ = X − E[X] satisfies the inequality

H(eλX) ≤ λ2{bϕ′x(λ) + ϕx(λ)σ2} for all λ ∈ [0, 1/b). (3.90)

(b) Show that a zero-mean random variable X satisfies inequality (3.90) if and only if X̃ =

X/b satisfies the bound

H(eλX̃) ≤ λ2{ϕ′
X̃
(λ) + σ̃2ϕX̃(λ)} for all λ ∈ [0, 1),

where σ̃2 = σ2/b2.

Exercise 3.7 (Entropy for bounded variables) Consider a zero-mean random variable X
taking values in a finite interval [a, b] almost surely. Show that its entropy satisfies the bound
H(eλX) ≤ λ2σ2

2 ϕx(λ) with σ := (b − a)/2. (Hint: You may find the result of Exercise 3.3
useful.)

Exercise 3.8 (Exponential families and entropy) Consider a random variable Y ∈ Y with
an exponential family distribution of the form

pθ(y) = h(y)e〈θ, T (y)〉−Φ(θ),

where T : Y → Rd defines the vector of sufficient statistics, the function h is fixed, and the
density pθ is taken with respect to base measure μ. Assume that the log normalization term
Φ(θ) = log

∫
Y exp(〈θ, T (y)〉)h(y)μ(dy) is finite for all θ ∈ Rd, and suppose moreover that ∇A

is Lipschitz with parameter L, meaning that

‖∇Φ(θ) − ∇Φ(θ′)‖2 ≤ L‖θ − θ′‖2 for all θ, θ′ ∈ Rd. (3.91)



94 Concentration of measure

(a) For fixed unit-norm vector v ∈ Rd, consider the random variable X = 〈v, T (Y)〉. Show
that

H(eλX) ≤ Lλ2ϕx(λ) for all λ ∈ R.

Conclude that X is sub-Gaussian with parameter
√

2L.
(b) Apply part (a) to establish the sub-Gaussian property for:

(i) the univariate Gaussian distribution Y ∼ N(μ, σ2) (Hint: Viewing σ2 as fixed, write
it as a one-dimensional exponential family.)

(ii) the Bernoulli variable Y ∈ {0, 1} with θ = 1
2 log P[Y=1]

P[Y=0] .

Exercise 3.9 (Another variational representation) Prove the following variational repre-
sentation:

H(eλ f (X)) = sup
g
{E[g(X)eλ f (X)] | E[eg(X)] ≤ 1},

where the supremum ranges over all measurable functions. Exhibit a function g at which the
supremum is obtained. (Hint: The result of Exercise 3.5 and the notion of conjugate duality
could be useful.)

Exercise 3.10 (Brunn–Minkowski and classical isoperimetric inequality) In this exercise,
we explore the connection between the Brunn–Minkowski (BM) inequality and the classical
isoperimetric inequality.

(a) Show that the BM inequality (3.43) holds if and only if

vol(A + B)1/n ≥ vol(A)1/n + vol(B)1/n (3.92)

for all convex bodies A and B.
(b) Show that the BM inequality (3.43) implies the “weaker” inequality (3.45).
(c) Conversely, show that inequality (3.45) also implies the original BM inequality (3.43).

(Hint: From part (a), it suffices to prove the inequality (3.92) for bodies A and B with
strictly positive volumes. Consider applying inequality (3.45) to the rescaled bodies
C := A

vol(A) and D := B
vol(B) , and a suitable choice of λ.)

Exercise 3.11 (Concentration on the Euclidean ball) Consider the uniform measure P over
the Euclidean unit ball Bn

2 = {x ∈ R
n | ‖x‖2 ≤ 1}. In this example, we bound its concentration

function using the Brunn–Minkowski inequality (3.45).

(a) Given any subset A ⊆ Bn
2, show that

1
2
‖a + b‖2 ≤ 1 −

ε2

8
for all a ∈ A and b ∈ (Aε)c.

To be clear, here we define (Aε)c := Bn
2\A

ε .
(b) Use the BM inequality (3.45) to show that P[A](1 − P[Aε]) ≤ (1 − ε2

8 )2n.
(c) Conclude that

α P,(X,ρ)(ε) ≤ 2e−nε2/4 for X = Bn
2 with ρ(·) = ‖ · ‖2.
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Exercise 3.12 (Rademacher chaos variables) A symmetric positive semidefinite matrix
Q ∈ Sd×d

+ can be used to define a Rademacher chaos variable X =
∑d

i, j=1 Qi jεiε j, where
{εi}di=1 are i.i.d. Rademacher variables.

(a) Prove that

P
[
X ≥

(√
trace Q + t

)2] ≤ 2 exp
(
−

t2

16 |||Q|||2

)
. (3.93)

(b) Given an arbitrary symmetric matrix M ∈ Sd×d, consider the decoupled Rademacher
chaos variable Y =

∑d
i=1, j=1 Mi jεiε

′
j, where {ε′j}dj=1 is a second i.i.d. Rademacher se-

quence, independent of the first. Show that

P[Y ≥ δ] ≤ 2 exp
(
−

δ2

4 |||M|||2F + 16δ |||M|||2

)
.

(Hint: Part (a) could be useful in an intermediate step.)

Exercise 3.13 (Total variation and Wasserstein) Consider the Wasserstein distance based
on the Hamming metric, namely Wρ(P, Q) = infMM[X � Y], where the infimum is taken
over all couplingsM—that is, distributions on the product space X×X with marginals P and
Q, respectively. Show that

inf
M
M[X � Y] = ‖P − Q‖TV = sup

A
|P(A) − Q(A)|,

where the supremum ranges over all measurable subsets A of X.

Exercise 3.14 (Alternative proof) In this exercise, we work through an alternative proof
of Proposition 3.20. As noted, it suffices to consider the case n = 2. Let P = P1 ⊗ P2 be a
product distribution, and let Q be an arbitrary distribution on X × X.

(a) Show that the Wasserstein distance Wρ(Q, P) is upper bounded by

sup
‖ f ‖Lip≤1

{∫ [∫
f (x1, x2) (dQ2|1 − dP2)

]
dQ1 +

∫ [∫
f (x1, x2) dP2

]
(dQ1 − dP1)

}
,

where the supremum ranges over all functions that are 1-Lipschitz with respect to the
metric ρ(x, x′) =

∑2
i=1 ρi(xi, x′i).

(b) Use part (a) to show that

Wρ(Q, P) ≤
[ ∫ √

2γ2D(Q2|1 ‖P2) dQ1

]
+
√

2γ1D(Q1 ‖P1).

(c) Complete the proof using part (b). (Hint: Cauchy–Schwarz and Exercise 3.2 could be
useful.

Exercise 3.15 (Bounds for suprema of non-negative functions) Consider a random variable
of the form Z = sup f∈F

∑n
i=1 f (Vi) where {Vi}ni=1 is an i.i.d. sequence of random variables,

and F is a class of functions taking values in the interval [0, 1]. In this exercise, we prove
that

logE[eλZ] ≤ (eλ − 1)E[Z] for any λ ≥ 0. (3.94)
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As in our main development, we can reduce the problem to a finite class of functionsF , say
with M functions { f 1, . . . , f M}. Defining the random vectors Xi = ( f 1(Vi), . . . , f M(Vi)) ∈ RM

for i = 1, . . . , n, we can then consider the function Z(X) = max j=1,...,M
∑n

i=1 X j
i . We let Zk

denote the function Xk �→ Z(X) with all other Xi for i � k fixed.

(a) Define Yk(X) := (X1, . . . , Xk−1, 0, Xk+1, Xn). Explain why Z(X) − Z(Yk(X)) ≥ 0.
(b) Use the tensorization approach and the variational representation from Exercise 3.3 to

show that

H(eλZ(X)) ≤ E
⎡⎢⎢⎢⎢⎢⎣ n∑

k=1

E[ψ(λ(Z(X) − Z(Yk(X))))eλZ(X) | X\k]

⎤⎥⎥⎥⎥⎥⎦ for all λ > 0.

(c) For each � = 1, . . . , M, let

A� =

⎧⎪⎪⎨⎪⎪⎩x = (x1, . . . , xn) ∈ RM×n

∣∣∣∣∣∣ n∑
i=1

x�
i = max

j=1,...,M

n∑
i=1

x j
i

⎫⎪⎪⎬⎪⎪⎭ .

Prove that

0 ≤ λ{Z(X) − Z(Yk(X))} ≤ λ

M∑
�=1

I[X ∈ A�]X�
k valid for all λ ≥ 0.

(d) Noting that ψ(t) = e−t + 1− t is non-negative with ψ(0) = 0, argue by the convexity of ψ
that

ψ(λ(Z(X) − Z(Yk(X)))) ≤ ψ(λ)

⎡⎢⎢⎢⎢⎢⎣ M∑
�=1

I[X ∈ A�]X�
k

⎤⎥⎥⎥⎥⎥⎦ for all λ ≥ 0.

(e) Combining with previous parts, prove that

H(eλZ) ≤ ψ(λ)
n∑

k=1

E

⎡⎢⎢⎢⎢⎢⎣ M∑
�=1

I[X ∈ A�]X�
keλZ(X)

⎤⎥⎥⎥⎥⎥⎦ = ψ(λ)E[Z(X)eλZ(X)].

(Hint: Observe that
∑n

k=1
∑M

�=1 I[X ∈ A�]X�
k = Z(X) by definition of the sets A�.)

(f) Use part (e) to show that ϕZ(λ) = E[eλZ] satisfies the differential inequality

[logϕZ(λ)]′ ≤
eλ

eλ − 1
logϕZ(λ) for all λ > 0,

and use this to complete the proof.

Exercise 3.16 (Different forms of functional Bernstein) Consider a random variable Z that
satisfies a Bernstein tail bound of the form

P[Z ≥ E[Z] + δ] ≤ exp
(
−

nδ2

c1γ2 + c2bδ

)
for all δ ≥ 0,

where c1 and c2 are universal constants.

(a) Show that

P

⎡⎢⎢⎢⎢⎣Z ≥ E[Z] + γ

√
c1t
n
+

c2bt
n

⎤⎥⎥⎥⎥⎦ ≤ e−t for all t ≥ 0. (3.95a)
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(b) If, in addition, γ2 ≤ σ2 + c3bE[Z], we have

P

⎡⎢⎢⎢⎢⎣Z ≥ (1 + ε)E[Z] + σ

√
c1t
n
+

(
c2 +

c1c3

2ε

)
bt
n

⎤⎥⎥⎥⎥⎦ ≤ e−t for all t ≥ 0 and ε > 0.

(3.95b)



4

Uniform laws of large numbers

The focus of this chapter is a class of results known as uniform laws of large numbers. As
suggested by their name, these results represent a strengthening of the usual law of large
numbers, which applies to a fixed sequence of random variables, to related laws that hold
uniformly over collections of random variables. On one hand, such uniform laws are of the-
oretical interest in their own right, and represent an entry point to a rich area of probability
and statistics known as empirical process theory. On the other hand, uniform laws also play
a key role in more applied settings, including understanding the behavior of different types
of statistical estimators. The classical versions of uniform laws are of an asymptotic nature,
whereas more recent work in the area has emphasized non-asymptotic results. Consistent
with the overall goals of this book, this chapter will follow the non-asymptotic route, pre-
senting results that apply to all sample sizes. In order to do so, we make use of the tail
bounds and the notion of Rademacher complexity previously introduced in Chapter 2.

4.1 Motivation

We begin with some statistical motivations for deriving laws of large numbers, first for the
case of cumulative distribution functions and then for more general function classes.

4.1.1 Uniform convergence of cumulative distribution functions

The law of any scalar random variable X can be fully specified by its cumulative distribution
function (CDF), whose value at any point t ∈ R is given by F(t) := P[X ≤ t]. Now suppose
that we are given a collection {Xi}ni=1 of n i.i.d. samples, each drawn according to the law
specified by F. A natural estimate of F is the empirical CDF given by

F̂n(t) :=
1
n

n∑
i=1

I(−∞,t][Xi], (4.1)

where I(−∞,t][x] is a {0, 1}-valued indicator function for the event {x ≤ t}. Since the population
CDF can be written as F(t) = E[I(−∞,t][X]], the empirical CDF is an unbiased estimate.

Figure 4.1 provides some illustrations of empirical CDFs for the uniform distribution on
the interval [0, 1] for two different sample sizes. Note that F̂n is a random function, with
the value F̂n(t) corresponding to the fraction of samples that lie in the interval (−∞, t]. As
the sample size n grows, we see that F̂n approaches F—compare the plot for n = 10 in
Figure 4.1(a) to that for n = 100 in Figure 4.1(b). It is easy to see that F̂n converges to F in

98
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(a) (b)

Figure 4.1 Plots of population and empirical CDF functions for the uniform distri-
bution on [0, 1]. (a) Empirical CDF based on n = 10 samples. (b) Empirical CDF
based on n = 100 samples.

a pointwise sense. Indeed, for any fixed t ∈ R, the random variable F̂n(t) has mean F(t), and
moments of all orders, so that the strong law of large numbers implies that F̂n(t)

a.s.
−→ F(t). A

natural goal is to strengthen this pointwise convergence to a form of uniform convergence.
Why are uniform convergence results interesting and important? In statistical settings, a

typical use of the empirical CDF is to construct estimators of various quantities associated
with the population CDF. Many such estimation problems can be formulated in a terms of
functional γ that maps any CDF F to a real number γ(F)—that is, F �→ γ(F). Given a set of
samples distributed according to F, the plug-in principle suggests replacing the unknown F
with the empirical CDF F̂n, thereby obtaining γ(F̂n) as an estimate of γ(F). Let us illustrate
this procedure via some examples.

Example 4.1 (Expectation functionals) Given some integrable function g, we may define
the expectation functional γg via

γg(F) :=
∫

g(x) dF(x). (4.2)

For instance, for the function g(x) = x, the functional γg maps F to E[X], where X is a ran-
dom variable with CDF F. For any g, the plug-in estimate is given by γg(F̂n) = 1

n

∑n
i=1 g(Xi),

corresponding to the sample mean of g(X). In the special case g(x) = x, we recover the
usual sample mean 1

n

∑n
i=1 Xi as an estimate for the mean μ = E[X]. A similar interpretation

applies to other choices of the underlying function g. ♣

Example 4.2 (Quantile functionals) For any α ∈ [0, 1], the quantile functional Qα is given
by

Qα(F) := inf{t ∈ R | F(t) ≥ α}. (4.3)
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The median corresponds to the special case α = 0.5. The plug-in estimate is given by

Qα(F̂n) := inf
{

t ∈ R
∣∣∣∣∣∣ 1

n

n∑
i=1

I(−∞,t][Xi] ≥ α

}
, (4.4)

and corresponds to estimating the αth quantile of the distribution by the αth sample quantile.
In the special case α = 0.5, this estimate corresponds to the sample median. Again, it is of
interest to determine in what sense (if any) the random variable Qα(F̂n) approaches Qα(F)
as n becomes large. In this case, Qα(F̂n) is a fairly complicated, nonlinear function of all the
variables, so that this convergence does not follow immediately by a classical result such as
the law of large numbers. ♣

Example 4.3 (Goodness-of-fit functionals) It is frequently of interest to test the hypothesis
of whether or not a given set of data has been drawn from a known distribution F0. For
instance, we might be interested in assessing departures from uniformity, in which case
F0 would be a uniform distribution on some interval, or departures from Gaussianity, in
which case F0 would specify a Gaussian with a fixed mean and variance. Such tests can
be performed using functionals that measure the distance between F and the target CDF F0,
including the sup-norm distance ‖F−F0‖∞, or other distances such as the Cramér–von Mises
criterion based on the functional γ(F) :=

∫ ∞
−∞[F(x) − F0(x)]2 dF0(x). ♣

For any plug-in estimator γ(F̂n), an important question is to understand when it is con-
sistent—that is, when does γ(F̂n) converge to γ(F) in probability (or almost surely)? This
question can be addressed in a unified manner for many functionals by defining a notion of
continuity. Given a pair of CDFs F and G, let us measure the distance between them using
the sup-norm

‖G − F‖∞ := sup
t∈R

|G(t) − F(t)|. (4.5)

We can then define the continuity of a functional γ with respect to this norm: more precisely,
we say that the functional γ is continuous at F in the sup-norm if, for all ε > 0, there exists
a δ > 0 such that ‖G − F‖∞ ≤ δ implies that |γ(G) − γ(F)| ≤ ε.

As we explore in Exercise 4.1, this notion is useful, because for any continuous func-
tional, it reduces the consistency question for the plug-in estimator γ(F̂n) to the issue of
whether or not the random variable ‖F̂n − F‖∞ converges to zero. A classical result, known
as the Glivenko–Cantelli theorem, addresses the latter question:

Theorem 4.4 (Glivenko–Cantelli) For any distribution, the empirical CDF F̂n is a
strongly consistent estimator of the population CDF in the uniform norm, meaning that

‖F̂n − F‖∞
a.s.
−→ 0. (4.6)

We provide a proof of this claim as a corollary of a more general result to follow (see
Theorem 4.10). For statistical applications, an important consequence of Theorem 4.4 is
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that the plug-in estimate γ(F̂n) is almost surely consistent as an estimator of γ(F) for any
functional γ that is continuous with respect to the sup-norm. See Exercise 4.1 for further
exploration of this connection.

4.1.2 Uniform laws for more general function classes

We now turn to more general consideration of uniform laws of large numbers. Let F be
a class of integrable real-valued functions with domain X, and let {Xi}ni=1 be a collection of
i.i.d. samples from some distribution P over X. Consider the random variable

‖Pn − P‖F := sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − E[ f (X)]

∣∣∣∣∣∣, (4.7)

which measures the absolute deviation between the sample average 1
n

∑n
i=1 f (Xi) and the pop-

ulation average E[ f (X)], uniformly over the class F . Note that there can be measurability
concerns associated with the definition (4.7); see the bibliographic section for discussion of
different ways in which to resolve them.

Definition 4.5 We say that F is a Glivenko–Cantelli class for P if ‖Pn − P‖F con-
verges to zero in probability as n → ∞.

This notion can also be defined in a stronger sense, requiring almost sure convergence
of ‖Pn − P‖F , in which case we say that F satisfies a strong Glivenko–Cantelli law. The
classical result on the empirical CDF (Theorem 4.4) can be reformulated as a particular case
of this notion:

Example 4.6 (Empirical CDFs and indicator functions) Consider the function class

F = {I(−∞,t](·) | t ∈ R}, (4.8)

where I(−∞,t] is the {0, 1}-valued indicator function of the interval (−∞, t]. For each fixed
t ∈ R, we have the equality E[I(−∞,t](X)] = P[X ≤ t] = F(t), so that the classical Glivenko–
Cantelli theorem is equivalent to a strong uniform law for the class (4.8). ♣

Not all classes of functions are Glivenko–Cantelli, as illustrated by the following example.

Example 4.7 (Failure of uniform law) Let S be the class of all subsets S of [0, 1] such
that the subset S has a finite number of elements, and consider the function class FS =

{IS (·) | S ∈ S} of ({0-1}-valued) indicator functions of such sets. Suppose that samples
Xi are drawn from some distribution over [0, 1] that has no atoms (i.e., P({x}) = 0 for all
x ∈ [0, 1]); this class includes any distribution that has a density with respect to Lebesgue
measure. For any such distribution, we are guaranteed that P[S ] = 0 for all S ∈ S. On the
other hand, for any positive integer n ∈ N, the discrete set {X1, . . . , Xn} belongs to S, and
moreover, by definition of the empirical distribution, we have Pn[Xn

1] = 1. Putting together
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the pieces, we conclude that

sup
S∈S

|Pn[S ] − P[S ]| = 1 − 0 = 1, (4.9)

so that the function classFS is not a Glivenko–Cantelli class for P. ♣

We have seen that the classical Glivenko–Cantelli law—which guarantees convergence
of a special case of the variable ‖Pn − P‖F—is of interest in analyzing estimators based on
“plugging in” the empirical CDF. It is natural to ask in what other statistical contexts do
these quantities arise? In fact, variables of the form ‖Pn − P‖F are ubiquitous throughout
statistics—in particular, they lie at the heart of methods based on empirical risk minimiza-
tion. In order to describe this notion more concretely, let us consider an indexed family of
probability distributions {Pθ | θ ∈ Ω}, and suppose that we are given n samples {Xi}ni=1, each
sample lying in some space X. Suppose that the samples are drawn i.i.d. according to a
distribution Pθ∗ , for some fixed but unknown θ∗ ∈ Ω. Here the index θ∗ could lie within a
finite-dimensional space, such as Ω = Rd in a vector estimation problem, or could lie within
some function class Ω = G , in which case the problem is of the nonparametric variety.

In either case, a standard decision-theoretic approach to estimating θ∗ is based on mini-
mizing a cost function of the form θ �→ Lθ(X), which measures the “fit” between a parameter
θ ∈ Ω and the sample X ∈ X. Given the collection of n samples {Xi}ni=1, the principle of em-
pirical risk minimization is based on the objective function

R̂n(θ, θ∗) :=
1
n

n∑
i=1

Lθ(Xi).

This quantity is known as the empirical risk, since it is defined by the samples Xn
1 , and our

notation reflects the fact that these samples depend—in turn—on the unknown distribution
Pθ∗ . This empirical risk should be contrasted with the population risk,

R(θ, θ∗) := Eθ∗[Lθ(X)],

where the expectation Eθ∗ is taken over a sample X ∼ Pθ∗ .
In practice, one minimizes the empirical risk over some subset Ω0 of the full space Ω,

thereby obtaining some estimate θ̂. The statistical question is how to bound the excess risk,
measured in terms of the population quantities—namely the difference

E(̂θ, θ∗) := R(̂θ, θ∗) − inf
θ∈Ω0

R(θ, θ∗).

Let us consider some examples to illustrate.

Example 4.8 (Maximum likelihood) Consider a parameterized family of distributions—
say {Pθ, θ ∈ Ω}—each with a strictly positive density pθ defined with respect to a common
underlying measure. Now suppose that we are given n i.i.d. samples from an unknown dis-
tribution Pθ∗ , and we would like to estimate the unknown parameter θ∗. In order to do so, we
consider the cost function

Lθ(x) := log
[

pθ∗(x)
pθ(x)

]
.

The term pθ∗(x), which we have included for later theoretical convenience, has no effect on
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the minimization over θ. Indeed, the maximum likelihood estimate is obtained by minimiz-
ing the empirical risk defined by this cost function—that is

θ̂ ∈ arg min
θ∈Ω0

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

log
pθ∗(Xi)
pθ(Xi)

⎫⎪⎪⎬⎪⎪⎭︸�������������������︷︷�������������������︸
R̂n(θ,θ∗)

= arg min
θ∈Ω0

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

log
1

pθ(Xi)

⎫⎪⎪⎬⎪⎪⎭ .

The population risk is given by R(θ, θ∗) = Eθ∗
[
log pθ∗ (X)

pθ(X)

]
, a quantity known as the Kullback–

Leibler divergence between pθ∗ and pθ. In the special case that θ∗ ∈ Ω0, the excess risk is
simply the Kullback–Leibler divergence between the true density pθ∗ and the fitted model
pθ̂. See Exercise 4.3 for some concrete examples. ♣

Example 4.9 (Binary classification) Suppose that we observe n pairs of samples, each of
the form (Xi,Yi) ∈ Rd × {−1,+1}, where the vector Xi corresponds to a set of d predictors or
features, and the binary variable Yi corresponds to a label. We can view such data as being
generated by some distribution PX over the features, and a conditional distribution PY |X .
Since Y takes binary values, the conditional distribution is fully specified by the likelihood
ratio ψ(x) = P[Y=+1 | X=x]

P[Y=−1 | X=x] .
The goal of binary classification is to estimate a function f : Rd → {−1,+1} that min-

imizes the probability of misclassification P[ f (X) � Y], for an independently drawn pair
(X,Y). Note that this probability of error corresponds to the population risk for the cost
function

L f (X,Y) :=

⎧⎪⎪⎨⎪⎪⎩1 if f (X) � Y ,
0 otherwise.

(4.10)

A function that minimizes this probability of error is known as a Bayes classifier f ∗; in
the special case of equally probable classes—that is, when P[Y = +1] = P[Y = −1] = 1

2 —a
Bayes classifier is given by

f ∗(x) =

⎧⎪⎪⎨⎪⎪⎩+1 if ψ(x) ≥ 1,
−1 otherwise.

Since the likelihood ratio ψ (and hence f ∗) is unknown, a natural approach to approximating
the Bayes rule is based on choosing f̂ to minimize the empirical risk

R̂n( f , f ∗) :=
1
n

n∑
i=1

I[ f (Xi) � Yi]︸���������︷︷���������︸
L f (Xi,Yi)

,

corresponding to the fraction of training samples that are misclassified. Typically, the min-
imization over f is restricted to some subset of all possible decision rules. See Chapter 14
for some further discussion of how to analyze such methods for binary classification. ♣

Returning to the main thread, our goal is to develop methods for controlling the excess
risk. For simplicity, let us assume1 that there exists some θ0 ∈ Ω0 such that R(θ0, θ

∗) =

1 If the infimum is not achieved, then we choose an element θ0 for which this equality holds up to some
arbitrarily small tolerance ε > 0, and the analysis to follow holds up to this tolerance.
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infθ∈Ω0 R(θ, θ∗). With this notation, the excess risk can be decomposed as

E(̂θ, θ∗) = {R(̂θ, θ∗) − R̂n(̂θ, θ∗)}︸�������������������︷︷�������������������︸
T1

+ {R̂n(̂θ, θ∗) − R̂n(θ0, θ
∗)}︸����������������������︷︷����������������������︸

T2≤0

+ {R̂n(θ0, θ
∗) − R(θ0, θ

∗)}︸����������������������︷︷����������������������︸
T3

.

Note that T2 is non-positive, since θ̂ minimizes the empirical risk over Ω0.
The third term T3 can be dealt with in a relatively straightforward manner, because θ0 is

an unknown but non-random quantity. Indeed, recalling the definition of the empirical risk,
we have

T3 =

⎡⎢⎢⎢⎢⎢⎣1
n

n∑
i=1

Lθ0 (Xi)

⎤⎥⎥⎥⎥⎥⎦ − EX[Lθ0 (X)],

corresponding to the deviation of a sample mean from its expectation for the random variable
Lθ0 (X). This quantity can be controlled using the techniques introduced in Chapter 2—for
instance, via the Hoeffding bound when the samples are independent and the cost function
is bounded.

Finally, returning to the first term, it can be written in a similar way, namely as the differ-
ence

T1 = EX[Lθ̂(X)] −
⎡⎢⎢⎢⎢⎢⎣1
n

n∑
i=1

Lθ̂(Xi)

⎤⎥⎥⎥⎥⎥⎦ .
This quantity is more challenging to control, because the parameter θ̂—in contrast to the
deterministic quantity θ0—is now random, and moreover depends on the samples {Xi}ni=1,
since it was obtained by minimizing the empirical risk. For this reason, controlling the first
term requires a stronger result, such as a uniform law of large numbers over the cost function
class L(Ω0) := {x �→ Lθ(x), θ ∈ Ω0}. With this notation, we have

T1 ≤ sup
θ∈Ω0

∣∣∣∣∣∣1n
n∑

i=1

Lθ(Xi) − EX[Lθ(X)]

∣∣∣∣∣∣ = ‖Pn − P‖L(Ω0).

Since T3 is also dominated by this same quantity, we conclude that the excess risk is at
most 2‖Pn − P‖L(Ω0). This derivation demonstrates that the central challenge in analyzing
estimators based on empirical risk minimization is to establish a uniform law of large num-
bers for the loss class L(Ω0). We explore various concrete examples of this procedure in the
exercises.

4.2 A uniform law via Rademacher complexity

Having developed various motivations for studying uniform laws, let us now turn to the
technical details of deriving such results. An important quantity that underlies the study of
uniform laws is the Rademacher complexity of the function classF . For any fixed collection
xn

1 := (x1, . . . , xn) of points, consider the subset of Rn given by

F (xn
1) := {( f (x1), . . . , f (xn)) | f ∈F }. (4.11)

The set F (xn
1) corresponds to all those vectors in Rn that can be realized by applying a

function f ∈ F to the collection (x1, . . . , xn), and the empirical Rademacher complexity is
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given by

R(F (xn
1)/n) := Eε

⎡⎢⎢⎢⎢⎢⎣sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (xi)

∣∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎦ . (4.12)

Note that this definition coincides with our earlier definition of the Rademacher complexity
of a set (see Example 2.25).

Given a collection Xn
1 := {Xi}ni=1 of random samples, then the empirical Rademacher com-

plexity R(F (Xn
1)/n) is a random variable. Taking its expectation yields the Rademacher

complexity of the function classF—namely, the deterministic quantity

Rn(F ) := EX[R(F (Xn
1)/n)] = EX,ε

⎡⎢⎢⎢⎢⎢⎣sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎦ . (4.13)

Note that the Rademacher complexity is the average of the maximum correlation between
the vector ( f (X1), . . . , f (Xn)) and the “noise vector” (ε1, . . . , εn), where the maximum is
taken over all functions f ∈ F . The intuition is a natural one: a function class is extremely
large—and, in fact, “too large” for statistical purposes—if we can always find a function
that has a high correlation with a randomly drawn noise vector. Conversely, when the Rade-
macher complexity decays as a function of sample size, then it is impossible to find a func-
tion that correlates very highly in expectation with a randomly drawn noise vector.

We now make precise the connection between Rademacher complexity and the Glivenko–
Cantelli property, in particular by showing that, for any bounded function classF , the con-
dition Rn(F ) = o(1) implies the Glivenko–Cantelli property. More precisely, we prove a
non-asymptotic statement, in terms of a tail bound for the probability that the random vari-
able ‖Pn − P‖F deviates substantially above a multiple of the Rademacher complexity. It
applies to a function class F that is b-uniformly bounded, meaning that ‖ f ‖∞ ≤ b for all
f ∈F .

Theorem 4.10 For any b-uniformly bounded class of functionsF , any positive inte-
ger n ≥ 1 and any scalar δ ≥ 0, we have

‖Pn − P‖F ≤ 2Rn(F ) + δ (4.14)

with P-probability at least 1 − exp
(
− nδ2

2b2

)
. Consequently, as long as Rn(F ) = o(1), we

have ‖Pn − P‖F
a.s.
−→ 0.

In order for Theorem 4.10 to be useful, we need to obtain upper bounds on the Rade-
macher complexity. There are a variety of methods for doing so, ranging from direct cal-
culations to alternative complexity measures. In Section 4.3, we develop some techniques
for upper bounding the Rademacher complexity for indicator functions of half-intervals, as
required for the classical Glivenko–Cantelli theorem (see Example 4.6); we also discuss the
notion of Vapnik–Chervonenkis dimension, which can be used to upper bound the Rade-
macher complexity for other function classes. In Chapter 5, we introduce more advanced
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techniques based on metric entropy and chaining for controlling Rademacher complexity
and related sub-Gaussian processes. In the meantime, let us turn to the proof of Theo-
rem 4.10.

Proof We first note that if Rn(F ) = o(1), then the almost-sure convergence follows from
the tail bound (4.14) and the Borel–Cantelli lemma. Accordingly, the remainder of the argu-
ment is devoted to proving the tail bound (4.14).

Concentration around mean: We first claim that, whenF is uniformly bounded, then the
random variable ‖Pn − P‖F is sharply concentrated around its mean. In order to simplify
notation, it is convenient to define the recentered functions f (x) := f (x) − E[ f (X)], and to
write ‖Pn − P‖F = sup f∈F

∣∣∣ 1
n

∑n
i=1 f (Xi)

∣∣∣. Thinking of the samples as fixed for the moment,
consider the function

G(x1, . . . , xn) := sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (xi)

∣∣∣∣∣∣.
We claim that G satisfies the Lipschitz property required to apply the bounded differences
method (recall Corollary 2.21). Since the function G is invariant to permutation of its coor-
dinates, it suffices to bound the difference when the first coordinate x1 is perturbed. Accord-
ingly, we define the vector y ∈ Rn with yi = xi for all i � 1, and seek to bound the difference
|G(x) −G(y)|. For any function f = f − E[ f ], we have∣∣∣∣∣∣1n

n∑
i=1

f (xi)

∣∣∣∣∣∣ − sup
h∈F

∣∣∣∣∣∣1n
n∑

i=1

h(yi)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣1n

n∑
i=1

f (xi)

∣∣∣∣∣∣ −
∣∣∣∣∣∣1n

n∑
i=1

f (yi)

∣∣∣∣∣∣
≤

1
n

∣∣∣∣∣∣ f (x1) − f (y1)

∣∣∣∣∣∣
≤

2b
n

, (4.15)

where the final inequality uses the fact that

| f (x1) − f (y1)| = | f (x1) − f (y1)| ≤ 2b,

which follows from the uniform boundedness condition ‖ f ‖∞ ≤ b. Since the inequality (4.15)
holds for any function f , we may take the supremum over f ∈ F on both sides; doing so
yields the inequality G(x) − G(y) ≤ 2b

n . Since the same argument may be applied with the
roles of x and y reversed, we conclude that |G(x) − G(y)| ≤ 2b

n . Therefore, by the bounded
differences method (see Corollary 2.21), we have

‖Pn − P‖F − E[‖Pn − P‖F ] ≤ t with P-prob. at least 1 − exp
(
− nt2

2b2

)
, (4.16)

valid for all t ≥ 0.

Upper bound on mean: It remains to show that E[‖Pn−P‖F ] is upper bounded by 2Rn(F ),
and we do so using a classical symmetrization argument. Letting (Y1, . . . ,Yn) be a second
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i.i.d. sequence, independent of (X1, . . . , Xn), we have

E[‖Pn − P‖F ] = EX

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{ f (Xi) − EYi [ f (Yi)]}
∣∣∣∣∣∣
]

= EX

[
sup
f∈F

∣∣∣∣∣∣EY[
1
n

n∑
i=1

{ f (Xi) − f (Yi)}]
∣∣∣∣∣∣
]

(i)
≤ EX,Y

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{ f (Xi) − f (Yi)}
∣∣∣∣∣∣
]
, (4.17)

where the upper bound (i) follows from the calculation of Exercise 4.4.
Now let (ε1, . . . , εn) be an i.i.d. sequence of Rademacher variables, independent of X

and Y . Given our independence assumptions, for any function f ∈ F , the random vector
with components εi( f (Xi) − f (Yi)) has the same joint distribution as the random vector with
components f (Xi) − f (Yi), whence

EX,Y

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{ f (Xi) − f (Yi)}
∣∣∣∣∣∣
]
= EX,Y,ε

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi( f (Xi) − f (Yi))

∣∣∣∣∣∣
]

≤ 2EX,ε

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣
]
= 2Rn(F ). (4.18)

Combining the upper bound (4.18) with the tail bound (4.16) yields the claim.

4.2.1 Necessary conditions with Rademacher complexity

The proof of Theorem 4.10 illustrates an important technique known as symmetrization,
which relates the random variable ‖Pn − P‖F to its symmetrized version

‖Sn‖F := sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣. (4.19)

Note that the expectation of ‖Sn‖F corresponds to the Rademacher complexity, which plays
a central role in Theorem 4.10. It is natural to wonder whether much was lost in moving
from the variable ‖Pn − P‖F to its symmetrized version. The following “sandwich” result
relates these quantities.

Proposition 4.11 For any convex non-decreasing function Φ : R→ R, we have

EX,ε[Φ( 1
2‖Sn‖F̄ )]

(a)
≤ EX[Φ(‖Pn − P‖F )]

(b)
≤ EX,ε[Φ(2‖Sn‖F )], (4.20)

whereF = { f − E[ f ], f ∈F } is the recentered function class.

When applied with the convex non-decreasing function Φ(t) = t, Proposition 4.11 yields the
inequalities

1
2EX,ε‖Sn‖F̄ ≤ EX[‖Pn − P‖F ] ≤ 2EX,ε‖Sn‖F , (4.21)
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with the only differences being the constant pre-factors, and the use ofF in the upper bound,
and the recentered classF in the lower bound.

Other choices of interest include Φ(t) = eλt for some λ > 0, which can be used to control
the moment generating function.

Proof Beginning with bound (b), we have

EX[Φ(‖Pn − P‖F )] = EX

⎡⎢⎢⎢⎢⎢⎣Φ( sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − EY[ f (Yi)]

∣∣∣∣∣∣
)⎤⎥⎥⎥⎥⎥⎦

(i)
≤ EX,Y

⎡⎢⎢⎢⎢⎢⎣Φ( sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − f (Yi)

∣∣∣∣∣∣
)⎤⎥⎥⎥⎥⎥⎦

(ii)
= EX,Y,ε

⎡⎢⎢⎢⎢⎢⎣Φ(sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi{ f (Xi) − f (Yi)}
∣∣∣∣∣∣
)⎤⎥⎥⎥⎥⎥⎦︸���������������������������������������������︷︷���������������������������������������������︸

:=T1

,

where inequality (i) follows from Exercise 4.4, using the convexity and non-decreasing prop-
erties of Φ, and equality (ii) follows since the random vector with components εi( f (Xi) −
f (Yi)) has the same joint distribution as the random vector with components f (Xi) − f (Yi).
By the triangle inequality, we have

T1 ≤ EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣ +
∣∣∣∣∣∣1n

n∑
i=1

εi f (Yi)

∣∣∣∣∣∣
)]

(iii)
≤

1
2
EX,ε

[
Φ

(
2 sup

f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣
)]
+

1
2
EY,ε

[
Φ

(
2 sup

f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Yi)

∣∣∣∣∣∣
)]

(iv)
= EX,ε

[
Φ

(
2 sup

f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣
)]
,

where step (iii) follows from Jensen’s inequality and the convexity ofΦ, and step (iv) follows
since X and Y are i.i.d. samples.

Turning to the bound (a), we have

EX,ε[Φ( 1
2‖Sn‖F̄ )] = EX,ε

⎡⎢⎢⎢⎢⎢⎣Φ(1
2

sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi{ f (Xi) − EYi [ f (Yi)]}
∣∣∣∣∣∣
)⎤⎥⎥⎥⎥⎥⎦

(i)
≤ EX,Y,ε

⎡⎢⎢⎢⎢⎢⎣Φ(1
2

sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi{ f (Xi) − f (Yi)}
∣∣∣∣∣∣
)⎤⎥⎥⎥⎥⎥⎦

(ii)
= EX,Y

⎡⎢⎢⎢⎢⎢⎣Φ(1
2

sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{ f (Xi) − f (Yi)}|
)⎤⎥⎥⎥⎥⎥⎦ ,

where inequality (i) follows from Jensen’s inequality and the convexity of Φ; and equality
(ii) follows since for each i = 1, 2, . . . , n and f ∈ F , the variables εi{ f (Xi) − f (Yi)} and
f (Xi) − f (Yi) have the same distribution.

Now focusing on the quantity T2 := 1
2 sup f∈F

∣∣∣ 1
n

∑n
i=1{ f (Xi)− f (Yi)}

∣∣∣, we add and subtract
a term of the form E[ f ], and then apply the triangle inequality, thereby obtaining the upper
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bound

T2 ≤
1
2

sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{ f (Xi) − E[ f ]}
∣∣∣∣∣∣ + 1

2
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{ f (Yi) − E[ f ]}
∣∣∣∣∣∣.

Since Φ is convex and non-decreasing, we are guaranteed that

Φ(T2) ≤
1
2
Φ

⎛⎜⎜⎜⎜⎜⎝sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{ f (Xi) − E[ f ]}
∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎠ + 1

2
Φ

⎛⎜⎜⎜⎜⎜⎝sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{ f (Yi) − E[ f ]}
∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎠ .

The claim follows by taking expectations and using the fact that X and Y are identically
distributed.

A consequence of Proposition 4.11 is that the random variable ‖Pn − P‖F can be lower
bounded by a multiple of Rademacher complexity, and some fluctuation terms. This fact can
be used to prove the following:

Proposition 4.12 For any b-uniformly bounded function classF , any integer n ≥ 1
and any scalar δ ≥ 0, we have

‖Pn − P‖F ≥
1
2
Rn(F ) −

sup f∈F |E[ f ]|
2
√

n
− δ (4.22)

with P-probability at least 1 − e−
nδ2

2b2 .

We leave the proof of this result for the reader (see Exercise 4.5). As a consequence, if the
Rademacher complexity Rn(F ) remains bounded away from zero, then ‖Pn − P‖F cannot
converge to zero in probability. We have thus shown that, for a uniformly bounded function
classF , the Rademacher complexity provides a necessary and sufficient condition for it to
be Glivenko–Cantelli.

4.3 Upper bounds on the Rademacher complexity

Obtaining concrete results using Theorem 4.10 requires methods for upper bounding the
Rademacher complexity. There are a variety of such methods, ranging from simple union
bound methods (suitable for finite function classes) to more advanced techniques involv-
ing the notion of metric entropy and chaining arguments. We explore the latter techniques
in Chapter 5 to follow. This section is devoted to more elementary techniques, including
those required to prove the classical Glivenko–Cantelli result, and, more generally, those
that apply to function classes with polynomial discrimination, as well as associated Vapnik–
Chervonenkis classes.

4.3.1 Classes with polynomial discrimination

For a given collection of points xn
1 = (x1, . . . , xn), the “size” of the set F (xn

1) provides a
sample-dependent measure of the complexity ofF . In the simplest case, the setF (xn

1) con-
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tains only a finite number of vectors for all sample sizes, so that its “size” can be measured
via its cardinality. For instance, if F consists of a family of decision rules taking binary
values (as in Example 4.9), then F (xn

1) can contain at most 2n elements. Of interest to us
are function classes for which this cardinality grows only as a polynomial function of n, as
formalized in the following:

Definition 4.13 (Polynomial discrimination) A classF of functions with domain X
has polynomial discrimination of order ν ≥ 1 if, for each positive integer n and col-
lection xn

1 = {x1, . . . , xn} of n points in X, the setF (xn
1) has cardinality upper bounded

as

card(F (xn
1)) ≤ (n + 1)ν. (4.23)

The significance of this property is that it provides a straightforward approach to controlling
the Rademacher complexity. For any set S ⊂ Rn, we use D(S) := supx∈S ‖x‖2 to denote its
maximal width in the �2-norm.

Lemma 4.14 Suppose thatF has polynomial discrimination of order ν. Then for all
positive integers n and any collection of points xn

1 = (x1, . . . , xn),

Eε

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (xi)

∣∣∣∣∣∣
]

︸�����������������������︷︷�����������������������︸
R(F (xn

1)/n))

≤ 4D(xn
1)

√
ν log(n + 1)

n
,

where D(xn
1) := sup f∈F

√∑n
i=1 f 2(xi)

n is the �2-radius of the setF (xn
1)/
√

n.

We leave the proof of this claim for the reader (see Exercise 4.9).

Although Lemma 4.14 is stated as an upper bound on the empirical Rademacher com-
plexity, it yields as a corollary an upper bound on the Rademacher complexity Rn(F ) =
EX[R(F (Xn

1)/n)], one which involves the expected �2-width EXn
1
[D(X)]. An especially sim-

ple case is when the function class is b uniformly bounded, so that D(xn
1) ≤ b for all samples.

In this case, Lemma 4.14 implies that

Rn(F ) ≤ 2b

√
ν log(n + 1)

n
for all n ≥ 1. (4.24)

Combined with Theorem 4.10, we conclude that any bounded function class with poly-
nomial discrimination is Glivenko–Cantelli.

What types of function classes have polynomial discrimination? As discussed previously
in Example 4.6, the classical Glivenko–Cantelli law is based on indicator functions of the
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left-sided intervals (−∞, t]. These functions are uniformly bounded with b = 1, and more-
over, as shown in the following proof, this function class has polynomial discrimination of
order ν = 1. Consequently, Theorem 4.10 combined with Lemma 4.14 yields a quantitative
version of Theorem 4.4 as a corollary.

Corollary 4.15 (Classical Glivenko–Cantelli) Let F(t) = P[X ≤ t] be the CDF of a
random variable X, and let F̂n be the empirical CDF based on n i.i.d. samples Xi ∼ P.
Then

P
[
‖F̂n − F‖∞ ≥ 8

√
log(n + 1)

n
+ δ

]
≤ e−

nδ2
2 for all δ ≥ 0, (4.25)

and hence ‖F̂n − F‖∞
a.s.
−→ 0.

Proof For a given sample xn
1 = (x1, . . . , xn) ∈ Rn, consider the set F (xn

1), where F is
the set of all {0-1}-valued indicator functions of the half-intervals (−∞, t] for t ∈ R. If we
order the samples as x(1) ≤ x(2) ≤ · · · ≤ x(n), then they split the real line into at most n + 1
intervals (including the two end-intervals (−∞, x(1)) and [x(n),∞)). For a given t, the indicator
function I(−∞,t] takes the value one for all x(i) ≤ t, and the value zero for all other samples.
Thus, we have shown that, for any given sample xn

1, we have card(F (xn
1)) ≤ n+ 1. Applying

Lemma 4.14, we obtain

Eε

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣
]
≤ 4

√
log(n + 1)

n
,

and taking averages over the data Xi yields the upper bound Rn(F ) ≤ 4
√

log(n+1)
n . The

claim (4.25) then follows from Theorem 4.10.

Although the exponential tail bound (4.25) is adequate for many purposes, it is far from
the tightest possible. Using alternative methods, we provide a sharper result that removes the√

log(n + 1) factor in Chapter 5. See the bibliographic section for references to the sharpest
possible results, including control of the constants in the exponent and the pre-factor.

4.3.2 Vapnik–Chervonenkis dimension

Thus far, we have seen that it is relatively straightforward to establish uniform laws for
function classes with polynomial discrimination. In certain cases, such as in our proof of
the classical Glivenko–Cantelli law, we can verify by direct calculation that a given function
class has polynomial discrimination. More broadly, it is of interest to develop techniques
for certifying this property in a less laborious manner. The theory of Vapnik–Chervonenkis
(VC) dimension provides one such class of techniques. Accordingly, we now turn to defining
the notions of shattering and VC dimension.
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Let us consider a function classF in which each function f is binary-valued, taking the
values {0, 1} for concreteness. In this case, the set F (xn

1) from equation (4.11) can have at
most 2n elements.

Definition 4.16 (Shattering and VC dimension) Given a class F of binary-valued
functions, we say that the set xn

1 = (x1, . . . , xn) is shattered byF if card(F (xn
1)) = 2n.

The VC dimension ν(F ) is the largest integer n for which there is some collection
xn

1 = (x1, . . . , xn) of n points that is shattered byF .

When the quantity ν(F ) is finite, then the function class F is said to be a VC class. We
will frequently consider function classesF that consist of indicator functions IS [·], for sets
S ranging over some class of sets S. In this case, we use S(xn

1) and ν(S) as shorthands for
the setsF (xn

1) and the VC dimension ofF , respectively. For a given set class S, the shatter
coefficient of order n is given by maxxn

1
card(S(xn

1)).

Let us illustrate the notions of shattering and VC dimension with some examples:

Example 4.17 (Intervals in R) Consider the class of all indicator functions for left-sided
half-intervals on the real line—namely, the class Sleft := {(−∞, a] | a ∈ R}. Implicit in the
proof of Corollary 4.15 is a calculation of the VC dimension for this class. We first note
that, for any single point x1, both subsets ({x1} and the empty set ∅) can be picked out by
the class of left-sided intervals {(−∞, a] | a ∈ R}. But given two distinct points x1 < x2, it
is impossible to find a left-sided interval that contains x2 but not x1. Therefore, we conclude
that ν(Sleft) = 1. In the proof of Corollary 4.15, we showed more specifically that, for any
collection xn

1 = {x1, . . . , xn}, we have card(Sleft(xn
1)) ≤ n + 1.

Now consider the class of all two-sided intervals over the real line—namely, the class
Stwo := {(b, a] | a, b ∈ R such that b < a}. The class Stwo can shatter any two-point set. How-
ever, given three distinct points x1 < x2 < x3, it cannot pick out the subset {x1, x3}, showing
that ν(Stwo) = 2. For future reference, let us also upper bound the shatter coefficients of Stwo.
Note that any collection of n distinct points x1 < x2 < · · · < xn−1 < xn divides up the real line
into (n + 1) intervals. Thus, any set of the form (−b, a] can be specified by choosing one of
(n + 1) intervals for b, and a second interval for a. Thus, a crude upper bound on the shatter
coefficient of order n is

card(Stwo(xn
1)) ≤ (n + 1)2,

showing that this class has polynomial discrimination with degree ν = 2. ♣

Thus far, we have seen two examples of function classes with finite VC dimension, both
of which turned out also to have polynomial discrimination. Is there a general connection
between the VC dimension and polynomial discriminability? Indeed, it turns out that any
finite VC class has polynomial discrimination with degree at most the VC dimension; this
fact is a deep result that was proved independently (in slightly different forms) in papers by
Vapnik and Chervonenkis, Sauer and Shelah.

In order to understand why this fact is surprising, note that, for a given set class S, the
definition of VC dimension implies that, for all n > ν(S), then it must be the case that
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card(S(xn
1)) < 2n for all collections xn

1 of n samples. However, at least in principle, there
could exist some subset with

card(S(xn
1)) = 2n − 1,

which is not significantly different from 2n. The following result shows that this is not the
case; indeed, for any VC class, the cardinality of S(xn

1) can grow at most polynomially in n.

Proposition 4.18 (Vapnik–Chervonenkis, Sauer and Shelah) Consider a set class S
with ν(S) < ∞. Then for any collection of points P = (x1, . . . , xn) with n ≥ ν(S), we
have

card(S(P))
(i)
≤

ν(S)∑
i=0

(
n
i

)
(ii)
≤ (n + 1)ν(S). (4.26)

Given inequality (i), inequality (ii) can be established by elementary combinatorial argu-
ments, so we leave it to the reader (in particular, see part (a) of Exercise 4.11). Part (b) of
the same exercise establishes a sharper upper bound.

Proof Given a subset of points Q and a set class T , we let ν(T ; Q) denote the VC dimen-
sion of T when considering only whether or not subsets of Q can be shattered. Note that
ν(T ) ≤ k implies that ν(T ; Q) ≤ k for all point sets Q. For positive integers (n, k), define the
functions

Φk(n) := sup
point sets Q
card(Q)≤n

sup
set classes T
ν(T ;Q)≤k

card(T (Q)) and Ψk(n) :=
k∑

i=0

(
n
i

)
.

Here we agree that
(

n
i

)
= 0 whenever i > n. In terms of this notation, we claim that it suffices

to prove that

Φk(n) ≤ Ψk(n). (4.27)

Indeed, suppose there were some set class S with ν(S) = k and collection P = {x1, . . . , xn}
of n distinct points for which card(S(P)) > Ψk(n). By the definition Φk(n), we would then
have

Φk(n)
(i)
≥ sup

set classes T
ν(T ;P)≤k

card(T (P))
(ii)
≥ card(S(P)) > Ψk(n), (4.28)

which contradicts the claim (4.27). Here inequality (i) follows because P is feasible for the
supremum over Q that defines Φk(n); and inequality (ii) follows because ν(S) = k implies
that ν(S; P) ≤ k.

We now prove the claim (4.27) by induction on the sum n + k of the pairs (n, k).

Base case: To start, we claim that inequality (4.27) holds for all pairs with n + k = 2.
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The claim is trivial if either n = 0 or k = 0. Otherwise, for (n, k) = (1, 1), both sides of
inequality (4.27) are equal to 2.

Induction step: Now assume that, for some integer � > 2, the inequality (4.27) holds for
all pairs with n + k < �. We claim that it then holds for all pairs with n + k = �. Fix an
arbitrary pair (n, k) such that n + k = �, a point set P = {x1, . . . , xn} and a set class S such
that ν(S; P) = k. Define the point set P′ = P \ {x1}, and let S0 ⊆ S be the smallest collection
of subsets that labels the point set P′ in the maximal number of different ways. Let S1 be the
smallest collection of subsets inside S \ S0 that produce binary labelings of the point set P
that are not in S0(P). (The choices of S0 and S1 need not be unique.)

As a concrete example, given a set class S = {s1, s2, s3, s4} and a point set P = {x1, x2, x3},
suppose that the sets generated the binary labelings

s1 ↔ (0, 1, 1), s2 ↔ (1, 1, 1), s3 ↔ (0, 1, 0), s4 ↔ (0, 1, 1).

In this particular case, we have S(P) = {(0, 1, 1), (1, 1, 1), (0, 1, 0)}, and one valid choice of
the pair (S0,S1) would be S0 = {s1, s3} and S1 = {s2}, generating the labelings S0(P) =
{(0, 1, 1), (0, 1, 0)} and S1(P) = {(1, 1, 1)}.

Using this decomposition, we claim that

card(S(P)) = card(S0(P′)) + card(S1(P′)).

Indeed, any binary labeling in S(P) is either mapped to a member of S0(P′), or in the case
that its labeling on P′ corresponds to a duplicate, it can be uniquely identified with a member
of S1(P′). This can be verified in the special case described above.

Now since P′ is a subset of P and S0 is a subset of S, we have

ν(S0; P′) ≤ ν(S0; P) ≤ k.

Since the cardinality of P′ is equal to n − 1, the induction hypothesis thus implies that
card(S0(P′)) ≤ Ψk(n − 1).

On the other hand, we claim that the set classS1 satisfies the upper bound ν(S1; P′) ≤ k − 1.
Suppose that S1 shatters some subset Q′ ⊆ P′ of cardinality m; it suffices to show that
m ≤ k− 1. If S1 shatters such a set Q′, then S would shatter the set Q = Q′ ∪ {x1} ⊆ P. (This
fact follows by construction of S1: for every binary vector in the set S1(P), the set S(P)
must contain a binary vector with the label for x1 flipped; see the concrete example given
above for an illustration.) Since ν(S; P) ≤ k, it must be the case that card(Q) = m + 1 ≤ k,
which implies that ν(S1; P′) ≤ k − 1. Consequently, the induction hypothesis implies that
card(S1(P′)) ≤ Ψk−1(n − 1).

Putting together the pieces, we have shown that

card(S(P)) ≤ Ψk(n − 1) + Ψk−1(n − 1)
(i)
= Ψk(n), (4.29)

where the equality (i) follows from an elementary combinatorial argument (see Exercise 4.10).
This completes the proof.
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4.3.3 Controlling the VC dimension

Since classes with finite VC dimension have polynomial discrimination, it is of interest to
develop techniques for controlling the VC dimension.

Basic operations
The property of having finite VC dimension is preserved under a number of basic operations,
as summarized in the following.

Proposition 4.19 Let S and T be set classes, each with finite VC dimensions ν(S) and
ν(T ), respectively. Then each of the following set classes also have finite VC dimension:

(a) The set class Sc := {S c | S ∈ S}, where S c denotes the complement of S .
(b) The set class S & T := {S ∪ T | S ∈ S, T ∈ T }.
(c) The set class S ' T := {S ∩ T | S ∈ S, T ∈ T }.

We leave the proof of this result as an exercise for the reader (Exercise 4.8).

Vector space structure
Any class G of real-valued functions defines a class of sets by the operation of taking sub-
graphs. In particular, given a real-valued function g : X → R, its subgraph at level zero is
the subset S g := {x ∈ X | g(x) ≤ 0}. In this way, we can associate to G the collection of
subsets S(G ) := {S g, g ∈ G }, which we refer to as the subgraph class of G . Many interesting
classes of sets are naturally defined in this way, among them half-spaces, ellipsoids and so
on. In many cases, the underlying function class G is a vector space, and the following result
allows us to upper bound the VC dimension of the associated set class S(G ).

Proposition 4.20 (Finite-dimensional vector spaces) Let G be a vector space of func-
tions g : Rd → R with dimension dim(G ) < ∞. Then the subgraph class S(G ) has VC
dimension at most dim(G ).

Proof By the definition of VC dimension, we need to show that no collection of n =

dim(G ) + 1 points in Rd can be shattered by S(G ). Fix an arbitrary collection xn
1 =

{x1, . . . , xn} of n points in Rd, and consider the linear map L : G → Rn given by L(g) =
(g(x1), . . . , g(xn)). By construction, the range of the mapping L is a linear subspace of Rn

with dimension at most dim(G ) = n − 1 < n. Therefore, there must exist a non-zero vector
γ ∈ Rn such that 〈γ, L(g)〉 = 0 for all g ∈ G . We may assume without loss of generality that
at least one coordinate is positive, and then write∑

{i | γi≤0}

(−γi)g(xi) =
∑

{i | γi>0}

γig(xi) for all g ∈ G . (4.30)
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Proceeding via proof by contradiction, suppose that there were to exist some g ∈ G such
that the associated subgraph set S g = {x ∈ Rd | g(x) ≤ 0} included only the subset {xi | γi ≤
0}. For such a function g, the right-hand side of equation (4.30) would be strictly positive
while the left-hand side would be non-positive, which is a contradiction. We conclude that
S(G ) fails to shatter the set {x1, . . . , xn}, as claimed.

Let us illustrate the use of Proposition 4.20 with some examples:

Example 4.21 (Linear functions in Rd) For a pair (a, b) ∈ Rd × R, define the function
fa,b(x) := 〈a, x〉 + b, and consider the family L d := { fa,b | (a, b) ∈ Rd × R} of all such
linear functions. The associated subgraph class S(L d) corresponds to the collection of all
half-spaces of the form Ha,b := {x ∈ Rd | 〈a, x〉+b ≤ 0}. Since the familyL d forms a vector
space of dimension d + 1, we obtain as an immediate consequence of Proposition 4.20 that
S(L d) has VC dimension at most d + 1.

For the special case d = 1, let us verify this statement by a more direct calculation.
In this case, the class S(L 1) corresponds to the collection of all left-sided or right-sided
intervals—that is,

S(L 1) = {(−∞, t] | t ∈ R} ∪ {[t,∞) | t ∈ R}.

Given any two distinct points x1 < x2, the collection of all such intervals can pick out
all possible subsets. However, given any three points x1 < x2 < x3, there is no interval
contained in S(L 1) that contains x2 while excluding both x1 and x3. This calculation shows
that ν(S(L 1)) = 2, which matches the upper bound obtained from Proposition 4.20. More
generally, it can be shown that the VC dimension of S(L d) is d + 1, so that Proposition 4.20
yields a sharp result in all dimensions. ♣

Example 4.22 (Spheres in Rd) Consider the sphere S a,b := {x ∈ Rd | ‖x − a‖2 ≤ b},
where (a, b) ∈ Rd × R+ specify its center and radius, respectively, and let Sd

sphere denote the
collection of all such spheres. If we define the function

fa,b(x) := ‖x‖2
2 − 2

d∑
j=1

ajx j + ‖a‖2
2 − b2,

then we have S a,b = {x ∈ Rd | fa,b(x) ≤ 0}, so that the sphere S a,b is a subgraph of the
function fa,b.

In order to leverage Proposition 4.20, we first define a feature map φ : Rd → Rd+2 via
φ(x) := (1, x1, . . . , xd, ‖x‖2

2), and then consider functions of the form

gc(x) := 〈c, φ(x)〉 where c ∈ Rd+2.

The family of functions {gc, c ∈ Rd+1} is a vector space of dimension d + 2, and it contains
the function class { fa,b, (a, b) ∈ Rd ×R+}. Consequently, by applying Proposition 4.20 to this
larger vector space, we conclude that ν(Sd

sphere) ≤ d + 2. This bound is adequate for many
purposes, but is not sharp: a more careful analysis shows that the VC dimension of spheres
in Rd is actually d + 1. See Exercise 4.13 for an in-depth exploration of the case d = 2. ♣
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4.4 Bibliographic details and background

First, a technical remark regarding measurability: in general, the normed difference
‖Pn − P‖F need not be measurable, since the function class F may contain an uncount-
able number of elements. If the function class is separable, then we may simply take the
supremum over the countable dense basis. Otherwise, for a general function class, there are
various ways of dealing with the issue of measurability, including the use of outer probabil-
ity (cf. van der Vaart and Wellner (1996)). Here we instead adopt the following convention,
suitable for defining expectations of any function φ of ‖Pn − P‖F . For any finite class of
functions G contained within F , the random variable ‖Pn − P‖G is well defined, so that it
is sensible to define

E[φ(‖Pn − P‖F )] := sup{E[φ(‖Pn − P‖G )] | G ⊂F , G has finite cardinality}.

By using this definition, we can always think instead of expectations defined via suprema
over finite sets.

Theorem 4.4 was originally proved by Glivenko (1933) for the continuous case, and by
Cantelli (1933) in the general setting. The non-asymptotic form of the Glivenko–Cantelli
theorem given in Corollary 4.15 can be sharpened substantially. For instance, Dvoretsky,
Kiefer and Wolfowitz (1956) prove that there is a constant C independent of F and n such
that

P[‖F̂n − F‖∞ ≥ δ] ≤ Ce−2nδ2
for all δ ≥ 0. (4.31)

Massart (1990) establishes the sharpest possible result, with the leading constant C = 2.
The Rademacher complexity, and its relative the Gaussian complexity, have a lengthy

history in the study of Banach spaces using probabilistic methods; for instance, see the
books (Milman and Schechtman, 1986; Pisier, 1989; Ledoux and Talagrand, 1991). Rade-
macher and Gaussian complexities have also been studied extensively in the specific context
of uniform laws of large numbers and empirical risk minimization (e.g. van der Vaart and
Wellner, 1996; Koltchinskii and Panchenko, 2000; Koltchinskii, 2001, 2006; Bartlett and
Mendelson, 2002; Bartlett et al., 2005). In Chapter 5, we develop further connections be-
tween these two forms of complexity, and the related notion of metric entropy.

Exercise 5.4 is adapted from Problem 2.6.3 from van der Vaart and Wellner (1996). The
proof of Proposition 4.20 is adapted from Pollard (1984), who credits it to Steele (1978) and
Dudley (1978).

4.5 Exercises

Exercise 4.1 (Continuity of functionals) Recall that the functional γ is continuous in the
sup-norm at F if for all ε > 0, there exists a δ > 0 such that ‖G − F‖∞ ≤ δ implies that
|γ(G) − γ(F)| ≤ ε.

(a) Given n i.i.d. samples with law specified by F, let F̂n be the empirical CDF. Show that

if γ is continuous in the sup-norm at F, then γ(F̂n)
prob.
−→ γ(F).

(b) Which of the following functionals are continuous with respect to the sup-norm? Prove
or disprove.
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(i) The mean functional F �→
∫

x dF(x).
(ii) The Cramér–von Mises functional F �→

∫
[F(x) − F0(x)]2 dF0(x).

(iii) The quantile functional Qα(F) = inf{t ∈ R | F(t) ≥ α}.

Exercise 4.2 (Failure of Glivenko–Cantelli) Recall from Example 4.7 the class S of all
subsets S of [0, 1] for which S has a finite number of elements. Prove that the Rademacher
complexity satisfies the lower bound

Rn(S) = EX,ε

⎡⎢⎢⎢⎢⎢⎣sup
S∈S

∣∣∣∣∣∣1n
n∑

i=1

εiIS [Xi]

∣∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎦ ≥ 1

2
. (4.32)

Discuss the connection to Theorem 4.10.

Exercise 4.3 (Maximum likelihood and uniform laws) Recall from Example 4.8 our dis-
cussion of empirical and population risks for maximum likelihood over a family of densities
{pθ, θ ∈ Ω}.

(a) Compute the population risk R(θ, θ∗) = Eθ∗

[
log pθ∗ (X)

pθ(X)

]
in the following cases:

(i) Bernoulli: pθ(x) = eθx

1+eθx for x ∈ {0, 1};
(ii) Poisson: pθ(x) = eθxe− exp(θ)

x! for x ∈ {0, 1, 2, . . .};
(iii) multivariate Gaussian: pθ is the density of an N(θ,Σ) vector, where the covariance

matrix Σ is known and fixed.

(b) For each of the above cases:

(i) Letting θ̂ denote the maximum likelihood estimate, give an explicit expression for
the excess risk E(̂θ, θ∗) = R(̂θ, θ∗) − infθ∈Ω R(θ, θ∗).

(ii) Give an upper bound on the excess risk in terms of an appropriate Rademacher
complexity.

Exercise 4.4 (Details of symmetrization argument)

(a) Prove that

sup
g∈G

E[g(X)] ≤ E
[

sup
g∈G

|g(X)|
]
.

Use this to complete the proof of inequality (4.17).
(b) Prove that for any convex and non-decreasing function Φ,

sup
g∈G

Φ(E[|g(X)|]) ≤ E
[
Φ

(
sup
g∈G

|g(X)|
)]
.

Use this bound to complete the proof of Proposition 4.11.

Exercise 4.5 (Necessity of vanishing Rademacher complexity) In this exercise, we work
through the proof of Proposition 4.12.
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(a) Recall the recentered function classF = { f − E[ f ] | f ∈F }. Show that

EX,ε[‖Sn‖F̄ ] ≥ EX,ε[‖Sn‖F ] −
sup f∈F |E[ f ]|

√
n

.

(b) Use concentration results to complete the proof of Proposition 4.12.

Exercise 4.6 (Too many linear classifiers) Consider the function class

F = {x �→ sign(〈θ, x〉) | θ ∈ Rd, ‖θ‖2 = 1},

corresponding to the {−1,+1}-valued classification rules defined by linear functions in Rd.
Supposing that d ≥ n, let xn

1 = {x1, . . . , xn} be a collection of vectors in Rd that are linearly
independent. Show that the empirical Rademacher complexity satisfies

R(F (xn
1)/n) = Eε

⎡⎢⎢⎢⎢⎢⎣sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (xi)

∣∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎦ = 1.

Discuss the consequences for empirical risk minimization over the classF .

Exercise 4.7 (Basic properties of Rademacher complexity) Prove the following properties
of the Rademacher complexity.

(a) Rn(F ) = Rn(conv(F )).
(b) Show that Rn(F + G ) ≤ Rn(F ) + Rn(G ). Give an example to demonstrate that this

bound cannot be improved in general.
(c) Given a fixed and uniformly bounded function g, show that

Rn(F + g) ≤ Rn(F ) +
‖g‖∞√

n
. (4.33)

Exercise 4.8 (Operations on VC classes) Let S and T be two classes of sets with finite
VC dimensions. Show that each of the following operations lead to a new set class also with
finite VC dimension.

(a) The set class Sc := {S c | S ∈ S}, where S c denotes the complement of the set S .
(b) The set class S ' T := {S ∩ T | S ∈ S, T ∈ T }.
(c) The set class S & T := {S ∪ T | S ∈ S, T ∈ T }.

Exercise 4.9 Prove Lemma 4.14.

Exercise 4.10 Prove equality (i) in equation (4.29), namely that(
n − 1

k

)
+

(
n − 1
k − 1

)
=

(
n
k

)
.

Exercise 4.11 In this exercise, we complete the proof of Proposition 4.18.

(a) Prove inequality (ii) in (4.26).
(b) For n ≥ ν, prove the sharper upper bound card(S(xn

1)) ≤
( en

ν

)ν. (Hint: You might find the
result of Exercise 2.9 useful.)
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Exercise 4.12 (VC dimension of left-sided intervals) Consider the class of left-sided half-
intervals in Rd:

Sd
left := {(−∞, t1] × (−∞, t2] × · · · × (−∞, td] | (t1, . . . , td) ∈ Rd}.

Show that for any collection of n points, we have card(Sd
left(xn

1)) ≤ (n + 1)d and ν(Sd
left) = d.

Exercise 4.13 (VC dimension of spheres) Consider the class of all spheres in R2—that is

S2
sphere := {S a,b, (a, b) ∈ R2 × R+}, (4.34)

where S a,b := {x ∈ R2 | ‖x − a‖2 ≤ b} is the sphere of radius b ≥ 0 centered at a = (a1, a2).

(a) Show that S2
sphere can shatter any subset of three points that are not collinear.

(b) Show that no subset of four points can be shattered, and conclude that the VC dimension
is ν(S2

sphere) = 3.

Exercise 4.14 (VC dimension of monotone Boolean conjunctions) For a positive integer
d ≥ 2, consider the function hS : {0, 1}d → {0, 1} of the form

hs(x1, . . . , xd) =

⎧⎪⎪⎨⎪⎪⎩1 if x j = 1 for all j ∈ S ,
0 otherwise.

The set of all Boolean monomials Bd consists of all such functions as S ranges over all
subsets of {1, 2, . . . , d}, along with the constant functions h ≡ 0 and h ≡ 1. Show that the VC
dimension of Bd is equal to d.

Exercise 4.15 (VC dimension of closed and convex sets) Show that the class Cd
cc of all

closed and convex sets in Rd does not have finite VC dimension. (Hint: Consider a set of n
points on the boundary of the unit ball.)

Exercise 4.16 (VC dimension of polygons) Compute the VC dimension of the set of all
polygons in R2 with at most four vertices.

Exercise 4.17 (Infinite VC dimension) For a scalar t ∈ R, consider the function ft(x) =
sign(sin(tx)). Prove that the function class { ft : [−1, 1] → R | t ∈ R} has infinite VC dimen-
sion. (Note: This shows that VC dimension is not equivalent to the number of parameters in
a function class.)
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Metric entropy and its uses

Many statistical problems require manipulating and controlling collections of random vari-
ables indexed by sets with an infinite number of elements. There are many examples of such
stochastic processes. For instance, a continuous-time random walk can be viewed as a col-
lection of random variables indexed by the unit interval [0, 1]. Other stochastic processes,
such as those involved in random matrix theory, are indexed by vectors that lie on the Eu-
clidean sphere. Empirical process theory, a broad area that includes the Glivenko–Cantelli
laws discussed in Chapter 4, is concerned with stochastic processes that are indexed by sets
of functions.

Whereas any finite set can be measured in terms of its cardinality, measuring the “size” of
a set with infinitely many elements requires more delicacy. The concept of metric entropy,
which dates back to the seminal work of Kolmogorov, Tikhomirov and others in the Rus-
sian school, provides one way in which to address this difficulty. Though defined in a purely
deterministic manner, in terms of packing and covering in a metric space, it plays a central
role in understanding the behavior of stochastic processes. Accordingly, this chapter is de-
voted to an exploration of metric entropy, and its various uses in the context of stochastic
processes.

5.1 Covering and packing

We begin by defining the notions of packing and covering a set in a metric space. Recall that
a metric space (T, ρ) consists of a non-empty set T, equipped with a mapping ρ : T×T→ R
that satisfies the following properties:

(a) It is non-negative: ρ(θ, θ̃) ≥ 0 for all pairs (θ, θ̃), with equality if and only if θ = θ̃.
(b) It is symmetric: ρ(θ, θ̃) = ρ(̃θ, θ) for all pairs (̃θ, θ).
(c) The triangle inequality holds: ρ(θ, θ̃) ≤ ρ(θ, θ̃) + ρ(θ̃, θ̃) for all triples (θ, θ̃, θ̃).

Familiar examples of metric spaces include the real space Rd with the Euclidean metric

ρ(θ, θ̃) = ‖θ − θ̃‖2 :=

√√√ d∑
j=1

(θ j − θ′j)2, (5.1a)

and the discrete cube {0, 1}d with the rescaled Hamming metric

ρH(θ, θ̃) :=
1
d

d∑
j=1

I[θ j � θ′j]. (5.1b)
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Also of interest are various metric spaces of functions, among them the usual spaces
L2(μ, [0, 1]) with its metric

‖ f − g‖2 :=
[∫ 1

0
( f (x) − g(x))2 dμ(x)

]1/2

, (5.1c)

as well as the space C[0, 1] of all continuous functions on [0, 1] equipped with the sup-norm
metric

‖ f − g‖∞ = sup
x∈[0,1]

| f (x) − g(x)|. (5.1d)

Given a metric space (T, ρ), a natural way in which to measure its size is in terms of num-
ber of balls of a fixed radius δ required to cover it, a quantity known as the covering number.

Definition 5.1 (Covering number) A δ-cover of a set T with respect to a metric ρ is
a set {θ1, . . . , θN} ⊂ T such that for each θ ∈ T, there exists some i ∈ {1, . . . , N} such
that ρ(θ, θi) ≤ δ. The δ-covering number N(δ ; T, ρ) is the cardinality of the smallest
δ-cover.

δ

θ1 θ2

θ3

θ4

θN

δ

δ
2

θ1

θ2 θ3

θ4

θM

(a) (b)

Figure 5.1 Illustration of packing and covering sets. (a) A δ-covering of T is a col-
lection of elements {θ1, . . . , θN} ⊂ T such that for each θ ∈ T, there is some element
j ∈ {1, . . . , N} such that ρ(θ, θ j) ≤ δ. Geometrically, the union of the balls with cen-
ters θ j and radius δ cover the set T. (b) A δ-packing of a set T is a collection of
elements {θ1, . . . , θM} ⊂ T such that ρ(θ j, θk) > δ for all j � k. Geometrically, it is a
collection of balls of radius δ/2 with centers contained in T such that no pair of balls
have a non-empty intersection.
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As illustrated in Figure 5.1(a), a δ-covering can be visualized as a collection of balls of ra-
dius δ that cover the set T. When discussing metric entropy, we restrict our attention to metric
spaces (T, ρ) that are totally bounded, meaning that the covering number N(δ) = N(δ ; T, ρ)
is finite for all δ > 0. See Exercise 5.1 for an example of a metric space that is not totally
bounded.

It is easy to see that the covering number is non-increasing in δ, meaning that N(δ) ≥ N(δ′)
for all δ ≤ δ′. Typically, the covering number diverges as δ → 0+, and of interest to us is this
growth rate on a logarithmic scale. More specifically, the quantity log N(δ ; T, ρ) is known
as the metric entropy of the set T with respect to ρ.

Example 5.2 (Covering numbers of unit cubes) Let us begin with a simple example of
how covering numbers can be bounded. Consider the interval [−1, 1] in R, equipped with
the metric ρ(θ, θ′) = |θ − θ′|. Suppose that we divide the interval [−1, 1] into L := � 1

δ
� + 1

sub-intervals,1 centered at the points θi = −1+ 2(i− 1)δ for i ∈ [L] := {1, 2, . . . , L}, and each
of length at most 2δ. By construction, for any point θ̃ ∈ [0, 1], there is some j ∈ [L] such
that |θ j − θ̃| ≤ δ, which shows that

N(δ ; [−1, 1], | · |) ≤
1
δ
+ 1. (5.2)

As an exercise, the reader should generalize this analysis, showing that, for the d-dimensional
cube [−1, 1]d, we have N(δ ; [−1, 1]d, ‖ · ‖∞) ≤

(
1 + 1

δ

)d. ♣

Example 5.3 (Covering of the binary hypercube) Consider the binary hypercube Hd :=
{0, 1}d equipped with the rescaled Hamming metric (5.1b). First, let us upper bound its δ-
covering number. Let S = {1, 2, . . . , �(1−δ)d�}, where �(1−δ)d� denotes the smallest integer
larger than or equal to (1 − δ)d. Consider the set of binary vectors

T(δ) := {θ ∈ Hd | θ j = 0 for all j � S }.

By construction, for any binary vector θ̃ ∈ Hd, we can find a vector θ ∈ T(δ) such that
ρH(θ, θ̃) ≤ δ. (Indeed, we can match θ̃ exactly on all entries j ∈ S , and, in the worst case,
disagree on all the remaining �δd� positions.) Since T(δ) contains 2�(1−δ)d� vectors, we con-
clude that

log NH(δ;Hd)
log 2

≤ �d(1 − δ)�.

This bound is useful but can be sharpened considerably by using a more refined argument,
as discussed in Exercise 5.3.

Let us lower bound its δ-covering number, where δ ∈ (0, 1
2 ). If {θ1, . . . , θN} is a δ-covering,

then the (unrescaled) Hamming balls of radius s = δd around each θ� must contain all 2d

vectors in the binary hypercube. Let s = �δd� denote the largest integer less than or equal
to δd. For each θ�, there are exactly

∑s
j=0

(
d
j

)
binary vectors lying within distance δd from it,

and hence we must have N
{∑s

j=0

(
d
j

)}
≥ 2d. Now let Xi ∈ {0, 1} be i.i.d. Bernoulli variables

1 For a scalar a ∈ R, the notation �a� denotes the greatest integer less than or equal to a.
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with parameter 1/2. Rearranging the previous inequality, we have

1
N
≤

s∑
j=0

(
d
j

)
2−d = P

⎡⎢⎢⎢⎢⎢⎣ d∑
i=1

Xi ≤ δd

⎤⎥⎥⎥⎥⎥⎦ (i)
≤ e−2d( 1

2−δ)2
,

where inequality (i) follows by applying Hoeffding’s bound to the sum of d i.i.d. Bernoulli
variables. Following some algebra, we obtain the lower bound

log NH(δ;Hd) ≥ 2d
(
1
2
− δ

)2

, valid for δ ∈ (0, 1
2 ).

This lower bound is qualitatively correct, but can be tightened by using a better upper
bound on the binomial tail probability. For instance, from the result of Exercise 2.9, we
have 1

d logP
[∑d

i=1 Xi ≤ s
]
≤ −D(δ ‖ 1

2 ), where D(δ ‖ 1
2 ) is the Kullback–Leibler divergence

between the Bernoulli distributions with parameters δ and 1
2 , respectively. Using this tail

bound within the same argument leads to the improved lower bound

log NH(δ;Hd) ≥ dD(δ ‖ 1
2 ), valid for δ ∈ (0, 1

2 ). (5.3)
♣

In the preceding examples, we used different techniques to upper and lower bound the
covering number. A complementary way in which to measure the massiveness of sets, also
useful for deriving bounds on the metric entropy, is known as the packing number.

Definition 5.4 (Packing number) A δ-packing of a set T with respect to a metric ρ

is a set {θ1, . . . , θM} ⊂ T such that ρ(θi, θ j) > δ for all distinct i, j ∈ {1, 2, . . . , M}. The
δ-packing number M(δ ; T, ρ) is the cardinality of the largest δ-packing.

As illustrated in Figure 5.1(b), a δ-packing can be viewed as a collection of balls of ra-
dius δ/2, each centered at an element contained in T, such that no two balls intersect. What
is the relation between the covering number and packing numbers? Although not identical,
they provide essentially the same measure of the massiveness of a set, as summarized in the
following:

Lemma 5.5 For all δ > 0, the packing and covering numbers are related as follows:

M(2δ ; T, ρ)
(a)
≤ N(δ ; T, ρ)

(b)
≤ M(δ ; T, ρ). (5.4)

We leave the proof of Lemma 5.5 for the reader (see Exercise 5.2). It shows that, at least up
to constant factors, the packing and covering numbers exhibit the same scaling behavior as
δ → 0.

Example 5.6 (Packing of unit cubes) Returning to Example 5.2, we observe that the points
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{θ j, j = 1, . . . , L − 1} are separated as |θ j − θk| ≥ 2δ > δ for all j � k, which implies that
M(2δ ; [−1, 1], | · |) ≥ � 1

δ
�. Combined with Lemma 5.5 and our previous upper bound (5.2),

we conclude that log N(δ; [−1, 1], | · |) ( log(1/δ) for δ > 0 sufficiently small. This argument
can be extended to the d-dimensional cube with the sup-norm ‖ · ‖∞, showing that

log N(δ ; [0, 1]d, ‖ · ‖∞) ( d log(1/δ) for δ > 0 sufficiently small. (5.5)

Thus, we see how an explicit construction of a packing set can be used to lower bound the
metric entropy. ♣

In Exercise 5.3, we show how a packing argument can be used to obtain a refined upper
bound on the covering number of the Boolean hypercube from Example 5.3.

We now seek some more general understanding of what geometric properties govern met-
ric entropy. Since covering is defined in terms of the number of balls—each with a fixed
radius and hence volume—one would expect to see connections between covering numbers
and volumes of these balls. The following lemma provides a precise statement of this con-
nection in the case of norms on Rd with open unit balls, for which the volume can be taken
with respect to Lebesgue measure. Important examples are the usual �q-balls, defined for
q ∈ [1,∞] via

Bd
q(1) := {x ∈ Rd | ‖x‖q ≤ 1}, (5.6)

where for q ∈ [1,∞), the �q-norm is given by

‖x‖q :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
( d∑

i=1

|xi|q
)1/q

for q ∈ [1,∞),

max
i=1,...,d

|xi| for q = ∞.
(5.7)

The following lemma relates the metric entropy to the so-called volume ratio. It involves the
Minkowski sum A + B := {a + b | a ∈ A, b ∈ B} of two sets.

Lemma 5.7 (Volume ratios and metric entropy) Consider a pair of norms ‖·‖ and ‖·‖′
on Rd, and let B and B′ be their corresponding unit balls (i.e., B = {θ ∈ Rd | ‖θ‖ ≤ 1},
with B′ similarly defined). Then the δ-covering number of B in the ‖ · ‖′-norm obeys the
bounds (

1
δ

)d vol(B)
vol(B′)

(a)
≤ N(δ ; B, ‖ · ‖′)

(b)
≤

vol( 2
δ
B + B′)

vol(B′)
. (5.8)

Whenever B′ ⊆ B, the upper bound (b) may be simplified by observing that

vol
(
2
δ
B + B′

)
≤ vol

((
2
δ
+ 1

)
B
)
=

(
2
δ
+ 1

)d

vol(B),

which implies that N(δ ; B, ‖ · ‖′) ≤
(
1 + 2

δ

)d vol(B)
vol(B′) .
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Proof On one hand, if {θ1, . . . , θN} is a δ-covering of B, then we have

B ⊆
N⋃

j=1

{θ j + δB′},

which implies that vol(B) ≤ N vol(δB′) = Nδd vol(B′), thus establishing inequality (a) in the
claim (5.8).

In order to establish inequality (b) in (5.8), let {θ1, . . . , θM} be a maximal (δ/2)-packing
of B in the ‖ · ‖′-norm; by maximality, this set must also be a δ-covering of B under the
‖ · ‖′-norm. The balls {θ j + δ

2B
′, j = 1, . . . , M} are all disjoint and contained within B+ δ

2B
′.

Taking volumes, we conclude that
∑M

j=1 vol(θ j + δ
2B

′) ≤ vol(B + δ
2B

′), and hence

M vol
(
δ

2
B′
)
≤ vol

(
B +

δ

2
B′
)
.

Finally, we have vol( δ
2B

′) = ( δ
2 )d vol(B′) and vol(B + δ

2B
′) = ( δ

2 )d vol( 2
δ
B + B′), from which

the claim (b) in equation (5.8) follows.

Let us illustrate Lemma 5.7 with an example.

Example 5.8 (Covering unit balls in their own metrics) As an important special case, if we
take B = B′ in Lemma 5.7, then we obtain upper and lower bounds on the metric entropy of
a given unit ball in terms of its own norm—namely, we have

d log(1/δ) ≤ log N(δ ; B, ‖ · ‖) ≤ d log
(
1 +

2
δ

)
. (5.9)

When applied to the �∞-norm, this result shows that the ‖·‖∞-metric entropy ofBd
∞ = [−1, 1]d

scales as d log(1/δ), so that we immediately recover the end result of our more direct analysis
in Examples 5.2 and 5.6. As another special case, we also find that the Euclidean unit ball
Bd

2 can be covered by at most (1+2/δ)d balls with radius δ in the norm ‖·‖2. In Example 5.12
to follow in the sequel, we use Lemma 5.7 to bound the metric entropy of certain ellipsoids
in �2(N). ♣

Thus far, we have studied the metric entropy of various subsets of Rd. We now turn to
the metric entropy of some function classes, beginning with a simple parametric class of
functions.

Example 5.9 (A parametric class of functions) For any fixed θ, define the real-valued
function fθ(x) := 1 − e−θx, and consider the function class

P := { fθ : [0, 1] → R | θ ∈ [0, 1]}.

The set P is a metric space under the uniform norm (also known as the sup-norm) given
by ‖ f − g‖∞ := supx∈[0,1] | f (x) − g(x)|. We claim that its covering number in terms of the
sup-norm is bounded above and below as

1 +
⌊
1 − 1/e

2δ

⌋
(i)
≤ N∞(δ;P)

(ii)
≤

1
2δ

+ 2. (5.10)

We first establish the upper bound given in inequality (ii) of (5.10). For a given δ ∈ (0, 1),
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let us set T = � 1
2δ �, and define θi := 2δi for i = 0, 1, . . . ,T . By also adding the point θT+1 = 1,

we obtain a collection of points {θ0, . . . , θT , θT+1} contained within [0, 1]. We claim that the
associated functions { fθ0 , . . . , fθT+1} form a δ-cover forP . Indeed, for any fθ ∈ P , we can
find some θi in our cover such that |θi − θ| ≤ δ. We then have

‖ fθi − fθ‖∞ = max
x∈[0,1]

|e−θi |x| − e−θ|x|| ≤ |θi − θ| ≤ δ,

which implies that N∞(δ;P) ≤ T + 2 ≤ 1
2δ + 2.

In order to prove the lower bound on the covering number, as stated in inequality (i) in
(5.10), we proceed by first lower bounding the packing number, and then applying Lemma 5.5.
An explicit packing can be constructed as follows: first set θ0 = 0, and then define θi =

−log(1 − δi) for all i such that θi ≤ 1. We can define θi in this way until 1/e = 1 − Tδ,
or T ≥

⌊ 1−1/e
δ

⌋
. Moreover, note that for any i � j in the resulting set of functions, we

have ‖ fθi − fθ j‖∞ ≥ | fθi (1) − fθ j (1)| ≥ δ, by definition of θi. Therefore, we conclude that
M∞(δ;P) ≥

⌊ 1−1/e
δ

⌋
+ 1, and hence that

N∞(δ;P) ≥ M∞(2δ;P) ≥
⌊
1 − 1/e

2δ

⌋
+ 1,

as claimed. We have thus established the scaling log N(δ ; P , ‖ · ‖∞) ( log(1/δ) as δ → 0+.
This rate is the typical one to be expected for a scalar parametric class. ♣

A function class with a metric entropy that scales as log(1/δ) as δ → 0+ is relatively small.
Indeed, as shown in Example 5.2, the interval [−1, 1] has metric entropy of this order, and
the function class P from Example 5.9 is not essentially different. Other function classes
are much richer, and so their metric entropy exhibits a correspondingly faster growth, as
shown by the following example.

Example 5.10 (Lipschitz functions on the unit interval) Now consider the class of Lips-
chitz functions

FL := {g : [0, 1] → R | g(0) = 0, and |g(x) − g(x′)| ≤ L|x − x′| ∀ x, x′ ∈ [0, 1]}. (5.11)

Here L > 0 is a fixed constant, and all of the functions in the class obey the Lipschitz bound,
uniformly over all of [0, 1]. Note that the function classP from Example 5.9 is contained
within the class FL with L = 1. It is known that the metric entropy of the class FL with
respect to the sup-norm scales as

log N∞(δ ; FL) ( (L/δ) for suitably small δ > 0. (5.12)

Consequently, the set of Lipschitz functions is a much larger class than the parametric func-
tion class from Example 5.9, since its metric entropy grows as 1/δ as δ → 0, as compared
to log(1/δ).

Let us prove the lower bound in equation (5.12); via Lemma 5.5, it suffices to construct a
sufficiently large packing of the setFL. For a given ε > 0, define M = �1/ε�, and consider
the points in [0, 1] given by

xi = (i − 1)ε, for i = 1, . . . , M, and xM+1 = Mε ≤ 1.
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ε 2ε 3ε Mε

1

+Lε

−MLε

+MLε

+2Lε

−Lε
−2Lε

Figure 5.2 The function class { fβ, β ∈ {−1,+1}M} used to construct a packing
of the Lipschitz class FL. Each function is piecewise linear over the intervals
[0, ε], [ε, 2ε], . . . , [(M−1)ε, Mε] with slope either +L or −L. There are 2M functions
in total, where M = �1/ε�.

Moreover, define the function φ : R→ R+ via

φ(u) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 for u < 0,
u for u ∈ [0, 1],
1 otherwise.

(5.13)

For each binary sequence β ∈ {−1,+1}M, we may then define a function fβ mapping the unit
interval [0, 1] to [−L,+L] via

fβ(y) =
M∑

i=1

βiLε φ
(y − xi

ε

)
. (5.14)

By construction, each function fβ is piecewise linear and continuous, with slope either +L
or −L over each of the intervals [ε(i−1), εi] for i = 1, . . . , M, and constant on the remaining
interval [Mε, 1]; see Figure 5.2 for an illustration. Moreover, it is straightforward to verify
that fβ(0) = 0 and that fβ is Lipschitz with constant L, which ensures that fβ ∈FL.

Given a pair of distinct binary strings β � β′ and the two functions fβ and fβ′ , there is at
least one interval where the functions start at the same point, and have the opposite slope
over an interval of length ε. Since the functions have slopes +L and −L, respectively, we
are guaranteed that ‖ fβ − fβ′ ‖∞ ≥ 2Lε, showing that the set { fβ, β ∈ {−1,+1}M} forms a
2Lε packing in the sup-norm. Since this set has cardinality 2M = 2�1/ε�, after making the
substitution ε = δ/L and using Lemma 5.5, we conclude that

log N(δ ; FL, ‖ · ‖∞) � L/δ.

With a little more effort, it can also be shown that the collection of functions { fβ,
β ∈ {−1,+1}M} defines a suitable covering of the set FL, which establishes the overall
claim (5.12). ♣
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The preceding example can be extended to Lipschitz functions on the unit cube in higher
dimensions, meaning real-valued functions on [0, 1]d such that

| f (x) − f (y)| ≤ L ‖x − y‖∞ for all x, y ∈ [0, 1]d, (5.15)

a class that we denote by FL([0, 1]d). An extension of our argument can then be used to
show that

log N∞(δ ; FL([0, 1]d) ( (L/δ)d.

It is worth contrasting the exponential dependence of this metric entropy on the dimension
d, as opposed to the linear dependence that we saw earlier for simpler sets (e.g., such as
d-dimensional unit balls). This is a dramatic manifestation of the curse of dimensionality.

Another direction in which Example 5.10 can be extended is to classes of functions that have
higher-order derivatives.

Example 5.11 (Higher-order smoothness classes) We now consider an example of a func-
tion class based on controlling higher-order derivatives. For a suitably differentiable func-
tion f , let us adopt the notation f (k) to mean the kth derivative. (Of course, f (0) = f in
this notation.) For some integer α and parameter γ ∈ (0, 1], consider the class of functions
f : [0, 1] → R such that

| f ( j)(x)| ≤ C j for all x ∈ [0, 1], j = 0, 1, . . . , α, (5.16a)

| f (α)(x) − f (α)(x′)| ≤ L |x − x′|γ, for all x, x′ ∈ [0, 1]. (5.16b)

We claim that the metric entropy of this function classFα,γ scales as

log N(δ ; Fα,γ, ‖ · ‖∞) (
(
1
δ

) 1
α+γ

. (5.17)

(Here we have absorbed the dependence on the constants C j and L into the order notation.)
Note that this claim is consistent with our calculation in Example 5.10, which is essentially
the same as the classF0,1.

Let us prove the lower bound in the claim (5.17). As in the previous example, we do so
by constructing a packing { fβ, β ∈ {−1,+1}M} for a suitably chosen integer M. Define the
function

φ(y) :=

⎧⎪⎪⎨⎪⎪⎩c 22(α+γ)yα+γ(1 − y)α+γ for y ∈ [0, 1],
0 otherwise.

(5.18)

If the pre-factor c is chosen small enough (as a function of the constants C j and L), it can
be seen that the function φ satisfies the conditions (5.16). Now for some ε > 0, let us set
δ = (ε/c)1/(α+γ). By adjusting c as needed, this can be done such that M := �1/δ� < 1/δ, so
that we consider the points in [0, 1] given by

xi = (i − 1)δ, for i = 1, . . . , M, and xM+1 = Mδ < 1.
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For each β ∈ {−1,+1}M, let us define the function

fβ(x) :=
M∑

i=1

βiδ
1/(α+γ)φ

(
x − xi

δ

)
, (5.19)

and note that it also satisfies the conditions (5.16). Finally, for two binary strings β � β′,
there must exist some i ∈ {1, . . . , M} and an associated interval Ii−1 = [xi−1, xi] such that

| fβ(x) − fβ′(x)| = 21+2(α+γ)cδ1/(α+γ)φ

(
x − xi

δ

)
for all x ∈ Ii−1.

By setting x = xi + δ/2, we see that

‖ fβ − fβ′ ‖∞ ≥ 2c δα+γ = 2ε,

so that the set { fβ, β ∈ {−1,+1}M} is a 2ε-packing. Thus, we conclude that

log N(δ ; Fα,γ, ‖ · ‖∞) � (1/δ) ( (1/ε)1/(α+γ),

as claimed. ♣

Various types of function classes can be defined in terms of orthogonal expansions. Con-
cretely, suppose that we are given a sequence of functions (φ j)∞j=1 belonging to L2[0, 1] and
such that

〈φi, φ j〉L2[0,1] :=
∫ 1

0
φi(x)φ j(x) dx =

⎧⎪⎪⎨⎪⎪⎩1 if i = j,
0 otherwise.

For instance, the cosine basis is one such orthonormal basis, and there are many other
interesting ones. Given such a basis, any function f ∈ L2[0, 1] can be expanded in the
form f =

∑∞
j=1 θ jφ j, where the expansion coefficients are given by the inner products

θ j = 〈 f , φ j〉. By Parseval’s theorem, we have ‖ f ‖2
2 =

∑∞
j=1 θ

2
j so that ‖ f ‖2 < ∞ if and only if

(θ j)∞j=1 ∈ �2(N), the space of all square summable sequences. Various interesting classes of
functions can be obtained by imposing additional constraints on the class of sequences, and
one example is that of an ellipsoid constraint.

Example 5.12 (Function classes based on ellipsoids in �2(N)) Given a sequence of non-
negative real numbers (μ j)∞j=1 such that

∑∞
j=1 μ j < ∞, consider the ellipsoid

E =
⎧⎪⎪⎨⎪⎪⎩(θ j)∞j=1

∣∣∣∣∣∣ ∞∑
j=1

θ2
j

μ j
≤ 1

⎫⎪⎪⎬⎪⎪⎭ ⊂ �2(N). (5.20)

Such ellipsoids play an important role in our discussion of reproducing kernel Hilbert spaces
(see Chapter 12). In this example, we study the ellipsoid specified by the sequence μ j = j−2α

for some parameter α > 1/2. Ellipsoids of this type arise from certain classes of α-times-
differentiable functions; see Chapter 12 for details.

We claim that the metric entropy of the associated ellipsoid with respect to the norm
‖ · ‖2 = ‖ · ‖�2(N) scales as

log N(δ;E, ‖ · ‖2) (
(
1
δ

)1/α

for all suitably small δ > 0. (5.21)
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We begin by proving the upper bound—in particular, for a given δ > 0, let us upper bound2

the covering number N(
√

2δ). Let d be the smallest integer such that μd ≤ δ2, and consider
the truncated ellipsoid

Ẽ := {θ ∈ E | θ j = 0 for all j ≥ d + 1}.

We claim that any δ-cover of this truncated ellipsoid, say {θ1, . . . , θN}, forms a
√

2δ-cover of
the full ellipsoid. Indeed, for any θ ∈ E, we have

∞∑
j=d+1

θ2
j ≤ μd

∞∑
j=d+1

θ2
j

μ j
≤ δ2,

and hence

min
k∈[N]

‖θ − θk‖2
2 = min

k∈[N]

d∑
j=1

(θ j − θk
j)

2 +

∞∑
j=d+1

θ2
j ≤ 2δ2.

Consequently, it suffices to upper bound the cardinality N of this covering of Ẽ. Since
δ2 ≤ μ j for all j ∈ {1, . . . , d}, if we view Ẽ as a subset of Rd, then it contains the ball Bd

2(δ),
and hence vol(Ẽ + Bd

2(δ/2)) ≤ vol(2Ẽ). Consequently, by Lemma 5.7, we have

N ≤
(
2
δ

)d vol(Ẽ + Bd
2(δ/2))

vol(Bd
2(1))

≤
(
4
δ

)d vol(Ẽ)
vol(Bd

2(1))
.

By standard formulae for the volume of ellipsoids, we have vol(Ẽ)
vol(Bd

2(1)) =
∏d

j=1
√
μ j. Putting

together the pieces, we find that

log N ≤ d log(4/δ) +
1
2

d∑
j=1

log μ j
(i)
= d log(4/δ) − α

d∑
j=1

log j,

where step (i) follows from the substitution μ j = j−2α. Using the elementary inequality∑d
j=1 log j ≥ d log d − d, we have

log N ≤ d(log 4 + α) + d{log(1/δ) − α log d} ≤ d(log 4 + α),

where the final inequality follows since μd = d−2α ≤ δ2, which is equivalent to log( 1
δ
) ≤

α log d. Since (d − 1)−2α ≥ δ2, we have d ≤ (1/δ)1/α + 1, and hence

log N ≤
⎧⎪⎪⎨⎪⎪⎩
(
1
δ

) 1
α

+ 1

⎫⎪⎪⎬⎪⎪⎭ (log 4 + α),

which completes the proof of the upper bound.
For the lower bound, we note that the ellipsoid E contains the truncated ellipsoid Ẽ, which

(when viewed as a subset of Rd) contains the ball Bd
2(δ). Thus, we have

log N
(
δ

2
;E, ‖ · ‖2

)
≥ log N

(
δ

2
;Bd

2(δ), ‖ · ‖2

)
≥ d log 2,

where the final inequality uses the lower bound (5.9) from Example 5.8. Given the inequality
d ≥ (1/δ)1/α, we have established the lower bound in our original claim (5.21). ♣

2 The additional factor of
√

2 is irrelevant for the purposes of establishing the claimed scaling (5.21).
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5.2 Gaussian and Rademacher complexity

Although metric entropy is a purely deterministic concept, it plays a fundamental role in
understanding the behavior of stochastic processes. Given a collection of random variables
{Xθ, θ ∈ T} indexed by T, it is frequently of interest to analyze how the behavior of this
stochastic process depends on the structure of the set T. In the other direction, given know-
ledge of a stochastic process indexed by T, it is often possible to infer certain properties of
the set T. In our treatment to follow, we will see instances of both directions of this interplay.

An important example of this interplay is provided by the stochastic processes that define
the Gaussian and Rademacher complexities. Given a set T ⊆ Rd, the family of random
variables {Gθ, θ ∈ T}, where

Gθ := 〈w, θ〉 =
d∑

i=1

wiθi, with wi ∼ N(0, 1), i.i.d. , (5.22)

defines a stochastic process is known as the canonical Gaussian process associated with T.
As discussed earlier in Chapter 2, its expected supremum

G(T) := E
[
sup
θ∈T

〈θ, w〉
]

(5.23)

is known as the Gaussian complexity of T. Like the metric entropy, the functional G(T)
measures the size of the set T in a certain sense. Replacing the standard Gaussian variables
with random signs yields the Rademacher process {Rθ, θ ∈ T}, where

Rθ := 〈ε, θ〉 =
d∑

i=1

εiθi, with εi uniform over {−1,+1}, i.i.d. (5.24)

Its expectation R(T) := E[supθ∈T 〈θ, ε〉] is known as the Rademacher complexity of T. As
shown in Exercise 5.5, we have R(T) ≤

√
π
2 G(T) for any set T, but there are sets for which

the Gaussian complexity is substantially larger than the Rademacher complexity.

Example 5.13 (Rademacher/Gaussian complexity of Euclidean ball Bd
2) Let us compute

the Rademacher and Gaussian complexities of the Euclidean ball of unit norm—that is,
Bd

2 = {θ ∈ Rd | ‖θ‖2 ≤ 1}. Computing the Rademacher complexity is straightforward:
indeed, the Cauchy–Schwarz inequality implies that

R(Bd
2) = E

[
sup
‖θ‖2≤1

〈θ, ε〉
]
= E

[( d∑
i=1

ε2
i

)1/2]
=
√

d.

The same argument shows that G(Bd
2) = E[‖w‖2] and by concavity of the square-root func-

tion and Jensen’s inequality, we have

E‖w‖2 ≤
√
E[‖w‖2

2] =
√

d,

so that we have the upper bound G(Bd
2) ≤

√
d. On the other hand, it can be shown that

E‖w‖2 ≥
√

d (1 − o(1)). This is a good exercise to work through, using concentration bounds
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for χ2 variates from Chapter 2. Combining these upper and lower bounds, we conclude that

G(Bd
2)/
√

d = 1 − o(1), (5.25)

so that the Rademacher and Gaussian complexities of Bd
2 are essentially equivalent. ♣

Example 5.14 (Rademacher/Gaussian complexity of Bd
1) As a second example, let us con-

sider the �1-ball in d dimensions, denoted by Bd
1. By the duality between the �1- and �∞-

norms (or equivalently, using Hölder’s inequality), we have

R(Bd
1) = E

[
sup
‖θ‖1≤1

〈θ, ε〉
]
= E[‖ε‖∞] = 1.

Similarly, we have G(Bd
1) = E[‖w‖∞], and using the result of Exercise 2.11 on Gaussian

maxima, we conclude that

G(Bd
1)/

√
2 log d = 1 ± o(1). (5.26)

Thus, we see that the Rademacher and Gaussian complexities can differ by a factor of the
order

√
log d; as shown in Exercise 5.5, this difference turns out to be the worst possible.

But in either case, comparing with the Rademacher/Gaussian complexity of the Euclidean
ball (5.25) shows that the �1-ball is a much smaller set. ♣

Example 5.15 (Gaussian complexity of �0-balls) We now turn to the Gaussian complexity
of a set defined in a combinatorial manner. As we explore at more length in later chapters,
sparsity plays an important role in many classes of high-dimensional statistical models. The
�1-norm, as discussed in Example 5.14, is a convex constraint used to enforce sparsity. A
more direct and combinatorial way3 is by limiting the number ‖θ‖0 :=

∑d
j=1 I[θ j � 0] of

non-zero entries in θ. For some integer s ∈ {1, 2, . . . , d}, the �0-“ball” of radius s is given by

Bd
0(s) := {θ ∈ Rd | ‖θ‖0 ≤ s}. (5.27)

This set is non-convex, corresponding to the union of
(

d
s

)
subspaces, one for each of the

possible s-sized subsets of d coordinates. Since it contains these subspaces, it is also an
unbounded set, so that, in computing any type of complexity measure, it is natural to impose
an additional constraint. For instance, let us consider the Gaussian complexity of the set

Sd(s) := Bd
0(s) ∩ Bd

2(1) = {θ ∈ Rd | ‖θ‖0 ≤ s, and ‖θ‖2 ≤ 1}. (5.28)

Exercise 5.7 leads the reader through the steps required to establish the upper bound

G(Sd(s)) �
√

s log
ed
s
, (5.29)

where e ≈ 2.7183 is defined as usual. Moreover, we show in Exercise 5.8 that this bound is
tight up to constant factors. ♣

The preceding examples focused on subsets of vectors in Rd. Gaussian complexity also
plays an important role in measuring the size of different classes of functions. For a given

3 Despite our notation, the �0-“norm” is not actually a norm in the usual sense of the word.
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class F of real-valued functions with domain X, let xn
1 := {x1, . . . , xn} be a collection of n

points within the domain, known as the design points. We can then define the set

F (xn
1) := {( f (x1), f (x2), . . . , f (xn)) | f ∈F } ⊆ Rn. (5.30)

Bounding the Gaussian complexity of this subset of Rn yields a measure of the complexity
ofF at scale n; this measure plays an important role in our analysis of nonparametric least
squares in Chapter 13.

It is most natural to analyze a version of the setF (xn
1) that is rescaled, either by n−1/2 or

by n−1. It is useful to observe that the Euclidean metric on the rescaled set F (xn
1)

√
n corresponds

to the empirical L2(Pn)-metric on the function spaceF—viz.

‖ f − g‖n :=

√√
1
n

n∑
i=1

( f (xi) − g(xi))2. (5.31)

Note that, if the function classF is uniformly bounded (i.e., ‖ f ‖∞ ≤ b for all f ∈ F ), then
we also have ‖ f ‖n ≤ b for all f ∈ F . In this case, we always have the following (trivial)
upper bound

G
(
F (xn

1)
n

)
= E

[
sup
f∈F

n∑
i=1

wi√
n

f (xi)√
n

]
≤ b

E[‖w‖2]
√

n
≤ b,

where we have recalled our analysis of E[‖w‖2] from Example 5.13. Thus, a bounded func-
tion class (evaluated at n points) has Gaussian complexity that is never larger than a (scaled)
Euclidean ball in Rn. A more refined analysis will show that the Gaussian complexity of
F (xn

1)
n is often substantially smaller, depending on the structure of F . We will study many

instances of such refined bounds in the sequel.

5.3 Metric entropy and sub-Gaussian processes

Both the canonical Gaussian process (5.22) and the Rademacher process (5.24) are particu-
lar examples of sub-Gaussian processes, which we now define in more generality.

Definition 5.16 A collection of zero-mean random variables {Xθ, θ ∈ T} is a sub-
Gaussian process with respect to a metric ρX on T if

E[eλ(Xθ−Xθ̃)] ≤ e
λ2ρ2

X (θ,̃θ)
2 for all θ, θ̃ ∈ T, and λ ∈ R. (5.32)

By the results of Chapter 2, the bound (5.32) implies the tail bound

P[|Xθ − Xθ̃| ≥ t] ≤ 2e
− t2

2ρ2
X (θ,̃θ) ,

and imposing such a tail bound is an equivalent way in which to define a sub-Gaussian
process. It is easy to see that the canonical Gaussian and Rademacher processes are both
sub-Gaussian with respect to the Euclidean metric ‖θ − θ̃‖2.
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Given a sub-Gaussian process, we use the notation NX (δ ; T) to denote the δ-covering
number of T with respect to ρX , and N2 (δ ; T) to denote the covering number with respect
to the Euclidean metric ‖ · ‖2, corresponding to the case of a canonical Gaussian process. As
we now discuss, these metric entropies can be used to construct upper bounds on various
expected suprema involving the process.

5.3.1 Upper bound by one-step discretization

We begin with a simple upper bound obtained via a discretization argument. The basic idea
is natural: by approximating the set T up to some accuracy δ, we may replace the supre-
mum over T by a finite maximum over the δ-covering set, plus an approximation error that
scales proportionally with δ. We let D := supθ,̃θ∈T ρX(θ, θ̃) denote the diameter of T, and let
NX (δ ; T) denote the δ-covering number of T in the ρX-metric.

Proposition 5.17 (One-step discretization bound) Let {Xθ, θ ∈ T} be a zero-mean
sub-Gaussian process with respect to the metric ρX. Then for any δ ∈ [0, D] such that
NX (δ ; T) ≥ 10, we have

E
[

sup
θ,̃θ∈T

(Xθ − Xθ̃)
]
≤ 2E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
γ,γ′∈T

ρX (γ,γ′)≤δ

(Xγ − Xγ′)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + 4
√

D2 log NX (δ ; T). (5.33)

Remarks: It is convenient to state the upper bound in terms of the increments Xθ − Xθ̃ so as
to avoid issues of considering where the set T is centered. However, the claim (5.33) always
implies an upper bound on E[supθ∈T Xθ], since the zero-mean condition means that

E
[

sup
θ∈T

Xθ

]
= E

[
sup
θ∈T

(Xθ − Xθ0 )
]
≤ E

[
sup
θ,̃θ∈T

(Xθ − Xθ̃)
]
.

For each δ ∈ [0, D], the upper bound (5.33) consists of two quantities, corresponding to
approximation error and estimation error, respectively. As δ → 0+, the approximation error
(involving the constraint ρX(γ, γ′) ≤ δ) shrinks to zero, whereas the estimation error (in-
volving the metric entropy) grows. In practice, one chooses δ so as to achieve the optimal
trade-off between these two terms.

Proof For a given δ ≥ 0 and associated covering number N = NX (δ ; T), let {θ1, . . . , θN}
be a δ-cover of T. For any θ ∈ T, we can find some θi such that ρX(θ, θi) ≤ δ, and hence

Xθ − Xθ1 = (Xθ − Xθi ) + (Xθi − Xθ1 )

≤ sup
γ,γ′∈T

ρX (γ,γ′)≤δ

(Xγ − Xγ′) + max
i=1,2,...,N

|Xθi − Xθ1 |.

Given some other arbitrary θ̃ ∈ T, the same upper bound holds for Xθ1 − Xθ̃, so that adding
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together the bounds, we obtain

sup
θ,̃θ∈T

(Xθ − Xθ̃) ≤ 2 sup
γ,γ′∈T

ρX (γ,γ′)≤δ

(Xγ − Xγ′) + 2 max
i=1,2,...,N

|Xθi − Xθ1 |. (5.34)

Now by assumption, for each i = 1, 2, . . . , N, the random variable Xθi − Xθ1 is zero-mean
and sub-Gaussian with parameter at most ρX(θi, θ1) ≤ D. Consequently, by the behavior of
sub-Gaussian maxima (see Exercise 2.12(c)), we are guaranteed that

E
[

max
i=1,...,N

|Xθi − Xθ1 |
]
≤ 2

√
D2 log N,

which yields the claim.

In order to gain intuition, it is worth considering the special case of the canonical Gaussian
(or Rademacher) process, in which case the relevant metric is the Euclidean norm ‖θ − θ̃‖2.
In order to reduce to the essential aspects of the problem, consider a set T that contains the
origin. The arguments4 leading to the bound (5.33) imply that the Gaussian complexity G(T)
is upper bounded as

G(T) ≤ min
δ∈[0,D]

{
G(T̃(δ)) + 2

√
D2 log N2 (δ ; T)

}
, (5.35)

where N2 (δ ; T) is the δ-covering number in the �2-norm, and

T̃(δ) := {γ − γ′ | γ, γ′ ∈ T, ‖γ − γ′‖2 ≤ δ}.

The quantity G(T̃(δ)) is referred to as a localized Gaussian complexity, since it measures
the complexity of the set T within an �2-ball of radius δ. This idea of localization plays an
important role in obtaining optimal rates for statistical problems; see Chapters 13 and 14
for further discussion. We note also that analogous upper bounds hold for the Rademacher
complexity R(T) in terms of a localized Rademacher complexity.

In order to obtain concrete results from the discretization bound (5.35), it remains to upper
bound the localized Gaussian complexity, and then optimize the choice of δ. When T is a
subset of Rd, the Cauchy–Schwarz inequality yields

G(T̃(δ)) = E
[

sup
θ∈T̃(δ)

〈θ, w〉
]
≤ δE[‖w‖2] ≤ δ

√
d,

which leads to the naive discretization bound

G(T) ≤ min
δ∈[0,D]

{
δ
√

d + 2
√

D2 log N2 (δ ; T)
}
. (5.36)

For some sets, this simple bound can yield useful results, whereas for other sets, the local
Gaussian (or Rademacher) complexity needs to be controlled with more care.

4 In this case, the argument can be refined so as to remove a factor of 2.
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5.3.2 Some examples of discretization bounds

Let us illustrate the use of the bounds (5.33), (5.35) and (5.36) with some examples.

Example 5.18 (Gaussian complexity of unit ball) Recall our discussion of the Gaussian
complexity of the Euclidean ball Bd

2 from Example 5.13: using direct methods, we proved
the scaling G(Bd

2) =
√

d (1 − o(1)). The purpose of this example is to show that Proposi-
tion 5.17 yields an upper bound with this type of scaling (albeit with poor control of the
pre-factor). In particular, recall from Example 5.8 that the metric entropy number of the Eu-
clidean ball is upper bounded as log N2(δ;Bd

2) ≤ d log(1 + 2
δ
). Thus, setting δ = 1/2 in the

naive discretization bound (5.36), we obtain

G(Bd
2) ≤

√
d
{ 1

2 + 2
√

2 log 5
}
.

Relative to the exact result, the constant in this result is sub-optimal, but it does have the
correct scaling as a function of d. ♣

Example 5.19 (Maximum singular value of sub-Gaussian random matrix) As a more sub-
stantive demonstration of Proposition 5.17, let us show how it can be used to control the
expected �2-operator norm of a sub-Gaussian random matrix. Let W ∈ Rn×d be a random
matrix with zero-mean i.i.d. entries Wi j, each sub-Gaussian with parameter σ = 1. Exam-
ples include the standard Gaussian ensemble Wi j ∼ N(0, 1), and the Rademacher ensemble
Wi j ∈ {−1,+1} equiprobably. The �2-operator norm (or spectral norm) of the matrix W is
given by its maximum singular value; equivalently, it is defined as |||W|||2 := supv∈Sd−1 ‖Wv‖2,
where Sd−1 = {v ∈ Rd | ‖v‖2 = 1} is the Euclidean unit sphere in Rd. Here we sketch out an
approach for proving the bound

E[|||W|||2/
√

n] � 1 +

√
d
n
,

leaving certain details for the reader in Exercise 5.11.
Let us define the class of matrices

Mn,d(1) := {Θ ∈ Rn×d | rank(Θ) = 1, |||Θ|||F = 1}, (5.37)

corresponding to the set of n × d matrices of rank one with unit Frobenius norm |||Θ|||2F =∑n
i=1

∑d
j=1 Θ

2
i j. As verified in Exercise 5.11(a), we then have the variational representation

|||W|||2 = sup
Θ∈Mn,d(1)

XΘ, where XΘ := 〈〈W, Θ〉〉 =
n∑

i=1

d∑
j=1

Wi jΘi j. (5.38)

In the Gaussian case, this representation shows that E[|||W|||2] is equal to the Gaussian
complexity G(Mn,d(1)). For any sub-Gaussian random matrix, we show in part (b) of Ex-
ercise 5.11 that the stochastic process {XΘ, Θ ∈ Mn,d(1)} is zero-mean, and sub-Gaussian
with respect to the Frobenius norm |||Θ−Θ′|||F . Consequently, Proposition 5.17 implies that,
for all δ ∈ [0, 1], we have the upper bound

E[|||W|||2] ≤ 2E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
rank(Γ)=rank(Γ′)=1

|||Γ−Γ′ |||F≤δ

〈〈Γ − Γ′, W〉〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + 6
√

log NF(δ;Mn,d(1)), (5.39)
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where NF(δ;Mn,d(1)) denotes the δ-covering number in Frobenius norm. In part (c) of Exer-
cise 5.11, we prove the upper bound

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
rank(Γ)=rank(Γ′)=1

|||Γ−Γ′ |||F≤δ

〈〈Γ − Γ′, W〉〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤ √
2 δE[|||W|||2], (5.40)

and in part (d), we upper bound the metric entropy as

log NF(δ;Mn,d(1)) ≤ (n + d) log
(
1 +

2
δ

)
. (5.41)

Substituting these upper bounds into inequality (5.39), we obtain

E[|||W|||2] ≤ min
δ∈[0,1]

⎧⎪⎪⎪⎨⎪⎪⎪⎩2
√

2 δ E[|||W|||2] + 6

√
(n + d) log

(
1 +

2
δ

) ⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Fixing δ = 1
4
√

2
(as one particular choice) and rearranging terms yields the upper bound

1
√

n
E[|||W|||2] ≤ c1

{
1 +

√
d
n

}
for some universal constant c1 > 1. Again, this yields the correct scaling of E[|||W|||2] as a
function of (n, d). As we explore in Exercise 5.14, for Gaussian random matrices, a more
refined argument using the Sudakov–Fernique comparison can be used to prove the upper
bound with c1 = 1, which is the best possible. In Example 5.33 to follow, we establish a
matching lower bound of the same order. ♣

Let us now turn to some examples of Gaussian complexity involving function spaces. Re-
call the definition (5.30) of the set F (xn

1) as well as the empirical L2-norm (5.31). As a
consequence of the inequalities

‖ f − g‖n ≤ max
i=1,...,n

| f (xi) − g(xi)| ≤ ‖ f − g‖∞,

we have the following relations among metric entropies:

log N2(δ;F (xn
1)/
√

n) ≤ log N∞
(
δ ; F (xn

1)
)
≤ log N(δ ; F , ‖ · ‖∞), (5.42)

which will be useful in our development.

Example 5.20 (Empirical Gaussian complexity for a parametric function class) Let us
bound the Gaussian complexity of the setP(xn

1)/n generated by the simple parametric func-
tion classP from Example 5.9. Using the bound (5.42), it suffices to control the �∞-covering
number of P . From our previous calculations, it can be seen that, as long as δ ≤ 1/4, we
have log N∞

(
δ ; P

)
≤ log(1/δ). Moreover, since the function class is uniformly bounded

(i.e., ‖ f ‖∞ ≤ 1 for all f ∈P), the diameter in empirical L2-norm is also well-controlled—in
particular, we have D2 = sup f∈P

1
n

∑n
i=1 f 2(xi) ≤ 1. Consequently, the discretization bound

(5.33) implies that

G(P(xn
1)/n) ≤

1
√

n
inf

δ∈(0,1/4]

{
δ
√

n + 3
√

log(1/δ)
}
.
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In order to optimize the scaling of the bound, we set δ = 1/(4
√

n), and thereby obtain the
upper bound

G(P(xn
1)/n) �

√
log n

n
. (5.43)

As we will see later, the Gaussian complexity for this function class is actually upper
bounded by 1/

√
n, so that the crude bound from Proposition 5.17 captures the correct be-

havior only up to a logarithmic factor. We will later develop more refined techniques that
remove this logarithmic factor. ♣

Example 5.21 (Gaussian complexity for smoothness classes) Now recall the class FL of
Lipschitz functions from Example 5.10. From the bounds on metric entropy given there, as
long as δ ∈ (0, δ0) for a sufficiently small δ0 > 0, we have log N∞

(
δ ; FL

)
≤ cL

δ
for some

constant c. Since the functions inFL are uniformly bounded by one, the discretization bound
implies that

G(FL(xn
1)/n) ≤

1
√

n
inf

δ∈(0,δ0)

⎧⎪⎪⎨⎪⎪⎩δ√n + 3

√
cL
δ

⎫⎪⎪⎬⎪⎪⎭ .

To obtain the tightest possible upper bound (up to constant factors), we set δ = n−1/3, and
hence find that

G(FL(xn
1)/n) � n−1/3. (5.44)

By comparison to the parametric scaling (5.43), this upper bound decays much more
slowly. ♣

5.3.3 Chaining and Dudley’s entropy integral

In this section, we introduce an important method known as chaining, and show how it can be
used to obtain tighter bounds on the expected suprema of sub-Gaussian processes. Recall the
discretization bound from Proposition 5.17: it was based on a simple one-step discretization
in which we replaced the supremum over a large set with a finite maximum over a δ-cover
plus an approximation error. We then bounded the finite maximum by combining the union
bound with a sub-Gaussian tail bound. In this section, we describe a substantial refinement
of this procedure, in which we decompose the supremum into a sum of finite maxima over
sets that are successively refined. The resulting procedure is known as the chaining method.

In this section, we show how chaining can be used to derive a classical upper bound,
originally due to Dudley (1967), on the expected supremum of a sub-Gaussian process. In
Section 5.6, we show how related arguments can be used to control the probability of a
deviation above this expectation. Let {Xθ, θ ∈ T} be a zero-mean sub-Gaussian process with
respect to the (pseudo)metric ρX (see Definition 5.16). Define D = supθ,̃θ∈T ρX(θ, θ̃), and the
δ-truncated Dudley’s entropy integral

J(δ; D) :=
∫ D

δ

√
log NX (u ; T) du, (5.45)
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where we recall that NX (u ; T) denotes the δ-covering number of T with respect to ρX .

Theorem 5.22 (Dudley’s entropy integral bound) Let {Xθ, θ ∈ T} be a zero-mean sub-
Gaussian process with respect to the induced pseudometric ρX from Definition 5.16.
Then for any δ ∈ [0, D], we have

E
[

sup
θ,̃θ∈T

(Xθ − Xθ̃)
]
≤ 2E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
γ,γ′∈T

ρX (γ,γ′)≤δ

(Xγ − Xγ′)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + 32J(δ/4; D). (5.46)

Remarks: There is no particular significance to the constant 32, which could be improved
with a more careful analysis. We have stated the bound in terms of the increment Xθ−Xθ̃, but
it can easily be translated into an upper bound on E[supθ∈T Xθ]. (See the discussion following
Proposition 5.17.) The usual form of Dudley’s bound corresponds to the case δ = 0, and so
is in terms of the entropy integral J(0; D). The additional flexibility to choose δ ∈ [0, D]
can be useful in certain problems.

Proof We begin with the inequality (5.34) previously established in the proof of Proposi-
tion 5.17—namely,

sup
θ,̃θ∈T

(Xθ − Xθ̃) ≤ 2 sup
γ,γ′∈T

ρX (γ,γ′)≤δ

(Xγ − Xγ′) + 2 max
i=1,2,...,N

|Xθi − Xθ1 |.

In the proof of Proposition 5.17, we simply upper bounded the maximum over i = 1, . . . , N
using the union bound. In this proof, we pursue a more refined chaining argument. Define
U = {θ1, . . . , θN}, and for each integer m = 1, 2, . . . , L, let Um be a minimal εm = D2−m cov-
ering set of U in the metric ρX , where we allow for any element of T to be used in forming
the cover. Since U is a subset of T, each set has cardinality Nm := |Um| upper bounded as
Nm ≤ NX (εm ; T). Since U is finite, there is some finite integer L for which UL = U. (In
particular, for the smallest integer such that NL = |U|, we can simply choose UL = U.) For
each m = 1, . . . , L, define the mapping πm : U→ Um via

πm(θ) = arg min
β∈Um

ρX(θ, β),

so that πm(θ) is the best approximation of θ ∈ U from the set Um. Using this notation, we
can decompose the random variable Xθ into a sum of increments in terms of an associ-
ated sequence (γ1, . . . , γL), where we define γL = θ and γm−1 := πm−1(γm) recursively for
m = L, L − 1, . . . , 2. By construction, we then have the chaining relation

Xθ − Xγ1 =

L∑
m=2

(Xγm − Xγm−1 ), (5.47)

and hence |Xθ − Xγ1 | ≤
∑L

m=2 maxβ∈Um |Xβ − Xπm−1(β)|. See Figure 5.3 for an illustration of this
set-up.

Thus, we have decomposed the difference between Xθ and the final element Xγ1 in its
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γ1

γ2

γ3

γL−1

θ

U1

U2

U3

UL−1

UL

Figure 5.3 Illustration of the chaining relation in the case L = 5. The set U, shown
at the bottom of the figure, has a finite number of elements. For each m = 1, . . . , 5,
we let Um be a Dε−m-cover of the set U; the elements of the cover are shaded in gray
at each level. For each element θ ∈ U, we construct the chain by setting γ5 = θ,
and then recursively γm−1 = πm−1(γm) for m = 5, . . . , 2. We can then decompose the
difference Xθ − Xγ1 as a sum (5.47) of terms along the edges of a tree.

associated chain as a sum of increments. Given any other θ̃ ∈ U, we can define the chain
{̃γ1, . . . , γ̃L}, and then derive an analogous bound for the increment |Xθ̃ − Xγ̃1 |. By appropri-
ately adding and subtracting terms and then applying the triangle inequality, we obtain

|Xθ − Xθ̃| = |Xγ1 − Xγ̃1 + (Xθ − Xγ1 ) + (Xγ̃1 − Xθ̃)|
≤ |Xγ1 − Xγ̃1 | + |Xθ − Xγ1 | + |Xθ̃ − Xγ̃1 |.

Taking maxima over θ, θ̃ ∈ U on the left-hand side and using our upper bounds on the
right-hand side, we obtain

max
θ,̃θ∈U

|Xθ − Xθ̃| ≤ max
γ,̃γ∈U1

|Xγ − Xγ̃| + 2
L∑

m=2

max
β∈Um

|Xβ − Xπm−1(β)|.

We first upper bound the finite maximum overU1, which has N( D
2 ) := NX( D

2 ;T) elements.
By the sub-Gaussian nature of the process, the increment Xγ − Xγ̃ is sub-Gaussian with
parameter at most ρX(γ, γ̃) ≤ D. Consequently, by our earlier results on finite Gaussian
maxima (see Exercise 2.12), we have

E
[

max
γ,̃γ∈U1

|Xγ − Xγ̃|
]
≤ 2D

√
log N(D/2).

Similarly, for each m = 2, 3, . . . , L, the set Um has N(D2−m) elements, and, moreover,
maxβ∈Um ρX(β, πm−1(β)) ≤ D2−(m−1), whence

E
[

max
β∈Um

|Xβ − Xπm−1(β)|
]
≤ 2 D2−(m−1)

√
log N(D2−m).
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Combining the pieces, we conclude that

E
[

max
θ,̃θ∈U

|Xθ − Xθ̃|
]
≤ 4

L∑
m=1

D2−(m−1)
√

log N(D2−m).

Since the metric entropy log N(t) is non-increasing in t, we have

D2−(m−1)
√

log N(D2−m) ≤ 4
∫ D2−m

D2−(m+1)

√
log N(u) du,

and hence 2E[maxθ,̃θ∈U |Xθ − Xθ̃|] ≤ 32
∫ D

δ/4

√
log N(u) du.

Let us illustrate the Dudley entropy bound with some examples.

Example 5.23 In Example 5.20, we showed that the Gaussian complexity of the para-

metric function class P was upper bounded by O
(√

log n
n

)
, a result obtained by the naive

discretization bound. Here we show that the Dudley entropy integral yields the sharper up-
per bound O(1/

√
n). In particular, since the L∞-norm metric entropy is upper bounded as

log N(δ ; P , ‖ · ‖∞) = O(log(1 + 1/δ)), the Dudley bound implies that

G
(
P(xn

1)
n

)
≤

c
√

n

∫ 2

0

√
log(1 + 1/u) du =

c′
√

n
.

Thus, we have removed the logarithmic factor from the naive discretization bound. ♣

Recall from Chapter 4 our discussion of the Vapnik–Chervonenkis dimension. As we now
show, the Dudley integral can be used to obtain a sharp result for any finite VC class.

Example 5.24 (Bounds for Vapnik–Chervonenkis classes) LetF be a b-uniformly boun-
ded class of functions with finite VC dimension ν, and suppose that we are interested in es-
tablishing a uniform law of large numbers forF—that is, in controlling the random variable
sup f∈F

∣∣∣ 1
n

∑n
i=1 f (Xi) − E[ f ]

∣∣∣, where Xi ∼ P are i.i.d. samples. As discussed in Chapter 4, by
exploiting concentration and symmetrization results, the study of this random variable can be
reduced to controlling the expectation Eε

[
sup f∈F

∣∣∣ 1
n

∑n
i=1 εi f (xi)

∣∣∣], where εi are i.i.d. Rade-
macher variables (random signs), and the observations xi are fixed for the moment.

In order to see how Dudley’s entropy integral may be applied, define the zero-mean ran-
dom variable Zf := 1√

n

∑n
i=1 εi f (xi), and consider the stochastic process {Zf | f ∈ F }. It is

straightforward to verify that the increment Zf − Zg is sub-Gaussian with parameter

‖ f − g‖2
Pn

:=
1
n

n∑
i=1

( f (xi) − g(xi))2.

Consequently, by Dudley’s entropy integral, we have

Eε

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (xi)

∣∣∣∣∣∣
]
≤

24
√

n

∫ 2b

0

√
log N(t;F , ‖ · ‖Pn ) dt, (5.48)

where we have used the fact that sup f ,g∈F ‖ f − g‖Pn ≤ 2b. Now by known results on VC
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classes and metric entropy, there is a universal constant C such that

N(ε;F , ‖ · ‖Pn ) ≤ Cν(16e)ν
(
b
ε

)2ν

. (5.49)

See Exercise 5.4 for the proof of a weaker claim of this form, and the bibliographic section
for further discussion of such bounds.

Substituting the metric entropy bound (5.49) into the entropy integral (5.48), we find that
there are universal constants c0 and c1, depending on b but not on (ν, n), such that

Eε

[
sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (xi)

∣∣∣∣∣∣
]
≤ c0

√
ν

n

[
1 +

∫ 2b

0

√
log(b/t) dt

]
= c′0

√
ν

n
, (5.50)

since the integral is finite. ♣

Note that the bound (5.50) is sharper than the earlier
√

ν log(n+1)
n bound that we proved

in Lemma 4.14. It leads to various improvements of previous results that we have stated.
For example, consider the classical Glivenko–Cantelli setting, which amounts to bounding
‖F̂n − F‖∞ = supu∈R |F̂n(u) − F(u)|. Since the set of indicator functions has VC dimension
ν = 1, the bound (5.50), combined with Theorem 4.10, yields that

P
[
‖F̂n − F‖∞ ≥

c
√

n
+ δ

]
≤ 2e−

nδ2
8 for all δ ≥ 0, (5.51)

where c is a universal constant. Apart from better constants, this bound is unimprovable.

5.4 Some Gaussian comparison inequalities

Suppose that we are given a pair of Gaussian processes, say {Yθ, θ ∈ T} and {Zθ, θ ∈ T}, both
indexed by the same set T. It is often useful to compare the two processes in some sense,
possibly in terms of the expected value of some real-valued function F defined on the pro-
cesses. One important example is the supremum F(X) := supθ∈T Xθ. Under what conditions
can we say that F(X) is larger (or smaller) than F(Y)? Results that allow us to deduce such
properties are known as Gaussian comparison inequalities, and there are a large number of
them. In this section, we derive a few of the standard ones, and illustrate them via a number
of examples.

Recall that we have defined the suprema of Gaussian processes by taking limits of maxima
over finite subsets. For this reason, it is sufficient to consider the case where T is finite, say
T = {1, . . . , N} for some integer N. We focus on this case throughout this section, adopting
the notation [N] = {1, . . . , N} as a convenient shorthand.

5.4.1 A general comparison result

We begin by stating and proving a fairly general Gaussian comparison principle:
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Theorem 5.25 Let (X1, . . . , XN) and (Y1, . . . ,YN) be a pair of centered Gaussian ran-
dom vectors, and suppose that there exist disjoint subsets A and B of [N] × [N] such
that

E[XiXj] ≤ E[YiY j] for all (i, j) ∈ A, (5.52a)

E[XiXj] ≥ E[YiY j] for all (i, j) ∈ B, (5.52b)

E[XiXj] = E[YiY j] for all (i, j) � A ∪ B. (5.52c)

Let F : RN → R be a twice-differentiable function, and suppose that

∂2F
∂ui∂uj

(u) ≥ 0 for all (i, j) ∈ A, (5.53a)

∂2F
∂ui∂uj

(u) ≤ 0 for all (i, j) ∈ B. (5.53b)

Then we are guaranteed that

E[F(X)] ≤ E[F(Y)]. (5.54)

Proof We may assume without loss of generality that X and Y are independent. We proceed
via a classical interpolation argument: define the Gaussian random vector

Z(t) =
√

1 − t X +
√

t Y, for each t ∈ [0, 1], (5.55)

and consider the function φ : [0, 1] → R given by φ(t) = E[F(Z(t))]. If we can show that
φ′(t) ≥ 0 for all t ∈ (0, 1), then we may conclude that

E[F(Y)] = φ(1) ≥ φ(0) = E[F(X)].

With this goal in mind, for a given t ∈ (0, 1), we begin by using the chain rule to compute
the first derivative

φ′(t) =
N∑

j=1

E
[
∂F
∂z j

(Z(t)) Z′
j(t)

]
,

where Z′
j(t) := d

dt Z j(t) = − 1
2
√

1−t
X j +

1
2
√

t
Y j. Computing the expectation, we find that

E[Zi(t) Z′
j(t)] = E

[(√
1 − t Xi +

√
t Yi

) (
−

1

2
√

1 − t
X j +

1

2
√

t
Y j

)]
=

1
2
{E[YiY j] − E[XiXj]}.

Consequently, for each i = 1, . . . , N, we can write5 Zi(t) = αi jZ′
j(t) + Wi j, where αi j ≥ 0

for (i, j) ∈ A, αi j ≤ 0 for (i, j) ∈ B, and αi j = 0 if (i, j) � A ∪ B. Moreover, due to the
Gaussian assumption, we are guaranteed that the random vector W( j) := (W1 j, . . . ,WN j) is
independent of Z′

j(t).

5 The variable Wi j does depend on t, but we omit this dependence so as to simplify notation.
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Since F is twice differentiable, we may apply a first-order Taylor series to the function
∂F/∂z j between the points W( j) and Z(t), thereby obtaining

∂F
∂z j

(Z(t)) =
∂F
∂z j

(W( j)) +
N∑

i=1

∂2F
∂z j∂zi

(U)αi jZ′
j(t),

where U ∈ RN is some intermediate point between W( j) and Z(t). Taking expectations then
yields

E
[
∂F
∂z j

(Z(t))Z′
j(t)

]
= E

[
∂F
∂z j

(W( j))Z′
j(t)

]
+

N∑
i=1

E
[

∂2F
∂z j∂zi

(U)αi j(Z′
j(t))

2
]

=

n∑
i=1

E
[

∂2F
∂z j∂zi

(U)αi j(Z′
j(t))

2
]
,

where the first term vanishes since W( j) and Z′
j(t) are independent, and Z′

j(t) is zero-mean.
By our assumptions on the second derivatives of f and the previously stated conditions on
αi j, we have ∂2F

∂z j∂zi
(U)αi j ≥ 0, so that we may conclude that φ′(t) ≥ 0 for all t ∈ (0, 1), which

completes the proof.

5.4.2 Slepian and Sudakov–Fernique inequalities

An important corollary of Theorem 5.25 is Slepian’s inequality.

Corollary 5.26 (Slepian’s inequality) Let X ∈ RN and Y ∈ RN be zero-mean Gaussian
random vectors such that

E[XiXj] ≥ E[YiY j] for all i � j, (5.56a)

E[X2
i ] = E[Y2

i ] for all i = 1, 2, . . . , N. (5.56b)

Then we are guaranteed

E[ max
i=1,...,N

Xi] ≤ E[ max
i=1,...,N

Yi]. (5.57)

Proof In order to study the maximum, let us introduce, for each β > 0, a real-valued
function on RN via Fβ(x) := β−1 log

{∑N
j=1 exp(βx j)

}
. By a straightforward calculation, we

find the useful relation

max
j=1,...,N

x j ≤ Fβ(x) ≤ max
j=1,...,N

x j +
log N

β
, valid for all β > 0, (5.58)

so that bounds on Fβ can be used to control the maximum by taking β → +∞. Note that
Fβ is twice differentiable for each β > 0; moreover, some calculus shows that ∂2Fβ

∂xi∂x j
≤ 0

for all i � j. Consequently, applying Theorem 5.25 with A = ∅ and B = {(i, j), i � j} yields
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that E[Fβ(X)] ≤ E[Fβ(Y)]. Combining this inequality with the sandwich relation (5.58), we
conclude that

E
[

max
j=1,...,N

Xj

]
≤ E

[
max

j=1,...,N
Yj

]
+

log N
β

,

and taking the limit β → +∞ yields the claim.

Note that Theorem 5.25 and Corollary 5.26 are stated in terms of the variances and corre-
lations of the random vector. In many cases, it is more convenient to compare two Gaussian
processes in terms of their associated pseudometrics

ρ2
X(i, j) = E(Xi − Xj)2 and ρ2

Y(i, j) = E(Yi − Yj)2.

The Sudakov–Fernique comparison is stated in exactly this way.

Theorem 5.27 (Sudakov–Fernique) Given a pair of zero-mean N-dimensional Gaus-
sian vectors (X1, . . . , XN) and (Y1, . . . ,YN, suppose that

E[(Xi − Xj)2] ≤ E[(Yi − Yj)2] for all (i, j) ∈ [N] × [N]. (5.59)

Then E[max j=1,...,N Xj] ≤ E[max j=1,...,N Yj].

Remark: It is worth noting that the Sudakov–Fernique theorem also yields Slepian’s in-
equality as a corollary. In particular, if the Slepian conditions (5.56a) hold, then it can be
seen that the Sudakov–Fernique condition (5.59) also holds. The proof of Theorem 5.27 is
more involved than that of Slepian’s inequality; see the bibliographic section for references
to some proofs.

5.4.3 Gaussian contraction inequality

One important consequence of the Sudakov–Fernique comparison is the Gaussian contrac-
tion inequality, which applies to functions φ j : R → R that are 1-Lipschitz, meaning that
|φ j(s) − φ j(t)| ≤ |s − t| for all s, t ∈ R, and satisfy the centering relation φ j(0) = 0. Given a
vector θ ∈ Rd, we define (with a minor abuse of notation) the vector

φ(θ) :=
(
φ1(θ1), φ2(θ2), · · · , φd(θd)

)
∈ Rd.

Lastly, given a set T ⊂ Rd, we let φ(T) = {φ(θ) | θ ∈ T} denote its image under the mapping
φ. The following result shows that the Gaussian complexity of this image is never larger than
the Gaussian complexity G(T) of the original set.
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Proposition 5.28 (Gaussian contraction inequality) For any set T ⊆ Rd and any family
of centered 1-Lipschitz functions {φ j, j = 1, . . . , d}, we have

E
[

sup
θ∈T

d∑
j=1

wjφ j(θ j)
]

︸�������������������︷︷�������������������︸
G(φ(T))

≤ E
[

sup
θ∈T

d∑
j=1

wjθ j

]
︸��������������︷︷��������������︸

G(T)

. (5.60)

We leave the proof of this claim for the reader (see Exercise 5.12). For future reference, we
also note that, with an additional factor of 2, an analogous result holds for the Rademacher
complexity—namely

R(φ(T)) ≤ 2R(T) (5.61)

for any family of centered 1-Lipschitz functions. The proof of this result is somewhat more
delicate than the Gaussian case; see the bibliographic section for further discussion.

Let us illustrate the use of the Gaussian contraction inequality (5.60) with some examples.

Example 5.29 Given a function classF and a collection of design points xn
1, we have pre-

viously studied the Gaussian complexity of the set F (xn
1) ⊂ Rn defined in equation (5.30).

In various statistical problems, it is often more natural to consider the Gaussian complexity
of the set

F 2(xn
1) := {( f 2(x1), f 2(x2), . . . , f 2(xn)) | f ∈F } ⊂ Rn,

where f 2(x) = [ f (x)]2 are the squared function values. The contraction inequality allows us
to upper bound the Gaussian complexity of this set in terms of the original set F (xn

1). In
particular, suppose that the function class is b-uniformly bounded, so that ‖ f ‖∞ ≤ b for all
f ∈F . We then claim that

G(F 2(xn
1)) ≤ 2bG(F (xn

1)), (5.62)

so that the Gaussian complexity ofF 2(xn
1) is not essentially larger than that ofF (xn

1).
In order to establish this bound, define the function φb : R→ R via

φb(t) :=

⎧⎪⎪⎨⎪⎪⎩t2/(2b) if |t| ≤ b,
b/2 otherwise.

Since | f (xi)| ≤ b, we have φb( f (xi)) =
f 2(xi)

2b for all f ∈F and i = 1, 2, . . . , n, and hence

1
2b

G(F 2(xn
1)) = E

⎡⎢⎢⎢⎢⎢⎣sup
f∈F

n∑
i=1

wi
f 2(xi)

2b

⎤⎥⎥⎥⎥⎥⎦ = E ⎡⎢⎢⎢⎢⎢⎣sup
f∈F

n∑
i=1

wiφb( f (xi))

⎤⎥⎥⎥⎥⎥⎦ .
Moreover, it is straightforward to verify that φb is a contraction according to our definition,
and hence applying Proposition 5.28 yields

E

⎡⎢⎢⎢⎢⎢⎣sup
f∈F

n∑
i=1

wiφb( f (xi))

⎤⎥⎥⎥⎥⎥⎦ ≤ E ⎡⎢⎢⎢⎢⎢⎣sup
f∈F

n∑
i=1

wi f (xi)

⎤⎥⎥⎥⎥⎥⎦ = G(F (xn
1)).
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Putting together the pieces yields the claim (5.62). ♣

5.5 Sudakov’s lower bound

In previous sections, we have derived two upper bounds on the expected supremum of a sub-
Gaussian process over a given set: the simple one-step discretization in Proposition 5.17,
and the more refined Dudley integral bound in Theorem 5.22. In this section, we turn to the
complementary question of deriving lower bounds. In contrast to the upper bounds in the
preceding sections, these lower bounds are specialized to the case of Gaussian processes,
since a general sub-Gaussian process might have different behavior than its Gaussian analog.
For instance, compare the Rademacher and Gaussian complexity of the �1-ball, as discussed
in Example 5.14.

This section is devoted to the exploration of a lower bound known as the Sudakov minor-
ation, which is obtained by exploiting the Gaussian comparison inequalities discussed in the
previous section.

Theorem 5.30 (Sudakov minoration) Let {Xθ, θ ∈ T} be a zero-mean Gaussian pro-
cess defined on the non-empty set T. Then

E
[

sup
θ∈T

Xθ

]
≥ sup

δ>0

δ

2

√
log MX(δ ; T), (5.63)

where MX(δ;T) is the δ-packing number of T in the metric ρX(θ, θ̃) :=
√
E[(Xθ − Xθ̃)2].

Proof For any δ > 0, let {θ1, . . . , θM} be a δ-packing of T, and consider the sequence {Yi}Mi=1
with elements Yi := Xθi . Note that by construction, we have the lower bound

E[(Yi − Yj)2] = ρ2
X(θi, θ j) > δ2 for all i � j.

Now let us define an i.i.d. sequence of Gaussian random variables Zi ∼ N(0, δ2/2) for
i = 1, . . . , M. Since E[(Zi − Zj)2] = δ2 for all i � j, the pair of random vectors Y and Z
satisfy the Sudakov–Fernique condition (5.59), so that we are guaranteed that

E
[

sup
θ∈T

Xθ

]
≥ E

[
max

i=1,...,M
Yi

]
≥ E

[
max

i=1,...,M
Zi

]
.

Since the variables {Zi}Mi=1 are zero-mean Gaussian and i.i.d., we can apply standard results
on i.i.d. Gaussian maxima (viz. Exercise 2.11) to obtain the lower bound E[maxi=1,...,M Zi] ≥
δ
2

√
log M, thereby completing the proof.

Let us illustrate the Sudakov lower bound with some examples.

Example 5.31 (Gaussian complexity of �2-ball) We have shown previously that the Gaus-
sian complexityG(Bd

2) of the d-dimensional Euclidean ball is upper bounded asG(Bd
2) ≤

√
d.

We have verified this fact both by direct calculation and through use of the upper bound in
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Proposition 5.17. Here let us show how the Sudakov minoration captures the complemen-
tary lower bound. From Example 5.9, the metric entropy of the ball Bd

2 in �2-norm is lower
bounded as log N2(δ;Bd) ≥ d log(1/δ). Thus, by Lemma 5.5, the same lower bound applies
to log M2(δ ; Bd). Therefore, the Sudakov bound (5.63) implies that

G(Bd
2) ≥ sup

δ>0

{
δ

2

√
d log(1/δ)

}
≥

√
log 4
8

√
d,

where we set δ = 1/4 in order to obtain the second inequality. Thus, in this simple case,
the Sudakov lower bound recovers the correct scaling as a function of

√
d, albeit with sub-

optimal control of the constant. ♣

We can also use the Sudakov minoration to upper bound the metric entropy of a set T,
assuming that we have an upper bound on its Gaussian complexity, as illustrated in the
following example.

Example 5.32 (Metric entropy of �1-ball) Let us use the Sudakov minoration to upper
bound the metric entropy of the �1-ball Bd

1 = {θ ∈ R
d |

∑d
i=1 |θi| ≤ 1}. We first observe that its

Gaussian complexity can be upper bounded as

G(B1) = E
[

sup
‖θ‖1≤1

〈w, θ〉
]
= E[‖w‖∞] ≤ 2

√
log d,

where we have used the duality between the �1- and �∞-norms, and standard results on
Gaussian maxima (see Exercise 2.11). Applying Sudakov’s minoration, we conclude that
the metric entropy of the d-dimensional ball Bd

1 in the �2-norm is upper bounded as

log N(δ ; Bd
1, ‖ · ‖2) ≤ c(1/δ)2 log d. (5.64)

It is known that (for the most relevant range of δ) this upper bound on the metric entropy
of Bd

1 is tight up to constant factors; see the bibliographic section for further discussion. We
thus see in a different way how the �1-ball is much smaller than the �2-ball, since its metric
entropy scales logarithmically in dimension, as opposed to linearly. ♣

As another example, let us now return to some analysis of the singular values of Gaussian
random matrices.

Example 5.33 (Lower bounds on maximum singular value) As a continuation of Exam-
ple 5.19, let us use the Sudakov minoration to lower bound the maximum singular value of
a standard Gaussian random matrix W ∈ Rn×d. Recall that we can write

E[|||W|||2] = E
[

sup
Θ∈Mn,d(1)

〈〈W, Θ〉〉
]
,

where the set Mn,d(1) was previously defined (5.37). Consequently, in order to lower bound
E[|||W|||2] via Sudakov minoration, it suffices to lower bound the metric entropy of Mn,d(1) in
the Frobenius norm. In Exercise 5.13, we show that there is a universal constant c1 such that

log M(δ;Mn,d(1); ||| · |||F) ≥ c2
1(n + d) log(1/δ) for all δ ∈ (0, 1

2 ).
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Setting δ = 1/4, the Sudakov minoration implies that

E[|||W|||2] ≥
c1

8

√
(n + d)

√
log 4 ≥ c′1

(√
n +

√
d
)
.

Comparing with the upper bound from Example 5.19, we see that this lower bound has the
correct scaling in the pair (n, d). ♣

5.6 Chaining and Orlicz processes

In Section 5.3.3, we introduced the idea of chaining, and showed how it can be used to ob-
tain upper bounds on the expected supremum of a sub-Gaussian process. When the process
is actually Gaussian, then classical concentration results can be used to show that the supre-
mum is sharply concentrated around this expectation (see Exercise 5.10). For more general
sub-Gaussian processes, it is useful to be able to derive similar bounds on the probability of
deviations above the tail. Moreover, there are many processes that do not have sub-Gaussian
tails, but rather instead are sub-exponential in nature. It is also useful to obtain bounds on
the expected supremum and associated deviation bounds for such processes.

The notion of an Orlicz norm allows us to treat both sub-Gaussian and sub-exponential
processes in a unified manner. For a given parameter q ∈ [1, 2], consider the function ψq(t) :=
exp(tq) − 1. This function can be used to define a norm on the space of random variables as
follows:

Definition 5.34 (Orlicz norm) The ψq-Orlicz norm of a zero-mean random variable
X is given by

‖X‖ψq
:= inf{λ > 0 | E[ψq(|X|/λ)] ≤ 1}. (5.65)

The Orlicz norm is infinite if there is no λ ∈ R for which the given expectation is finite.

Any random variable with a bounded Orlicz norm satisfies a concentration inequality
specified in terms of the function ψq. In particular, we have

P[|X| ≥ t]
(i)
= P[ψq(|X|/‖X‖ψq ) ≥ ψq(t/‖X‖ψq )]

(ii)
≤

1
ψq(t/‖X‖ψq )

,

where the equality (i) follows because ψq is an increasing function, and the bound (ii) fol-
lows from Markov’s inequality. In the case q = 2, this bound is essentially equivalent to our
usual sub-Gaussian tail bound; see Exercise 2.18 for further details.

Based on the notion of the Orlicz norm, we can now define an interesting generalization
of a sub-Gaussian process:
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Definition 5.35 A zero-mean stochastic process {Xθ, θ ∈ T} is a ψq-process with
respect to a metric ρ if

‖Xθ − Xθ̃‖ψq ≤ ρ(θ, θ̃) for all θ, θ̃ ∈ T. (5.66)

As a particular example, in this new terminology, it can be verified that the canonical Gaus-
sian process is a ψ2-process with respect to the (scaled) Euclidean metric ρ(θ, θ̃) = 2 ‖θ − θ̃‖2.

We define the generalized Dudley entropy integral

Jq(δ; D) :=
∫ D

δ

ψ−1
q (N(u;T, ρ)) du, (5.67)

where ψ−1
q is the inverse function of ψq, and D = supθ,̃θ∈T ρ(θ, θ̃) is the diameter of the set T

under ρ. For the exponential-type functions considered here, note that we have

ψ−1
q (u) = [log(1 + u)]1/q. (5.68)

With this set-up, we have the following result:

Theorem 5.36 Let {Xθ, θ ∈ T} be a ψq-process with respect to ρ. Then there is a
universal constant c1 such that

P
[
sup
θ,̃θ∈T

|Xθ − Xθ̃| ≥ c1(Jq(0; D) + t)
]
≤ 2e−

tq
Dq for all t > 0. (5.69)

A few comments on this result are in order. Note that the bound (5.69) involves the gener-
alized Dudley entropy integral (5.67) for δ = 0. As with our earlier statement of Dudley’s
entropy integral bound, there is a generalization of Theorem 5.36 that involves the truncated
form, along with some discretization error. Otherwise, Theorem 5.36 should be understood
as generalizing Theorem 5.22 in two ways. First, it applies to general Orlicz processes for
q ∈ [1, 2], with the sub-Gaussian setting corresponding to the special case q = 2. Second, it
provides a tail bound on the random variable, as opposed to a bound only on its expectation.
(Note that a bound on the expectation can be recovered by integrating the tail bound, in the
usual way.)

Proof We begin by stating an auxiliary lemma that is of independent interest. For any
measurable set A and random variable Y , let us introduce the shorthand notation EA[Y] =∫

A
Y dP. Note that we have EA[Y] = E[Y | Y ∈ A]P[A] by construction.



152 Metric entropy and its uses

Lemma 5.37 Suppose that Y1, . . . ,YN are non-negative random variables such that
‖Yi‖ψq ≤ 1. Then for any measurable set A, we have

EA[Yi] ≤ P[A]ψ−1
q (1/P(A)) for all i = 1, 2, . . . , N, (5.70)

and moreover

EA

[
max

i=1,...,N
Yi

]
≤ P[A]ψ−1

q

(
N
P(A)

)
. (5.71)

Proof Let us first establish the inequality (5.70). By definition, we have

EA[Y] = P[A]
1
P[A]

EA[ψ−1
q (ψq(Y))]

(i)
≤ P[A]ψ−1

q

(
EA[ψq(Y)]

1
P[A]

)
(ii)
≤ P[A]ψ−1

q

(
1
P[A]

)
,

where step (i) uses concavity of ψ−1
q and Jensen’s inequality (noting that the ratio EA[·]

P[A] defines
a conditional distribution); whereas step (ii) uses the fact that EA[ψq(Y)] ≤ E[ψq(Y)] ≤ 1,
which follows since ψq(Y) is non-negative, and the Orlicz norm of Y is at most one, com-
bined with the fact that ψ−1

q is an increasing function.
We now prove its extension (5.71). Any measurable set A can be partitioned into a disjoint

union of sets Ai, i = 1, 2, . . . , N, such that Yi = max j=1,...,N Yj on Ai. Using this partition, we
have

EA

[
max

i=1,...,N
Yi

]
=

N∑
i=1

EAi [Yi] ≤ P[A]
N∑

i=1

P[Ai]
P[A]

ψ−1
q

(
1

P[Ai]

)
≤ P[A]ψ−1

q

(
N
P[A]

)
,

where the last step uses the concavity of ψ−1
q , and Jensen’s inequality with the weights

P[Ai]/P[A].

In order to appreciate the relevance of this lemma for Theorem 5.36, let us use it to show
that the supremum Z := supθ,̃θ∈T |Xθ − Xθ̃| satisfies the inequality

EA[Z] ≤ 8P[A]
∫ D

0
ψ−1

q

(
N(u;T, ρ)
P[A]

)
du. (5.72)

Choosing A to be the full probability space immediately yields an upper bound on the ex-
pected supremum—namely E[Z] ≤ 8Jq(D). On the other hand, if we choose A = {Z ≥ t},
then we have

P[Z ≥ t]
(i)
≤

1
t
EA[Z]

(ii)
≤ 8

P[Z ≥ t]
t

∫ D

0
ψ−1

q

(
N(u;T, ρ)
P[Z ≥ t]

)
du,
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where step (i) follows from a version of Markov’s inequality, and step (ii) follows from the
bound (5.72). Canceling out a factor of P[Z ≥ t] from both sides, and using the inequality
ψ−1

q (st) ≤ c(ψ−1
q (s) + ψ−1

q (t)), we obtain

t ≤ 8c
{∫ D

0
ψ−1

q (N(u;T, ρ)) du + Dψ−1
q

(
1

P[Z ≥ t]

)}
.

Let δ > 0 be arbitrary, and set t = 8c(Jq(D) + δ). Some algebra then yields the inequality
δ ≤ Dψ−1

q

(
1

P[Z≥t]

)
, or equivalently

P[Z ≥ 8c(Jq(D) + δ)] ≤
1

ψq(δ/D)
,

as claimed.
In order to prove Theorem 5.36, it suffices to establish the bound (5.72). We do so by

combining Lemma 5.37 with the chaining argument previously used to prove Theorem 5.22.
Let us recall the set-up from that earlier proof: by following the one-step discretization
argument, our problem was reduced to bounding the quantity E[supθ,̃θ∈U |Xθ−Xθ̃|], whereU =

{θ1, . . . , θN} was a δ-cover of the original set. For each m = 1, 2, . . . , L, let Um be a minimal
D2−m-cover of U in the metric ρX , so that at the mth step, the set Um has Nm = NX (εm ; U)
elements. Similarly, define the mapping πm : U → Um via πm(θ) = arg minγ∈Um ρX(θ, γ), so
that πm(θ) is the best approximation of θ ∈ U from the set Um. Using this notation, we
derived the chaining upper bound

EA

[
max
θ,̃θ∈U

|Xθ − Xθ̃|
]
≤ 2

L∑
m=1

EA

[
max
γ∈Um

|Xγ − Xπm−1(γ)|
]
. (5.73)

(Previously, we had the usual expectation, as opposed to the object EA used here.) For each
γ ∈ Um, we are guaranteed that

‖Xγ − Xπm−1(γ)‖ψq ≤ ρX(γ, πm−1(γ)) ≤ D2−(m−1).

Since |Um| = N(D2−m), Lemma 5.37 implies that

EA

[
max
γ∈Um

|Xγ − Xπm−1 (γ)|
]
≤ P[A] D2−(m−1)ψ−1

q

(
N(D2−m)
P(A)

)
,

for every measurable set A. Consequently, from the upper bound (5.73), we obtain

EA

[
max
θ,̃θ∈U

|Xθ − Xθ̃|
]
≤ 2P[A]

L∑
m=1

D2−(m−1)ψ−1
q

(
N(D2−m)
P(A)

)
≤ cP[A]

∫ D

0
ψ−1

q

(
NX(u;U)
P(A)

)
du,

since the sum can be upper bounded by the integral.

5.7 Bibliographic details and background

The notion of metric entropy was introduced by Kolmogorov (1956; 1958) and further de-
veloped by various authors; see the paper by Kolmogorov and Tikhomirov (1959) for an
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overview and some discussion of the early history. Metric entropy, along with related no-
tions of the “sizes” of various function classes, are central objects of study in the field of
approximation theory; see the books (DeVore and Lorentz, 1993; Pinkus, 1985; Carl and
Stephani, 1990) for further details on approximation and operator theory. Examples 5.10
and 5.11 are discussed in depth by Kolmogorov and Tikhomirov (1959), as is the metric en-
tropy bound for the special ellipsoid given in Example 5.12. Mitjagin (1961) proves a more
general result, giving a sharp characterization of the metric entropy for any ellipsoid; see
also Lorentz (1966) for related results.

The pioneering work of Dudley (1967) established the connection between the entropy
integral and the behavior of Gaussian processes. The idea of chaining itself dates back to
Kolmogorov and others. Upper bounds based on entropy integrals are not always the best
possible. Sharp upper and lower bounds for expected Gaussian suprema can be derived by
the generic chaining method of Talagrand (2000). The proof of the Orlicz-norm generaliza-
tion of Dudley’s entropy integral in Theorem 5.36 is based on Ledoux and Talagrand (1991).

The metric entropy of the �1-ball was discussed in Example 5.32; more generally, sharp
upper and lower bounds on the entropy numbers of �q-balls for q ∈ (0, 1] were obtained by
Schütt (1984) and Kühn (2001). Raskutti et al. (2011) convert these estimates to upper and
lower bounds on the metric entropy; see Lemma 2 in their paper.

Gaussian comparison inequalities have a lengthy and rich history in probability theory and
geometric functional analysis (e.g., Slepian, 1962; Fernique, 1974; Gordon, 1985; Kahane,
1986; Milman and Schechtman, 1986; Gordon, 1986, 1987; Ledoux and Talagrand, 1991).
A version of Slepian’s inequality was first established in the paper (Slepian, 1962). Ledoux
and Talagrand (1991) provide a detailed discussion of Gaussian comparison inequalities,
including Slepian’s inequality, the Sudakov–Fernique inequality and Gordon’s inequalities.
The proofs of Theorems 5.25 and 5.36 follow this development. Chatterjee (2005) provides
a self-contained proof of the Sudakov–Fernique inequality, including control on the slack
in the bound; see also Chernozhukov et al. (2013) for related results. Among other results,
Gordon (1987) provides generalizations of Slepian’s inequality and related results to ellip-
tically contoured distribution. Section 4.2 of Ledoux and Talagrand (1991) contains a proof
of the contraction inequality (5.61) for the Rademacher complexity.

The bound (5.49) on the metric entropy of a VC class is proved in Theorem 2.6.7 of van
der Vaart and Wellner (1996). Exercise 5.4, adapted from this same book, works through the
proof of a weaker bound.

5.8 Exercises

Exercise 5.1 (Failure of total boundedness) Let C([0, 1], b) denote the class of all convex
functions f defined on the unit interval such that ‖ f ‖∞ ≤ b. Show that C([0, 1], b) is not
totally bounded in the sup-norm. (Hint: Try to construct an infinite collection of functions
{ f j}∞j=1 such that ‖ f j − f k‖∞ ≥ 1/2 for all j � k.)

Exercise 5.2 (Packing and covering) Prove the following relationships between packing
and covering numbers:

M(2δ ; T, ρ)
(a)
≤ N(δ ; T, ρ)

(b)
≤ M(δ ; T, ρ).
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Exercise 5.3 (Packing of Boolean hypercube) Recall from Example 5.3 the binary hyper-
cubeHd = {0, 1}d equipped with the rescaled Hamming metric (5.1b). Prove that the packing
number satisfies the bound

log M(δ;Hd)
d

≤ D(δ/2 ‖ 1/2) +
log(d + 1)

d
,

where D(δ/2 ‖ 1/2) = δ
2 log δ/2

1/2+(1− δ
2 ) log 1−δ/2

1/2 is the Kullback–Leibler divergence between
the Bernoulli distributions with parameter δ/2 and 1/2. (Hint: You may find the result of
Exercise 2.10 to be useful.)

Exercise 5.4 (From VC dimension to metric entropy) In this exercise, we explore the
connection between VC dimension and metric entropy. Given a set class S with finite VC
dimension ν, we show that the function class FS := {IS , S ∈ S} of indicator functions has
metric entropy at most

N(δ;FS, L1(P)) ≤ K(ν)
(
3
δ

)2ν

, for a constant K(ν). (5.74)

Let {IS 1 , . . . , IS N } be a maximal δ-packing in the L1(P)-norm, so that

‖IS i − IS j‖1 = E[|IS i (X) − IS j (X)|] > δ for all i � j.

By Exercise 5.2, this N is an upper bound on the δ-covering number.

(a) Suppose that we generate n samples Xi, i = 1, . . . , n, drawn i.i.d. from P. Show that
the probability that every set S i picks out a different subset of {X1, . . . , Xn} is at least
1 −

(
N
2

)
(1 − δ)n.

(b) Using part (a), show that for N ≥ 2 and n =
3 log N

δ
, there exists a set of n points from

which S picks out at least N subsets, and conclude that N ≤
( 3 log N

δ

)ν.
(c) Use part (b) to show that the bound (5.74) holds with K(ν) := (2ν)2ν−1.

Exercise 5.5 (Gaussian and Rademacher complexity) In this problem, we explore the con-
nection between the Gaussian and Rademacher complexity of a set.

(a) Show that for any set T ⊆ Rd, the Rademacher complexity satisfies the upper bound
R(T) ≤

√
π
2 G(T). Give an example of a set for which this bound is met with equality.

(b) Show that G(T) ≤ 2
√

log dR(T) for any set T ⊆ Rd. Give an example for which this
upper bound is tight up to the constant pre-factor. (Hint: In proving this bound, you may
assume the Rademacher analog of the contraction inequality, namely that R(φ(T)) ≤
R(T) for any contraction.)

Exercise 5.6 (Gaussian complexity for �q-balls) The �q-ball of unit radius is given by

Bd
q(1) = {θ ∈ Rd | ‖θ‖q ≤ 1},

where ‖θ‖q =
(∑d

j=1 |θ j|q
)1/q for q ∈ [1,∞) and ‖θ‖∞ = max j |θ j|.

(a) For q ∈ (1,∞), show that there are constants cq such that√
2
π
≤
G(Bd

q(1))

d1− 1
q

≤ cq.



156 Metric entropy and its uses

(b) Compute the Gaussian complexity G(Bd
∞(1)) exactly.

Exercise 5.7 (Upper bounds for �0-“balls”) Consider the set

Td(s) := {θ ∈ Rd | ‖θ‖0 ≤ s, ‖θ‖2 ≤ 1},

corresponding to all s-sparse vectors contained within the Euclidean unit ball. In this exer-
cise, we prove that its Gaussian complexity is upper bounded as

G(Td(s)) �
√

s log
(
ed
s

)
. (5.75)

(a) First show that G(Td(s)) = E
[

max
|S |=s

‖wS ‖2

]
, where wS ∈ R|S | denotes the subvector of

(w1, . . . ,wd) indexed by the subset S ⊂ {1, 2, . . . , d}.
(b) Next show that

P[‖wS ‖2 ≥
√

s + δ] ≤ e−δ
2/2

for any fixed subset S of cardinality s.
(c) Use the preceding parts to establish the bound (5.75).

Exercise 5.8 (Lower bounds for �0-“balls”) In Exercise 5.7, we established an upper bound
on the Gaussian complexity of the set

Td(s) := {θ ∈ Rd | ‖θ‖0 ≤ s, ‖θ‖2 ≤ 1}.

The goal of this exercise to establish the matching lower bound.

(a) Derive a lower bound on the 1/
√

2 covering number of Td(s) in the Euclidean norm.
(Hint: The Gilbert–Varshamov lemma could be useful to you).

(b) Use part (a) and a Gaussian comparison result to show that

G(Td(s)) �
√

s log
(
ed
s

)
.

Exercise 5.9 (Gaussian complexity of ellipsoids) Recall that the space �2(N) consists
of all real sequences (θ j)∞j=1 such that

∑∞
j=1 θ

2
j < ∞. Given a strictly positive sequence

(μ j)∞j=1 ∈ �2(N), consider the associated ellipse

E :=

⎧⎪⎪⎨⎪⎪⎩(θ j)∞j=1

∣∣∣∣∣∣ ∞∑
j=1

θ2
j/μ

2
j ≤ 1

⎫⎪⎪⎬⎪⎪⎭ .

Ellipses of this form will play an important role in our subsequent analysis of the statistical
properties of reproducing kernel Hilbert spaces.

(a) Prove that the Gaussian complexity satisfies the bounds√
2
π

( ∞∑
j=1

μ2
j

)1/2

≤ G(E) ≤
( ∞∑

j=1

μ2
j

)1/2

.

(Hint: Parts of previous problems may be helpful to you.)
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(b) For a given radius r > 0 consider the truncated set

Ẽ(r) := E ∩
{

(θ j)∞j=1

∣∣∣∣∣∣ ∞∑
j=1

θ2
j ≤ r2

}
.

Obtain upper and lower bounds on the Gaussian complexity G(Ẽ(r)) that are tight up to
universal constants, independent of r and (μ j)∞j=1. (Hint: Try to reduce the problem to an
instance of (a).)

Exercise 5.10 (Concentration of Gaussian suprema) Let {Xθ, θ ∈ T} be a zero-mean Gaus-
sian process, and define Z = supθ∈T Xθ. Prove that

P[|Z − E[Z]| ≥ δ] ≤ 2e−
δ2

2σ2 ,

where σ2 := supθ∈T var(Xθ) is the maximal variance of the process.

Exercise 5.11 (Details of Example 5.19) In this exercise, we work through the details of
Example 5.19.

(a) Show that the maximum singular value |||W|||2 has the variational representation (5.38).
(b) Defining the random variable XΘ = 〈〈W, Θ〉〉, show that the stochastic process {XΘ,

Θ ∈ Mn,d(1)} is zero-mean, and sub-Gaussian with respect to the Frobenius norm
|||Θ − Θ′|||F .

(c) Prove the upper bound (5.40).
(d) Prove the upper bound (5.41) on the metric entropy.

Exercise 5.12 (Gaussian contraction inequality) For each j = 1, . . . , d, let φ j : R → R be
a centered 1-Lipschitz function, meaning that φ j(0) = 0, and |φ j(s) − φ j(t)| ≤ |s − t| for all
s, t ∈ R. Given a set T ⊆ Rd, consider the set

φ(T) := {(φ1(θ1), φ2(θ2), . . . , φd(θd)) | θ ∈ T} ⊆ Rd.

Prove the Gaussian contraction inequality G(φ(T)) ≤ G(T).

Exercise 5.13 (Details of Example 5.33) Recall the set Mn,d(1) from Example 5.33. Show
that

log M(δ;Mn,d(1); ||| · |||F) � (n + d) log(1/δ) for all δ ∈ (0, 1/2).

Exercise 5.14 (Maximum singular value of Gaussian random matrices) In this exercise, we
explore one method for obtaining tail bounds on the maximal singular value of a Gaussian
random matrix W ∈ Rn×d with i.i.d. N(0, 1) entries.

(a) To build intuition, let us begin by doing a simple simulation. Write a short computer
program to generate Gaussian random matrices W ∈ Rn×d for n = 1000 and d = �αn�,
and to compute the maximum singular value of W/

√
n, denoted by σmax(W)/

√
n. Per-

form T = 20 trials for each value of α in the set {0.1 + k(0.025), k = 1, . . . , 100}. Plot
the resulting curve of α versus the average of σmax(W)/

√
n.
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(b) Now let’s do some analysis to understand this behavior. Prove that

σmax(W) = sup
u∈Sn−1

sup
v∈Sd−1

uTWv,

where Sd−1 = {y ∈ Rd | ‖y‖2 = 1} is the d-dimensional Euclidean sphere.
(c) Observe that Zu,v := uTWv defines a Gaussian process indexed by the Cartesian product

T := Sn−1 × Sd−1. Prove the upper bound

E[σmax(W)] = E
[

sup
(u,v)∈T

uTWv
]
≤
√

n +
√

d.

(Hint: For (u, v) ∈ Sn−1 × Sd−1, consider the zero-mean Gaussian variable Yu,v =

〈g, u〉+〈h, v〉, where g ∈ N(0, In×n) and h ∼ N(0, Id×d) are independent Gaussian random
vectors. We thus obtain a second Gaussian process {Yu,v, (u, v) ∈ Sn−1 × Sd−1}, and you
may find it useful to compare {Zu,v} and {Yu,v}.)

(d) Prove that

P

⎡⎢⎢⎢⎢⎢⎣σmax(W)/
√

n ≥ 1 +

√
d
n
+ t

⎤⎥⎥⎥⎥⎥⎦ ≤ 2e−
nt2
2 .
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Random matrices and covariance estimation

Covariance matrices play a central role in statistics, and there exist a variety of methods for
estimating them based on data. The problem of covariance estimation dovetails with random
matrix theory, since the sample covariance is a particular type of random matrix. A classical
framework allows the sample size n to tend to infinity while the matrix dimension d remains
fixed; in such a setting, the behavior of the sample covariance matrix is characterized by
the usual limit theory. By contrast, for high-dimensional random matrices in which the data
dimension is either comparable to the sample size (d ( n), or possibly much larger than the
sample size (d � n), many new phenomena arise.

High-dimensional random matrices play an important role in many branches of science,
mathematics and engineering, and have been studied extensively. Part of high-dimensional
theory is asymptotic in nature, such as the Wigner semicircle law and the Marčenko–Pastur
law for the asymptotic distribution of the eigenvalues of a sample covariance matrix (see
Chapter 1 for illustration of the latter). By contrast, this chapter is devoted to an explo-
ration of random matrices in a non-asymptotic setting, with the goal of obtaining explicit
deviation inequalities that hold for all sample sizes and matrix dimensions. Beginning with
the simplest case—namely ensembles of Gaussian random matrices—we then discuss more
general sub-Gaussian ensembles, and then move onwards to ensembles with milder tail con-
ditions. Throughout our development, we bring to bear the techniques from concentration
of measure, comparison inequalities and metric entropy developed previously in Chapters 2
through 5. In addition, this chapter introduces new some techniques, among them a class of
matrix tail bounds developed over the past decade (see Section 6.4).

6.1 Some preliminaries

We begin by introducing notation and preliminary results used throughout this chapter, be-
fore setting up the problem of covariance estimation more precisely.

6.1.1 Notation and basic facts

Given a rectangular matrix A ∈ Rn×m with n ≥ m, we write its ordered singular values as

σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σm(A) = σmin(A) ≥ 0.

Note that the minimum and maximum singular values have the variational characterization

σmax(A) = max
v∈Sm−1

‖Av‖2 and σmin(A) = min
v∈Sm−1

‖Av‖2, (6.1)

159
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where Sd−1 := {v ∈ Rd | ‖v‖2 = 1} is the Euclidean unit sphere in Rd. Note that we have the
equivalence |||A|||2 = σmax(A).

Since covariance matrices are symmetric, we also focus on the set of symmetric matrices
in Rd, denoted Sd×d := {Q ∈ Rd×d | Q = QT}, as well as the subset of positive semidefinite
matrices given by

Sd×d
+ := {Q ∈ Sd×d | Q ) 0}. (6.2)

From standard linear algebra, we recall the facts that any matrix Q ∈ Sd×d is diagonalizable
via a unitary transformation, and we use γ(Q) ∈ Rd to denote its vector of eigenvalues,
ordered as

γmax(Q) = γ1(Q) ≥ γ2(Q) ≥ · · · ≥ γd(Q) = γmin(Q).

Note that a matrix Q is positive semidefinite—written Q ) 0 for short—if and only if
γmin(Q) ≥ 0.

Our analysis frequently exploits the Rayleigh–Ritz variational characterization of the min-
imum and maximum eigenvalues—namely

γmax(Q) = max
v∈Sd−1

vTQv and γmin(Q) = min
v∈Sd−1

vTQv. (6.3)

For any symmetric matrix Q, the �2-operator norm can be written as

|||Q|||2 = max{γmax(Q), |γmin(Q)|}, (6.4a)

by virtue of which it inherits the variational representation

|||Q|||2 := max
v∈Sd−1

∣∣∣vTQv
∣∣∣. (6.4b)

Finally, given a rectangular matrix A ∈ Rn×m with n ≥ m, suppose that we define the m-
dimensional symmetric matrix R := ATA. We then have the relationship

γ j(R) = (σ j(A))2 for j = 1, . . . ,m.

6.1.2 Set-up of covariance estimation

Let us now define the problem of covariance matrix estimation. Let {x1, . . . , xn} be a collec-
tion of n independent and identically distributed samples1 from a distribution in Rd with zero
mean, and covariance matrix Σ = cov(x1) ∈ Sd×d

+ . A standard estimator of Σ is the sample
covariance matrix

Σ̂ :=
1
n

n∑
i=1

xixT
i . (6.5)

Since each xi has zero mean, we are guaranteed that E[xixT
i ] = Σ, and hence that the random

matrix Σ̂ is an unbiased estimator of the population covariance Σ. Consequently, the error
matrix Σ̂ − Σ has mean zero, and our goal in this chapter is to obtain bounds on the error

1 In this chapter, we use a lower case x to denote a random vector, so as to distinguish it from a random matrix.
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measured in the �2-operator norm. By the variational representation (6.4b), a bound of the
form |||Σ̂ − Σ|||2 ≤ ε is equivalent to asserting that

max
v∈Sd−1

∣∣∣∣∣∣1n
n∑

i=1

〈xi, vi〉2 − vTΣv

∣∣∣∣∣∣ ≤ ε. (6.6)

This representation shows that controlling the deviation |||Σ̂−Σ|||2 is equivalent to establishing
a uniform law of large numbers for the class of functions x �→ 〈x, v〉2, indexed by vectors
v ∈ Sd−1. See Chapter 4 for further discussion of such uniform laws in a general setting.

Control in the operator norm also guarantees that the eigenvalues of Σ̂ are uniformly close
to those of Σ. In particular, by a corollary of Weyl’s theorem (see the bibliographic section
for details), we have

max
j=1,...,d

|γ j(Σ̂) − γ j(Σ)| ≤ |||Σ̂ − Σ|||2. (6.7)

A similar type of guarantee can be made for the eigenvectors of the two matrices, but only if
one has additional control on the separation between adjacent eigenvalues. See our discus-
sion of principal component analysis in Chapter 8 for more details.

Finally, we point out the connection to the singular values of the random matrix X ∈ Rn×d,
denoted by {σ j(X)}min{n,d}

j=1 . Since the matrix X has the vector xT
i as its ith row, we have

Σ̂ =
1
n

n∑
i=1

xixT
i =

1
n

XTX,

and hence it follows that the eigenvalues of Σ̂ are the squares of the singular values of X/
√

n.

6.2 Wishart matrices and their behavior

We begin by studying the behavior of singular values for random matrices with Gaussian
rows. More precisely, let us suppose that each sample xi is drawn i.i.d. from a multivariate
N(0,Σ) distribution, in which case we say that the associated matrix X ∈ Rn×d, with xT

i
as its ith row, is drawn from the Σ-Gaussian ensemble. The associated sample covariance
Σ̂ = 1

n XTX is said to follow a multivariate Wishart distribution.

Theorem 6.1 Let X ∈ Rn×d be drawn according to the Σ-Gaussian ensemble. Then for
all δ > 0, the maximum singular value σmax(X) satisfies the upper deviation inequality

P
[
σmax(X)
√

n
≥ γmax(

√
Σ) (1 + δ) +

√
tr(Σ)

n

]
≤ e−nδ2/2. (6.8)

Moreover, for n ≥ d, the minimum singular value σmin(X) satisfies the analogous lower
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deviation inequality

P
[
σmin(X)
√

n
≤ γmin(

√
Σ) (1 − δ) −

√
tr(Σ)

n

]
≤ e−nδ2/2. (6.9)

Before proving this result, let us consider some illustrative examples.

Example 6.2 (Operator norm bounds for the standard Gaussian ensemble) Consider a ran-
dom matrix W ∈ Rn×d generated with i.i.d. N(0, 1) entries. This choice yields an instance of
Σ-Gaussian ensemble, in particular with Σ = Id. By specializing Theorem 6.1, we conclude
that for n ≥ d, we have

σmax(W)
√

n
≤ 1 + δ +

√
d
n

and
σmin(W)
√

n
≥ 1 − δ −

√
d
n
, (6.10)

where both bounds hold with probability greater than 1 − 2e−nδ2/2. These bounds on the
singular values of W imply that∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣1nWTW − Id

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2ε + ε2, where ε =

√
d
n
+ δ, (6.11)

with the same probability. Consequently, the sample covariance Σ̂ = 1
n WTW is a consistent

estimate of the identity matrix Id whenever d/n → 0. ♣

The preceding example has interesting consequences for the problem of sparse linear
regression using standard Gaussian random matrices, as in compressed sensing; in particular,
see our discussion of the restricted isometry property in Chapter 7. On the other hand, from
the perspective of covariance estimation, estimating the identity matrix is not especially
interesting. However, a minor modification does lead to a more realistic family of problems.

Example 6.3 (Gaussian covariance estimation) Let X ∈ Rn×d be a random matrix from
the Σ-Gaussian ensemble. By standard properties of the multivariate Gaussian, we can write
X = W

√
Σ, where W ∈ Rn×d is a standard Gaussian random matrix, and hence∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1nXTX − Σ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣√Σ

(
1
n

WTW − Id

)√
Σ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ |||Σ|||2

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1nWTW − Id

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

Consequently, by exploiting the bound (6.11), we are guaranteed that, for all δ > 0,

|||Σ̂ − Σ|||2
|||Σ|||2

≤ 2

√
d
n
+ 2δ +

⎛⎜⎜⎜⎜⎜⎝
√

d
n
+ δ

⎞⎟⎟⎟⎟⎟⎠2

, (6.12)

with probability at least 1 − 2e−nδ2/2. Overall, we conclude that the relative error
|||Σ̂ − Σ|||2/|||Σ|||2 converges to zero as long the ratio d/n converges to zero. ♣

It is interesting to consider Theorem 6.1 in application to sequences of matrices that sat-
isfy additional structure, one being control on the eigenvalues of the covariance matrix Σ.

Example 6.4 (Faster rates under trace constraints) Recall that {γ j(Σ)}dj=1 denotes the or-
dered sequence of eigenvalues of the matrix Σ, with γ1(Σ) being the maximum eigenvalue.
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Now consider a non-zero covariance matrix Σ that satisfies a “trace constraint” of the form

tr(Σ)
|||Σ|||2

=

∑d
j=1 γ j(Σ)

γ1(Σ)
≤ C, (6.13)

where C is some constant independent of dimension. Note that this ratio is a rough measure
of the matrix rank, since inequality (6.13) always holds with C = rank(Σ). Perhaps more
interesting are matrices that are full-rank but that exhibit a relatively fast eigendecay, with
a canonical instance being matrices that belong to the Schatten q-“balls” of matrices. For
symmetric matrices, these sets take the form

Bq(Rq) :=
{
Σ ∈ Sd×d

∣∣∣∣∣∣ d∑
j=1

|γ j(Σ)|q ≤ Rq

}
, (6.14)

where q ∈ [0, 1] is a given parameter, and Rq > 0 is the radius. If we restrict to matrices
with eigenvalues in [−1, 1], these matrix families are nested: the smallest set with q = 0
corresponds to the case of matrices with rank at most R0, whereas the other extreme q =

1 corresponds to an explicit trace constraint. Note that any non-zero matrix Σ ∈ Bq(Rq)
satisfies a bound of the form (6.13) with the parameter C = Rq/(γ1(Σ))q.

For any matrix class satisfying the bound (6.13), Theorem 6.1 guarantees that, with high
probability, the maximum singular value is bounded above as

σmax(X)
√

n
≤ γmax(

√
Σ)

⎛⎜⎜⎜⎜⎜⎝1 + δ +

√
C
n

⎞⎟⎟⎟⎟⎟⎠ . (6.15)

By comparison to the earlier bound (6.10) for Σ = Id, we conclude that the parameter C
plays the role of the effective dimension. ♣

We now turn to the proof of Theorem 6.1.

Proof In order to simplify notation in the proof, let us introduce the convenient shorthand
σmax = γmax(

√
Σ) and σmin = γmin(

√
Σ). Our proofs of both the upper and lower bounds

consist of two steps: first, we use concentration inequalities (see Chapter 2) to argue that the
random singular value is close to its expectation with high probability, and second, we use
Gaussian comparison inequalities (see Chapter 5) to bound the expected values.

Maximum singular value: As noted previously, by standard properties of the multivariate
Gaussian distribution, we can write X = W

√
Σ, where the random matrix W ∈ Rn×d has

i.i.d. N(0, 1) entries. Now let us view the mapping W �→ σmax(W
√
Σ)√

n as a real-valued function
on Rnd. By the argument given in Example 2.32, this function is Lipschitz with respect to
the Euclidean norm with constant at most L = σmax/

√
n. By concentration of measure for

Lipschitz functions of Gaussian random vectors (Theorem 2.26), we conclude that

P[σmax(X) ≥ E[σmax(X)] +
√

nσmaxδ] ≤ e−nδ2/2.

Consequently, it suffices to show that

E[σmax(X)] ≤
√

nσmax +
√

tr(Σ). (6.16)

In order to do so, we first write σmax(X) in a variational fashion, as the maximum of a
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suitably defined Gaussian process. By definition of the maximum singular value, we have
σmax(X) = maxv′∈Sd−1 ‖Xv′‖2, where Sd−1 denotes the Euclidean unit sphere in Rd. Recalling
the representation X = W

√
Σ and making the substitution v =

√
Σ v′, we can write

σmax(X) = max
v∈Sd−1(Σ−1)

‖Wv‖2 = max
u∈Sn−1

max
v∈Sd−1(Σ−1)

uTWv︸︷︷︸
Zu,v

,

where Sd−1(Σ−1) := {v ∈ Rd | ‖Σ− 1
2 v‖2 = 1} is an ellipse. Consequently, obtaining bounds

on the maximum singular value corresponds to controlling the supremum of the zero-mean
Gaussian process {Zu,v, (u, v) ∈ T} indexed by the set T := Sn−1 × Sd−1(Σ−1).

We upper bound the expected value of this supremum by constructing another Gaussian
process {Yu,v, (u, v) ∈ T} such that E[(Zu,v − Zũ,̃v)2] ≤ E[(Yu,v − Yũ,̃v)2] for all pairs (u, v)
and (̃u, ṽ) in T. We can then apply the Sudakov–Fernique comparison (Theorem 5.27) to
conclude that

E[σmax(X)] = E
[

max
(u,v)∈T

Zu,v

]
≤ E

[
max
(u,v)∈T

Yu,v

]
. (6.17)

Introducing the Gaussian process Zu,v := uTWv, let us first compute the induced pseudo-
metric ρZ . Given two pairs (u, v) and (̃u, ṽ), we may assume without loss of generality that
‖v‖2 ≤ ‖̃v‖2. (If not, we simply reverse the roles of (u, v) and (̃u, ṽ) in the argument to follow.)
We begin by observing that Zu,v = 〈〈W, uvT〉〉, where we use 〈〈A, B〉〉 :=

∑n
j=1

∑d
k=1 AjkBjk to

denote the trace inner product. Since the matrix W has i.i.d. N(0, 1) entries, we have

E[(Zu,v − Zũ,̃v)2] = E[(〈〈W, uvT − ũ̃vT〉〉)2] = |||uvT − ũ̃vT|||2F .

Rearranging and expanding out this Frobenius norm, we find that

|||uvT − ũ̃vT|||2F = |||u(v − ṽ)T + (u − ũ)̃vT|||2F
= |||(u − ũ)̃vT|||2F + |||u(v − ṽ)T|||2F + 2〈〈u(v − ṽ)T, (u − ũ)̃vT〉〉
≤ ‖̃v‖2

2 ‖u − ũ‖2
2 + ‖u‖2

2 ‖v − ṽ‖2
2 + 2(‖u‖2

2 − 〈u, ũ〉)(〈v, ṽ〉 − ‖̃v‖2
2).

Now since ‖u‖2 = ‖̃u‖2 = 1 by definition of the set T, we have ‖u‖2
2−〈u, ũ〉 ≥ 0. On the other

hand, we have

|〈v, ṽ〉|
(i)
≤ ‖v‖2 ‖̃v‖2

(ii)
≤ ‖̃v‖2

2,

where step (i) follows from the Cauchy–Schwarz inequality, and step (ii) follows from our
initial assumption that ‖v‖2 ≤ ‖̃v‖2. Combined with our previous bound on ‖u‖2

2 − 〈u, ũ〉, we
conclude that

(‖u‖2
2 − 〈u, ũ〉)︸������������︷︷������������︸

≥0

(〈v, ṽ〉 − ‖̃v‖2
2)︸�����������︷︷�����������︸

≤0

≤ 0.

Putting together the pieces, we conclude that

|||uvT − ũ̃vT|||2F ≤ ‖̃v‖2
2 ‖u − ũ‖2

2 + ‖v − ṽ‖2
2.

Finally, by definition of the set Sd−1(Σ−1), we have ‖̃v‖2 ≤ σmax = γmax(
√
Σ), and hence

E[(Zu,v − Zũ,̃v)2] ≤ σ2
max‖u − ũ‖2

2 + ‖v − ṽ‖2
2.
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Motivated by this inequality, we define the Gaussian process Yu,v := σmax 〈g, u〉 + 〈h, v〉,
where g ∈ Rn and h ∈ Rd are both standard Gaussian random vectors (i.e., with i.i.d. N(0, 1)
entries), and mutually independent. By construction, we have

E[(Yθ − Yθ̃)
2] = σ2

max‖u − ũ‖2
2 + ‖v − ṽ‖2

2.

Thus, we may apply the Sudakov–Fernique bound (6.17) to conclude that

E[σmax(X)] ≤ E
[

sup
(u,v)∈T

Yu,v

]
= σmax E

[
sup

u∈Sn−1
〈g, u〉

]
+ E

[
sup

v∈Sd−1(Σ−1)
〈h, v〉

]
= σmaxE[‖g‖2] + E[‖

√
Σh‖2]

By Jensen’s inequality, we have E[‖g‖2] ≤
√

n, and similarly,

E[‖
√
Σh‖2] ≤

√
E[hTΣh] =

√
tr(Σ),

which establishes the claim (6.16).

The lower bound on the minimum singular value is based on a similar argument, but
requires somewhat more technical work, so that we defer it to the Appendix (Section 6.6).

6.3 Covariance matrices from sub-Gaussian ensembles

Various aspects of our development thus far have crucially exploited different properties
of the Gaussian distribution, especially our use of the Gaussian comparison inequalities.
In this section, we show how a somewhat different approach—namely, discretization and
tail bounds—can be used to establish analogous bounds for general sub-Gaussian random
matrices, albeit with poorer control of the constants.

In particular, let us assume that the random vector xi ∈ Rd is zero-mean, and sub-Gaussian
with parameter at most σ, by which we mean that, for each fixed v ∈ Sd−1,

E[eλ〈v, xi〉] ≤ e
λ2σ2

2 for all λ ∈ R. (6.18)

Equivalently stated, we assume that the scalar random variable 〈v, xi〉 is zero-mean and
sub-Gaussian with parameter at most σ. (See Chapter 2 for an in-depth discussion of sub-
Gaussian variables.) Let us consider some examples to illustrate:

(a) Suppose that the matrix X ∈ Rn×d has i.i.d. entries, where each entry xi j is zero-mean
and sub-Gaussian with parameter σ = 1. Examples include the standard Gaussian en-
semble (xi j ∼ N(0, 1)), the Rademacher ensemble (xi j ∈ {−1,+1} equiprobably), and,
more generally, any zero-mean distribution supported on the interval [−1,+1]. In all of
these cases, for any vector v ∈ Sd−1, the random variable 〈v, xi〉 is sub-Gaussian with
parameter at most σ, using the i.i.d. assumption on the entries of xi ∈ Rd, and standard
properties of sub-Gaussian variables.
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(b) Now suppose that xi ∼ N(0,Σ). For any v ∈ Sd−1, we have 〈v, xi〉 ∼ N(0, vTΣv). Since
vTΣv ≤ |||Σ|||2, we conclude that xi is sub-Gaussian with parameter at most σ2 = |||Σ|||2.

When the random matrix X ∈ Rn×d is formed by drawing each row xi ∈ Rd in an i.i.d. man-
ner from a σ-sub-Gaussian distribution, then we say that X is a sample from a row-wise
σ-sub-Gaussian ensemble. For any such random matrix, we have the following result:

Theorem 6.5 There are universal constants {c j}3j=0 such that, for any row-wise σ-sub-

Gaussian random matrix X ∈ Rn×d, the sample covariance Σ̂ = 1
n

∑n
i=1 xixT

i satisfies the
bounds

E[eλ|||Σ̂−Σ|||2 ] ≤ ec0
λ2σ4

n +4d for all |λ| < n
64e2σ2 , (6.19a)

and hence

P
[
|||Σ̂ − Σ|||2

σ2 ≥ c1

{√
d
n
+

d
n

}
+ δ

]
≤ c2e−c3n min{δ,δ2} for all δ ≥ 0. (6.19b)

Remarks: Given the bound (6.19a) on the moment generating function of the random
variable |||Σ̂ − Σ|||2, the tail bound (6.19b) is a straightforward consequence of the Chernoff
technique (see Chapter 2). When Σ = Id and each xi is sub-Gaussian with parameter σ = 1,
the tail bound (6.19b) implies that

|||Σ̂ − Id |||2 �
√

d
n
+

d
n

with high probability. For n ≥ d, this bound implies that the singular values of X/
√

n satisfy
the sandwich relation

1 − c′
√

d
n
≤

σmin(X)
√

n
≤

σmax(X)
√

n
≤ 1 + c′

√
d
n
, (6.20)

for some universal constant c′ > 1. It is worth comparing this result to the earlier bounds
(6.10), applicable to the special case of a standard Gaussian matrix. The bound (6.20) has a
qualitatively similar form, except that the constant c′ is larger than one.

Proof For notational convenience, we introduce the shorthand Q := Σ̂ − Σ. Recall from
Section 6.1 the variational representation |||Q|||2 = maxv∈Sd−1 |〈v, Qv〉|. We first reduce the
supremum to a finite maximum via a discretization argument (see Chapter 5). Let {v1, . . . , vN}
be a 1

8 -covering of the sphere Sd−1 in the Euclidean norm; from Example 5.8, there exists
such a covering with N ≤ 17d vectors. Given any v ∈ Sd−1, we can write v = v j +Δ for some
v j in the cover, and an error vector Δ such that ‖Δ‖2 ≤ 1

8 , and hence

〈v, Qv〉 = 〈v j,Qv j〉 + 2〈Δ,Qv j〉 + 〈Δ, QΔ〉 .
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Applying the triangle inequality and the definition of operator norm yields

|〈v, Qv〉| ≤ |〈v j,Qv j〉| + 2‖Δ‖2 |||Q|||2 ‖v j‖2 + |||Q|||2 ‖Δ‖2
2

≤ |〈v j,Qv j〉| + 1
4 |||Q|||2 +

1
64 |||Q|||2

≤ |〈v j, Qv j〉| + 1
2 |||Q|||2.

Rearranging and then taking the supremum over v ∈ Sd−1, and the associated maximum over
j ∈ {1, 2, . . . , N}, we obtain

|||Q|||2 = max
v∈Sd−1

|〈v, Qv〉| ≤ 2 max
j=1,...,N

|〈v j,Qv j〉|.

Consequently, we have

E[eλ|||Q|||2 ] ≤ E
[

exp
(
2λ max

j=1,...,N
|〈v j,Qv j〉|

)]
≤

N∑
j=1

{E[e2λ〈v j,Qv j〉] + E[e−2λ〈v j,Qv j〉]}. (6.21)

Next we claim that for any fixed unit vector u ∈ Sd−1,

E[et〈u,Qu〉] ≤ e512 t2
n e4σ4

for all |t| ≤ n
32e2σ2 . (6.22)

We take this bound as given for the moment, and use it to complete the theorem’s proof. For
each vector v j in the covering set, we apply the bound (6.22) twice—once with t = 2λ and
once with t = −2λ. Combining the resulting bounds with inequality (6.21), we find that

E[eλ|||Q|||2 ] ≤ 2Ne2048 λ2
n e4σ4 ≤ ec0

λ2σ4
n +4d,

valid for all |λ| < n
64e2σ2 , where the final step uses the fact that 2(17d) ≤ e4d. Having estab-

lished the moment generating function bound (6.19a), the tail bound (6.19b) follows as a
consequence of Proposition 2.9.

Proof of the bound (6.22): The only remaining detail is to prove the bound (6.22). By the
definition of Q and the i.i.d. assumption, we have

E[et〈u,Qu〉] =
n∏

i=1

E
[
e

t
n {〈xi, u〉2−〈u,Σu〉}] = (

E
[
e

t
n {〈x1, u〉2−〈u,Σu〉}])n. (6.23)

Letting ε ∈ {−1,+1} denote a Rademacher variable, independent of x1, a standard sym-
metrization argument (see Proposition 4.11) implies that

Ex1

[
e

t
n {〈x1, u〉2−〈u,Σu〉}] ≤ Ex1,ε

[
e

2t
n ε〈x1, u〉2] (i)

=

∞∑
k=0

1
k!

(
2t
n

)k

E
[
εk 〈x1, u〉2k ]

(ii)
= 1 +

∞∑
�=1

1
(2�)!

(
2t
n

)2�

E
[
〈x1, u〉4�

]
,

where step (i) follows by the power-series expansion of the exponential, and step (ii) follows
since ε and x1 are independent, and all odd moments of the Rademacher term vanish. By
property (III) in Theorem 2.6 on equivalent characterizations of sub-Gaussian variables, we
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are guaranteed that

E[〈x1, u〉4�] ≤
(4�)!

22�(2�)!
(
√

8eσ)4� for all � = 1, 2, . . .,

and hence

Ex1

[
e

t
n {〈x1, u〉2−〈u,Σu〉}] ≤ 1 +

∞∑
�=1

1
(2�)!

(
2t
n

)2� (4�)!
22�(2�)!

(
√

8eσ)4�

≤ 1 +
∞∑
�=1

(
16t
n

e2σ2︸���︷︷���︸
f (t)

)2�

,

where we have used the fact that (4�)! ≤ 22�[(2�)!]2. As long as f (t) := 16t
n e2σ2 < 1

2 , we can
write

1 +
∞∑
�=1

[ f 2(t)]�
(i)
=

1
1 − f 2(t)

(ii)
≤ exp(2 f 2(t)),

where step (i) follows by summing the geometric series, and step (ii) follows because 1
1−a ≤

e2a for all a ∈ [0, 1
2 ]. Putting together the pieces and combining with our earlier bound (6.23),

we have shown that E[et〈u,Qu〉] ≤ e2n f 2(t), valid for all |t| < n
32e2σ2 , which establishes the

claim (6.22).

6.4 Bounds for general matrices

The preceding sections were devoted to bounds applicable to sample covariances under
Gaussian or sub-Gaussian tail conditions. This section is devoted to developing extensions
to more general tail conditions. In order to do so, it is convenient to introduce some more
general methodology that applies not only to sample covariance matrices, but also to more
general random matrices. The main results in this section are Theorems 6.15 and 6.17, which
are (essentially) matrix-based analogs of our earlier Hoeffding and Bernstein bounds for
random variables. Before proving these results, we develop some useful matrix-theoretic
generalizations of ideas from Chapter 2, including various types of tail conditions, as well
as decompositions for the moment generating function for independent random matrices.

6.4.1 Background on matrix analysis

We begin by introducing some additional background on matrix-valued functions. Recall
the class Sd×d of symmetric d × d matrices. Any function f : R → R can be extended to a
map from the set Sd×d to itself in the following way. Given a matrix Q ∈ Sd×d, consider its
eigendecomposition Q = UTΓU. Here the matrix U ∈ Rd×d is a unitary matrix, satisfying
the relation UTU = Id, whereas Γ := diag(γ(Q)) is a diagonal matrix specified by the vector
of eigenvalues γ(Q) ∈ Rd. Using this notation, we consider the mapping from Sd×d to itself
defined via

Q �→ f (Q) := UT diag( f (γ1(Q)), . . . , f (γd(Q)))U.
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In words, we apply the original function f elementwise to the vector of eigenvalues γ(Q),
and then rotate the resulting matrix diag( f (γ(Q))) back to the original coordinate system
defined by the eigenvectors of Q. By construction, this extension of f to Sd×d is unitarily
invariant, meaning that

f (VTQV) = VT f (Q)V for all unitary matrices V ∈ Rd×d,

since it affects only the eigenvalues (but not the eigenvectors) of Q. Moreover, the eigen-
values of f (Q) transform in a simple way, since we have

γ( f (Q)) =
{
f (γ j(Q)), j = 1, . . . , d

}
. (6.24)

In words, the eigenvalues of the matrix f (Q) are simply the eigenvalues of Q transformed
by f , a result often referred to as the spectral mapping property.

Two functions that play a central role in our development of matrix tail bounds are the
matrix exponential and the matrix logarithm. As a particular case of our construction, the
matrix exponential has the power-series expansion eQ =

∑∞
k=0

Qk

k! . By the spectral mapping
property, the eigenvalues of eQ are positive, so that it is a positive definite matrix for any
choice of Q. Parts of our analysis also involve the matrix logarithm; when restricted to the
cone of strictly positive definite matrices, as suffices for our purposes, the matrix logarithm
corresponds to the inverse of the matrix exponential.

A function f on Sd×d is said to be matrix monotone if f (Q) * f (R) whenever Q * R. A
useful property of the logarithm is that it is a matrix monotone function, a result known as
the Löwner–Heinz theorem. By contrast, the exponential is not a matrix monotone function,
showing that matrix monotonicity is more complex than the usual notion of monotonicity.
See Exercise 6.5 for further exploration of these properties.

Finally, a useful fact is the following: if f : R→ R is any continuous and non-decreasing
function in the usual sense, then for any pair of symmetric matrices such that Q * R, we are
guaranteed that

tr( f (Q)) ≤ tr( f (R)). (6.25)

See the bibliographic section for further discussion of such trace inequalities.

6.4.2 Tail conditions for matrices

Given a symmetric random matrix Q ∈ Sd×d, its polynomial moments, assuming that they
exist, are the matrices defined by E[Q j]. As shown in Exercise 6.6, the variance of Q is a
positive semidefinite matrix given by var(Q) := E[Q2] − (E[Q])2. The moment generating
function of a random matrix Q is the matrix-valued mapping ΨQ : R→ Sd×d given by

ΨQ(λ) := E[eλQ] =
∞∑

k=0

λk

k!
E[Qk]. (6.26)

Under suitable conditions on Q—or equivalently, suitable conditions on the polynomial mo-
ments of Q—it is guaranteed to be finite for all λ in an interval centered at zero. In parallel
with our discussion in Chapter 2, various tail conditions are based on imposing bounds on
this moment generating function. We begin with the simplest case:
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Definition 6.6 A zero-mean symmetric random matrix Q ∈ Sd×d is sub-Gaussian with
matrix parameter V ∈ Sd×d

+ if

ΨQ(λ) * e
λ2V

2 for all λ ∈ R. (6.27)

This definition is best understood by working through some simple examples.

Example 6.7 Suppose that Q = εB where ε ∈ {−1,+1} is a Rademacher variable, and
B ∈ Sd×d is a fixed matrix. Random matrices of this form frequently arise as the result of
symmetrization arguments, as discussed at more length in the sequel. Note that we have
E[Q2k+1] = 0 and E[Q2k] = B2k for all k = 1, 2, . . ., and hence

E[eλQ] =
∞∑

k=0

λ2k

(2k)!
B2k *

∞∑
k=1

1
k!

(
λ2B2

2

)k

= e
λ2B2

2 ,

showing that the sub-Gaussian condition (6.27) holds with V = B2 = var(Q). ♣

As we show in Exercise 6.7, more generally, a random matrix of the form Q = gB, where
g ∈ R is a σ-sub-Gaussian variable with distribution symmetric around zero, satisfies the
condition (6.27) with matrix parameter V = σ2B2.

Example 6.8 As an extension of the previous example, consider a random matrix of the
form Q = εC, where ε is a Rademacher variable as before, and C is now a random matrix,
independent of ε with its spectral norm bounded as |||C|||2 ≤ b. First fixing C and taking
expectations over the Rademacher variable, the previous example yields Eε[eλεC] * e

λ2
2 C2

.
Since |||C|||2 ≤ b, we have e

λ2
2 C2 * e

λ2
2 b2Id , and hence

ΨQ(λ) * e
λ2
2 b2Id for all λ ∈ R,

showing that Q is sub-Gaussian with matrix parameter V = b2Id. ♣

In parallel with our treatment of scalar random variables in Chapter 2, it is natural to con-
sider various weakenings of the sub-Gaussian requirement.

Definition 6.9 (Sub-exponential random matrices) A zero-mean random matrix is
sub-exponential with parameters (V, α) if

ΨQ(λ) * e
λ2V

2 for all |λ| < 1
α

. (6.28)

Thus, any sub-Gaussian random matrix is also sub-exponential with parameters (V, 0). How-
ever, there also exist sub-exponential random matrices that are not sub-Gaussian. One ex-
ample is the zero-mean random matrix M = εg2B, where ε ∈ {−1,+1} is a Rademacher
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variable, the variable g ∼ N(0, 1) is independent of ε, and B is a fixed symmetric matrix.

The Bernstein condition for random matrices provides one useful way of certifying the
sub-exponential condition:

Definition 6.10 (Bernstein’s condition for matrices) A zero-mean symmetric random
matrix Q satisfies a Bernstein condition with parameter b > 0 if

E[Q j] * 1
2 j! bj−2 var(Q) for j = 3, 4, . . .. (6.29)

We note that (a stronger form of) Bernstein’s condition holds whenever the matrix Q has
a bounded operator norm—say |||Q|||2 ≤ b almost surely. In this case, it can be shown (see
Exercise 6.9) that

E[Q j] * bj−2 var(Q) for all j = 3, 4, . . .. (6.30)

Exercise 6.11 gives an example of a random matrix with unbounded operator norm for which
Bernstein’s condition holds.

The following lemma shows how the general Bernstein condition (6.29) implies the sub-
exponential condition. More generally, the argument given here provides an explicit bound
on the moment generating function:

Lemma 6.11 For any symmetric zero-mean random matrix satisfying the Bernstein
condition (6.29), we have

ΨQ(λ) * exp
(
λ2 var(Q)
2(1 − b|λ|)

)
for all |λ| <

1
b

. (6.31)

Proof Since E[Q] = 0, applying the definition of the matrix exponential for a suitably
small λ ∈ R yields

E[eλQ] = Id +
λ2 var(Q)

2
+

∞∑
j=3

λ jE[Q j]
j!

(i)
* Id +

λ2 var(Q)
2

⎧⎪⎪⎨⎪⎪⎩ ∞∑
j=0

|λ| jb j

⎫⎪⎪⎬⎪⎪⎭
(ii)
= Id +

λ2 var(Q)
2(1 − b|λ|)

(iii)
* exp

(
λ2 var(Q)
2(1 − b|λ|)

)
,

where step (i) applies the Bernstein condition, step (ii) is valid for any |λ| < 1/b, a choice
for which the geometric series is summable, and step (iii) follows from the matrix inequality
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Id + A * eA, which is valid for any symmetric matrix A. (See Exercise 6.4 for more discus-
sion of this last property.)

6.4.3 Matrix Chernoff approach and independent decompositions

The Chernoff approach to tail bounds, as discussed in Chapter 2, is based on controlling the
moment generating function of a random variable. In this section, we begin by showing that
the trace of the matrix moment generating function (6.26) plays a similar role in bounding
the operator norm of random matrices.

Lemma 6.12 (Matrix Chernoff technique) Let Q be a zero-mean symmetric random
matrix whose moment generating function ΨQ exists in an open interval (−a, a). Then
for any δ > 0, we have

P[γmax(Q) ≥ δ] ≤ tr(ΨQ(λ))e−λδ for all λ ∈ [0, a), (6.32)

where tr(·) denotes the trace operator on matrices. Similarly, we have

P[|||Q|||2 ≥ δ] ≤ 2 tr(ΨQ(λ))e−λδ for all λ ∈ [0, a). (6.33)

Proof For each λ ∈ [0, a), we have

P[γmax(Q) ≥ δ] = P[eγmax(λQ) ≥ eλδ]
(i)
= P[γmax(eλQ) ≥ eλδ], (6.34)

where step (i) uses the functional calculus relating the eigenvalues of λQ to those of eλQ.
Applying Markov’s inequality yields

P[γmax(eλQ) ≥ eλδ] ≤ E[γmax(eλQ)]e−λδ
(i)
≤ E[tr(eλQ)]e−λδ. (6.35)

Here inequality (i) uses the upper bound γmax(eλQ) ≤ tr(eλQ), which holds since eλQ is posi-
tive definite. Finally, since trace and expectation commute, we have

E[tr(eλQ)] = tr(E[eλQ]) = tr(ΨQ(λ)).

Note that the same argument can be applied to bound the event γmax(−Q) ≥ δ, or equiva-
lently the event γmin(Q) ≤ −δ. Since |||Q|||2 = max{γmax(Q), |γmin(Q)|}, the tail bound on the
operator norm (6.33) follows.

An important property of independent random variables is that the moment generating
function of their sum can be decomposed as the product of the individual moment gener-
ating functions. For random matrices, this type of decomposition is no longer guaranteed
to hold with equality, essentially because matrix products need not commute. However, for
independent random matrices, it is nonetheless possible to establish an upper bound in terms
of the trace of the product of moment generating functions, as we now show.
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Lemma 6.13 Let Q1, . . . ,Qn be independent symmetric random matrices whose mo-
ment generating functions exist for all λ ∈ I, and define the sum Sn :=

∑n
i=1 Qi. Then

tr(ΨSn (λ)) ≤ tr
(
e
∑n

i=1 logΨQi (λ)
)

for all λ ∈ I. (6.36)

Remark: In conjunction with Lemma 6.12, this lemma provides an avenue for obtaining
tail bounds on the operator norm of sums of independent random matrices. In particular, if
we apply the upper bound (6.33) to the random matrix Sn/n, we find that

P

⎡⎢⎢⎢⎢⎢⎣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

⎤⎥⎥⎥⎥⎥⎦ ≤ 2 tr
(
e
∑n

i=1 logΨQi (λ)
)

e−λnδ for all λ ∈ [0, a). (6.37)

Proof In order to prove this lemma, we require the following result due to Lieb (1973): for
any fixed matrix H ∈ Sd×d, the function f : Sd×d

+ → R given by

f (A) := tr(eH+log(A))

is concave. Introducing the shorthand notation G(λ) := tr(ΨSn (λ)), we note that, by linearity
of trace and expectation, we have

G(λ) = tr
(
E[eλSn−1+log exp(λQn)]

)
= ESn−1 EQn [tr(e

λSn−1+log exp(λQn))].

Using concavity of the function f with H = λSn−1 and A = eλQn , Jensen’s inequality implies
that

EQn [tr(e
λSn−1+log exp(λQn))] ≤ tr(eλSn−1+logEQn exp(λQn)),

so that we have shown that G(λ) ≤ ESn−1 [tr(e
λSn−1+logΨQn (λ))].

We now recurse this argument, in particular peeling off the term involving Qn−1, so that
we have

G(λ) ≤ ESn−2EQn−1

[
tr(eλSn−2+logΨQn (λ)+log exp(λQn−1))

]
.

We again exploit the concavity of the function f , this time with the choices H = λSn−2 +

logΨQn (λ) and A = eλQn−1 , thereby finding that

G(λ) ≤ ESn−2

[
tr(eλSn−2+logΨQn−1 (λ)+logΨQn (λ))

]
.

Continuing in this manner completes the proof of the claim.

In many cases, our goal is to bound the maximum eigenvalue (or operator norm) of sums
of centered random matrices of the form Qi = Ai − E[Ai]. In this and other settings, it is
often convenient to perform an additional symmetrization step, so that we can deal instead
with matrices Q̃i that are guaranteed to have distribution symmetric around zero (meaning
that Q̃i and −Q̃i follow the same distribution).

Example 6.14 (Rademacher symmetrization for random matrices) Let {Ai}ni=1 be a se-
quence of independent symmetric random matrices, and suppose that our goal is to bound
the maximum eigenvalue of the matrix sum

∑n
i=1(Ai − E[Ai]). Since the maximum eigen-

value can be represented as the supremum of an empirical process, the symmetrization tech-
niques from Chapter 4 can be used to reduce the problem to one involving the new matrices
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Q̃i = εiAi, where εi is an independent Rademacher variable. Let us now work through this
reduction. By Markov’s inequality, we have

P

⎡⎢⎢⎢⎢⎢⎣γmax

( n∑
i=1

{Ai − E[Ai]}
)
≥ δ

⎤⎥⎥⎥⎥⎥⎦ ≤ E[eλγmax(
∑n

i=1{Ai−E[Ai]})]e−λδ.
By the variational representation of the maximum eigenvalue, we have

E
[
eλγmax(

∑n
i=1{Ai−E[Ai]})] = E ⎡⎢⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎜⎝λ sup
‖u‖2=1

〈
u,
( n∑

i=1

(Ai − E[Ai])
)
u
〉⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦

(i)
≤ E

⎡⎢⎢⎢⎢⎢⎣exp
(
2λ sup

‖u‖2=1

〈
u,
( n∑

i=1

εiAi

)
u
〉 )⎤⎥⎥⎥⎥⎥⎦

= E
[
e2λγmax(

∑n
i=1 εiAi)]

(ii)
= E

[
γmax(e2λ

∑n
i=1 εiAi )

]
,

where inequality (i) makes use of the symmetrization inequality from Proposition 4.11(b)
with Φ(t) = eλt, and step (ii) uses the spectral mapping property (6.24). Continuing on, we
have

E
[
γmax(e2λ

∑n
i=1 εiAi )

]
≤ tr

(
E
[
e2λ

∑n
i=1 εiAi

])
≤ tr

(
e
∑n

i=1 logΨ
Q̃i

(2λ)
)
,

where the final step follows from applying Lemma 6.13 to the symmetrized matrices Q̃i =

εiAi. Consequently, apart from the factor of 2, we may assume without loss of general-
ity when bounding maximum eigenvalues that our matrices have a distribution symmetric
around zero. ♣

6.4.4 Upper tail bounds for random matrices

We now have collected the ingredients necessary for stating and proving various tail bounds
for the deviations of sums of zero-mean independent random matrices.

Sub-Gaussian case
We begin with a tail bound for sub-Gaussian random matrices. It provides an approximate
analog of the Hoeffding-type tail bound for random variables (Proposition 2.5).

Theorem 6.15 (Hoeffding bound for random matrices) Let {Qi}ni=1 be a sequence of
zero-mean independent symmetric random matrices that satisfy the sub-Gaussian con-
dition with parameters {Vi}ni=1. Then for all δ > 0, we have the upper tail bound

P

⎡⎢⎢⎢⎢⎢⎣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

⎤⎥⎥⎥⎥⎥⎦ ≤ 2 rank

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

Vi

⎞⎟⎟⎟⎟⎟⎠ e−
nδ2

2σ2 ≤ 2de−
nδ2

2σ2 , (6.38)

where σ2 = ||| 1n
∑n

i=1 Vi|||2.
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Proof We first prove the claim in the case when V :=
∑n

i=1 Vi is full-rank, and then show
how to prove the general case. From Lemma 6.13, it suffices to upper bound tr

(
e
∑n

i=1 logΨQi (λ)
)
.

From Definition 6.6, the assumed sub-Gaussianity, and the monotonicity of the matrix log-
arithm, we have

n∑
i=1

logΨQi (λ) *
λ2

2

n∑
i=1

Vi,

where we have used the fact that the logarithm is matrix monotone. Now since the exponen-
tial is an increasing function, the trace bound (6.25) implies that

tr
(
e
∑n

i=1 logΨQi (λ)
)
≤ tr

(
e

λ2
2
∑n

i=1 Vi

)
.

This upper bound, when combined with the matrix Chernoff bound (6.37), yields

P

⎡⎢⎢⎢⎢⎢⎣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

⎤⎥⎥⎥⎥⎥⎦ ≤ 2 tr
(
e

λ2
2
∑n

i=1 Vi

)
e−λnδ.

For any d-dimensional symmetric matrix R, we have tr(eR) ≤ de|||R|||2 . Applying this inequal-
ity to the matrix R = λ2

2

∑n
i=1 Vi, for which we have |||R|||2 = λ2

2 nσ2, yields the bound

P

⎡⎢⎢⎢⎢⎢⎣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

⎤⎥⎥⎥⎥⎥⎦ ≤ 2de
λ2
2 nσ2−λnδ.

This upper bound holds for all λ ≥ 0 and setting λ = δ/σ2 yields the claim.
Now suppose that the matrix V :=

∑n
i=1 Vi is not full-rank, say of rank r < d. In this

case, an eigendecomposition yields V = UDUT, where U ∈ Rd×r has orthonormal columns.
Introducing the shorthand Q :=

∑n
i=1 Qi, the r-dimensional matrix Q̃ = UTQU then captures

all randomness in Q, and in particular we have |||Q̃|||2 = |||Q|||2. We can thus apply the same
argument to bound |||Q̃|||2, leading to a pre-factor of r instead of d.

An important fact is that inequality (6.38) also implies an analogous bound for general
independent but potentially non-symmetric and/or non-square matrices, with d replaced
by (d1 + d2). More specifically, a problem involving general zero-mean random matrices
Ai ∈ Rd1×d2 can be transformed to a symmetric version by defining the (d1 +d2)-dimensional
square matrices

Qi :=
[
0d1×d1 Ai

AT
i 0d2×d2

]
, (6.39)

and imposing some form of moment generating function bound—for instance, the sub-
Gaussian condition (6.27)—on the symmetric matrices Qi. See Exercise 6.10 for further
details.

A significant feature of the tail bound (6.38) is the appearance of either the rank or the
dimension d in front of the exponent. In certain cases, this dimension-dependent factor is
superfluous, and leads to sub-optimal bounds. However, it cannot be avoided in general. The
following example illustrates these two extremes.
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Example 6.16 (Looseness/sharpness of Theorem 6.15) For simplicity, let us consider ex-
amples with n = d. For each i = 1, 2, . . . , d, let Ei ∈ Sd×d denote the diagonal matrix with
1 in position (i, i), and 0s elsewhere. Define Qi = yiEi, where {yi}ni=1 is an i.i.d. sequence
of 1-sub-Gaussian variables. Two specific cases to keep in mind are Rademacher variables
{εi}ni=1, and N(0, 1) variables {gi}ni=1.

For any such choice of sub-Gaussian variables, a calculation similar to that of Exam-
ple 6.7 shows that each Qi satisfies the sub-Gaussian bound (6.27) with Vi = Ei, and
hence σ2 = ||| 1d

∑d
i=1 Vi|||2 = 1/d. Consequently, an application of Theorem 6.15 yields the

tail bound

P

⎡⎢⎢⎢⎢⎢⎣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1d

d∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

⎤⎥⎥⎥⎥⎥⎦ ≤ 2de−
d2δ2

2 for all δ > 0, (6.40)

which implies that ||| 1d
∑d

j=1 Q j|||2 �
√

2 log(2d)
d with high probability. On the other hand, an

explicit calculation shows that ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1d

n∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

= max
i=1,...,d

|yi|
d

. (6.41)

Comparing the exact result (6.41) with the bound (6.40) yields a range of behavior. At one
extreme, for i.i.d. Rademacher variables yi = εi ∈ {−1,+1}, we have ||| 1d

∑n
i=1 Qi|||2 = 1/d,

showing that the bound (6.40) is off by the order
√

log d. On the other hand, for i.i.d. Gaus-
sian variables yi = gi ∼ N(0, 1), we have∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣1d

d∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

= max
i=1,...,d

|gi|
d
+

√
2 log d

d
,

using the fact that the maximum of d i.i.d. N(0, 1) variables scales as
√

2 log d. Conse-
quently, Theorem 6.15 cannot be improved for this class of random matrices. ♣

Bernstein-type bounds for random matrices
We now turn to bounds on random matrices that satisfy sub-exponential tail conditions, in
particular of the Bernstein form (6.29).

Theorem 6.17 (Bernstein bound for random matrices) Let {Qi}ni=1} be a sequence of
independent, zero-mean, symmetric random matrices that satisfy the Bernstein condi-
tion (6.29) with parameter b > 0. Then for all δ ≥ 0, the operator norm satisfies the
tail bound

P
[
1
n

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ n∑

i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

]
≤ 2 rank

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

var(Qi)

⎞⎟⎟⎟⎟⎟⎠ exp
{
−

nδ2

2(σ2 + bδ)

}
, (6.42)

where σ2 := 1
n |||
∑n

j=1 var(Q j)|||2.
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Proof By Lemma 6.13, we have tr(ΨSn (λ)) ≤ tr
(
e
∑n

i=1 logΨQi (λ)
)
. By Lemma 6.11, the Bern-

stein condition combined with matrix monotonicity of the logarithm yields the bound
logΨQi (λ) * λ2 var(Qi)

1−b|λ| for any |λ| < 1
b . Putting together the pieces yields

tr
(
e
∑n

i=1 logΨQi (λ)
)
≤ tr

(
exp

(
λ2 ∑n

i=1 var(Qi)
1 − b|λ|

))
≤ rank

( n∑
i=1

var(Qi)
)
e

nλ2σ2
1−b|λ| ,

where the final inequality follows from the same argument as the proof of Theorem 6.15.
Combined with the upper bound (6.37), we find that

P
[∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

]
≤ 2 rank

( n∑
i=1

var(Qi)
)
e

nσ2λ2
1−b|λ| −λnδ,

valid for all λ ∈ [0, 1/b). Setting λ = δ
σ2+bδ ∈ (0, 1

b ) and simplifying yields the claim (6.42).

Remarks: Note that the tail bound (6.42) is of the sub-exponential type, with two regimes
of behavior depending on the relative sizes of the parameters σ2 and b. Thus, it is a nat-
ural generalization of the classical Bernstein bound for scalar random variables. As with
Theorem 6.15, Theorem 6.17 can also be generalized to non-symmetric (and potentially
non-square) matrices {Ai}ni=1 by introducing the sequence of {Qi}ni=1 symmetric matrices de-
fined in equation (6.39), and imposing the Bernstein condition on it. As one special case, if
|||Ai|||2 ≤ b almost surely, then it can be verified that the matrices {Qi}ni=1 satisfy the Bernstein
condition with b and the quantity

σ2 := max
{∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

E[AiA
T
i ]

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

E[AT
i Ai]

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

}
. (6.43)

We provide an instance of this type of transformation in Example 6.18 to follow.

The problem of matrix completion provides an interesting class of examples in which
Theorem 6.17 can be fruitfully applied. See Chapter 10 for a detailed description of the
underlying problem, which motivates the following discussion.

Example 6.18 (Tail bounds in matrix completion) Consider an i.i.d. sequence of matrices
of the form Ai = ξiXi ∈ Rd×d, where ξi is a zero-mean sub-exponential variable that satisfies
the Bernstein condition with parameter b and variance ν2, and Xi is a random “mask matrix”,
independent from ξi, with a single entry equal to d in a position chosen uniformly at random
from all d2 entries, and all remaining entries equal to zero. By construction, for any fixed
matrix Θ ∈ Rd×d, we have E[〈〈Ai, Θ〉〉2] = ν2|||Θ|||2F—a property that plays an important role
in our later analysis of matrix completion.

As noted in Example 6.14, apart from constant factors, there is no loss of generality in
assuming that the random matrices Ai have distributions that are symmetric around zero;
in this particular, this symmetry condition is equivalent to requiring that the scalar random
variables ξi and −ξi follow the same distribution. Moreover, as defined, the matrices Ai are
not symmetric (meaning that Ai � AT

i ), but as discussed following Theorem 6.17, we can
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bound the operator norm ||| 1n
∑n

i=1 Ai|||2 in terms of the operator norm ||| 1n
∑n

i=1 Qi|||2, where the
symmetrized version Qi ∈ R2d×2d was defined in equation (6.39).

By the independence between ξi and Ai and the symmetric distribution of ξi, we have
E[Q2m+1

i ] = 0 for all m = 0, 1, 2, . . .. Turning to the even moments, suppose that entry (a, b)
is the only non-zero in the mask matrix Xi. We then have

Q2m
i = (ξi)2md2m

[
Da 0
0 Db

]
for all m = 1, 2, . . ., (6.44)

where Da ∈ Rd×d is the diagonal matrix with a single 1 in entry (a, a), with Db defined anal-
ogously. By the Bernstein condition, we have E[ξ2m

i ] ≤ 1
2 (2m)!b2m−2ν2 for all m = 1, 2, . . ..

On the other hand, E[Da] = 1
d Id since the probability of choosing a in the first coordinate

is 1/d. We thus see that var(Qi) = ν2dI2d. Putting together the pieces, we have shown that

E[Q2m
i ] *

1
2

(2m)!b2m−2ν2d2m 1
d

I2d =
1
2

(2m)!(bd)2m−2 var(Qi),

showing that Qi satisfies the Bernstein condition with parameters bd and

σ2 :=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

var(Qi)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ν2d.

Consequently, Theorem 6.17 implies that

P
[∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Ai

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

]
≤ 4de−

nδ2

2d(ν2+bδ) . (6.45)

♣

In certain cases, it is possible to sharpen the dimension dependence of Theorem 6.17—in
particular, by replacing the rank-based pre-factor, which can be as large as d, by a quantity
that is potentially much smaller. We illustrate one instance of such a sharpened result in the
following example.

Example 6.19 (Bernstein bounds with sharpened dimension dependence) Consider a se-
quence of independent zero-mean random matrices Qi bounded as |||Qi|||2 ≤ 1 almost surely,
and suppose that our goal is to upper bound the maximum eigenvalue γmax(Sn) of the sum
Sn :=

∑n
i=1 Qi. Defining the function φ(λ) := eλ − λ − 1, we note that it is monotonically

increasing on the positive real line. Consequently, as verified in Exercise 6.12, for any pair
δ > 0, we have

P[γmax(Sn) ≥ δ] ≤ inf
λ>0

tr(E[φ(λSn)])
φ(λδ)

. (6.46)

Moreover, using the fact that |||Qi|||2 ≤ 1, the same exercise shows that

logΨQi (λ) * φ(λ) var(Qi) (6.47a)

and

tr(E[φ(λSn)]) ≤
tr(V̄)
|||V̄|||2

eφ(λ)|||V̄|||2 , (6.47b)
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where V̄ :=
∑n

i=1 var(Qi). Combined with the initial bound (6.46), we conclude that

P[γmax(Sn) ≥ δ] ≤
tr(V̄)
|||V̄|||2

inf
λ>0

{
eφ(λ)|||V̄|||2

φ(λδ)

}
. (6.48)

The significance of this bound is the appearance of the trace ratio tr(V̄)
|||V̄|||2

as a pre-factor, as
opposed to the quantity rank(V̄) ≤ d that arose in our previous derivation. Note that we
always have tr(V̄)

|||V̄|||2
≤ rank(V̄), and in certain cases, the trace ratio can be substantially smaller

than the rank. See Exercise 6.13 for one such case. ♣

6.4.5 Consequences for covariance matrices

We conclude with a useful corollary of Theorem 6.17 for the estimation of covariance
matrices.

Corollary 6.20 Let x1, . . . , xn be i.i.d. zero-mean random vectors with covariance Σ
such that ‖x j‖2 ≤

√
b almost surely. Then for all δ > 0, the sample covariance matrix

Σ̂ = 1
n

∑n
i=1 xixT

i satisfies

P[|||Σ̂ − Σ|||2 ≥ δ] ≤ 2d exp
(
−

nδ2

2b(|||Σ|||2 + δ)

)
. (6.49)

Proof We apply Theorem 6.17 to the zero-mean random matrices Qi := xixT
i − Σ. These

matrices have controlled operator norm: indeed, by the triangle inequality, we have

|||Qi|||2 ≤ ‖xi‖2
2 + |||Σ|||2 ≤ b + |||Σ|||2.

Since Σ = E[xixT
i ], we have |||Σ|||2 = maxv∈Sd−1 E[〈v, xi〉2] ≤ b, and hence |||Qi|||2 ≤ 2b.

Turning to the variance of Qi, we have

var(Qi) = E[(xixT
i )2] − Σ2 * E[‖xi‖2

2 xixT
i ] * bΣ,

so that ||| var(Qi)|||2 ≤ b|||Σ|||2. Substituting into the tail bound (6.42) yields the claim.

Let us illustrate some consequences of this corollary with some examples.

Example 6.21 (Random vectors uniform on a sphere) Suppose that the random vectors
xi are chosen uniformly from the sphere Sd−1(

√
d), so that ‖xi‖2 =

√
d for all i = 1, . . . , n.

By construction, we have E[xixT
i ] = Σ = Id, and hence |||Σ|||2 = 1. Applying Corollary 6.20

yields

P[|||Σ̂ − Id |||2 ≥ δ] ≤ 2de−
nδ2

2d+2dδ for all δ ≥ 0. (6.50)

This bound implies that

|||Σ̂ − Id |||2 �
√

d log d
n

+
d log d

n
(6.51)
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with high probability, so that the sample covariance is a consistent estimate as long as
d log d

n → 0. This result is close to optimal, with only the extra logarithmic factor being
superfluous in this particular case. It can be removed, for instance, by noting that xi is a
sub-Gaussian random vector, and then applying Theorem 6.5. ♣

Example 6.22 (“Spiked” random vectors) We now consider an ensemble of random vec-
tors that are rather different than the previous example, but still satisfy the same bound. In
particular, consider a random vector of the form xi =

√
dea(i), where a(i) is an index chosen

uniformly at random from {1, . . . , d}, and ea(i) ∈ Rd is the canonical basis vector with 1 in
position a(i). As before, we have ‖xi‖2 =

√
d, and E[xixT

i ] = Id so that the tail bound (6.50)
also applies to this ensemble. An interesting fact is that, for this particular ensemble, the
bound (6.51) is sharp, meaning it cannot be improved beyond constant factors. ♣

6.5 Bounds for structured covariance matrices

In the preceding sections, our primary focus has been estimation of general unstructured
covariance matrices via the sample covariance. When a covariance matrix is equipped with
additional structure, faster rates of estimation are possible using different estimators than the
sample covariance matrix. In this section, we explore the faster rates that are achievable for
sparse and/or graph-structured matrices.

In the simplest setting, the covariance matrix is known to be sparse, and the positions of
the non-zero entries are known. In such settings, it is natural to consider matrix estimators
that are non-zero only in these known positions. For instance, if we are given a priori know-
ledge that the covariance matrix is diagonal, then it would be natural to use the estimate
D̂ := diag{̂Σ11, Σ̂22, . . . , Σ̂dd}, corresponding to the diagonal entries of the sample covariance
matrix Σ̂. As we explore in Exercise 6.15, the performance of this estimator can be substan-
tially better: in particular, for sub-Gaussian variables, it achieves an estimation error of the

order
√

log d
n , as opposed to the order

√
d
n rates in the unstructured setting. Similar statements

apply to other forms of known sparsity.

6.5.1 Unknown sparsity and thresholding

More generally, suppose that the covariance matrix Σ is known to be relatively sparse, but
that the positions of the non-zero entries are no longer known. It is then natural to consider
estimators based on thresholding. Given a parameter λ > 0, the hard-thresholding operator
is given by

Tλ(u) := u I[|u| > λ] =

⎧⎪⎪⎨⎪⎪⎩u if |u| > λ,
0 otherwise.

(6.52)

With a minor abuse of notation, for a matrix M, we write Tλ(M) for the matrix obtained
by applying the thresholding operator to each element of M. In this section, we study the
performance of the estimator Tλn (Σ̂), where the parameter λn > 0 is suitably chosen as a
function of the sample size n and matrix dimension d.

The sparsity of the covariance matrix can be measured in various ways. Its zero pattern
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is captured by the adjacency matrix A ∈ Rd×d with entries Aj� = I[Σ j� � 0]. This adjacency
matrix defines the edge structure of an undirected graph G on the vertices {1, 2, . . . , d}, with
edge ( j, �) included in the graph if and only if Σ j� � 0, along with the self-edges ( j, j) for
each of the diagonal entries. The operator norm |||A|||2 of the adjacency matrix provides a
natural measure of sparsity. In particular, it can be verified that |||A|||2 ≤ d, with equality
holding when G is fully connected, meaning that Σ has no zero entries. More generally, as
shown in Exercise 6.2, we have |||A|||2 ≤ s whenever Σ has at most s non-zero entries per
row, or equivalently when the graph G has maximum degree at most s − 1. The following
result provides a guarantee for the thresholded sample covariance matrix that involves the
graph adjacency matrix A defined by Σ.

Theorem 6.23 (Thresholding-based covariance estimation) Let {xi}ni=1 be an i.i.d. se-
quence of zero-mean random vectors with covariance matrix Σ, and suppose that each
component xi j is sub-Gaussian with parameter at most σ. If n > log d, then for any

δ > 0, the thresholded sample covariance matrix Tλn (Σ̂) with λn/σ
2 = 8

√
log d

n + δ sat-
isfies

P
[
|||Tλn (Σ̂) − Σ|||2 ≥ 2|||A|||2λn

]
≤ 8e−

n
16 min{δ, δ2}. (6.53)

Underlying the proof of Theorem 6.23 is the following (deterministic) result: for any
choice of λn such that ‖Σ̂ − Σ‖max ≤ λn, we are guaranteed that

|||Tλn (Σ̂) − Σ|||2 ≤ 2|||A|||2λn. (6.54)

The proof of this intermediate claim is straightforward. First, for any index pair ( j, �) such
that Σ j� = 0, the bound ‖Σ̂−Σ‖max ≤ λn guarantees that |̂Σ j�| ≤ λn, and hence that Tλn (̂Σ j�) = 0
by definition of the thresholding operator. On the other hand, for any pair ( j, �) for which
Σ j� � 0, we have

|Tλn (̂Σ j�) − Σ j�|
(i)
≤ |Tλn (̂Σ j�) − Σ̂ j�| + |̂Σ j� − Σ j�|

(ii)
≤ 2λn,

where step (i) follows from the triangle inequality, and step (ii) follows from the fact that
|Tλn (̂Σ j�) − Σ̂ j�| ≤ λn, and a second application of the assumption ‖Σ̂ − Σ‖max ≤ λn. Con-
sequently, we have shown that the matrix B := |Tλn (Σ̂) − Σ| satisfies the elementwise in-
equality B ≤ 2λnA. Since both B and A have non-negative entries, we are guaranteed that
|||B|||2 ≤ 2λn|||A|||2, and hence that |||Tλn (Σ̂) − Σ|||2 ≤ 2λn|||A|||2 as claimed. (See Exercise 6.3
for the details of these last steps.)

Theorem 6.23 has a number of interesting corollaries for particular classes of covariance
matrices.
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Corollary 6.24 Suppose that, in addition to the conditions of Theorem 6.23, the co-

variance matrixΣ has at most s non-zero entries per row. Then with λn/σ
2 = 8

√
log d

n + δ

for some δ > 0, we have

P[|||Tλn (Σ̂) − Σ|||2 ≥ 2sλn] ≤ 8e−
n
16 min{δ, δ2}. (6.55)

In order to establish these claims from Theorem 6.23, it suffices to show that |||A|||2 ≤ s.
Since A has at most s ones per row (with the remaining entries equal to zero), this claim
follows from the result of Exercise 6.2.

Example 6.25 (Sparsity and adjacency matrices) In certain ways, the bound (6.55) is more
appealing than the bound (6.53), since it is based on a local quantity—namely, the maxi-
mum degree of the graph defined by the covariance matrix, as opposed to the spectral norm
|||A|||2. In certain cases, these two bounds coincide. As an example, consider any graph with
maximum degree s − 1 that contains an s-clique (i.e., a subset of s nodes that are all joined
by edges). As we explore in Exercise 6.16, for any such graph, we have |||A|||2 = s, so that
the two bounds are equivalent.

(a) (b)

Figure 6.1 (a) An instance of a graph on d = 9 nodes containing an s = 5 clique.
For this class of graphs, the bounds (6.53) and (6.55) coincide. (b) A hub-and-spoke
graph on d = 9 nodes with maximum degree s = 5. For this class of graphs, the
bounds differ by a factor of

√
s.

However, in general, the bound (6.53) can be substantially sharper than the bound (6.55).
As an example, consider a hub-and-spoke graph, in which one central node known as the
hub is connected to s of the remaining d − 1 nodes, as illustrated in Figure 6.1(b). For such
a graph, we have |||A|||2 = 1 +

√
s − 1, so that in this case Theorem 6.23 guarantees that

|||Tλn (Σ̂) − Σ|||2 �
√

s log d
n

,

with high probability, a bound that is sharper by a factor of order
√

s compared to the
bound (6.55) from Corollary 6.24. ♣
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We now turn to the proof of the remainder of Theorem 6.23. Based on the reasoning lead-
ing to equation (6.54), it suffices to establish a high-probability bound on the elementwise
infinity norm of the error matrix Δ̂ := Σ̂ − Σ.

Lemma 6.26 Under the conditions of Theorem 6.23, we have

P[‖Δ̂‖max/σ
2 ≥ t] ≤ 8e−

n
16 min{t, t2}+2 log d for all t > 0. (6.56)

Setting t = λn/σ
2 = 8

√
log d

n + δ in the bound (6.56) yields

P[‖Δ̂‖max ≥ λn] ≤ 8e−
n
16 min{δ, δ2},

where we have used the fact that n > log d by assumption.
It remains to prove Lemma 6.26. Note that the rescaled vector xi/σ is sub-Gaussian with

parameter at most 1. Consequently, we may assume without loss of generality that σ = 1,
and then rescale at the end. First considering a diagonal entry, the result of Exercise 6.15(a)
guarantees that there are universal positive constants c1, c2 such that

P[|Δ̂ j j| ≥ c1δ] ≤ 2e−c2nδ2
for all δ ∈ (0, 1). (6.57)

Turning to the non-diagonal entries, for any j � �, we have

2Δ̂ j� =
2
n

n∑
i=1

xi jxi� − 2Σ j� =
1
n

n∑
i=1

(xi j + xi�)2 − (Σ j j + Σ�� + 2Σ j�) − Δ̂ j j − Δ̂��.

Since xi j and xi� are both zero-mean and sub-Gaussian with parameter σ, the sum xi j + xi�

is zero-mean and sub-Gaussian with parameter at most 2
√

2σ (see Exercise 2.13(c)). Con-
sequently, there are universal constants c2, c3 such that for all δ ∈ (0, 1), we have

P

⎡⎢⎢⎢⎢⎢⎣∣∣∣∣∣∣1n
n∑

i=1

(xi j + xi�)2 − (Σ j j + Σ�� + 2Σ j�)

∣∣∣∣∣∣ ≥ c3δ

⎤⎥⎥⎥⎥⎥⎦ ≤ 2e−c2nδ2
,

and hence, combining with our earlier diagonal bound (6.57), we obtain the tail bound
P[|Δ̂ j�| ≥ c′1δ] ≤ 6e−c2nδ2

. Finally, combining this bound with the earlier inequality (6.57)
and then taking a union bound over all d2 entries of the matrix yields the stated claim (6.56).

6.5.2 Approximate sparsity

Given a covariance matrix Σ with no entries that are exactly zero, the bounds of Theo-
rem 6.23 are very poor. In particular, for a completely dense matrix, the associated adjacency
matrix A is simply the all-ones matrix, so that |||A|||2 = d. Intuitively, one might expect that
these bounds could be improved if Σ had a large number of non-zero entries, but many of
them were “near zero”.

Recall that one way in which to measure the sparsity of Σ is in terms of the maximum
number of non-zero entries per row. A generalization of this idea is to measure the �q-“norm”
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of each row. More specifically, given a parameter q ∈ [0, 1] and a radius Rq, we impose the
constraint

max
j=1,...,d

d∑
�=1

|Σ j�|q ≤ Rq. (6.58)

(See Figure 7.1 in Chapter 7 for an illustration of these types of sets.) In the special case
q = 0, this constraint is equivalent to requiring that each row of Σ have at most R0 non-
zero entries. For intermediate values q ∈ (0, 1], it allows for many non-zero entries but
requires that their absolute magnitudes (if ordered from largest to smallest) drop off rela-
tively quickly.

Theorem 6.27 (Covariance estimation under �q-sparsity) Suppose that the covari-
ance matrix Σ satisfies the �q-sparsity constraint (6.58). Then for any λn such that
‖Σ̂ − Σ‖max ≤ λn/2, we are guaranteed that

|||Tλn (Σ̂) − Σ|||2 ≤ 4Rqλn
1−q. (6.59a)

Consequently, if the sample covariance is formed using i.i.d. samples {xi}ni=1 that are

zero-mean with sub-Gaussian parameter at most σ, then with λn/σ
2 = 8

√
log d

n + δ, we
have

P[|||Tλn (Σ̂) − Σ|||2 ≥ 4Rqλn
1−q] ≤ 8e−

n
16 min{δ, δ2} for all δ > 0. (6.59b)

Proof Given the deterministic claim (6.59a), the probabilistic bound (6.59b) follows from
standard tail bounds on sub-exponential variables. The deterministic claim is based on the
assumption that ‖Σ̂ − Σ‖max ≤ λn/2. By the result of Exercise 6.2, the operator norm can be
upper bounded as

|||Tλn (Σ̂) − Σ|||2 ≤ max
j=1,...,d

d∑
�=1

|Tλn (̂Σ j�) − Σ j�|.

Fixing an index j ∈ {1, 2, . . . , d}, define the set S j(λn/2) =
{
� ∈ {1, . . . , d} | |Σ j�| > λn/2

}
.

For any index � ∈ S j(λn/2), we have

|Tλn (̂Σ j�) − Σ j�| ≤ |Tλn (̂Σ j�) − Σ̂ j�| + |̂Σ j� − Σ j�| ≤
3
2
λn.

On the other hand, for any index � � S j(λn/2), we have Tλn (̂Σ j�) = 0, by definition of the
thresholding operator, and hence

|Tλn (̂Σ j�) − Σ j�| = |Σ j�|.
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Putting together the pieces, we have
d∑

�=1

|Tλn (̂Σ j�) − Σ j�| =
∑

�∈S j(λn)

|Tλn (̂Σ j�) − Σ j�| +
∑

��S j(λn)

|Tλn (̂Σ j�) − Σ j�|

≤ |S j(λn/2)|
3
2
λn +

∑
��S j(λn)

|Σ j�|. (6.60)

Now we have ∑
��S j(λn/2)

|Σ j�| =
λn

2

∑
��S j(λn/2)

|Σ j�|
λn/2

(i)
≤

λn

2

∑
��S j(λn/2)

(
|Σ j�|
λn/2

)q (ii)
≤ λn

1−qRq,

where step (i) follows since |Σ j�| ≤ λn/2 for all � � S j(λn/2) and q ∈ [0, 1], and step (ii)
follows by the assumption (6.58). On the other hand, we have

Rq ≥
d∑

�=1

|Σ j�|q ≥ |S j(λn/2)|
(
λn

2

)q

,

whence |S j(λn/2)| ≤ 2qRqλ
−q
n . Combining these ingredients with the inequality (6.60), we

find that
d∑

�=1

|Tλn (̂Σ j�) − Σ j�| ≤ 2qRqλ
1−q
n

3
2
+ Rqλ

1−q
n ≤ 4Rqλ

1−q
n .

Since this same argument holds for each index j = 1, . . . , d, the claim (6.59a) follows.

6.6 Appendix: Proof of Theorem 6.1

It remains to prove the lower bound (6.9) on the minimal singular value. In order to do
so, we follow an argument similar to that used to upper bound the maximal singular value.
Throughout this proof, we assume that Σ is strictly positive definite (and hence invertible);
otherwise, its minimal singular value is zero, and the claimed lower bound is vacuous. We
begin by lower bounding the expectation using a Gaussian comparison principle due to Gor-
don (1985). By definition, the minimum singular value has the variational representation
σmin(X) = minv′∈Sd−1 ‖Xv′‖2. Let us reformulate this representation slightly for later theoret-
ical convenience. Recalling the shorthand notation σmin = σmin(

√
Σ), we define the radius

R = 1/σmin, and then consider the set

V(R) := {z ∈ Rd | ‖
√
Σz‖2 = 1, ‖z‖2 ≤ R}. (6.61)

We claim that it suffices to show that a lower bound of the form

min
z∈V(R)

‖Xz‖2√
n

≥ 1 − δ − R

√
tr(Σ)

n
(6.62)

holds with probability at least 1− e−nδ2/2. Indeed, suppose that inequality (6.62) holds. Then
for any v′ ∈ Sd−1, we can define the rescaled vector z := v′

‖
√
Σv′‖2

. By construction, we have

‖
√
Σz‖2 = 1 and ‖z‖2 =

1

‖
√
Σv′‖2

≤
1

σmin(
√
Σ)

= R,
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so that z ∈ V(R). We now observe that

‖Xv′‖2√
n

= ‖
√
Σv′‖2

‖Xz‖2√
n

≥ σmin(
√
Σ) min

z∈V(R)

‖Xz‖2√
n

.

Since this bound holds for all v′ ∈ Sd−1, we can take the minimum on the left-hand side,
thereby obtaining

min
v′∈Sd−1

‖Xv′‖2√
n

≥ σmin min
z∈V(R)

‖Xz‖2√
n

(i)
≥ σmin

{
1 − R

√
tr(Σ)

n
− δ

}
= (1 − δ)σmin − R

√
tr(Σ)

n
,

where step (i) follows from the bound (6.62).
It remains to prove the lower bound (6.62). We begin by showing concentration of the

random variable minv∈V(R) ‖Xv‖2/
√

n around its expected value. Since the matrix X ∈ Rn×d

has i.i.d. rows, each drawn from the N(0,Σ) distribution, we can write X = W
√
Σ, where

the random matrix W is standard Gaussian. Using the fact that ‖
√
Σv‖2 = 1 for all v ∈ V(R),

it follows that the function W �→ minv∈V(R)
‖W

√
Σv‖2√
n is Lipschitz with parameter L = 1/

√
n.

Applying Theorem 2.26, we conclude that

min
v∈V(R)

‖Xv‖2√
n

≥ E
[

min
v∈V(R)

‖Xv‖2√
n

]
− δ

with probability at least 1 − e−nδ2/2.
Consequently, the proof will be complete if we can show that

E
[

min
v∈V(R)

‖Xv‖2√
n

]
≥ 1 − R

√
tr(Σ)

n
. (6.63)

In order to do so, we make use of an extension of the Sudakov–Fernique inequality, known
as Gordon’s inequality, which we now state. Let {Zu,v} and {Yu,v} be a pair of zero-mean
Gaussian processes indexed by a non-empty index set T = U × V . Suppose that

E[(Zu,v − Zũ,̃v)2] ≤ E[(Yu,v − Yũ,̃v)2] for all pairs (u, v) and (̃u, ṽ) ∈ T, (6.64)

and moreover that this inequality holds with equality whenever v = ṽ. Under these condi-
tions, Gordon’s inequality guarantees that

E
[

max
v∈V

min
u∈U

Zu,v

]
≤ E

[
max
v∈V

min
u∈U

Yu,v

]
. (6.65)

In order to exploit this result, we first observe that

− min
z∈V(R)

‖Xz‖2 = max
z∈V(R)

{−‖Xz‖2} = max
z∈V(R)

min
u∈Sn−1

uTXz.

As before, if we introduce the standard Gaussian random matrix W ∈ Rn×d, then for any



6.6 Appendix: Proof of Theorem 6.1 187

z ∈ V(R), we can write uTXz = uTWv, where v :=
√
Σz. Whenever z ∈ V(R), then the

vector v must belong to the set V′(R) := {v ∈ Sd−1 | ‖Σ− 1
2 v‖2 ≤ R}, and we have shown that

min
z∈V(R)

‖Xz‖2 = max
v∈V′(R)

min
u∈Sn−1

uTWv︸︷︷︸
Zu,v

.

Let (u, v) and (̃u, ṽ) be any two members of the Cartesian product space Sn−1 ×V′(R). Since
‖u‖2 = ‖̃u‖2 = ‖v‖2 = ‖̃v‖2 = 1, following the same argument as in bounding the maximal
singular value shows that

ρ2
Z((u, v), (̃u, ṽ)) ≤ ‖u − ũ‖2

2 + ‖v − ṽ‖2
2, (6.66)

with equality holding when v = ṽ. Consequently, if we define the Gaussian process Yu,v :=
〈g, u〉 + 〈h, v〉, where g ∈ Rn and h ∈ Rd are standard Gaussian vectors and mutually inde-
pendent, then we have

ρ2
Y((u, v), (̃u, ṽ)) = ‖u − ũ‖2

2 + ‖v − ṽ‖2
2,

so that the Sudakov–Fernique increment condition (6.64) holds. In addition, for a pair such
that v = ṽ, equality holds in the upper bound (6.66), which guarantees that ρZ((u, v), (̃u, v)) =
ρY((u, v), (̃u, v)). Consequently, we may apply Gordon’s inequality (6.65) to conclude that

E
[
− min

z∈V(R)
‖Xz‖2

]
≤ E

[
max

v∈V′(R)
min

u∈Sn−1
Yu,v

]
= E

[
min

u∈Sn−1
〈g, u〉

]
+ E

[
max

v∈V′(R)
〈h, v〉

]
≤ −E[‖g‖2] + E[‖

√
Σh‖2]R,

where we have used the upper bound |〈h, v〉| = |〈
√
Σh,Σ−

1
2 v〉| ≤ ‖

√
Σh‖2R, by definition of

the set V′(R).
We now claim that

E[‖
√
Σh‖2]

√
tr(Σ)

≤
E[‖h‖2]
√

d
. (6.67)

Indeed, by the rotation invariance of the Gaussian distribution, we may assume that Σ is
diagonal, with non-negative entries {γ j}dj=1, and the claim is equivalent to showing that the

function F(γ) := E
[(∑d

j=1 γ jh2
j
)1/2] achieves its maximum over the probability simplex at the

uniform vector (i.e., with all entries γ j = 1/d). Since F is continuous and the probability sim-
plex is compact, the maximum is achieved. By the rotation invariance of the Gaussian, the
function F is also permutation invariant—i.e., F(γ) = F(Π(γ)) for all permutation matrices
Π. Since F is also concave, the maximum must be achieved at γ j = 1/d, which establishes
the inequality (6.67).
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Recalling that R = 1/σmin, we then have

−E[‖g‖2] + RE[‖
√
Σh‖2] ≤ −E[‖g‖2] +

√
tr(Σ)
σmin

E[‖h‖2]
√

d

= {−E[‖g‖2] + E[‖h‖2]}︸���������������������︷︷���������������������︸
T1

+

⎧⎪⎪⎨⎪⎪⎩
√

tr(Σ)
σ2

mind
− 1

⎫⎪⎪⎬⎪⎪⎭E[‖h‖2]︸������������������������︷︷������������������������︸
T2

.

By Jensen’s inequality, we have E‖h‖2 ≤
√
E‖h‖2

2 =
√

d. Since tr(Σ)
σ2

mind
≥ 1, we conclude that

T2 ≤
{√

tr(Σ)
σ2

mind
− 1

}√
d. On the other hand, a direct calculation, using our assumption that

n ≥ d, shows that T1 ≤ −
√

n +
√

d. Combining the pieces, we conclude that

E
[
− min

z∈V(R)
‖Xz‖2

]
≤ −

√
n +

√
d +

⎧⎪⎪⎨⎪⎪⎩
√

tr(Σ)
σ2

mind
− 1

⎫⎪⎪⎬⎪⎪⎭ √d

= −
√

n +
√

tr(Σ)
σmin

,

which establishes the initial claim (6.62), thereby completing the proof.

6.7 Bibliographic details and background

The two-volume series by Horn and Johnson (1985; 1991) is a standard reference on linear
algebra. A statement of Weyl’s theorem and its corollaries can be found in section 4.3 of the
first volume (Horn and Johnson, 1985). The monograph by Bhatia (1997) is more advanced
in nature, taking a functional-analytic perspective, and includes discussion of Lidskii’s the-
orem (see section III.4). The notes by Carlen (2009) contain further background on trace
inequalities, such as inequality (6.25).

Some classical papers on asymptotic random matrix theory include those by Wigner (1955;
1958), Marčenko and Pastur (1967), Pastur (1972), Wachter (1978) and Geman (1980).
Mehta (1991) provides an overview of asymptotic random matrix theory, primarily from
the physicist’s perspective, whereas the book by Bai and Silverstein (2010) takes a more
statistical perspective. The lecture notes of Vershynin (2011) focus on the non-asymptotic
aspects of random matrix theory, as partially covered here. Davidson and Szarek (2001)
describe the use of Sudakov–Fernique (Slepian) and Gordon inequalities in bounding ex-
pectations of random matrices; see also the earlier papers by Gordon (1985; 1986; 1987)
and Szarek (1991). The results in Davidson and Szarek (2001) are for the special case of the
standard Gaussian ensemble (Σ = Id), but the underlying arguments are easily extended to
the general case, as given here.

The proof of Theorem 6.5 is based on the lecture notes of Vershynin (2011). The under-
lying discretization argument is classical, used extensively in early work on random con-
structions in Banach space geometry (e.g., see the book by Pisier (1989) and references
therein). Note that this discretization argument is the one-step version of the more sophisti-
cated chaining methods described in Chapter 5.

Bounds on the expected operator norm of a random matrix follow a class of results known
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as non-commutative Bernstein inequalities, as derived initially by Rudelson (1999). Alh-
swede and Winter (2002) developed techniques for matrix tail bounds based on controlling
the matrix moment generating function, and exploiting the Golden–Thompson inequality.
Other authors, among them Oliveira (2010), Gross (2011) and Recht (2011), developed var-
ious extensions and refinements of the original Ahlswede–Winter approach. Tropp (2010)
introduced the idea of controlling the matrix generating function directly, and developed
the argument that underlies Lemma 6.13. Controlling the moment generating function in
this way leads to tail bounds involving the variance parameter σ2 := 1

n |||
∑n

i=1 var(Qi)|||2
as opposed to the potentially larger quantity σ̃2 := 1

n

∑n
i=1 ||| var(Qi)|||2 that follows from the

original Ahlswede–Winter argument. By the triangle inequality for the operator norm, we
have σ2 ≤ σ̃2, and the latter quantity can be substantially larger. Independent work by
Oliveira (2010) also derived bounds involving the variance parameter σ2, using a related
technique that sharpened the original Ahlswede–Winter approach. Tropp (2010) also pro-
vides various extensions of the basic Bernstein bound, among them results for matrix martin-
gales as opposed to the independent random matrices considered here. Mackey et al. (2014)
show how to derive matrix concentration bounds with sharp constants using the method of
exchangeable pairs introduced by Chatterjee (2007). Matrix tail bounds with refined forms of
dimension dependence have been developed by various authors (Minsker, 2011; Hsu et al.,
2012a); the specific sharpening sketched out in Example 6.19 and Exercise 6.12 is due to
Minsker (2011).

For covariance estimation, Adamczak et al. (2010) provide sharp results on the deviation
|||Σ̂ − Σ|||2 for distributions with sub-exponential tails. These results remove the superfluous
logarithmic factor that arises from an application of Corollary 6.20 to a sub-exponential
ensemble. Srivastava and Vershynin (2013) give related results under very weak moment
conditions. For thresholded sample covariances, the first high-dimensional analyses were
undertaken in independent work by Bickel and Levina (2008a) and El Karoui (2008). Bickel
and Levina studied the problem under sub-Gaussian tail conditions, and introduced the row-
wise sparsity model, defined in terms of the maximum �q-“norm” taken over the rows. By
contrast, El Karoui imposed a milder set of moment conditions, and measured sparsity in
terms of the growth rates of path lengths in the graph; this approach is essentially equivalent
to controlling the operator norm |||A|||2 of the adjacency matrix, as in Theorem 6.23. The star
graph is an interesting example that illustrates the difference between the row-wise sparsity
model, and the operator norm approach.

An alternative model for covariance matrices is a banded decay model, in which entries
decay according to their distance from the diagonal. Bickel and Levina (2008b) introduced
this model in the covariance setting, and proposed a certain kind of tapering estimator. Cai
et al. (2010) analyzed the minimax-optimal rates associated with this class of covariance
matrices, and provided a modified estimator that achieves these optimal rates.

6.8 Exercises

Exercise 6.1 (Bounds on eigenvalues) Given two symmetric matrices A and B, show di-
rectly, without citing any other theorems, that

|γmax(A) − γmax(B)| ≤ |||A − B|||2 and |γmin(A) − γmin(B)| ≤ |||A − B|||2.
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Exercise 6.2 (Relations between matrix operator norms) For a rectangular matrix A with
real entries and a scalar q ∈ [1,∞], the (�q → �q)-operator norms are given by

|||A|||q = sup
‖x‖q=1

‖Ax‖q.

(a) Derive explicit expressions for the operator norms |||A|||2, |||A|||1 and |||A|||∞ in terms of
elements and/or singular values of A.

(b) Prove that |||AB|||q ≤ |||A|||q |||B|||q for any size-compatible matrices A and B.
(c) For a square matrix A, prove that |||A|||22 ≤ |||A|||1 |||A|||∞. What happens when A is sym-

metric?

Exercise 6.3 (Non-negative matrices and operator norms) Given two d-dimensional sym-
metric matrices A and B, suppose that 0 ≤ A ≤ B in an elementwise sense (i.e., 0 ≤ Aj� ≤ Bj�

for all j, � = 1, . . . , d.)

(a) Show that 0 ≤ Am ≤ Bm for all integers m = 1, 2, . . ..
(b) Use part (a) to show that |||A|||2 ≤ |||B|||2.
(c) Use a similar argument to show that |||C|||2 ≤ ||| |C| |||2 for any symmetric matrix C, where

|C| denotes the absolute value function applied elementwise.

Exercise 6.4 (Inequality for matrix exponential) Let A ∈ Sd×d be any symmetric matrix.
Show that Id + A * eA. (Hint: First prove the statement for a diagonal matrix A, and then
show how to reduce to the diagonal case.)

Exercise 6.5 (Matrix monotone functions) A function f : Sd×d
+ → Sd×d

+ on the space of
symmetric positive semidefinite matrices is said to be matrix monotone if

f (A) * f (B) whenever A * B.

Here * denotes the positive semidefinite ordering on Sd×d
+ .

(a) Show by counterexample that the function f (A) = A2 is not matrix monotone. (Hint:
Note that (A+tC)2 = A2+t2C2+t(AC+CA), and search for a pair of positive semidefinite
matrices such that AC + CA has a negative eigenvalue.)

(b) Show by counterexample that the matrix exponential function f (A) = eA is not matrix
monotone. (Hint: Part (a) could be useful.)

(c) Show that the matrix logarithm function f (A) = log A is matrix monotone on the cone
of strictly positive definite matrices. (Hint: You may use the fact that g(A) = Ap is
matrix monotone for all p ∈ [0, 1].)

Exercise 6.6 (Variance and positive semidefiniteness) Recall that the variance of a sym-
metric random matrix Q is given by var(Q) = E[Q2] − (E[Q])2. Show that var(Q) ) 0.

Exercise 6.7 (Sub-Gaussian random matrices) Consider the random matrix Q = gB, where
g ∈ R is a zero-mean σ-sub-Gaussian variable.

(a) Assume that g has a distribution symmetric around zero, and B ∈ Sd×d is a determinis-
tic matrix. Show that Q is sub-Gaussian with matrix parameter V = c2σ2B2, for some
universal constant c.
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(b) Now assume that B ∈ Sd×d is random and independent of g, with |||B|||2 ≤ b almost surely.
Prove that Q is sub-Gaussian with matrix parameter given by V = c2σ2b2Id.

Exercise 6.8 (Sub-Gaussian matrices and mean bounds) Consider a sequence of indepen-
dent, zero-mean random matrices {Qi}ni=1 in Sd×d, each sub-Gaussian with matrix parameter
Vi. In this exercise, we provide bounds on the expected value of eigenvalues and operator
norm of Sn =

1
n

∑n
i=1 Qi.

(a) Show that E[γmax(Sn)] ≤
√

2σ2 log d
n , where σ2 = ||| 1n

∑n
i=1 Vi|||2.

(Hint: Start by showing that E[eλγmax(Sn)] ≤ de
λ2σ2

2n .)
(b) Show that

E
[∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Qi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

]
≤
√

2σ2 log(2d)
n

. (6.68)

Exercise 6.9 (Bounded matrices and Bernstein condition) Let Q ∈ Sd×d be an arbitrary
symmetric matrix.

(a) Show that the bound |||Q|||2 ≤ b implies that Q j−2 * bj−2Id.
(b) Show that the positive semidefinite order is preserved under left–right multiplication,

meaning that if A * B, then we also have QAQ * QBQ for any matrix Q ∈ Sd×d.
(c) Use parts (a) and (b) to prove the inequality (6.30).

Exercise 6.10 (Tail bounds for non-symmetric matrices) In this exercise, we prove that a
version of the tail bound (6.42) holds for general independent zero-mean matrices {Ai}ni=1
that are almost surely bounded as |||Ai|||2 ≤ b, as long as we adopt the new definition (6.43)
of σ2.

(a) Given a general matrix Ai ∈ Rd1×d2 , define a symmetric matrix of dimension (d1 + d2)
via

Qi :=
[
0d1×d2 Ai

AT
i 0d2×d1

]
.

Prove that |||Qi|||2 = |||Ai|||2.
(b) Prove that ||| 1n

∑n
i=1 var(Qi)|||2 ≤ σ2 where σ2 is defined in equation (6.43).

(c) Conclude that

P
[∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ n∑

i=1

Ai

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ nδ
]
≤ 2(d1 + d2)e−

nδ2

2(σ2+bδ) . (6.69)

Exercise 6.11 (Unbounded matrices and Bernstein bounds) Consider an independent se-
quence of random matrices {Ai}ni=1 in Rd1×d2 , each of the form Ai = giBi, where gi ∈ R is
a zero-mean scalar random variable, and Bi is an independent random matrix. Suppose that
E[gj

i ] ≤
j!
2 bj−2

1 σ2 for j = 2, 3, . . ., and that |||Bi|||2 ≤ b2 almost surely.
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(a) For any δ > 0, show that

P
[∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Ai

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ δ

]
≤ (d1 + d2)e

− nδ2

2(σ2b2
2+b1b2δ) .

(Hint: The result of Exercise 6.10(a) could be useful.)
(b) Show that

E
[∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

Ai

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

]
≤

2σb2√
n

{ √
log(d1 + d2) +

√
π
}
+

4b1b2

n
{
log(d1 + d2) + 1

}
.

(Hint: The result of Exercise 2.8 could be useful.)

Exercise 6.12 (Sharpened matrix Bernstein inequality) In this exercise, we work through
various steps of the calculation sketched in Example 6.19.

(a) Prove the bound (6.46).
(b) Show that for any symmetric zero-mean random matrix Q such that |||Q|||2 ≤ 1 almost

surely, the moment generating function is bounded as

logΨQ(λ) * (eλ − λ − 1︸������︷︷������︸
φ(λ)

) var(Q).

(c) Prove the upper bound (6.47b).

Exercise 6.13 (Bernstein’s inequality for vectors) In this exercise, we consider the problem
of obtaining a Bernstein-type bound on random variable ‖

∑n
i=1 xi‖2, where {xi}ni=1 is an i.i.d.

sequence of zero-mean random vectors such that ‖xi‖2 ≤ 1 almost surely, and cov(xi) = Σ.
In order to do so, we consider applying either Theorem 6.17 or the bound (6.48) to the
(d + 1)-dimensional symmetric matrices

Qi :=
[
0 xT

i
xi 0d

]
.

Define the matrix Vn =
∑n

i=1 var(Qi).

(a) Show that the best bound obtainable from Theorem 6.17 will have a pre-factor of the
form rank(Σ) + 1, which can be as large as d + 1.

(b) By way of contrast, show that the bound (6.48) yields a dimension-independent pre-
factor of 2.

Exercise 6.14 (Random packings) The goal of this exercise is to prove that there exists a
collection of vectors P = {θ1, . . . , θM} belonging to the sphere Sd−1 such that:

(a) the set P forms a 1/2-packing in the Euclidean norm;
(b) the set P has cardinality M ≥ ec0d for some universal constant c0;
(c) the inequality ||| 1

M

∑M
j=1

(
θ j ⊗ θ j)|||2 ≤ 2

d holds.

(Note: You may assume that d is larger than some universal constant so as to avoid annoying
subcases.)
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Exercise 6.15 (Estimation of diagonal covariances) Let {xi}ni=1 be an i.i.d. sequence of d-
dimensional vectors, drawn from a zero-mean distribution with diagonal covariance matrix
Σ = D. Consider the estimate D̂ = diag(Σ̂), where Σ̂ is the usual sample covariance matrix.

(a) When each vector xi is sub-Gaussian with parameter at most σ, show that there are
universal positive constants c j such that

P
[
|||D̂ − D|||2/σ2 ≥ c0

√
log d

n
+ δ

]
≤ c1e−c2n min{δ, δ2}, for all δ > 0.

(b) Instead of a sub-Gaussian tail condition, suppose that for some even integer m ≥ 2, there
is a universal constant Km such that

E[(x2
i j − Σ j j)m]︸������������︷︷������������︸
‖x2

i j−Σ j j‖m
m

≤ Km for each i = 1, . . . , n and j = 1, . . . , d.

Show that

P
[
|||D̂ − D|||2 ≥ 4δ

√
d2/m

n

]
≤ K′

m

(
1
2δ

)m

for all δ > 0,

where K′
m is another universal constant.

Hint: You may find Rosenthal’s inequality useful: given zero-mean independent random
variables Zi such that ‖Zi‖m < +∞, there is a universal constant Cm such that∥∥∥∥∥∥ n∑

i=1

Zi

∥∥∥∥∥∥
m

≤ Cm

{( n∑
i=1

E[Z2
i ]
)1/2

+

( n∑
i=1

E[|Zi|m]
)1/m}

.

Exercise 6.16 (Graphs and adjacency matrices) Let G be a graph with maximum degree
s − 1 that contains an s-clique. Letting A denote its adjacency matrix (defined with ones on
the diagonal), show that |||A|||2 = s.
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Sparse linear models in high dimensions

The linear model is one of the most widely used in statistics, and has a history dating back to
the work of Gauss on least-squares prediction. In its low-dimensional instantiation, in which
the number of predictors d is substantially less than the sample size n, the associated theory
is classical. By contrast, our aim in this chapter is to develop theory that is applicable to the
high-dimensional regime, meaning that it allows for scalings such that d ( n, or even d � n.
As one might intuitively expect, if the model lacks any additional structure, then there is no
hope of obtaining consistent estimators when the ratio d/n stays bounded away from zero.1

For this reason, when working in settings in which d > n, it is necessary to impose additional
structure on the unknown regression vector θ∗ ∈ Rd, and this chapter focuses on different
types of sparse models.

7.1 Problem formulation and applications

Let θ∗ ∈ Rd be an unknown vector, referred to as the regression vector. Suppose that we
observe a vector y ∈ Rn and a matrix X ∈ Rn×d that are linked via the standard linear model

y = Xθ∗ + w, (7.1)

where w ∈ Rn is a vector of noise variables. This model can also be written in a scalarized
form: for each index i = 1, 2, . . . , n, we have yi = 〈xi, θ

∗〉 + wi, where xT
i ∈ Rd is the ith

row of X, and yi and wi are (respectively) the ith entries of the vectors y and w. The quantity
〈xi, θ

∗〉 :=
∑d

j=1 xi jθ
∗
j denotes the usual Euclidean inner product between the vector xi ∈ Rd

of predictors (or covariates), and the regression vector θ∗ ∈ Rd. Thus, each response yi is a
noisy version of a linear combination of d covariates.

The focus of this chapter is settings in which the sample size n is smaller than the number
of predictors d. In this case, it can also be of interest in certain applications to consider a
noiseless linear model, meaning the special case of equation (7.1) with w = 0. When n < d,
the equations y = Xθ∗ define an underdetermined linear system, and the goal is to understand
the structure of its sparse solutions.

7.1.1 Different sparsity models

At the same time, when d > n, it is impossible to obtain any meaningful estimates of θ∗

unless the model is equipped with some form of low-dimensional structure. One of the

1 Indeed, this intuition will be formalized as a theorem in Chapter 15 using information-theoretic methods.
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(a) (b) (c)

Figure 7.1 Illustrations of the �q-“balls” for different choices of the parameter q ∈
(0, 1]. (a) For q = 1, the set B1(Rq) corresponds to the usual �1-ball shown here.
(b) For q = 0.75, the ball is a non-convex set obtained by collapsing the faces of
the �1-ball towards the origin. (c) For q = 0.5, the set becomes more “spiky”, and it
collapses into the hard sparsity constraint as q → 0+. As shown in Exercise 7.2(a),
for all q ∈ (0, 1], the set Bq(1) is star-shaped around the origin.

simplest kinds of structure in a linear model is a hard sparsity assumption, meaning that the
set

S (θ∗) := { j ∈ {1, 2, . . . , d} | θ∗j � 0}, (7.2)

known as the support set of θ∗, has cardinality s := |S (θ∗)| substantially smaller than d.
Assuming that the model is exactly supported on s coefficients may be overly restrictive,
in which case it is also useful to consider various relaxations of hard sparsity, which leads
to the notion of weak sparsity. Roughly speaking, a vector θ∗ is weakly sparse if it can be
closely approximated by a sparse vector.

There are different ways in which to formalize such an idea, one way being via the �q-
“norms”. For a parameter q ∈ [0, 1] and radius Rq > 0, consider the set

Bq(Rq) =
{
θ ∈ Rd

∣∣∣∣∣∣ d∑
j=1

|θ j|q ≤ Rq

}
. (7.3)

It is known as the �q-ball of radius Rq. As illustrated in Figure 7.1, for q ∈ [0, 1), it is not a
ball in the strict sense of the word, since it is a non-convex set. In the special case q = 0, any
vector θ∗ ∈ B0(R0) can have at most s = R0 non-zero entries. More generally, for values of
q in (0, 1], membership in the set Bq(Rq) has different interpretations. One of them involves
how quickly the ordered coefficients

|θ∗(1)|︸︷︷︸
max

j=1,2,...,d
|θ∗j |

≥ |θ∗(2)| ≥ · · · ≥ |θ∗(d−1)| ≥ |θ∗(d)|︸︷︷︸
min

j=1,2,...,d
|θ∗j |

(7.4)
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decay. More precisely, as we explore in Exercise 7.2, if these ordered coefficients satisfy
the bound |θ∗( j)| ≤ C j−α for a suitable exponent α, then θ∗ belongs to Bq(Rq) for a radius Rq

depending on (C, α).

7.1.2 Applications of sparse linear models

Although quite simple in appearance, the high-dimensional linear model is fairly rich. We
illustrate it here with some examples and applications.

Example 7.1 (Gaussian sequence model) In a finite-dimensional version of the Gaussian
sequence model, we make observations of the form

yi =
√

nθ∗i + wi, for i = 1, 2, . . . , n, (7.5)

where wi ∼ N(0, σ2) are i.i.d. noise variables. This model is a special case of the general
linear regression model (7.1) with n = d, and a design matrix X =

√
nIn. It is a truly high-

dimensional model, since the sample size n is equal to the number of parameters d. Although
it appears simple on the surface, it is a surprisingly rich model: indeed, many problems in
nonparametric estimation, among them regression and density estimation, can be reduced
to an “equivalent” instance of the Gaussian sequence model, in the sense that the optimal
rates for estimation are the same under both models. For nonparametric regression, when
the function f belongs to a certain type of function class (known as a Besov space), then the
vector of its wavelet coefficients belongs to a certain type of �q-ball with q ∈ (0, 1), so that
the estimation problem corresponds to a version of the Gaussian sequence problem with an
�q-sparsity constraint. Various methods for estimation, such as wavelet thresholding, exploit
this type of approximate sparsity. See the bibliographic section for additional references on
this connection. ♣

Example 7.2 (Signal denoising in orthonormal bases) Sparsity plays an important role
in signal processing, both for compression and for denoising of signals. In abstract terms, a
signal can be represented as a vector β∗ ∈ Rd. Depending on the application, the signal length
d could represent the number of pixels in an image, or the number of discrete samples of a
time series. In a denoising problem, one makes noisy observations of the form ỹ = β∗ + w̃,
where the vector w̃ corresponds to some kind of additive noise. Based on the observation
vector ỹ ∈ Rd, the goal is to “denoise” the signal, meaning to reconstruct β∗ as accurately
as possible. In a compression problem, the goal is to produce a representation of β∗, either
exact or approximate, that can be stored more compactly than its original representation.

Many classes of signals exhibit sparsity when transformed into an appropriate basis, such
as a wavelet basis. This sparsity can be exploited both for compression and for denoising. In
abstract terms, any such transform can be represented as an orthonormal matrix Ψ ∈ Rd×d,
constructed so that θ∗ := ΨTβ∗ ∈ Rd corresponds to the vector of transform coefficients.
If the vector θ∗ is known to be sparse, then it can be compressed by retaining only some
number s < d of its coefficients, say the largest s in absolute value. Of course, if θ∗ were
exactly sparse, then this representation would be exact. It is more realistic to assume that
θ∗ satisfies some form of approximate sparsity, and, as we explore in Exercise 7.2, such
conditions can be used to provide guarantees on the accuracy of the reconstruction.

Returning to the denoising problem, in the transformed space, the observation model takes
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the form y = θ∗ + w, where y := ΨTỹ and w := ΨTw̃ are the transformed observation and
noise vector, respectively. When the observation noise is assumed to be i.i.d. Gaussian (and
hence invariant under orthogonal transformation), then both the original and the transformed
observations are instances of the Gaussian sequence model from Example 7.1, both with
n = d.

If the vector θ∗ is known to be sparse, then it is natural to consider estimators based on
thresholding. In particular, for a threshold λ > 0 to be chosen, the hard-thresholded estimate
of θ∗ is defined as

[Hλ(y)]i =

⎧⎪⎪⎨⎪⎪⎩yi if |yi| ≥ λ,
0 otherwise.

(7.6a)

Closely related is the soft-thresholded estimate given by

[Tλ(y)]i =

⎧⎪⎪⎨⎪⎪⎩sign(yi)(|yi| − λ) if |yi| ≥ λ,
0 otherwise.

(7.6b)

As we explore in Exercise 7.1, each of these estimators have interpretations as minimizing
the quadratic cost function θ �→ ‖y − θ‖2

2 subject to �0- and �1-constraints, respectively. ♣

Example 7.3 (Lifting and nonlinear functions) Despite its superficial appearance as repre-
senting purely linear functions, augmenting the set of predictors allows for nonlinear models
to be represented by the standard equation (7.1). As an example, let us consider polynomial
functions in a scalar variable t ∈ R of degree k, say of the form

fθ(t) = θ1 + θ2t + · · · + θk+1tk.

Suppose that we observe n samples of the form {(yi, ti)}ni=1, where each pair is linked via the
observation model yi = fθ(ti) + wi. This problem can be converted into an instance of the
linear regression model by using the sample points (t1, . . . , tn) to define the n× (k+1) matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 t1 t2

1 · · · tk
1

1 t2 t2
2 · · · tk

2
...

...
...

. . .
...

1 tn t2
n · · · tk

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
When expressed in this lifted space, the polynomial functions are linear in θ, and so we can
write the observations {(yi, ti)}ni=1 in the standard vector form y = Xθ + w.

This lifting procedure is not limited to polynomial functions. The more general setting is
to consider functions that are linear combinations of some set of basis functions—say of the
form

fθ(t) =
b∑

j=1

θ jφ j(t),

where {φ1, . . . , φb} are some known functions. Given n observation pairs (yi, ti), this model
can also be reduced to the form y = Xθ + w, where the design matrix X ∈ Rn×d has entries
Xi j = φ j(ti).

Although the preceding discussion has focused on univariate functions, the same ideas
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apply to multivariate functions, say in D dimensions. Returning to the case of polynomial
functions, we note that there are

(
D
k

)
possible multinomials of degree k in dimension D. This

leads to the model dimension growing exponentially as Dk, so that sparsity assumptions
become essential in order to produce manageable classes of models. ♣

Example 7.4 (Signal compression in overcomplete bases) We now return to an extension
of the signal processing problem introduced in Example 7.2. As we observed previously,
many classes of signals exhibit sparsity when represented in an appropriate basis, such as
a wavelet basis, and this sparsity can be exploited for both compression and denoising pur-
poses. Given a signal y ∈ Rn, classical approaches to signal denoising and compression
are based on orthogonal transformations, where the basis functions are represented by the
columns of an orthonormal matrix Ψ ∈ Rn×n. However, it can be useful to consider an over-
complete set of basis functions, represented by the columns of a matrix X ∈ Rn×d with d > n.
Within this framework, signal compression can be performed by finding a vector θ ∈ Rd such
that y = Xθ. Since X has rank n, we can always find a solution with at most n non-zero co-
ordinates, but the hope is to find a solution θ∗ ∈ Rd with ‖θ∗‖0 = s � n non-zeros.

Problems involving �0-constraints are computationally intractable, so that it is natural to
consider relaxations. As we will discuss at more length later in the chapter, the �1-relaxation
has proven very successful. In particular, one seeks a sparse solution by solving the convex
program

θ̂ ∈ arg min
θ∈Rd

d∑
j=1

|θ j|︸�︷︷�︸
‖θ‖1

such that y = Xθ.

Later sections of the chapter will provide theory under which the solution to this �1-relaxation
is equivalent to the original �0-problem. ♣

Example 7.5 (Compressed sensing) Compressed sensing is based on the combination of
�1-relaxation with the random projection method, which was previously described in Ex-
ample 2.12 from Chapter 2. It is motivated by the inherent wastefulness of the classical
approach to exploiting sparsity for signal compression. As previously described in Exam-
ple 7.2, given a signal β∗ ∈ Rd, the standard approach is first to compute the full vector
θ∗ = ΨTβ∗ ∈ Rd of transform coefficients, and then to discard all but the top s coefficients.
Is there a more direct way of estimating β∗, without pre-computing the full vector θ∗ of its
transform coefficients?

The compressed sensing approach is to take n � d random projections of the original
signal β∗ ∈ Rd, each of the form yi = 〈xi, β

∗〉 :=
∑d

j=1 xi jβ
∗
j , where xi ∈ Rd is a random vector.

Various choices are possible, including the standard Gaussian ensemble (xi j ∼ N(0, 1),
i.i.d.), or the Rademacher ensemble (xi j ∈ {−1,+1}, i.i.d.). Let X ∈ Rn×d be a measurement
matrix with xT

i as its ith row and y ∈ Rn be the concatenated set of random projections. In
matrix–vector notation, the problem of exact reconstruction amounts to finding a solution
β ∈ Rd of the underdetermined linear system Xβ = Xβ∗ such that ΨTβ is as sparse as
possible. Recalling that y = Xβ∗, the standard �1-relaxation of this problem takes the form
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minβ∈Rd ‖ΨTβ‖1 such that y = Xβ, or equivalently, in the transform domain,

min
θ∈Rd

‖θ‖1 such that y = X̃θ, (7.7)

where X̃ := XΨ. In asserting this equivalence, we have used the orthogonality relation
ΨΨT = Id. This is another instance of the basis pursuit linear program (LP) with a random
design matrix X̃.

Compressed sensing is a popular approach to recovering sparse signals, with a number
of applications. Later in the chapter, we will develop theory that guarantees the success of
�1-relaxation for the random design matrices that arise from taking random projections. ♣

Example 7.6 (Selection of Gaussian graphical models) Any zero-mean Gaussian random
vector (Z1, . . . ,Zd) with a non-degenerate covariance matrix has a density of the form

pΘ∗(z1, . . . , zd) =
1√

(2π)d det((Θ∗)−1)
exp(− 1

2 zTΘ∗z),

where Θ∗ ∈ Rd×d is the inverse covariance matrix, also known as the precision matrix.
For many interesting models, the precision matrix is sparse, with relatively few non-zero
entries. The problem of Gaussian graphical model selection, as discussed at more length in
Chapter 11, is to infer the non-zero entries in the matrix Θ∗.

This problem can be reduced to an instance of sparse linear regression as follows. For a
given index s ∈ V := {1, 2, . . . , d}, suppose that we are interested in recovering its neighbor-
hood, meaning the subset N(s) := {t ∈ V | Θ∗

st � 0}. In order to do so, imagine performing a
linear regression of the variable Zs on the (d−1)-dimensional vector Z\{s} := {Zt, t ∈ V \ {s}}.
As we explore in Exercise 11.3 in Chapter 11, we can write

Zs︸︷︷︸
response y

= 〈 Z\{s}︸︷︷︸
predictors

, θ∗〉 + ws,

where ws is a zero-mean Gaussian variable, independent of the vector Z\{s}. Moreover, the
vector θ∗ ∈ Rd−1 has the same sparsity pattern as the sth off-diagonal row (Θ∗

st, t ∈ V \ {s})
of the precision matrix. ♣

7.2 Recovery in the noiseless setting

In order to build intuition, we begin by focusing on the simplest case in which the obser-
vations are perfect or noiseless. More concretely, we wish to find a solution θ to the linear
system y = Xθ, where y ∈ Rn and X ∈ Rn×d are given. When d > n, this is an underdeter-
mined set of linear equations, so that there is a whole subspace of solutions. But what if we
are told that there is a sparse solution? In this case, we know that there is some vector θ∗ ∈ Rd

with at most s � d non-zero entries such that y = Xθ∗. Our goal is to find this sparse so-
lution to the linear system. This noiseless problem has applications in signal representation
and compression, as discussed in Examples 7.4 and 7.5.
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7.2.1 �1-based relaxation

This problem can be cast as a (non-convex) optimization problem involving the �0-“norm”.
Let us define

‖θ‖0 :=
d∑

j=1

I[θ j � 0],

where the function t �→ I[t � 0] is equal to one if t � 0, and zero otherwise. Strictly speaking,
this is not a norm, but it serves to count the number of non-zero entries in the vector θ ∈ Rd.
We now consider the optimization problem

min
θ∈Rd

‖θ‖0 such that Xθ = y. (7.8)

If we could solve this problem, then we would obtain a solution to the linear equations that
has the fewest number of non-zero entries.

But how to solve the problem (7.8)? Although the constraint set is simply a subspace,
the cost function is non-differentiable and non-convex. The most direct approach would
be to search exhaustively over subsets of the columns of X. In particular, for each subset
S ⊂ {1, . . . , d}, we could form the matrix XS ∈ Rn×|S | consisting of the columns of X indexed
by S , and then examine the linear system y = XS θ to see whether or not it had a solution
θ ∈ R|S |. If we iterated over subsets in increasing cardinality, then the first solution found
would be the sparsest solution. Let’s now consider the associated computational cost. If the
sparsest solution contained s non-zero entries, then we would have to search over at least∑s−1

j=1

(
d
j

)
subsets before finding it. But the number of such subsets grows exponentially in s,

so the procedure would not be computationally feasible for anything except toy problems.
Given the computational difficulties associated with �0-minimization, a natural strategy

is to replace the troublesome �0-objective by the nearest convex member of the �q-family,
namely the �1-norm. This is an instance of a convex relaxation, in which a non-convex op-
timization problem is approximated by a convex program. In this setting, doing so leads to
the optimization problem

min
θ∈Rd

‖θ‖1 such that Xθ = y. (7.9)

Unlike the �0-version, this is now a convex program, since the constraint set is a subspace
(hence convex), and the cost function is piecewise linear and thus convex as well. More
precisely, the problem (7.9) is a linear program, since any piecewise linear convex cost can
always be reformulated as the maximum of a collection of linear functions. We refer to the
optimization problem (7.9) as the basis pursuit linear program, after Chen, Donoho and
Saunders (1998).

7.2.2 Exact recovery and restricted nullspace

We now turn to an interesting theoretical question: when is solving the basis pursuit pro-
gram (7.9) equivalent to solving the original �0-problem (7.8)? More concretely, let us sup-
pose that there is a vector θ∗ ∈ Rd such that y = Xθ∗, and moreover, the vector θ∗ has support
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S ⊂ {1, 2, . . . , d}, meaning that θ∗j = 0 for all j ∈ S c (where S c denotes the complement
of S ).

Intuitively, the success of basis pursuit should depend on how the nullspace of X is related
to this support, as well as the geometry of the �1-ball. To make this concrete, recall that the
nullspace of X is given by null(X) := {Δ ∈ Rd | XΔ = 0}. Since Xθ∗ = y by assumption,
any vector of the form θ∗ + Δ for some Δ ∈ null(X) is feasible for the basis pursuit program.
Now let us consider the tangent cone of the �1-ball at θ∗, given by

T(θ∗) = {Δ ∈ Rd | ‖θ∗ + tΔ‖1 ≤ ‖θ∗‖1 for some t > 0}. (7.10)

As illustrated in Figure 7.2, this set captures the set of all directions relative to θ∗ along which
the �1-norm remains constant or decreases. As noted earlier, the set θ∗ + null(X), drawn with
a solid line in Figure 7.2, corresponds to the set of all vectors that are feasible for the basis
pursuit LP. Consequently, if θ∗ is the unique optimal solution of the basis pursuit LP, then it
must be the case that the intersection of the nullspace null(X) with this tangent cone contains
only the zero vector. This favorable case is shown in Figure 7.2(a), whereas Figure 7.2(b)
shows the non-favorable case, in which θ∗ need not be optimal.

θ
∗

θ
∗
+ null(X)

θ
∗
+ T(θ∗)

θ
∗

θ
∗
+ null(X)

θ
∗
+ T(θ∗)

(a) (b)

Figure 7.2 Geometry of the tangent cone and restricted nullspace property in d = 2
dimensions. (a) The favorable case in which the set θ∗+null(X) intersects the tangent
cone only at θ∗. (b) The unfavorable setting in which the set θ∗ + null(X) passes
directly through the tangent cone.

This intuition leads to a condition on X known as the restricted nullspace property. Let
us define the subset

C(S ) = {Δ ∈ Rd | ‖ΔS c‖1 ≤ ‖ΔS ‖1},

corresponding to the cone of vectors whose �1-norm off the support is dominated by the �1-
norm on the support. The following definition links the nullspace of a matrix X to this set:
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Definition 7.7 The matrix X satisfies the restricted nullspace property with respect to
S if C(S ) ∩ null(X) = {0}.

As shown in the proof of Theorem 7.8 to follow, the difference set C(S ) provides an al-
ternative way of capturing the behavior of the tangent cone T(θ∗), one that is independent
of θ∗. In particular, the proof establishes that, for any S -sparse vector θ∗, the tangent cone
T(θ∗) is contained within C(S ), and conversely, that C(S ) is contained in the union of such
tangent cones. More precisely, the restricted nullspace property is equivalent to the success
of the basis pursuit LP in the following sense:

Theorem 7.8 The following two properties are equivalent:

(a) For any vector θ∗ ∈ Rd with support S , the basis pursuit program (7.9) applied
with y = Xθ∗ has unique solution θ̂ = θ∗.

(b) The matrix X satisfies the restricted nullspace property with respect to S .

Proof We first show that (b) ⇒ (a). Since both θ̂ and θ∗ are feasible for the basis pursuit
program, and since θ̂ is optimal, we have ‖̂θ‖1 ≤ ‖θ∗‖1. Defining the error vector Δ̂ := θ̂ − θ∗,
we have

‖θ∗S ‖1 = ‖θ∗‖1 ≥ ‖θ∗ + Δ̂‖1

= ‖θ∗S + Δ̂S ‖1 + ‖Δ̂S c‖1

≥ ‖θ∗S ‖1 − ‖Δ̂S ‖1 + ‖Δ̂S c‖1,

where we have used the fact that θ∗S c = 0, and applied the triangle inequality. Rearranging
this inequality, we conclude that the error Δ̂ ∈ C(S ). However, by construction, we also have
XΔ̂ = 0, so Δ̂ ∈ null(X) as well. By our assumption, this implies that Δ̂ = 0, or equivalently
that θ̂ = θ∗.

In order to establish the implication (a) ⇒ (b), it suffices to show that, if the �1-relaxation
succeeds for all S -sparse vectors, then the set null(X) \ {0} has no intersection with C(S ).
For a given vector θ∗ ∈ null(X) \ {0}, consider the basis pursuit problem

min
β∈Rd

‖β‖1 such that Xβ = X

[
θ∗S
0

]
. (7.11)

By assumption, the unique optimal solution will be β̂ = [θ∗S 0]T. Since Xθ∗ = 0 by assump-
tion, the vector [0 − θ∗S c ]T is also feasible for the problem, and, by uniqueness, we must
have ‖θ∗S ‖1 < ‖θ∗S c‖1, implying that θ∗ � C(S ) as claimed.

7.2.3 Sufficient conditions for restricted nullspace

In order for Theorem 7.8 to be a useful result in practice, one requires a certificate that
the restricted nullspace property holds. The earliest sufficient conditions were based on the
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incoherence parameter of the design matrix, namely the quantity

δPW(X) := max
j,k=1,...,d

∣∣∣∣∣∣ |〈Xj, Xk〉|
n

− I[ j = k]

∣∣∣∣∣∣, (7.12)

where Xj denotes the jth column of X, and I[ j = k] denotes the {0, 1}-valued indicator for
the event { j = k}. Here we have chosen to rescale matrix columns by 1/

√
n, as it makes

results for random designs more readily interpretable.
The following result shows that a small pairwise incoherence is sufficient to guarantee a

uniform version of the restricted nullspace property.

Proposition 7.9 If the pairwise incoherence satisfies the bound

δPW(X) ≤
1
3s

, (7.13)

then the restricted nullspace property holds for all subsets S of cardinality at most s.

We guide the reader through the steps involved in the proof of this claim in Exercise 7.3.

A related but more sophisticated sufficient condition is the restricted isometry property
(RIP). It can be understood as a natural generalization of the pairwise incoherence condi-
tion, based on looking at conditioning of larger subsets of columns.

Definition 7.10 (Restricted isometry property) For a given integer s ∈ {1, . . . , d}, we
say that X ∈ Rn×d satisfies a restricted isometry property of order s with constant
δs(X) > 0 if ∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣XT

S XS

n
− Is

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ δs(X) for all subsets S of size at most s. (7.14)

In this definition, we recall that ||| · |||2 denotes the �2-operator norm of a matrix, correspond-
ing to its maximum singular value. For s = 1, the RIP condition implies that the rescaled
columns of X are near-unit-norm—that is, we are guaranteed that ‖Xj‖2

2
n ∈ [1 − δ1, 1 + δ1] for

all j = 1, 2, . . . , d. For s = 2, the RIP constant δ2 is very closely related to the pairwise
incoherence parameter δPW(X). This connection is most apparent when the matrix X/

√
n has

unit-norm columns, in which case, for any pair of columns { j, k}, we have

XT
{ j,k}X{ j,k}

n
−
[
1 0
0 1

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
‖Xj‖2

2

n
− 1

〈Xj, Xk〉
n

〈Xj, Xk〉
n

‖Xk‖2
2

n
− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (i)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

〈Xj, Xk〉
n

〈Xj, Xk〉
n

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where the final equality (i) uses the column normalization condition. Consequently, we find
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that

δ2(X) =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣XT

{ j,k}X{ j,k}

n
− I2

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

= max
j�k

∣∣∣∣∣∣ 〈Xj, Xk〉
n

∣∣∣∣∣∣ = δPW(X),

where the final step again uses the column normalization condition. More generally, as we
show in Exercise 7.4, for any matrix X and sparsity level s ∈ {2, . . . , d}, we have the sand-
wich relation

δPW(X)
(i)
≤ δs(X)

(ii)
≤ sδPW(X), (7.15)

and neither bound can be improved in general. (We also show that there exist matrices for
which δs(X) =

√
s δPW(X).) Although RIP imposes constraints on much larger submatri-

ces than pairwise incoherence, the magnitude of the constraints required to guarantee the
uniform restricted nullspace property can be milder.

The following result shows that suitable control on the RIP constants implies that the re-
stricted nullspace property holds:

Proposition 7.11 If the RIP constant of order 2s is bounded as δ2s(X) < 1/3, then the
uniform restricted nullspace property holds for any subset S of cardinality |S | ≤ s.

Proof Let θ ∈ null(X) be an arbitrary non-zero member of the nullspace. For any subset
A, we let θA ∈ R|A| denote the subvector of elements indexed by A, and we define the vector
θ̃A ∈ Rd with elements

θ̃ j =

⎧⎪⎪⎨⎪⎪⎩θ j if j ∈ A,
0 otherwise.

We frequently use the fact that ‖̃θA‖ = ‖θA‖ for any elementwise separable norm, such as the
�1- or �2-norms.

Let S be the subset of {1, 2, . . . , d} corresponding to the s entries of θ that are largest in
absolute value. It suffices to show that ‖θS c‖1 > ‖θS ‖1 for this subset. Let us write S c =⋃

j≥1 S j, where S 1 is the subset of indices given by the s largest values of θ̃S c ; the subset S 2

is the largest s in the subset S c \ S 1, and the final subset may contain fewer than s entries.
Using this notation, we have the decomposition θ = θ̃S +

∑
k≥1 θ̃S k .

The RIP property guarantees that ‖̃θS ‖2
2 ≤

1
1−δ2s

∥∥∥ 1√
n Xθ̃S

∥∥∥2

2
. Moreover, since θ ∈ null(X),

we have Xθ̃S = −
∑

j≥1 Xθ̃S j , and hence

‖̃θS 0‖2
2 ≤

1
1 − δ2s

∣∣∣∣∣∣∑
j≥1

〈Xθ̃S 0 , Xθ̃S j〉
n

∣∣∣∣∣∣ (i)
=

1
1 − δ2s

∣∣∣∣∣∣∑
j≥1

θ̃S 0

[
XTX

n
− Id

]̃
θS j

∣∣∣∣∣∣,
where equality (i) uses the fact that 〈̃θS , θ̃S j〉 = 0.

By the RIP property, for each j ≥ 1, the �2 → �2 operator norm satisfies the bound
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|||n−1XT
S 0∪S j

XS 0∪S j − I2s|||2 ≤ δ2s, and hence we have

‖̃θS 0‖2 ≤
δ2s

1 − δ2s

∑
j≥1

‖̃θS j‖2, (7.16)

where we have canceled out a factor of ‖̃θS 0‖2 from each side. Finally, by construction of the
sets S j, for each j ≥ 1, we have ‖̃θS j‖∞ ≤ 1

s ‖̃θS j−1‖1, which implies that ‖̃θS j‖2 ≤ 1√
s ‖̃θS j−1‖1.

Applying these upper bounds to the inequality (7.16), we obtain

‖̃θS 0‖1 ≤
√

s ‖̃θS 0‖2 ≤
δ2s

1 − δ2s

{
‖̃θS 0‖1 +

∑
j≥1

‖̃θS j‖1

}
,

or equivalently ‖̃θS 0‖1 ≤ δ2s
1−δ2s

{‖̃θS 0‖1 + ‖̃θS c‖1}. Some simple algebra verifies that this in-
equality implies that ‖̃θS 0‖1 < ‖̃θS c‖1 as long as δ2s < 1/3.

Like the pairwise incoherence constant, control on the RIP constants is a sufficient con-
dition for the basis pursuit LP to succeed. A major advantage of the RIP approach is that
for various classes of random design matrices, of particular interest in compressed sensing
(see Example 7.5), it can be used to guarantee exactness of basis pursuit using a sample
size n that is much smaller than that guaranteed by pairwise incoherence. As we explore in
Exercise 7.7, for sub-Gaussian random matrices with i.i.d. elements, the pairwise incoher-
ence is bounded by 1

3s with high probability as long as n � s2 log d. By contrast, this same
exercise also shows that the RIP constants for certain classes of random design matrices X

are well controlled as long as n � s log(ed/s). Consequently, the RIP approach overcomes
the “quadratic barrier”—namely, the requirement that the sample size n scales quadratically
in the sparsity s, as in the pairwise incoherence approach.

It should be noted that, unlike the restricted nullspace property, neither the pairwise inco-
herence condition nor the RIP condition are necessary conditions. Indeed, the basis pursuit
LP succeeds for many classes of matrices for which both pairwise incoherence and RIP
conditions are violated. For example, consider a random matrix X ∈ Rn×d with i.i.d. rows
Xi ∼ N(0,Σ). Letting 1 ∈ Rd denote the all-ones vector, consider the family of covariance
matrices

Σ := (1 − μ)Id + μ11T, (7.17)

for a parameter μ ∈ [0, 1). In Exercise 7.8, we show that, for any fixed μ ∈ (0, 1), the pairwise
incoherence bound (7.13) is violated with high probability for large s, and moreover that the
condition number of any 2s-sized subset grows at the rate μ

√
s with high probability, so that

the RIP constants will (with high probability) grow unboundedly as s → +∞ for any fixed
μ ∈ (0, 1). Nonetheless, for any μ ∈ [0, 1), the basis pursuit LP relaxation still succeeds with
high probability with sample size n � s log(ed/s), as illustrated in Figure 7.4. Later in the
chapter, we provide a result on random matrices that allows for direct verification of the re-
stricted nullspace property for various families, including (among others) the family (7.17).
See Theorem 7.16 and the associated discussion for further details.
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Figure 7.3 (a) Probability of basis pursuit success versus the raw sample size n for
random design matrices drawn with i.i.d. N(0, 1) entries. Each curve corresponds to
a different problem size d ∈ {128, 256, 512} with sparsity s = �0.1d�. (b) The same
results replotted versus the rescaled sample size n/(s log(ed/s)). The curves exhibit
a phase transition at the same value of this rescaled sample size.

7.3 Estimation in noisy settings

Let us now turn to the noisy setting, in which we observe the vector–matrix pair (y,X) ∈
Rn×Rn×d linked by the observation model y = Xθ∗+w. The new ingredient here is the noise
vector w ∈ Rn. A natural extension of the basis pursuit program is based on minimizing a
weighted combination of the data-fidelity term ‖y − Xθ‖2

2 with the �1-norm penalty, say of
the form

θ̂ ∈ arg min
θ∈Rd

{
1
2n
‖y − Xθ‖2

2 + λn‖θ‖1

}
. (7.18)

Here λn > 0 is a regularization parameter to be chosen by the user. Following Tibshi-
rani (1996), we refer to it as the Lasso program.

Alternatively, one can consider different constrained forms of the Lasso, that is either

min
θ∈Rd

{
1
2n
‖y − Xθ‖2

2

}
such that ‖θ‖1 ≤ R (7.19)

for some radius R > 0, or

min
θ∈Rd

‖θ‖1 such that
1

2n
‖y − Xθ‖2

2 ≤ b2 (7.20)

for some noise tolerance b > 0. The constrained version (7.20) is referred to as relaxed basis
pursuit by Chen et al. (1998). By Lagrangian duality theory, all three families of convex
programs are equivalent. More precisely, for any choice of radius R > 0 in the constrained
variant (7.19), there is a regularization parameter λ ≥ 0 such that solving the Lagrangian



7.3 Estimation in noisy settings 207

0 50 100 150 200 250 300 350 400
Raw sample size n

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
ba
bi
lit
y
of
co
rr
ec
t
re
co
ve
ry

Prob. exact recovery vs. sample size (μ = 0.5)

d = 128

d = 256

d = 512

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Rescaled sample size

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
ba
bi
lit
y
of
co
rr
ec
t
re
co
ve
ry

Prob. exact recovery vs. sample size (μ = 0.5)

d = 128

d = 256

d = 512

(a) (b)

Figure 7.4 (a) Probability of basis pursuit success versus the raw sample size n
for random design matrices drawn with i.i.d. rows Xi ∼ N(0,Σ), where μ = 0.5
in the model (7.17). Each curve corresponds to a different problem size d ∈
{128, 256, 512} with sparsity s = �0.1d�. (b) The same results replotted versus the
rescaled sample size n/(s log(ed/s)). The curves exhibit a phase transition at the
same value of this rescaled sample size.

version (7.18) is equivalent to solving the constrained version (7.19). Similar statements
apply to choices of b > 0 in the constrained variant (7.20).

7.3.1 Restricted eigenvalue condition

In the noisy setting, we can no longer expect to achieve perfect recovery. Instead, we focus
on bounding the �2-error ‖̂θ − θ∗‖2 between a Lasso solution θ̂ and the unknown regression
vector θ∗. In the presence of noise, we require a condition that is closely related to but slightly
stronger than the restricted nullspace property—namely, that the restricted eigenvalues of the
matrix XTX

n are lower bounded over a cone. In particular, for a constant α ≥ 1, let us define
the set

Cα(S ) := {Δ ∈ Rd | ‖ΔS c‖1 ≤ α‖ΔS ‖1}. (7.21)

This definition generalizes the set C(S ) used in our definition of the restricted nullspace
property, which corresponds to the special case α = 1.
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Definition 7.12 The matrix X satisfies the restricted eigenvalue (RE) condition over
S with parameters (κ, α) if

1
n
‖XΔ‖2

2 ≥ κ‖Δ‖2
2 for all Δ ∈ Cα(S ). (7.22)

Note that the RE condition is a strengthening of the restricted nullspace property. In par-
ticular, if the RE condition holds with parameters (κ, 1) for any κ > 0, then the restricted
nullspace property holds. Moreover, we will prove that under the RE condition, the error
‖̂θ − θ∗‖2 in the Lasso solution is well controlled.

From where does the need for the RE condition arise? To provide some intuition, let us
consider the constrained version (7.19) of the Lasso, with radius R = ‖θ∗‖1. With this setting,
the true parameter vector θ∗ is feasible for the problem. By definition, the Lasso estimate θ̂

minimizes the quadratic cost function Ln(θ) = 1
2n‖y − Xθ‖2

2 over the �1-ball of radius R. As
the amount of data increases, we expect that θ∗ should become a near-minimizer of the same
cost function, so that Ln(̂θ) ≈ Ln(θ∗). But when does closeness in cost imply that the error
vector Δ := θ̂ − θ∗ is small? As illustrated in Figure 7.5, the link between the cost difference
δLn := Ln(θ∗) − Ln(̂θ) and the error Δ = θ̂ − θ∗ is controlled by the curvature of the cost
function. In the favorable setting of Figure 7.5(a), the cost has a high curvature around its
optimum θ̂, so that a small excess loss δLn implies that the error vector Δ is small. This
curvature no longer holds for the cost function in Figure 7.5(b), for which it is possible that
δLn could be small while the error Δ is relatively large.

θ∗ θ̂

Δ

δLn

θ∗ θ̂

Δ

δLn

(a) (b)

Figure 7.5 Illustration of the connection between curvature (strong convexity) of
the cost function, and estimation error. (a) In a favorable setting, the cost func-
tion is sharply curved around its minimizer θ̂, so that a small change δLn :=
Ln(θ∗) − Ln (̂θ) in the cost implies that the error vector Δ = θ̂ − θ∗ is not too large.
(b) In an unfavorable setting, the cost is very flat, so that a small cost difference δLn
need not imply small error.

Figure 7.5 illustrates a one-dimensional function, in which case the curvature can be cap-
tured by a scalar. For a function in d dimensions, the curvature of a cost function is captured
by the structure of its Hessian matrix ∇2Ln(θ), which is a symmetric positive semidefinite
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Figure 7.6 (a) A convex cost function in high-dimensional settings (with d � n)
cannot be strongly convex; rather, it will be curved in some directions but flat in
others. (b) The Lasso error Δ̂ must lie in the restricted subset Cα(S ) of Rd. For this
reason, it is only necessary that the cost function be curved in certain directions of
space.

matrix. In the special case of the quadratic cost function that underlies the Lasso, the Hessian
is easily calculated as

∇2Ln(θ) =
1
n

XTX. (7.23)

If we could guarantee that the eigenvalues of this matrix were uniformly bounded away from
zero, say that

‖XΔ‖2
2

n
≥ κ ‖Δ‖2

2 > 0 for all Δ ∈ Rd \ {0}, (7.24)

then we would be assured of having curvature in all directions.
In the high-dimensional setting with d > n, this Hessian is a d×d matrix with rank at most

n, so that it is impossible to guarantee that it has a positive curvature in all directions. Rather,
the quadratic cost function always has the form illustrated in Figure 7.6(a): although it may
be curved in some directions, there is always a (d − n)-dimensional subspace of directions
in which it is completely flat! Consequently, the uniform lower bound (7.24) is never satis-
fied. For this reason, we need to relax the stringency of the uniform curvature condition, and
require that it holds only for a subset Cα(S ) of vectors, as illustrated in Figure 7.6(b). If we
can be assured that the subset Cα(S ) is well aligned with the curved directions of the Hes-
sian, then a small difference in the cost function will translate into bounds on the difference
between θ̂ and θ∗.

7.3.2 Bounds on �2-error for hard sparse models

With this intuition in place, we now state a result that provides a bound on the error ‖̂θ− θ∗‖2

in the case of a “hard sparse” vector θ∗. In particular, let us impose the following conditions:
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(A1) The vector θ∗ is supported on a subset S ⊆ {1, 2, . . . , d} with |S | = s.
(A2) The design matrix satisfies the restricted eigenvalue condition (7.22) over S with pa-

rameters (κ, 3).

The following result provides bounds on the �2-error between any Lasso solution θ̂ and the
true vector θ∗.

Theorem 7.13 Under assumptions (A1) and (A2):

(a) Any solution of the Lagrangian Lasso (7.18) with regularization parameter lower
bounded as λn ≥ 2

∥∥∥XTw
n

∥∥∥
∞ satisfies the bound

‖̂θ − θ∗‖2 ≤
3
κ

√
sλn. (7.25a)

(b) Any solution of the constrained Lasso (7.19) with R = ‖θ∗‖1 satisfies the bound

‖̂θ − θ∗‖2 ≤
4
κ

√
s

∥∥∥∥∥∥XTw
n

∥∥∥∥∥∥
∞
. (7.25b)

(c) Any solution of the relaxed basis pursuit program (7.20) with b2 ≥ ‖w‖2
2

2n satisfies the
bound

‖̂θ − θ∗‖2 ≤
4
κ

√
s

∥∥∥∥∥∥XTw
n

∥∥∥∥∥∥
∞
+

2
√
κ

√
b2 −

‖w‖2
2

2n
. (7.25c)

In addition, all three solutions satisfy the �1-bound ‖̂θ − θ∗‖1 ≤ 4
√

s ‖̂θ − θ∗‖2.

In order to develop intuition for these claims, we first discuss them at a high level, and
then illustrate them with some concrete examples. First, it is important to note that these
results are deterministic, and apply to any set of linear regression equations. As stated, how-
ever, the results involve unknown quantities stated in terms of w and/or θ∗. Obtaining results
for specific statistical models—as determined by assumptions on the noise vector w and/or
the design matrix—involves bounding or approximating these quantities. Based on our ear-
lier discussion of the role of strong convexity, it is natural that all three upper bounds are
inversely proportional to the restricted eigenvalue constant κ > 0. Their scaling with

√
s is

also natural, since we are trying to estimate the unknown regression vector with s unknown
entries. The remaining terms in the bound involve the unknown noise vector, either via the
quantity ‖XTw

n ‖∞ in parts (a), (b) and (c), or additionally via ‖w‖2
2

n in part (c).
Let us illustrate some concrete consequences of Theorem 7.13 for some linear regression

models that are commonly used and studied.

Example 7.14 (Classical linear Gaussian model) We begin with the classical linear Gaus-
sian model from statistics, for which the noise vector w ∈ Rn has i.i.d. N(0, σ2) entries.
Let us consider the case of deterministic design, meaning that the matrix X ∈ Rn×d is fixed.
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Suppose that X satisfies the RE condition (7.22) and that it is C-column normalized, mean-
ing that max j=1,...,d

‖X j‖2√
n ≤ C, where Xj ∈ Rn denotes the jth column of X. With this set-up,

the random variable
∥∥∥XTw

n

∥∥∥
∞ corresponds to the absolute maximum of d zero-mean Gaus-

sian variables, each with variance at most C2σ2

n . Consequently, from standard Gaussian tail
bounds (Exercise 2.12), we have

P
[∥∥∥∥∥∥XTw

n

∥∥∥∥∥∥
∞
≥ Cσ

(√
2 log d

n
+ δ

)]
≤ 2e−

nδ2
2 for all δ > 0.

Consequently, if we set λn = 2Cσ
(√

2 log d
n + δ

)
, then Theorem 7.13(a) implies that any

optimal solution of the Lagrangian Lasso (7.18) satisfies the bound

‖̂θ − θ∗‖2 ≤
6Cσ

κ

√
s
{√

2 log d
n

+ δ

}
(7.26)

with probability at least 1 − 2e−
nδ2

2 . Similarly, Theorem 7.13(b) implies that any optimal
solution of the constrained Lasso (7.19) satisfies the bound

‖̂θ − θ∗‖2 ≤
4Cσ

κ

√
s
{√

2 log d
n

+ δ

}
(7.27)

with the same probability. Apart from constant factors, these two bounds are equivalent.
Perhaps the most significant difference is that the constrained Lasso (7.19) assumes exact
knowledge of the �1-norm ‖θ∗‖1, whereas the Lagrangian Lasso only requires knowledge
of the noise variance σ2. In practice, it is relatively straightforward to estimate the noise
variance, whereas the �1-norm is a more delicate object.

Turning to Theorem 7.13(c), given the Gaussian noise vector w, the rescaled variable ‖w‖2
2

σ2n
is χ2 with n degrees of freedom. From Example 2.11, we have

P
[∣∣∣∣∣∣‖w‖2

2

n
− σ2

∣∣∣∣∣∣ ≥ σ2δ

]
≤ 2e−nδ2/8 for all δ ∈ (0, 1).

Consequently, Theorem 7.13(c) implies that any optimal solution of the relaxed basis pursuit
program (7.20) with b2 = σ2

2 (1 + δ) satisfies the bound

‖̂θ − θ∗‖2 ≤
8Cσ

κ

√
s
{√

2 log d
n

+ δ

}
+

2σ
√
κ

√
δ for all δ ∈ (0, 1),

with probability at least 1 − 4e−
nδ2

8 . ♣

Example 7.15 (Compressed sensing) In the domain of compressed sensing, the design
matrix X can be chosen by the user, and one standard choice is the standard Gaussian matrix
with i.i.d. N(0, 1) entries. Suppose that the noise vector w ∈ Rn is deterministic, say with
bounded entries (‖w‖∞ ≤ σ). Under these assumptions, each variable XT

j w/
√

n is a zero-
mean Gaussian with variance at most σ2. Thus, by following the same argument as in the
preceding example, we conclude that the Lasso estimates will again satisfy the bounds (7.26)
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and (7.27), this time with C = 1. Similarly, if we set b2 = σ2

2 , then the relaxed basis pursuit
program (7.19) will satisfy the bound

‖̂θ − θ∗‖2 ≤
8σ
κ

√
s
{√

2 log d
n

+ δ

}
+

2σ
√
κ

with probability at least 1 − 2e−
nδ2

2 . ♣

With these examples in hand, we now turn to the proof of Theorem 7.13.

Proof (b) We begin by proving the error bound (7.25b) for the constrained Lasso (7.19).
Given the choice R = ‖θ∗‖1, the target vector θ∗ is feasible. Since θ̂ is optimal, we have the
inequality 1

2n‖y−Xθ̂‖2
2 ≤

1
2n‖y−Xθ∗‖2

2. Defining the error vector Δ̂ := θ̂ − θ∗ and performing
some algebra yields the basic inequality

‖XΔ̂‖2
2

n
≤

2wTXΔ̂

n
. (7.28)

Applying Hölder’s inequality to the right-hand side yields ‖XΔ̂‖2
2

n ≤ 2
∥∥∥XTw

n

∥∥∥
∞ ‖Δ̂‖1. As shown

in the proof of Theorem 7.8, whenever ‖̂θ‖1 ≤ ‖θ∗‖1 for an S -sparse vector, the error Δ̂
belongs to the cone C1(S ), whence

‖Δ̂‖1 = ‖Δ̂S ‖1 + ‖Δ̂S c‖1 ≤ 2‖Δ̂S ‖1 ≤ 2
√

s ‖Δ̂‖2.

Since C1(S ) is a subset of C3(S ), we may apply the restricted eigenvalue condition (7.22) to

the left-hand side of the inequality (7.28), thereby obtaining ‖XΔ̂‖2
2

n ≥ κ‖Δ̂‖2
2. Putting together

the pieces yields the claimed bound.

(c) Next we prove the error bound (7.25c) for the relaxed basis pursuit (RBP) program.
Note that 1

2n‖y − Xθ∗‖2
2 =

‖w‖2
2

2n ≤ b2, where the inequality follows by our assumed choice
of b. Thus, the target vector θ∗ is feasible, and since θ̂ is optimal, we have ‖̂θ‖1 ≤ ‖θ∗‖1. As
previously reasoned, the error vector Δ̂ = θ̂ − θ∗ must then belong to the cone C1(S ). Now
by the feasibility of θ̂, we have

1
2n
‖y − Xθ̂‖2

2 ≤ b2 =
1
2n
‖y − Xθ∗‖2

2 +

(
b2 −

‖w‖2
2

2n

)
.

Rearranging yields the modified basic inequality

‖XΔ̂‖2
2

n
≤ 2

wTXΔ̂

n
+ 2

(
b2 −

‖w‖2
2

2n

)
.

Applying the same argument as in part (b)—namely, the RE condition to the left-hand side
and the cone inequality to the right-hand side—we obtain

κ‖Δ̂‖2
2 ≤ 4

√
s ‖Δ̂‖2

∥∥∥∥∥∥XTw
n

∥∥∥∥∥∥
∞
+ 2

(
b2 −

‖w‖2
2

2n

)
,

which implies that ‖Δ̂‖2 ≤ 8
κ

√
s
∥∥∥XTw

n

∥∥∥
∞ +

2√
κ

√
b2 − ‖w‖2

2
2n , as claimed.
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(a) Finally, we prove the bound (7.25a) for the Lagrangian Lasso (7.18). Our first step is
to show that, under the condition λn ≥ 2‖XTw

n ‖∞, the error vector Δ̂ belongs to C3(S ). To es-
tablish this intermediate claim, let us define the Lagrangian L(θ; λn) = 1

2n‖y − Xθ‖2
2 + λn‖θ‖1.

Since θ̂ is optimal, we have

L(̂θ; λn) ≤ L(θ∗; λn) =
1
2n
‖w‖2

2 + λn‖θ∗‖1.

Rearranging yields the Lagrangian basic inequality

0 ≤
1
2n
‖XΔ̂‖2

2 ≤
wTXΔ̂

n
+ λn{‖θ∗‖1 − ‖̂θ‖1}. (7.29)

Now since θ∗ is S -sparse, we can write

‖θ∗‖1 − ‖̂θ‖1 = ‖θ∗S ‖1 − ‖θ∗S + Δ̂S ‖1 − ‖Δ̂S c‖1.

Substituting into the basic inequality (7.29) yields

0 ≤
1
n
‖XΔ̂‖2

2 ≤ 2
wTXΔ̂

n
+ 2λn{‖θ∗S ‖1 − ‖θ∗S + Δ̂S ‖1 − ‖Δ̂S c‖1}

(i)
≤ 2 ‖XTw/n‖∞ ‖Δ̂‖1 + 2λn{‖Δ̂S ‖1 − ‖Δ̂S c‖1}
(ii)
≤ λn{3 ‖Δ̂S ‖1 − ‖Δ̂S c‖1}, (7.30)

where step (i) follows from a combination of Hölder’s inequality and the triangle inequality,
whereas step (ii) follows from the choice of λn. Inequality (7.30) shows that Δ̂ ∈ C3(S ),
so that the RE condition may be applied. Doing so, we obtain κ‖Δ̂‖2

2 ≤ 3λn
√

s ‖Δ̂‖2, which
implies the claim (7.25a).

7.3.3 Restricted nullspace and eigenvalues for random designs

Theorem 7.13 is based on assuming that the design matrix X satisfies the restricted eigen-
value (RE) condition (7.22). In practice, it is difficult to verify that a given design matrix X

satisfies this condition. Indeed, developing methods to “certify” design matrices in this way
is one line of on-going research. However, it is possible to give high-probability results in
the case of random design matrices. As discussed previously, pairwise incoherence and RIP
conditions are one way in which to certify the restricted nullspace and eigenvalue properties,
and are well suited to isotropic designs (in which the population covariance matrix of the
rows Xi is the identity). Many other random design matrices encountered in practice do not
have such an isotropic structure, so that it is desirable to have alternative direct verifications
of the restricted nullspace property.

The following theorem provides a result along these lines. It involves the maximum diagonal
entry ρ2(Σ) of a covariance matrix Σ.
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Theorem 7.16 Consider a random matrix X ∈ Rn×d, in which each row xi ∈ Rd is
drawn i.i.d. from a N(0,Σ) distribution. Then there are universal positive constants
c1 < 1 < c2 such that

‖Xθ‖2
2

n
≥ c1‖

√
Σ θ‖2

2 − c2ρ
2(Σ)

log d
n

‖θ‖2
1 for all θ ∈ Rd (7.31)

with probability at least 1 − e−n/32

1−e−n/32 .

Remark: The proof of this result is provided in the Appendix (Section 7.6). It makes use
of techniques discussed in other chapters, including the Gordon–Slepian inequalities (Chap-
ters 5 and 6) and concentration of measure for Gaussian functions (Chapter 2). Concretely,
we show that the bound (7.31) holds with c1 =

1
8 and c2 = 50, but sharper constants can be

obtained with a more careful argument. It can be shown (Exercise 7.11) that a lower bound
of the form (7.31) implies that an RE condition (and hence a restricted nullspace condition)
holds over C3(S ), uniformly over all subsets of cardinality |S | ≤ c1

32c2

γmin(Σ)
ρ2(Σ)

n
log d .

Theorem 7.16 can be used to establish restricted nullspace and eigenvalue conditions for
various matrix ensembles that do not satisfy incoherence or RIP conditions. Let us consider
a few examples to illustrate.

Example 7.17 (Geometric decay) Consider a covariance matrix with the Toeplitz structure
Σi j = ν|i− j| for some parameter ν ∈ [0, 1). This type of geometrically decaying covariance
structure arises naturally from autoregressive processes, where the parameter ν allows for
tuning of the memory in the process. By classical results on eigenvalues of Toeplitz ma-
trices, we have γmin(Σ) ≥ (1 − ν)2 > 0 and ρ2(Σ) = 1, independently of the dimension
d. Consequently, Theorem 7.16 implies that, with high probability, the sample covariance
matrix Σ̂ = XTX

n obtained by sampling from this distribution will satisfy the RE condition
for all subsets S of cardinality at most |S | ≤ c1

32c2
(1 − ν)2 n

log d . This provides an example of
a matrix family with substantial correlation between covariates for which the RE property
still holds. ♣

We now consider a matrix family with an even higher amount of dependence among the
covariates.

Example 7.18 (Spiked identity model) Recall from our earlier discussion the spiked iden-
tity family (7.17) of covariance matrices. This family of covariance matrices is parame-
terized by a scalar μ ∈ [0, 1), and we have γmin(Σ) = 1 − μ and ρ2(Σ) = 1, again indepen-
dent of the dimension. Consequently, Theorem 7.16 implies that, with high probability, the
sample covariance based on i.i.d. draws from this ensemble satisfies the restricted eigen-
value and restricted nullspace conditions uniformly over all subsets of cardinality at most
|S | ≤ c1

32c2
(1 − μ) n

log d .
However, for any μ � 0, the spiked identity matrix is very poorly conditioned, and also

has poorly conditioned submatrices. This fact implies that both the pairwise incoherence
and restricted isometry property will be violated with high probability, regardless of how
large the sample size is taken. To see this, for an arbitrary subset S of size s, consider the
associated s × s submatrix of Σ, which we denote by ΣS S . The maximal eigenvalue of ΣS S
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scales as 1 + μ(s − 1), which diverges as s increases for any fixed μ > 0. As we explore in
Exercise 7.8, this fact implies that both pairwise incoherence and RIP will be violated with
high probability. ♣

When a bound of the form (7.31) holds, it is also possible to prove a more general result
on the Lasso error, known as an oracle inequality. This result holds without any assumptions
whatsoever on the underlying regression vector θ∗ ∈ Rd, and it actually yields a family of
upper bounds with a tunable parameter to be optimized. The flexibility in tuning this pa-
rameter is akin to that of an oracle, which would have access to the ordered coefficients of
θ∗. In order to minimize notational clutter, we introduce the convenient shorthand notation
κ := γmin(Σ).

Theorem 7.19 (Lasso oracle inequality) Under the condition (7.31), consider the
Lagrangian Lasso (7.18) with regularization parameter λn ≥ 2‖XTw/n‖∞. For any
θ∗ ∈ Rd, any optimal solution θ̂ satisfies the bound

‖̂θ − θ∗‖2
2 ≤

144
c2

1

λ2
n

κ̄2 |S |︸������︷︷������︸
estimation error

+
16
c1

λn

κ
‖θ∗S c‖1 +

32c2

c1

ρ2(Σ)
κ̄

log d
n

‖θ∗S c‖2
1︸����������������������������������������������︷︷����������������������������������������������︸

approximation error

, (7.32)

valid for any subset S with cardinality |S | ≤ c1
64c2

κ̄
ρ2(Σ)

n
log d .

Note that inequality (7.32) actually provides a family of upper bounds, one for each valid
choice of the subset S . The optimal choice of S is based on trading off the two sources of
error. The first term grows linearly with the cardinality |S |, and corresponds to the error as-
sociated with estimating a total of |S | unknown coefficients. The second term corresponds
to approximation error, and depends on the unknown regression vector via the tail sum
‖θ∗S c‖1 =

∑
j�S |θ∗j |. An optimal bound is obtained by choosing S to balance these two terms.

We illustrate an application of this type of trade-off in Exercise 7.12.

Proof Throughout the proof, we use ρ2 as a shorthand for ρ2(Σ). Recall the argument
leading to the bound (7.30). For a general vector θ∗ ∈ Rd, the same argument applies with
any subset S except that additional terms involving ‖θ∗S c‖1 must be tracked. Doing so yields
that

0 ≤
1
2n
‖XΔ̂‖2

2 ≤
λn

2
{3‖Δ̂S ‖1 − ‖Δ̂S c‖1 + 2‖θ∗S c‖1}. (7.33)

This inequality implies that the error vector Δ̂ satisfies the constraint

‖Δ̂‖2
1 ≤ (4‖Δ̂S ‖1 + 2‖θ∗S c‖1)2 ≤ 32 |S | ‖Δ̂‖2

2 + 8‖θ∗S c‖2
1. (7.34)
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Combined with the bound (7.31), we find that

‖XΔ̂‖2
2

n
≥
{

c1κ − 32c2ρ
2|S |

log d
n

}
‖Δ̂‖2

2 − 8c2ρ
2 log d

n
‖θ∗S c‖2

1

≥ c1
κ̄

2
‖Δ̂‖2

2 − 8c2ρ
2 log d

n
‖θ∗S c‖2

1, (7.35)

where the final inequality uses the condition 32c2ρ
2|S | log d

n ≤ c1
κ̄
2 . We split the remainder of

the analysis into two cases.

Case 1: First suppose that c1
κ̄
4 ‖Δ̂‖

2
2 ≥ 8c2ρ

2 log d
n ‖θ∗S c‖2

1. Combining the bounds (7.35)
and (7.33) yields

c1
κ̄

4
‖Δ̂‖2

2 ≤
λn

2
{
3
√
|S | ‖Δ̂‖2 + 2‖θ∗S c‖1

}
. (7.36)

This bound involves a quadratic form in ‖Δ̂‖2; computing the zeros of this quadratic form,
we find that

‖Δ̂‖2
2 ≤

144λ2
n

c2
1κ̄

2
|S | +

16λn‖θ∗S c‖1

c1κ
.

Case 2: Otherwise, we must have c1
κ̄
4 ‖Δ̂‖

2
2 < 8c2ρ

2 log d
n ‖θ∗S c‖2

1.

Taking into account both cases, we combine this bound with the earlier inequality (7.36),
thereby obtaining the claim (7.32).

7.4 Bounds on prediction error

In the previous analysis, we have focused exclusively on the problem of parameter recovery,
either in noiseless or noisy settings. In other applications, the actual value of the regression
vector θ∗ may not be of primary interest; rather, we might be interested in finding a good
predictor, meaning a vector θ̂ ∈ Rd such that the mean-squared prediction error

‖X(̂θ − θ∗)‖2
2

n
=

1
n

n∑
i=1

(〈xi, θ̂ − θ∗〉)2 (7.37)

is small. To understand why the quantity (7.37) is a measure of prediction error, suppose
that we estimate θ̂ on the basis of the response vector y = Xθ∗ + w. Suppose that we then
receive a “fresh” vector of responses, say ỹ = Xθ∗ + w̃, where w̃ ∈ Rn is a noise vector, with
i.i.d. zero-mean entries with variance σ2. We can then measure the quality of our vector θ̂ by
how well it predicts the vector ỹ in terms of squared error, taking averages over instantiations
of the noise vector w̃. Following some algebra, we find that

1
n
E
[
‖̃y − Xθ̂‖2

2
]
=

1
n
‖X(̂θ − θ∗)‖2

2 + σ2,
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so that apart from the constant additive factor of σ2, the quantity (7.37) measures how well
we can predict a new vector of responses, with the design matrix held fixed.

It is important to note that, at least in general, the problem of finding a good predictor
should be easier than estimating θ∗ well in �2-norm. Indeed, the prediction problem does not
require that θ∗ even be identifiable: unlike in parameter recovery, the problem can still be
solved if two columns of the design matrix X are identical.

Theorem 7.20 (Prediction error bounds) Consider the Lagrangian Lasso (7.18) with
a strictly positive regularization parameter λn ≥ 2‖XTw

n ‖∞.

(a) Any optimal solution θ̂ satisfies the bound

‖X(̂θ − θ∗)‖2
2

n
≤ 12‖θ∗‖1λn. (7.38)

(b) If θ∗ is supported on a subset S of cardinality s, and the design matrix satisfies the
(κ; 3)-RE condition over S , then any optimal solution satisfies the bound

‖X(̂θ − θ∗)‖2
2

n
≤

9
κ

sλ2
n. (7.39)

Remarks: As previously discussed in Example 7.14, when the noise vector w has i.i.d. zero-
mean σ-sub-Gaussian entries and the design matrix is C-column normalized, the choice

λn = 2Cσ
(√ 2 log d

n + δ
)

is valid with probability at least 1 − 2e−
nδ2

2 . In this case, Theorem
7.20(a) implies the upper bound

‖X(̂θ − θ∗)‖2
2

n
≤ 24 ‖θ∗‖1Cσ

(√
2 log d

n
+ δ

)
(7.40)

with the same high probability. For this bound, the requirements on the design matrix are
extremely mild—only the column normalization condition max j=1,...,d

‖Xj‖2√
n ≤ C. Thus, the

matrix X could have many identical columns, and this would have no effect on the prediction
error. In fact, when the only constraint on θ∗ is the �1-norm bound ‖θ∗‖1 ≤ R, then the
bound (7.40) is unimprovable—see the bibliographic section for further discussion.

On the other hand, when θ∗ is s-sparse and in addition, the design matrix satisfies an RE
condition, then Theorem 7.20(b) guarantees the bound

‖X(̂θ − θ∗)‖2
2

n
≤

72
κ

C2σ2
(
2s log d

n
+ sδ2

)
(7.41)

with the same high probability. This error bound can be significantly smaller than the
√

log d
n

error bound (7.40) guaranteed under weaker assumptions. For this reason, the bounds (7.38)
and (7.39) are often referred to as the slow rates and fast rates, respectively, for prediction
error. It is natural to question whether or not the RE condition is needed for achieving the
fast rate (7.39); see the bibliography section for discussion of some subtleties surrounding
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this issue.

Proof Throughout the proof, we adopt the usual notation Δ̂ = θ̂ − θ∗ for the error vector.

(a) We first show that ‖Δ̂‖1 ≤ 4‖θ∗‖1 under the stated conditions. From the Lagrangian
basic inequality (7.29), we have

0 ≤
1

2n
‖XΔ̂‖2

2 ≤
wTXΔ̂

n
+ λn{‖θ∗‖1 − ‖̂θ‖1}. (7.42)

By Hölder’s inequality and our choice of λn, we have∣∣∣∣∣∣wTXΔ̂

n

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥XTw

n

∥∥∥∥∥∥
∞
‖Δ̂‖1 ≤

λn

2
{‖θ∗‖1 + ‖̂θ‖1},

where the final step also uses the triangle inequality. Putting together the pieces yields

0 ≤
λn

2
{‖θ∗‖1 + ‖̂θ‖1} + λn{‖θ∗‖1 − ‖̂θ‖1},

which (for λn > 0) implies that ‖̂θ‖1 ≤ 3‖θ∗‖1. Consequently, a final application of the
triangle inequality yields ‖Δ̂‖1 ≤ ‖θ∗‖1 + ‖̂θ‖1 ≤ 4‖θ∗‖1, as claimed.

We can now complete the proof. Returning to our earlier inequality (7.42), we have

‖XΔ̂‖2
2

2n
≤

λn

2
‖Δ̂‖1 + λn{‖θ∗‖1 − ‖θ∗ + Δ̂‖1}

(i)
≤

3λn

2
‖Δ̂‖1,

where step (i) is based on the triangle inequality bound ‖θ∗ + Δ̂‖1 ≥ ‖θ∗‖1 − ‖Δ̂‖1. Combined
with the upper bound ‖Δ̂‖1 ≤ 4‖θ∗‖1, the proof is complete.

(b) In this case, the same argument as in the proof of Theorem 7.13(a) leads to the basic
inequality

‖XΔ̂‖2
2

n
≤ 3λn‖Δ̂S ‖1 ≤ 3λn

√
s‖Δ̂‖2.

Similarly, the proof of Theorem 7.13(a) shows that the error vector Δ̂ belongs to C3(S ),
whence the (κ; 3)-RE condition can be applied, this time to the right-hand side of the basic

inequality. Doing so yields ‖Δ̂‖2
2 ≤

1
κ

‖XΔ̂‖2
2

n , and hence that ‖XΔ̂‖2√
n ≤ 3√

κ

√
sλn, as claimed.

7.5 Variable or subset selection

Thus far, we have focused on results that guarantee that either the �2-error or the prediction
error of the Lasso is small. In other settings, we are interested in a somewhat more refined
question, namely whether or not a Lasso estimate θ̂ has non-zero entries in the same positions
as the true regression vector θ∗. More precisely, suppose that the true regression vector θ∗ is
s-sparse, meaning that it is supported on a subset S (θ∗) of cardinality s = |S (θ∗)|. In such a
setting, a natural goal is to correctly identify the subset S (θ∗) of relevant variables. In terms
of the Lasso, we ask the following question: given an optimal Lasso solution θ̂, when is
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its support set—denoted by S (̂θ)—exactly equal to the true support S (θ∗)? We refer to this
property as variable selection consistency.

Note that it is possible for the �2-error ‖̂θ − θ∗‖2 to be quite small even if θ̂ and θ∗ have
different supports, as long as θ̂ is non-zero for all “suitably large” entries of θ∗, and not too
large in positions where θ∗ is zero. On the other hand, as we discuss in the sequel, given an
estimate θ̂ that correctly recovers the support of θ∗, we can estimate θ∗ very well (in �2-norm,
or other metrics) simply by performing an ordinary least-squares regression restricted to this
subset.

7.5.1 Variable selection consistency for the Lasso

We begin by addressing the issue of variable selection in the context of deterministic design
matrices X. (Such a result can be extended to random design matrices, albeit with additional
effort.) It turns out that variable selection requires some assumptions that are related to but
distinct from the restricted eigenvalue condition (7.22). In particular, consider the following
conditions:

(A3) Lower eigenvalue: The smallest eigenvalue of the sample covariance submatrix in-
dexed by S is bounded below:

γmin

(
XT

S XS

n

)
≥ cmin > 0. (7.43a)

(A4) Mutual incoherence: There exists some α ∈ [0, 1) such that

max
j∈S c

‖(XT
S XS )−1XT

S X j‖1 ≤ α. (7.43b)

To provide some intuition, the first condition (A3) is very mild: in fact, it would be re-
quired in order to ensure that the model is identifiable, even if the support set S were known
a priori. In particular, the submatrix XS ∈ Rn×s corresponds to the subset of covariates that
are in the support set, so that if assumption (A3) were violated, then the submatrix XS would
have a non-trivial nullspace, leading to a non-identifiable model. Assumption (A4) is a more
subtle condition. In order to gain intuition, suppose that we tried to predict the column vector
Xj using a linear combination of the columns of XS . The best weight vector ω̂ ∈ R|S | is given
by

ω̂ = arg min
ω∈R|S |

‖Xj − XS ω‖2
2 = (XT

S XS )−1XT
S X j,

and the mutual incoherence condition is a bound on ‖ω̂‖1. In the ideal case, if the column
space of XS were orthogonal to Xj, then the optimal weight vector ω̂ would be identically
zero. In general, we cannot expect this orthogonality to hold, but the mutual incoherence
condition (A4) imposes a type of approximate orthogonality.

With this set-up, the following result applies to the Lagrangian Lasso (7.18) when applied
to an instance of the linear observation model such that the true parameter θ∗ is supported
on a subset S with cardinality s. In order to state the result, we introduce the convenient
shorthand ΠS ⊥(X) = In − XS (XT

S XS )−1XT
S , a type of orthogonal projection matrix.
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Theorem 7.21 Consider an S -sparse linear regression model for which the design
matrix satisfies conditions (A3) and (A4). Then for any choice of regularization param-
eter such that

λn ≥
2

1 − α

∥∥∥∥∥∥XT
S c ΠS ⊥(X)

w
n

∥∥∥∥∥∥
∞
, (7.44)

the Lagrangian Lasso (7.18) has the following properties:

(a) Uniqueness: There is a unique optimal solution θ̂.
(b) No false inclusion: This solution has its support set Ŝ contained within the true

support set S .
(c) �∞-bounds: The error θ̂ − θ∗ satisfies

‖̂θS − θ∗S ‖∞ ≤
∥∥∥∥∥∥
(
XT

S XS

n

)−1

XT
S

w
n

∥∥∥∥∥∥
∞
+

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(
XT

S XS

n

)−1∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∞
λn︸�����������������������������������������������︷︷�����������������������������������������������︸

B(λn;X)

, (7.45)

where |||A|||∞ = maxi=1,...,s
∑

j |Ai j| is the matrix �∞-norm.
(d) No false exclusion: The Lasso includes all indices i ∈ S such that |θ∗i | > B(λn; X),

and hence is variable selection consistent if mini∈S |θ∗i | > B(λn; X).

Before proving this result, let us try to interpret its main claims. First, the uniqueness claim
in part (a) is not trivial in the high-dimensional setting, because, as discussed previously,
although the Lasso objective is convex, it can never be strictly convex when d > n. Based on
the uniqueness claim, we can talk unambiguously about the support of the Lasso estimate
θ̂. Part (b) guarantees that the Lasso does not falsely include variables that are not in the
support of θ∗, or equivalently that θ̂S c = 0, whereas part (d) is a consequence of the sup-
norm bound from part (c): as long as the minimum value of |θ∗i | over indices i ∈ S is not too
small, then the Lasso is variable selection consistent in the full sense.

As with our earlier result (Theorem 7.13) on �2-error bounds, Theorem 7.21 is a deter-
ministic result that applies to any set of linear regression equations. It implies more concrete
results when we make specific assumptions about the noise vector w, as we show here.

Corollary 7.22 Consider the S -sparse linear model based on a noise vector w with
zero-mean i.i.d. σ-sub-Gaussian entries, and a deterministic design matrix X that sat-
isfies assumptions (A3) and (A4), as well as the C-column normalization condition
(max j=1,...,d ‖Xj‖2/

√
n ≤ C). Suppose that we solve the Lagrangian Lasso (7.18) with

regularization parameter

λn =
2Cσ

1 − α

{√
2 log(d − s)

n
+ δ

}
(7.46)
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for some δ > 0. Then the optimal solution θ̂ is unique with its support contained within
S , and satisfies the �∞-error bound

‖̂θS − θ∗S ‖∞ ≤
σ

√
cmin

{√
2 log s

n
+ δ

}
+

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(
XT

S XS

n

)−1∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∞
λn, (7.47)

all with probability at least 1 − 4e−
nδ2

2 .

Proof We first verify that the given choice (7.46) of regularization parameter satisfies the
bound (7.44) with high probability. It suffices to bound the maximum absolute value of the
random variables

Zj := XT
j [In − XS (XT

S XS )−1XT
S ]︸����������������������︷︷����������������������︸

ΠS⊥ (X)

(
w
n

)
for j ∈ S c.

Since ΠS ⊥(X) is an orthogonal projection matrix, we have

‖ΠS ⊥(X)Xj‖2 ≤ ‖Xj‖2
(i)
≤ C

√
n,

where inequality (i) follows from the column normalization assumption. Therefore, each
variable Zj is sub-Gaussian with parameter at most C2σ2/n. From standard sub-Gaussian
tail bounds (Chapter 2), we have

P
[

max
j∈S c

|Zj| ≥ t
]
≤ 2(d − s)e−

nt2

2C2σ2 ,

from which we see that our choice (7.46) of λn ensures that the bound (7.44) holds with the
claimed probability.

The only remaining step is to simplify the �∞-bound (7.45). The second term in this bound
is a deterministic quantity, so we focus on bounding the first term. For each i = 1, . . . , s,
consider the random variable Z̃i := eT

i
( 1

n XT
S XS

)−1
XT

S w/n. Since the elements of the vector w
are i.i.d. σ-sub-Gaussian, the variable Z̃i is zero-mean and sub-Gaussian with parameter at
most

σ2

n

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(
1
n

XT
S XS

)−1∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
σ2

cminn
,

where we have used the eigenvalue condition (7.43a). Consequently, for any δ > 0, we have

P
[

maxi=1,...,s |Z̃i| > σ√
cmin

{√
2 log s

n + δ
}]
≤ 2e−

n δ2
2 , from which the claim follows.

Corollary 7.22 applies to linear models with a fixed matrix X of covariates. An analogous
result—albeit with a more involved proof—can be proved for Gaussian random covariate
matrices. Doing so involves showing that a random matrix X drawn from the Σ-Gaussian
ensemble, with rows sampled i.i.d. from a N(0,Σ) distribution, satisfies the α-incoherence
condition with high probability (whenever the population matrix Σ satisfies this condition,
and the sample size n is sufficiently large). We work through a version of this result in
Exercise 7.19, showing that the incoherence condition holds with high probability with n �
s log(d − s) samples. Figure 7.7 shows that this theoretical prediction is actually sharp, in
that the Lasso undergoes a phase transition as a function of the control parameter n

s log(d−s) .
See the bibliographic section for further discussion of this phenomenon.
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Figure 7.7 Thresholds for correct variable selection using the Lasso. (a) Probability
of correct variable selection P[Ŝ = S ] versus the raw sample size n for three different
problem sizes d ∈ {128, 256, 512} and square-root sparsity s = �

√
d�. Each point cor-

responds to the average of 20 random trials, using a random covariate matrix drawn
from the Toeplitz ensemble of Example 7.17 with ν = 0.1. Note that larger problems
require more samples before the Lasso is able to recover the correct support. (b) The
same simulation results replotted versus the rescaled sample size n

s log(d−s) . Notice
how all three curves are now well aligned, and show a threshold behavior, consistent
with theoretical predictions.

7.5.2 Proof of Theorem 7.21

We begin by developing the necessary and sufficient conditions for optimality in the Lasso.
A minor complication arises because the �1-norm is not differentiable, due to its sharp point
at the origin. Instead, we need to work in terms of the subdifferential of the �1-norm. Given
a convex function f : Rd → R, we say that z ∈ Rd is a subgradient of f at θ, denoted by
z ∈ ∂ f (θ), if we have

f (θ + Δ) ≥ f (θ) + 〈z, Δ〉 for all Δ ∈ Rd.

When f (θ) = ‖θ‖1, it can be seen that z ∈ ∂‖θ‖1 if and only if z j = sign(θ j) for all j =
1, 2, . . . , d. Here we allow sign(0) to be any number in the interval [−1, 1]. In application
to the Lagrangian Lasso program (7.18), we say that a pair (̂θ, ẑ) ∈ Rd × Rd is primal–dual
optimal if θ̂ is a minimizer and ẑ ∈ ∂‖̂θ‖1. Any such pair must satisfy the zero-subgradient
condition

1
n

XT(Xθ̂ − y) + λn̂z = 0, (7.48)

which is the analog of a zero-gradient condition in the non-differentiable setting.
Our proof of Theorem 7.21 is based on a constructive procedure, known as a primal–

dual witness method, which constructs a pair (̂θ, ẑ) satisfying the zero-subgradient condi-
tion (7.48), and such that θ̂ has the correct signed support. When this procedure succeeds,
the constructed pair is primal–dual optimal, and acts as a witness for the fact that the Lasso
has a unique optimal solution with the correct signed support. In more detail, the procedure
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consists of the following steps:

Primal–dual witness (PDW) construction:

1 Set θ̂S c = 0.
2 Determine (̂θS , ẑS ) ∈ Rs × Rs by solving the oracle subproblem

θ̂S ∈ arg min
θS ∈Rs

{
1
2n
‖y − XS θS ‖2

2︸�������������︷︷�������������︸
=: f (θS )

+λn‖θS ‖1

}
, (7.49)

and then choosing ẑS ∈ ∂‖̂θS ‖1 such that ∇ f (θS )
∣∣∣
θS=θ̂S

+ λn̂zS = 0.
3 Solve for ẑS c ∈ Rd−s via the zero-subgradient equation (7.48), and check whether or

not the strict dual feasibility condition ‖̂zS c‖∞ < 1 holds.

Note that the vector θ̂S c ∈ Rd−s is determined in step 1, whereas the remaining three
subvectors are determined in steps 2 and 3. By construction, the subvectors θ̂S , ẑS and ẑS c

satisfy the zero-subgradient condition (7.48). By using the fact that θ̂S c = θ∗S c = 0 and writing
out this condition in block matrix form, we obtain

1
n

[
XT

S XS XT
S XS c

XT
S c XS XT

S c XS c

] [̂
θS − θ∗S

0

]
−

1
n

[
XT

S w
XT

S c w

]
+ λn

[
ẑS

ẑS c

]
=

[
0
0

]
. (7.50)

We say that the PDW construction succeeds if the vector ẑS c constructed in step 3 satisfies
the strict dual feasibility condition. The following result shows that this success acts as a
witness for the Lasso:

Lemma 7.23 If the lower eigenvalue condition (A3) holds, then success of the PDW con-
struction implies that the vector (̂θS , 0) ∈ Rd is the unique optimal solution of the Lasso.

Proof When the PDW construction succeeds, then θ̂ = (̂θS , 0) is an optimal solution with
associated subgradient vector ẑ ∈ Rd satisfying ‖̂zS c‖∞ < 1, and 〈̂z, θ̂〉 = ‖̂θ‖1. Now let θ̃ be
any other optimal solution. If we introduce the shorthand notation F(θ) = 1

2n‖y − Xθ‖2
2, then

we are guaranteed that F (̂θ) + λn〈̂z, θ̂〉 = F (̃θ) + λn‖̃θ‖1, and hence

F (̂θ) − λn〈̂z, θ̃ − θ̂〉 = F (̃θ) + λn
(
‖̃θ‖1 − 〈̂z, θ̃〉

)
.

But by the zero-subgradient conditions (7.48), we have λn̂z = −∇F (̂θ), which implies that

F (̂θ) + 〈∇F (̂θ), θ̃ − θ̂〉 − F (̃θ) = λn
(
‖̃θ‖1 − 〈̂z, θ̃〉

)
.

By convexity of F, the left-hand side is negative, which implies that ‖̃θ‖1 ≤ 〈̂z, θ̃〉. But since
we also have 〈̂z, θ̃〉 ≤ ‖̂z‖∞‖̃θ‖1, we must have ‖̃θ‖1 = 〈̂z, θ̃〉. Since ‖̂zS c‖∞ < 1, this equality
can only occur if θ̃ j = 0 for all j ∈ S c.

Thus, all optimal solutions are supported only on S , and hence can be obtained by solving
the oracle subproblem (7.49). Given the lower eigenvalue condition (A3), this subproblem
is strictly convex, and so has a unique minimizer.
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Thus, in order to prove Theorem 7.21(a) and (b), it suffices to show that the vector
ẑS c ∈ Rd−s constructed in step 3 satisfies the strict dual feasibility condition. Using the
zero-subgradient conditions (7.50), we can solve for the vector ẑS c ∈ Rd−s, thereby finding
that

ẑS c = −
1

λn n
XT

S c XS
(̂
θS − θ∗S

)
+ XT

S c

(
w
λnn

)
. (7.51)

Similarly, using the assumed invertibility of XT
S XS in order to solve for the difference θ̂S −θ∗S

yields

θ̂S − θ∗S = (XT
S XS )−1XT

S w − λnn(XT
S XS )−1ẑS . (7.52)

Substituting this expression back into equation (7.51) and simplifying yields

ẑS c = XT
S c XS (XT

S XS )−1ẑS︸�����������������︷︷�����������������︸
μ

+XT
S c [I − XS (XT

S XS )−1XT
S ]
(

w
λnn

)
︸����������������������������������︷︷����������������������������������︸

VS c

. (7.53)

By the triangle inequality, we have ‖̂zS c‖∞ ≤ ‖μ‖∞ + ‖VS c‖∞. By the mutual incoherence
condition (7.43b), we have ‖μ‖∞ ≤ α. By our choice (7.44) of regularization parameter, we
have ‖VS c‖∞ ≤ 1

2 (1−α). Putting together the pieces, we conclude that ‖̂zS c‖∞ ≤ 1
2 (1 + α) < 1,

which establishes the strict dual feasibility condition.
It remains to establish a bound on the �∞-norm of the error θ̂S − θ∗S . From equation (7.52)

and the triangle inequality, we have

‖̂θS − θ∗S ‖∞ ≤
∥∥∥∥∥∥
(
XT

S XS

n

)−1

XT
S

w
n

∥∥∥∥∥∥
∞
+

∣∣∣∣∣∣
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(
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S XS
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)−1∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∞
λn, (7.54)

which completes the proof.

7.6 Appendix: Proof of Theorem 7.16

By a rescaling argument, it suffices to restrict attention to vectors belonging to the ellipse

Sd−1(Σ) = {θ ∈ Rd | ‖
√
Σ θ‖2 = 1}. Define the function g(t) := 2ρ(Σ)

√
log d

n t, and the
associated “bad” event

E :=
{

X ∈ Rn×d

∣∣∣∣∣∣ inf
θ∈Sd−1(Σ)

‖Xθ‖2√
n

≤
1
4
− 2g(‖θ‖1)

}
. (7.55)

We first claim that on the complementary set Ec, the lower bound (7.31) holds. Let θ ∈
Sd−1(Σ) be arbitrary. Defining a = 1

4 , b = 2g(‖θ‖1) and c = ‖Xθ‖2√
n , we have c ≥ max{a − b, 0}

on the event Ec. We claim that this lower bound implies that c2 ≥ (1 − δ)2a2 − 1
δ2 b2 for any

δ ∈ (0, 1). Indeed, if b
δ
≥ a, then the claimed lower bound is trivial. Otherwise, we may

assume that b ≤ δa, in which case the bound c ≥ a − b implies that c ≥ (1 − δ)a, and hence
that c2 ≥ (1 − δ)2a2. Setting (1 − δ)2 = 1

2 then yields the claim. Thus, the remainder of our
proof is devoted to upper bounding P[E].
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For a pair (r�, ru) of radii such that 0 ≤ r� < ru, define the sets

K(r�, ru) := {θ ∈ Sd−1(Σ) | g(‖θ‖1) ∈ [r�, ru]}, (7.56a)

along with the events

A(r�, ru) :=
{

inf
θ∈K(r�,ru)

‖Xθ‖2√
n

≤
1
2
− 2ru

}
. (7.56b)

Given these objects, the following lemma is the central technical result in the proof:

Lemma 7.24 For any pair of radii 0 ≤ r� < ru, we have

P
[
A(r�, ru)

]
≤ e−

n
32 e−

n
2 r2

u . (7.57a)

Moreover, for μ = 1/4, we have

E ⊆ A(0, μ) ∪
( ∞⋃

�=1

A(2�−1μ, 2�μ)
)
. (7.57b)

Based on this lemma, the remainder of the proof is straightforward. From the inclu-
sion (7.57b) and the union bound, we have

P[E] ≤ P[A(0, μ)] +
∞∑
�=1

P[A(2�−1μ, 2�μ)] ≤ e−
n
32

{ ∞∑
�=0

e−
n
2 22�μ2

}
.

Since μ = 1/4 and 22� ≥ 2�, we have

P[E] ≤ e−
n
32

∞∑
�=0

e−
n
2 22�μ2 ≤ e−

n
32

∞∑
�=0

(e−nμ2
)� ≤

e−
n
32

1 − e−
n

32
.

It remains to prove the lemma.

Proof of Lemma 7.24: We begin with the inclusion (7.57b). Let θ ∈ Sd−1(Σ) be a vector
that certifies the event E; then it must belong either to the set K(0, μ) or to a set K(2�−1μ, 2�μ)
for some � = 1, 2, . . ..

Case 1: First suppose that θ ∈ K(0, μ), so that g(‖θ‖1) ≤ μ = 1/4. Since θ certifies the event
E, we have

‖Xθ‖2√
n

≤
1
4
− 2g(‖θ‖1) ≤

1
4
=

1
2
− μ,

showing that event A(0, μ) must happen.

Case 2: Otherwise, we must have θ ∈ K(2�−1μ, 2�μ) for some � = 1, 2, . . ., and moreover

‖Xθ‖2√
n

≤
1
4
− 2g(‖θ‖1) ≤

1
2
− 2

(
2�−1μ

)
≤

1
2
− 2�μ,
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which shows that the event A(2�−1μ, 2�μ) must happen.
We now establish the tail bound (7.57a). It is equivalent to upper bound the random vari-

able T (r�, ru) := − infθ∈K(r�,ru)
‖Xθ‖2√

n . By the variational representation of the �2-norm, we have

T (r�, ru) = − inf
θ∈K(r�,ru)

sup
u∈Sn−1

〈u, Xθ〉
√

n
= sup

θ∈K(r�,ru)
inf

u∈Sn−1

〈u, Xθ〉
√

n
.

Consequently, if we write X = W
√
Σ, where W ∈ Rn×d is a standard Gaussian matrix and

define the transformed vector v =
√
Σ θ, then

− inf
θ∈K(r�,ru)

‖Xθ‖2√
n

= sup
v∈K̃(r� ,r)

inf
u∈Sn−1

〈u, Wv〉
√

n︸����︷︷����︸
Zu,v

, (7.58)

where K̃(r�, ru) = {v ∈ Rd | ‖v‖2 = 1, g(Σ−
1
2 v) ∈ [r�, ru]}.

Since (u, v) range over a subset of Sn−1 × Sd−1, each variable Zu,v is zero-mean Gaussian
with variance n−1. Furthermore, the Gaussian comparison principle due to Gordon, previ-
ously used in the proof of Theorem 6.1, may be applied. More precisely, we may compare
the Gaussian process {Zu,v} to the zero-mean Gaussian process with elements

Yu,v :=
〈g, u〉
√

n
+
〈h, v〉
√

n
, where g ∈ Rn, h ∈ Rd have i.i.d. N(0, 1) entries.

Applying Gordon’s inequality (6.65), we find that

E[T (r�, ru)] = E
[

sup
v∈K̃(r�,ru)

inf
u∈Sn−1

Zu,v

]
≤ E

[
sup

v∈K̃(r� ,ru)

inf
u∈Sn−1

Yu,v

]
= E

[
sup

v∈K̃(r� ,ru)

〈h, v〉
√

n

]
+ E

[
inf

u∈Sn−1

〈g, u〉
√

n

]

= E
[

sup
θ∈K(r� ,ru)

〈√
Σ h, θ

〉
√

n

]
− E

[
‖g‖2√

n

]
.

On one hand, we have E[‖g‖2] ≥
√

n
√

2
π
. On the other hand, applying Hölder’s inequality

yields

E
[

sup
θ∈K(r�,ru)

〈
√
Σ h, θ〉
√

n

]
≤ E

[
sup

θ∈K(r�,ru)
‖θ‖1

‖
√
Σ h‖∞√

n

]
(i)
≤ ru,

where step (i) follows since E
[ ‖ √Σh‖∞√

n

]
≤ 2ρ(Σ)

√
log d

n and supθ∈K(r�,ru) ‖θ‖1 ≤ ru

2ρ(Σ)
√

(log d)/n
,

by the definition (7.56a) of K. Putting together the pieces, we have shown that

E[T (r�, ru)] ≤ −
√

2
π
+ ru. (7.59)

From the representation (7.58), we see that the random variable
√

n T (r�, ru) is a 1-
Lipschitz function of the standard Gaussian matrix W, so that Theorem 2.26 implies the
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upper tail bound P[T (r�, ru) ≥ E[T (r�, ru)] + δ] ≤ e−nδ2/2 for all δ > 0. Define the constant

C =

√
2
π
− 1

2 ≥
1
4 . Setting δ = C + ru and using our upper bound on the mean (7.59) yields

P[T (r�, ru) ≥ − 1
2 + 2ru] ≤ e−

n
2 C2

e−
n
2 r2

u ≤ e−
n

32 e−
n
2 r2

u ,

as claimed.

7.7 Bibliographic details and background

The Gaussian sequence model discussed briefly in Example 7.1 has been the subject of in-
tensive study. Among other reasons, it is of interest because many nonparametric estimation
problems can be “reduced” to equivalent versions in the (infinite-dimensional) normal se-
quence model. The book by Johnstone (2015) provides a comprehensive introduction; see
also the references therein. Donoho and Johnstone (1994) derive sharp upper and lower
bounds on the minimax risk in �p-norm for a vector belonging to an �q-ball, q ∈ [0, 1], for
the case of the Gaussian sequence model. The problem of bounding the in-sample prediction
error for nonparametric least squares, as studied in Chapter 13, can also be understood as a
special case of the Gaussian sequence model.

The use of �1-regularization for ill-posed inverse problems has a lengthy history, with
early work in geophysics (e.g., Levy and Fullagar, 1981; Oldenburg et al., 1983; Santosa
and Symes, 1986); see Donoho and Stark (1989) for further discussion. Alliney and Ruzin-
sky (1994) studied various algorithmic issues associated with �1-regularization, which soon
became the subject of more intensive study in statistics and applied mathematics following
the seminal papers of Chen, Donoho and Saunders (1998) on the basis pursuit program (7.9),
and Tibshirani (1996) on the Lasso (7.18). Other authors have also studied various forms of
non-convex regularization for enforcing sparsity; for instance, see the papers (Fan and Li,
2001; Zou and Li, 2008; Fan and Lv, 2011; Zhang, 2012; Zhang and Zhang, 2012; Loh and
Wainwright, 2013; Fan et al., 2014) and references therein.

Early work on the basis pursuit linear program (7.9) focused on the problem of repre-
senting a signal in a pair of bases, in which n is the signal length, and p = 2n indexes the
union of the two bases of Rn. The incoherence condition arose from this line of work (e.g.,
Donoho and Huo, 2001; Elad and Bruckstein, 2002); the necessary and sufficient condi-
tions that constitute the restricted nullspace property seem to have been isolated for the first
time by Feuer and Nemirovski (2003). However, the terminology and precise definition of
restricted nullspace used here was given by Cohen et al. (2008).

Juditsky and Nemirovsky (2000), Nemirovski (2000) and Greenshtein and Ritov (2004)
were early authors to provide some high-dimensional guarantees for estimators based on
�1-regularization, in particular in the context of function aggregation problems. Candès and
Tao (2005) and Donoho (2006a; 2006b) analyzed the basis pursuit method for the case of
random Gaussian or unitary matrices, and showed that it can succeed with n � s log(ed/s)
samples. Donoho and Tanner (2008) provided a sharp analysis of this threshold phenomenon
in the noiseless case, with connections to the structure of random polytopes. The restricted
isometry property was introduced by Candès and Tao (2005; 2007). They also proposed
the Dantzig selector, an alternative �1-based relaxation closely related to the Lasso, and
proved bounds on noisy recovery for ensembles that satisfy the RIP condition. Bickel et
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al. (2009) introduced the weaker restricted eigenvalue (RE) condition, slightly different than
but essentially equivalent to the version stated here, and provided a unified way to derive �2-
error and prediction error bounds for both the Lasso and the Dantzig selector. Exercises 7.13
and 7.14 show how to derive �∞-bounds on the Lasso error by using �∞-analogs of the �2-
restricted eigenvalues; see Ye and Zhang (2010) for bounds on the Lasso and Dantzig errors
using these and other types of restricted eigenvalues. Van de Geer and Bühlmann (2009)
provide a comprehensive overview of different types of RE conditions, and the relationships
among them; see also their book (Bühlmann and van de Geer, 2011).

The proof of Theorem 7.13(a) is inspired by the proof technique of Bickel et al. (2009);
see also the material in Chapter 9, and the paper by Negahban et al. (2012) for a general
viewpoint on regularized M-estimators. There are many variants and extensions of the basic
Lasso, including the square-root Lasso (Belloni et al., 2011), the elastic net (Zou and Hastie,
2005), the fused Lasso (Tibshirani et al., 2005), the adaptive Lasso (Zou, 2006; Huang et al.,
2008) and the group Lasso (Yuan and Lin, 2006). See Exercise 7.17 in this chapter for
discussion of the square-root Lasso, and Chapter 9 for discussion of some of these other
extensions.

Theorem 7.16 was proved by Raskutti et al. (2010). Rudelson and Zhou (2013) prove an
analogous result for more general ensembles of sub-Gaussian random matrices; this analysis
requires substantially different techniques, since Gaussian comparison results are no longer
available. Both of these results apply to a very broad class of random matrices; for instance,
it is even possible to sample the rows of the random matrix X ∈ Rn×d from a distribution
with a degenerate covariance matrix, and/or with its maximum eigenvalue diverging with
the problem size, and these results can still be applied to show that a (lower) restricted
eigenvalue condition holds with high probability. Exercise 7.10 is based on results of Loh
and Wainwright (2012).

Exercise 7.12 explores the �2-error rates achievable by the Lasso for vectors that be-
long to an �q-ball. These results are known to be minimax-optimal, as can be shown us-
ing information-theoretic techniques for lower bounding the minimax rate. See Chapter 15
for details on techniques for proving lower bounds, and the papers (Ye and Zhang, 2010;
Raskutti et al., 2011) for specific lower bounds in the context of sparse linear regression.

The slow rate and fast rates for prediction—that is, the bounds in equations (7.40) and
(7.41) respectively—have been derived in various papers (e.g., Bunea et al., 2007; Candès
and Tao, 2007; Bickel et al., 2009). It is natural to wonder whether the restricted eigenvalue
conditions, which control correlation between the columns of the design matrix, should be
required for achieving the fast rate. From a fundamental point of view, such conditions are
not necessary: an �0-based estimator, one that performs an exhaustive search over all

(
d
s

)
subsets of size s, can achieve the fast rate with only a column normalization condition on
the design matrix (Bunea et al., 2007; Raskutti et al., 2011); see Example 13.16 for an
explicit derivation of the fast bound for this method. It can be shown that the Lasso itself
is sub-optimal: a number of authors (Foygel and Srebro, 2011; Dalalyan et al., 2014) have
given design matrices X and 2-sparse vectors for which the Lasso squared prediction error
is lower bounded as 1/

√
n. Zhang et al. (2017) construct a harder design matrix for which

the �0-based method can achieve the fast rate, but for which a broad class of M-estimators,
one that includes the Lasso as well as estimators based on non-convex regularizers, has
prediction error lower bounded as 1/

√
n. If, in addition, we restrict attention to methods
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that are required to output an s-sparse estimator, then Zhang et al. (2014) show that, under
a standard conjecture in complexity theory, no polynomial-time algorithm can achieve the
fast rate (7.41) without the lower RE condition.

Irrepresentable conditions for variable selection consistency were introduced indepen-
dently by Fuchs (2004) and Tropp (2006) in signal processing, and by Meinshausen and
Buhlmann (2006) and Zhao and Yu (2006) in statistics. The primal–dual witness proof of
Theorem 7.21 follows the argument of Wainwright (2009b); see also this paper for exten-
sions to general random Gaussian designs. The proof of Lemma 7.23 was suggested by
Caramanis (personal communication, 2010). The primal–dual witness method that underlies
the proof of Theorem 7.21 has been applied in a variety of other settings, including analysis
of group Lasso (Obozinski et al., 2011; Wang et al., 2015) and related relaxations (Jalali
et al., 2010; Negahban and Wainwright, 2011b), graphical Lasso (Ravikumar et al., 2011),
methods for Gaussian graph selection with hidden variables (Chandrasekaran et al., 2012b),
and variable selection in nonparametric models (Xu et al., 2014). Lee et al. (2013) describe
a general framework for deriving consistency results using the primal–dual witness method.

The results in this chapter were based on theoretically derived choices of the regulariza-
tion parameter λn, all of which involved the (unknown) standard deviation σ of the additive
noise. One way to circumvent this difficulty is by using the square-root Lasso estimator (Bel-
loni et al., 2011), for which the optimal choice of regularization parameter does not depend
on σ. See Exercise 7.17 for a description and analysis of this estimator.

7.8 Exercises

Exercise 7.1 (Optimization and threshold estimators)

(a) Show that the hard-thresholding estimator (7.6a) corresponds to the optimal solution θ̂

of the non-convex program

min
θ∈Rn

{
1
2
‖y − θ‖2

2 +
1
2
λ2‖θ‖0

}
.

(b) Show that the soft-thresholding estimator (7.6b) corresponds to the optimal solution θ̂

of the �1-regularized quadratic program

min
θ∈Rn

{
1
2
‖y − θ‖2

2 + λ‖θ‖1

}
.

Exercise 7.2 (Properties of �q-balls) For a given q ∈ (0, 1], recall the (strong) �q-ball

Bq(Rq) :=

⎧⎪⎪⎨⎪⎪⎩θ ∈ Rd

∣∣∣∣∣∣ d∑
j=1

|θ j|q ≤ Rq

⎫⎪⎪⎬⎪⎪⎭ . (7.60)

The weak �q-ball with parameters (C, α) is defined as

Bw(α)(C) := {θ ∈ Rd | |θ|( j) ≤ C j−α for j = 1, . . . , d}. (7.61)

Here |θ|( j) denote the order statistics of θ∗ in absolute value, ordered from largest to smallest
(so that |θ|(1) = max j=1,2,...,d |θ j| and |θ|(d) = min j=1,2,...,d |θ j|.)
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(a) Show that the set Bq(Rq) is star-shaped around the origin. (A set C ⊆ Rd is star-shaped
around the origin if θ ∈ C ⇒ tθ ∈ C for all t ∈ [0, 1].)

(b) For any α > 1/q, show that there is a radius Rq depending on (C, α) such that Bw(α)(C) ⊆
Bq(Rq). This inclusion underlies the terminology “strong” and “weak”, respectively.

(c) For a given integer s ∈ {1, 2, . . . , d}, the best s-term approximation to a vector θ∗ ∈ Rd is
given by

Πs(θ∗) := arg min
‖θ‖0≤s

‖θ − θ∗‖2
2. (7.62)

Give a closed-form expression for Πs(θ∗).
(d) When θ∗ ∈ Bq(Rq) for some q ∈ (0, 1], show that the best s-term approximation satisfies

‖Πs(θ∗) − θ∗‖2
2 ≤ (Rq)2/q

(
1
s

) 2
q−1

. (7.63)

Exercise 7.3 (Pairwise incoherence) Given a matrix X ∈ Rn×d, suppose that it has pairwise
incoherence (7.12) upper bounded as δPW(X) < γ

s .

(a) Let S ⊂ {1, 2, . . . , d} be any subset of size s. Show that there is a function γ �→ c(γ) such

that γmin

(
XT

S XS

n

)
≥ c(γ) > 0, as long as γ is sufficiently small.

(b) Prove that X satisfies the restricted nullspace property with respect to S as long as
γ < 1/3. (Do this from first principles, without using any results on restricted isometry.)

Exercise 7.4 (RIP and pairwise incoherence) In this exercise, we explore the relation be-
tween the pairwise incoherence and RIP constants.

(a) Prove the sandwich relation (7.15) for the pairwise incoherence and RIP constants. Give
a matrix for which inequality (i) is tight, and another matrix for which inequality (ii) is
tight.

(b) Construct a matrix such that δs(X) =
√

s δPW(X).

Exercise 7.5 (�2-RE ⇒ �1-RE) Let S ⊂ {1, 2, . . . , d} be a subset of cardinality s. A matrix
X ∈ Rn×d satisfies an �1-RE condition over S with parameters (γ1, α1) if

‖Xθ‖2
2

n
≥ γ1

‖θ‖2
1

s
for all θ ∈ C(S ;α1).

Show that any matrix satisfying the �2-RE condition (7.22) with parameters (γ2, α2) satisfies
the �1-RE condition with parameters γ1 =

γ2

(1+α2
2) and α1 = α2.

Exercise 7.6 (Weighted �1-norms) In many applications, one has additional information
about the relative scalings of different predictors, so that it is natural to use a weighted �1-
norm, of the form ‖θ‖ν(1) :=

∑d
j=1 ω j|θ j|, where ω ∈ Rd is a vector of strictly positive weights.

In the case of noiseless observations, this leads to the weighted basis pursuit LP

min
θ∈Rd

‖θ‖ν(1) such that Xθ = y.

(a) State and prove necessary and sufficient conditions on X for the weighted basis pursuit
LP to (uniquely) recover all k-sparse vectors θ∗.
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(b) Suppose that θ∗ is supported on a subset S of cardinality s, and the weight vector ω

satisfies

ω j =

⎧⎪⎪⎨⎪⎪⎩1 if j ∈ S ,
t otherwise,

for some t ≥ 1. State and prove a sufficient condition for recovery in terms of cmin =

γmin(XT
S XS /n), the pairwise incoherence δPW(X) and the scalar t. How do the conditions

on X behave as t → +∞?

Exercise 7.7 (Pairwise incoherence and RIP for isotropic ensembles) Consider a random
matrix X ∈ Rn×d with i.i.d. N(0, 1) entries.

(a) For a given s ∈ {1, 2, . . . , d}, suppose that n � s2 log d. Show that the pairwise incoher-
ence satisfies the bound δPW(X) < 1

3s with high probability.
(b) Now suppose that n � s log

( es
d

)
. Show that the RIP constant satisfies the bound δ2s < 1/3

with high probability.

Exercise 7.8 (Violations of pairwise incoherence and RIP) Recall the ensemble of spiked
identity covariance matrices from Example 7.18 with a constant μ > 0, and consider an
arbitrary sparsity level s ∈ {1, 2, . . . , d}.

(a) Violation of pairwise incoherence: show that

P[δPW(X) > μ − 3δ] ≥ 1 − 6e−nδ2/8 for all δ ∈
(
0, 1/

√
2
)
.

Consequently, a pairwise incoherence condition cannot hold unless μ � 1
s .

(b) Violation of RIP: Show that

P[δ2s(X) ≥ (1 + (
√

2s − 1)μ)δ] ≥ 1 − e−nδ2/8 for all δ ∈ (0, 1).

Consequently, a RIP condition cannot hold unless μ � 1√
s .

Exercise 7.9 (Relations between �0 and �1 constraints) For an integer k ∈ {1, . . . , d}, con-
sider the following two subsets:

L0(k) := B2(1) ∩ B0(k) = {θ ∈ Rd | ‖θ‖2 ≤ 1 and ‖θ‖0 ≤ k},

L1(k) := B2(1) ∩ B1(
√

k) = {θ ∈ Rd | ‖θ‖2 ≤ 1 and ‖θ‖1 ≤
√

k}.

For any set L, let conv(L) denote the closure of its convex hull.

(a) Prove that conv(L0(k)) ⊆ L1(k).
(b) Prove that L1(k) ⊆ 2 conv(L0(k)).

(Hint: For part (b), you may find it useful to consider the support functions of the two sets.)

Exercise 7.10 (Sufficient conditions for RE) Consider an arbitrary symmetric matrix Γ for
which there is a scalar δ > 0 such that

|θTΓθ| ≤ δ for all θ ∈ L0(2s),

where the set L0 was defined in Exercise 7.9.
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(a) Show that

|θTΓθ| ≤
⎧⎪⎪⎨⎪⎪⎩12δ‖θ‖2

2 for all vectors such that ‖θ‖1 ≤
√

s ‖θ‖2,
12δ

s ‖θ‖
2
1 otherwise.

(Hint: Part (b) of Exercise 7.9 could be useful.)
(b) Use part (a) to show that RIP implies the RE condition.
(c) Give an example of a matrix family that violates RIP for which part (a) can be used to

guarantee the RE condition.

Exercise 7.11 (Weaker sufficient conditions for RE) Consider a covariance matrix Σ with
minimum eigenvalue γmin(Σ) > 0 and maximum variance ρ2(Σ).

(a) Show that the lower bound (7.31) implies that the RE condition (7.22) holds with pa-
rameter κ = c1

2 γmin(Σ) over Cα(S ), uniformly for all subsets S of cardinality at most
|S | ≤ c1

2c2

γmin(Σ)
ρ2(Σ) (1 + α)−2 n

log d .
(b) Give a sequence of covariance matrices {Σ(d)} for which γmax(Σ(d)) diverges, but part (a)

can still be used to guarantee the RE condition.

Exercise 7.12 (Estimation over �q-“balls”) In this problem, we consider linear regression
with a vector θ∗ ∈ Bq(Rq) for some radius Rq ≥ 1 and parameter q ∈ (0, 1] under the
following conditions: (a) the design matrix X satisfies the lower bound (7.31) and uniformly
bounded columns (‖Xj‖2/

√
n ≤ 1 for all j = 1, . . . , d); (b) the noise vector w ∈ Rn has

i.i.d. zero-mean entries that are sub-Gaussian with parameter σ.
Using Theorem 7.19 and under an appropriate lower bound on the sample size n in terms

of (d,Rq, σ, q), show that there are universal constants (c0, c1, c2) such that, with probability
1 − c1e−c2 log d, any Lasso solution θ̂ satisfies the bound

‖̂θ − θ∗‖2
2 ≤ c0Rq

(
σ2 log d

n

)1− q
2

.

(Note: The universal constants can depend on quantities related to Σ, as in the bound (7.31).)

Exercise 7.13 (�∞-bounds for the Lasso) Consider the sparse linear regression model
y = Xθ∗ + w, where w ∼ N(0, σ2In×n) and θ∗ ∈ Rd is supported on a subset S . Suppose that
the sample covariance matrix Σ̂ = 1

n XTX has its diagonal entries uniformly upper bounded
by one, and that for some parameter γ > 0, it also satisfies an �∞-curvature condition of the
form

‖Σ̂Δ‖∞ ≥ γ‖Δ‖∞ for all Δ ∈ C3(S ). (7.64)

Show that with the regularization parameter λn = 4σ
√

log d
n , any Lasso solution satisfies the

�∞-bound

‖̂θ − θ∗‖∞ ≤
6σ
γ

√
log d

n

with high probability.
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Exercise 7.14 (Verifying �∞-curvature conditions) This problem is a continuation of Ex-
ercise 7.13. Suppose that we form a random design matrix X ∈ Rn×d with rows drawn i.i.d.
from a N(0,Σ) distribution, and moreover that

‖ΣΔ‖∞ ≥ γ‖Δ‖∞ for all vectors Δ ∈ C3(S ).

Show that, with high probability, the sample covariance Σ̂ := 1
n XT X satisfies this same

property with γ/2 as long as n � s2 log d.

Exercise 7.15 (Sharper bounds for Lasso) Let X ∈ Rn×d be a fixed design matrix such that
|||XS |||2√

n ≤ C for all subsets S of cardinality at most s. In this exercise, we show that, with high
probability, any solution of the constrained Lasso (7.19) with R = ‖θ∗‖1 satisfies the bound

‖̂θ − θ∗‖2 �
σ

κ

√
s log(ed/s)

n
, (7.65)

where s = ‖θ∗‖0. Note that this bound provides an improvement for linear sparsity (i.e.,
whenever s = αd for some constant α ∈ (0, 1)).

(a) Define the random variable

Z := sup
Δ∈Rd

∣∣∣∣∣∣
〈
Δ,

1
n

XTw
〉 ∣∣∣∣∣∣ such that ‖Δ‖2 ≤ 1 and ‖Δ‖1 ≤

√
s, (7.66)

where w ∼ N(0, σ2I). Show that

P

⎡⎢⎢⎢⎢⎢⎣ Z
Cσ

≥ c1

√
s log(ed/s)

n
+ δ

⎤⎥⎥⎥⎥⎥⎦ ≤ c2e−c3nδ2

for universal constants (c1, c2, c3). (Hint: The result of Exercise 7.9 may be useful here.)
(b) Use part (a) and results from the chapter to show that if X satisfies an RE condition, then

any optimal Lasso solution θ̂ satisfies the bound (7.65) with probability 1−c′2e−c′3 s log
(

ed
s

)
.

Exercise 7.16 (Analysis of weighted Lasso) In this exercise, we analyze the weighted
Lasso estimator

θ̂ ∈ arg min
θ∈Rd

{
1

2n
‖y − Xθ‖2

2 + λn‖θ‖ν(1)

}
,

where ‖θ‖ν(1) :=
∑d

j=1 ν j|θ j| denotes the weighted �1-norm defined by a positive weight vector
ν ∈ Rd. Define C j =

‖Xj‖2√
n , where Xj ∈ Rn denotes the jth column of the design matrix, and

let Δ̂ = θ̂ − θ∗ be the error vector associated with an optimal solution θ̂.

(a) Suppose that we choose a regularization parameter λn ≥ 2 max
j=1,...,d

|〈Xj,w〉|
nν j

. Show that the

vector Δ̂ belongs to the modified cone set

C3(S ; ν) := {Δ ∈ Rd | ‖ΔS c‖ν(1) ≤ 3‖ΔS ‖ν(1)}. (7.67)

(b) Assuming that X satisfies a κ-RE condition over Cν(S ; 3), show that

‖̂θ − θ∗‖2 ≤
6
κ
λn

√∑
j∈S

ν2
j .
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(c) For a general design matrix, the rescaled column norms C j = ‖Xj‖2/
√

n may vary widely.
Give a choice of weights for which the weighted Lasso error bound is superior to the
ordinary Lasso bound. (Hint: You should be able to show an improvement by a factor of

max j∈S C j

max j=1,...,d C j
.)

Exercise 7.17 (Analysis of square-root Lasso) The square-root Lasso is given by

θ̂ ∈ arg min
θ∈Rd

{
1
√

n
‖y − Xθ‖2 + γn‖θ‖1

}
.

(a) Suppose that the regularization parameter γn is varied over the interval (0,∞). Show
that the resulting set of solutions coincides with those of the Lagrangian Lasso as λn is
varied.

(b) Show that any square-root Lasso estimate θ̂ satisfies the equality
1
n XT(Xθ̂ − y)
1√
n ‖y − Xθ̂‖2

+ γn̂z = 0,

where ẑ ∈ Rd belongs to the subdifferential of the �1-norm at θ̂.
(c) Suppose y = Xθ∗ + w where the unknown regression vector θ∗ is S -sparse. Use part (b)

to establish that the error Δ̂ = θ̂ − θ∗ satisfies the basic inequality

1
n
‖XΔ̂‖2

2 ≤
〈
Δ̂,

1
n

XTw
〉
+ γn

‖y − Xθ̂‖2√
n

{‖Δ̂S ‖1 − ‖Δ̂S c‖1}.

(d) Suppose that γn ≥ 2 ‖XTw‖∞√
n‖w‖2

. Show that the error vector satisfies the cone constraint

‖Δ̂S c‖1 ≤ 3‖Δ̂S ‖1.
(e) Suppose in addition that X satisfies an RE condition over the set C3(S ). Show that there

is a universal constant c such that

‖̂θ − θ∗‖2 ≤ c
‖w‖2√

n
γn
√

s.

Exercise 7.18 (From pairwise incoherence to irrepresentable condition) Consider a matrix
X ∈ Rn×d whose pairwise incoherence (7.12) satisfies the bound δPW(X) < 1

2s . Show that the
irrepresentable condition (7.43b) holds for any subset S of cardinality at most s.

Exercise 7.19 (Irrepresentable condition for random designs) Let X ∈ Rn×d be a random
matrix with rows {xi}ni=1 sampled i.i.d. according to a N(0,Σ) distribution. Suppose that the
diagonal entries of Σ are at most 1, and that it satisfies the irrepresentable condition with
parameter α ∈ [0, 1)—that is,

max
j∈S c

‖Σ jS (ΣS S )−1‖1 ≤ α < 1.

Let z ∈ Rs be a random vector that depends only on the submatrix XS .

(a) Show that, for each j ∈ S c,

|XT
j XS (XT

S XS )−1z| ≤ α + |WT
j XS (XT

S XS )−1z|,

where Wj ∈ Rn is a Gaussian random vector, independent of XS .
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(b) Use part (a) and random matrix/vector tail bounds to show that

max
j∈S c

|XT
j XS (XT

S XS )−1z| ≤ α′ := 1
2 (1 + α),

with probability at least 1 − 4e−c log d, as long as n > 16
(1−α)

√
cmin

s log(d − s), where
cmin = γmin(ΣS S ).

Exercise 7.20 (Analysis of �0-regularization) Consider a design matrix X ∈ Rn×d satisfying
the �0-based upper/lower RE condition

γ�‖Δ‖2
2 ≤

‖XΔ‖2
2

n
≤ γu‖Δ‖2

2 for all ‖Δ‖0 ≤ 2s. (7.68)

Suppose that we observe noisy samples y = Xθ∗ + w for some s-sparse vector θ∗, where the
noise vector has i.i.d. N(0, σ2) entries. In this exercise, we analyze an estimator based on
the �0-constrained quadratic program

min
θ∈Rd

{
1
2n
‖y − Xθ‖2

2

}
such that ‖θ‖0 ≤ s. (7.69)

(a) Show that the non-convex program (7.69) has a unique optimal solution θ̂ ∈ Rd.
(b) Using the “basic inequality” proof technique, show that

‖̂θ − θ∗‖2
2 �

σ2γu

γ2
�

s log(ed/s)
n

with probability at least 1 − c1e−c2 s log(ed/s). (Hint: The result of Exercise 5.7 could be
useful to you.)
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Principal component analysis in high dimensions

Principal component analysis (PCA) is a standard technique for exploratory data analysis
and dimension reduction. It is based on seeking the maximal variance components of a
distribution, or equivalently, a low-dimensional subspace that captures the majority of the
variance. Given a finite collection of samples, the empirical form of principal component
analysis involves computing some subset of the top eigenvectors of the sample covariance
matrix. Of interest is when these eigenvectors provide a good approximation to the subspace
spanned by the top eigenvectors of the population covariance matrix. In this chapter, we
study these issues in a high-dimensional and non-asymptotic framework, both for classical
unstructured forms of PCA as well as for more modern structured variants.

8.1 Principal components and dimension reduction

Let Sd×d
+ denote the space of d-dimensional positive semidefinite matrices, and denote the

d-dimensional unit sphere by Sd−1 = {v ∈ Rd | ‖v‖2 = 1}. Consider a d-dimensional random
vector X, say with a zero-mean vector and covariance matrix Σ ∈ Sd×d

+ . We use

γ1(Σ) ≥ γ2(Σ) ≥ · · · ≥ γd(Σ) ≥ 0

to denote the ordered eigenvalues of the covariance matrix. In its simplest instantiation,
principal component analysis asks: along what unit-norm vector v ∈ Sd−1 is the variance
of the random variable 〈v, X〉 maximized? This direction is known as the first principal
component at the population level, assumed here for the sake of discussion to be unique. In
analytical terms, we have

v∗ = arg max
v∈Sd−1

var(〈v, X〉) = arg max
v∈Sd−1

E
[ 〈v, X〉2 ] = arg max

v∈Sd−1
〈v, Σv〉 , (8.1)

so that by definition, the first principal component is the maximum eigenvector of the co-
variance matrix Σ. More generally, we can define the top r principal components at the
population level by seeking an orthonormal matrix V ∈ Rd×r, formed with unit-norm and
orthogonal columns {v1, . . . , vr}, that maximizes the quantity

E‖VTX‖2
2 =

r∑
j=1

E
[〈v j, X〉2]. (8.2)

As we explore in Exercise 8.4, these principal components are simply the top r eigenvectors
of the population covariance matrix Σ.

In practice, however, we do not know the covariance matrix, but rather only have access

236
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to a finite collection of samples, say {xi}ni=1, each drawn according to P. Based on these
samples (and using the zero-mean assumption), we can form the sample covariance matrix
Σ̂ = 1

n

∑n
i=1 xixT

i . The empirical version of PCA is based on the “plug-in” principle, namely
replacing the unknown population covariance Σ with this empirical version Σ̂. For instance,
the empirical analog of the first principal component (8.1) is given by the optimization prob-
lem

v̂ = arg max
v∈Sd−1

〈
v, Σ̂v

〉
. (8.3)

Consequently, from the statistical point of view, we need to understand in what sense the
maximizers of these empirically defined problems provide good approximations to their
population analogs. Alternatively phrased, we need to determine how the eigenstructures of
the population and sample covariance matrices are related.

8.1.1 Interpretations and uses of PCA

Before turning to the analysis of PCA, let us consider some of its interpretations and appli-
cations.

Example 8.1 (PCA as matrix approximation) Principal component analysis can be inter-
preted in terms of low-rank approximation. In particular, given some unitarily invariant1

matrix norm ||| · |||, consider the problem of finding the best rank-r approximation to a given
matrix Σ—that is,

Z∗ = arg min
rank(Z)≤r

{
|||Σ − Z|||2

}
. (8.4)

In this interpretation, the matrix Σ need only be symmetric, not necessarily positive semi-
definite as it must be when it is a covariance matrix. A classical result known as the Eckart–
Young–Mirsky theorem guarantees that an optimal solution Z∗ exists, and takes the form of
a truncated eigendecomposition, specified in terms of the top r eigenvectors of the matrix Σ.
More precisely, recall that the symmetric matrix Σ has an orthonormal basis of eigenvectors,
say {v1, . . . , vd}, associated with its ordered eigenvalues {γ j(Σ)}dj=1. In terms of this notation,
the optimal rank-r approximation takes the form

Z∗ =
r∑

j=1

γ j(Σ)
(
v j ⊗ v j

)
, (8.5)

where v j ⊗ v j := v jvT
j is the rank-one outer product. For the Frobenius matrix norm |||M|||F =√∑d

j,k=1 M2
jk, the error in the optimal approximation is given by

|||Z∗ − Σ|||2F =
d∑

j=r+1

γ2
j (Σ). (8.6)

Figure 8.1 provides an illustration of the matrix approximation view of PCA. We first

1 For a symmetric matrix M, a matrix norm is unitarily invariant if |||M||| = |||VTMV||| for any orthonormal
matrix V. See Exercise 8.2 for further discussion.
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Figure 8.1 Illustration of PCA for low-rank matrix approximation. (a) Eigenspec-
trum of a matrix Σ ∈ S100×100

+ generated as described in the text. Note the extremely
rapid decay of the sorted eigenspectrum. Dark diamonds mark the rank cutoffs
r ∈ {5, 10, 25, 100}, the first three of which define three approximations to the whole
matrix (r = 100.) (b) Top left: original matrix. Top right: approximation based on
r = 5 components. Bottom left: approximation based on r = 10 components. Bottom
right: approximation based on r = 25 components.

generated the Toeplitz matrix T ∈ Sd×d
+ with entries T jk = e−α

√
| j−k| with α = 0.95, and then

formed the recentered matrix Σ := T − γmin(T)Id. Figure 8.1(a) shows the eigenspectrum
of the matrix Σ: note that the rapid decay of the eigenvalues that renders it amenable to an
accurate low-rank approximation. The top left image in Figure 8.1(b) corresponds to the
original matrix Σ, whereas the remaining images illustrate approximations with increasing
rank (r = 5 in top right, r = 10 in bottom left and r = 25 in bottom right). Although the
defects in approximations with rank r = 5 or r = 10 are readily apparent, the approximation
with rank r = 25 seems reasonable. ♣

Example 8.2 (PCA for data compression) Principal component analysis can also be inter-
preted as a linear form of data compression. Given a zero-mean random vector X ∈ Rd, a
simple way in which to compress it is via projection to a lower-dimensional subspace V—
say via a projection operator of the form ΠV(X). For a fixed dimension r, how do we choose
the subspace V? Consider the criterion that chooses V by minimizing the mean-squared error

E
[‖X − ΠV(X)‖2

2
]
.

This optimal subspace need not be unique in general, but will be when there is a gap between
the eigenvalues γr(Σ) and γr+1(Σ). In this case, the optimal subspace V∗ is spanned by the top
r eigenvectors of the covariance matrix Σ = cov(X). In particular, the projection operator
ΠV∗ can be written as ΠV∗(x) = VrV

T
r x, where Vr ∈ Rd×r is an orthonormal matrix with

the top r eigenvectors {v1, . . . , vr} as its columns. Using this optimal projection, the minimal
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Figure 8.2 (a) Samples of face images from the Yale Face Database. (b) First 100
eigenvalues of the sample covariance matrix. (c) First 25 eigenfaces computed from
the sample covariance matrix. (d) Reconstructions based on the first 25 eigenfaces
plus the average face.

reconstruction error based on a rank-r projection is given by

E
[‖X − ΠV∗(X)‖2

2
]
=

d∑
j=r+1

γ2
j (Σ), (8.7)

where {γ j(Σ)}dj=1 are the ordered eigenvalues of Σ. See Exercise 8.4 for further exploration
of these and other properties.

The problem of face analysis provides an interesting illustration of PCA for data com-
pression. Consider a large database of face images, such as those illustrated in Figure 8.2(a).
Taken from the Yale Face Database, each image is gray-scale with dimensions 243 × 320.
By vectorizing each image, we obtain a vector x in d = 243 × 320 = 77 760 dimen-
sions. We compute the average image x = 1

n

∑n
i=1 xi and the sample covariance matrix

Σ̂ = 1
n−1

∑n
i=1(xi − x)(xi − x)T based on n = 165 samples. Figure 8.2(b) shows the rela-

tively fast decay of the first 100 eigenvalues of this sample covariance matrix. Figure 8.2(c)
shows the average face (top left image) along with the first 24 “eigenfaces”, meaning the
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top 25 eigenvectors of the sample covariance matrix, each converted back to a 243 × 320
image. Finally, for a particular sample, Figure 8.2(d) shows a sequence of reconstructions
of a given face, starting with the average face (top left image), and followed by the average
face in conjunction with principal components 1 through 24. ♣
Principal component analysis can also be used for estimation in mixture models.

Example 8.3 (PCA for Gaussian mixture models) Let φ(·; μ,Σ) denote the density of a
Gaussian random vector with mean vector μ ∈ Rd and covariance matrix Σ ∈ Sd×d

+ . A two-
component Gaussian mixture model with isotropic covariance structure is a random vector
X ∈ Rd drawn according to the density

f (x; θ) = α φ(x;−θ∗, σ2Id) + (1 − α) φ(x; θ∗, σ2Id), (8.8)

where θ∗ ∈ Rd is a vector parameterizing the means of the two Gaussian components,
α ∈ (0, 1) is a mixture weight and σ > 0 is a dispersion term. Figure 8.3 provides an illus-
tration of such a mixture model in d = 2 dimensions, with mean vector θ∗ =

[
0.6 −0.6

]T
,

standard deviation σ = 0.4 and weight α = 0.4. Given samples {xi}ni=1 drawn from such a
model, a natural goal is to estimate the mean vector θ∗. Principal component analysis pro-
vides a natural method for doing so. In particular, a straightforward calculation yields that
the second-moment matrix

Γ := E
[
X ⊗ X

]
= θ∗ ⊗ θ∗ + σ2Id,

where X ⊗ X := XXT is the d × d rank-one outer product matrix. Thus, we see that θ∗

is proportional to the maximal eigenvector of Γ. Consequently, a reasonable estimator θ̂ is
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Figure 8.3 Use of PCA for Gaussian mixture models. (a) Density function of a two-
component Gaussian mixture (8.8) with mean vector θ∗ = [0.6 −0.6]T, standard
deviation σ = 0.4 and weight α = 0.4. (b) Contour plots of the density function,
which provide intuition as to why PCA should be useful in recovering the mean
vector θ∗.
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given by the maximal eigenvector of the sample second moment2 matrix Γ̂ = 1
n

∑n
i=1 xixT

i .
We study the properties of this estimator in Exercise 8.6. ♣

8.1.2 Perturbations of eigenvalues and eigenspaces

Thus far, we have seen that the eigenvectors of population and sample covariance matri-
ces are interesting objects with a range of uses. In practice, PCA is always applied to the
sample covariance matrix, and the central question of interest is how well the sample-based
eigenvectors approximate those of the population covariance.

Before addressing this question, let us make a brief detour into matrix perturbation theory.
Let us consider the following general question: given a symmetric matrix R, how does its
eigenstructure relate to the perturbed matrix Q = R+P? Here P is another symmetric matrix,
playing the role of the perturbation. It turns out that the eigenvalues of Q and R are related
in a straightforward manner. Understanding how the eigenspaces change, however, requires
some more care.

Let us begin with changes in the eigenvalues. From the standard variational definition of
the maximum eigenvalue, we have

γ1(Q) = max
v∈Sd−1

〈
v,
(
R + P)v

〉 ≤ max
v∈Sd−1

〈v, Rv〉 + max
v∈Sd−1

〈v, Pv〉 ≤ γ1(R) + |||P|||2.

Since the same argument holds with the roles of Q and R reversed, we conclude that
|γ1(Q) − γ1(R)| ≤ |||Q − R|||2. Thus, the maximum eigenvalues of Q and R can differ by
at most the operator norm of their difference. More generally, we have

max
j=1,...,d

∣∣∣γ j(Q) − γ j(R)
∣∣∣ ≤ |||Q − R|||2. (8.9)

This bound is a consequence of a more general result known as Weyl’s inequality; we work
through its proof in Exercise 8.3.

Although eigenvalues are generically stable, the same does not hold for eigenvectors and
eigenspaces, unless further conditions are imposed. The following example provides an il-
lustration of such instability:

Example 8.4 (Sensitivity of eigenvectors) For a parameter ε ∈ [0, 1], consider the family
of symmetric matrices

Qε :=
[
1 ε

ε 1.01

]
=

[
1 0
0 1.01

]
︸�����︷︷�����︸

Q0

+ ε

[
0 1
1 0

]
︸�︷︷�︸

P

. (8.10)

By construction, the matrix Qε is a perturbation of a diagonal matrix Q0 by an ε-multiple
of the fixed matrix P. Since |||P|||2 = 1, the magnitude of the perturbation is directly con-
trolled by ε. On one hand, the eigenvalues remain stable to this perturbation: in terms of the
shorthand a = 1.01, we have γ(Q0) = {1, a} and

γ(Qε) =
{

1
2

[
(a + 1) +

√
(a − 1)2 + 4ε2], 1

2

[
(a + 1) −

√
(a − 1)2 + 4ε2]}.

2 This second-moment matrix coincides with the usual covariance matrix for the special case of an equally
weighted mixture pair with α = 0.5.
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Thus, we find that

max
j=1,2

|γ j(Q0) − γ j(Qε)
∣∣∣ = 1

2

∣∣∣∣(a − 1) −
√

(a − 1)2 + 4ε2
∣∣∣∣ ≤ ε,

which confirms the validity of Weyl’s inequality (8.9) in this particular case.
On the other hand, the maximal eigenvector of Qε is very different from that of Q0, even

for relatively small values of ε. For ε = 0, the matrix Q0 has the unique maximal eigenvector
v0 = [0 1]T. However, if we set ε = 0.01, a numerical calculation shows that the maximal
eigenvector of Qε is vε ≈ [0.53 0.85]T. Note that ‖v − vε‖2 � ε, showing that eigenvectors
can be extremely sensitive to perturbations. ♣

What is the underlying problem? The issue is that, while Q0 has a unique maximal eigen-
vector, the gap between the largest eigenvalue γ1(Q0) = 1.01 and the second largest eigen-
value γ2(Q0) = 1 is very small. Consequently, even small perturbations of the matrix lead
to “mixing” between the spaces spanned by the top and second largest eigenvectors. On the
other hand, if this eigengap can be bounded away from zero, then it turns out that we can
guarantee stability of the eigenvectors. We now turn to this type of theory.

8.2 Bounds for generic eigenvectors

We begin our exploration of eigenvector bounds with the generic case, in which no additional
structure is imposed on the eigenvectors. In later sections, we turn to structured variants of
eigenvector estimation.

8.2.1 A general deterministic result

Consider a symmetric positive semidefinite matrix Σ with eigenvalues ordered as

γ1(Σ) ≥ γ2(Σ) ≥ γ3(Σ) ≥ · · · ≥ γd(Σ) ≥ 0.

Let θ∗ ∈ Rd denote its maximal eigenvector, assumed to be unique. Now consider a perturbed
version Σ̂ = Σ+P of the original matrix. As suggested by our notation, in the context of PCA,
the original matrix corresponds to the population covariance matrix, whereas the perturbed
matrix corresponds to the sample covariance. However, at least for the time being, our theory
should be viewed as general.

As should be expected based on Example 8.4, any theory relating the maximum eigen-
vectors of Σ and Σ̂ should involve the eigengap ν := γ1(Σ) − γ2(Σ), assumed to be strictly
positive. In addition, the following result involves the transformed perturbation matrix

P̃ := UTPU =

[
p̃11 p̃T

p̃ P̃22

]
, (8.11)

where p̃11 ∈ R, p̃ ∈ Rd−1 and P̃22 ∈ R(d−1)×(d−1). Here U is an orthonormal matrix with the
eigenvectors of Σ as its columns.
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Theorem 8.5 Consider a positive semidefinite matrix Σ with maximum eigenvector
θ∗ ∈ Sd−1 and eigengap ν = γ1(Σ) − γ2(Σ) > 0. Given any matrix P ∈ Sd×d such that
|||P|||2 < ν/2, the perturbed matrix Σ̂ := Σ + P has a unique maximal eigenvector θ̂

satisfying the bound

‖̂θ − θ∗‖2 ≤ 2‖p̃‖2

ν − 2|||P|||2 . (8.12)

In general, this bound is sharp in the sense that there are problems for which the require-
ment |||P|||2 < ν/2 cannot be loosened. As an example, suppose that Σ = diag{2, 1} so that
ν = 2 − 1 = 1. Given P = diag{− 1

2 ,+
1
2 }, the perturbed matrix Σ̂ = Σ+P = 3

2 I2 no longer has
a unique maximal eigenvector. Note that this counterexample lies just at the boundary of our
requirement, since |||P|||2 = 1

2 =
ν
2 .

Proof Our proof is variational in nature, based on the optimization problems that charac-
terize the maximal eigenvectors of the matrices Σ and Σ̂, respectively. Define the error vector
Δ̂ = θ̂ − θ∗, and the function

Ψ(Δ; P) := 〈Δ, PΔ〉 + 2 〈Δ, Pθ∗〉 . (8.13)

In parallel to our analysis of sparse linear regression from Chapter 7, the first step in our
analysis is to prove the basic inequality for PCA. For future reference, we state this inequal-
ity in a slightly more general form than required for the current proof. In particular, given
any subset C ⊆ Sd−1, let θ∗ and θ̂ maximize the quadratic objectives

max
θ∈C

〈θ, Σθ〉 and max
θ∈C

〈θ, Σ̂θ〉, (8.14)

respectively. The current proof involves the choice C = Sd−1.

It is convenient to bound the distance between θ̂ and θ∗ in terms of the inner product
� := 〈̂θ, θ∗〉. Due to the sign ambiguity in eigenvector estimation, we may assume without
loss of generality that θ̂ is chosen such that � ∈ [0, 1].

Lemma 8.6 (PCA basic inequality) Given a matrix Σ with eigengap ν > 0, the error
Δ̂ = θ̂ − θ∗ is bounded as

ν
(
1 −

〈̂
θ, θ∗

〉2 ) ≤ ∣∣∣Ψ(Δ̂; P)
∣∣∣ . (8.15)

Taking this inequality as given for the moment, the remainder of the proof is straightforward.
Recall the transformation P̃ = UTPU, or equivalently P = UP̃UT. Substituting this expres-
sion into equation (8.13) yields

Ψ(Δ̂; P) =
〈
UTΔ̂, P̃UTΔ̂

〉
+ 2

〈
UTΔ̂, P̃ UTθ∗

〉
. (8.16)

In terms of the inner product � =
〈̂
θ, θ∗

〉
, we may write θ̂ = � θ∗ +

√
1 − �2 z, where z ∈ Rd

is a vector orthogonal to θ∗. Since the matrix U is orthonormal with its first column given by
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θ∗, we have UTθ∗ = e1. Letting U2 ∈ Rd×(d−1) denote the submatrix formed by the remaining
d − 1 eigenvectors and defining the vector z̃ = UT

2 z ∈ Rd−1, we can write

UTΔ̂ =
[
(� − 1) (1 − �2)

1
2 z̃

]T
.

Substituting these relations into equation (8.16) yields that

Ψ(Δ̂; P) = (� − 1)2 p̃11 + 2(� − 1)
√

1 − �2 〈̃z, p̃〉 + (1 − �2)
〈̃
z, P̃22̃z

〉
+ 2(� − 1) p̃11 + 2

√
1 − �2 〈̃z, p̃〉

= (�2 − 1) p̃11 + 2�
√

1 − �2 〈̃z, p̃〉 + (1 − �2)
〈̃
z, P̃22̃z

〉
.

Putting together the pieces, since ‖̃z‖2 ≤ 1 and |p̃11| ≤ |||P̃|||2, we have

|Ψ(Δ̂; P)| ≤ 2(1 − �2)|||P̃|||2 + 2�
√

1 − �2‖p̃‖2.

Combined with the basic inequality (8.15), we find that

ν (1 − �2) ≤ 2(1 − �2)|||P|||2 + 2�
√

1 − �2‖p̃‖2.

Whenever ν > 2|||P|||2, this inequality implies that
√

1 − �2 ≤ 2�‖p̃‖2

ν−2|||P|||2 . Noting that ‖Δ̂‖2 =√
2(1 − �), we thus conclude that

‖Δ̂‖2 ≤
√

2 �√
1 + �

( 2‖p̃‖2

ν − 2|||P|||2
)
≤ 2‖p̃‖2

ν − 2|||P|||2 ,

where the final step follows since 2�2 ≤ 1 + � for all � ∈ [0, 1].

Let us now return to prove the PCA basic inequality (8.15).

Proof of Lemma 8.6: Since θ̂ and θ∗ are optimal and feasible, respectively, for the pro-
grams (8.14), we are guaranteed that

〈
θ∗, Σ̂ θ∗

〉
≤
〈̂
θ, Σ̂θ̂

〉
. Defining the matrix perturbation

P = Σ̂ − Σ, we have

〈〈Σ, θ∗ ⊗ θ∗ − θ̂ ⊗ θ̂〉〉 ≤ −〈〈P, θ∗ ⊗ θ∗ − θ̂ ⊗ θ̂〉〉,
where 〈〈A, B〉〉 is the trace inner product, and a⊗a = aaT denotes the rank-one outer product.
Following some simple algebra, the right-hand side is seen to be equal to −Ψ(Δ̂; P). The final
step is to show that

〈〈Σ, θ∗ ⊗ θ∗ − θ̂ ⊗ θ̂〉〉 ≥ ν

2
‖Δ̂‖2

2. (8.17)

Recall the representation θ̂ = �θ∗ + (
√

1 − �2) z, where the vector z ∈ Rd is orthogonal to
θ∗, and � ∈ [0, 1]. Using the shorthand notation γ j ≡ γ j(Σ) for j = 1, 2, define the matrix
Γ = Σ− γ1

(
θ∗ ⊗ θ∗

)
, and note that Γθ∗ = 0 and |||Γ|||2 ≤ γ2 by construction. Consequently, we

can write

〈〈Σ, θ∗ ⊗ θ∗ − θ̂ ⊗ θ̂〉〉 = γ1〈〈θ∗ ⊗ θ∗, θ∗ ⊗ θ∗ − θ̂ ⊗ θ̂〉〉 + 〈〈Γ, θ∗ ⊗ θ∗ − θ̂ ⊗ θ̂〉〉
= (1 − �2)

{
γ1 − 〈〈Γ, z ⊗ z〉〉}.
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Since |||Γ|||2 ≤ γ2, we have |〈〈Γ, z ⊗ z〉〉| ≤ γ2. Putting together the pieces, we have shown that

〈〈Σ, θ∗ ⊗ θ∗ − θ̂ ⊗ θ̂〉〉 ≥ (1 − �2)
{
γ1 − γ2

}
= (1 − �2) ν,

from which the claim (8.15) follows.

8.2.2 Consequences for a spiked ensemble

Theorem 8.5 applies to any form of matrix perturbation. In the context of principal com-
ponent analysis, this perturbation takes a very specific form—namely, as the difference be-
tween the sample and population covariance matrices. More concretely, suppose that we
have drawn n i.i.d. samples {xi}ni=1 from a zero-mean random vector with covariance Σ. Prin-
cipal component analysis is then based on the eigenstructure of the sample covariance matrix
Σ̂ = 1

n

∑n
i=1 xixT

i , and the goal is to draw conclusions about the eigenstructure of the popula-
tion matrix.

In order to bring sharper focus to this issue, let us study how PCA behaves for a very
simple class of covariance matrices, known as spiked covariance matrices. A sample xi ∈ Rd

from the spiked covariance ensemble takes the form

xi
d
=
√
ν ξi θ

∗ + wi, (8.18)

where ξi ∈ R is a zero-mean random variable with unit variance, and wi ∈ Rd is a random
vector independent of ξi, with zero mean and covariance matrix Id. Overall, the random
vector xi has zero mean, and a covariance matrix of the form

Σ := ν θ∗ (θ∗)T + Id. (8.19)

By construction, for any ν > 0, the vector θ∗ is the unique maximal eigenvector of Σ with
eigenvalue γ1(Σ) = ν + 1. All other eigenvalues of Σ are located at 1, so that we have an
eigengap γ1(Σ) − γ2(Σ) = ν.

In the following result, we say that the vector xi ∈ Rd has sub-Gaussian tails if both ξi and
wi are sub-Gaussian with parameter at most one.

Corollary 8.7 Given i.i.d. samples {xi}ni=1 from the spiked covariance ensemble (8.18)

with sub-Gaussian tails, suppose that n > d and
√

ν+1
ν2

√
d
n ≤ 1

128 . Then, with probability

at least 1 − c1e−c2n min{ √νδ, νδ2}, there is a unique maximal eigenvector θ̂ of the sample
covariance matrix Σ̂ = 1

n

∑n
i=1 xixT

i such that

‖̂θ − θ∗‖2 ≤ c0

√
ν + 1
ν2

√
d
n
+ δ. (8.20)

Figure 8.4 shows the results of simulations that confirm the qualitative scaling predicted
by Corollary 8.7. In each case, we drew n = 500 samples from a spiked covariance matrix
with the signal-to-noise parameter ν ranging over the interval [0.75, 5]. We then computed
the �2-distance ‖̂θ − θ∗‖2 between the maximal eigenvectors of the sample and population
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Figure 8.4 Plots of the error ‖̂θ − θ∗‖2 versus the signal-to-noise ratio, as measured
by the eigengap ν. Both plots are based on a sample size n = 500. Dots show the
average of 100 trials, along with the standard errors (crosses). The full curve shows

the theoretical bound
√

ν+1
ν2

√
d
n . (a) Dimension d = 100. (b) Dimension d = 250.

covariances, respectively, performing T = 100 trials for each setting of ν. The circles in Fig-
ure 8.4 show the empirical means, along with standard errors in crosses, whereas the solid

curve corresponds to the theoretical prediction
√

ν+1
ν2

√
d
n . Note that Corollary 8.7 predicts

this scaling, but with a looser leading constant (c0 > 1). As shown by Figure 8.4, Corol-
lary 8.7 accurately captures the scaling behavior of the error as a function of the signal-to-
noise ratio.

Proof Let P = Σ̂−Σ be the difference between the sample and population covariance ma-
trices. In order to apply Theorem 8.5, we need to upper bound the quantities |||P|||2 and ‖p̃‖2.
Defining the random vector w̄ := 1

n

∑n
i=1 ξiwi, the perturbation matrix P can be decomposed

as

P = ν

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
i=1

ξ2
i − 1

⎞⎟⎟⎟⎟⎟⎠ θ∗(θ∗)T

︸�����������������������︷︷�����������������������︸
P1

+
√
ν
(
w̄(θ∗)T + θ∗w̄T

)︸�������������������︷︷�������������������︸
P2

+

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
i=1

wiwT
i − Id

⎞⎟⎟⎟⎟⎟⎠︸����������������︷︷����������������︸
P3

. (8.21)

Since ‖θ∗‖2 = 1, the operator norm of P can be bounded as

|||P|||2 ≤ ν
∣∣∣1
n

n∑
i=1

ξ2
i − 1

∣∣∣ + 2
√
ν‖w̄‖2 + |||1n

n∑
i=1

wiwT
i − Id |||2. (8.22a)

Let us derive a similar upper bound on ‖p̃‖2 using the decomposition (8.11). Since θ∗ is the
unique maximal eigenvector of Σ, it forms the first column of the matrix U. Let U2 ∈ Rd×(d−1)

denote the matrix formed of the remaining (d − 1) columns. With this notation, we have
p̃ = UT

2 Pθ∗. Using the decomposition (8.21) of the perturbation matrix and the fact that
UT

2θ
∗ = 0, we find that p̃ =

√
ν UT

2 w̄ + 1
n

∑n
i=1 UT

2 wi 〈wi, θ
∗〉. Since U2 has orthonormal
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columns, we have ‖UT
2 w̄‖2 ≤ ‖w̄‖2 and also

‖
n∑

i=1

UT
2 wi 〈wi, θ

∗〉 ‖2 = sup
‖v‖2=1

∣∣∣(U2v)T( n∑
i=1

wiwT
i − Id

)
θ∗
∣∣∣ ≤ |||1

n

n∑
i=1

wiwT
i − Id |||2.

Putting together the pieces, we have shown that

‖p̃‖2 ≤
√
ν ‖w̄‖2 + |||1n

n∑
i=1

wiwT
i − Id |||2. (8.22b)

The following lemma allows us to control the quantities appearing the bounds (8.22a) and
(8.22b):

Lemma 8.8 Under the conditions of Corollary 8.7, we have

P
[∣∣∣1

n

n∑
i=1

ξ2
i − 1

∣∣∣ ≥ δ1
] ≤ 2e−c2n min{δ1, δ

2
1}, (8.23a)

P
[‖w̄‖2 ≥ 2

√
d
n
+ δ2

] ≤ 2e−c2n min{δ2, δ
2
2} (8.23b)

and

P
[
|||1

n

n∑
i=1

wiwT
i − Id |||2 ≥ c3

√
d
n
+ δ3

]
≤ 2e−c2n min{δ3,δ

2
3}. (8.23c)

We leave the proof of this claim as an exercise, since it is straightforward application of
results and techniques from previous chapters. For future reference, we define

φ(δ1, δ2, δ3) := 2e−c2n min{δ1, δ
2
1} + 2e−c2n min{δ2, δ

2
2} + 2e−c2n min{δ3, δ

2
3}, (8.24)

corresponding to the probability with which at least one of the bounds in Lemma 8.8 is
violated.

In order to apply Theorem 8.5, we need to first show that |||P|||2 < ν
4 with high probability.

Beginning with the inequality (8.22a) and applying Lemma 8.8 with δ1 =
1

16 , δ2 =
δ

4
√
ν

and
δ3 = δ/16 ∈ (0, 1), we have

|||P|||2 ≤ ν

16
+ 8(

√
ν + 1)

√
d
n
+ δ ≤ ν

16
+ 16(

√
ν + 1)

√
d
n
+ δ

with probability at least 1−φ
( 1

4 ,
δ

3
√
ν
, δ

16

)
. Consequently, as long as

√
ν+1
ν2

√
d
n ≤ 1

128 , we have

|||P|||2 ≤ 3
16

ν + δ <
ν

4
, for all δ ∈ (0, ν

16 ).

It remains to bound ‖p̃‖2. Applying Lemma 8.8 to the inequality (8.22b) with the previously
specified choices of (δ1, δ2, δ3), we have

‖p̃‖2 ≤ 2
(√

ν + 1
)√d

n
+ δ ≤ 4

√
ν + 1

√
d
n
+ δ
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with probability at least 1−φ
( 1

4 ,
δ

3
√
ν
, δ

16

)
. We have shown that conditions of Theorem 8.5 are

satisfied, so that the claim (8.20) follows as a consequence of the bound (8.12).

8.3 Sparse principal component analysis

Note that Corollary 8.7 requires that the sample size n be larger than the dimension d in
order for ordinary PCA to perform well. One might wonder whether this requirement is
fundamental: does PCA still perform well in the high-dimensional regime n < d?

The answer to this question turns out to be a dramatic “no”. As discussed at more length
in the bibliography section, for any fixed signal-to-noise ratio, if the ratio d/n stays suit-
ably bounded away from zero, then the eigenvectors of the sample covariance in a spiked
covariance model become asymptotically orthogonal to their population analogs. Thus, the
classical PCA estimate is no better than ignoring the data, and drawing a vector uniformly at
random from the Euclidean sphere. Given this total failure of classical PCA, a next question
to ask is whether the eigenvectors might be estimated consistently using a method more so-
phisticated than PCA. This question also has a negative answer: as we discuss in Chapter 15,
for the standard spiked model (8.18), it can be shown via the framework of minimax the-
ory that no method can produce consistent estimators of the population eigenvectors when
d/n stays bounded away from zero. See Example 15.19 in Chapter 15 for the details of this
minimax lower bound.

In practice, however, it is often reasonable to impose structure on eigenvectors, and this
structure can be exploited to develop effective estimators even when n < d. Perhaps the
simplest such structure is that of sparsity in the eigenvectors, which allows for both effective
estimation in high-dimensional settings, as well as increased interpretability. Accordingly,
this section is devoted to the sparse version of principal component analysis.

Let us illustrate the idea of sparse eigenanalysis by revisiting the eigenfaces from Exam-
ple 8.2.

Example 8.9 (Sparse eigenfaces) We used the images from the Yale Face Database to set
up a PCA problem in d = 77 760 dimensions. In this example, we used an iterative method
to approximate sparse eigenvectors with at most s = �0.25d� = 19 440 non-zero coefficients.
In particular, we applied a thresholded version of the matrix power method for computing
sparse eigenvalues and eigenvectors. (See Exercise 8.5 for exploration of the standard matrix
power method.)

Figure 8.5(a) shows the average face (top left image), along with approximations to the
first 24 sparse eigenfaces. Each sparse eigenface was restricted to have at most 25% of its
pixels non-zero, corresponding to a savings of a factor of 4 in storage. Note that the sparse
eigenfaces are more localized than their PCA analogs from Figure 8.2. Figure 8.5(b) shows
reconstruction using the average face in conjunction with the first 100 sparse eigenfaces,
which require equivalent storage (in terms of pixel values) to the first 25 regular eigenfaces. ♣
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(a) (b)

Figure 8.5 Illustration of sparse eigenanalysis for the Yale Face Database. (a) Av-
erage face (top left image), and approximations to the first 24 sparse eigenfaces, ob-
tained by a greedy iterative thresholding procedure applied to the eigenvalue power
method. Eigenfaces were restricted to have at most 25% of their pixels non-zero, cor-
responding to a 1/4 reduction in storage. (b) Reconstruction based on sparse eigen-
faces.

8.3.1 A general deterministic result

We now turn to the question of how to estimate a maximal eigenvector that is known a priori
to be sparse. A natural approach is to augment the quadratic objective function underlying
classical PCA with an additional sparsity constraint or penalty. More concretely, we analyze
both the constrained problem

θ̂ ∈ arg max
‖θ‖2=1

{〈
θ, Σ̂ θ

〉}
such that ‖θ‖1 ≤ R, (8.25a)

as well as the penalized variant

θ̂ ∈ arg max
‖θ‖2=1

{〈
θ, Σ̂ θ

〉
− λn‖θ‖1

}
such that ‖θ‖1 ≤

(
n

log d

)1/4
. (8.25b)

In our analysis of the constrained version (8.25a), we set R = ‖θ∗‖1. The advantage of the
penalized variant (8.25b) is that the regularization parameter λn can be chosen without know-
ledge of the true eigenvector θ∗. In both formulations, the matrix Σ̂ represents some type of
approximation to the population covariance matrix Σ, with the sample covariance being a
canonical example. Note that neither estimator is convex, since they involve maximization
of a positive semidefinite quadratic form. Nonetheless, it is instructive to analyze them in
order to understand the statistical behavior of sparse PCA, and in the exercises, we describe
some relaxations of these non-convex programs.

Naturally, the proximity of θ̂ to the maximum eigenvector θ∗ of Σ depends on the pertur-
bation matrix P := Σ̂ − Σ. How to measure the effect of the perturbation? As will become
clear, much of our analysis of ordinary PCA can be modified in a relatively straightforward
way so as to obtain results for the sparse version. In particular, a central object in our analysis
of ordinary PCA was the basic inequality stated in Lemma 8.6: it shows that the perturbation
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matrix enters via the function

Ψ(Δ; P) := 〈Δ, PΔ〉 + 2 〈Δ, Pθ∗〉 .
As with our analysis of PCA, our general deterministic theorem for sparse PCA involves
imposing a form of uniform control on Ψ(Δ; P) as Δ ranges over all vectors of the form
θ − θ∗ with θ ∈ Sd−1. The sparsity constraint enters in the form of this uniform bound that
we assume. More precisely, letting ϕν(n, d) and ψν(n, d) be non-negative functions of the
eigengap ν, sample size and dimension, we assume that there exists a universal constant
c0 > 0 such that

sup
Δ=θ−θ∗‖θ‖2=1

∣∣∣Ψ(Δ; P)
∣∣∣ ≤ c0 ν ‖Δ‖2

2 + ϕν(n, d)‖Δ‖1 + ψ2
ν(n, d)‖Δ‖2

1. (8.26)

As a concrete example, for a sparse version of the spiked PCA ensemble (8.18) with sub-
Gaussian tails, this condition is satisfied with high probability with ϕ2

ν(n, d)  (ν + 1) log d
n

and ψ2
ν(n, d)  1

ν

log d
n . This fact will be established in the proof of Corollary 8.12 to follow.

Theorem 8.10 Given a matrix Σ with a unique, unit-norm, s-sparse maximal eigen-
vector θ∗ with eigengap ν, let Σ̂ be any symmetric matrix satisfying the uniform devia-
tion condition (8.26) with constant c0 < 1

6 , and 16s ψ2
ν(n, d) ≤ c0ν.

(a) For any optimal solution θ̂ to the constrained program (8.25a) with R = ‖θ∗‖1,

min
{
‖̂θ − θ∗‖2, ‖̂θ + θ∗‖2

}
≤ 8

ν (1 − 4c0)
√

s ϕν(n, d). (8.27)

(b) Consider the penalized program (8.25b) with the regularization parameter lower
bounded as λn ≥ 4

(
n

log d

)1/4
ψ2

ν(n, d) + 2ϕν(n, d). Then any optimal solution θ̂ satis-
fies the bound

min
{
‖̂θ − θ∗‖2, ‖̂θ + θ∗‖2

}
≤

2
(

λn
ϕν(n,d) + 4

)
ν (1 − 4c0)

√
s ϕν(n, d). (8.28)

Proof We begin by analyzing the constrained estimator, and then describe the modifica-
tions necessary for the regularized version.

Argument for constrained estimator: Note that ‖̂θ‖1 ≤ R = ‖θ∗‖1 by construction of the
estimator, and moreover θ∗S c = 0 by assumption. By splitting the �1-norm into two compo-
nents, indexed by S and S c, respectively, it can be shown3 that the error Δ̂ = θ̂ − θ∗ satisfies
the inequality ‖Δ̂S c‖1 ≤ ‖Δ̂S ‖1. So as to simplify our treatment of the regularized estimator,
let us proceed by assuming only the weaker inequality ‖Δ̂S c‖1 ≤ 3‖Δ̂S ‖1, which implies that
‖Δ̂‖1 ≤ 4

√
s‖Δ̂‖2. Combining this inequality with the uniform bound (8.26) on Ψ, we find

3 We leave this calculation as an exercise for the reader: helpful details can be found in Chapter 7.
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that ∣∣∣Ψ(Δ̂; P)
∣∣∣ ≤ c0 ν ‖Δ̂‖2

2 + 4
√

s ϕν(n, d)‖Δ̂‖2 + 16 sψ2
ν(n, d)‖Δ̂‖2

2. (8.29)

Substituting back into the basic inequality (8.15) and performing some algebra yields

ν
{

1
2 − c0 − 16

s
ν
ψ2

ν(n, d)
}

︸������������������������︷︷������������������������︸
κ

‖Δ̂‖2
2 ≤ 4

√
s ϕν(n, d) ‖Δ̂‖2.

Note that our assumptions imply that κ > 1
2

(
1 − 4c0

)
> 0, so that the bound (8.27) follows

after canceling a term ‖Δ̂‖2 and rearranging.

Argument for regularized estimator: We now turn to the regularized estimator (8.25b). With
the addition of the regularizer, the basic inequality (8.15) now takes the slightly modified
form

ν

2
‖Δ̂‖2

2 − |Ψ(Δ̂; P)| ≤ λn
{‖θ∗‖1 − ‖̂θ‖1

} ≤ λn
{‖Δ̂S ‖1 − ‖Δ̂S c‖1

}
, (8.30)

where the second inequality follows by the S -sparsity of θ∗ and the triangle inequality (see
Chapter 7 for details).

We claim that the error vector Δ̂ still satisfies a form of the cone inequality. Let us state
this claim as a separate lemma.

Lemma 8.11 Under the conditions of Theorem 8.10, the error vector Δ̂ = θ̂ − θ∗

satisfies the cone inequality

‖Δ̂S c‖1 ≤ 3‖Δ̂S ‖1 and hence ‖Δ̂‖1 ≤ 4
√

s‖Δ̂‖2. (8.31)

Taking this lemma as given, let us complete the proof of the theorem. Given Lemma 8.11,
the previously derived upper bound (8.29) on |Ψ(Δ̂; P)| is also applicable to the regularized
estimator. Substituting this bound into our basic inequality, we find that

ν

{
1
2 − c0 − 16

ν
sψ2

ν(n, d)
}

︸�������������������������︷︷�������������������������︸
κ

‖Δ̂‖2
2 ≤

√
s
(
λn + 4 ϕν(n, d)

)
‖Δ̂‖2.

Our assumptions imply that κ ≥ 1
2

(
1 − 4c0

)
> 0, from which claim (8.28) follows.

It remains to prove Lemma 8.11. Combining the uniform bound with the basic inequal-
ity (8.30)

0 ≤ ν
(

1
2 − c0

)︸���︷︷���︸
>0

‖Δ‖2
2 ≤ ϕν(n, d)‖Δ‖1 + ψ2

ν(n, d)‖Δ‖2
1 + λn

{
‖Δ̂S ‖1 − ‖Δ̂S c‖1

}
.

Introducing the shorthand R =
( n

log d

)1/4, the feasibility of θ̂ and θ∗ implies that ‖Δ̂‖1 ≤ 2R,
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and hence

0 ≤
{
ϕν(n, d) + 2Rψ2

ν(n, d)
}︸�����������������������︷︷�����������������������︸

≤ λn
2

‖Δ̂‖1 + λn

{
‖Δ̂S ‖1 − ‖Δ̂S c‖1

}
≤ λn

{ 3
2‖Δ̂S ‖1 − 1

2‖Δ̂S c‖1
}
,

and rearranging yields the claim.

8.3.2 Consequences for the spiked model with sparsity

Theorem 8.10 is a general deterministic guarantee that applies to any matrix with a sparse
maximal eigenvector. In order to obtain more concrete results in a particular case, let us
return to the spiked covariance model previously introduced in equation (8.18), and analyze
a sparse variant of it. More precisely, consider a random vector xi ∈ Rd generated from the
usual spiked ensemble—namely, as xi

d
=
√
ν ξiθ

∗ +wi, where θ∗ ∈ Sd−1 is an s-sparse vector,
corresponding to the maximal eigenvector of Σ = cov(xi). As before, we assume that both
the random variable ξi and the random vector wi ∈ Rd are independent, each sub-Gaussian
with parameter 1, in which case we say that the random vector xi ∈ Rd has sub-Gaussian
tails.

Corollary 8.12 Consider n i.i.d. samples {xi}ni=1 from an s-sparse spiked covariance
matrix with eigengap ν > 0 and suppose that s log d

n ≤ c min
{
1, ν2

ν+1

}
for a sufficiently

small constant c > 0. Then for any δ ∈ (0, 1), any optimal solution θ̂ to the con-
strained program (8.25a) with R = ‖θ∗‖1, or to the penalized program (8.25b) with

λn = c3
√
ν + 1

{√
log d

n + δ
}
, satisfies the bound

min
{
‖̂θ − θ∗‖2, ‖̂θ + θ∗‖2

}
≤ c4

√
ν + 1
ν2

⎧⎪⎪⎨⎪⎪⎩
√

s log d
n

+ δ

⎫⎪⎪⎬⎪⎪⎭ for all δ ∈ (0, 1) (8.32)

with probability at least 1 − c1e−c2(n/s) min{δ2, ν2,ν}.

Proof Letting P = Σ̂ − Σ be the deviation between the sample and population covariance
matrices, our goal is to show that Ψ(·,P) satisfies the uniform deviation condition (8.26). In
particular, we claim that, uniformly over Δ ∈ Rd, we have

∣∣∣Ψ(Δ; P)
∣∣∣ ≤ 1

8︸︷︷︸
c0

ν‖Δ‖2
2 + 16

√
ν + 1

⎧⎪⎪⎨⎪⎪⎩
√

log d
n

+ δ

⎫⎪⎪⎬⎪⎪⎭︸���������������������������︷︷���������������������������︸
ϕν(n,d)

‖Δ‖1 +
c′3
ν

log d
n︸���︷︷���︸

ψ2
ν (n,d)

‖Δ‖2
1, (8.33)

with probability at least 1 − c1e−c2n min{δ2, ν2}. Here (c1, c2, c′3) are universal constants. Taking
this intermediate claim as given, let us verify that the bound (8.32) follows as a consequence
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of Theorem 8.10. We have

9sψ2
ν(n, d)
c0

=
72c′3
ν

s log d
n

≤ ν

{
72c′3

ν + 1
ν2

s log d
n

}
≤ ν,

using the assumed upper bound on the ratio s log d
n for a sufficiently small constant c. Con-

sequently, the bound for the constrained estimator follows from Theorem 8.10. For the
penalized estimator, there are a few other conditions to be verified: let us first check that
‖θ∗‖1 ≤ ν

√
n

log d . Since θ∗ is s-sparse with ‖θ∗‖2 = 1, it suffices to have
√

s ≤ ν
√

n
log d , or

equivalently 1
ν2

s log d
n ≤ 1, which follows from our assumptions. Finally, we need to check

that λn satisfies the lower bound requirement in Theorem 8.10. We have

4Rψ2
ν(n, d) + 2ϕν(n, d) ≤ 4ν

√
n

log d
c′3
ν

log d
n

+ 24
√
ν + 1

⎧⎪⎪⎨⎪⎪⎩
√

log d
n

+ δ

⎫⎪⎪⎬⎪⎪⎭
≤ c3

√
ν + 1

⎧⎪⎪⎨⎪⎪⎩
√

log d
n

+ δ

⎫⎪⎪⎬⎪⎪⎭︸��������������������������︷︷��������������������������︸
λn

as required.
It remains to prove the uniform bound (8.33). Recall the decomposition P =

∑3
j=1 P j given

in equation (8.21). By linearity of the function Ψ in its second argument, this decomposition
implies that Ψ(Δ; P) =

∑3
j=1 Ψ(Δ; P j). We control each of these terms in turn.

Control of first component: Lemma 8.8 guarantees that
∣∣∣ 1

n

∑n
i=1 ξ

2
i − 1

∣∣∣ ≤ 1
16 with probability

at least 1 − 2e−cn. Conditioned on this bound, for any vector of the form Δ = θ − θ∗ with
θ ∈ Sd−1, we have

|Ψ(Δ; P1)| ≤ ν

16
〈Δ, θ∗〉2 = ν

16
(
1 − 〈θ∗, θ〉 )2 ≤ ν

32
‖Δ‖2

2, (8.34)

where we have used the fact that 2
(
1 − 〈θ∗, θ〉 )2 ≤ 2

(
1 − 〈θ∗, θ〉 ) = ‖Δ‖2

2.

Control of second component: We have

|Ψ(Δ; P2)| ≤ 2
√
ν
{
〈Δ, w̄〉 〈Δ, θ∗〉 + 〈w̄, Δ〉 + 〈θ∗, w̄〉 〈Δ, θ∗〉

}
≤ 4

√
ν‖Δ‖1‖w̄‖∞ + 2

√
ν|〈θ∗, w̄〉| ‖Δ‖

2
2

2
. (8.35)

The following lemma provides control on the two terms in this upper bound:
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Lemma 8.13 Under the conditions of Corollary 8.12, we have

P

⎡⎢⎢⎢⎢⎢⎣‖w̄‖∞ ≥ 2

√
log d

n
+ δ

⎤⎥⎥⎥⎥⎥⎦ ≤ c1e−c2nδ2
for all δ ∈ (0, 1), and (8.36a)

P
[
|〈θ∗, w̄〉| ≥

√
ν

32

]
≤ c1e−c2n ν. (8.36b)

We leave the proof of these bounds as an exercise for the reader, since they follow from
standard results in Chapter 2. Combining Lemma 8.13 with the bound (8.35) yields

|Ψ(Δ; P2)| ≤ ν

32
‖Δ‖2

2 + 8
√
ν + 1

⎧⎪⎪⎨⎪⎪⎩
√

log d
n

+ δ

⎫⎪⎪⎬⎪⎪⎭ ‖Δ‖1. (8.37)

Control of third term: Recalling that P3 =
1
n WTW − Id, we have

|Ψ(Δ; P3)| ≤ ∣∣∣〈Δ, P3Δ〉
∣∣∣ + 2‖P3θ

∗‖∞‖Δ‖1. (8.38)

Our final lemma controls the two terms in this bound:

Lemma 8.14 Under the conditions of Corollary 8.12, for all δ ∈ (0, 1), we have

‖P3θ
∗‖∞ ≤ 2

√
log d

n
+ δ (8.39a)

and

sup
Δ∈Rd

∣∣∣〈Δ, P3Δ〉
∣∣∣ ≤ ν

16
‖Δ‖2

2 +
c′3
ν

log d
n

‖Δ‖2
1, (8.39b)

where both inequalities hold with probability greater than 1 − c1e−c2n min{ν,ν2,δ2}.

Combining this lemma with our earlier inequality (8.38) yields the bound

|Ψ(Δ; P3)| ≤ ν

16
‖Δ‖2

2 + 8

⎧⎪⎪⎨⎪⎪⎩
√

log d
n

+ δ

⎫⎪⎪⎬⎪⎪⎭ ‖Δ‖1 +
c′3
ν

log d
n

‖Δ‖2
1. (8.40)

Finally, combining the bounds (8.34), (8.37) and (8.40) yields the claim (8.33).

The only remaining detail is the proof of Lemma 8.14. The proof of the tail bound (8.39a)
is a simple exercise, using the sub-exponential tail bounds from Chapter 2. The proof of the
bound (8.39b) requires more involved argument, one that makes use of both Exercise 7.10
and our previous results on estimation of sample covariances from Chapter 6.

For a constant ξ > 0 to be chosen, consider the positive integer k := �ξν2 n
log d �, and the
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collection of submatrices {(P3)S S , |S | = k}. Given a parameter α ∈ (0, 1) to be chosen, a
combination of the union bound and Theorem 6.5 imply that there are universal constants c1

and c2 such that

P
[
max
|S |=k

|||(P3)S S |||2 ≥ c1

√
k
n
+ αν

]
≤ 2e−c2nα2ν2+log (d

k).

Since log
(

d
k

)
≤ 2k log(d) ≤ 4ξν2n, this probability is at most e−c2nν2(α2−4ξ) = e−c2nν2α2/2, as

long as we set ξ = α2/8. The result of Exercise 7.10 then implies that∣∣∣〈Δ, P3Δ〉
∣∣∣ ≤ 27c′1αν

{
‖Δ‖2

2 +
8

α2ν2

log d
n

‖Δ‖2
1

}
for all Δ ∈ Rd,

with the previously stated probability. Setting α = 1
(16×27)c′1

yields the claim (8.39b) with
c′3 = (2α2)−1.

8.4 Bibliographic details and background

Further details on PCA and its applications can be found in books by Anderson (1984) (cf.
chapter 11), Jollife (2004) and Muirhead (2008). See the two-volume set by Horn and John-
son (1985; 1991) for background on matrix analysis, as well as the book by Bhatia (1997) for
a general operator-theoretic viewpoint. The book by Stewart and Sun (1980) is more specif-
ically focused on matrix perturbation theory, whereas Stewart (1971) provides perturbation
theory in the more general setting of closed linear operators.

Johnstone (2001) introduced the spiked covariance model (8.18), and investigated the
high-dimensional asymptotics of its eigenstructure; see also the papers by Baik and Silver-
stein (2006) and Paul (2007) for high-dimensional asymptotics. Johnstone and Lu (2009)
introduced the sparse variant of the spiked ensemble, and proved consistency results for a
simple estimator based on thresholding the diagonal entries of the sample covariance ma-
trix. Amini and Wainwright (2009) provided a more refined analysis of this same estimator,
as well as of a semidefinite programming (SDP) relaxation proposed by d’Asprémont et
al. (2007). See Exercise 8.8 for the derivation of this latter SDP relaxation. The non-convex
estimator (8.25a) was first proposed by Joliffe et al. (2003), and called the SCOTLASS cri-
terion; Witten et al. (2009) derive an alternating algorithm for finding a local optimum of
this criterion. Other authors, including Ma (2010; 2013) and Yuan and Zhang (2013), have
studied iterative algorithms for sparse PCA based on combining the power method with soft
or hard thresholding.

Minimax lower bounds for estimating principal components in various types of spiked en-
sembles can be derived using techniques discussed in Chapter 15. These lower bounds show
that the upper bounds obtained in Corollaries 8.7 and 8.12 for ordinary and sparse PCA,
respectively, are essentially optimal. See Birnbaum et al. (2012) and Vu and Lei (2012)
for lower bounds on the �2-norm error in sparse PCA. Amini and Wainwright (2009) de-
rived lower bounds for the problem of variable selection in sparse PCA. Some of these
lower bounds are covered in this book: in particular, see Example 15.19 for minimax lower
bounds on �2-error in ordinary PCA, Example 15.20 for lower bounds on variable selec-
tion in sparse PCA, and Exercise 15.16 for �2-error lower bounds on sparse PCA. Berthet
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and Rigollet (2013) derived certain hardness results for the problem of sparse PCA detec-
tion, based on relating it to the (conjectured) average-case hardness of the planted k-clique
problem in Erdős–Rényi random graphs. Ma and Wu (2013) developed a related but distinct
reduction, one which applies to a Gaussian detection problem over a family of sparse-plus-
low-rank matrices. See also the papers (Wang et al., 2014; Cai et al., 2015; Gao et al., 2015)
for related results using the conjectured hardness of the k-clique problem.

8.5 Exercises

Exercise 8.1 (Courant–Fischer variational representation) For a given integer j ∈ {2, . . . , d},
let V j−1 denote the collection of all subspaces of dimension j−1. For any symmetric matrix
Q, show that the jth largest eigenvalue is given by

γ j(Q) = min
V∈V j−1

max
u∈V⊥∩Sd−1

〈u, Qu〉 , (8.41)

where V⊥ denotes the orthogonal subspace to V.

Exercise 8.2 (Unitarily invariant matrix norms) For positive integers d1 ≤ d2, a matrix
norm on Rd1×d2 is unitarily invariant if |||M||| = |||VMU||| for all orthonormal matrices V ∈
Rd1×d1 and U ∈ Rd2×d2 .

(a) Which of the following matrix norms are unitarily invariant?
(i) The Frobenium norm |||M|||F.

(ii) The nuclear norm |||M|||nuc.
(iii) The �2-operator norm |||M|||2 = sup‖u‖2=1 ‖Mu‖2.
(iv) The �∞-operator norm |||M|||∞ = sup‖u‖∞=1 ‖Mu‖∞.

(b) Let ρ be a norm on Rd1 that is invariant to permutations and sign changes—that is

ρ(x1, . . . , xd1 ) = ρ
(
z1xπ(1), . . . , zd1 xπ(d1)

)
for all binary strings z ∈ {−1, 1}d1 and permutations π on {1, . . . , d1}. Such a function is
known as a symmetric gauge function. Letting {σ j(M)}d1

j=1 denote the singular values of
M, show that

|||M|||ρ := ρ
(
σ1(M), . . . , σd1 (M)︸������������������︷︷������������������︸

σ(M)∈Rd1

)
defines a matrix norm. (Hint: For any pair of d1 × d2 matrices M and N, we have
trace(NTM) ≤ 〈σ(N), σ(M)〉, where σ(M) denotes the ordered vector of singular val-
ues.)

(c) Show that all matrix norms in the family from part (b) are unitarily invariant.

Exercise 8.3 (Weyl’s inequality) Prove Weyl’s inequality (8.9). (Hint: Exercise 8.1 may
be useful.)

Exercise 8.4 (Variational characterization of eigenvectors) Show that the orthogonal ma-
trix V ∈ Rd×r maximizing the criterion (8.2) has columns formed by the top r eigenvectors
of Σ = cov(X).
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Exercise 8.5 (Matrix power method) Let Q ∈ Sd×d be a strictly positive definite symmetric
matrix with a unique maximal eigenvector θ∗. Given some non-zero initial vector θ0 ∈ Rd,
consider the sequence {θt}∞t=0,

θt+1 =
Qθt

‖Qθt‖2
. (8.42)

(a) Prove that there is a large set of initial vectors θ0 for which the sequence {θt}∞t=0 converges
to θ∗.

(b) Give a “bad” initialization for which this convergence does not take place.
(c) Based on part (b), specify a procedure to compute the second largest eigenvector, as-

suming it is also unique.

Exercise 8.6 (PCA for Gaussian mixture models) Consider an instance of the Gaussian
mixture model from Example 8.3 with equal mixture weights (α = 0.5) and unit-norm mean
vector (‖θ∗‖2 = 1), and suppose that we implement the PCA-based estimator θ̂ for the mean
vector θ∗.

(a) Prove that if the sample size is lower bounded as n > c1σ
2 (1 + +σ2)d for a sufficiently

large constant c1, this estimator satisfies a bound of the form

‖̂θ − θ∗‖2 ≤ c2σ
√

1 + σ2

√
d
n

with high probability.
(b) Explain how to use your estimator to build a classification rule—that is, a mapping

x �→ ψ(x) ∈ {−1,+1}, where the binary labels code whether sample x has mean −θ∗ or
+θ∗.

(c) Does your method still work if the shared covariance matrix is not a multiple of the
identity?

Exercise 8.7 (PCA for retrieval from absolute values) Suppose that our goal is to estimate
an unknown vector θ∗ ∈ Rd based on n i.i.d. samples {(xi, yi)}ni=1 of the form yi =

∣∣∣ 〈xi, θ
∗〉
∣∣∣,

where xi ∼ N(0, Id). This model is a real-valued idealization of the problem of phase re-
trieval, to be discussed at more length in Chapter 10. Suggest a PCA-based method for
estimating θ∗ that is consistent in the limit of infinite data. (Hint: Using the pair (x, y), try to

construct a random matrix Z such that E[Z] =
√

2
π

(
θ∗ ⊗ θ∗ + Id

)
.)

Exercise 8.8 (Semidefinite relaxation of sparse PCA) Recall the non-convex problem
(8.25a), also known as the SCOTLASS estimator. In this exercise, we derive a convex re-
laxation of the objective, due to d’Aspremont et al. (2007).

(a) Show that the non-convex problem (8.25a) is equivalent to the optimization problem

max
θ∈Sd×d

+

trace(Σ̂Θ) such that trace(Θ) = 1,
∑d

j,k=1 |Θ jk| ≤ R2 and rank(Θ) = 1,

where Sd×d
+ denotes the cone of symmetric, positive semidefinite matrices.
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(b) Dropping the rank constraint yields the convex program

max
θ∈Sd×d

+

trace(Σ̂Θ) such that trace(Θ) = 1 and
∑d

j,k=1 |Θ jk| ≤ R2.

What happens when its optimum is achieved at a rank-one matrix?

Exercise 8.9 (Primal–dual witness for sparse PCA) The SDP relaxation from Exercise
8.8(b) can be written in the equivalent Lagrangian form

max
Θ∈Sd×d

+

trace(Θ)=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩trace(Σ̂Θ) − λn

d∑
j,k=1

|Θ jk|
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (8.43)

Suppose that there exists a vector θ̂ ∈ Rd and a matrix Û ∈ Rd×d such that

Û jk =

⎧⎪⎪⎨⎪⎪⎩sign(̂θ ĵθk) if θ̂ ĵθk � 0,
∈ [−1, 1] otherwise,

and moreover such that θ̂ is a maximal eigenvector of the matrix Σ̂ − λnÛ. Prove that the
rank-one matrix Θ̂ = θ̂ ⊗ θ̂ is an optimal solution to the SDP relaxation (8.43).
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Decomposability and restricted strong convexity

In Chapter 7, we studied the class of sparse linear models, and the associated use of �1-
regularization. The basis pursuit and Lasso programs are special cases of a more general
family of estimators, based on combining a cost function with a regularizer. Minimizing
such an objective function yields an estimation method known as an M-estimator. The goal
of this chapter is to study this more general family of regularized M-estimators, and to
develop techniques for bounding the associated estimation error for high-dimensional prob-
lems. Two properties are essential to obtaining consistent estimators in high dimensions:
decomposability of the regularizer, and a certain type of lower restricted curvature condition
on the cost function.

9.1 A general regularized M-estimator

Our starting point is an indexed family of probability distributions
{
Pθ, θ ∈ Ω

}
, where θ

represents some type of “parameter” to be estimated. As we discuss in the sequel, the space
Ω of possible parameters can take various forms, including subsets of vectors, matrices, or—
in the nonparametric setting to be discussed in Chapters 13 and 14—subsets of regression
or density functions. Suppose that we observe a collection of n samples Zn

1 = (Z1, . . . ,Zn),
where each sample Zi takes values in some spaceZ, and is drawn independently according to
some distributionP. In the simplest setting, known as the well-specified case, the distribution
P is a member of our parameterized family—say P = Pθ∗—and our goal is to estimate
the unknown parameter θ∗. However, our set-up will also allow for mis-specified models,
in which case the target parameter θ∗ is defined as the minimizer of the population cost
function—in particular, see equation (9.2) below.

The first ingredient of a general M-estimator is a cost function Ln : Ω ×Zn → R, where
the valueLn(θ; Zn

1) provides a measure of the fit of parameter θ to the data Zn
1 . Its expectation

defines the population cost function—namely the quantity

L(θ) := E[Ln(θ; Zn
1)]. (9.1)

Implicit in this definition is that the expectation does not depend on the sample size n,
a condition which holds in many settings (with appropriate scalings). For instance, it is
often the case that the cost function has an additive decomposition of the form Ln(θ; Zn

1) =
1
n

∑n
i=1 L(θ; Zi), where L : Ω×Z → R is the cost defined for a single sample. Of course, any

likelihood-based cost function decomposes in this way when the samples are drawn in an
independent and identically distributed manner, but such cost functions can also be useful
for dependent data.

259
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Next we define the target parameter as the minimum of the population cost function

θ∗ = arg min
θ∈Ω

L(θ). (9.2)

In many settings—in particular, when Ln is the negative log-likelihood of the data—this
minimum is achieved at an interior point ofΩ, in which case θ∗ must satisfy the zero-gradient
equation ∇L(θ∗) = 0. However, we do not assume this condition in our general analysis.

With this set-up, our goal is to estimate θ∗ on the basis of the observed samples Zn
1 =

{Z1, . . . ,Zn}. In order to do so, we combine the empirical cost function with a regularizer or
penalty functionΦ : Ω→ R. As will be clarified momentarily, the purpose of this regularizer
is to enforce a certain type of structure expected in θ∗. Our overall estimator is based on
solving the optimization problem

θ̂ ∈ arg min
θ∈Ω

{Ln(θ; Zn
1) + λnΦ(θ)

}
, (9.3)

where λn > 0 is a user-defined regularization weight. The estimator (9.3) is known as an
M-estimator, where the “M” stands for minimization (or maximization).

Remark: An important remark on notation is needed before proceeding. From here on-
wards, we will frequently adopt Ln(θ) as a shorthand for Ln(θ; Zn

1), remembering that the
subscript n reflects implicitly the dependence on the underlying samples. We also adopt the
same notation for the derivatives of the empirical cost function.

Let us illustrate this set-up with some examples.

Example 9.1 (Linear regression and Lasso) We begin with the problem of linear regression
previously studied in Chapter 7. In this case, each sample takes the form Zi = (xi, yi), where
xi ∈ Rd is a covariate vector, and yi ∈ R is a response variable. In the simplest case, we
assume that the data are generated exactly from a linear model, so that yi = 〈xi, θ

∗〉 + wi,
where wi is some type of stochastic noise variable, assumed to be independent of xi. The
least-squares estimator is based on the quadratic cost function

Ln(θ) =
1
n

n∑
i=1

1
2
(
yi − 〈xi, θ〉 )2 = 1

2n
‖y − Xθ‖2

2,

where we recall from Chapter 7 our usual notation for the vector y ∈ Rn of response variables
and design matrix X ∈ Rn×d. When the response–covariate pairs (yi, xi) are drawn from a
linear model with regression vector θ∗, then the population cost function takes the form

Ex,y
[1
2

(y − 〈x, θ〉)2] = 1
2

(θ − θ∗)TΣ(θ − θ∗) +
1
2
σ2 =

1
2
‖ √Σ (θ − θ∗)‖2

2 +
1
2
σ2,

where Σ := cov(x1) and σ2 := var(w1). Even when the samples are not drawn from a
linear model, we can still define θ∗ as a minimizer of the population cost function θ �→
Ex,y[(y − 〈x, θ〉)2]. In this case, the linear function x �→ 〈x, θ∗〉 provides the best linear
approximation of the regression function x �→ E[y | x].

As discussed in Chapter 7, there are many cases in which the target regression vector θ∗
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is expected to be sparse, and in such settings, a good choice of regularizer Φ is the �1-norm
Φ(θ) =

∑d
j=1 |θ j|. In conjunction with the least-squares loss, we obtain the Lasso estimator

θ̂ ∈ arg min
θ∈Rd

⎧⎪⎪⎨⎪⎪⎩ 1
2n

n∑
i=1

(
yi − 〈xi, θ〉 )2 + λn

d∑
j=1

|θ j|
⎫⎪⎪⎬⎪⎪⎭ (9.4)

as a special case of the general estimator (9.3). See Chapter 7 for an in-depth analysis of this
particular M-estimator. ♣
As our first extension of the basic Lasso (9.4), we now consider a more general family of
regression problems.

(a) (b) (c)

Figure 9.1 Illustration of unit balls of different norms in R3. (a) The �1-ball gener-

ated by Φ(θ) =
∑3

j=1 |θ j|. (b) The group Lasso ball generated by Φ(θ) =
√
θ2

1 + θ2
2 +

|θ3|. (c) A group Lasso ball with overlapping groups, generated byΦ(θ) =
√
θ2

1 + θ2
2+√

θ2
1 + θ2

3.

Example 9.2 (Generalized linear models and �1-regularization) We again consider samples
of the form Zi = (xi, yi) where xi ∈ Rd is a vector of covariates, but now the response variable
yi is allowed to take values in an arbitrary spaceY. The previous example of linear regression
corresponds to the case Y = R. A different example is the problem of binary classification,
in which the response yi represents a class label belonging to Y = {0, 1}. For applications
that involve responses that take on non-negative integer values—for instance, photon counts
in imaging applications—the choice Y = {0, 1, 2, . . .} is appropriate.

The family of generalized linear models, or GLMs for short, provides a unified approach
to these different types of regression problems. Any GLM is based on modeling the condi-
tional distribution of the response y ∈ Y given the covariate x ∈ Rd in an exponential family
form, namely as

Pθ∗(y | x) = hσ(y) exp
{

y 〈x, θ∗〉 − ψ
( 〈x, θ∗〉 )

c(σ)

}
, (9.5)
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where c(σ) is a scale parameter, and the function ψ : R → R is the partition function of the
underlying exponential family.

Many standard models are special cases of the generalized linear family (9.5). First, con-
sider the standard linear model y = 〈x, θ∗〉 + w, where w ∼ N(0, σ2). Setting c(σ) = σ2

and ψ(t) = t2/2, the conditional distribution (9.5) corresponds to that of a N(〈x, θ∗〉 , σ2)
variate, as required. Similarly, in the logistic model for binary classification, we assume that
the log-odds ratio is given by 〈x, θ∗〉—that is,

log
Pθ∗(y = 1 | x)
Pθ∗(y = 0 | x)

= 〈x, θ∗〉 . (9.6)

This assumption again leads to a special case of the generalized linear model (9.5), this
time with c(σ) ≡ 1 and ψ(t) = log(1 + exp(t)). As a final example, when the response y ∈
{0, 1, 2, . . .} represents some type of count, it can be appropriate to model y as conditionally
Poisson with mean μ = e〈x, θ

∗〉. This assumption leads to a generalized linear model (9.5)
with ψ(t) = exp(t) and c(σ) ≡ 1. See Exercise 9.3 for verification of these properties.

Given n samples from the model (9.5), the negative log-likelihood takes the form

Ln(θ) =
1
n

n∑
i=1

ψ
( 〈xi, θ〉 ) − 〈1

n

n∑
i=1

yixi, θ

〉
. (9.7)

Here we have rescaled the log-likelihood by 1/n for later convenience, and also dropped the
scale factor c(σ), since it is independent of θ. When the true regression vector θ∗ is expected
to be sparse, then it is again reasonable to use the �1-norm as a regularizer, and combining
with the cost function (9.7) leads to the generalized linear Lasso

θ̂ ∈ arg min
θ∈Rd

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

ψ
( 〈xi, θ〉 ) − 〈1

n

n∑
i=1

yixi, θ

〉
+ λn‖θ‖1

⎫⎪⎪⎬⎪⎪⎭ . (9.8)

When ψ(t) = t2/2, this objective function is equivalent to the standard Lasso, apart from the
constant term 1

2n

∑n
i=1 y2

i that has no effect on θ̂. ♣
Thus far, we have discussed only the �1-norm. There are various extensions of the �1-norm

that are based on some type of grouping of the coefficients.

Example 9.3 (Group Lasso) Let G = {g1, . . . , gT } be a disjoint partition of the index set
{1, . . . , d}—that is, each group gj is a subset of the index set, disjoint from every other group,
and the union of all T groups covers the full index set. See panel (a) in Figure 9.3 for an
example of a collection of overlapping groups.

For a given vector θ ∈ Rd, we let θg denote the d-dimensional vector with components
equal to θ on indices within g, and zero in all other positions. For a given base norm ‖ · ‖, we
then define the group Lasso norm

Φ(θ) :=
∑
g∈G

‖θg‖. (9.9)

The standard form of the group Lasso uses the �2-norm as the base norm, so that we ob-
tain a block �1/�2-norm—namely, the �1-norm of the �2-norms within each group. See Fig-
ure 9.1(b) for an illustration of the norm (9.9) with the blocks g1 = {1, 2} and g2 = {3}. The
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block �1/�∞-version of the group Lasso has also been studied extensively. Apart from the
basic group Lasso (9.9), another variant involves associating a positive weight ωg with each
group. ♣

In the preceding example, the groups were non-overlapping. The same regularizer (9.9)
can also be used in the case of overlapping groups; it remains a norm as long as the groups
cover the space. For instance, Figure 9.1(c) shows the unit ball generated by the overlap-
ping groups g1 = {1, 2} and g2 = {1, 3} in R3. However, the standard group Lasso (9.9)
with overlapping groups has a property that can be undesirable. Recall that the motivation
for group-structured penalties is to estimate parameter vectors whose support lies within a
union of a (relatively small) subset of groups. However, when used as a regularizer in an
M-estimator, the standard group Lasso (9.9) with overlapping groups typically leads to so-
lutions with support contained in the complement of a union of groups. For instance, in the
example shown in Figure 9.1(c) with groups g1 = {1, 2} and g2 = {1, 3}, apart from the
all-zero solution that has empty support set, or a solution with the complete support {1, 2, 3},
the penalty encourages solutions with supports equal to either gc

1 = {3} or gc
2 = {2}.
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Figure 9.2 (a) Plots of the residual penalty f (θ3) = Φ(1, 1, θ3) − Φ(1, 1, 0) for the
standard group Lasso (9.9) with a solid line and overlap group Lasso (9.10) with a
dashed line, in the case of the groups g1 = {1, 2} and g2 = {1, 3}. (b) Plot of the unit
ball of the overlapping group Lasso norm (9.10) for the same groups as in panel (a).

Why is this the case? In the example given above, consider a vector θ ∈ R3 such that
θ1, a variable shared by both groups, is active. For concreteness, say that θ1 = θ2 = 1, and
consider the residual penalty f (θ3) := Φ(1, 1, θ3)−Φ(1, 1, 0) on the third coefficient. It takes
the form

f (θ3) = ‖(1, 1)‖2 + ‖(1, θ3)‖2 − ‖(1, 1)‖2 − ‖(1, 0)‖2 =

√
1 + θ2

3 − 1.

As shown by the solid curve in Figure 9.2(a), the function f is differentiable at θ3 = 0. In-
deed, since f ′(θ3)

∣∣∣
θ3=0

= 0, this penalty does not encourage sparsity of the third coefficient.
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g1 g2 g3

(a) (b)

Figure 9.3 (a) Group Lasso penalty with non-overlapping groups. The groups
{g1, g2, g3} form a disjoint partition of the index set {1, 2, . . . , d}. (b) A total of d = 7
variables are associated with the vertices of a binary tree, and sub-trees are used to
define a set of overlapping groups. Such overlapping group structures arise naturally
in multiscale signal analysis.

A similar argument applies with the roles of θ2 and θ3 reversed. Consequently, if the shared
first variable is active in an optimal solution, it is usually the case that the second and third
variables will also be active, leading to a fully dense solution. See the bibliographic discus-
sion for references that discuss this phenomenon in greater detail.

The overlapping group Lasso is a closely related but different penalty that is designed to
overcome this potentially troublesome issue.

Example 9.4 (Overlapping group Lasso) As in Example 9.3, consider a collection of
groups G = {g1, . . . , gT }, where each group is a subset of the index set {1, . . . , d}. We re-
quire that the union over all groups covers the full index set, but we allow for overlaps
among the groups. See panel (b) in Figure 9.3 for an example of a collection of overlapping
groups.

When there actually is overlap, any vector θ has many possible group representations,
meaning collections {wg, g ∈ G} such that

∑
g∈G wg = θ. The overlap group norm is based

on minimizing over all such representations, as follows:

Φover(θ) := inf
θ=

∑
g∈G

wg

wg, g∈G

⎧⎪⎪⎪⎨⎪⎪⎪⎩∑g∈G ‖wg‖
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (9.10)

As we verify in Exercise 9.1, the variational representation (9.10) defines a valid norm on
Rd. Of course, when the groups are non-overlapping, this definition reduces to the previous
one (9.9). Figure 9.2(b) shows the overlapping group norm (9.10) in the special case of the
groups g1 = {1, 2} and g2 = {1, 3}. Notice how it differs from the standard group Lasso (9.9)
with the same choice of groups, as shown in Figure 9.1(c). ♣

When used as a regularizer in the general M-estimator (9.3), the overlapping group Lasso
(9.10) tends to induce solution vectors with their support contained within a union of the
groups. To understand this issue, let us return to the group set g1 = {1, 2} and g2 = {1, 3},
and suppose once again that the first two variables are active, say θ1 = θ2 = 1. The residual
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penalty on θ3 then takes the form

fover(θ3) := Φover(1, 1, θ3) − Φover(1, 1, 0) = inf
α∈R

{‖(α, 1)‖2 + ‖(1 − α, θ3)‖2
} − √

2.

It can be shown that this function behaves like the �1-norm around the origin, so that it tends
to encourage sparsity in θ3. See Figure 9.2(b) for an illustration.

Up to this point, we have considered vector estimation problems, in which the parameter
spaceΩ is some subspace ofRd. We now turn to various types of matrix estimation problems,
in which the parameter space is some subset of Rd1×d2 , the space of all (d1 × d2)-dimensional
matrices. Of course, any such problem can be viewed as a vector estimation problem, simply
by transforming the matrix to a D = d1d2 vector. However, it is often more natural to retain
the matrix structure of the problem. Let us consider some examples.

Example 9.5 (Estimation of Gaussian graphical models) Any zero-mean Gaussian random
vector with a strictly positive definite covariance matrix Σ ! 0 has a density of the form

P(x1, . . . , xd;Θ∗) ∝ √
det(Θ∗) e−

1
2 xTΘ∗x, (9.11)

where Θ∗ = (Σ)−1 is the inverse covariance matrix, also known as the precision matrix. In
many cases, the components of the random vector X = (X1, . . . , Xd) satisfy various types of
conditional independence relationships: for instance, it might be the case that Xj is condi-
tionally independent of Xk given the other variables X\{ j,k}. In the Gaussian case, it is a con-
sequence of the Hammersley–Clifford theorem that this conditional independence statement
holds if and only if the precision matrix Θ∗ has a zero in position ( j, k). Thus, conditional
independence is directly captured by the sparsity of the precision matrix. See Chapter 11
for further details on this relationship between conditional independence, and the structure
of Θ∗.

Given a Gaussian model that satisfies many conditional independence relationships, the
precision matrix will be sparse, in which case it is natural to use the elementwise �1-norm
Φ(Θ) =

∑
j�k |Θ jk| as a regularizer. Here we have chosen not to regularize the diagonal

entries, since they all must be non-zero so as to ensure strict positive definiteness. Combining
this form of �1-regularization with the Gaussian log-likelihood leads to the estimator

Θ̂ ∈ arg min
Θ∈Sd×d

⎧⎪⎪⎪⎨⎪⎪⎪⎩〈〈Θ, Σ̂〉〉 − log detΘ + λn

∑
j�k

|Θ jk|
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (9.12)

where Σ̂ = 1
n

∑n
i=1 xixT

i is the sample covariance matrix. This combination corresponds to
another special case of the general estimator (9.3), known as the graphical Lasso, which we
analyze in Chapter 11. ♣

The problem of multivariate regression is a natural extension of a standard regression
problem, which involves scalar response variables, to the vector-valued setting.

Example 9.6 (Multivariate regression) In a multivariate regression problem, we observe
samples of the form (zi, yi) ∈ Rp × RT , and our goal is to use the vector of features zi to
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predict the vector of responses yi ∈ RT . Let Y ∈ Rn×T and Z ∈ Rn×p be matrices with yi and
zi, respectively, as their ith row. In the simplest case, we assume that the response matrix Y

and covariate matrix Z are linked via the linear model

Y = ZΘ∗ + W, (9.13)

where Θ∗ ∈ Rp×T is a matrix of regression coefficients, and W ∈ Rn×T is a stochastic noise
matrix. See Figure 9.4 for an illustration.

= +

Θ∗Y W

n n

T

TT

Z

n × p

p

Figure 9.4 Illustration of the multivariate linear regression model: a data set of n
observations consists of a matrix Y ∈ Rn×T of multivariate responses, and a matrix
Z ∈ Rn×p of covariates, in this case shared across the tasks. Our goal is to estimate
the matrix Θ∗ ∈ Rp×T of regression coefficients.

One way in which to view the model (9.13) is as a collection of T different p-dimensional
regression problems of the form

Y·,t = ZΘ∗
·,t + W·,t, for t = 1, . . . ,T ,

where Y·,t ∈ Rn, Θ∗
·,t ∈ Rp and W·,t ∈ Rn are the tth columns of the matrices Y, Θ∗ and

W, respectively. One could then estimate each column Θ∗
·,t separately by solving a standard

univariate regression problem.
However, many applications lead to interactions between the different columns of Θ∗,

which motivates solving the univariate regression problems in a joint manner. For instance,
it is often the case that there is a subset of features—that is, a subset of the rows of Θ∗—
that are relevant for prediction in all T regression problems. For estimating such a row-
sparse matrix, a natural regularizer is the row-wise (2, 1)-norm Φ(Θ) :=

∑p
j=1 ‖Θ j,·‖2, where

Θ j,· ∈ RT denotes the jth row of the matrix Θ ∈ Rp×T . Note that this regularizer is a special
case of the general group penalty (9.9). Combining this regularizer with the least-squares
cost, we obtain

Θ̂ ∈ arg min
Θ∈Rp×T

{
1
2n
|||Y − ZΘ|||2F + λn

p∑
j=1

‖Θ j,·‖2

}
. (9.14)

This estimator is often referred to as the multivariate group Lasso, for obvious reasons. The
underlying optimization problem is an instance of a second-order cone problem (SOCP),
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and can be solved efficiently by a variety of algorithms; see the bibliography section for
further discussion. ♣
Other types of structure are also possible in multivariate regression problems, and lead to
different types of regularization.

Example 9.7 (Overlapping group Lasso and multivariate regression) There is an interest-
ing extension of the row-sparse model from Example 9.6, one which leads to an instance of
the overlapping group Lasso (9.10). The row-sparse model assumes that there is a relatively
small subset of predictors, each of which is active in all of the T tasks. A more flexible
model allows for the possibility of a subset of predictors that are shared among all tasks,
coupled with a subset of predictors that appear in only one (or relatively few) tasks. This
type of structure can be modeled by decomposing the regression matrix Θ∗ as the sum of
a row-sparse matrix Ω∗ along with an elementwise-sparse matrix Γ∗. If we impose a group
�1,2-norm on the row-sparse component and an ordinary �1-norm on the element-sparse com-
ponent, then we are led to the estimator

(Ω̂, Γ̂) ∈ arg min
Ω,Γ∈Rd×T

{
1

2n
|||Y − Z(Ω + Γ)|||2F + λn

d∑
j=1

‖Ω j,·‖2 + μn‖Γ‖1

}
, (9.15)

where λn, μn > 0 are regularization parameters to be chosen. Any solution to this optimiza-
tion problem defines an estimate of the full regression matrix via Θ̂ = Ω̂ + Γ̂.

We have defined the estimator (9.15) as an optimization problem over the matrix pair
(Ω,Γ), using a separate regularizer for each matrix component. Alternatively, we can for-
mulate it as a direct estimator for Θ̂. In particular, by making the substitution Θ = Ω + Γ,
and minimizing over both Θ and the pair (Ω,Γ) subject to this linear constraint, we obtain
the equivalent formulation

Θ̂ ∈ arg min
Θ∈Rd×T

{
1
2n
|||Y − ZΘ|||2F + λn

{
inf

Ω+Γ=Θ
‖Ω‖1,2 + ωn‖Γ‖1

}
︸��������������������������︷︷��������������������������︸

Φover(Θ)

}
, (9.16)

where ωn =
μn

λn
. In this direct formulation, we see that the assumed decomposition leads to

an interesting form of the overlapping group norm. We return to study the estimator (9.16)
in Section 9.7. ♣

In other applications of multivariate regression, one might imagine that the individual
regression vectors—that is, the columns Θ∗

·,t ∈ Rp—all lie within some low-dimensional
subspace, corresponding to some hidden meta-features, so that it has relatively low rank.
Many other problems, to be discussed in more detail in Chapter 10, also lead to estimation
problems that involve rank constraints. In such settings, the ideal approach would be to
impose an explicit rank constraint within our estimation procedure. Unfortunately, when
viewed as function on the space of d1 × d2 matrices, the rank function is non-convex, so
that this approach is not computationally feasible. Accordingly, we are motivated to study
convex relaxations of rank constraints.

Example 9.8 (Nuclear norm as a relaxation of rank) The nuclear norm provides a natural
relaxation of the rank of a matrix, one which is analogous to the �1-norm as a relaxation of
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the cardinality of a vector. In order to define the nuclear norm, we first recall the singular
value decomposition, or SVD for short, of a matrix Θ ∈ Rd1×d2 . Letting d′ = min{d1, d2}, the
SVD takes the form

Θ = UDVT, (9.17)

where U ∈ Rd1×d′ and V ∈ Rd2×d′ are orthonormal matrices (meaning that UTU = VTV = Id′).
The matrix D ∈ Rd′×d′ is diagonal with its entries corresponding to the singular values of Θ,
denoted by

σ1(Θ) ≥ σ2(Θ) ≥ σ3(Θ) ≥ · · · ≥ σd′(Θ) ≥ 0. (9.18)

(a) (b)

Figure 9.5 Illustration of the nuclear norm ball as a relaxation of a rank constraint.

(a) Set of all matrices of the form Θ =

[
θ1 θ2
θ2 θ3

]
such that |||Θ|||nuc ≤ 1. This is

a projection of the unit ball of the nuclear norm ball onto the space of symmetric
matrices. (b) For a parameter q > 0, the �q-“ball” of matrices is defined by Bq(1) =
{Θ ∈ R2×2 | ∑2

j=1 σ j(Θ)q ≤ 1}. For all q ∈ [0, 1), this is a non-convex set, and it is
equivalent to the set of all rank-one matrices for q = 0.

Observe that the number of strictly positive singular values specifies the rank—that is, we
have rank(Θ) =

∑d′
j=1 I

[
σ j(Θ) > 0

]
. This observation, though not practically useful on its

own, suggests a natural convex relaxation of a rank constraint, namely the nuclear norm

|||Θ|||nuc =

d′∑
j=1

σ j(Θ), (9.19)

corresponding to the �1-norm of the singular values.1 As shown in Figure 9.5(a), the nuclear
norm provides a convex relaxation of the set of low-rank matrices. ♣

There are a variety of other statistical models—in addition to multivariate regression—in
which rank constraints play a role, and the nuclear norm relaxation is useful for many of
them. These problems are discussed in detail in Chapter 10 to follow.

1 No absolute value is necessary, since singular values are non-negative by definition.
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9.2 Decomposable regularizers and their utility

Having considered a general family of M-estimators (9.3) and illustrated it with various ex-
amples, we now turn to the development of techniques for bounding the estimation error
θ̂ − θ∗. The first ingredient in our analysis is a property of the regularizer known as decom-
posability. It is a geometric property, based on how the regularizer behaves over certain pairs
of subspaces. The �1-norm is the canonical example of a decomposable norm, but various
other norms also share this property. Decomposability implies that any optimum θ̂ to the
M-estimator (9.3) belongs to a very special set, as shown in Proposition 9.13.

From here onwards, we assume that the set Ω is endowed with an inner product 〈·, ·〉, and
we use ‖ · ‖ to denote the norm induced by this inner product. The standard examples to keep
in mind are

• the space Rd with the usual Euclidean inner product, or more generally with a weighted
Euclidean inner product, and

• the space Rd1×d2 equipped with the trace inner product (10.1).

Given a vector θ ∈ Ω and a subspace S of Ω, we use θS to denote the projection of θ onto S.
More precisely, we have

θS := arg min
θ̃∈S

‖̃θ − θ‖2. (9.20)

These projections play an important role in the sequel; see Exercise 9.2 for some examples.

9.2.1 Definition and some examples

The notion of a decomposable regularizer is defined in terms of a pair of subspaces M ⊆ M
of Rd. The role of the model subspace M is to capture the constraints specified by the model;
for instance, as illustrated in the examples to follow, it might be the subspace of vectors with
a particular support or a subspace of low-rank matrices. The orthogonal complement of the
space M, namely the set

M⊥ :=
{
v ∈ Rd | 〈u, v〉 = 0 for all u ∈ M

}
, (9.21)

is referred to as the perturbation subspace, representing deviations away from the model
subspace M. In the ideal case, we have M⊥ = M⊥, but the definition allows for the possibil-
ity that M is strictly larger than M, so that M⊥ is strictly smaller than M⊥. This generality is
needed for treating the case of low-rank matrices and nuclear norm, as discussed in Chap-
ter 10.

Definition 9.9 Given a pair of subspaces M ⊆ M, a norm-based regularizer Φ is de-
composable with respect to (M,M⊥) if

Φ(α + β) = Φ(α) + Φ(β) for all α ∈ M and β ∈ M⊥. (9.22)
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M⊥

M
α

β

Figure 9.6 In the ideal case, decomposability is defined in terms of a subspace pair
(M,M⊥). For any α ∈ M and β ∈ M⊥, the regularizer should decompose as Φ(α+ β) =
Φ(α) + Φ(β).

See Figure 9.6 for the geometry of this definition. In order to build some intuition, let
us consider the ideal case M = M, so that the decomposition (9.22) holds for all pairs
(α, β) ∈ M × M⊥. For any given pair (α, β) of this form, the vector α + β can be interpreted
as perturbation of the model vector α away from the subspace M, and it is desirable that the
regularizer penalize such deviations as much as possible. By the triangle inequality for a
norm, we always have Φ(α+β) ≤ Φ(α)+Φ(β), so that the decomposability condition (9.22)
holds if and only if the triangle inequality is tight for all pairs (α, β) ∈ (M,M⊥). It is exactly
in this setting that the regularizer penalizes deviations away from the model subspace M as
much as possible.

Let us consider some illustrative examples:

Example 9.10 (Decomposability and sparse vectors) We begin with the �1-norm, which is
the canonical example of a decomposable regularizer. Let S be a given subset of the index
set {1, . . . , d} and S c be its complement. We then define the model subspace

M ≡ M(S ) :=
{
θ ∈ Rd | θ j = 0 for all j ∈ S c}, (9.23)

corresponding to the set of all vectors that are supported on S . Observe that

M⊥(S ) =
{
θ ∈ Rd | θ j = 0 for all j ∈ S

}
.

With these definitions, it is then easily seen that for any pair of vectors α ∈ M(S ) and
β ∈ M⊥(S ), we have

‖α + β‖1 = ‖α‖1 + ‖β‖1,

showing that the �1-norm is decomposable with respect to the pair (M(S ),M⊥(S )). ♣
Example 9.11 (Decomposability and group sparse norms) We now turn to the notion of
decomposability for the group Lasso norm (9.9). In this case, the subspaces are defined in
terms of subsets of groups. More precisely, given any subset S G ⊂ G of the group index set,
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consider the set

M(S G) :=
{
θ ∈ Ω | θg = 0 for all g � S G

}
, (9.24)

corresponding to the subspace of vectors supported only on groups indexed by S G. Note
that the orthogonal subspace is given by M⊥(S G) = {θ ∈ Ω | θg = 0 for all g ∈ S G}. Letting
α ∈ M(S G) and β ∈ M⊥(S G) be arbitrary, we have

Φ(α + β) =
∑
g∈SG

‖αg‖ +
∑
g∈S c

G

‖βg‖ = Φ(α) + Φ(β),

thus showing that the group norm is decomposable with respect to the pair (M(S G),M⊥(S G)).
♣

In the preceding example, we considered the case of non-overlapping groups. It is natural
to ask whether the same decomposability—that is, with respect to the pair (M(S G),M⊥(S G))—
continues to hold for the ordinary group Lasso ‖θ‖G = ∑

g∈G ‖θg‖when the groups are allowed
to be overlapping. A little thought shows that this is not the case in general: for instance, in
the case θ ∈ R4, consider the overlapping groups g1 = {1, 2}, g2 = {2, 3} and g3 = {3, 4}. If
we let S G = {g1}, then

M⊥(S G) =
{
θ ∈ R4 | θ1 = θ2 = 0

}
.

The vector α =
[
0 1 0 0

]
belongs to M(S G), and the vector β =

[
0 0 1 0

]
belongs

to M⊥(S G). In the case of the group �1/�2-norm ‖θ‖G,2 =
∑

g∈G ‖θg‖2, we have ‖α + β‖G,2 =

1 +
√

2 + 1, but

‖α‖G,2 + ‖β‖G,2 = 1 + 1 + 1 + 1 = 4 > 2 +
√

2, (9.25)

showing that decomposability is violated. However, this issue can be addressed by a different
choice of subspace pair, one that makes use of the additional freedom provided by allowing
for M � M. We illustrate this procedure in the following:

Example 9.12 (Decomposability of ordinary group Lasso with overlapping groups) As
before, let S G be a subset of the group index set G, and define the subspace M(S G). We then
define the augmented group set

S̃ G :=
{
g ∈ G | g ∩

⋃
h∈SG

h � ∅
}
, (9.26)

corresponding to the set of groups with non-empty intersection with some group in S G.
Note that in the case of non-overlapping groups, we have S̃ G = S G, whereas S̃ G ⊇ S G
in the more general case of overlapping groups. This augmented set defines the subspace
M := M(S̃ G) ⊇ M(S G), and we claim that the overlapping group norm is decomposable with
respect to the pair (M(S G),M⊥(S̃ G)).

Indeed, let α and β be arbitrary members of M(S G) and M⊥(S̃ G), respectively. Note that
any element of M⊥(S̃ G) can have support only on the subset

⋃
h�S̃G h; at the same time, this

subset has no overlap with
⋃

g∈SG g, and any element of M(S G) is supported on this latter
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subset. As a consequence of these properties, we have

‖α + β‖G =
∑
g∈G

(α + β)g =
∑
g∈S̃G

αg +
∑
g�S̃G

βg = ‖α‖G + ‖β‖G,

as claimed. ♣
It is worthwhile observing how our earlier counterexample (9.25) is excluded by the con-

struction given in Example 9.12. With the groups g1 = {1, 2}, g2 = {2, 3} and g3 = {3, 4},
combined with the subset S G = {g1}, we have S̃ G = {g1, g2}. The vector β =

[
0 0 1 0

]
belongs to the subspace

M⊥(S G) = {θ ∈ Rd | θ1 = θ2 = 0},
but it does not belong to the smaller subspace

M⊥(S̃ G) = {θ ∈ R4 | θ1 = θ2 = θ3 = 0}.
Consequently, it does not violate the decomposability property. However, note that there is
a statistical price to be paid by enlarging to the augmented set M(S̃ G): as our later results
demonstrate, the statistical estimation error scales as a function of the size of this set.

As discussed previously, many problems involve estimating low-rank matrices, in which
context the nuclear norm (9.19) plays an important role. In Chapter 10, we show how the
nuclear norm is decomposable with respect to appropriately chosen subspaces. Unlike our
previous examples (in which M = M), in this case we need to use the full flexibility of our
definition, and choose M to be a strict superset of M.

Finally, it is worth noting that sums of decomposable regularizers over disjoint sets of
parameters remain decomposable: that is, if Φ1 and Φ2 are decomposable with respect to
subspaces over Ω1 and Ω2 respectively, then the sum Φ1 + Φ2 remains decomposable with
respect to the same subspaces extended to the Cartesian product space Ω1×Ω2. For instance,
this property is useful for the matrix decomposition problems discussed in Chapter 10, which
involve a pair of matrices Λ and Γ, and the associated regularizers Φ1(Λ) = |||Λ|||nuc and
Φ2(Γ) = ‖Γ‖1.

9.2.2 A key consequence of decomposability

Why is decomposability important in the context of M-estimation? Ultimately, our goal is
to provide bounds on the error vector Δ̂ := θ̂ − θ∗ between any global optimum of the
optimization problem (9.3) and the unknown parameter θ∗. In this section, we show that
decomposability—in conjunction with a suitable choice for the regularization weight λn—
ensures that the error Δ̂ must lie in a very restricted set.

In order to specify a “suitable” choice of regularization parameter λn, we need to define
the notion of the dual norm associated with our regularizer. Given any norm Φ : Rd → R, its
dual norm is defined in a variational manner as

Φ∗(v) := sup
Φ(u)≤1

〈u, v〉 . (9.27)
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Regularizer Φ Dual norm Φ∗

�1-norm Φ(u) =
∑d

j=1 |u j| �∞-norm Φ∗(v) = ‖v‖∞ = max
j=1,...,d

|v j|

Group �1/�p-norm Φ(u) =
∑

g∈G ‖ug‖p Group �∞/�q-norm Φ∗(v) = max
g∈G

‖vg‖q

Non-overlapping groups 1
p +

1
q = 1

Nuclear norm Φ(M) =
d∑

j=1
σ j(M) �2-operator norm Φ∗(N) = max

j=1,...,d
σ j(N)

d = min{d1, d2}

Overlap group norm Overlap dual norm

Φ(u) = inf
u=

∑
g∈G wg

‖wg‖p Φ∗(v) = maxg∈G ‖vg‖q

Sparse-low-rank decomposition norm Weighted max. norm

Φω(M) = inf
M=A+B

{
‖A‖1 + ω|||B|||nuc

}
Φ∗(N) = max

{
‖N‖max, ω

−1|||N|||2
}

Table 9.1 Primal and dual pairs of regularizers in various cases. See Exercises 9.4 and 9.5 for verifi-
cation of some of these correspondences.

Table 9.1 gives some examples of various dual norm pairs.
Our choice of regularization parameter is specified in terms of the random vector ∇Ln(θ∗)

—the gradient of the empirical cost evaluated at θ∗, also referred to as the score function.
Under mild regularity conditions, we have E

[∇Ln(θ∗))
]
= ∇L(θ∗). Consequently, when the

target parameter θ∗ lies in the interior of the parameter space Ω, by the optimality condi-
tions for the minimization (9.2), the random vector ∇Ln(θ∗) has zero mean. Under ideal
circumstances, we expect that the score function will not be too large, and we measure its
fluctuations in terms of the dual norm, thereby defining the “good event”

G(λn) :=
{
Φ∗(∇Ln(θ∗)) ≤ λn

2

}
. (9.28)

With this set-up, we are now ready for the statement of the main technical result of this sec-
tion. The reader should recall the definition of the subspace projection operator (9.20).

Proposition 9.13 Let Ln : Ω → R be a convex function, let the regularizer Φ : Ω →
[0,∞) be a norm, and consider a subspace pair (M,M⊥) over whichΦ is decomposable.
Then conditioned on the event G(λn), the error Δ̂ = θ̂ − θ∗ belongs to the set

Cθ∗(M,M⊥) :=
{
Δ ∈ Ω | Φ(ΔM̄⊥) ≤ 3Φ(ΔM̄) + 4Φ(θ∗M⊥)

}
. (9.29)

When the subspaces (M,M⊥) and parameter θ∗ are clear from the context, we adopt the
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shorthand notation C. Figure 9.7 provides an illustration of the geometric structure of the
set C. To understand its significance, let us consider the special case when θ∗ ∈ M, so that
θ∗M⊥ = 0. In this case, membership of Δ̂ in C implies that Φ(Δ̂M̄⊥) ≤ 3Φ(Δ̂M̄), and hence that

Φ(Δ̂) = Φ(Δ̂M̄ + Δ̂M̄⊥) ≤ Φ(Δ̂M̄) + Φ(Δ̂M̄⊥) ≤ 4Φ(Δ̂M̄). (9.30)

Consequently, when measured in the norm defined by the regularizer, the vector Δ̂ is only a
constant factor larger than the projected quantity Δ̂M̄. Whenever the subspace M is relatively
small, this inequality provides significant control on Δ̂.

(Δ1,Δ2)

Δ3

Φ(ΔM⊥)

Φ(ΔM)

(a) (b)

Figure 9.7 Illustration of the setCθ∗ (M,M⊥) in the special case Δ = (Δ1,Δ2,Δ3) ∈ R3

and regularizer Φ(Δ) = ‖Δ‖1, relevant for sparse vectors (Example 9.1). This picture
shows the case S = {3}, so that the model subspace is M(S ) = {Δ ∈ R3 | Δ1 = Δ2 =
0}, and its orthogonal complement is given by M⊥(S ) = {Δ ∈ R3 | Δ3 = 0}. (a) In the
special case when θ∗1 = θ∗2 = 0, so that θ∗ ∈ M, the set C(M,M⊥) is a cone, with no
dependence on θ∗. (b) When θ∗ does not belong to M, the set C(M,M⊥) is enlarged in
the coordinates (Δ1,Δ2) that span M⊥. It is no longer a cone, but is still a star-shaped
set.

We now turn to the proof of the proposition:

Proof Our argument is based on the function F : Ω→ R given by

F (Δ) := Ln(θ∗ + Δ) − Ln(θ∗) + λn
{
Φ(θ∗ + Δ) − Φ(θ∗)

}
. (9.31)

By construction, we have F (0) = 0, and so the optimality of θ̂ implies that the error vector
Δ̂ = θ̂ − θ∗ must satisfy the condition F (Δ̂) ≤ 0, corresponding to a basic inequality in this
general setting. Our goal is to exploit this fact in order to establish the inclusion (9.29). In
order to do so, we require control on the two separate pieces of F , as summarized in the
following:
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Lemma 9.14 (Deviation inequalities) For any decomposable regularizer and param-
eters θ∗ and Δ, we have

Φ(θ∗ + Δ) − Φ(θ∗) ≥ Φ(ΔM̄⊥) − Φ(ΔM̄) − 2Φ(θ∗M⊥). (9.32)

Moreover, for any convex function Ln, conditioned on the event G(λn), we have

Ln(θ∗ + Δ) − Ln(θ∗) ≥ −λn

2

[
Φ (ΔM̄) + Φ (ΔM̄⊥)

]
. (9.33)

Given this lemma, the claim of Proposition 9.13 follows immediately. Indeed, combining
the two lower bounds (9.32) and (9.33), we obtain

0 ≥ F (Δ̂) ≥ λn

{
Φ(ΔM̄⊥) − Φ(ΔM̄) − 2Φ(θ∗M⊥)

}
− λn

2

{
Φ (ΔM̄) + Φ (ΔM̄⊥)

}
=

λn

2

{
Φ(ΔM̄⊥) − 3Φ(ΔM̄) − 4Φ(θ∗M⊥)

}
,

from which the claim follows.
Thus, it remains to prove Lemma 9.14, and here we exploit decomposability of the regu-

larizer. Since Φ (θ∗ + Δ) = Φ
(
θ∗M + θ∗M⊥ + ΔM̄ + ΔM̄⊥

)
, applying the triangle inequality yields

Φ (θ∗ + Δ) ≥ Φ
(
θ∗M + ΔM̄⊥

) − Φ (
θ∗M⊥ + ΔM̄

) ≥ Φ
(
θ∗M + ΔM̄⊥

) − Φ (
θ∗M⊥

) − Φ (ΔM̄) .

By decomposability applied to θ∗M and ΔM̄⊥ , we have Φ
(
θ∗M + ΔM̄⊥

)
= Φ

(
θ∗M
)
+ Φ (ΔM̄⊥), so

that

Φ (θ∗ + Δ) ≥ Φ
(
θ∗M
)
+ Φ (ΔM̄⊥) − Φ (

θ∗M⊥
) − Φ (ΔM̄) . (9.34)

Similarly, by the triangle inequality, we have Φ(θ∗) ≤ Φ
(
θ∗M
)
+ Φ

(
θ∗M⊥

)
. Combining this

inequality with the bound (9.34), we obtain

Φ (θ∗ + Δ) − Φ(θ∗) ≥ Φ
(
θ∗M
)
+ Φ (ΔM̄⊥) − Φ (

θ∗M⊥
) − Φ (ΔM̄) − {Φ (

θ∗M
)
+ Φ

(
θ∗M⊥

) }
= Φ (ΔM̄⊥) − Φ (ΔM̄) − 2Φ

(
θ∗M⊥

)
,

which yields the claim (9.32).
Turning to the cost difference, using the convexity of the cost function Ln, we have

Ln(θ∗ + Δ) − Ln(θ∗) ≥ 〈∇Ln(θ∗), Δ〉 ≥ −|〈∇Ln(θ∗), Δ〉|.
Applying the Hölder inequality with the regularizer and its dual (see Exercise 9.7), we have

|〈∇Ln(θ∗), Δ〉| ≤ Φ∗(∇Ln(θ∗)) Φ(Δ) ≤ λn

2
[
Φ (ΔM̄) + Φ (ΔM̄⊥)

]
,

where the final step uses the triangle inequality, and the assumed bound λn ≥ 2Φ∗(∇Ln(θ∗)).
Putting together the pieces yields the claimed bound (9.33). This completes the proof of
Lemma 9.14, and hence the proof of the proposition.
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9.3 Restricted curvature conditions

We now turn to the second component of a general framework, which concerns the curvature
of the cost function. Before discussing the general high-dimensional setting, let us recall the
classical role of curvature in maximum likelihood estimation, where it enters via the Fisher
information matrix. Under i.i.d. sampling, the principle of maximum likelihood is equivalent
to minimizing the cost function

Ln(θ) := −1
n

n∑
i=1

logPθ(zi). (9.35)

The Hessian of this cost function ∇2Ln(θ) is the sample version of the Fisher information
matrix; as the sample size n increases to infinity with d fixed, it converges in a pointwise
sense to the population Fisher information ∇2L(θ). Recall that the population cost function
L was defined previously in equation (9.1). The Fisher information matrix evaluated at θ∗

provides a lower bound on the accuracy of any statistical estimator via the Cramér–Rao
bound. As a second derivative, the Fisher information matrix ∇2L(θ∗) captures the curvature
of the cost function around the point θ∗.

C

Δgood

Δbad

Figure 9.8 Illustration of the cost function θ �→ Ln(θ; Zn
1). In the high-dimensional

setting (d > n), although it may be curved in certain directions (e.g., Δgood), there are
d − n directions in which it is flat up to second order (e.g., Δbad).

In the high-dimensional setting, the story becomes a little more complicated. In particu-
lar, whenever n < d, then the sample Fisher information matrix ∇2Ln(θ∗) is rank-degenerate.
Geometrically, this rank degeneracy implies that the cost function takes the form shown in
Figure 9.8: while curved upwards in certain directions, there are d − n directions in which
it is flat up to second order. Consequently, the high-dimensional setting precludes any type
of uniform lower bound on the curvature, and we can only hope to obtain some form of re-
stricted curvature. There are several ways in which to develop such notions, and we describe
two in the sections to follow, the first based on lower bounding the error in the first-order
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Taylor-series expansion, and the second by directly lower bounding the curvature of the
gradient mapping.

9.3.1 Restricted strong convexity

We begin by describing the notion of restricted strong convexity, which is defined by the
Taylor-series expansion. Given any differentiable cost function, we can use the gradient to
form the first-order Taylor approximation, which then defines the first-order Taylor-series
error

En(Δ) := Ln(θ∗ + Δ) − Ln(θ∗) − 〈∇Ln(θ∗), Δ〉 . (9.36)

Whenever the function θ �→ Ln(θ) is convex, this error term is always guaranteed to be non-
negative.2 Strong convexity requires that this lower bound holds with a quadratic slack: in
particular, for a given norm ‖ · ‖, the cost function is locally κ-strongly convex at θ∗ if the
first-order Taylor error is lower bounded as

En(Δ) ≥ κ

2
‖Δ‖2 (9.37)

for all Δ in a neighborhood of the origin. As previously discussed, this notion of strong
convexity cannot hold for a generic high-dimensional problem. But for decomposable regu-
larizers, we have seen (Proposition 9.13) that the error vector must belong to a very special
set, and we use this fact to define the notion of restricted strong convexity.

Definition 9.15 For a given norm ‖ · ‖ and regularizer Φ(·), the cost function satisfies
a restricted strong convexity (RSC) condition with radius R > 0, curvature κ > 0 and
tolerance τ2

n if

En(Δ) ≥ κ

2
‖Δ‖2 − τ2

n Φ
2(Δ) for all Δ ∈ B(R). (9.38)

To clarify a few aspects of this definition, the set B(R) is the unit ball defined by the given
norm ‖ · ‖. In our applications of RSC, the norm ‖ · ‖ will be derived from an inner product
on the space Ω. Standard cases include the usual Euclidean norm on Rd, and the Frobenius
norm on the matrix space Rd1×d2 . Various types of weighted quadratic norms also fall within
this general class.

Note that, if we set the tolerance term τ2
n = 0, then the RSC condition (9.38) is equivalent

to asserting that Ln is locally strongly convex in a neighborhood of θ∗ with coefficient κ. As
previously discussed, such a strong convexity condition cannot hold in the high-dimensional
setting. However, given our goal of proving error bounds on M-estimators, we are not inter-
ested in all directions, but rather only the directions in which the error vector Δ̂ = θ̂ − θ∗ can
lie. For decomposable regularizers, Proposition 9.13 guarantees that the error vector must
lie in the very special “cone-like” sets Cθ∗(M,M⊥). Even with a strictly positive tolerance
τ2

n > 0, an RSC condition of the form (9.38) can be used to guarantee a lower curvature over
2 Indeed, for differentiable functions, this property may be viewed as an equivalent definition of convexity.
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this restricted set, as long as the sample size is sufficiently large. We formalize this intuition
after considering a few concrete instances of Definition 9.15.

Example 9.16 (Restricted eigenvalues for least-squares cost) In this example, we show
how the restricted eigenvalue conditions (see Definition 7.12 in Chapter 7) correspond
to a special case of restricted strong convexity. For the least-squares objective Ln(θ) =
1
2n‖y − Xθ‖2

2, an easy calculation yields that the first-order Taylor error is given by En(Δ) =
‖XΔ‖2

2
2n . A restricted strong convexity condition with the �1-norm then takes the form

‖XΔ‖2
2

2n
≥ κ

2
‖Δ‖2

2 − τ2
n‖Δ‖2

1 for all Δ ∈ Rd. (9.39)

For various types of sub-Gaussian matrices, bounds of this form hold with high probability
for the choice τ2

n  log d
n . Theorem 7.16 in Chapter 7 provides one instance of such a result.

As a side remark, this example shows that the least-squares objective is special in two
ways: the first-order Taylor error is independent of θ∗ and, moreover, it is a positively homo-
geneous function of degree two—that is, En(tΔ) = t2En(Δ) for all t ∈ R. The former property
implies that we need not be concerned about uniformity in θ∗, whereas the latter implies that
it is not necessary to localize Δ to a ball B(R). ♣

Later in Section 9.8, we provide more general results, showing that a broader class of cost
functions satisfy a restricted strong convexity condition of the type (9.39). Let us consider
one example here:

Example 9.17 (RSC for generalized linear models) Recall the family of generalized linear
models from Example 9.2, and the cost function (9.7) defined by the negative log-likelihood.
Suppose that we draw n i.i.d. samples, in which the covariates {xi}ni=1 are drawn from a zero-
mean sub-Gaussian distribution with non-degenerate covariance matrix Σ. As a consequence
of a result to follow (Theorem 9.36), the Taylor-series error of various GLM log-likelihoods
satisfies a lower bound of the form

En(Δ) ≥ κ

2
‖Δ‖2

2 − c1
log d

n
‖Δ‖2

1 for all ‖Δ‖2 ≤ 1 (9.40)

with probability greater than 1 − c2 exp(−c3n).
Theorem 9.36 actually provides a more general guarantee in terms of the quantity

μn(Φ∗) := Ex,ε

⎡⎢⎢⎢⎢⎢⎣Φ∗
⎛⎜⎜⎜⎜⎜⎝1

n

n∑
i=1

εi xi

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ , (9.41)

where Φ∗ denotes the dual norm, and {εi}ni=1 is a sequence of i.i.d. Rademacher variables.
With this notation, we have

En(Δ) ≥ κ

2
‖Δ‖2

2 − c1 μ2
n(Φ∗) Φ2(Δ) for all ‖Δ‖2 ≤ 1 (9.42)

with probability greater than 1− c2 exp(−c3n). This result is a generalization of our previous

bound (9.40), since μn(Φ∗) �
√

log d
n in the case of �1-regularization.

In Exercise 9.8, we bound the quantity (9.41) for various norms. For group Lasso with
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group set G and maximum group size m, we show that

μn(Φ∗) �
√

m
n
+

√
log |G|

n
, (9.43a)

whereas for the nuclear norm for d1 × d2 matrices, we show that

μn(Φ∗) �
√

d1

n
+

√
d2

n
. (9.43b)

We also show how these results, in conjunction with the lower bound (9.42), imply suitable
forms of restricted convexity as long as the sample size is sufficiently large. ♣

We conclude this section with the definition of one last geometric parameter that plays
an important role. As we have just seen, in the context of �1-regularization and the RE con-
dition, the cone constraint is very useful; in particular, it implies that ‖Δ‖1 ≤ 4

√
s‖Δ‖2, a

bound used repeatedly in Chapter 7. Returning to the general setting, we need to study how
to translate between Φ(ΔM) and ‖ΔM‖ for an arbitrary decomposable regularizer and error
norm.

Definition 9.18 (Subspace Lipschitz constant) For any subspace S ofRd, the subspace
Lipschitz constant with respect to the pair (Φ, ‖ · ‖) is given by

Ψ(S) := sup
u∈S\{0}

Φ(u)
‖u‖ . (9.44)

To clarify our terminology, this quantity is the Lipschitz constant of the regularizer with re-
spect to the error norm, but as restricted to the subspace S. It corresponds to the worst-case
price of translating between the Φ- and ‖ · ‖-norms for any vector in S.

To illustrate its use, let us consider it in the special case when θ∗ ∈ M. Then for any
Δ ∈ Cθ∗(M,M⊥), we have

Φ(Δ)
(i)≤ Φ(ΔM̄) + Φ(ΔM̄⊥)

(ii)≤ 4Φ(ΔM̄)
(iii)≤ 4Ψ(M)‖Δ‖, (9.45)

where step (i) follows from the triangle inequality, step (ii) from membership in C(M,M⊥),
and step (iii) from the definition of Ψ(M).

As a simple example, if M is a subspace of s-sparse vectors, then with regularizer Φ(u) =
‖u‖1 and error norm ‖u‖ = ‖u‖2, we have Ψ(M) =

√
s. In this way, we see that inequal-

ity (9.45) is a generalization of the familiar inequality ‖Δ‖2 ≤ 4
√

s‖Δ‖1 in the context of
sparse vectors. The subspace Lipschitz constant appears explicitly in the main results, and
also arises in establishing restricted strong convexity.

9.4 Some general theorems

Thus far, we have discussed the notion of decomposable regularizers, and some related no-
tions of restricted curvature for the cost function. In this section, we state and prove some
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results on the estimation error, namely, the quantity θ̂ − θ∗, where θ̂ denotes any optimum of
the regularized M-estimator (9.3).

9.4.1 Guarantees under restricted strong convexity

We begin by stating and proving a general result that holds under the restricted strong con-
vexity condition given in Section 9.3.1. Let us summarize the assumptions that we impose
throughout this section:

(A1) The cost function is convex, and satisfies the local RSC condition (9.38) with curvature
κ, radius R and tolerance τ2

n with respect to an inner-product induced norm ‖ · ‖.
(A2) There is a pair of subspacesM ⊆ M such that the regularizer decomposes over (M,M⊥).

We state the result as a deterministic claim, but conditioned on the “good” event

G(λn) :=
{
Φ∗(∇Ln(θ∗)) ≤ λn

2

}
. (9.46)

Our bound involves the quantity

ε2
n(M,M⊥) := 9

λ2
n

κ2 Ψ2(M)︸��������︷︷��������︸
estimation error

+
8
κ

{
λnΦ(θ∗M⊥) + 16τ2

nΦ
2(θ∗M⊥)

}
︸��������������������������������︷︷��������������������������������︸

approximation error

, (9.47)

which depends on the choice of our subspace pair (M,M⊥).

Theorem 9.19 (Bounds for general models) Under conditions (A1) and (A2), con-
sider the regularized M-estimator (9.3) conditioned on the event G(λn),

(a) Any optimal solution satisfies the bound

Φ(̂θ − θ∗) ≤ 4
{
Ψ(M) ‖̂θ − θ∗‖ + Φ(θ∗M⊥)

}
. (9.48a)

(b) For any subspace pair (M,M⊥) such that τ2
nΨ

2(M) ≤ κ
64 and εn(M,M⊥) ≤ R, we have

‖̂θ − θ∗‖2 ≤ ε2
n(M,M⊥). (9.48b)

It should be noted that Theorem 9.19 is actually a deterministic result. Probabilistic condi-
tions enter in certifying that the RSC condition holds with high probability (see Section 9.8),
and in verifying that, for a concrete choice of regularization parameter, the dual norm bound
λn ≥ 2Φ∗(∇Ln(θ∗)) defining the event G(λn) holds with high probability. The dual norm
bound cannot be explicitly verified, since it presumes knowledge of θ∗, but it suffices to give
choices of λn for which it holds with high probability. We illustrate such choices in various
examples to follow.

Equations (9.48a) and (9.48b) actually specify a family of upper bounds, one for each sub-
space pair (M,M⊥) over which the regularizer Φ decomposes. The optimal choice of these
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subspaces serves to trade off the estimation and approximation error terms in the bound. The
upper bound (9.48b) corresponds to an oracle inequality, since it applies to any parameter θ∗,
and gives a family of upper bounds involving two sources of error. The term labeled “esti-
mation error” represents the statistical cost of estimating a parameter belong to the subspace
M ⊆ M; naturally, it increases as M grows. The second quantity represents “approximation
error” incurred by estimating only within the subspace M, and it shrinks as M is increased.
Thus, the optimal bound is obtained by choosing the model subspace to balance these two
types of error. We illustrate such choices in various examples to follow.

In the special case that the target parameter θ∗ is contained within a subspace M, Theo-
rem 9.19 has the following corollary:

Corollary 9.20 Suppose that, in addition to the conditions of Theorem 9.19, the opti-
mal parameter θ∗ belongs to M. Then any optimal solution θ̂ to the optimization prob-
lem (9.3) satisfies the bounds

Φ(̂θ − θ∗) ≤ 6
λn

κ
Ψ2(M), (9.49a)

‖̂θ − θ∗‖2 ≤ 9
λ2

n

κ2 Ψ
2(M). (9.49b)

This corollary can be applied directly to obtain concrete estimation error bounds for many
problems, as we illustrate in the sequel.

We now turn to the proof of Theorem 9.19.

Proof We begin by proving part (a). Letting Δ̂ = θ̂ − θ∗ be the error, by the triangle in-
equality, we have

Φ(Δ̂) ≤ Φ(Δ̂M̄) + Φ(Δ̂M̄⊥)
(i)≤ Φ(Δ̂M̄) +

{
3Φ(Δ̂M̄) + 4Φ(θ∗M⊥)

}
(ii)≤ 4

{
Ψ(M) ‖̂θ − θ∗‖ + Φ(θ∗M⊥)

}
,

where inequality (i) follows from Proposition 9.13 under event G(λn) and inequality (ii) fol-
lows from the definition of the optimal subspace constant.

Turning to the proof of part (b), in order to simplify notation, we adopt the shorthand C
for the set Cθ∗(M,M⊥). Letting δ ∈ (0,R] be a given error radius to be chosen, the following
lemma shows that it suffices to control the sign of the function F from equation (9.31) over
the set K(δ) := C ∩ {‖Δ‖ = δ}.
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Lemma 9.21 If F (Δ) > 0 for all vectors Δ ∈ K(δ), then ‖Δ̂‖ ≤ δ.

Proof We prove the contrapositive statement: in particular, we show that if for some op-
timal solution θ̂, the associated error vector Δ̂ = θ̂ − θ∗ satisfies the inequality ‖Δ̂‖ > δ,
then there must be some vector Δ̃ ∈ K(δ) such that F (Δ̃) ≤ 0. If ‖Δ̂‖ > δ, then since C is
star-shaped around the origin (see the Appendix, Section 9.9), the line joining Δ̂ to 0 must
intersect the set K(δ) at some intermediate point of the form t∗Δ̂ for some t∗ ∈ [0, 1]. See
Figure 9.9 for an illustration.

δ C

Δ̂

t∗Δ̂

0

Figure 9.9 Geometry of the proof of Lemma 9.21. When ‖Δ̂‖ > δ and the set C
is star-shaped around the origin, any line joining Δ̂ and the origin 0 must intersect
the set K(δ) = {‖Δ‖ = δ} ∩ C at some intermediate point of the form t∗Δ̂ for some
t∗ ∈ [0, 1].

Since the cost function Ln and regularizer Φ are convex, the function F is also convex
for any non-negative choice of the regularization parameter. Given the convexity of F , we
can apply Jensen’s inequality so as to obtain

F (t∗Δ̂) = F (t∗Δ̂ + (1 − t∗) 0
) ≤ t∗ F (Δ̂) + (1 − t∗)F (0)

(i)
= t∗F (Δ̂),

where equality (i) uses the fact that F (0) = 0 by construction. But since Δ̂ is optimal, we
must have F (Δ̂) ≤ 0, and hence F (t∗Δ) ≤ 0 as well. Thus, we have constructed a vector
Δ̃ = t∗Δ with the claimed properties, thereby establishing the claim in the lemma.

We now return to the proof of Theorem 9.19. Fix some radius δ ∈ (0,R], whose value will
be specified later in the proof (see equation (9.53)). On the basis of Lemma 9.21, the proof
of Theorem 9.19 will be complete if we can establish a lower bound on the function value
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F (Δ) for all vectors Δ ∈ K(δ). For an arbitrary vector Δ ∈ K(δ), we have

F (Δ) = Ln(θ∗ + Δ) − Ln(θ∗) + λn
{
Φ(θ∗ + Δ) − Φ(θ∗)

}
(i)≥ 〈∇Ln(θ∗), Δ〉 + κ

2
‖Δ‖2 − τ2

nΦ
2(Δ) + λn

{
Φ(θ∗ + Δ) − Φ(θ∗)

}
(9.50)

(ii)≥ 〈∇Ln(θ∗), Δ〉 + κ

2
‖Δ‖2 − τ2

nΦ
2(Δ) + λn

{
Φ(ΔM̄⊥) − Φ(ΔM̄) − 2Φ(θ∗M⊥)

}
,

where inequality (i) follows from the RSC condition, and inequality (ii) follows from the
bound (9.32).

By applying Hölder’s inequality with the regularizer Φ and its dual Φ∗, we find that

|〈∇Ln(θ∗), Δ〉| ≤ Φ∗(∇Ln(θ∗)) Φ(Δ).

Under the event G(λn), the regularization parameter is lower bounded as λn ≥ 2Φ∗(∇Ln(θ∗)),
which implies that |〈∇Ln(θ∗), Δ〉| ≤ λn

2 Φ(Δ). Consequently, we have

F (Δ) ≥ κ

2
‖Δ‖2 − τ2

nΦ
2(Δ) + λn

{
Φ(ΔM̄⊥) − Φ(ΔM̄) − 2Φ(θ∗M⊥)

}
− λn

2
Φ(Δ).

The triangle inequality implies that

Φ(Δ) = Φ(ΔM̄⊥ + ΔM̄) ≤ Φ(ΔM̄⊥) + Φ(ΔM̄),

and hence, following some algebra, we find that

F (Δ) ≥ κ

2
‖Δ‖2 − τ2

nΦ
2(Δ) + λn

{1
2
Φ(ΔM̄⊥) − 3

2
Φ(ΔM̄) − 2Φ(θ∗M⊥)

}
≥ κ

2
‖Δ‖2 − τ2

nΦ
2(Δ) − λn

2

{
3Φ(ΔM̄) + 4Φ(θ∗M⊥)

}
. (9.51)

Now definition (9.44) of the subspace Lipschitz constant implies that Φ(ΔM̄) ≤ Ψ(M)‖ΔM̄‖.
Since the projection Δ �→ ΔM̄ is defined in terms of the norm ‖ · ‖, it is non-expansive. Since
0 ∈ M, we have

‖ΔM̄‖ = ‖ΠM̄(Δ) − ΠM̄(0)‖ (i)≤ ‖Δ − 0‖ = ‖Δ‖,
where inequality (i) uses non-expansiveness of the projection. Combining with the earlier
bound, we conclude that Φ(ΔM̄) ≤ Ψ(M)‖Δ‖.

Similarly, for any Δ ∈ C, we have

Φ2(Δ) ≤
{
4Φ(ΔM̄) + 4Φ(θ∗M⊥)

}2 ≤ 32Φ2(ΔM̄) + 32Φ2(θ∗M⊥)

≤ 32Ψ2(M) ‖Δ‖2 + 32Φ2(θ∗M⊥). (9.52)

Substituting into the lower bound (9.51), we obtain the inequality

F (Δ) ≥
{
κ

2
− 32τ2

nΨ
2(M)

}
‖Δ‖2 − 32τ2

nΦ
2(θ∗M⊥) − λn

2

{
3Ψ(M) ‖Δ‖ + 4Φ(θ∗M⊥)

}
(ii)≥ κ

4
‖Δ‖2 − 3λn

2
Ψ(M) ‖Δ‖ − 32τ2

nΦ
2(θ∗M⊥) − 2λnΦ(θ∗M⊥),

where step (ii) uses the assumed bound τ2
nΨ

2(M) < κ
64 .

The right-hand side of this inequality is a strictly positive definite quadratic form in ‖Δ‖,
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and so will be positive for ‖Δ‖ sufficiently large. In particular, some algebra shows that this
is the case as long as

‖Δ‖2 ≥ ε2
n(M,M⊥) := 9

λ2
n

κ2 Ψ2(M) +
8
κ

{
λnΦ(θ∗M⊥) + 16τ2

nΦ
2(θ∗M⊥)

}
. (9.53)

This argument is valid as long as εn ≤ R, as assumed in the statement.

9.4.2 Bounds under Φ∗-curvature

We now turn to an alternative form of restricted curvature, one which involves a lower bound
on the gradient of the cost function. In order to motivate the definition to follow, note that
an alternative way of characterizing strong convexity of a differentiable cost function is via
the behavior of its gradient. More precisely, a differentiable function Ln is locally κ-strongly
convex at θ∗, in the sense of the earlier definition (9.37), if and only if

〈∇Ln(θ∗ + Δ)) − ∇Ln(θ∗), Δ〉 ≥ κ‖Δ‖2 (9.54)

for all Δ in some ball around zero. See Exercise 9.9 for verification of the equivalence be-
tween the property (9.54) and the earlier definition (9.37). When the underlying norm ‖ · ‖
is the �2-norm, then the condition (9.54), combined with the Cauchy–Schwarz inequality,
implies that

‖∇Ln(θ∗ + Δ) − ∇Ln(θ∗)‖2 ≥ κ‖Δ‖2.

This implication suggests that it could be useful to consider alternative notions of curvature
based on different choices of the norm. Here we consider such a notion based on the dual
norm Φ∗:

Definition 9.22 The cost function satisfies a Φ∗-norm curvature condition with cur-
vature κ, tolerance τn and radius R if

Φ∗(∇Ln(θ∗ + Δ) − ∇Ln(θ∗)
)
≥ κΦ∗(Δ) − τnΦ(Δ) (9.55)

for all Δ ∈ BΦ∗(R) :=
{
θ ∈ Ω | Φ∗(θ) ≤ R

}
.

As with restricted strong convexity, this definition is most easily understood in application
to the classical case of least-squares cost and �1-regularization:

Example 9.23 (Restricted curvature for least-squares cost) For the least-squares cost func-
tion, we have ∇Ln(θ) = 1

n XTX(θ−θ∗) = Σ̂ (θ−θ∗), where Σ̂ = 1
n XTX is the sample covariance

matrix. For the �1-norm as the regularizer Φ, the dual norm Φ∗ is the �∞-norm, so that the
restricted curvature condition (9.55) is equivalent to the lower bound∥∥∥Σ̂Δ∥∥∥∞ ≥ κ‖Δ‖∞ − τn‖Δ‖1 for all Δ ∈ Rd. (9.56)

In this particular example, localization to the ball B∞(R) is actually unnecessary, since the
lower bound is invariant to rescaling of Δ. The bound (9.56) is very closely related to what
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are known as �∞-restricted eigenvalues of the sample covariance matrix Σ̂. More precisely,
such conditions involve lower bounds of the form∥∥∥Σ̂Δ∥∥∥∞ ≥ κ′ ‖Δ‖∞ for all Δ ∈ C(S ; α), (9.57)

where C(S ;α) :=
{
Δ ∈ Rd | ‖ΔS c‖1 ≤ α‖ΔS ‖1

}
, and (κ′, α) are given positive constants.

In Exercise 9.11, we show that a bound of the form (9.56) implies a form of the �∞-RE
condition (9.57) as long as n � |S |2 log d. Moreover, as we show in Exercise 7.13, such an
�∞-RE condition can be used to derive bounds on the �∞-error of the Lasso.

Finally, as with �2-restricted eigenvalue conditions (recall Example 9.16), a lower bound

of the form (9.56) holds with high probability with constant κ and tolerance τn  
√

log d
n

for various types of random design matrices, Exercise 7.14 provides details on one such
result. ♣

With this definition in place, we are ready to state the assumptions underlying the main result
of this section:

(A1′) The cost satisfies the Φ∗-curvature condition (9.55) with parameters (κ, τn; R).
(A2) The regularizer is decomposable with respect to the subspace pair (M,M⊥) with M ⊆

M.

Under these conditions, we have the following:

Theorem 9.24 Given a target parameter θ∗ ∈ M, consider the regularized M-estimator
(9.3) under conditions (A1′) and (A2), and suppose that τn Ψ

2(M) < κ
32 . Conditioned on

the event G(λn) ∩ {Φ∗(̂θ − θ∗) ≤ R}, any optimal solution θ̂ satisfies the bound

Φ∗(̂θ − θ∗) ≤ 3
λn

κ
. (9.58)

Like Theorem 9.19, this claim is deterministic given the stated conditioning. Probabilistic
claims enter in certifying that the “good” event G(λn) holds with high probability with a
specified choice of λn. Moreover, except for the special case of least squares, we need to use
related results (such as those in Theorem 9.19) to certify that Φ∗(̂θ−θ∗) ≤ R, before applying
this result.

Proof The proof is relatively straightforward given our development thus far. By standard
optimality conditions for a convex program, for any optimum θ̂, there must exist a subgra-
dient vector ẑ ∈ ∂Φ(̂θ) such that ∇Ln(̂θ) + λn̂z = 0. Introducing the error vector Δ̂ := θ̂ − θ∗,
some algebra yields

∇Ln(θ∗ + Δ̂) − ∇Ln(θ∗) = −∇Ln(θ∗) − λn̂z.

Taking the Φ∗-norm of both sides and applying the triangle inequality yields

Φ∗(∇Ln(θ∗ + Δ) − ∇Ln(θ∗)) ≤ Φ∗(∇Ln(θ∗)) + λnΦ
∗(̂z).
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On one hand, on the event G(λn), we have that Φ∗(∇Ln(θ∗)) ≤ λn/2, whereas, on the
other hand, Exercise 9.6 implies that Φ∗(̂z) ≤ 1. Putting together the pieces, we find that
Φ∗(∇Ln(θ∗ + Δ) − ∇Ln(θ∗)) ≤ 3λn

2 . Finally, applying the curvature condition (9.55), we
obtain

κ Φ∗(Δ̂) ≤ 3
2
λn + τnΦ(Δ̂). (9.59)

It remains to bound Φ(Δ̂) in terms of the dual norm Φ∗(Δ̂). Since this result is useful in other
contexts, we state it as a separate lemma here:

Lemma 9.25 If θ∗ ∈ M, then

Φ(Δ) ≤ 16Ψ2(M)Φ∗(Δ) for any Δ ∈ Cθ∗(M,M⊥). (9.60)

Before returning to prove this lemma, we use it to complete the proof of the theorem. On
the event G(λn), Proposition 9.13 may be applied to guarantee that Δ̂ ∈ Cθ∗(M,M⊥). Con-
sequently, the bound (9.60) applies to Δ̂. Substituting into the earlier bound (9.59), we find
that

(
κ − 16Ψ2(M)τn

)
Φ∗(Δ̂) ≤ 3

2λn, from which the claim follows by the assumption that
Ψ2(M)τn ≤ κ

32 .

We now return to prove Lemma 9.25. From our earlier calculation (9.45), whenever θ∗ ∈
M and Δ ∈ Cθ∗(M,M⊥), then Φ(Δ) ≤ 4Ψ(M) ‖Δ‖. Moreover, by Hölder’s inequality, we have

‖Δ‖2 ≤ Φ(Δ)Φ∗(Δ) ≤ 4Ψ(M)‖Δ‖Φ∗(Δ),

whence ‖Δ‖ ≤ 4Ψ(M)Φ∗(Δ). Putting together the pieces, we have

Φ(Δ) ≤ 4Ψ(M)‖Δ‖ ≤ 16Ψ2(M)Φ∗(Δ),

as claimed. This completes the proof of the lemma, and hence of the theorem.

Thus far, we have derived two general bounds on the error θ̂ − θ∗ associated with optima
of the M-estimator (9.3). In the remaining sections, we specialize these general results to
particular classes of statistical models.

9.5 Bounds for sparse vector regression

We now turn to some consequences of our general theory for the problem of sparse regres-
sion. In developing the theory for the full class of generalized linear models, this section
provides an alternative and more general complement to our discussion of the sparse linear
model in Chapter 7.

9.5.1 Generalized linear models with sparsity

All results in the following two sections are applicable to samples the form {(xi, yi)}ni=1 where:
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(G1) The covariates are C-column normalized: max j=1,...,d

√∑d
j=1 x2

i j

n ≤ C.
(G2) Conditionally on xi, each response yi is drawn i.i.d. according to a conditional distri-

bution of the form

Pθ∗(y | x) ∝ exp
{

y 〈x, θ∗〉 − ψ
( 〈x, θ∗〉 )

c(σ)

}
,

where the partition function ψ has a bounded second derivative (‖ψ′′‖∞ ≤ B2).

We analyze the �1-regularized version of the GLM log-likelihood estimator, namely

θ̂ ∈ arg min
θ∈Rd

{
1
n

n∑
i=1

{
ψ(〈xi, θ〉) − yi 〈xi, θ〉︸�����������������������������︷︷�����������������������������︸

Ln(θ)

}
+ λn‖θ‖1

}
. (9.61)

For short, we refer to this M-estimator as the GLM Lasso. Note that the usual linear model
description yi = 〈xi, θ

∗〉 + wi with wi ∼ N(0, σ2) falls into this class with B = 1, in which
the case the estimator (9.61) is equivalent to the ordinary Lasso. It also includes as special
cases the problems of logistic regression and multinomial regression, but excludes the case
of Poisson regression, due to the boundedness condition (G2).

9.5.2 Bounds under restricted strong convexity

We begin by proving bounds when the Taylor-series error around θ∗ associated with the
negative log-likelihood (9.61) satisfies the RSC condition

En(Δ) ≥ κ

2
‖Δ‖2

2 − c1
log d

n
‖Δ‖2

1 for all ‖Δ‖2 ≤ 1. (9.62)

As discussed in Example 9.17, when the covariates {xi}ni=1 are drawn from a zero-mean sub-
Gaussian distribution, a bound of this form holds with high probability for any GLM.

The following result applies to any solution θ̂ of the GLM Lasso (9.61) with regulariza-

tion parameter λn = 4 B C
{√

log d
n + δ

}
for some δ ∈ (0, 1).

Corollary 9.26 Consider a GLM satisfying conditions (G1) and (G2), the RSC condi-
tion (9.62), and suppose the true regression vector θ∗ is supported on a subset S of car-
dinality s. Given a sample size n large enough to ensure that s

{
λ2

n +
log d

n

}
< min

{
4κ2

9 , κ
64c1

}
,

any GLM Lasso solution θ̂ satisfies the bounds

‖̂θ − θ∗‖2
2 ≤

9
4

sλ2
n

κ2 and ‖̂θ − θ∗‖1 ≤ 6
κ

s λn, (9.63)

both with probability at least 1 − 2 e−2nδ2
.

We have already proved results of this form in Chapter 7 for the special case of the linear
model; the proof here illustrates the application of our more general techniques.
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Proof Both results follow via an application of Corollary 9.20 with the subspaces

M(S ) = M(S ) = {θ ∈ Rd | θ j = 0 for all j � S }.
With this choice, note that we have Ψ2(M) = s; moreover, the assumed RSC condition (9.62)
is a special case of our general definition with τ2

n = c1
log d

n . In order to apply Corollary 9.20,
we need to ensure that τ2

nΨ
2(M) < κ

64 , and since the local RSC holds over a ball with radius

R = 1, we also need to ensure that 9
4
Ψ2(M)λ2

n
κ2 < 1. Both of these conditions are guaranteed by

our assumed lower bound on the sample size.
The only remaining step is to verify that the good event G(λn) holds with the probability

stated in Corollary 9.26. Given the form (9.61) of the GLM log-likelihood, we can write the
score function as the i.i.d. sum ∇Ln(θ∗) = 1

n

∑n
i=1 Vi, where Vi ∈ Rd is a zero-mean random

vector with components

Vi j =
{
ψ′
( 〈xi, θ

∗〉 ) − yi
}

xi j.

Let us upper bound the moment generating function of these variables. For any t ∈ R, we
have

logE[e−tVi j ] = logE[etyi xi j ] − txi jψ
′( 〈xi, θ

∗〉
)

= ψ
(
txi j + 〈xi, θ

∗〉
)
− ψ

(
〈xi, θ

∗〉
)
− txi jψ

′( 〈xi, θ
∗〉
)
.

By a Taylor-series expansion, there is some intermediate t̃ such that

logE[e−tVi j ] =
1
2

t2x2
i jψ

′′(t̃xi j + 〈xi, θ
∗〉
)
≤ B2t2x2

i j

2
,

where the final inequality follows from the boundedness condition (G2). Using indepen-
dence of the samples, we have

1
n

logE
[
e−t

∑n
i=1 Vi j

]
≤ t2B2

2

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
i=1

x2
i j

⎞⎟⎟⎟⎟⎟⎠ ≤ t2B2C2

2
,

where the final step uses the column normalization (G1) on the columns of the design matrix
X. Since this bound holds for any t ∈ R, we have shown that each element of the score
function ∇Ln(θ∗) ∈ Rd is zero-mean and sub-Gaussian with parameter at most BC/

√
n.

Thus, sub-Gaussian tail bounds combined with the union bound guarantee that

P
[
‖∇Ln(θ∗)‖∞ ≥ t

]
≤ 2 exp

(
− nt2

2B2C2 + log d
)
.

Setting t = 2B C
{√

log d
n + δ

}
completes the proof.

9.5.3 Bounds under �∞-curvature conditions

The preceding results were devoted to error bounds in terms of quadratic-type norms, such
as the Euclidean vector and Frobenius matrix norms. On the other hand, Theorem 9.24
provides bounds in terms of the dual norm Φ∗—that is, in terms of the �∞-norm in the case
of �1-regularization. We now turn to exploration of such bounds in the case of generalized
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linear models. As we discuss, �∞-bounds also lead to bounds in terms of the �2- and �1-
norms, so that the resulting guarantees are in some sense stronger.

Recall that Theorem 9.24 is based on a restricted curvature condition (9.55). In the earlier
Example 9.23, we discussed the specialization of this condition to the least-squares cost,
and in Exercise 9.14, we work through the proof of an analogous result for generalized
linear models with bounded cumulant generating functions (‖ψ′′‖∞ ≤ B). More precisely,
when the population cost satisfies an �∞-curvature condition over the ball B2(R), and the
covariates are i.i.d. and sub-Gaussian with parameter C, then the GLM log-likelihood Ln

from equation (9.61) satisfies a bound of the form

‖∇Ln(θ∗ + Δ) − ∇Ln(θ∗)‖∞ ≥ κ‖Δ‖∞ − c0

32

√
log d

n
‖Δ‖1, (9.64)

uniformly over B∞(1). Here is c0 is a constant that depends only on the parameters (B,C).

Corollary 9.27 In addition to the conditions of Corollary 9.26, suppose that the �∞-
curvature condition (9.64) holds, and that the sample size is lower bounded as n >

c2
0s2 log d. Then any optimal solution θ̂ to the GLM Lasso (9.61) with regularization

parameter λn = 2 BC
(√

log d
n + δ

)
satisfies

‖̂θ − θ∗‖∞ ≤ 3
λn

κ
(9.65)

with probability at least 1 − 2 e−2nδ2
.

Proof We prove this corollary by applying Theorem 9.24 with the familiar subspaces

M(S ) = M(S ) = {θ ∈ Rd | θS c = 0},
for which we have Ψ2(M(S )) = s. By assumption (9.64), the �∞-curvature condition holds

with tolerance τn =
c0
32

√
log d

n , so that the condition τnΨ
2(M) < κ

32 is equivalent to the lower
bound n > c2

0 s2 log d on the sample size.
Since we have assumed the conditions of Corollary 9.26, we are guaranteed that the error

vector Δ̂ = θ̂ − θ∗ satisfies the bound ‖Δ̂‖∞ ≤ ‖Δ̂‖2 ≤ 1 with high probability. This local-
ization allows us to apply the local �∞-curvature condition to the error vector Δ̂ = θ̂ − θ∗.

Finally, as shown in the proof of Corollary 9.26, if we choose the regularization parameter

λn = 2B C
{√

log d
n + δ

}
, then the event G(λn) holds with probability at least 1 − e−2nδ2

. We
have thus verified that all the conditions needed to apply Theorem 9.24 are satisfied.

The �∞-bound (9.65) is a stronger guarantee than our earlier bounds in terms of the �1- and
�2-norms. For instance, under additional conditions on the smallest non-zero absolute values
of θ∗, the �∞-bound (9.65) can be used to construct an estimator that has variable selection
guarantees, which may not be possible with bounds in other norms. Moreover, as we explore
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in Exercise 9.13, when combined with other properties of the error vector, Corollary 9.27
implies bounds on the �1- and �2-norm errors that are analogous to those in Corollary 9.26.

9.6 Bounds for group-structured sparsity

We now turn to the consequences of Theorem 9.19 for estimators based on the group Lasso
penalty with non-overlapping groups, previously discussed in Example 9.3. For concrete-
ness, we focus on the �2-version of the group Lasso penalty ‖θ‖G,2 =

∑
g∈G ‖θg‖2. As discussed

in Example 9.6, one motivation for the group Lasso penalty are multivariate regression prob-
lems, in which the regression coefficients are assumed to appear on–off in a groupwise man-
ner. The linear multivariate regression problem from Example 9.6 is the simplest example.
In this section, we analyze the extension to generalized linear models. Accordingly, let us
consider the group GLM Lasso

θ̂ ∈ arg min
θ∈Rd

{
1
n

n∑
i=1

{
ψ(〈θ, xi〉) − yi 〈θ, xi〉 } + λn

∑
g∈G

‖θg‖2

}
, (9.66)

a family of estimators that includes the least-squares version of the group Lasso (9.14) as a
particular case.

As with our previous corollaries, we assume that the samples {(xi, yi)}ni=1 are drawn i.i.d.
from a generalized linear model (GLM) satisfying condition (G2). Letting Xg ∈ Rn×|g| denote
the submatrix indexed by g, we also impose the following variant of condition (G1) on the
design:

(G1′) The covariates satisfy the group normalization condition maxg∈G
|||Xg |||2√

n ≤ C.

Moreover, we assume an RSC condition of the form

En(Δ) ≥ κ‖Δ‖2
2 − c1

{
m
n
+

log |G|
n

}
‖Δ‖2

G,2 for all ‖Δ‖2 ≤ 1, (9.67)

where m denotes the maximum size over all groups. As shown in Example 9.17 and Theo-
rem 9.36, a lower bound of this form holds with high probability when the covariates {xi}ni=1
are drawn i.i.d. from a zero-mean sub-Gaussian distribution. Our bound applies to any solu-
tion θ̂ to the group GLM Lasso (9.66) based on a regularization parameter

λn = 4BC
{√

m
n
+

√
log |G|

n
+ δ

}
for some δ ∈ (0, 1).

Corollary 9.28 Given n i.i.d. samples from a GLM satisfying conditions (G1′), (G2),
the RSC condition (9.67), suppose that the true regression vector θ∗ has group support
S G. As long as |S G|

{
λ2

n +
m
n +

log |G|
n

}
< min

{
4κ2

9 , κ
64c1

}
, the estimate θ̂ satisfies the bound

‖̂θ − θ∗‖2
2 ≤

9
4
|S G|λ2

n

κ2 (9.68)

with probability at least 1 − 2e−2nδ2
.
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In order to gain some intuition for this corollary, it is worthwhile to consider some spe-
cial cases. The ordinary Lasso is a special case of the group Lasso, in which there are
|G| = d groups, each of size m = 1. In this case, if we use the regularization parameter

λn = 8BC
√

log d
n , the bound (9.68) implies that

‖̂θ − θ∗‖2 �
B C
κ

√ |S G| log d
n

,

showing that Corollary 9.28 is a natural generalization of Corollary 9.26.
The problem of multivariate regression provides a more substantive example of the po-

tential gains of using the group Lasso. Throughout this example, we take the regularization

parameter λn = 8B C
{√m

n +

√
log d

n

}
as given.

Example 9.29 (Faster rates for multivariate regression) As previously discussed in Ex-
ample 9.6, the problem of multivariate regression is based on the linear observation model
Y = ZΘ∗ + W, where Θ∗ ∈ Rp×T is a matrix of regression coefficients, Y ∈ Rn×T is a matrix
of observations, and W ∈ Rn×T is a noise matrix. A natural group structure is defined by the
rows of the regression matrix Θ∗, so that we have a total of p groups each of size T .

A naive approach would be to ignore the group sparsity, and simply apply the elementwise
�1-norm as a regularizer to the matrix Θ. This set-up corresponds to a Lasso problem with
d = p T coefficients and elementwise sparsity T |S G|, so that Corollary 9.26 would guarantee
an estimation error bound of the form

|||Θ̂ −Θ∗|||F �
√ |S G|T log(p T )

n
. (9.69a)

By contrast, if we used the group Lasso estimator, which does explicitly model the grouping
in the sparsity, then Corollary 9.28 would guarantee an error of the form

|||Θ̂ −Θ∗|||F �
√ |S G|T

n
+

√ |S G| log p
n

. (9.69b)

For T > 1, it can be seen that this error bound is always better than the Lasso error
bound (9.69a), showing that the group Lasso is a better estimator when Θ∗ has a sparse
group structure. In Chapter 15, we will develop techniques that can be used to show that
the rate (9.69b) is the best possible for any estimator. Indeed, the two components in this
rate have a very concrete interpretation: the first corresponds to the error associated with
estimating |S G|T parameters, assuming that the group structure is known. For |S G| � p, the
second term is proportional to log

(
p
|SG|
)
, and corresponds to the search complexity associated

with finding the subset of |S G| rows out of p that contain non-zero coefficients. ♣
We now turn to the proof of Corollary 9.28.

Proof We apply Corollary 9.20 using the model subspaceM(S G) defined in equation (9.24).
From Definition 9.18 of the subspace constant with Φ(θ) = ‖θ‖G,2, we have

Ψ(M(S G)) := sup
θ∈M(SG)\{0}

∑
g∈G ‖θg‖2

‖θ‖2
=
√|S G|.
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The assumed RSC condition (9.62) is a special case of our general definition with the tol-
erance parameter τ2

n = c1

{
m
n +

log |G|
n

}
and radius R = 1. In order to apply Corollary 9.20, we

need to ensure that τ2
nΨ

2(M) < κ
64 , and since the local RSC holds over a ball with radius

R = 1, we also need to ensure that 9
4
Ψ2(M)λ2

n
κ2 < 1. Both of these conditions are guaranteed by

our assumed lower bound on the sample size.
It remains to verify that, given the specified choice of regularization parameter λn, the

event G(λn) holds with high probability.

Verifying the event G(λn): Using the form of the dual norm given in Table 9.1, we have
Φ∗(∇Ln(θ∗)) = maxg∈G ‖(∇Ln(θ∗))g‖2. Based on the form of the GLM log-likelihood, we
have ∇Ln(θ∗) = 1

n

∑n
i=1 Vi where the random vector Vi ∈ Rd has components

Vi j =
{
ψ′
( 〈xi, θ

∗〉 ) − yi

}
xi j.

For each group g, we let Vi,g ∈ R|g| denote the subvector indexed by elements of g. With this
notation, we then have

‖(∇Ln(θ∗))g‖2 = ‖1
n

n∑
i=1

Vi,g‖2 = sup
u∈S|g|−1

〈
u,

1
n

n∑
i=1

Vi,g

〉
,

where S|g|−1 is the Euclidean sphere in R|g|. From Example 5.8, we can find a 1/2-covering
of S|g|−1 in the Euclidean norm—say {u1, . . . , uN}—with cardinality at most N ≤ 5|g|. By the
standard discretization arguments from Chapter 5, we have

‖(∇Ln(θ∗))g‖2 ≤ 2 max
j=1,...,N

〈
uj,

1
n

n∑
i=1

Vi,g

〉
.

Using the same proof as Corollary 9.26, the random variable
〈
uj, 1

n

∑n
i=1 Vi,g

〉
is sub-Gaussian

with parameter at most

B√
n

√√
1
n

n∑
i=1

〈
uj, xi,g

〉2 ≤ B C√
n
,

where the inequality follows from condition (G1′). Consequently, from the union bound and
standard sub-Gaussian tail bounds, we have

P
[
‖(∇Ln(θ∗))g‖2 ≥ 2t

]
≤ 2 exp

(
− nt2

2B2C2 + |g| log 5
)
.

Taking the union over all |G| groups yields

P
[

max
g∈G

‖(∇Ln(θ∗))g‖2 ≥ 2t
]
≤ 2 exp

(
− nt2

2B2C2 + m log 5 + log |G|
)
,

where we have used the maximum group size m as an upper bound on each group size |g|.
Setting t2 = λ2

n yields the result.
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9.7 Bounds for overlapping decomposition-based norms

In this section, we turn to the analysis of the more “exotic” overlapping group Lasso norm,
as previously introduced in Example 9.4. In order to motivate this estimator, let us return to
the problem of multivariate regression.

Example 9.30 (Matrix decomposition in multivariate regression) Recall the problem of
linear multivariate regression from Example 9.6: it is based on the linear observation model
Y = ZΘ∗ + W, where Θ∗ ∈ Rp×T is an unknown matrix of regression coefficients. As dis-
cussed previously, the ordinary group Lasso is often applied in this setting, using the rows of
the regression matrix to define the underlying set of groups. When the true regression ma-
trix Θ∗ is actually row-sparse, then we can expect the group Lasso to yield a more accurate
estimate than the usual elementwise Lasso: compare the bounds (9.69a) and (9.69b).

However, now suppose that we apply the group Lasso estimator to a problem for which
the true regression matrixΘ∗ violates the row-sparsity assumption: concretely, let us suppose
that Θ∗ has s total non-zero entries, each contained within a row of its own. In this setting,
Corollary 9.28 guarantees a bound of the order

|||Θ̂ −Θ∗|||F �
√

s T
n

+

√
s log p

n
. (9.70)

However, if we were to apply the ordinary elementwise Lasso to this problem, then Corol-
lary 9.26 would guarantee a bound of the form

|||Θ̂ −Θ∗|||F �
√

s log(pT )
n

. (9.71)

This error bound is always smaller than the group Lasso bound (9.70), and substantially
so for large T . Consequently, the ordinary group Lasso has the undesirable feature of be-
ing less statistically efficient than the ordinary Lasso in certain settings, despite its higher
computational cost.

+=

Θ∗ Ω∗ Γ∗

Figure 9.10 Illustration of the matrix decomposition norm (9.72) for the group
Lasso applied to the matrix rows, combined with the elementwise �1-norm. The
norm is defined by minimizing over all additive decompositions of Θ∗ as the sum
of a row-sparse matrix Ω∗ with an elementwise-sparse matrix Γ∗.

How do we remedy this issue? What would be desirable is an adaptive estimator, one that
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achieves the ordinary Lasso rate (9.71) when the sparsity structure is elementwise, and the
group Lasso rate (9.70) when the sparsity is row-wise. To this end, let us consider decom-
posing the regression matrix Θ∗ as a sum Ω∗ + Γ∗, where Ω∗ is a row-sparse matrix and Γ∗

is elementwise sparse, as shown in Figure 9.10. Minimizing a weighted combination of the
group Lasso and �1-norms over all such decompositions yields the norm

Φω(Θ) = inf
Ω+Γ=Θ

⎧⎪⎪⎨⎪⎪⎩‖Γ‖1 + ω

p∑
j=1

‖Ω j‖2

⎫⎪⎪⎬⎪⎪⎭ , (9.72)

which is a special case of the overlapping group Lasso (9.10). Our analysis to follow will
show that an M-estimator based on such a regularizer exhibits the desired adaptivity. ♣

Let us return to the general setting, in which we view the parameter θ ∈ Rd as a vector,3

and consider the more general �1-plus-group overlap norm

Φω(θ) := inf
α+β=θ

{‖α‖1 + ω‖β‖G,2
}
, (9.73)

where G is a set of disjoint groups, each of size at most m. The overlap norm (9.72) is
a special case, where the groups are specified by the rows of the underlying matrix. For
reasons to become clear in the proof, we use the weight

ω :=
√

m +
√

log |G|√
log d

. (9.74)

With this set-up, the following result applies to the adaptive group GLM Lasso,

θ̂ ∈ arg min
θ∈Rd

{
1
n

n∑
i=1

{
ψ(〈θ, xi〉) − 〈θ, xiyi〉 }︸�������������������������������︷︷�������������������������������︸

Ln(θ)

+λnΦω(θ)
}
, (9.75)

for which the Taylor-series error satisfies the RSC condition

En(Δ) ≥ κ

2
‖Δ‖2

2 − c1
log d

n
Φ2

ω(Δ) for all ‖Δ‖2 ≤ 1. (9.76)

Again, when the covariates {xi}ni=1 are drawn i.i.d. from a zero-mean sub-Gaussian distribu-
tion, a bound of this form holds with high probability for any GLM (see Example 9.17 and
Exercise 9.8).

With this set-up, the following result applies to any optimal solution θ̂ of the adaptive

group GLM Lasso (9.75) with λn = 4BC
(√ log d

n + δ
)

for some δ ∈ (0, 1). Moreover, it
supposes that the true regression vector can be decomposed as θ∗ = α∗ + β∗, where α is
S elt-sparse, and β∗ is S G-group-sparse, and with S G disjoint from S elt.

3 The problem of multivariate regression can be thought of as a particular case of the vector model with vector
dimension d = p T , via the transformation Θ �→ vec(Θ) ∈ RpT .
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Corollary 9.31 Given n i.i.d. samples from a GLM satisfying conditions (G1′) and
(G2), suppose that the RSC condition (9.76) with curvature κ > 0 holds, and that{√|S elt| + ω

√|S G|
}2 {

λ2
n +

log d
n

}
< min

{
κ2

36 ,
κ

64c1

}
. Then the adaptive group GLM Lasso

estimate θ̂ satisfies the bounds

‖̂θ − θ∗‖2
2 ≤

36λ2
n

κ2

{ √
|S elt| + ω

√|S G|
}2

(9.77)

with probability at least 1 − 3e−8nδ2
.

Remark: The most important feature of the bound (9.77) is its adaptivity to the elementwise
versus group sparsity. This adaptivity stems from the fact that the choices of S G and S elt can
be optimized so as to obtain the tightest possible bound, depending on the structure of the

regression vector θ∗. To be concrete, consider the bound with the choice λn = 8BC
√

log d
n .

At one extreme, suppose that the true regression vector θ∗ ∈ Rd is purely elementwise
sparse, in that each group contains at most one non-zero entry. In this case, we can apply the
bound (9.77) with S G = ∅, leading to

‖̂θ − θ∗‖2
2 �

B2 C2

κ2

s log d
n

,

where s = |S elt| denotes the sparsity of θ∗. We thus recover our previous Lasso bound from
Corollary 9.26 in this special case. At the other extreme, consider a vector that is “purely”
group-sparse, in the sense that it has some subset of active groups S G, but no isolated sparse
entries. The bound (9.77) with S elt = ∅ then yields

‖̂θ − θ∗‖2
2 �

B2 C2

κ2

{
m|S G|

n
+
|S G| log d

n

}
,

so that, in this special case, the decomposition method obtains the group Lasso rate from
Corollary 9.28.

Let us now prove the corollary:

Proof In this case, we work through the details carefully, as the decomposability of the
overlap norm needs some care. Recall the function F from equation (9.31), and let Δ̂ =

θ̂ − θ∗. Our proof is based on showing that any vector of the form Δ = tΔ̂ for some t ∈ [0, 1]
satisfies the bounds

Φω(Δ) ≤ 4
{ √
|S elt| + ω

√|S G|
}
‖Δ‖2 (9.78a)

and

F (Δ) ≥ κ

2
‖Δ‖2

2 − c1
log d

n
Φ2

ω(Δ) − 3λn

2

{ √
|S elt| + ω

√|S G|
}
‖Δ‖2. (9.78b)

Let us take these bounds as given for the moment, and then return to prove them. Substituting
the bound (9.78a) into inequality (9.78b) and rearranging yields

F (Δ) ≥ ‖Δ‖2

{
κ′‖Δ‖2 − 3λn

2

( √
|S elt| + ω

√|S G|
)}

,
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where κ′ := κ
2 − 16c1

log d
n

(√|S elt| + ω
√|S G|)2. Under the stated bound on the sample size n,

we have κ′ ≥ κ
4 , so that F is non-negative whenever

‖Δ‖2 ≥ 6λn

κ

( √
|S elt| + ω

√|S G|
)
.

Finally, following through the remainder of the proof of Theorem 9.19 yields the claimed
bound (9.77).

Let us now return to prove the bounds (9.78a) and (9.78b). To begin, a straightforward
calculation shows that the dual norm is given by

Φ∗
ω(v) = max

{
‖v‖∞, 1

ω
max
g∈G

‖vg‖2

}
.

Consequently, the event G(λn) :=
{
Φ∗

ω(∇Ln(θ∗)) ≤ λn
2

}
is equivalent to

‖∇Ln(θ∗)‖∞ ≤ λn

2
and max

g∈G
‖(∇Ln(θ∗))g‖2 ≤ λnω

2
. (9.79)

We assume that these conditions hold for the moment, returning to verify them at the end of
the proof.

Define Δ = tΔ̂ for some t ∈ [0, 1]. Fix some decomposition θ∗ = α∗ + β∗, where α∗ is
S elt-sparse and β∗ is S G-group-sparse, and note that

Φω(θ∗) ≤ ‖α∗‖1 + ω‖β∗‖G,2.

Similarly, let us write Δ = Δα + Δβ for some pair such that

Φω(θ∗ + Δ) = ‖Δα‖1 + ω‖Δβ‖G,2.

Proof of inequality (9.78a): Define the function

F (Δ) := Ln(θ∗ + Δ) − Ln(θ∗) + λn
{
Φω(θ∗ + Δ) − Φω(θ∗)

}
.

Consider a vector of the form Δ = tΔ̂ for some scalar t ∈ [0, 1]. Noting that F is convex and
minimized at Δ̂, we have

F (Δ) = F (tΔ̂ + (1 − t)0
) ≤ tF (Δ̂) + (1 − t)F (0) ≤ F (0).

Recalling that En(Δ) = Ln(θ∗ + Δ) − Ln(θ∗) − 〈∇Ln(θ∗), Δ〉, some algebra then leads to the
inequality

En(Δ) ≤
∣∣∣∣〈∇Ln(θ∗), Δ〉

∣∣∣∣ − λn {‖α∗ + Δα‖1 − ‖α∗‖1} − λnω
{
‖β∗ + Δβ‖G,2 − ‖β∗‖G,2

}
(i)≤
∣∣∣∣〈∇Ln(θ∗), Δ〉

∣∣∣∣ + λn

{
‖(Δα)S elt‖1 − ‖(Δα)S c

elt
‖1

}
+ λnω

{
‖(Δβ)SG‖G,2 − ‖(Δβ)SG‖G,2

}
(ii)≤ λn

2

{
3‖(Δα)S elt‖1 − ‖(Δα)S c

elt
‖1

}
+

λnω

2

{
‖(Δβ)SG‖G,2 − ‖(Δβ)SG‖G,2

}
.

Here step (i) follows by decomposability of the �1 and the group norm, and step (ii) follows
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by using the inequalities (9.79). Since En(Δ) ≥ 0 by convexity, rearranging yields

‖Δα‖1 + ω‖Δβ‖G,2 ≤ 4
{
‖(Δα)S elt‖1 + ω‖(Δβ)SG‖G,2

}
(iii)≤ 4

{ √
|S elt| ‖(Δα)S elt‖2 + ω

√|S G| ‖(Δβ)SG‖2

}
≤ 4

{ √
|S elt| + ω

√|S G|
} {
‖(Δα)S elt‖2 + ‖(Δβ)SG‖2

}
, (9.80)

where step (iii) follows from the subspace constants for the two decomposable norms. The
overall vector Δ has the decomposition Δ = (Δα)S elt+(Δβ)SG+ΔT , where T is the complement
of the indices in S elt and S G. Noting that all three sets are disjoint by construction, we have

‖(Δα)S elt‖2 + ‖(Δβ)SG‖2 = ‖(Δα)S elt + (Δβ)SG‖2 ≤ ‖Δ‖2.

Combining with inequality (9.80) completes the proof of the bound (9.78a).

Proof of inequality (9.78b): From the proof of Theorem 9.19, recall the lower bound (9.50).
This inequality, combined with the RSC condition, guarantees that the function value F (Δ)
is at least

κ

2
‖Δ‖2

2 − c1
log d

n
Φ2

ω(Δ) − ∣∣∣〈∇Ln(θ∗), Δ〉
∣∣∣

+ λn
{‖α∗ + Δα‖1 − ‖α∗‖1

}
+ λnω

{‖β∗ + Δβ‖G,2 − ‖β∗‖G,2
}
.

Again, applying the dual norm bounds (9.79) and exploiting decomposability leads to the
lower bound (9.78b).

Verifying inequalities (9.79): The only remaining detail is to verify that the conditions (9.79)
defining the event G(λn). From the proof of Corollary 9.26, we have

P
[‖∇Ln(θ∗)‖∞ ≥ t

] ≤ d e−
nt2

2B2C2 .

Similarly, from the proof of Corollary 9.28, we have

P
[ 1
ω

max
g∈G

‖(∇Ln(θ∗))g‖2 ≥ 2t
]
≤ 2 exp

(
− nω2t2

2B2C2 + m log 5 + log |G|
)
.

Setting t = 4BC
{√

log d
n + δ

}
and performing some algebra yields the claimed lower bound

P[G(λn)] ≥ 1 − 3e−8nδ2
.

9.8 Techniques for proving restricted strong convexity

All of the previous results rely on the empirical cost function satisfying some form of re-
stricted curvature condition. In this section, we turn to a deeper investigation of the condi-
tions under which restricted strong convexity conditions, as previously formalized in Defi-
nition 9.15, are satisfied.

Before proceeding, let us set up some notation. Given a collection of samples Zn
1 = {Zi}ni=1,

we write the empirical cost asLn(θ) = 1
n

∑n
i=1 L(θ; Zi), whereL is the loss applied to a single
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sample. We can then define the error in the first-order Taylor expansion of L for sample Zi,
namely

E(Δ ; Zi) := L(θ∗ + Δ; Zi) − L(θ∗; Zi) − 〈∇L(θ∗; Zi), Δ〉 .
By construction, we have En(Δ) = 1

n

∑n
i=1 E(Δ ; Zi). Given the population cost function

L(θ) := E[Ln(θ; Zn
1)], a local form of strong convexity can be defined in terms of its Taylor-

series error

E(Δ) := L(θ∗ + Δ) − L(θ∗) −
〈
∇L(θ∗), Δ

〉
. (9.81)

We say that the population cost is (locally) κ-strongly convex around the minimizer θ∗ if
there exists a radius R > 0 such that

E(Δ) ≥ κ‖Δ‖2
2 for all Δ ∈ B2(R) := {Δ ∈ Ω | ‖θ‖2 ≤ R}. (9.82)

We wish to see when this type of curvature condition is inherited by the sample-based error
En(Δ). At a high level, then, our goal is clear: in order to establish a form of restricted
strong convexity (RSC), we need to derive some type of uniform law of large numbers (see
Chapter 4) for the zero-mean stochastic process{

En(Δ) − E(Δ), Δ ∈ S
}
, (9.83)

where S is a suitably chosen subset of B2(R).

Example 9.32 (Least squares) To gain intuition in a specific example, recall the quadratic
cost functionL(θ; yi, xi) = 1

2 (y−〈θ, xi〉)2 that underlies least-squares regression. In this case,
we have E(Δ ; xi, yi) = 1

2 〈Δ, xi〉2, and hence

En(Δ) =
1
2n

n∑
i=1

〈Δ, xi〉2 = 1
2n
‖XΔ‖2

2,

where X ∈ Rn×d is the usual design matrix. Denoting Σ = cov(x), we find that

E(Δ) = E[En(Δ)] = 1
2Δ

TΣΔ.

Thus, our specific goal in this case is to establish a uniform law for the family of random
variables {

1
2
ΔT
(XTX

n
− Σ

)
Δ, Δ ∈ S

}
. (9.84)

When S = B2(1), the supremum over this family is equal to the operator norm |||XTX
n − Σ|||2,

a quantity that we studied in Chapter 6. When S involves an additional �1-constraint, then
a uniform law over this family amounts to establishing a restricted eigenvalue condition, as
studied in Chapter 7. ♣

9.8.1 Lipschitz cost functions and Rademacher complexity

This section is devoted to showing how the problem of establishing RSC for Lipschitz cost
functions can be reduced to controlling a version of the Rademacher complexity. As the
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reader might expect, the symmetrization and contraction techniques from Chapter 4 turn out
to be useful.

We say that L is locally L-Lipschitz over the ball B2(R) if for each sample Z = (x, y)∣∣∣L(θ; Z) − L(̃θ; Z)
∣∣∣ ≤ L

∣∣∣〈θ, x〉 −
〈̃
θ, x

〉∣∣∣ for all θ, θ̃ ∈ B2(R). (9.85)

Let us illustrate this definition with an example.

Example 9.33 (Cost functions for binary classification) The class of Lipschitz cost func-
tions includes various objective functions for binary classification, in which the goal is to use
the covariates x ∈ Rd to predict an underlying class label y ∈ {−1, 1}. The simplest approach
is based on a linear classification rule: given a weight vector θ ∈ Rd, the sign of the inner
product 〈θ, x〉 is used to make decisions. If we disregard computational issues, the most nat-
ural cost function is the 0–1 cost I[y 〈θ, x〉 < 0], which assigns a penalty of 1 if the decision
is incorrect, and returns 0 otherwise. (Note that y 〈θ, x〉 < 0 if and only if sign(〈θ, x〉) � y.)

For instance, the logistic cost takes the form

L(θ; (x, y)) := log(1 + e〈θ, x〉) − y 〈θ, x〉 , (9.86)

and it is straightforward to verify that this cost function satisfies the Lipschitz condition with
L = 2. Similarly, the support vector machine approach to classification is based on the hinge
cost

L(θ; (x, y)) := max
{
0, 1 − y 〈θ, x〉 } ≡ (

1 − y 〈θ, x〉 )+, (9.87)

which is Lipschitz with parameter L = 1. Note that the least-squares cost functionL(θ; (x, y))
= 1

2 (y − 〈θ, x〉)2 is not Lipschitz unless additional boundedness conditions are imposed. A
similar observation applies to the exponential cost function L(θ; (x, y)) = e−y〈θ, x〉. ♣

In this section, we prove that Lipschitz functions with regression-type data z = (x, y) sat-
isfy a certain form of restricted strong convexity, depending on the tail fluctuations of the
covariates. The result itself involves a complexity measure associated with the norm ball of
the regularizer Φ. More precisely, letting {εi}ni=1 be an i.i.d. sequence of Rademacher vari-
ables, we define the symmetrized random vector xn =

1
n

∑n
i=1 εi xi, and the random variable

Φ∗(xn) := sup
Φ(θ)≤1

〈
θ,

1
n

n∑
i=1

εi xi

〉
. (9.88)

When xi ∼ N(0, Id), the mean E[Φ∗(xn)] is proportional to the Gaussian complexity of the
unit ball {θ ∈ Rd | Φ(θ) ≤ 1}. (See Chapter 5 for an in-depth discussion of the Gaussian
complexity and its properties.) More generally, the quantity (9.88) reflects the size of the
Φ-unit ball with respect to the fluctuations of the covariates.

The following theorem applies to any norm Φ that dominates the Euclidean norm, in the
sense that Φ(Δ) ≥ ‖Δ‖2 uniformly. For a pair of radii 0 < R� < Ru, it guarantees a form of
restricted strong convexity over the “donut” set

B2(R�,Ru) :=
{
Δ ∈ Rd | R� ≤ ‖Δ‖2 ≤ Ru

}
. (9.89)
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The high-probability statement is stated in terms of the random variable Φ∗(xn), as well as
the quantity Mn(Φ; R) := 4 log

(Ru
R�

)
log supθ�0

(Φ(θ)
‖θ‖2

)
, which arises for technical reasons.

Theorem 9.34 Suppose that the cost functionL is L-Lipschitz (9.85), and the popula-
tion cost L is locally κ-strongly convex (9.82) over the ball B2(Ru). Then for any δ > 0,
the first-order Taylor error En satisfies∣∣∣En(Δ) − E(Δ)

∣∣∣ ≤ 16LΦ(Δ) δ for all Δ ∈ B2(R�,Ru) (9.90)

with probability at least 1 − Mn(Φ; R) infλ>0 E
[
eλ(Φ∗(x̄n)−δ)].

For Lipschitz functions, this theorem reduces the question of establishing RSC to that of
controlling the random variable Φ∗(xn). Let us consider a few examples to illustrate the con-
sequences of Theorem 9.34.

Example 9.35 (Lipschitz costs and group Lasso) Consider the group Lasso norm Φ(θ) =∑
g∈G ‖θg‖2, where we take groups of equal size m for simplicity. Suppose that the covariates

{xi}ni=1 are drawn i.i.d. as N(0,Σ) vectors, and let σ2 = |||Σ|||2. In this case, we show that for
any L-Lipschitz cost function, the inequality∣∣∣En(Δ) − E(Δ)

∣∣∣ ≤ 16L σ

⎧⎪⎪⎨⎪⎪⎩
√

m
n
+

√
2 log |G|

n
+ δ

⎫⎪⎪⎬⎪⎪⎭ ∑
g∈G

‖Δg‖2

holds uniformly for all Δ ∈ B2( 1
d , 1) with probability at least 1 − 4 log2(d) e−

nδ2
2 .

In order to establish this claim, we begin by noting that Φ∗(xn) = maxg∈G ‖(xn)g‖2 from
Table 9.1. Consequently, we have

E[eλΦ∗(x̄n)] ≤
∑
g∈G
E
[
eλ(‖(x̄n)g‖2)

]
=
∑
g∈G
E
[
eλ(‖(x̄n)g‖2−E[‖(x̄n)g‖2])

]
eλE[‖(x̄n)g‖2].

By Theorem 2.26, the random variable ‖(xn)g‖2 has sub-Gaussian concentration around its
mean with parameter σ/

√
n, whence E[eλ(‖(x̄n)g‖2−E[‖(x̄n)g‖2])] ≤ e

λ2σ2
2n . By Jensen’s inequality,

we have

E[‖(xn)g‖2] ≤
√
E[‖(xn)g‖2

2] ≤ σ

√
m
n
,

using the fact that σ2 = |||Σ|||2. Putting together the pieces, we have shown that

inf
λ>0

logE[eλ(Φ∗(x̄n)−(ε+σ
√

m
n ))] ≤ log |G| + inf

λ>0

{
λ2σ2

2n
− λε

}
= log |G| − nε2

2σ2 .

With the choices Ru = 1 and R� =
1
d , we have

Mn(Φ; R) = 4 log(d) log |G| ≤ 4 log2(d),

since |G| ≤ d. Thus, setting ε = 2σ
{√

log |G|
n + ε

}
and applying Theorem 9.34 yields the

stated claim. ♣
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In Chapter 10, we discuss some consequences of Theorem 9.34 for estimating low-rank ma-
trices. Let us now turn to its proof.

Proof Recall that

E(Δ; zi) := L(θ∗ + Δ; zi) − L(θ∗; zi) − 〈∇L(θ∗; zi), Δ〉
denotes the Taylor-series error associated with a single sample zi = (xi, yi).

Showing the Taylor error is Lipschitz: We first show that E is a 2L-Lipschitz function in
〈Δ, xi〉. To establish this claim, note if that we let ∂L

∂u denote the derivative of L with respect
to u = 〈θ, x〉, then the Lipschitz condition implies that ‖ ∂L

∂u ‖∞ ≤ L. Consequently, by the
chain rule, for any sample zi ∈ Z and parameters Δ, Δ̃ ∈ Rd, we have∣∣∣〈∇L(θ∗; Zi), Δ − Δ̃

〉∣∣∣ ≤ ∣∣∣∣∂L
∂u

(θ∗; Zi)
∣∣∣∣ ∣∣∣〈Δ, xi〉 −

〈
Δ̃, xi

〉∣∣∣ ≤ L
∣∣∣〈Δ, xi〉 −

〈
Δ̃, xi

〉∣∣∣. (9.91)

Putting together the pieces, for any pair Δ, Δ̃, we have∣∣∣E(Δ; Zi) − E(Δ̃; Zi)
∣∣∣ ≤ ∣∣∣L(θ∗ + Δ; Zi) − L(θ∗ + Δ̃; Zi)

∣∣∣ + ∣∣∣〈∇L(θ∗; Zi), Δ − Δ̃
〉∣∣∣

≤ 2L|〈Δ, xi〉 −
〈
Δ̃, xi

〉
|, (9.92)

where the second inequality applies our Lipschitz assumption, and the gradient bound (9.91).
Thus, the Taylor error is a 2L-Lipschitz function in 〈Δ, xi〉.

Tail bound for fixed radii: Next we control the difference |En(Δ) − E(Δ)| uniformly over
certain sets defined by fixed radii. More precisely, for positive quantities (r1, r2), define the
set

C(r1, r2) := B2(r2) ∩ {
Φ(Δ) ≤ r1 ‖Δ‖2

}
,

and the random variable An(r1, r2) := 1
4r1 r2L supΔ∈C(r1,r2)

∣∣∣En(Δ) − E(Δ)
∣∣∣. The choice of radii

can be implicitly understood, so that we adopt the shorthand An.
Our goal is to control the probability of the event {An ≥ δ}, and we do so by controlling the

moment generating function. By our assumptions, the Taylor error has the additive decom-
position En(Δ) = 1

n

∑n
i= E(Δ; Zi). Thus, letting {εi}ni=1 denote an i.i.d. Rademacher sequence,

applying the symmetrization upper bound from Proposition 4.11(b) yields

E
[
eλAn

] ≤ EZ,ε

⎡⎢⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎜⎝2λ sup
Δ∈C(r1,r2)

∣∣∣∣ 1
4 Lr1 r2

1
n

n∑
i=1

εi E(Δ; Zi)
∣∣∣∣⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ .

Now we have

E
[
eλAn

] (i)≤ E
⎡⎢⎢⎢⎢⎢⎣exp

(
λ

r1r2
sup

Δ∈C(r1,r2)

∣∣∣1
n

n∑
i=1

εi 〈Δ, xi〉
∣∣∣)⎤⎥⎥⎥⎥⎥⎦ (ii)≤ E

⎡⎢⎢⎢⎢⎢⎣exp
{
λ Φ∗(1

n

n∑
i=1

εi xi

)}⎤⎥⎥⎥⎥⎥⎦ ,
where step (i) uses the Lipschitz property (9.92) and the Ledoux–Talagrand contraction in-
equality (5.61), whereas step (ii) follows from applying Hölder’s inequality to the regu-
larizer and its dual (see Exercise 9.7), and uses the fact that Φ∗(Δ) ≤ r1r2 for any vector
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Δ ∈ C(r1, r2). Adding and subtracting the scalar δ > 0 then yields

logE
[
eλ(An−δ)] ≤ −λδ + logE

⎡⎢⎢⎢⎢⎢⎣exp
{
λΦ∗(1

n

n∑
i=1

εi xi

)}⎤⎥⎥⎥⎥⎥⎦ ,
and consequently, by Markov’s inequality,

P
[
An(r1, r2) ≥ δ

] ≤ inf
λ>0
E
[
exp

(
λ
{
Φ∗(x̄n) − δ

})]
. (9.93)

Extension to uniform radii via peeling: This bound (9.93) applies to fixed choice of
quantities (r1, r2), whereas the claim of Theorem 9.34 applies to possibly random choices—
namely, Φ(Δ)

‖Δ‖2
and ‖Δ‖2, respectively, where Δ might be chosen in a way dependent on the

data. In order to extend the bound to all choices, we make use of a peeling argument.
Let E be the event that the bound (9.90) is violated. For positive integers (k, �), define the

sets

Sk,� :=
{
Δ ∈ Rd | 2k−1 ≤ Φ(Δ)

‖Δ‖2
≤ 2k and 2�−1R� ≤ ‖Δ‖2 ≤ 2�R�

}
.

By construction, any vector that can possibly violate the bound (9.90) is contained in the
union

⋃N1
k=1

⋃N2
�=1 Sk,�, where N1 := �log supθ�0

Φ(θ)
‖θ‖ � and N2 := �log Ru

R�
�. Suppose that the

bound (9.90) is violated by some Δ̂ ∈ Sk,�. In this case, we have

∣∣∣En(Δ̂) − E(Δ̂)
∣∣∣ ≥ 16L

Φ(Δ̂)

‖Δ̂‖2

‖Δ̂‖2 δ ≥ 16L2k−12�−1R� δ = 4L2k2�R� δ,

which implies that An(2k, 2�R�) ≥ δ. Consequently, we have shown that

P[E] ≤
N1∑

k=1

N2∑
�=1

P[An(2k, 2�R�) ≥ δ] ≤ N1 N2 inf
λ>0
E
[
eλ(Φ∗(x̄n)−δ)],

where the final step follows by the union bound, and the tail bound (9.93). Given the upper
bound N1N2 ≤ 4 log(supθ�0

Φ(θ)
‖θ‖ ) log( Ru

R�
) = Mn(Φ; R), the claim follows.

9.8.2 A one-sided bound via truncation

In the previous section, we actually derived two-sided bounds on the difference between the
empirical En and population E form of the Taylor-series error. The resulting upper bounds
on En guarantee a form of restricted smoothness, one which is useful in proving fast con-
vergence rates of optimization algorithms. (See the bibliographic section for further details.)
However, for proving bounds on the estimation error, as has been our focus in this chapter, it
is only restricted strong convexity—that is, the lower bound on the Taylor-series error—that
is required.

In this section, we show how a truncation argument can be used to derive restricted strong
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convexity for generalized linear models. Letting {εi}ni=1 denote an i.i.d. sequence of Rade-
macher variables, we define a complexity measure involving the dual norm Φ∗—namely

μn(Φ∗) := Ex,ε

⎡⎢⎢⎢⎢⎢⎣Φ∗
(
1
n

n∑
i=1

εi xi

)⎤⎥⎥⎥⎥⎥⎦ = E ⎡⎢⎢⎢⎢⎢⎣ sup
Φ(Δ)≤1

1
n

n∑
i=1

εi 〈Δ, xi〉
⎤⎥⎥⎥⎥⎥⎦ .

This is simply the Rademacher complexity of the linear function class x �→ 〈Δ, x〉 as Δ
ranges over the unit ball of the norm Φ.

Our theory applies to covariates {xi}ni=1 drawn i.i.d. from a zero-mean distribution such
that, for some positive constants (α, β), we have

E
[
〈Δ, x〉2

]
≥ α and E

[
〈Δ, x〉4

]
≤ β for all vectors Δ ∈ Rd with ‖Δ‖2 = 1. (9.94)

Theorem 9.36 Consider any generalized linear model with covariates drawn from a
zero-mean distribution satisfying the condition (9.94). Then the Taylor-series error En

in the log-likelihood is lower bounded as

En(Δ) ≥ κ

2
‖Δ‖2

2 − c0 μ2
n(Φ∗) Φ2(Δ) for all Δ ∈ Rd with ‖Δ‖2 ≤ 1 (9.95)

with probability at least 1 − c1e−c2n.

In this statement, the constants (κ, c0, c1, c2) can depend on the GLM, the fixed vector θ∗ and
(α, β), but are independent of dimension, sample size, and regularizer.

Proof Using a standard formula for the remainder in the Taylor series, we have

En(Δ) =
1
n

n∑
i=1

ψ′′
(
〈θ∗, xi〉 + t 〈Δ, xi〉

)
〈Δ, xi〉2 ,

for some scalar t ∈ [0, 1]. We proceed via a truncation argument. Fix some vector Δ ∈ Rd

with Euclidean norm ‖Δ‖2 = δ ∈ (0, 1], and set τ = Kδ for a constant K > 0 to be chosen.
Since the function ϕτ(u) = u2I[|u| ≤ 2τ] lower bounds the quadratic and ψ′′ is positive, we
have

En(Δ) ≥ 1
n

n∑
i=1

ψ′′
(
〈θ∗, xi〉 + t 〈Δ, xi〉

)
ϕτ(〈Δ, xi〉) I[| 〈θ∗, xi〉 | ≤ T ], (9.96)

where T is a second truncation parameter to be chosen. Since ϕτ vanishes outside the interval
[−2τ, 2τ] and τ ≤ K, for any positive term in this sum, the absolute value |〈θ∗, xi〉+ t 〈Δ, xi〉|
is at most T + 2K, and hence

En(Δ) ≥ γ
1
n

n∑
i=1

ϕτ (〈Δ, xi〉) I[| 〈θ∗, xi〉 | ≤ T ] where γ := min|u|≤T+2K ψ′′(u).

Based on this lower bound, it suffices to show that for all δ ∈ (0, 1] and for Δ ∈ Rd with
‖Δ‖2 = δ, we have

1
n

n∑
i=1

ϕτ(δ)(〈Δ, xi〉) I[| 〈θ∗, xi〉 | ≤ T ] ≥ c3δ
2 − c4μn(Φ∗)Φ(Δ) δ. (9.97)
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When this bound holds, then inequality (9.95) holds with constants (κ, c0) depending on
(c3, c4, γ). Moreover, we claim that the problem can be reducing to proving the bound (9.97)
for δ = 1. Indeed, given any vector with Euclidean norm ‖Δ‖2 = δ > 0, we can apply the
bound (9.97) to the rescaled unit-norm vector Δ/δ to obtain

1
n

n∑
i=1

ϕτ(1)(〈Δ/δ, xi〉) I[| 〈θ∗, xi〉 | ≤ T ] ≥ c3

{
1 − c4μn(Φ∗)

Φ(Δ)
δ

}
,

where τ(1) = K, and τ(δ) = Kδ. Noting that ϕτ(1)(u/δ) = (1/δ)2ϕτ(δ)(u), the claim follows by
multiplying both sides by δ2. Thus, the remainder of our proof is devoted to proving (9.97)
with δ = 1. In fact, in order to make use of a contraction argument for Lipschitz functions,
it is convenient to define a new truncation function

ϕ̃τ(u) = u2 I[|u| ≤ τ] + (u − 2τ)2 I[τ < u ≤ 2τ] + (u + 2τ)2 I[−2τ ≤ u < −τ].

Note that it is Lipschitz with parameter 2τ. Since ϕ̃τ lower bounds ϕτ, it suffices to show that
for all unit-norm vectors Δ, we have

1
n

n∑
i=1

ϕ̃τ

(
〈Δ, xi〉

)
I[| 〈θ∗, xi〉 | ≤ T ] ≥ c3 − c4μn(Φ∗)Φ(Δ). (9.98)

For a given radius r ≥ 1, define the random variable

Zn(r) := sup
‖Δ‖2=1
Φ(Δ)≤r

∣∣∣∣∣∣∣1n
n∑

i=1

ϕ̃τ(〈Δ, xi〉) I[| 〈θ∗, xi〉 | ≤ T ] − E[ϕ̃τ(〈Δ, x〉)I[| 〈θ∗, x〉 | ≤ T ]]

∣∣∣∣∣∣∣ .
Suppose that we can prove that

E
[
ϕ̃τ(〈Δ, x〉)I[| 〈θ∗, x〉 | ≤ T ]

]
≥ 3

4
α (9.99a)

and

P
[
Zn(r) > α/2 + c4rμn(Φ∗)

]
≤ exp

(
−c2

nr2μ2
n(Φ∗)
σ2 − c2n

)
. (9.99b)

The bound (9.98) with c3 = α/4 then follows for all vectors with unit Euclidean norm and
Φ(Δ) ≤ r. Accordingly, we prove the bounds (9.99a) and (9.99b) here for a fixed radius r. A
peeling argument can be used to extend it to all radii, as in the proof of Theorem 9.34, with
the probability still upper bounded by c1e−c2n.

Proof of the expectation bound (9.99a): We claim that it suffices to show that

E
[
ϕ̃τ(〈Δ, x〉)

] (i)≥ 7
8
α, and E

[
ϕ̃τ(〈Δ, x〉) I[| 〈θ∗, x〉 | > T ]

] (ii)≤ 1
8
α.

Indeed, if these two inequalities hold, then we have

E[ϕ̃τ(〈Δ, x〉)I[| 〈θ∗, x〉 | ≤ T ]] = E[ϕ̃τ(〈Δ, x〉)] − E[ϕ̃τ(〈Δ, x〉)I[| 〈θ∗, x〉 | > T ]]

≥
{

7
8
− 1

8

}
α =

3
4
α.



9.8 Techniques for proving restricted strong convexity 305

We now prove inequalities (i) and (ii). Beginning with inequality (i), we have

E[ϕ̃τ(〈Δ, x〉)] ≥ E
[
〈Δ, x〉2 I[|〈Δ, x〉| ≤ τ]

]
= E[〈Δ, x〉2] − E

[
〈Δ, x〉2 I[|〈Δ, x〉| > τ]

]
≥ α − E

[
〈Δ, x〉2 I[|〈Δ, x〉| > τ]

]
,

so that it suffices to show that the last term is at most α/8. By the condition (9.94) and
Markov’s inequality, we have

P[|〈Δ, x〉| > τ] ≤ E[〈Δ, x〉4]
τ4 ≤ β

τ4

and

E[〈Δ, x〉4] ≤ β.

Recalling that τ = K when δ = 1, applying the Cauchy–Schwarz inequality yields

E
[
〈Δ, x〉2 I[|〈Δ, x〉| > τ]

]
≤
√
E[〈Δ, x〉4]

√
P[|〈Δ, x〉| > τ] ≤ β

K2 ,

so that setting K2 = 8β/α guarantees an upper bound of α/8, which in turn implies inequal-
ity (i) by our earlier reasoning.

Turning to inequality (ii), since

ϕ̃τ(〈Δ, x〉) ≤ 〈Δ, x〉2 and P[|〈θ∗, x〉| ≥ T ] ≤ β‖θ∗‖4
2

T 4 ,

the Cauchy–Schwarz inequality implies that

E[ϕ̃τ(〈Δ, x〉)I[| 〈θ∗, x〉 | > T ]] ≤ β‖θ∗‖2
2

T 2 .

Thus, setting T 2 = 8β‖θ∗‖2
2/α guarantees inequality (ii).

Proof of the tail bound (9.99b): By our choice τ = K, the empirical process defining
Zn(r) is based on functions bounded in absolute value by K2. Thus, the functional Hoeffding
inequality (Theorem 3.26) implies that

P[Zn(r) ≥ E[Zn(r)] + rμn(Φ∗) + α/2
] ≤ e−c2nr2μ2

n(Φ∗)−c2n.

As for the expectation, letting {εi}ni=1 denote an i.i.d. sequence of Rademacher variables, the
usual symmetrization argument (Proposition 4.11) implies that

E[Zn(r)] ≤ 2 supEx,ε

[
sup
‖Δ‖2=1
Φ(Δ)≤r

∣∣∣∣1n
n∑

i=1

εiϕ̃τ(〈Δ, xi〉) I[| 〈θ∗, xi〉 | ≤ T ]
∣∣∣∣ ].

Since I[| 〈θ∗, xi〉 | ≤ T ] ≤ 1 and ϕ̃τ is Lipschitz with parameter 2K, the contraction principle
yields

E[Zn(r)] ≤ 8K Ex,ε

[
sup
‖Δ‖2=1
Φ(Δ)≤r

∣∣∣∣1n
n∑

i=1

εi 〈Δ, xi〉
∣∣∣∣] ≤ 8KrE

[
Φ∗(1

n

n∑
i=1

εi xi

)]
,

where the final step follows by applying Hölder’s inequality using Φ and its dual Φ∗.
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9.9 Appendix: Star-shaped property

Recall the set C previously defined in Proposition 9.13. In this appendix, we prove that C
is star-shaped around the origin, meaning that if Δ ∈ C, then tΔ ∈ C for all t ∈ [0, 1]. This
property is immediate whenever θ∗ ∈ M, sinceC is then a cone, as illustrated in Figure 9.7(a).
Now consider the general case, when θ∗ � M. We first observe that for any t ∈ (0, 1],

ΠM̄(tΔ) = arg min
θ∈M̄

‖tΔ − θ‖ = t arg min
θ∈M̄

∥∥∥∥Δ − θ

t

∥∥∥∥ = tΠM̄(Δ),

using the fact that θ/t also belongs to the subspace M. A similar argument can be used to
establish the equality ΠM̄⊥(tΔ) = tΠM̄⊥(Δ). Consequently, for all Δ ∈ C, we have

Φ(ΠM̄⊥(tΔ)) = Φ(tΠM̄⊥(Δ))
(i)
= t Φ(ΠM̄⊥(Δ))
(ii)≤ t

{
3Φ(ΠM̄(Δ)) + 4Φ(θ∗M⊥)

}
,

where step (i) uses the fact that any norm is positive homogeneous,4 and step (ii) uses the
inclusion Δ ∈ C. We now observe that 3 t Φ(ΠM̄(Δ)) = 3Φ(ΠM̄(tΔ)), and moreover, since
t ∈ (0, 1], we have 4t Φ(θ∗M⊥) ≤ 4Φ(θ∗M⊥). Putting together the pieces, we find that

Φ
(
ΠM̄⊥(tΔ)

) ≤ 3 Φ(ΠM̄(tΔ)) + 4 tΦ(θ∗M⊥) ≤ 3 Φ(ΠM̄(tΔ)) + 4Φ(θ∗M⊥),

showing that tΔ ∈ C for all t ∈ (0, 1], as claimed.

9.10 Bibliographic details and background

The definitions of decomposable regularizers and restricted strong convexity were intro-
duced by Negahban et al. (2012), who first proved a version of Theorem 9.19. Restricted
strong convexity is the natural generalization of a restricted eigenvalue to the setting of gen-
eral (potentially non-quadratic) cost functions, and general decomposable regularizers. A
version of Theorem 9.36 was proved in the technical report (Negahban et al., 2010) for the
�1-norm; note that this result allows for the second derivative ψ′′ to be unbounded, as in
the Poisson case. The class of decomposable regularizers includes the atomic norms studied
by Chandrasekaran et al. (2012a), whereas van de Geer (2014) introduced a generalization
known as weakly decomposable regularizers.

The argument used in the proof of Theorem 9.19 exploits ideas from Ortega and Rhein-
boldt (2000) as well as Rothman et al. (2008), who first derived Frobenius norm error bounds
on the graphical Lasso (9.12). See Chapter 11 for a more detailed discussion of the graphical
Lasso, and related problems concerning graphical models. The choice of regularizer defin-
ing the “good” event G(λn) in Proposition 9.13 is known as the dual norm bound. It is a
cleanly stated and generally applicable choice, sharp for many (but not all) problems. See
Exercise 7.15 as well as Chapter 13 for a discussion of instances in which it can be im-
proved. These types of dual-based quantities also arise in analyses of exact recovery based
on random projections; see the papers by Mendelson et al. (2007) and Chandrasekaran et
al. (2012a) for geometric perspectives of this type.

The �1/�2 group Lasso norm from Example 9.3 was introduced by Yuan and Lin (2006);

4 Explicitly, for any norm and non-negative scalar t, we have ‖tx‖ = t‖x‖.
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see also Kim et al. (2006). As a convex program, it is a special case of second-order cone
program (SOCP), for which there are various efficient algorithms (Bach et al., 2012; Boyd
and Vandenberghe, 2004). Turlach et al. (2005) studied the �1/�∞ version of the group
Lasso norm. Several groups (Zhao et al., 2009; Baraniuk et al., 2010) have proposed unify-
ing frameworks that include these group-structured norms as particular cases. See Bach et
al. (2012) for discussion of algorithmic issues associated with optimization involving group
sparse penalties. Jacob et al. (2009) introduced the overlapping group Lasso norm discussed
in Example 9.4, and provide detailed discussion of why the standard group Lasso norm with
overlap fails to select unions of groups. A number of authors have investigated the statistical
benefits of the group Lasso versus the ordinary Lasso when the underlying regression vector
is group-sparse; for instance, Obozinski et al. (2011) study the problem of variable selection,
whereas the papers (Baraniuk et al., 2010; Huang and Zhang, 2010; Lounici et al., 2011)
provide guarantees on the estimation error. Negahban and Wainwright (2011a) study the
variable selection properties of �1/�∞-regularization for multivariate regression, and show
that, while it can be more statistically efficient than �1-regularization with complete shared
overlap, this gain is surprisingly non-robust: it is very easy to construct examples in which
it is outperformed by the ordinary Lasso. Motivated by this deficiency, Jalali et al. (2010)
study a decomposition-based estimator, in which the multivariate regression matrix is de-
composed as the sum of an elementwise-sparse and row-sparse matrix (as in Section 9.7),
and show that it adapts in the optimal way. The adaptive guarantee given in Corollary 9.31
is of a similar flavor, but as applied to the estimation error as opposed to variable selection.

Convex relaxations based on nuclear norm introduced in Example 9.8 have been the focus
of considerable research; see Chapter 10 for an in-depth discussion.

The Φ∗-norm restricted curvature conditions discussed in Section 9.3 are a generalization
of the notion of �∞-restricted eigenvalues (van de Geer and Bühlmann, 2009; Ye and Zhang,
2010; Bühlmann and van de Geer, 2011). See Exercises 7.13, 7.14 and 9.11 for some anal-
ysis of these �∞-RE conditions for the usual Lasso, and Exercise 9.14 for some analysis for
Lipschitz cost functions. Section 10.2.3 provides various applications of this condition to
nuclear norm regularization.

9.11 Exercises

Exercise 9.1 (Overlapping group Lasso) Show that the overlap group Lasso, as defined by
the variational representation (9.10), is a valid norm.

Exercise 9.2 (Subspace projection operator) Recall the definition (9.20) of the subspace
projection operator. Compute an explicit form for the following subspaces:

(a) For a fixed subset S ⊆ {1, 2, . . . , d}, the subspace of vectors

M(S ) := {θ ∈ Rd | θ j = 0 for all j � S }.
(b) For a given pair of r-dimensional subspaces U and V, the subspace of matrices

M(U,V) := {Θ ∈ Rd×d | rowspan(Θ) ⊆ U, colspan(Θ) ⊆ V},
where rowspan(Θ) and colspan(Θ) denote the row and column spans of Θ.
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Exercise 9.3 (Generalized linear models) This exercise treats various cases of the general-
ized linear model.

(a) Suppose that we observe samples of the form y = 〈x, θ〉+w, where w ∼ N(0, σ2). Show
that the conditional distribution of y given x is of the form (9.5) with c(σ) = σ2 and
ψ(t) = t2/2.

(b) Suppose that y is (conditionally) Poisson with mean λ = e〈x, θ〉. Show that this is a special
case of the log-linear model (9.5) with c(σ) ≡ 1 and ψ(t) = et.

Exercise 9.4 (Dual norms) In this exercise, we study various forms of dual norms.

(a) Show that the dual norm of the �1-norm is the �∞-norm.
(b) Consider the general group Lasso norm

Φ(u) = ‖u‖1,G(p) =
∑
g∈G

‖ug‖p,

where p ∈ [1,∞] is arbitrary, and the groups are non-overlapping. Show that its dual
norm takes the form

Φ∗(v) = ‖v‖∞,G(q) = max
g∈G

‖vg‖q,

where q = p
p−1 is the conjugate exponent to p.

(c) Show that the dual norm of the nuclear norm is the �2-operator norm

Φ∗(N) = |||N|||2 := sup
‖z‖2=1

‖Nz‖2.

(Hint: Try to reduce the problem to a version of part (a).)

Exercise 9.5 (Overlapping group norm and duality) Let p ∈ [1,∞], and recall the overlap-
ping group norm (9.10).

(a) Show that it has the equivalent representation

Φ(u) = max
v∈Rd

〈v, u〉 such that ‖vg‖q ≤ 1 for all g ∈ G,

where q = p
p−1 is the dual exponent.

(b) Use part (a) to show that its dual norm is given by

Φ∗(v) = max
g∈G

‖vg‖q.

Exercise 9.6 (Boundedness of subgradients in the dual norm) Let Φ : Rd → R be a norm,
and θ ∈ Rd be arbitrary. For any z ∈ ∂Φ(θ), show that Φ∗(z) ≤ 1.

Exercise 9.7 (Hölder’s inequality) Let Φ : Rd → R+ be a norm, and let Φ∗ : Rd → R+ be
its dual norm.

(a) Show that
∣∣∣ 〈u, v〉

∣∣∣ ≤ Φ(u) Φ∗(v) for all u, v ∈ Rd.
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(b) Use part (a) to prove Hölder’s inequality for �p-norms, namely∣∣∣ 〈u, v〉
∣∣∣ ≤ ‖u‖p ‖v‖q,

where the exponents (p, q) satisfy the conjugate relation 1/p + 1/q = 1.
(c) Let Q ! 0 be a positive definite symmetric matrix. Use part (a) to show that∣∣∣ 〈u, v〉

∣∣∣ ≤ √
uTQu

√
vTQ−1v for all u, v ∈ Rd.

Exercise 9.8 (Complexity parameters) This exercise concerns the complexity parameter
μn(Φ∗) previously defined in equation (9.41). Suppose throughout that the covariates {xi}ni=1
are drawn i.i.d., each sub-Gaussian with parameter σ.

(a) Consider the group Lasso norm (9.9) with group set G and maximum group size m.
Show that

μn(Φ∗) � σ

√
m
n
+ σ

√
log |G|

n
.

(b) For the nuclear norm on the space of d1 × d2 matrices, show that

μn(Φ∗) � σ

√
d1

n
+ σ

√
d2

n
.

Exercise 9.9 (Equivalent forms of strong convexity) Suppose that a differentiable function
f : Rd → R is κ-strongly convex in the sense that

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + κ

2
‖y − x‖2

2 for all x, y ∈ Rd. (9.100a)

Show that

〈∇ f (y) − ∇ f (x), y − x〉 ≥ κ‖y − x‖2
2 for all x, y ∈ Rd. (9.100b)

Exercise 9.10 (Implications of local strong convexity) Suppose that f : Rd → R is a twice
differentiable, convex function that is locally κ-strongly convex around x, in the sense that
the lower bound (9.100a) holds for all vectors z in the ball B2(x) :=

{
z ∈ Rd | ‖z − x‖2 ≤ 1

}
.

Show that

〈∇ f (y) − ∇ f (x), y − x〉 ≥ κ‖y − x‖2 for all y ∈ Rd\B2(x).

Exercise 9.11 (�∞-curvature and RE conditions) In this exercise, we explore the link be-
tween the �∞-curvature condition (9.56) and the �∞-RE condition (9.57). Suppose that the

bound (9.56) holds with τn = c1

√
log d

n . Show that the bound (9.57) holds with κ′ = κ
2 as long

as n > c2|S |2 log d with c2 =
4c2

1(1+α)4

κ2 .

Exercise 9.12 (�1-regularization and soft thresholding) Given observations from the linear
model y = Xθ∗ + w, consider the M-estimator

θ̂ = arg min
θ∈Rd

{
1
2
‖θ‖2

2 −
〈
θ,

1
n

XTy
〉
+ λn‖θ‖1

}
.

(a) Show that the optimal solution is always unique, and given by θ̂ = Tλn

( 1
n XTy

)
, where the

soft-thresholding operator Tλn was previously defined (7.6b).
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(b) Now suppose that θ∗ is s-sparse. Show that if

λn ≥ 2
{∥∥∥∥(XTX

n
− Id

)
θ∗
∥∥∥∥∞ + ∥∥∥∥XTw

n

∥∥∥∥∞
}
,

then the optimal solution satisfies the bound ‖̂θ − θ∗‖2 ≤ 3
2

√
sλn.

(c) Now suppose that the covariates {xi}ni=1 are drawn i.i.d. from a zero-mean ν-sub-Gaussian
ensemble with covariance cov(xi) = Id, and the noise vector w is bounded as ‖w‖2 ≤
b
√

n for some b > 0. Show that with an appropriate choice of λn, we have

‖̂θ − θ∗‖2 ≤ 3ν
(
ν‖θ∗‖2 + b

) √
s
{√

log d
n

+ δ

}
with probability at least 1 − 4e−

nδ2
8 for all δ ∈ (0, 1).

Exercise 9.13 (From �∞ to {�1, �2}-bounds) In the setting of Corollary 9.27, show that any
optimal solution θ̂ that satisfies the �∞-bound (9.65) also satisfies the following �1- and �2-
error bounds

‖̂θ − θ∗‖1 ≤ 24σ
κ

s

√
log d

n
and ‖̂θ − θ∗‖2 ≤ 12σ

κ

√
s log d

n
.

(Hint: Proposition 9.13 is relevant here.)

Exercise 9.14 (�∞-curvature for Lipschitz cost functions) In the setting of regression-type
data z = (x, y) ∈ X×Y, consider a cost function whose gradient is elementwise L-Lipschitz:
i.e., for any sample z and pair θ, θ̃, the jth partial derivative satisfies∣∣∣∣∣∣∂L(θ; zi)

θ j
− ∂L(̃θ; zi)

θ j

∣∣∣∣∣∣ ≤ L
∣∣∣xi j

〈
xi, θ − θ̃

〉 ∣∣∣. (9.101)

The goal of this exercise is to show that such a function satisfies an �∞-curvature condition
similar to equation (9.64), as required for applying Corollary 9.27.

(a) Show that for any GLM whose cumulant function has a uniformly bounded second
derivative (‖ψ′′‖∞ ≤ B2), the elementwise Lipschitz condition (9.101) is satisfied with
L = B2

2 .
(b) For a given radius r > 0 and ratio ρ > 0, define the set

T(R; ρ) :=
{
Δ ∈ Rd | ‖Δ‖1

‖Δ‖∞ ≤ ρ, and ‖Δ‖∞ ≤ r
}
,

and consider the random vector V ∈ Rd with elements

Vj :=
1

4 L r ρ
sup

Δ∈T(r;ρ)

∣∣∣∣1n
n∑

i=1

f j(Δ; zi)
∣∣∣∣, for j = 1, . . . , d,

where, for each fixed vector Δ,

f j(Δ; zi) :=
{
∂L(θ∗ + Δ; zi)

θ j
− ∂L(θ∗; zi)

θ j

}
−
{
∂L̄(θ∗ + Δ)

θ j
− ∂L̄(θ∗)

θ j

}
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is a zero-mean random variable. For each λ > 0, show that

Ex[eλ‖V‖∞] ≤ d Ex,ε

⎡⎢⎢⎢⎢⎢⎣exp
(
λ
∥∥∥∥1

n

n∑
i=1

εi xixT
i

∥∥∥∥∞
)⎤⎥⎥⎥⎥⎥⎦ .

(c) Suppose that the covariates {xi}ni=1 are sampled independently, with each xi j following a
zero-mean σ-sub-Gaussian distribution. Show that for all t ∈ (0, σ2),

P
[‖V‖∞ ≥ t

] ≤ 2d2e−
nt2

2σ4 .

(d) Suppose that the population function L satisfies the �∞- curvature condition

‖∇L(θ∗ + Δ) − ∇L(θ∗)‖∞ ≥ κ ‖Δ‖∞ for all Δ ∈ T(r; ρ).

Use this condition and the preceding parts to show that

‖∇Ln(θ∗ + Δ) − ∇Ln(θ∗)‖∞ ≥ κ‖Δ‖∞ − 16 L σ2

√
log d

n
ρ r for all Δ ∈ T(r; ρ)

with probability at least 1 − e−4 log d.
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Matrix estimation with rank constraints

In Chapter 8, we discussed the problem of principal component analysis, which can be
understood as a particular type of low-rank estimation problem. In this chapter, we turn
to other classes of matrix problems involving rank and other related constraints. We show
how the general theory of Chapter 9 can be brought to bear in a direct way so as to obtain
theoretical guarantees for estimators based on nuclear norm regularization, as well as various
extensions thereof, including methods for additive matrix decomposition.

10.1 Matrix regression and applications

In previous chapters, we have studied various forms of vector-based regression, including
standard linear regression (Chapter 7) and extensions based on generalized linear models
(Chapter 9). As suggested by its name, matrix regression is the natural generalization of
such vector-based problems to the matrix setting. The analog of the Euclidean inner product
on the matrix space Rd1×d2 is the trace inner product

〈〈A, B〉〉 := trace(ATB) =
d1∑

j1=1

d2∑
j2=1

Aj1 j2 Bj1 j2 . (10.1)

This inner product induces the Frobenius norm |||A|||F =
√∑d1

j1=1

∑d2
j2=1(Aj1 j2 )2, which is sim-

ply the Euclidean norm on a vectorized version of the matrix.
In a matrix regression model, each observation takes the form Zi = (Xi, yi), where Xi ∈

Rd1×d2 is a matrix of covariates, and yi ∈ R is a response variable. As usual, the simplest case
is the linear model, in which the response–covariate pair are linked via the equation

yi = 〈〈Xi, Θ
∗〉〉 + wi, (10.2)

where wi is some type of noise variable. We can also write this observation model in a
more compact form by defining the observation operator Xn : Rd1×d2 → Rn with elements
[Xn(Θ)]i = 〈〈Xi, Θ〉〉, and then writing

y = Xn(Θ∗) + w, (10.3)

where y ∈ Rn and w ∈ Rn are the vectors of response and noise variables, respectively. The
adjoint of the observation operator, denoted X∗n, is the linear mapping from Rn to Rd1×d2 given
by u �→ ∑n

i=1 uiXi. Note that the operator Xn is the natural generalization of the design matrix
X, viewed as a mapping from Rd to Rn in the usual setting of vector regression.

312
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As illustrated by the examples to follow, there are many applications in which the regres-
sion matrix Θ∗ is either low-rank, or well approximated by a low-rank matrix. Thus, if we
were to disregard computational costs, an appropriate estimator would be a rank-penalized
form of least squares. However, including a rank penalty makes this a non-convex form
of least squares so that—apart from certain special cases—it is computationally difficult to
solve. This obstacle motivates replacing the rank penalty with the nuclear norm, which leads
to the convex program

Θ̂ ∈ arg min
Θ∈Rd1×d2

{
1

2n
‖y − Xn(Θ)‖2

2 + λn|||Θ|||nuc

}
. (10.4)

Recall that the nuclear norm of Θ is given by the sum of its singular values—namely,

|||Θ|||nuc =

d′∑
j=1

σ j(Θ), where d′ = min{d1, d2}. (10.5)

See Example 9.8 for our earlier discussion of this matrix norm.

Let us illustrate these definitions with some examples, beginning with the problem of multi-
variate regression.

Example 10.1 (Multivariate regression as matrix regression) As previously introduced in
Example 9.6, the multivariate regression observation model can be written as Y = ZΘ∗ + W,
where Z ∈ Rn×p is the regression matrix, and Y ∈ Rn×T is the matrix of responses. The tth
columnΘ∗

•,t of the (p×T )-dimensional regression matrixΘ∗ can be thought of as an ordinary
regression vector for the tth component of the response. In many applications, these vectors
lie on or close to a low-dimensional subspace, which means that the matrix Θ∗ is low-rank,
or well approximated by a low-rank matrix. A direct way of estimating Θ∗ would be via
reduced rank regression, in which one minimizes the usual least-squares cost |||Y − ZΘ|||2F
while imposing a rank constraint directly on the regression matrix Θ. Even though this
problem is non-convex due to the rank constraint, it is easily solvable in this special case;
see the bibliographic section and Exercise 10.1 for further details. However, this ease of
solution is very fragile and will no longer hold if other constraints, in addition to a bounded
rank, are added. In such cases, it can be useful to apply nuclear norm regularization in order
to impose a “soft” rank constraint.

Multivariate regression can be recast as a form of the matrix regression model (10.2) with
N = nT observations in total. For each j = 1, . . . , n and � = 1, . . . ,T , let E j� be an n × T
mask matrix, with zeros everywhere except for a one in position ( j, �). If we then define
the matrix X j� := ZTE j� ∈ Rp×T , the multivariate regression model is based on the N = n T
observations (X j�, y j�), each of the form

y j� = 〈〈X j�, Θ
∗〉〉 + Wj�, for j = 1, . . . , n and � = 1, . . . ,T .

Consequently, multivariate regression can be analyzed via the general theory that we develop
for matrix regression problems. ♣
Another example of matrix regression is the problem of matrix completion.

Example 10.2 (Low-rank matrix completion) Matrix completion refers to the problem of
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estimating an unknown matrix Θ∗ ∈ Rd1×d2 based on (noisy) observations of a subset of its
entries. Of course, this problem is ill-posed unless further structure is imposed, and so there
are various types of matrix completion problems, depending on this underlying structure.
One possibility is that the unknown matrix has a low-rank, or more generally can be well
approximated by a low-rank matrix.

As one motivating application, let us consider the “Netflix problem”, in which the rows
ofΘ∗ correspond to people, and columns correspond to movies. Matrix entry Θ∗

a,b represents
the rating assigned by person a (say “Alice”) to a given movie b that she has seen. In this
setting, the goal of matrix completion is to make recommendations to Alice—that is, to
suggest other movies that she has not yet seen but would be to likely to rate highly. Given
the large corpus of movies stored by Netflix, most entries of the matrix Θ∗ are unobserved,
since any given individual can only watch a limited number of movies over his/her lifetime.
Consequently, this problem is ill-posed without further structure. See Figure 10.1(a) for an
illustration of this observation model. Empirically, if one computes the singular values of
recommender matrices, such as those that arise in the Netflix problem, the singular value
spectrum tends to exhibit a fairly rapid decay—although the matrix itself is not exactly low-
rank, it can be well-approximated by a matrix of low rank. This phenomenon is illustrated
for a portion of the Jester joke data set (Goldberg et al., 2001), in Figure 10.1(b).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Figure 10.1 (a) Illustration of the Netflix problem. Each user (rows of the matrix)
rates a subset of movies (columns of the matrix) on a scale of 1 to 5. All remaining
entries of the matrix are unobserved (marked with ∗), and the goal of matrix comple-
tion is to fill in these missing entries. (b) Plot of the singular values for a portion of
the Jester joke data set (Goldberg et al., 2001), corresponding to ratings of jokes on
a scale of [−10, 10], and available at http://eigentaste.berkeley.edu/. Al-
though the matrix is not exactly low-rank, it can be well approximated by a low-rank
matrix.

In this setting, various observation models are possible, with the simplest being that we
are given noiseless observations of a subset of the entries of Θ∗. A slightly more realistic
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model allows for noisiness—for instance, in the linear case, we might assume that

ỹi = Θa(i),b(i) +
wi√
d1d2

, (10.6)

where wi is some form1 of observation noise, and (a(i), b(i)) are the row and column indices
of the ith observation.

How to reformulate the observations as an instance of matrix regression? For sample
index i, define the mask matrix Xi ∈ Rd1×d2 , which is zero everywhere except for posi-
tion (a(i), b(i)), where it takes the value

√
d1d2. Then by defining the rescaled observation

yi :=
√

d1d2 ỹi, the observation model can be written in the trace regression form as

yi = 〈〈Xi, Θ
∗〉〉 + wi. (10.7)

We analyze this form of matrix completion in the sequel.
Often, matrices might take on discrete values, such as for yes/no votes coded in the set

{−1, 1}, or ratings belonging to some subset of the positive integers (e.g., {1, . . . , 5}), in which
case a generalized version of the basic linear model (10.6) would be appropriate. For in-
stance, in order to model binary-valued responses y ∈ {−1, 1}, it could be appropriate to use
the logistic model

P(yi | Xi,Θ
∗) =

ey 〈〈Xi, Θ
∗〉〉

1 + eyi 〈〈Xi, Θ∗〉〉 . (10.8)

In this context, the parameter Θ∗
a,b is proportional to the log-odds ratio for whether user a

likes (or dislikes) item b. ♣
We now turn to the matrix analog of the compressed sensing observation model, originally
discussed in Chapter 7 for vectors. It is another special case of the matrix regression problem.

Example 10.3 (Compressed sensing for low-rank matrices) Working with the linear ob-
servation model (10.3), suppose that the design matrices Xi ∈ Rd1×d2 are drawn i.i.d from a
random Gaussian ensemble. In the simplest of settings, the design matrix is chosen from the
standard Gaussian ensemble, meaning that each of its D = d1d2 entries is an i.i.d. draw from
the N(0, 1) distribution. In this case, the random operator Xn provides n random projections
of the unknown matrix Θ∗—namely

yi = 〈〈Xi, Θ
∗〉〉 for i = 1, . . . , n. (10.9)

In this noiseless setting, it is natural to ask how many such observations suffice to recover
Θ∗ exactly. We address this question in Corollary 10.9 to follow in the sequel. ♣
The problem of signal phase retrieval leads to a variant of the low-rank compressed sensing
problem:

Example 10.4 (Phase retrieval) Let θ∗ ∈ Rd be an unknown vector, and suppose that we
make measurements of the form ỹi =

∣∣∣〈xi, θ
∗〉
∣∣∣ where xi ∼ N(0, Id) is a standard normal

vector. This set-up is a real-valued idealization of the problem of phase retrieval in image

1 Our choice of normalization by 1/
√

d1d2 is for later theoretical convenience, as clarified in the sequel—see
equation (10.36).
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processing, in which we observe the magnitude of complex inner products, and want the
retrieve the phase of the associated complex vector. In this idealized setting, the “phase” can
take only two possible values, namely the possible signs of 〈xi, θ

∗〉.
A standard semidefinite relaxation is based on lifting the observation model to the space

of matrices. Taking squares on both sides yields the equivalent observation model

ỹ2
i =

( 〈xi, θ
∗〉 )2 = 〈〈xi ⊗ xi, θ∗ ⊗ θ∗〉〉 for i = 1, . . . , n,

where θ∗ ⊗ θ∗ = θ∗(θ∗)T is the rank-one outer product. By defining the scalar observation
yi := ỹ2

i , as well as the matrices Xi := xi ⊗ xi and Θ∗ := θ∗ ⊗ θ∗, we obtain an equivalent
version of the noiseless phase retrieval problem—namely, to find a rank-one solution to
the set of matrix-linear equations yi = 〈〈Xi, Θ∗〉〉 for i = 1, . . . , n. This problem is non-
convex, but by relaxing the rank constraint to a nuclear norm constraint, we obtain a tractable
semidefinite program (see equation (10.29) to follow).

Overall, the phase retrieval problem is a variant of the compressed sensing problem from
Example 10.3, in which the random design matrices Xi are no longer Gaussian, but rather
the outer product xi ⊗ xi of two Gaussian vectors. In Corollary 10.13 to follow, we show that
the solution of the semidefinite relaxation coincides with the rank-constrained problem with
high probability given n � d observations. ♣
Matrix estimation problems also arise in modeling of time series, where the goal is to de-
scribe the dynamics of an underlying process.

Example 10.5 (Time-series and vector autoregressive processes) A vector autoregressive
(VAR) process in d dimensions consists of a sequence of d-dimensional random vectors
{zt}Nt=1 that are generated by first choosing the random vector z1 ∈ Rd according to some
initial distribution, and then recursively setting

zt+1 = Θ∗zt + wt, for t = 1, 2, . . . , N − 1. (10.10)

Here the sequence of d-dimensional random vectors {wt}N−1
t=1 forms the driving noise of the

process; we model them as i.i.d. zero-mean random vectors with covariance Γ ! 0. Of
interest to us is the matrix Θ∗ ∈ Rd×d that controls the dependence between successive
samples of the process. Assuming that wt is independent of zt for each t, the covariance
matrix Σt = cov(zt) of the process evolves according to the recursion Σt+1 := Θ∗Σt(Θ∗)T + Γ.
Whenever |||Θ∗|||2 < 1, it can be shown that the process is stable, meaning that the eigenvalues
of Σt stay bounded independently of t, and the sequence {Σt}∞t=1 converges to a well-defined
limiting object. (See Exercise 10.2.)

Our goal is to estimate the system parameters, namely the d-dimensional matrices Θ∗

and Γ. When the noise covariance Γ is known and strictly positive definite, one possible
estimator for Θ∗ is based on a sum of quadratic losses over successive samples—namely,

Ln(Θ) =
1

2N

N−1∑
t=1

‖zt+1 −Θzt‖2
Γ−1 , (10.11)

where ‖a‖Γ−1 :=
√〈

a, Γ−1a
〉

is the quadratic norm defined by Γ. When the driving noise wt is
zero-mean Gaussian with covariance Γ, then this cost function is equivalent to the negative
log-likelihood, disregarding terms not depending on Θ∗.
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In many applications, among them subspace tracking and biomedical signal processing,
the system matrixΘ∗ can be modeled as being low-rank, or well approximated by a low-rank
matrix. In this case, the nuclear norm is again an appropriate choice of regularizer, and when
combined with the loss function (10.11), we obtain another form of semidefinite program to
solve.

Although different on the surface, this VAR observation model can be reformulated as a
particular instance of the matrix regression model (10.2), in particular one with n = d (N−1)
observations in total. At each time t = 2, . . . , N, we receive a total of d observations. Letting
e j ∈ Rd denote the canonical basis vector with a single one in position j, the jth observation
in the block has the form

zt
j =

〈
e j, zt

〉
=
〈
e j, Θ

∗zt−1
〉
+ wt−1

j = 〈〈e j ⊗ zt−1, Θ∗〉〉 + wt−1
j ,

so that in the matrix regression observation model (10.2), we have yi = (zt) j and Xi = e j⊗zt−1

when i indexes the sample (t, j). ♣

10.2 Analysis of nuclear norm regularization

Having motivated problems of low-rank matrix regression, we now turn to the development
and analysis of M-estimators based on nuclear norm regularization. Our goal is to bring to
bear the general theory from Chapter 9. This general theory requires specification of certain
subspaces over which the regularizer decomposes, as well as restricted strong convexity
conditions related to these subspaces. This section is devoted to the development of these
two ingredients in the special case of nuclear norm (10.5).

10.2.1 Decomposability and subspaces

We begin by developing appropriate choices of decomposable subspaces for the nuclear
norm. For any given matrix Θ ∈ Rd1×d2 , we let rowspan(Θ) ⊆ Rd2 and colspan(Θ) ⊆ Rd1 de-
note its row space and column space, respectively. For a given positive integer r ≤ d′ :=
min{d1, d2}, let U and V denote r-dimensional subspaces of vectors. We can then define the
two subspaces of matrices

M(U,V) :=
{
Θ ∈ Rd1×d2 | rowspan(Θ) ⊆ V, colspan(Θ) ⊆ U} (10.12a)

and

M⊥(U,V) :=
{
Θ ∈ Rd1×d2 | rowspan(Θ) ⊆ V⊥, colspan(Θ) ⊆ U⊥}. (10.12b)

Here U⊥ and V⊥ denote the subspaces orthogonal to U and V, respectively. When the sub-
spaces (U,V) are clear from the context, we omit them so as to simplify notation. From the
definition (10.12a), any matrix in the model space M has rank at most r. On the other hand,
equation (10.12b) defines the subspace M(U,V) implicitly, via taking the orthogonal com-
plement. We show momentarily that unlike other regularizers considered in Chapter 9, this
definition implies that M(U,V) is a strict superset of M(U,V).

To provide some intuition for the definition (10.12), it is helpful to consider an explicit
matrix-based representation of the subspaces. Recalling that d′ = min{d1, d2}, let U ∈ Rd1×d′
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and V ∈ Rd2×d′ be a pair of orthonormal matrices. These matrices can be used to define
r-dimensional spaces: namely, let U be the span of the first r columns of U, and similarly,
let V be the span of the first r columns of V. In practice, these subspaces correspond (re-
spectively) to the spaces spanned by the top r left and right singular vectors of the target
matrix Θ∗.

With these choices, any pair of matrices A ∈ M(U,V) and B ∈ M⊥(U,V) can be repre-
sented in the form

A = U

[
Γ11 0r×(d′−r)

0(d′−r)×r 0(d′−r)×(d′−r)

]
VT and B = U

[
0r×r 0r×(d′−r)

0(d′−r)×r Γ22

]
VT, (10.13)

where Γ11 ∈ Rr×r and Γ22 ∈ R(d′−r)×(d′−r) are arbitrary matrices. Thus, we see that M corre-
sponds to the subspace of matrices with non-zero left and right singular vectors contained
within the span of first r columns of U and V, respectively.

On the other hand, the set M⊥ corresponds to the subspace of matrices with non-zero left
and right singular vectors associated with the remaining d′ − r columns of U and V. Since
the trace inner product defines orthogonality, any member A of M(U,V) must take the form

A = U

[
Γ11 Γ12

Γ21 0

]
VT, (10.14)

where all three matrices Γ11 ∈ Rr×r, Γ12 ∈ Rr×(d′−r) and Γ21 ∈ R(d′−r)×r are arbitrary. In this
way, we see explicitly that M is a strict superset of M whenever r < d′. An important fact,
however, is that M is not substantially larger than M. Whereas any matrix in M has rank at
most r, the representation (10.14) shows that any matrix in M has rank at most 2r.

The preceding discussion also demonstrates the decomposability of the nuclear norm.
Using the representation (10.13), for an arbitrary pair of matrices A ∈ M and B ∈ M⊥, we
have

|||A + B|||nuc
(i)
=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
[
Γ11 0

0 0

]
+

[
0 0

0 Γ22

] ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
nuc

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
[
Γ11 0

0 0

] ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
nuc

+

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
[
0 0

0 Γ22

] ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
nuc

(ii)
= |||A|||nuc + |||B|||nuc,

where steps (i) and (ii) use the invariance of the nuclear norm to orthogonal transformations
corresponding to multiplication by the matrices U or V, respectively.

When the target matrix Θ∗ is of rank r, then the “best” choice of the model subspace
(10.12a) is clear. In particular, the low-rank condition on Θ∗ means that it can be factored
in the form Θ∗ = UDVT, where the diagonal matrix D ∈ Rd′×d′ has the r non-zero singular
values of Θ∗ in its first r diagonal entries. The matrices U ∈ Rd1×d′ and V ∈ Rd2×d′ are
orthonormal, with their first r columns corresponding to the left and right singular vectors,
respectively, of Θ∗. More generally, even when Θ∗ is not exactly of rank r, matrix subspaces
of this form are useful: we simply choose the first r columns of U and V to index the singular
vectors associated with the largest singular values of Θ∗, a subspace that we denote by
M(Ur,Vr).

With these details in place, let us state for future reference a consequence of Proposi-
tion 9.13 for M-estimators involving the nuclear norm. Consider an M-estimator of the form

Θ̂ arg min
Θ∈Rd1×d2

{Ln(Θ) + λn|||Θ|||nuc} ,
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where Ln is some convex and differentiable cost function. Then for any choice of regular-
ization parameter λn ≥ 2|||∇Ln(Θ∗)|||2, the error matrix Δ̂ = Θ̂−Θ∗ must satisfy the cone-like
constraint

|||̂ΔM̄⊥ |||nuc ≤ 3|||̂ΔM̄|||nuc + 4|||Θ∗
M⊥ |||nuc, (10.15)

where M = M(Ur,Vr) and M = M(Ur,Vr). Here the reader should recall that Δ̂M̄ denotes the
projection of the matrix Δ̂ onto the subspace M, with the other terms defined similarly.

10.2.2 Restricted strong convexity and error bounds

We begin our exploration of nuclear norm regularization in the simplest setting, namely
when it is coupled with a least-squares objective function. More specifically, given observa-
tions (y,Xn) from the matrix regression model (10.3), consider the estimator

Θ̂ ∈ arg min
Θ∈Rd1×d2

{
1

2n
‖y − Xn(Θ)‖2

2 + λn|||Θ|||nuc

}
, (10.16)

where λn > 0 is a user-defined regularization parameter. As discussed in the previous section,
the nuclear norm is a decomposable regularizer and the least-squares cost is convex, and so
given a suitable choice of λn, the error matrix Δ̂ := Θ̂ − Θ∗ must satisfy the cone-like
constraint (10.15).

The second ingredient of the general theory from Chapter 9 is restricted strong convexity
of the loss function. For this least-squares cost, restricted strong convexity amounts to lower
bounding the quadratic form ‖Xn(Δ)‖2

2
2n . In the sequel, we show the random operator Xn satisfies

a uniform lower bound of the form

‖Xn(Δ)‖2
2

2n
≥ κ

2
|||Δ|||2F − c0

(d1 + d2)
n

|||Δ|||2nuc, for all Δ ∈ Rd1×d2 , (10.17)

with high probability. Here the quantity κ > 0 is a curvature constant, and c0 is another
universal constant of secondary importance. In the notation of Chapter 9, this lower bound
implies a form of restricted strong convexity—in particular, see Definition 9.15—with cur-
vature κ and tolerance τ2

n = c0
(d1+d2)

n . We then have the following corollary of Theorem 9.19:

Proposition 10.6 Suppose that the observation operator Xn satisfies the restricted
strong convexity condition (10.17) with parameter κ > 0. Then conditioned on the
event G(λn) = {||| 1n

∑n
i=1 wiXi|||2 ≤ λn

2 }, any optimal solution to nuclear norm regularized
least squares (10.16) satisfies the bound

|||Θ̂ −Θ∗|||2F ≤
9
2
λ2

n

κ2 r +
1
κ

⎧⎪⎪⎨⎪⎪⎩2λn

d′∑
j=r+1

σ j(Θ∗) +
32c0(d1 + d2)

n

[ d′∑
j=r+1

σ j(Θ∗)
]2
⎫⎪⎪⎬⎪⎪⎭ ,

(10.18)

valid for any r ∈ {1, . . . , d′} such that r ≤ κ n
128 c0 (d1+d2) .
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Remark: As with Theorem 9.19, the result of Proposition 10.6 is a type of oracle inequality:
it applies to any matrixΘ∗, and involves a natural splitting into estimation and approximation
error, parameterized by the choice of r. Note that the choice of r can be optimized so as to
obtain the tightest possible bound.

The bound (10.18) takes a simpler form in special cases. For instance, suppose that
rank(Θ∗) < d′ and moreover that n > 128 c0

κ
rank(Θ∗) (d1 + d2). We then may apply the

bound (10.18) with r = rank(Θ∗). Since
∑d′

j=r+1 σ j(Θ∗) = 0, Proposition 10.6 implies the
upper bound

|||Θ̂ −Θ∗|||2F ≤
9
2
λ2

n

κ2 rank(Θ∗). (10.19)

We make frequent use of this simpler bound in the sequel.

Proof For each r ∈ {1, . . . , d′}, let (Ur,Vr) be the subspaces spanned by the top r left
and right singular vectors of Θ∗, and recall the subspaces M(Ur,Vr) and M⊥(Ur,Vr) pre-
viously defined in (10.12). As shown previously, the nuclear norm is decomposable with
respect to any such subspace pair. In general, the “good” event from Chapter 9 is given
by G(λn) =

{
Φ∗(∇Ln(Θ∗)) ≤ λn

2

}
. From Table 9.1, the dual norm to the nuclear norm is the

�2-operator norm. For the least-squares cost function, we have ∇Ln(Θ∗) = 1
n

∑n
i=1 wiXi, so

that the statement of Proposition 10.6 involves the specialization of this event to the nuclear
norm and least-squares cost.

The assumption (10.17) is a form of restricted strong convexity with tolerance param-
eter τ2

n = c0
d1+d2

n . It only remains to verify the condition τ2
nΨ

2(M) ≤ κ
64 . The representa-

tion (10.14) reveals that any matrix Θ ∈ M(Ur,Vr) has rank at most 2r, and hence

Ψ(M(Ur,Vr)) := sup
Θ∈M̄(Ur ,Vr)\{0}

|||Θ|||nuc

|||Θ|||F ≤ √
2r.

Consequently, the final condition of Theorem 9.19 holds whenever the target rank r is
bounded as in the statement of Proposition 10.6, which completes the proof.

10.2.3 Bounds under operator norm curvature

In Chapter 9, we also proved a general result—namely, Theorem 9.24—that, for a given
regularizer Φ, provides a bound on the estimation error in terms of the dual norm Φ∗. Recall
from Table 9.1 that the dual to the nuclear norm is the �2-operator norm or spectral norm.
For the least-squares cost function, the gradient is given by

∇Ln(Θ) =
1
n

n∑
i=1

XT
i

(
yi − 〈〈Xi, Θ〉〉

)
=

1
n
X∗n

(
y − Xn(Θ)

)
,

where X∗n : Rn → Rd1×d2 is the adjoint operator. Consequently, in this particular case, the
Φ∗-curvature condition from Definition 9.22 takes the form

|||1
n
X∗nXn(Δ)|||2 ≥ κ|||Δ|||2 − τn |||Δ|||nuc for all Δ ∈ Rd1×d2 , (10.20)

where κ > 0 is the curvature parameter, and τn ≥ 0 is the tolerance parameter.
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Proposition 10.7 Suppose that the observation operator Xn satisfies the curvature
condition (10.20) with parameter κ > 0, and consider a matrixΘ∗ with rank(Θ∗) < κ

64τn
.

Then, conditioned on the event G(λn) = {||| 1nX∗n(w)|||2 ≤ λn
2 }, any optimal solution to the

M-estimator (10.16) satisfies the bound

|||Θ̂ −Θ∗|||2 ≤ 3
√

2
λn

κ
. (10.21)

Remark: Note that this bound is smaller by a factor of
√

r than the Frobenius norm
bound (10.19) that follows from Proposition 10.6. Such a scaling is to be expected, since
the Frobenius norm of a rank-r matrix is at most

√
r times larger than its operator norm.

The operator norm bound (10.21) is, in some sense, stronger than the earlier Frobenius
norm bound. More specifically, in conjunction with the cone-like inequality (10.15), in-
equality (10.21) implies a bound of the form (10.19). See Exercise 10.5 for verification of
these properties.

Proof In order to apply Theorem 9.24, the only remaining condition to verify is the in-
equality τn Ψ

2(M) < κ
32 . We have previously calculated that Ψ2(M) ≤ 2r, so that the stated

upper bound on r ensures that this inequality holds.

10.3 Matrix compressed sensing

Thus far, we have derived some general results on least squares with nuclear norm regular-
ization, which apply to any model that satisfies the restricted convexity or curvature condi-
tions. We now turn to consequences of these general results for more specific observation
models that arise in particular applications. Let us begin this exploration by studying com-
pressed sensing for low-rank matrices, as introduced previously in Example 10.3. There we
discussed the standard Gaussian observation model, in which the observation matrices Xi ∈
Rd1×d2 are drawn i.i.d., with all entries of each observation matrix drawn i.i.d. from the stan-
dard GaussianN(0, 1) distribution. More generally, one might draw random observation ma-
trices Xi with dependent entries, for instance with vec(Xi) ∼ N(0,Σ), where Σ ∈ R(d1d2)×(d1d2)

is the covariance matrix. In this case, we say that Xi is drawn from the Σ-Gaussian ensemble.
In order to apply Proposition 10.6 to this ensemble, our first step is to establish a form of

restricted strong convexity. The following result provides a high-probability lower bound on
the Hessian of the least-squares cost for this ensemble. It involves the quantity

ρ2(Σ) := sup
‖u‖2=‖v‖2=1

var(〈〈X, uvT〉〉).

Note that ρ2(Id) = 1 for the special case of the identity ensemble.
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Theorem 10.8 Given n i.i.d. draws {Xi}ni=1 of random matrices from the Σ-Gaussian
ensemble, there are positive constants c1 < 1 < c2 such that

‖Xn(Δ)‖2
2

n
≥ c1 ‖

√
Σ vec(Δ)‖2

2 − c2 ρ
2(Σ)

{d1 + d2

n

}
|||Δ|||2nuc ∀ Δ ∈ Rd1×d2 (10.22)

with probability at least 1 − e−
n

32

1−e−
n
32

.

This result can be understood as a variant of Theorem 7.16, which established a similar result
for the case of sparse vectors and the �1-norm. As with this earlier theorem, Theorem 10.8
can be proved using the Gordon–Slepian comparison lemma for Gaussian processes. In Ex-
ercise 10.6, we work through a proof of a slightly simpler form of the bound.

Theorem 10.8 has an immediate corollary for the noiseless observation model, in which
we observe (yi, Xi) pairs linked by the linear equation yi = 〈〈Xi, Θ

∗〉〉. In this setting, the
natural analog of the basis pursuit program from Chapter 7 is the following convex program:

min
Θ∈Rd1×d2

|||Θ|||nuc such that 〈〈Xi, Θ〉〉 = yi for all i = 1, . . . , n. (10.23)

That is, we search over the space of matrices that match the observations perfectly to find the
solution with minimal nuclear norm. As with the estimator (10.16), it can be reformulated
as an instance of semidefinite program.

Corollary 10.9 Given n > 16 c2
c1

ρ2(Σ)
γmin(Σ) r (d1+d2) i.i.d. samples from the Σ-ensemble, the

estimator (10.23) recovers the rank-r matrix Θ∗ exactly—i.e., it has a unique solution
Θ̂ = Θ∗—with probability at least 1 − e−

n
32

1−e−
n
32

.

The requirement that the sample size n is larger than r (d1 + d2) is intuitively reasonable, as
can be seen by counting the degrees of freedom required to specify a rank-r matrix of size
d1 × d2. Roughly speaking, we need r numbers to specify its singular values, and rd1 and
rd2 numbers to specify its left and right singular vectors.2 Putting together the pieces, we
conclude that the matrix has of the order r(d1 + d2) degrees of freedom, consistent with the
corollary. Let us now turn to its proof.

Proof Since Θ̂ and Θ∗ are optimal and feasible, respectively, for the program (10.23), we
have |||Θ̂|||nuc ≤ |||Θ∗|||nuc = |||Θ∗

M|||nuc. Introducing the error matrix Δ̂ = Θ̂ −Θ∗, we have

|||Θ̂|||nuc = |||Θ∗ + Δ̂|||nuc = |||Θ∗
M + Δ̂M̄⊥ + Δ̂M̄|||nuc

(i)≥ |||Θ∗
M + Δ̂M̄⊥ |||nuc − |||̂ΔM̄|||nuc

by the triangle inequality. Applying decomposability this yields |||Θ∗
M + Δ̂M̄⊥ |||nuc =

2 The orthonormality constraints for the singular vectors reduce the degrees of freedom, so we have just given
an upper bound here.
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|||Θ∗
M|||nuc + |||̂ΔM̄⊥ |||nuc. Combining the pieces, we find that |||̂ΔM̄⊥ |||nuc ≤ |||̂ΔM̄|||nuc. From the

representation (10.14), any matrix in M has rank at most 2r, whence

|||̂Δ|||nuc ≤ 2|||̂ΔM̄|||nuc ≤ 2
√

2r |||̂Δ|||F. (10.24)

Now let us condition on the event that the lower bound (10.22) holds. When applied to Δ̂,
and coupled with the inequality (10.24), we find that

‖Xn(Δ̂)‖2
2

n
≥
{
c1γmin(Σ) − 8 c2 ρ

2(Σ)
r (d1 + d2)

n

}
|||̂Δ|||2F ≥

c1

2
γmin(Σ) |||̂Δ|||2F,

where the final inequality follows by applying the given lower bound on n, and performing
some algebra. But since both Θ̂ andΘ∗ are feasible for the convex program (10.23), we have

shown that 0 = ‖Xn(Δ̂)‖2
2

n ≥ c1
2 γmin(Σ) |||̂Δ|||2F, which implies that Δ̂ = 0 as claimed.

Theorem 10.8 can also be used to establish bounds for the least-squares estimator (10.16),
based on noisy observations of the form yi = 〈〈Xi, Θ

∗〉〉+wi. Here we state and prove a result
that is applicable to matrices of rank at most r.

Corollary 10.10 Consider n > 64 c2
c1

ρ2(Σ)
γmin(Σ) r (d1 + d2) i.i.d. samples (yi,Xi) from the

linear matrix regression model, where each Xi is drawn from the Σ-Gaussian ensem-

ble. Then any optimal solution to the program (10.16) with λn = 10σρ(Σ)
(√ d1+d2

n + δ
)

satisfies the bound

|||Θ̂ −Θ∗|||2F ≤ 125
σ2ρ2(Σ)

c2
1 γ2

min(Σ)

{
r(d1 + d2)

n
+ rδ2

}
(10.25)

with probability at least 1 − 2e−2nδ2
.

Figure 10.2 provides plots of the behavior predicted by Corollary 10.10. We generated
these plots by simulating matrix regression problems with design matrices Xi chosen from
the standard Gaussian ensemble, and then solved the convex program (10.16) with the choice
of λn given in Corollary 10.10, and matrices of size d × d, where d2 ∈ {400, 1600, 6400} and
rank r = �√d�. In Figure 10.2(a), we plot the Frobenius norm error |||Θ̂ − Θ∗|||F, averaged
over T = 10 trials, versus the raw sample size n. Each of these error plots tends to zero as the
sample size increases, showing the classical consistency of the method. However, the curves
shift to the right as the matrix dimension d (and hence the rank r) is increased, showing the
effect of dimensionality. Assuming that the scaling of Corollary 10.10 is sharp, it predicts
that, if we plot the same Frobenius errors versus the rescaled sample size n

r d , then all three
curves should be relatively well aligned. These rescaled curves are shown in Figure 10.2(b):
consistent with the prediction of Corollary 10.10, they are now all relatively well aligned,
independently of the dimension and rank, consistent with the prediction.

Let us now turn to the proof of Corollary 10.10.
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Figure 10.2 Plots of the Frobenius norm error |||Θ̂ − Θ∗|||F for the nuclear norm
regularized least-squares estimator (10.16) with design matrices Xi drawn from the
standard Gaussian ensemble. (a) Plots of Frobenius norm error versus sample size n
for three different matrix sizes d ∈ {40, 80, 160} and rank r = � √d�. (b) Same error
measurements now plotted against the rescaled sample size n

rd . As predicted by the
theory, all three curves are now relatively well-aligned.

Proof We prove the bound (10.25) via an application of Proposition 10.6, in particular
in the form of the bound (10.19). Theorem 10.8 shows that the RSC condition holds with
κ = c1 and c0 =

c2ρ
2(Σ)
2 , so that the stated lower bound on the sample size ensures that

Proposition 10.6 can be applied with r = rank(Θ∗).
It remains to verify that the event G(λn) = {||| 1n

∑n
i=1 wiXi|||2 ≤ λn

2 } holds with high proba-

bility. Introduce the shorthand Q = 1
n

∑n
i=1 wiXi, and define the event E =

{ ‖w‖2
2

n ≤ 2σ2
}
. We

then have

P
[
|||Q|||2 ≥ λn

2

]
≤ P[Ec] + P

[
|||Q|||2 ≥ λn

2
| E
]
.

Since the noise variables {wi}ni=1 are i.i.d., each zero-mean and sub-Gaussian with parameter
σ, we have P[Ec] ≤ e−n/8. It remains to upper bound the second term, which uses condition-
ing on E.

Let {u1, . . . , uM} and {v1, . . . , vN} be 1/4-covers in Euclidean norm of the spheres Sd1−1

and Sd2−1, respectively. By Lemma 5.7, we can find such covers with M ≤ 9d1 and N ≤ 9d2

elements respectively. For any v ∈ Sd2−1, we can write v = v� + Δ for some vector Δ with �2

at most 1/4, and hence

|||Q|||2 = sup
v∈Sd2−1

‖Qv‖2 ≤ 1
4 |||Q|||2 + max

�=1,...,N
‖Qv�‖2.

A similar argument involving the cover of Sd1−1 yields ‖Qv�‖2 ≤ 1
4 |||Q|||2 + max

j=1,...,M

〈
uj, Qv�

〉
.

Thus, we have established that

|||Q|||2 ≤ 2 max
j=1,...,M

max
�=1,...,N

|Z j,�| where Z j,� =
〈
uj, Q v�

〉
.
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Fix some index pair ( j, �): we can then write Z j,� = 1
n

∑n
i=1 wiY

j,�
i where Y j,�

i =
〈
uj, Xiv�

〉
.

Note that each variable Y j,�
i is zero-mean Gaussian with variance at most ρ2(Σ). Conse-

quently, the variable Z j,� is zero-mean Gaussian with variance at most 2σ2ρ2(Σ)
n , where we

have used the conditioning on event E. Putting together the pieces, we conclude that

P

⎡⎢⎢⎢⎢⎢⎣|||1n
n∑

i=1

wiXi|||2 ≥ λn

2
| E
⎤⎥⎥⎥⎥⎥⎦ ≤ M∑

j=1

N∑
�=1

P
[
|Z j,�| ≥ λn

4

]
≤ 2 e−

nλ2
n

32σ2ρ2(Σ)
+log M+log N

≤ 2 e−
nλ2

n
32σ2ρ2(Σ)

+(d1+d2) log 9
.

Setting λn = 10σρ(Σ)
(√

(d1+d2)
n + δ

)
, we find that P

[
||| 1n

∑n
i=1 wiXi|||2 ≥ λn

2

]
≤ 2e−2nδ2

as
claimed.

Corollary 10.10 is stated for matrices that are exactly low-rank. However, Proposition 10.6
can also be used to derive error bounds for matrices that are not exactly low-rank, but rather
well approximated by a low-rank matrix. For instance, suppose that Θ∗ belongs to the �q-
“ball” of matrices given by

Bq(Rq) :=

⎧⎪⎪⎨⎪⎪⎩Θ ∈ Rd1×d2 |
d∑

j=1

(
σ j(Θ)

)q ≤ Rq

⎫⎪⎪⎬⎪⎪⎭ , (10.26)

where q ∈ [0, 1] is a parameter, and Rq is the radius. Note that this is simply the set of matri-
ces whose vector of singular values belongs to the usual �q-ball for vectors. See Figure 9.5
for an illustration.

When the unknown matrix Θ∗ belongs to Bq(Rq), Proposition 10.6 can be used to show
that the estimator (10.16) satisfies an error bound of the form

|||Θ̂ −Θ∗|||2F � Rq

(
σ2 (d1 + d2)

n

)1− q
2

(10.27)

with high probability. Note that this bound generalizes Corollary 10.10, since in the special
case q = 0, the set B0(r) corresponds to the set of matrices with rank at most r. See Exer-
cise 10.7 for more details.

As another extension, one can move beyond the setting of least squares, and consider
more general non-quadratic cost functions. As an initial example, still in the context of
matrix regression with samples z = (X, y), let us consider a cost function that satisfies a
local L-Lipschitz condition of the form∣∣∣L(Θ; z) − L(Θ̃; z)

∣∣∣ ≤ L
∣∣∣〈〈Θ, X〉〉 − 〈〈Θ̃, X〉〉∣∣∣ for all Θ, Θ̃ ∈ BF(R).

For instance, if the response variables y were binary-valued, with the conditional distribution
of the logistic form, as described in Example 9.2, then the log-likelihood would satisfy this
condition with L = 2 (see Example 9.33). Similarly, in classification problems based on
matrix-valued observations, the hinge loss that underlies the support vector machine would
also satisfy this condition. In the following example, we show how Theorem 9.34 can be used
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to establish restricted strong convexity with respect to the nuclear norm for such Lipschitz
losses.

Example 10.11 (Lipschitz losses and nuclear norm) As a generalization of Corollary 10.10,
suppose that the d1 × d2 design matrices {Xi}ni=1 are generated i.i.d. from a ν-sub-Gaussian
ensemble, by which we mean that, for each pair of unit-norm vectors (u, v), the random
variable 〈u, Xi v〉 is zero-mean and ν-sub-Gaussian. Note that the Σ-Gaussian ensemble is a
special case with ν = ρ(Σ).

Now recall that

En(Δ) := Ln(Θ∗ + Δ) − Ln(Θ∗) − 〈〈∇Ln(Θ∗), Δ〉〉
denotes the error in the first-order Taylor-series expansion of the empirical cost function,
whereas E(Δ) denotes the analogous quantity for the population cost function. We claim that
for any δ > 0, any cost function that is L-Lipschitz over the ball BF(1) satisfies the bound∣∣∣En(Δ) − E(Δ)

∣∣∣ ≤ 16L ν |||Δ|||nuc

⎧⎪⎪⎨⎪⎪⎩12

√
d1 + d2

n
+ ε

⎫⎪⎪⎬⎪⎪⎭ for all Δ ∈ BF(1/d, 1) (10.28)

with probability at least 1 − 4(log d)2 e−
nε2
12 .

In order to establish the bound (10.28), we need to verify the conditions of Theorem 9.34.
For a matrixΘ ∈ Rd×d, recall that we use {σ j(Θ)}dj=1 to denote its singular values. The dual to
the nuclear norm is the �2-operator norm |||Θ|||2 = max j=1,...,d σ j(Θ). Based on Theorem 9.34,
we need to study the deviations of the random variable ||| 1n

∑n
i=1 εiXi|||2, where {εi}ni=1 is an

i.i.d. sequence of Rademacher variables. Since the random matrices {Xi}ni=1 are i.i.d., this
random variable has the same distribution as |||V|||2, where V is a ν/

√
n-sub-Gaussian random

matrix. By the same discretization argument used in the proof of Corollary 10.10, for each
λ > 0, we have E

[
eλ|||V|||2] ≤ ∑M

j=1
∑N

�=1 E[e2λZ j,�
], where M ≤ 9d1 and N ≤ 9d2 , and each

random variable Z j,� is sub-Gaussian with parameter at most
√

2ν/
√

n. Consequently, for
any δ > 0,

inf
λ>0
E
[
eλ(|||V|||2−δ)] ≤ M N inf

λ>0
e

8ν2λ
n −λδ = e−

nδ2

16ν2 +9(d1+d2).

Setting δ2 = 144ν2 d1+d2
n + ν2ε2 yields the claim (10.28). ♣

10.4 Bounds for phase retrieval

We now return to the problem of phase retrieval. In the idealized model previously intro-
duced in Example 10.4, we make n observations of the form ỹi = |〈xi, θ

∗〉|, where the obser-
vation vector xi ∼ N(0, Id) are drawn independently. A standard lifting procedure leads to
the semidefinite relaxation

Θ̂ ∈ arg min
Θ∈Sd×d

+

trace(Θ) such that ỹ2
i = 〈〈Θ, xi ⊗ xi〉〉 for all i = 1, . . . , n. (10.29)

This optimization problem is known as a semidefinite program (SDP), since it involves op-
timizing over the cone Sd×d

+ of positive semidefinite matrices. By construction, the rank-one
matrix Θ∗ = θ∗ ⊗ θ∗ is feasible for the optimization problem (10.29), and our goal is to
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understand when it is the unique optimal solution. Equivalently, our goal is to show that the
error matrix Δ̂ = Θ̂ −Θ∗ is equal to zero.

Defining the new response variables yi = ỹ2
i and observation matrices Xi := xi ⊗ xi, the

constraints in the SDP (10.29) can be written in the equivalent trace inner product form
yi = 〈〈Xi, Θ〉〉. Since both Θ̂ andΘ∗ are feasible and hence must satisfy these constraints, we
see that the error matrix Δ̂must belong to the nullspace of the linear operator Xn : Rd×d → Rn

with components [Xn(Θ)]i = 〈〈Xi, Θ〉〉. The following theorem shows that this random oper-
ator satisfies a version of the restricted nullspace property (recall Chapter 7):

Theorem 10.12 (Restricted nullspace/eigenvalues for phase retrieval) For each i =
1, . . . , n, consider random matrices of the form Xi = xi ⊗ xi for i.i.d. N(0, Id) vectors.
Then there are universal constants (c0, c1, c2) such that for any ρ > 0, a sample size
n > c0 ρd suffices to ensure that

1
n

n∑
i=1

〈〈Xi, Θ〉〉2 ≥ 1
2
|||Θ|||2F for all matrices such that |||Θ|||2F ≤ ρ|||Θ|||2nuc (10.30)

with probability at least 1 − c1e−c2n.

Note that the lower bound (10.30) implies that there are no matrices in the intersection of
nullspace of the operator Xn with the matrix cone defined by the inequality |||Θ|||2F ≤ ρ|||Θ|||2nuc.
Consequently, Theorem 10.12 has an immediate corollary for the exactness of the semi-
definite programming relaxation (10.29):

Corollary 10.13 Given n > 2 c0 d samples, the SDP (10.29) has the unique optimal
solution Θ̂ = Θ∗ with probability at least 1 − c1e−c2n.

Proof Since Θ̂ and Θ∗ are optimal and feasible (respectively) for the convex program
(10.29), we are guaranteed that trace(Θ̂) ≤ trace(Θ∗). Since both matrices must be positive
semidefinite, this trace constraint is equivalent to |||Θ̂|||nuc ≤ |||Θ∗|||nuc. This inequality, in
conjunction with the rank-one nature of Θ∗ and the decomposability of the nuclear norm,
implies that the error matrix Δ̂ = Θ̂ − Θ∗ satisfies the cone constraint |||̂Δ|||nuc ≤

√
2 |||̂Δ|||F.

Consequently, we can apply Theorem 10.12 with ρ = 2 to conclude that

0 =
1
n

n∑
i=1

〈〈Xi, Δ̂〉〉 ≥ 1
2
‖Δ̂‖2

2,

from which we conclude that Δ̂ = 0 with the claimed probability.

Let us now return to prove Theorem 10.12.

Proof For each matrix Δ ∈ Sd×d, consider the (random) function fΔ(X, v) = v〈〈X, Δ〉〉,
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where v ∈ {−1, 1} is a Rademacher variable independent of X. By construction, we then
have E[ fΔ(X, v)] = 0. Moreover, as shown in Exercise 10.9, we have

‖ fΔ‖2
2 = E

[〈〈X, Δ〉〉]2 = |||Δ|||2F + 2
(

trace(Δ)
)2
. (10.31a)

As a consequence, if we define the set A1(
√
ρ) =

{
Δ ∈ Sd×d | |||Δ|||nuc ≤ √

ρ |||Δ|||F}, it suffices
to show that

1
n

n∑
i=1

〈〈X, Δ〉〉2︸������������︷︷������������︸
‖ fΔ‖2

n

≥ 1
2
E
[〈〈X, Δ〉〉2]︸��������︷︷��������︸

‖ fΔ‖2
2

for all Δ ∈ A1(
√
ρ) (10.31b)

with probability at least 1 − c1e−c2n.
We prove claim (10.31b) as a corollary of a more general one-sided uniform law, stated as

Theorem 14.12 in Chapter 14. First, observe that the function classF := { fΔ | Δ ∈ A1(
√
ρ)}

is a cone, and so star-shaped around zero. Next we claim that the fourth-moment condi-
tion (14.22b) holds. From the result of Exercise 10.9, we can restrict attention to diagonal
matrices without loss of generality. It suffices to show that E[ f 4

D
(X, v)] ≤ C for all matrices

such that |||D|||2F =
∑d

j=1 D2
j j ≤ 1. Since the Gaussian variables have moments of all orders, by

Rosenthal’s inequality (see Exercise 2.20), there is a universal constant c such that

E[ f 4
D(X, v)] = E

[( d∑
j=1

Dj jx2
j
)4] ≤ c

{ d∑
j=1

D4
j jE[x8

j] +
( d∑

j=1

D2
j jE[x4

j]
)2}

.

For standard normal variates, we have E[x4
j] = 4 and E[x8

j] = 105, whence

E[ f 4
D(X, v)] ≤ c

{
105

d∑
j=1

D4
j j + 16|||D|||4F

}
.

Under the condition
∑d

j=1 D2
j j ≤ 1, this quantity is bounded by a universal constant C, thereby

verifying the moment condition (14.22b).
Next, we need to compute the local Rademacher complexity, and hence the critical ra-

dius δn. As shown by our previous calculation (10.31a), the condition ‖ fΔ‖2 ≤ δ implies that
|||Δ|||F ≤ δ. Consequently, we have

Rn(δ) ≤ E
[

sup
Δ∈A1(

√
ρ)

|||Δ|||F≤δ

∣∣∣1
n

n∑
i=1

εi fΔ(Xi; vi)
∣∣∣],

where {εi}ni=1 is another i.i.d. Rademacher sequence. Using the definition of fΔ and the duality
between the operator and nuclear norms (see Exercise 9.4), we have

Rn(δ) ≤ E
[

sup
Δ∈A1(

√
ρ)
|||(1

n

n∑
i=1

εi (xi ⊗ xi)
)|||2 |||Δ|||nuc

]
≤ √

ρ δ E
[
|||1

n

n∑
i=1

εi (xi ⊗ xi)|||2
]
.

Finally, by our previous results on operator norms of random sub-Gaussian matrices (see
Theorem 6.5), there is a constant c such that, in the regime n > d, we have

E
[
|||1

n

n∑
i=1

vi (xi ⊗ xi)|||2
]
≤ c

√
d
n
.
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Putting together the pieces, we conclude that inequality (14.24) is satisfied for any δn �√
ρ
√

d
n . Consequently, as long as n > c0ρd for a sufficiently large constant c0, we can set

δn = 1/2 in Theorem 14.12, which establishes the claim (10.31b).

10.5 Multivariate regression with low-rank constraints

The problem of multivariate regression, as previously introduced in Example 10.1, involves
estimating a prediction function, mapping covariate vectors z ∈ Rp to output vectors y ∈ RT .
In the case of linear prediction, any such mapping can be parameterized by a matrix Θ∗ ∈
Rp×T . A collection of n observations can be specified by the model

Y = ZΘ∗ + W, (10.32)

where (Y,Z) ∈ Rn×T × Rp×T are observed, and W ∈ Rn×T is a matrix of noise variables. For
this observation model, the least-squares cost takes the form Ln(Θ) = 1

2n |||Y − ZΘ|||2F.
The following result is a corollary of Proposition 10.7 in application to this model. It is

applicable to the case of fixed design and so involves the minimum and maximum eigen-
values of the sample covariance matrix Σ̂ := ZTZ

n .

Corollary 10.14 Consider the observation model (10.32) in which Θ∗ ∈ Rp×T has
rank at most r, and the noise matrix W has i.i.d. entries that are zero-mean and σ-sub-

Gaussian. Then any solution to the program (10.16) with λn = 10σ
√
γmax(Σ̂)

(√ p+T
n + δ

)
satisfies the bound

|||Θ̂ −Θ∗|||2 ≤ 30
√

2
σ

√
γmax(Σ̂)

γmin(Σ̂)

(√
p + T

n
+ δ

)
(10.33)

with probability at least 1 − 2e−2nδ2
. Moreover, we have

|||Θ̂ −Θ∗|||F ≤ 4
√

2r|||Θ̂ −Θ∗|||2 and |||Θ̂ −Θ∗|||nuc ≤ 32r|||Θ̂ −Θ∗|||2. (10.34)

Note that the guarantee (10.33) is meaningful only when n > p, since the lower bound
γmin(Σ̂) > 0 cannot hold otherwise. However, even if the matrix Θ∗ were rank-one, it would
have at least p + T degrees of freedom, so this lower bound is unavoidable.

Proof We first claim that condition (10.20) holds with κ = γmin(Σ̂) and τn = 0. We have
∇Ln(Θ) = 1

n ZT(y − ZΘ), and hence ∇Ln(Θ∗ + Δ) − ∇Ln(Θ∗) = Σ̂Δ where Σ̂ = ZTZ
n is the

sample covariance. Thus, it suffices to show that

|||Σ̂Δ|||2 ≥ γmin(Σ̂)|||Δ|||2 for all Δ ∈ Rd×T .

For any vector u ∈ RT , we have ‖Σ̂Δu‖2 ≥ γmin(Σ̂)‖Δu‖2, and thus

|||Σ̂Δ|||2 sup
‖u‖2=1

‖Σ̂Δu‖2 ≥ γmin(Σ̂) sup
‖u‖2=1

‖Δu‖2 = γmin(Σ̂) |||Δ|||2,
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which establishes the claim.
It remains to verify that the inequality |||∇Ln(Θ∗)|||2 ≤ λn

2 holds with high probability under
the stated choice of λn. For this model, we have ∇Ln(Θ∗) = 1

n ZTW, where W ∈ Rn×T is a
zero-mean matrix of i.i.d. σ-sub-Gaussian variates. As shown in Exercise 10.8, we have

P
[
|||1

n
ZTW|||2 ≥ 5σ

√
γmax(Σ̂)

(√d + T
n

+ δ
) ≥] ≤ 2 e−2nδ2

, (10.35)

from which the validity of λn follows. Thus, the bound (10.33) follows from Proposition 10.7.
Turning to the remaining bounds (10.34), with the given choice of λn, the cone inequal-

ity (10.15) guarantees that |||̂ΔM̄⊥ |||nuc ≤ 3|||̂ΔM̄|||nuc. Since any matrix in M has rank at most
2r, we conclude that |||̂Δ|||nuc ≤ 4

√
2r|||̂Δ|||F. Consequently, the nuclear norm bound in equa-

tion (10.34) follows from the Frobenius norm bound. We have

|||̂Δ|||2F = 〈〈Δ̂, Δ̂〉〉
(i)≤ |||̂Δ|||nuc|||̂Δ|||2

(ii)≤ 4
√

2r|||̂Δ|||F |||̂Δ|||2,

where step (i) follows from Hölder’s inequality, and step (ii) follows from our previous
bound. Canceling out a factor of |||̂Δ|||F from both sides yields the Frobenius norm bound in
equation (10.34), thereby completing the proof.

10.6 Matrix completion

Let us now return to analyze the matrix completion problem previously introduced in Ex-
ample 10.2. Recall that it corresponds to a particular case of matrix regression: observations
are of the form yi = 〈〈Xi, Θ

∗〉〉 + wi, where Xi ∈ Rd1×d2 is a sparse mask matrix, zero every-
where except for a single randomly chosen entry (a(i), b(i)), where it is equal to

√
d1d2. The

sparsity of these regression matrices introduces some subtlety into the analysis of the matrix
completion problem, as will become clear in the analysis to follow.

Let us now clarify why we chose to use rescaled mask matrices Xi—that is, equal to√
d1d2 instead of 1 in their unique non-zero entry. With this choice, we have the convenient

relation

E
[‖Xn(Θ∗)‖2

2

n

]
=

1
n

n∑
i=1

E[〈〈Xi, Θ
∗〉〉2] = |||Θ∗|||2F, (10.36)

using the fact that each entry of Θ∗ is picked out with probability (d1d2)−1.
The calculation (10.36) shows that, for any unit-norm matrix Θ∗, the squared Euclidean

norm of ‖Xn(Θ∗)‖2/
√

n has mean one. Nonetheless, in the high-dimensional setting of inter-
est, namely, when n � d1d2, there are many non-zero matrices Θ∗ of low rank such that
Xn(Θ∗) = 0 with high probability. This phenomenon is illustrated by the following example.
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Example 10.15 (Troublesome cases for matrix completion) Consider the matrix

Θbad := e1 ⊗ e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.37)

which is of rank one. Let Xn : Rd×d → Rn be the random observation operation based on n
i.i.d. draws (with replacement) of rescaled mask matrices Xi. As we show in Exercise 10.3,
we have Xn(Θbad) = 0 with probability converging to one whenever n = o(d2). ♣

Consequently, if we wish to prove non-trivial results about matrix completion in the
regime n � d1 d2, we need to exclude matrices of the form (10.37). One avenue for doing
so is by imposing so-called matrix incoherence conditions directly on the singular vectors
of the unknown matrix Θ∗ ∈ Rd1×d2 . These conditions were first introduced in the context
of numerical linear algebra, in which context they are known as leverage scores (see the
bibliographic section for further discussion). Roughly speaking, conditions on the leverage
scores ensure that the singular vectors of Θ∗ are relatively “spread out”.

More specifically, consider the singular value decomposition Θ∗ = UDVT, where D is a
diagonal matrix of singular values, and the columns of U and V contain the left and right
singular vectors, respectively. What does it mean for the singular values to be spread out?
Consider the matrix U ∈ Rd1×r of left singular vectors. By construction, each of its d1-
dimensional columns is normalized to Euclidean norm one; thus, if each singular vector
were perfectly spread out, then each entry would have magnitude of the order 1/

√
d1. As a

consequence, in this ideal case, each r-dimensional row of U would have Euclidean norm
exactly

√
r/d1. Similarly, the rows of V would have Euclidean norm

√
r/d2 in the ideal case.

In general, the Euclidean norms of the rows of U and V are known as the left and right
leverage scores of the matrix Θ∗, and matrix incoherence conditions enforce that they are
relatively close to the ideal case. More specifically, note that the matrix UUT ∈ Rd1×d1 has
diagonal entries corresponding to the squared left leverage scores, with a similar observation
for the matrix VVT ∈ Rd2×d2 . Thus, one way in which to control the leverage scores is via
bounds of the form

‖UUT − r
d1

Id1×d1‖max ≤ μ

√
r

d1
and ‖VVT − r

d2
Id2 d2‖max ≤ μ

√
r

d2
, (10.38)

where μ > 0 is the incoherence parameter. When the unknown matrixΘ∗ satisfies conditions
of this type, it is possible to establish exact recovery results for the noiseless version of the
matrix completion problem. See the bibliographic section for further discussion.

In the more realistic setting of noisy observations, the incoherence conditions (10.38)
have an unusual property, in that they have no dependence on the singular values. In the
presence of noise, one cannot expect to recover the matrix exactly, but rather only an estimate
that captures all “significant” components. Here significance is defined relative to the noise
level. Unfortunately, the incoherence conditions (10.38) are non-robust, and so less suitable
in application to noisy problems. An example is helpful in understanding this issue.

Example 10.16 (Non-robustness of singular vector incoherence) Define the d-dimensional
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vector z =
[
0 1 1 · · · 1

]
, and the associated matrix Z∗ := (z ⊗ z)/d. By construction,

the matrix Z∗ is rank-one, and satisfies the incoherence conditions (10.38) with constant μ.
But now suppose that we “poison” this incoherent matrix with a small multiple of the “bad”
matrix from Example 10.15, in particular forming the matrix

Γ∗ = (1 − δ)Z∗ + δΘbad for some δ ∈ (0, 1]. (10.39)

As long as δ > 0, then the matrix Γ∗ has e1 ∈ Rd as one of its eigenvectors, and so violates
the incoherence conditions (10.38). But for the non-exact recovery results of interest in a
statistical setting, very small values of δ need not be a concern, since the component δΘbad

has Frobenius norm δ, and so can be ignored. ♣
There are various ways of addressing this deficiency of the incoherence conditions (10.38).

Possibly the simplest is by bounding the maximum absolute value of the matrix, or rather
in order to preserve the scale of the problem, by bounding the ratio of the maximum value
to its Frobenius norm. More precisely, for any non-zero matrix Θ ∈ Rd1×d2 , we define the
spikiness ratio

αsp(Θ) =
√

d1d2 ‖Θ‖max

|||Θ|||F , (10.40)

where ‖ · ‖max denotes the elementwise maximum absolute value. By definition of the Fro-
benius norm, we have

|||Θ|||2F =
d1∑
j=1

d2∑
k=1

Θ2
jk ≤ d1d2 ‖Θ‖2

max,

so that the spikiness ratio is lower bounded by 1. On the other hand, it can also be seen
that αsp(Θ) ≤ √

d1d2, where this upper bound is achieved (for instance) by the previously
constructed matrix (10.37). Recalling the “poisoned” matrix (10.39), note that unlike the in-
coherence condition, its spikiness ratio degrades as δ increases, but not in an abrupt manner.
In particular, for any δ ∈ [0, 1], we have αsp(Γ∗) ≤ (1−δ)+δd

1−2δ .

The following theorem establishes a form of restricted strong convexity for the random op-
erator that underlies matrix completion. To simplify the theorem statement, we adopt the
shorthand d = d1 + d2.

Theorem 10.17 Let Xn : Rd1×d2 → Rn be the random matrix completion operator
formed by n i.i.d. samples of rescaled mask matrices Xi. Then there are universal posi-
tive constants (c1, c2) such that∣∣∣∣∣∣1n ‖Xn(Θ)‖2

2

|||Θ|||2F
− 1

∣∣∣∣∣∣ ≤ c1 αsp(Θ)
|||Θ|||nuc

|||Θ|||F

√
d log d

n
+ c2 α

2
sp(Θ)

⎛⎜⎜⎜⎜⎜⎝
√

d log d
n

+ δ

⎞⎟⎟⎟⎟⎟⎠2

(10.41)

for all non-zero Θ ∈ Rd1×d2 , uniformly with probability at least 1 − 2e−
1
2 d log d−nδ.
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In order to interpret this claim, note that the ratio β(Θ) := |||Θ|||nuc
|||Θ|||F serves as a “weak” mea-

sure of the rank. For any rank-r matrix, we have β(Θ) ≤ √
r, but in addition, there are many

other higher-rank matrices that also satisfy this type of bound. On the other hand, recall
the “bad” matrix Θbad from Example 10.15. Although it has rank one, its spikiness ratio
is maximal—that is, αsp(Θbad) = d. Consequently, the bound (10.41) does not provide any
interesting guarantee until n � d2. This prediction is consistent with the result of Exer-
cise 10.3.

Before proving Theorem 10.17, let us state and prove one of its consequences for noisy
matrix completion. Given n i.i.d. samples ỹi from the noisy linear model (10.6), consider the
nuclear norm regularized estimator

Θ̂ ∈ arg min
‖Θ‖max≤ α√

d1d2

⎧⎪⎪⎨⎪⎪⎩ 1
2n

n∑
i=1

d1d2
{̃
yi − Θa(i),b(i)

}2
+ λn|||Θ|||nuc

⎫⎪⎪⎬⎪⎪⎭ , (10.42)

where Theorem 10.17 motivates the addition of the extra side constraint on the infinity norm
of Θ. As before, we use the shorthand notation d = d1 + d2.

Corollary 10.18 Consider the observation model (10.6) for a matrix Θ∗ with rank at
most r, elementwise bounded as ‖Θ∗‖max ≤ α/

√
d1d2, and i.i.d. additive noise variables

{wi}ni=1 that satisfy the Bernstein condition with parameters (σ, b). Given a sample size
n > 100b2

σ2 d log d, if we solve the program (10.42) with λ2
n = 25 σ2d log d

n + δ2 for some
δ ∈ (0, σ2

2b ), then any optimal solution Θ̂ satisfies the bound

|||Θ̂ −Θ∗|||2F ≤ c1 max{σ2, α2} r
{

d log d
n

+ δ2
}

(10.43)

with probability at least 1 − e−
nδ2
16d − 2e−

1
2 d log d−nδ.

Remark: Note that the bound (10.43) implies that the squared Frobenius norm is small
as long as (apart from a logarithmic factor) the sample size n is larger than the degrees of
freedom in a rank-r matrix—namely, r (d1 + d2).

Proof We first verify that the good event G(λn) = {|||∇Ln(Θ∗)|||2 ≤ λn
2 } holds with high

probability. Under the observation model (10.6), the gradient of the least-squares objec-
tive (10.42) is given by

∇Ln(Θ∗) =
1
n

n∑
i=1

(d1d2)
wi√
d1d2

Ei =
1
n

n∑
i=1

wiXi,

where we recall the rescaled mask matrices Xi :=
√

d1d2 Ei. From our calculations in Ex-
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ample 6.18, we have3

P
[
|||1

n

n∑
i=1

wiXi|||2 ≥ ε
]
≤ 4d e−

nε2

8d(σ2+bε) ≤ 4d e−
nε2

16dσ2 ,

where the second inequality holds for any ε > 0 such that bε ≤ σ2. Under the stated lower
bound on the sample size, we are guaranteed that bλn ≤ σ2, from which it follows that the
event G(λn) holds with the claimed probability.

Next we use Theorem 10.17 to verify a variant of the restricted strong convexity condition.
Under the event G(λn), Proposition 9.13 implies that the error matrix Δ̂ = Θ̂ −Θ∗ satisfies
the constraint |||̂Δ|||nuc ≤ 4|||̂ΔM̄|||nuc. As noted earlier, any matrix in M has rank at most 2r,
whence |||̂Δ|||nuc ≤ 4

√
2r |||̂Δ|||F. By construction, we also have ‖Δ̂‖max ≤ 2α√

d1d2
. Putting to-

gether the pieces, Theorem 10.17 implies that, with probability at least 1 − 2e−
1
2 d log d−nδ, the

observation operator Xn satisfies the lower bound

‖Xn(Δ̂)‖2
2

n
≥ |||̂Δ|||2F − 8

√
2 c1α

√
rd log d

n
|||̂Δ|||F − 4c2α

2

⎛⎜⎜⎜⎜⎜⎝
√

d log d
n

+ δ

⎞⎟⎟⎟⎟⎟⎠2

≥ |||̂Δ|||F
⎧⎪⎪⎨⎪⎪⎩|||̂Δ|||F − 8

√
2 c1α

√
rd log d

n

⎫⎪⎪⎬⎪⎪⎭ − 8c2α
2
(
d log d

n
+ δ2

)
. (10.44)

In order to complete the proof using this bound, we only need to consider two possible
cases.

Case 1: On one hand, if either

|||̂Δ|||F ≤ 16
√

2c1α

√
rd log d

n
or |||̂Δ|||2F ≤ 64c2α

2
(
d log d

n
+ δ2

)
,

then the claim (10.43) follows.

Case 2: Otherwise, we must have

|||̂Δ|||F − 8
√

2 c1α

√
rd log d

n
>
|||̂Δ|||F

2
and 8c2α

2
(
d log d

n
+ δ2

)
<
|||̂Δ|||2F

4
,

and hence the lower bound (10.44) implies that

‖Xn(Δ̂)‖2
2

n
≥ 1

2
|||̂Δ|||2F −

1
4
|||̂Δ|||2F =

1
4
|||̂Δ|||2F.

This is the required restricted strong convexity condition, and so the proof is then complete.

Finally, let us return to prove Theorem 10.17.

3 Here we have included a factor of 8 (as opposed to 2) in the denominator of the exponent, to account for the
possible need of symmetrizing the random variables wi.
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Proof Given the invariance of the inequality to rescaling, we may assume without loss of
generality that |||Θ|||F = 1. For given positive constants (α, ρ), define the set

S(α, ρ) =
{
Θ ∈ Rd1×d2 | |||Θ|||F = 1, ‖Θ‖max ≤ α√

d1d2
and |||Θ|||nuc ≤ ρ

}
, (10.45)

as well as the associated random variable Z(α, ρ) := supΘ∈S(α,ρ)

∣∣∣ 1
n‖Xn(Θ)‖2

2 − 1
∣∣∣. We begin

by showing that there are universal constants (c1, c2) such that

P
[
Z(α, ρ) ≥ c1

4
αρ

√
d log d

n
+

c2

4
(
α

√
d log d

n
)2] ≤ e−d log d. (10.46)

Here our choice of the rescaling by 1/4 is for later theoretical convenience. Our proof of this
bound is divided into two steps.

Concentration around mean: Introducing the convenient shorthand notation FΘ(X) :=
〈〈Θ, X〉〉2, we can write

Z(α, r) = sup
Θ∈S(α,ρ)

∣∣∣∣1n
n∑

i=1

FΘ(Xi) − E[FΘ(Xi)]
∣∣∣∣,

so that concentration results for empirical processes from Chapter 3 can be applied. In par-
ticular, we will apply the Bernstein-type bound (3.86): in order to do, we need to bound
‖FΘ‖max and var(FΘ(X)) uniformly over the class. On one hand, for any rescaled mask ma-
trix X and parameter matrix Θ ∈ S(α, r), we have

|FΘ(X)| ≤ ‖Θ‖2
max ‖X‖2

1 ≤
α2

d1d2
d1d2 = α2,

where we have used the fact that ‖X‖2
1 = d1d2 for any rescaled mask matrix. Turning to the

variance, we have

var(FΘ(X)) ≤ E[F2
Θ(X)] ≤ α2E[FΘ(X)] = α2,

a bound which holds for any Θ ∈ S(α, ρ). Consequently, applying the bound (3.86) with
ε = 1 and t = d log d, we conclude that there are universal constants (c1, c2) such that

P

⎡⎢⎢⎢⎢⎢⎣Z(α, ρ) ≥ 2E[Z(α, r)] +
c1

8
α

√
d log d

n
+

c2

4
α2 d log d

n

⎤⎥⎥⎥⎥⎥⎦ ≤ e−d log d. (10.47)

Bounding the expectation: It remains to bound the expectation. By Rademacher sym-
metrization (see Proposition 4.11), we have

E[Z(α, ρ)] ≤ 2E

⎡⎢⎢⎢⎢⎢⎣ sup
Θ∈S(α,ρ)

∣∣∣∣1n
n∑

i=1

εi〈〈Xi, Θ〉〉2
∣∣∣∣⎤⎥⎥⎥⎥⎥⎦ (ii)≤ 4α E

⎡⎢⎢⎢⎢⎢⎣ sup
Θ∈S(α,ρ)

∣∣∣∣1n
n∑

i=1

εi〈〈Xi, Θ〉〉
∣∣∣∣⎤⎥⎥⎥⎥⎥⎦ ,

where inequality (ii) follows from the Ledoux–Talagrand contraction inequality (5.61) for
Rademacher processes, using the fact that |〈〈Θ, Xi〉〉| ≤ α for all pairs (Θ, Xi). Next we apply
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Hölder’s inequality to bound the remaining term: more precisely, since |||Θ|||nuc ≤ ρ for any
Θ ∈ S(α, ρ), we have

E
[

sup
Θ∈S(α,ρ)

∣∣∣〈〈1
n

n∑
i=1

εiXi, Θ〉〉
∣∣∣] ≤ ρ E

[
|||1

n

n∑
i=1

εiXi|||2
]
.

Finally, note that each matrix εiXi is zero-mean, has its operator norm upper bounded as
|||εiXi|||2 ≤

√
d1d2 ≤ d, and its variance bounded as

||| var(εiXi)|||2 = 1
d1d2

|||d1d2 (1 ⊗ 1)|||2 =
√

d1d2.

Consequently, the result of Exercise 6.10 implies that

P
[
|||1

n

n∑
i=1

εiXi|||2 ≥ δ
]
≤ 2d exp

{
nδ2

2d(1 + δ)

}
.

Next, applying the result of Exercise 2.8(a) with C = 2d, ν2 = d
n and B = d

n , we find that

E
[
|||1

n

n∑
i=1

εiXi|||2
]
≤ 2

√
d
n

(√
log(2d) +

√
π

)
+

4d log(2d)
n

(i)≤ 16

√
d log d

n
.

Here the inequality (i) uses the fact that n > d log d. Putting together the pieces, we conclude
that

E[Z(α, ρ)] ≤ c1

16
αρ

√
d log d

n
,

for an appropriate definition of the universal constant c1. Since ρ ≥ 1, the claimed bound
(10.46) follows.

Note that the bound (10.46) involves the fixed quantities (α, ρ), as opposed to the arbi-
trary quantities (

√
d1d2‖Θ‖max, |||Θ|||nuc) that would arise in applying the result to an arbitrary

matrix. Extending the bound (10.46) to the more general bound (10.41) requires a technique
known as peeling.

Extension via peeling: Let BF(1) denote the Frobenius ball of norm one in Rd1×d2 , and let
E be the event that the bound (10.41) is violated for some Θ ∈ BF(1). For k, � = 1, 2, . . ., let
us define the sets

Sk,� :=
{
Θ ∈ BF(1) | 2k−1 ≤ d‖Θ‖max ≤ 2k and 2�−1 ≤ |||Θ|||nuc ≤ 2�

}
,

and let Ek,� be the event that the bound (10.41) is violated for some Θ ∈ Sk,�. We first claim
that

E ⊆
M⋃

k,�=1

Ek,�, where M = �log d�. (10.48)

Indeed, for any matrix Θ ∈ S(α, ρ), we have

|||Θ|||nuc ≥ |||Θ|||F = 1 and |||Θ|||nuc ≤
√

d1d2|||Θ|||F ≤ d.

Thus, we may assume that |||Θ|||nuc ∈ [1, d] without loss of generality. Similarly, for any
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matrix of Frobenius norm one, we must have d‖Θ‖max ≥
√

d1d2‖Θ‖max ≥ 1 and d‖Θ‖max ≤ d,
showing that we may also assume that d‖Θ‖max ∈ [1, d]. Thus, if there exists a matrix Θ of
Frobenius norm one that violates the bound (10.41), then it must belong to some set Sk,� for
k, � = 1, 2 . . . , M, with M = �log d�.

Next, for α = 2k and ρ = 2�, define the event

Ẽk,� :=

⎧⎪⎪⎨⎪⎪⎩Z(α, ρ) ≥ c1

4
αρ

√
d log d

n
+

c2

4

(
α

√
d log d

n

)2⎫⎪⎪⎬⎪⎪⎭ .

We claim that Ek,� ⊆ Ẽk,�. Indeed, if event Ek,� occurs, then there must exist some Θ ∈ Sk,�

such that∣∣∣1
n
‖Xn(Θ)‖2

2 − 1
∣∣∣ ≥ c1d‖Θ‖max |||Θ|||nuc

√
d log d

n
+ c2

(
d ‖Θ‖max

√
d log d

n

)2

≥ c12k−12�−1

√
d log d

n
+ c2

(
2k−1

√
d log d

n

)2

≥ c1

4
2k2�

√
d log d

n
+

c2

4

(
2k

√
d log d

n

)2

,

showing that Ẽk,� occurs.
Putting together the pieces, we have

P[E]
(i)≤

M∑
k,�=1

P[Ẽk,�]
(ii)≤ M2e−d log d ≤ e−

1
2 d log d,

where inequality (i) follows from the union bound applied to the inclusion E ⊆ ⋃M
k,�=1 Ẽk,�;

inequality (ii) is a consequence of the earlier tail bound (10.46); and inequality (iii) follows
since log M2 = 2 log log d ≤ 1

2 d log d.

10.7 Additive matrix decompositions

In this section, we turn to the problem of additive matrix decomposition. Consider a pair of
matrices Λ∗ and Γ∗, and suppose that we observe a vector y ∈ Rn of the form

y = Xn
(
Λ∗ + Γ∗) + w, (10.49)

where Xn is a known linear observation operator, mapping matrices in Rd1×d2 to a vector in
Rn. In the simplest case, the observation operator performs a simple vectorization—that is,
it maps a matrix M to the vectorized version vec(M). In this case, the sample size n is equal
to the product d1d2 of the dimensions, and we observe noisy versions of the sum Λ∗ + Γ∗.

How to recover the two components based on observations of this form? Of course, this
problem is ill-posed without imposing any structure on the components. One type of struc-
ture that arises in various applications is the combination of a low-rank matrix Λ∗ with a
sparse matrix Γ∗. We have already encountered one instance of this type of decomposi-
tion in our discussion of multivariate regression in Example 9.6. The problem of Gaussian
graphical selection with hidden variables, to be discussed at more length in Section 11.4.2,
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provides another example of a low-rank and sparse decomposition. Here we consider some
additional examples of such matrix decompositions.

Example 10.19 (Factor analysis with sparse noise) Factor analysis is a natural general-
ization of principal component analysis (see Chapter 8 for details on the latter). In factor
analysis, we have i.i.d. random vectors z ∈ Rd assumed to be generated from the model

zi = Lui + εi, for i = 1, 2, . . . , N, (10.50)

where L ∈ Rd×r is a loading matrix, and the vectors ui ∼ N(0, Ir) and εi ∼ N(0,Γ∗) are in-
dependent. Given n i.i.d. samples from the model (10.50), the goal is to estimate the loading
matrix L, or the matrix LLT that projects onto the column span of L. A simple calculation
shows that the covariance matrix of Zi has the form Σ = LLT + Γ∗. Consequently, in the
special case when Γ∗ = σ2Id, then the range of L is spanned by the top r eigenvectors of Σ,
and so we can recover it via standard principal components analysis.

In other applications, we might no longer be guaranteed that Γ∗ is the identity, in which
case the top r eigenvectors of Σ need not be close to the column span of L. Nonetheless,
when Γ∗ is a sparse matrix, the problem of estimating LLT can be understood as an instance
of our general observation model (10.3) with n = d2. In particular, letting the observation
vector y ∈ Rn be the vectorized version of the sample covariance matrix 1

N

∑N
i=1 zizT

i , then
some algebra shows that y = vec(Λ∗ + Γ∗) + vec(W), where Λ∗ = LLT is of rank r, and the
random matrix W is a Wishart-type noise—viz.

W :=
1
N

N∑
i=1

(zi ⊗ zi) − {LLT + Γ∗
}
. (10.51)

When Γ∗ is assumed to be sparse, then this constraint can be enforced via the elementwise
�1-norm. ♣
Other examples of matrix decomposition involve the combination of a low-rank matrix with
a column or row-sparse matrix.

Example 10.20 (Matrix completion with corruptions) Recommender systems, as previ-
ously discussed in Example 10.2, are subject to various forms of corruption. For instance, in
2002, the Amazon recommendation system for books was compromised by a simple attack.
Adversaries created a large number of false user accounts, amounting to additional rows in
the matrix of user–book recommendations. These false user accounts were populated with
strong positive ratings for a spiritual guide and a sex manual. Naturally enough, the end ef-
fect was that those users who liked the spiritual guide would also be recommended to read
the sex manual.

If we again model the unknown true matrix of ratings as being low-rank, then such adver-
sarial corruptions can be modeled in terms of the addition of a relatively sparse component.
In the case of the false user attack described above, the adversarial component Γ∗ would be
relatively row-sparse, with the active rows corresponding to the false users. We are then led
to the problem of recovering a low-rank matrix Λ∗ based on partial observations of the sum
Λ∗ + Γ∗. ♣
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As discussed in Chapter 6, the problem of covariance estimation is fundamental. A robust
variant of the problem leads to another form of matrix decomposition, as discussed in the
following example:

Example 10.21 (Robust covariance estimation) For i = 1, 2, . . . , N, let ui ∈ Rd be sam-
ples from a zero-mean distribution with unknown covariance matrix Λ∗. When the vectors
ui are observed without any form of corruption, then it is straightforward to estimate Λ∗ by
performing PCA on the sample covariance matrix. Imagining that j ∈ {1, 2, . . . , d} indexes
different individuals in the population, now suppose that the data associated with some sub-
set S of individuals is arbitrarily corrupted. This adversarial corruption can be modeled by
assuming that we observe the vectors zi = ui + γi for i = 1, . . . , N, where each γi ∈ Rd

is a vector supported on the subset S . Letting Σ̂ = 1
N

∑N
i=1(zi ⊗ zi) be the sample covari-

ance matrix of the corrupted samples, some algebra shows that it can be decomposed as
Σ̂ = Λ∗ + Δ + W, where W := 1

N

∑N
i=1(ui ⊗ ui) − Λ∗ is again a type of recentered Wishart

noise, and the remaining term can be written as

Δ :=
1
N

N∑
i=1

(γi ⊗ γi) +
1
N

N∑
i=1

(
ui ⊗ γi + γi ⊗ ui). (10.52)

Thus, defining y = vec(Σ̂), we have another instance of the general observation model with
n = d2—namely, y = vec(Λ∗ + Δ) + vec(W).

Note that Δ itself is not a column-sparse or row-sparse matrix; however, since each vector
vi ∈ Rd is supported only on some subset S ⊂ {1, 2, . . . , d}, we can write Δ = Γ∗ + (Γ∗)T,
where Γ∗ is a column-sparse matrix with entries only in columns indexed by S . This structure
can be enforced by the use of the column-sparse regularizer, as discussed in the sequel. ♣

Finally, as we discuss in Chapter 11 to follow, the problem of Gaussian graphical model
selection with hidden variables also leads to a problem of additive matrix decomposition
(see Section 11.4.2).

Having motivated additive matrix decompositions, let us now consider efficient methods
for recovering them. For concreteness, we focus throughout on the case of low-rank plus
elementwise-sparse matrices. First, it is important to note that—like the problem of matrix
completion—we need somehow to exclude matrices that are simultaneously low-rank and
sparse. Recall the matrix Θbad from Example 10.16: since it is both low-rank and sparse,
it could be decomposed either as a low-rank matrix plus the all-zeros matrix as the sparse
component, or as a sparse matrix plus the all-zeros matrix as the low-rank component.

Thus, it is necessary to impose further assumptions on the form of the decomposition.
One possibility is to impose incoherence conditions (10.38) directly on the singular vectors
of the low-rank matrix. As noted in Example 10.16, these bounds are not robust to small
perturbations of this problem. Thus, in the presence of noise, it is more natural to consider
a bound on the “spikiness” of the low-rank component, which can be enforced by bounding
the maximum absolute value over its elements. Accordingly, we consider the following es-
timator:
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(Γ̂, Λ̂) = arg min
Γ∈Rd1×d2

‖Λ‖max≤ α√
d1d2

{
1
2
|||Y − (Γ + Λ)|||2F + λn

(
‖Γ‖1 + ωn|||Λ|||2

) }
. (10.53)

It is parameterized by two regularization parameters, namely λn and ωn. The following corol-
lary provides suitable choices of these parameters that ensure the estimator is well behaved;
the guarantee is stated in terms of the squared Frobenius norm error

e2(Λ̂ − Λ∗, Γ̂ − Γ∗) := |||Λ̂ − Λ∗|||2F + |||̂Γ − Γ∗|||2F. (10.54)

Corollary 10.22 Suppose that we solve the convex program (10.53) with parameters

λn ≥ 2 ‖W‖max + 4
α√
d1d2

and ωn ≥ 2|||W|||2
λn

. (10.55)

Then there are universal constants c j such that for any matrix pair (Λ∗,Γ∗) with ‖Λ∗‖max ≤
α√
d1d2

and for all integers r = 1, 2, . . . ,min{d1, d2} and s = 1, 2, . . . , (d1d2), the squared
Frobenius error (10.54) is upper bounded as

c1 ω
2
n λ

2
n

{
r +

1
ωnλn

min{d1,d2}∑
j=r+1

σ j(Λ∗)
}
+ c2 λ

2
n

{
s +

1
λn

∑
( j,k)�S

|Γ∗jk|
}
, (10.56)

where S is an arbitrary subset of matrix indices of cardinality at most s.

As with many of our previous results, the bound (10.56) is a form of oracle inequality,
meaning that the choices of target rank r and subset S can be optimized so as to achieve
the tightest possible bound. For instance, when the matrix Λ∗ is exactly low-rank and Γ∗ is
sparse, then setting r = rank(Λ∗) and S = supp(Γ∗) yields

e2(Λ̂ − Λ∗, Γ̂ − Γ∗) ≤ λ2
n

{
c1 ω

2
n rank(Λ∗) + c2 |supp(Γ∗)|

}
.

In many cases, this inequality yields optimal results for the Frobenius error of the low-rank
plus sparse problem. We consider a number of examples in the exercises.

Proof We prove this claim as a corollary of Theorem 9.19. Doing so requires three steps:
(i) verifying a form of restricted strong convexity; (ii) verifying the validity of the regulariza-
tion parameters; and (iii) computing the subspace Lipschitz constant from Definition 9.18.

We begin with restricted strong convexity. Define the two matrices ΔΓ̂ = Γ̂ − Γ∗ and
Δ
Λ̂

:= Λ̂ − Λ∗, corresponding to the estimation error in the sparse and low-rank components,
respectively. By expanding out the quadratic form, we find that the first-order error in the
Taylor series is given by

En(ΔΓ̂,ΔΛ̂) = 1
2 |||ΔΓ̂ + ΔΛ̂|||2F = 1

2

{|||ΔΓ̂|||2F + |||ΔΛ̂|||2F}︸���������������︷︷���������������︸
e2(Δ

Λ̂
,Δ

Γ̂
)

+〈〈ΔΓ̂, ΔΛ̂〉〉.
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By the triangle inequality and the construction of our estimator, we have

‖Δ
Λ̂
‖max ≤ ‖Λ̂‖max + ‖Λ∗‖max ≤ 2α√

d1d2
.

Combined with Hölder’s inequality, we see that

En(ΔΓ̂,ΔΛ̂) ≥ 1
2

e2(ΔΓ̂, ΔΛ̂) − 2α√
d1d2

‖ΔΓ̂‖1,

so that restricted strong convexity holds with κ = 1, but along with an extra error term. Since
it is proportional to ‖ΔΓ̂‖1, the proof of Theorem 9.19 shows that it can be absorbed without
any consequence as long as λn ≥ 4α√

d1d2
.

Verifying event G(λn): A straightforward calculation gives ∇Ln(Γ∗,Λ∗) = (W,W). From
the dual norm pairs given in Table 9.1, we have

Φ∗
ωn

(∇Ln(Γ∗,Λ∗)
)
= max

{
‖W‖max,

|||W|||2
ωn

}
, (10.57)

so that the choices (10.55) guarantee that λn ≥ 2Φ∗
ωn

(∇Ln(Γ∗,Λ∗)).

Choice of model subspaces: For any subset S of matrix indices of cardinality at most s,
define the subset M(S ) := {Γ ∈ Rd1×d2 | Γi j = 0 for all (i, j) � S }. Similarly, for any r =

1, . . . ,min{d1, d2}, let Ur and Vr be (respectively) the subspaces spanned by the top r left
and right singular vectors of Λ∗, and recall the subspaces M(Ur,Vr) and M⊥(Ur,Vr) previ-
ously defined in equation (10.12). We are then guaranteed that the regularizer Φωn (Γ,Λ) =
‖Γ‖1+ωn|||Λ|||nuc is decomposable with respect to the model subspaceM := M(S )×M(Ur,Vr)
and deviation space M⊥(S ) × M⊥(Ur,Vr). It then remains to bound the subspace Lipschitz
constant. We have

Ψ(M) = sup
(Γ,Λ)∈M(S )×M̄(Ur ,Vr)

‖Γ‖1 + ωn|||Λ|||nuc√
|||Γ|||2F + |||Λ|||2F

≤ sup
(Γ,Λ)

√
s|||Γ|||F + ωn

√
2r|||Λ|||F√

|||Γ|||2F + |||Λ|||2F
≤ √

s + ωn

√
2r.

Putting together the pieces, the overall claim (10.56) now follows as a corollary of Theo-
rem 9.19.

10.8 Bibliographic details and background

In her Ph.D. thesis, Fazel (2002) studied various applications of the nuclear norm as a surro-
gate for a rank constraint. Recht et al. (2010) studied the use of nuclear norm regularization
for the compressed sensing variant of matrix regression, with noiseless observations and ma-
trices Xi ∈ Rd1×d2 drawn independently, each with i.i.d.N(0, 1) entries. They established suf-
ficient conditions for exact recovery in the noiseless setting (observation model (10.2) with
wi = 0) when the covariates Xi are drawn from the standard Gaussian ensemble (each entry
of Xi distributed as N(0, 1), drawn independently). In the noisy setting, this particular en-
semble was also studied by Candès and Plan (2010) and Negahban and Wainwright (2011a),
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who both gave sharp conditions on the required sample size. The former paper applies to
sub-Gaussian but isotropic ensembles (identity covariance), whereas the latter paper estab-
lished Theorem 10.8 that applies to Gaussian ensembles with arbitrary covariance matrices.
Recht et al. (2009) provide precise results on the threshold behavior for the identity version
of this ensemble.

Nuclear norm regularization has also been studied for more general problem classes.
Rohde and Tsybakov (2011) impose a form of the restricted isometry condition (see Chap-
ter 7), adapted to the matrix setting, whereas Negabahn and Wainwright (2011a) work with
a milder lower curvature condition, corresponding to the matrix analog of a restricted eigen-
value condition in the special case of quadratic losses. Rohde and Tsybakov (2011) also pro-
vide bounds on the nuclear norm estimate in various other Schatten matrix norms. Bounds
for multivariate (or multitask) regression, as in Corollary 10.14, have been proved by vari-
ous authors (Lounici et al., 2011; Negahban and Wainwright, 2011a; Rohde and Tsybakov,
2011). The use of reduced rank estimators for multivariate regression has a lengthy his-
tory; see Exercise 10.1 for its explicit form as well as the references (Izenman, 1975, 2008;
Reinsel and Velu, 1998) for some history and more details. See also Bunea et al. (2011) for
non-asymptotic analysis of a class of reduced rank estimators in multivariate regression.

There are wide number of variants of the matrix completion problem; see the survey
chapter by Laurent (2001) and references therein for more details. Srebro and his co-authors
(2004; 2005a; 2005b) proposed low-rank matrix completion as a model for recommender
systems, among them the Netflix problem described here. Srebro et al. (2005b) provide error
bounds on the prediction error using nuclear norm regularization. Candès and Recht (2009)
proved exact recovery guarantees for the nuclear norm estimator, assuming noiseless ob-
servations and certain incoherence conditions on the matrix involving the leverage scores.
Leverage scores also play an important role in approximating low-rank matrices based on
random subsamples of its rows or columns; see the survey by Mahoney (2011) and ref-
erences therein. Gross (2011) provided a general scheme for exact recovery based on a
dual witness construction, and making use of Ahlswede–Winter matrix bound from Sec-
tion 6.4.4; see also Recht (2011) for a relatively simple argument for exact recovery. Ke-
shavan et al. (2010a; 2010b) studied both methods based on the nuclear norm (SVD thresh-
olding) as well as heuristic iterative methods for the matrix completion problem, providing
guarantees in both the noiseless and noisy settings. Negahban and Wainwright (2012) study
the more general setting of weighted sampling for both exactly low-rank and near-low-rank
matrices, and provided minimax-optimal bounds for the �q-“balls” of matrices with control
on the “spikiness” ratio (10.40). They proved a weighted form of Theorem 10.17; the proof
given here for the uniformly sampled setting is more direct. Koltchinski et al. (2011) assume
that the sampling design is known, and propose a variant of the matrix Lasso. In the case of
uniform sampling, it corresponds to a form of SVD thresholding, an estimator that was also
analyzed by Keshavan et al. (2010a; 2010b). See Exercise 10.11 for some analysis of this
type of estimator.

The problem of phase retrieval from Section 10.4 has a lengthy history and various appli-
cations (e.g., Grechberg and Saxton, 1972; Fienup, 1982; Griffin and Lim, 1984; Fienup and
Wackerman, 1986; Harrison, 1993). The idea of relaxing a non-convex quadratic program to
a semidefinite program is a classical one (Shor, 1987; Lovász and Schrijver, 1991; Nesterov,
1998; Laurent, 2003). The semidefinite relaxation (10.29) for phase retrieval was proposed
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by Chai et al. (2011). Candès et al. (2013) provided the first theoretical guarantees on exact
recovery, in particular for Gaussian measurement vectors. See also Waldspurger et al. (2015)
for discussion and analysis of a closely related but different SDP relaxation.

The problem of additive matrix decompositions with sparse and low-rank matrices was
first formalized by Chandrasekaran et al. (2011), who analyzed conditions for exact recov-
ery based on deterministic incoherence conditions between the sparse and low-rank compo-
nents. Candès et al. (2011) provided related guarantees for random ensembles with milder
incoherence conditions. Chandrasekaran et al. (2012b) showed that the problem of Gaussian
graphical model selection with hidden variables can be tackled within this framework; see
Section 11.4.2 of Chapter 11 for more details on this problem. Agarwal et al. (2012) provide
a general analysis of regularization-based methods for estimating matrix decompositions
for noisy observations; their work uses the milder bounds on the maximum entry of the
low-rank matrix, as opposed to incoherence conditions, but guarantees only approximate
recovery. See Ren and Zhou (2012) for some two-stage approaches for estimating matrix
decompositions. Fan et al. (2013) study a related class of models for covariance matrices
involving both sparse and low-rank components.

10.9 Exercises

Exercise 10.1 (Reduced rank regression) Recall the model of multivariate regression from
Example 10.1, and, for a target rank r ≤ T ≤ p, consider the reduced rank regression
estimate

Θ̂RR := arg min
Θ∈Rp×T

rank(Θ)≤r

{
1
2n
|||Y − ZΘ|||2F

}
.

Define the sample covariance matrix Σ̂ZZ =
1
n ZTZ, and the sample cross-covariance matrix

Σ̂ZY = 1
n ZTY. Assuming that Σ̂ZZ is invertible, show that the reduced rank estimate has the

explicit form

Θ̂RR = Σ̂
−1
ZZΣ̂XYVVT,

where the matrix V ∈ RT×r has columns consisting of the top r eigenvectors of the matrix
Σ̂YZΣ̂

−1
ZZΣ̂ZY .

Exercise 10.2 (Vector autogressive processes) Recall the vector autoregressive (VAR)
model described in Example 10.5.

(a) Suppose that we initialize by choosing z1 ∼ N(0,Σ), where the symmetric matrix Σ
satisfies the equation

Σ −Θ∗Σ(Θ∗)T − Γ = 0. (10.58)

Here Γ ! 0 is the covariance matrix of the driving noise. Show that the resulting stochas-
tic process {zt}∞t=1 is stationary.

(b) Suppose that there exists a strictly positive definite solution Σ to equation (10.58). Show
that |||Θ∗|||2 < 1.
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(c) Conversely, supposing that |||Θ∗|||2 < 1, show that there exists a strictly positive definite
solution Σ to equation (10.58).

Exercise 10.3 (Nullspace in matrix completion) Consider the random observation opera-
tor Xn : Rd×d → R formed by n i.i.d. draws of rescaled mask matrices (zero everywhere
except for d in an entry chosen uniformly at random). For the “bad” matrix Θbad from equa-
tion (10.37), show that P[Xn(Θbad) = 0] = 1 − o(1) whenever n = o(d2).

Exercise 10.4 (Cone inequalities for nuclear norm) Suppose that |||Θ̂|||nuc ≤ |||Θ∗|||nuc, where
Θ∗ is a rank-r matrix. Show that Δ̂ = Θ̂−Θ∗ satisfies the cone constraint |||̂ΔM̄⊥ |||nuc ≤ |||̂ΔM̄|||nuc,
where the subspace M⊥ was defined in equation (10.14).

Exercise 10.5 (Operator norm bounds)

(a) Verify the specific form (10.20) of the Φ∗-curvature condition.
(b) Assume that Θ∗ has rank r, and that Θ̂ −Θ∗ satisfies the cone constraint (10.15), where

M(U,V) is specified by subspace U and V of dimension r. Show that

|||Θ̂ −Θ∗|||F ≤ 4
√

2r |||Θ̂ −Θ∗|||2.
Exercise 10.6 (Analysis of matrix compressed sensing) In this exercise, we work through
part of the proof of Theorem 10.8 for the special case Σ = ID, where D = d1d2. In particular,
defining the set

B(t) :=
{
Δ ∈ Rd1×d1 | |||Δ|||F = 1, |||Δ|||nuc ≤ t

}
,

for some t > 0, we show that

inf
Δ∈B(t)

√√
1
n

n∑
i=1

〈〈Xi, Δ〉〉2 ≥ 1
2
− δ − 2

⎛⎜⎜⎜⎜⎜⎝
√

d1

n
+

√
d2

n

⎞⎟⎟⎟⎟⎟⎠ t

with probability greater than 1 − e−nδ2/2. (This is a weaker result than Theorem 10.8, but the
argument sketched here illustrates the essential ideas.)

(a) Reduce the problem to lower bounding the random variable

Zn(t) := inf
Δ∈B(t)

sup
‖u‖2=1

1√
n

n∑
i=1

ui〈〈Xi, Δ〉〉.

(b) Show that the expectation can be lower bounded as

E[Zn(t)] ≥ 1√
n

{
E[‖w‖2] − E[|||W|||2] t

}
,

where w ∈ Rn and W ∈ Rd1×d2 are populated with i.i.d. N(0, 1) variables. (Hint: The
Gordon–Slepian comparison principle from Chapter 5 could be useful here.)

(c) Complete the proof using concentration of measure and part (b).

Exercise 10.7 (Bounds for approximately low-rank matrices) Consider the observation
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model y = Xn(Θ∗) + w with w ∼ N(0, σ2In), and consider the nuclear norm constrained
estimator

Θ̂ = arg min
Θ∈Rd×d

{
1
2n
‖y − Xn(Θ)‖2

2

}
subject to |||Θ|||nuc ≤ |||Θ∗|||nuc.

Suppose that Θ∗ belongs to the �q-“ball” of near-low-rank matrices (10.26).
In this exercise, we show that the estimate Θ̂ satisfies an error bound of the form (10.27)

when the random operator Xn satisfies the lower bound of Theorem 10.8.

(a) For an arbitrary r ∈ {1, 2, . . . , d}, let U and V be subspaces defined by the top r left and
right singular vectors of Θ∗, and consider the subspace M(U,V). Prove that the error
matrix Δ̂ satisfies the inequality

|||̂ΔM̄⊥ |||nuc ≤ 2
√

2r|||̂Δ|||F + 2
d∑

j=r+1

σ j(Θ∗).

(b) Consider an integer r ∈ {1, . . . , d} such that n > C rd for some sufficiently large but
universal constant C. Using Theorem 10.8 and part (a), show that

|||̂Δ|||2F � max{T1(r),T 2
1 (r)}︸����������������︷︷����������������︸

approximation error

+σ

√
r d
n
|||̂Δ|||F︸����������︷︷����������︸

estimationerror

,

where T1(r) := σ
√

d
n

∑d
j=r+1 σ j(Θ∗). (Hint: You may assume that an inequality of the

form ||| 1n
∑n

i=1 wiXi|||2 � σ
√

d
n holds.)

(c) Specify a choice of r that trades off the estimation and approximation error optimally.

Exercise 10.8 Under the assumptions of Corollary 10.14, prove that the bound (10.35)
holds.

Exercise 10.9 (Phase retrieval with Gaussian masks) Recall the real-valued phase retrieval
problem, based on the functions fΘ(X) = 〈〈X, Θ〉〉, for a random matrix X = x ⊗ x with
x ∼ N(0, In).

(a) Letting Θ = UTDU denote the singular value decomposition of Θ, explain why the
random variables fΘ(X) and fD(X) have the same distributions.

(b) Prove that

E
[
f 2
Θ(X)] = |||Θ|||2F + 2

(
trace(Θ)

)2
.

Exercise 10.10 (Analysis of noisy matrix completion) In this exercise, we work through
the proof of Corollary 10.18.

(a) Argue that with the setting λn ≥ ||| 1n
∑n

i=1 wiEi|||2, we are guaranteed that the error matrix
Δ̂ = Θ̂ −Θ∗ satisfies the bounds

|||̂Δ|||nuc

|||̂Δ|||F
≤ 2

√
2r and ‖Δ̂‖max ≤ 2α.
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(b) Use part (a) and results from the chapter to show that, with high probability, at least one
of the following inequalities must hold:

|||̂Δ|||2F ≤
c2

2
α2 d log d

n
+ 128 c2

1 α
2 rd log d

n
or

‖Xn(Δ̂)‖2
2

n
≥ |||̂Δ|||2F

4
.

(c) Use part (c) to establish the bound.

Exercise 10.11 (Alternative estimator for matrix completion) Consider the problem of
noisy matrix completion, based on observations yi = 〈〈Xi, Θ

∗〉〉 + wi, where Xi ∈ Rd×d is
a d-rescaled mask matrix (i.e., with a single entry of d in one location chosen uniformly at
random, and zeros elsewhere). Consider the estimator

Θ̂ = arg min
Θ∈Rd×d

⎧⎪⎪⎨⎪⎪⎩1
2
|||Θ|||2F − 〈〈Θ,

1
n

n∑
i=1

yiXi〉〉 + λn|||Θ|||nuc

⎫⎪⎪⎬⎪⎪⎭ .

(a) Show that the optimal solution Θ̂ is unique, and can be obtained by soft thresholding the
singular values of the matrix M := 1

n

∑n
i=1 yiXi. In particular, if UDVT denotes the SVD

of M, then Θ̂ = U [Tλn (D)] VT, where Tλn (D) is the matrix formed by soft thresholding
the diagonal matrix of singular values D.

(b) Suppose that the unknown matrix Θ∗ has rank r. Show that, with the choice

λn ≥ 2 max
|||U|||nuc≤1

∣∣∣1
n

n∑
i=1

〈〈U, Xi〉〉 〈〈Xi, Θ
∗〉〉 − 〈〈U, Θ∗〉〉∣∣∣ + 2|||1

n

n∑
i=1

wiXi|||2,

the optimal solution Θ̂ satisfies the bound

|||Θ̂ −Θ∗|||F ≤ 3√
2

√
r λn.

(c) Suppose that the noise vector w ∈ Rn has i.i.d. σ-sub-Gaussian entries. Specify an ap-
propriate choice of λn that yields a useful bound on |||Θ̂ −Θ∗|||F.
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Graphical models for high-dimensional data

Graphical models are based on a combination of ideas from both probability theory and
graph theory, and are useful in modeling high-dimensional probability distributions. They
have been developed and studied in a variety of fields, including statistical physics, spatial
statistics, information and coding theory, speech processing, statistical image processing,
computer vision, natural language processing, computational biology and social network
analysis among others. In this chapter, we discuss various problems in high-dimensional
statistics that arise in the context of graphical models.

11.1 Some basics

We begin with a brief introduction to some basic properties of graphical models, referring
the reader to the bibliographic section for additional references. There are various types of
graphical models, distinguished by the type of underlying graph used—directed, undirected,
or a hybrid of the two. Here we focus exclusively on the case of undirected graphical models,
also known as Markov random fields. These models are based on an undirected graph G =

(V, E), which consists of a set of vertices V = {1, 2, . . . , d} joined together by a collection
of edges E. In the undirected case, an edge ( j, k) is an unordered pair of distinct vertices
j, k ∈ V .

In order to introduce a probabilistic aspect to our models, we associate to each vertex
j ∈ V a random variable Xj, taking values in some space X j. We then consider the distri-
bution P of the d-dimensional random vector X = (X1, . . . , Xd). Of primary interest to us
are connections between the structure of P, and the structure of the underlying graph G.
There are two ways in which to connect the probabilistic and graphical structures: one based
on factorization, and the second based on conditional independence properties. A classi-
cal result in the field, known as the Hammersley–Clifford theorem, asserts that these two
characterizations are essentially equivalent.

11.1.1 Factorization

One way to connect the undirected graph G to the random variables is by enforcing a certain
factorization of the probability distribution. A clique C is a subset of vertices that are all
joined by edges, meaning that ( j, k) ∈ E for all distinct vertices j, k ∈ C. A maximal clique is
a clique that is not a subset of any other clique. See Figure 11.1(b) for an illustration of these
concepts. We use C to denote the set of all cliques in G, and for each clique C ∈ C, we use
ψC to denote a function of the subvector xC := (x j, j ∈ C). This clique compatibility function

347
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takes inputs from the Cartesian product spaceXC :=
⊗

j∈C X j, and returns non-negative real
numbers. With this notation, we have the following:

Definition 11.1 The random vector (X1, . . . , Xd) factorizes according to the graph G
if its density function p can be represented as

p(x1, . . . , xd) ∝
∏
C∈C

ψC(xC) (11.1)

for some collection of clique compatibility functions ψC : XC → [0,∞).

Here the density function is taken with respect either to the counting measure for discrete-
valued random variables, or to some (possibly weighted) version of the Lebesgue measure
for continuous random variables. As an illustration of Definition 11.1, any density that fac-
torizes according to the graph shown in Figure 11.1(a) must have the form

p(x1, . . . , x7) ∝ ψ123(x1, x2, x3) ψ345(x3, x4, x5) ψ46(x4, x6) ψ57(x5, x7).

A B C

D

1

2
3 4

5

6

7 A

B

S
(a) (b)

Figure 11.1 Illustration of basic graph-theoretic properties. (a) Subsets A and B are
3-cliques, whereas subsets C and D are 2-cliques. All of these cliques are maximal.
Each vertex is a clique as well, but none of these singleton cliques are maximal for
this graph. (b) Subset S is a vertex cutset, breaking the graph into two disconnected
subgraphs with vertex sets A and B, respectively.

Without loss of generality—redefining the clique compatibility functions as necessary—
the product over cliques can always be restricted to the set of all maximal cliques. However,
in practice, it can be convenient to allow for terms associated with non-maximal cliques as
well, as illustrated by the following.

Example 11.2 (Markov chain factorization) The standard way of factoring the distribution
of a Markov chain on variables (X1, . . . , Xd) is as

p(x1, . . . , xd) = p1(x1) p2|1(x2 | x1) · · · pd|(d−1)(xd | xd−1),

where p1 denotes the marginal distribution of X1, and for j ∈ {1, 2, . . . , d− 1}, the term pj+1| j
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denotes the conditional distribution of Xj+1 given Xj. This representation can be understood
as a special case of the factorization (11.1), using the vertex-based functions

ψ1(x1) = p1(x1) at vertex 1 and ψ j(x j) = 1 for all j = 2, . . . , d,

combined with the edge-based functions

ψ j, j+1(x j, x j+1) = pj+1| j(x j+1 | x j) for j = 1, . . . , d − 1.

But this factorization is by no means unique. We could just as easily adopt the symmetrized
factorization ψ̃ j(x j) = pj(x j) for all j = 1, . . . , d, and

ψ̃ jk(x j, xk) =
pjk(x j, xk)

pj(x j)pk(xk)
for all ( j, k) ∈ E,

where pjk denotes the joint distribution over the pair (Xj, Xk). ♣
Example 11.3 (Multivariate Gaussian factorization) Any non-degenerate Gaussian dis-
tribution with zero mean can be parameterized in terms of its inverse covariance matrix
Θ∗ = Σ−1, also known as the precision matrix. In particular, its density can be written as

p(x1, . . . , xd;Θ∗) =
√

det(Θ∗)
(2π)d/2 e−

1
2 xTΘ∗x. (11.2)

By expanding the quadratic form, we see that

e−
1
2 xTΘ∗x = exp

(−1
2

∑
( j,k)∈E

Θ∗
jk x jxk

)
=

∏
( j,k)∈E

e−
1
2Θ

∗
jk x j xk︸����︷︷����︸

ψ jk(x j,xk)

,

showing that any zero-mean Gaussian distribution can be factorized in terms of functions on
edges, or cliques of size two. The Gaussian case is thus special: the factorization can always
be restricted to cliques of size two, even if the underlying graph has higher-order cliques. ♣
We now turn to a non-Gaussian graphical model that shares a similar factorization:

Example 11.4 (Ising model) Consider a vector X = (X1, . . . , Xd) of binary random vari-
ables, with each Xj ∈ {0, 1}. The Ising model is one of the earliest graphical models, first
introduced in the context of statistical physics for modeling interactions in a magnetic field.
Given an undirected graph G = (V, E), it posits a factorization of the form

p(x1, . . . , xd; θ∗) =
1

Z(θ∗)
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩∑j∈V

θ∗j x j +
∑

( j,k)∈E

θ∗jk x jxk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (11.3)

where the parameter θ∗j is associated with vertex j ∈ V , and the parameter θ∗jk is associ-
ated with edge ( j, k) ∈ E. The quantity Z(θ∗) is a constant that serves to enforce that the
probability mass function p normalizes properly to one; more precisely, we have

Z(θ∗) =
∑

x∈{0,1}d
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩∑j∈V

θ∗j x j +
∑

( j,k)∈E

θ∗jk x jxk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

See the bibliographic section for further discussion of the history and uses of this model. ♣
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11.1.2 Conditional independence

We now turn to an alternative way in which to connect the probabilistic and graphical struc-
tures, involving certain conditional independence statements defined by the graph. These
statements are based on the notion of a vertex cutset S , which (loosely stated) is a subset
of vertices whose removal from the graph breaks it into two or more disjoint pieces. More
formally, removing S from the vertex set V leads to the vertex-induced subgraph G(V \ S ),
consisting of the vertex set V \ S , and the residual edge set

E(V \ S ) :=
{
( j, k) ∈ E | j, k ∈ V \ S

}
. (11.4)

The set S is a vertex cutset if the residual graph G(V\S ) consists of two or more disconnected
non-empty components. See Figure 11.1(b) for an illustration.

We now define a conditional independence relationship associated with each vertex cutset
of the graph. For any subset A ⊆ V , let XA := (Xj, j ∈ A) represent the subvector of random
variables indexed by vertices in A. For any three disjoint subsets, say A, B and S , of the ver-
tex set V , we use XA ⊥⊥ XB | XS to mean that the subvector XA is conditionally independent
of XB given XS .

Definition 11.5 A random vector X = (X1, . . . , Xd) is Markov with respect to a graph
G if, for all vertex cutsets S breaking the graph into disjoint pieces A and B, the condi-
tional independence statement XA ⊥⊥ XB | XS holds.

Let us consider some examples to illustrate.

Example 11.6 (Markov chain conditional independence) The Markov chain provides the
simplest (and most classical) illustration of this definition. A chain graph on vertex set
V = {1, 2, . . . , d} contains the edges ( j, j + 1) for j = 1, 2, . . . , d − 1; the case d = 5 is
illustrated in Figure 11.2(a). For such a chain graph, each vertex j ∈ {2, 3, . . . , d − 1} is
a non-trivial cutset, breaking the graph into the “past” P = {1, 2, . . . , j − 1} and “future”
F = { j+1, . . . , d}. These singleton cutsets define the essential Markov property of a Markov
time-series model—namely, that the past XP and future XF are conditionally independent
given the present Xj. ♣
Example 11.7 (Neighborhood-based cutsets) Another canonical type of vertex cutset is
provided by the neighborhood structure of the graph. For any vertex j ∈ V , its neighborhood
set is the subset of vertices

N( j) :=
{
k ∈ V | ( j, k) ∈ E

}
(11.5)

that are joined to j by an edge. It is easy to see that N( j) is always a vertex cutset, a non-
trivial one as long as j is not connected to every other vertex; it separates the graph into
the two disjoint components A = { j} and B = V \ (N( j) ∪ { j}). This particular choice of
vertex cutset plays an important role in our discussion of neighborhood-based methods for
graphical model selection later in the chapter. ♣
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11.1.3 Hammersley–Clifford equivalence

Thus far, we have introduced two (ostensibly distinct) ways of relating the random vector X
to the underlying graph structure, namely the Markov property and the factorization prop-
erty. We now turn to a fundamental theorem that establishes that these two properties are
equivalent for any strictly positive distribution:

Theorem 11.8 (Hammersley–Clifford) For a given undirected graph and any random
vector X = (X1, . . . , Xd) with strictly positive density p, the following two properties are
equivalent:

(a) The random vector X factorizes according to the structure of the graph G, as in
Definition 11.1.

(b) The random vector X is Markov with respect to the graph G, as in Definition 11.5.

Proof Here we show that the factorization property (Definition 11.1) implies the Markov
property (Definition 11.5). See the bibliographic section for references to proofs of the con-
verse. Suppose that the factorization (11.1) holds, and let S be an arbitrary vertex cutset of
the graph such that subsets A and B are separated by S . We may assume without loss of
generality that both A and B are non-empty, and we need to show that XA ⊥⊥ XB | XS . Let
us define subsets of cliques by CA := {C ∈ C | C ∩ A � ∅}, CB := {C ∈ C | C ∩ B � ∅}
and CS := {C ∈ C | C ⊆ S }. We claim that these three subsets form a disjoint partition of
the full clique set—namely, C = CA ∪ CS ∪ CB. Given any clique C, it is either contained
entirely within S , or must have non-trivial intersection with either A or B, which proves the
union property. To establish disjointedness, it is immediate that CS is disjoint from CA and
CB. On the other hand, if there were some clique C ∈ CA ∩ CB, then there would exist nodes
a ∈ A and b ∈ B with {a, b} ∈ C, which contradicts the fact that A and B are separated by the
cutset S .

Given this disjoint partition, we may write

p(xA, xS , xB) =
1
Z

⎡⎢⎢⎢⎢⎢⎢⎣∏
C∈CA

ψC(xC)

⎤⎥⎥⎥⎥⎥⎥⎦︸����������︷︷����������︸
ΨA(xA,xS )

⎡⎢⎢⎢⎢⎢⎢⎣∏
C∈CS

ψC(xC)

⎤⎥⎥⎥⎥⎥⎥⎦︸����������︷︷����������︸
ΨS (xS )

⎡⎢⎢⎢⎢⎢⎢⎣∏
C∈CB

ψC(xC)

⎤⎥⎥⎥⎥⎥⎥⎦︸����������︷︷����������︸
ΨB(xB,xS )

.

Defining the quantities

ZA(xS ) :=
∑

xA

ΨA(xA, xS ) and ZB(xS ) :=
∑

xB

ΨB(xB, xS ),

we then obtain the following expressions for the marginal distributions of interest:

p(xS ) =
ZA(xS ) ZB(xS )

Z
ΨS (xS ) and p(xA, xS ) =

ZB(xS )
Z

ΨA(xA, xS ) ΨS (xS ),

with a similar expression for p(xB, xS ). Consequently, for any xS for which p(xS ) > 0, we
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may write

p(xA, xS , xB)
p(xS )

=

1
Z ΨA(xA, xS )ΨS (xS )ΨB(xB, xS )

ZA(xS ) ZB(xS )
Z ΨS (xS )

=
ΨA(xA, xS )ΨB(xB, xS )

ZA(xS ) ZB(xS )
. (11.6)

Similar calculations yield the relations

p(xA, xS )
p(xS )

=

ZB(xS )
Z ΨA(xA, xS ) ΨS (xS )

ZA(xS )ZB(xS )
Z ΨS (xS )

=
ΨA(xA, xS )

ZA(xS )
(11.7a)

and

p(xB, xS )
p(xS )

=

ZA(xS )
Z ΨB(xB, xS ) ΨS (xS )

ZA(xS )ZB(xS )
Z ΨS (xS )

=
ΨB(xB, xS )

ZB(xS )
. (11.7b)

Combining equation (11.6) with equations (11.7a) and (11.7b) yields

p(xA, xB | xS ) =
p(xA, xB, xS )

p(xS )
=

p(xA, xS )
p(xS )

p(xB, xS )
p(xS )

= p(xA | xS ) p(xB | xS ),

thereby showing that XA ⊥⊥ XB | XS , as claimed.

11.1.4 Estimation of graphical models

Typical applications of graphical models require solving some sort of inverse problem of the
following type. Consider a collection of samples {xi}ni=1, where each xi = (xi1, . . . , xid) is a
d-dimensional vector, hypothesized to have been drawn from some graph-structured proba-
bility distribution. The goal is to estimate certain aspects of the underlying graphical model.
In the problem of graphical parameter estimation, the graph structure itself is assumed to
be known, and we want to estimate the compatibility functions {ψC , C ∈ C} on the graph
cliques. In the more challenging problem of graphical model selection, the graph structure
itself is unknown, so that we need to estimate both it and the clique compatibility functions.
In the following sections, we consider various methods for solving these problems for both
Gaussian and non-Gaussian models.

11.2 Estimation of Gaussian graphical models

We begin our exploration of graph estimation for the case of Gaussian Markov random fields.
As previously discussed in Example 11.3, for a Gaussian model, the factorization property is
specified by the inverse covariance or precision matrix Θ∗. Consequently, the Hammersley–
Clifford theorem is especially easy to interpret in this case: it ensures that Θ∗

jk = 0 for any
( j, k) � E. See Figure 11.2 for some illustrations of this correspondence between graph
structure and the sparsity of the inverse covariance matrix.

Now let us consider some estimation problems that arise for Gaussian Markov random
fields. Since the mean is easily estimated, we take it to be zero for the remainder of our
development. Thus, the only remaining parameter is the precision matrix Θ∗. Given an es-
timate Θ̂ of Θ∗, its quality can be assessed in different ways. In the problem of graphical
model selection, also known as (inverse) covariance selection, the goal is to recover the
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Figure 11.2 For Gaussian graphical models, the Hammersley–Clifford theorem
guarantees a correspondence between the graph structure and the sparsity pattern
of the inverse covariance matrix or precision matrix Θ∗. (a) Chain graph on five
vertices. (b) Inverse covariance for a Gauss–Markov chain must have a tri-diagonal
structure. (c), (d) More general Gauss–Markov random field and the associated in-
verse covariance matrix.

edge set E of the underlying graph G. More concretely, letting Ê denote an estimate of the
edge set based on Θ̂, one figure of merit is the error probability P[Ê � E], which assesses
whether or not we have recovered the true underlying edge set. A related but more relaxed
criterion would focus on the probability of recovering a fraction 1− δ of the edge set, where
δ ∈ (0, 1) is a user-specified tolerance parameter. In other settings, we might be interested
in estimating the inverse covariance matrix itself, and so consider various types of matrix
norms, such as the operator norm |||Θ̂ − Θ∗|||2 or the Frobenius norm |||Θ̂ − Θ∗|||F. In the
following sections, we consider these different choices of metrics in more detail.

11.2.1 Graphical Lasso: �1-regularized maximum likelihood

We begin with a natural and direct method for estimating a Gaussian graphical model,
namely one based on the global likelihood. In order to do so, let us first derive a convenient
form of the rescaled negative log-likelihood, one that involves the log-determinant function.
For any two symmetric matrices A and B, recall that we use 〈〈A, B〉〉 := trace(AB) to denote
the trace inner product. The negative log-determinant function is defined on the space Sd×d
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of symmetric matrices as

− log det(Θ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

d∑
j=1

log γ j(Θ) if Θ ! 0,

+∞ otherwise,

(11.8)

where γ1(Θ) ≥ γ2(Θ) ≥ · · · ≥ γd(Θ) denote the ordered eigenvalues of the symmetric ma-
trix Θ. In Exercise 11.1, we explore some basic properties of the log-determinant function,
including its strict convexity and differentiability.

Using the parameterization (11.2) of the Gaussian distribution in terms of the precision
matrix, the rescaled negative log-likelihood of the multivariate Gaussian, based on samples
{xi}ni=1, takes the form

Ln(Θ) = 〈〈Θ, Σ̂〉〉 − log det(Θ), (11.9)

where Σ̂ := 1
n

∑n
i=1 xixT

i is the sample covariance matrix. Here we have dropped some con-
stant factors in the log-likelihood that have no effect on the maximum likelihood solution,
and also rescaled the log-likelihood by − 2

n for later theoretical convenience.
The unrestricted maximum likelihood solution Θ̂MLE takes a very simple form for the

Gaussian model. If the sample covariance matrix Σ̂ is invertible, we have Θ̂MLE = Σ̂−1;
otherwise, the maximum likelihood solution is undefined (see Exercise 11.2 for more de-
tails). Whenever n < d, the sample covariance matrix is always rank-deficient, so that the
maximum likelihood estimate does not exist. In this setting, some form of regularization is
essential. When the graph G is expected to have relatively few edges, a natural form of regu-
larization is to impose an �1-constraint on the entries of Θ. (If computational considerations
were not a concern, it would be natural to impose �0-constraint, but as in Chapter 7, we use
the �1-norm as a convex surrogate.)

Combining �1-regularization with the negative log-likelihood yields the graphical Lasso
estimator

Θ̂ ∈ arg min
Θ∈Sd×d

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩〈〈Θ, Σ̂〉〉 − log detΘ︸�������������������︷︷�������������������︸
Ln(Θ)

+λn|||Θ|||1,off

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (11.10)

where |||Θ|||1,off :=
∑

j�k |Θ jk| corresponds to the �1-norm applied to the off-diagonal entries
of Θ. One could also imagine penalizing the diagonal entries of Θ, but since they must be
positive for any non-degenerate inverse covariance, doing so only introduces additional bias.
The convex program (11.10) is a particular instance of a log-determinant program, and can
be solved in polynomial time with various generic algorithms. Moreover, there is also a line
of research on efficient methods specifically tailored to the graphical Lasso problem; see the
bibliographic section for further discussion.

Frobenius norm bounds
We begin our investigation of the graphical Lasso (11.10) by deriving bounds on the Fro-
benius norm error |||Θ̂−Θ∗|||F. The following result is based on a sample covariance matrix Σ̂
formed from n i.i.d. samples {xi}ni=1 of a zero-mean random vector in which each coordinate
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has σ-sub-Gaussian tails (recall Definition 2.2 from Chapter 2).

Proposition 11.9 (Frobenius norm bounds for graphical Lasso) Suppose that the in-
verse covariance matrix Θ∗ has at most m non-zero entries per row, and we solve the

graphical Lasso (11.10) with regularization parameter λn = 8σ2(
√

log d
n + δ) for some

δ ∈ (0, 1]. Then as long as 6(|||Θ∗|||2 + 1)2λn
√

md < 1, the graphical Lasso estimate Θ̂
satisfies

|||Θ̂ −Θ∗|||2F ≤
9(|||Θ∗|||2 + 1

)4 m d λ2
n (11.11)

with probability at least 1 − 8e−
1

16 nδ2
.

Proof We prove this result by applying Corollary 9.20 from Chapter 9. In order to do so,
we need to verify the restricted strong convexity of the loss function (see Definition 9.15),
as well as other technical conditions given in the corollary.

Let BF(1) = {Δ ∈ Sd×d | |||Δ|||F ≤ 1} denote the set of symmetric matrices with Fro-
benius norm at most one. Using standard properties of the log-determinant function (see
Exercise 11.1), the loss function underlying the graphical Lasso is twice differentiable, with

∇Ln(Θ) = Σ̂ −Θ−1 and ∇2Ln(Θ) = Θ−1 ⊗Θ−1,

where ⊗ denotes the Kronecker product between matrices.

Verifying restricted strong convexity: Our first step is to establish that restricted strong
convexity holds over the Frobenius norm ball BF(1). Let vec(·) denote the vectorized form
of a matrix. For any Δ ∈ BF(1), a Taylor-series expansion yields

Ln(Θ∗ + Δ) − Ln(Θ∗) − 〈〈∇Ln(Θ∗), Δ〉〉︸����������������������������������������������︷︷����������������������������������������������︸
En(Δ)

=
1
2

vec(Δ)T∇2Ln(Θ∗ + tΔ) vec(Δ)

for some t ∈ [0, 1]. Thus, we have

En(Δ) ≥ 1
2
γmin

(∇2Ln(Θ∗ + tΔ)
) ‖ vec(Δ)‖2

2 =
1
2

|||Δ|||2F
|||Θ∗ + tΔ|||22

,

using the fact that |||A−1 ⊗ A−1|||2 = 1
|||A|||22

for any symmetric invertible matrix. The triangle

inequality, in conjunction with the bound t|||Δ|||2 ≤ t|||Δ|||F ≤ 1, implies that |||Θ∗ + tΔ|||22 ≤(|||Θ∗|||2 + 1
)2. Combining the pieces yields the lower bound

En(Δ) ≥ κ

2
|||Δ|||2F where κ :=

(|||Θ∗|||2 + 1
)−2, (11.12)

showing that the RSC condition from Definition 9.15 holds overBF(1) with tolerance τ2
n = 0.

Computing the subspace Lipschitz constant: Next we introduce a subspace suitable for
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application of Corollary 9.20 to the graphical Lasso. Letting S denote the support set of Θ∗,
we define the subspace

M(S ) = {Θ ∈ Rd×d | Θ jk = 0 for all ( j, k) � S }.
With this choice, we have

Ψ2(M(S )) = sup
Θ∈M(S )

(∑
j�k |Θ jk|)2
|||Θ|||2F

≤ |S | (i)≤ m d,

where inequality (i) follows since Θ∗ has at most m non-zero entries per row.

Verifying event G(λn): Next we verify that the stated choice of regularization parameter λn

satisfies the conditions of Corollary 9.20 with high probability: in order to do so, we need to
compute the score function and obtain a bound on its dual norm. Since (Θ∗)−1 = Σ, the score
function is given by ∇Ln(Θ∗) = Σ̂ − Σ, corresponding to the deviations between the sample
covariance and population covariance matrices. The dual norm defined by ||| · |||1,off is given
by the �∞-norm applied to the off-diagonal matrix entries, which we denote by ||| · |||max,off .
Using Lemma 6.26, we have

P
[
|||Σ̂ − Σ|||max,off ≥ σ2t

]
≤ 8e−

n
16 min{t, t2}+2 log d for all t > 0.

Setting t = λn/σ
2 shows that the event G(λn) from Corollary 9.20 holds with the claimed

probability. Consequently, Proposition 9.13 implies that the error matrix Δ̂ satisfies the
bound ‖Δ̂S c‖1 ≤ 3‖Δ̂S ‖1, and hence

‖Δ̂‖1 ≤ 4‖Δ̂S ‖1 ≤ 4
√

md|||̂Δ|||F, (11.13)

where the final inequality again uses the fact that |S | ≤ md. In order to apply Corollary 9.20,
the only remaining detail to verify is that Δ̂ belongs to the Frobenius ball BF(1).

Localizing the error matrix: By an argument parallel to the earlier proof of RSC, we have

Ln(Θ∗) − Ln(Θ∗ + Δ) + 〈〈∇Ln(Θ∗ + Δ), −Δ〉〉 ≥ κ

2
|||Δ|||2F.

Adding this lower bound to the inequality (11.12), we find that

〈〈∇Ln(Θ∗ + Δ) − ∇Ln(Θ∗), Δ〉〉 ≥ κ |||Δ|||2F.
The result of Exercise 9.10 then implies that

〈〈∇Ln(Θ∗ + Δ) − ∇Ln(Θ∗), Δ〉〉 ≥ κ |||Δ|||F for all Δ ∈ Sd×d \ BF(1). (11.14)

By the optimality of Θ̂, we have 0 = 〈〈∇Ln(Θ∗ + Δ̂) + λnẐ, Δ̂〉〉, where Ẑ ∈ ∂|||Θ̂|||1,off is a
subgradient matrix for the elementwise �1-norm. By adding and subtracting terms, we find
that

〈〈∇Ln(Θ∗ + Δ̂) − ∇Ln(Θ∗), Δ̂〉〉 ≤ λn

∣∣∣〈〈Ẑ, Δ̂〉〉∣∣∣ + ∣∣∣〈〈∇Ln(Θ∗), Δ̂〉〉∣∣∣
≤
{
λn + ‖∇Ln(Θ∗)‖max

}
‖Δ̂‖1.
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Since ‖∇Ln(Θ∗)‖max ≤ λn
2 under the previously established event G(λn), the right-hand side

is at most
3λn

2
‖Δ̂‖1 ≤ 6λn

√
md |||̂Δ|||F,

where we have applied our earlier inequality (11.13). If |||̂Δ|||F > 1, then our earlier lower
bound (11.14) may be applied, from which we obtain

κ|||̂Δ|||F ≤ 3λn

2
‖Δ̂‖1 ≤ 6λn

√
md|||̂Δ|||F.

This inequality leads to a contradiction whenever 6λn
√

md
κ

< 1, which completes the proof.

Edge selection and operator norm bounds
Proposition 11.9 is a relatively crude result, in that it only guarantees that the graphical Lasso
estimate Θ̂ is close in Frobenius norm, but not that the edge structure of the underlying
graph is preserved. Moreover, the result actually precludes the setting n < d: indeed, the
conditions of Proposition 11.9 imply that the sample size n must be lower bounded by a
constant multiple of md log d, which is larger than d.

Accordingly, we now turn to a more refined type of result, namely one that allows for
high-dimensional scaling (d � n), and moreover guarantees that the graphical Lasso es-
timate Θ̂ correctly selects all the edges of the graph. Such an edge selection result can be
guaranteed by first proving that Θ̂ is close to the true precision matrix Θ∗ in the element-
wise �∞-norm on the matrix elements (denoted by ‖ · ‖max). In turn, such max-norm control
can also be converted to bounds on the �2-matrix operator norm, also known as the spectral
norm.

The problem of edge selection in a Gaussian graphical model is closely related to the
problem of variable selection in a sparse linear model. As previously discussed in Chap-
ter 7, variable selection with an �1-norm penalty requires a certain type of incoherence
condition, which limits the influence of irrelevant variables on relevant ones. In the case
of least-squares regression, these incoherence conditions were imposed on the design ma-
trix, or equivalently on the Hessian of the least-squares objective function. Accordingly, in
a parallel manner, here we impose incoherence conditions on the Hessian of the objective
function Ln in the graphical Lasso (11.10). As previously noted, this Hessian takes the form
∇2Ln(Θ) = Θ−1 ⊗Θ−1, a d2 × d2 matrix that is indexed by ordered pairs of vertices ( j, k).

More specifically, the incoherence condition must be satisfied by the d2-dimensional ma-
trix Γ∗ := ∇2Ln(Θ∗), corresponding to the Hessian evaluated at the true precision matrix. We
use S := E ∪ {( j, j) | j ∈ V} to denote the set of row/column indices associated with edges
in the graph (including both ( j, k) and (k, j)), along with all the self-edges ( j, j). Letting
S c = (V × V) \ S , we say that the matrix Γ∗ is α-incoherent if

max
e∈S c

‖Γ∗eS (Γ∗S S )−1‖1 ≤ 1 − α for some α ∈ (0, 1]. (11.15)

With this definition, we have the following result:
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Proposition 11.10 Consider a zero-mean d-dimensional Gaussian distribution based
on an α-incoherent inverse covariance matrix Θ∗. Given a sample size lower bounded
as n > c0(1 + 8α−1)2m2 log d, suppose that we solve the graphical Lasso (11.10) with a

regularization parameter λn =
c1
α

√
log d

n + δ for some δ ∈ (0, 1]. Then with probability

at least 1 − c2e−c3n δ2
, we have the following:

(a) The graphical Lasso solution leads to no false inclusions—that is, Θ̂ jk = 0 for all
( j, k) � E.

(b) It satisfies the sup-norm bound

‖Θ̂ −Θ∗‖max ≤ c4

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩(1 + 8α−1)

√
log d

n︸������������������︷︷������������������︸
τ(n,d,α)

+λn

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ . (11.16)

Note that part (a) guarantees that the edge set estimate

Ê := {( j, k) ∈ [d] × [d] | j < k and Θ̂ jk � 0}
is always a subset of the true edge set E. Part (b) guarantees that Θ̂ is uniformly close to
Θ∗ in an elementwise sense. Consequently, if we have a lower bound on the minimum non-
zero entry of |Θ∗|—namely the quantity τ∗(Θ∗) = min( j,k)∈E |Θ∗

jk|—then we can guarantee that
the graphical Lasso recovers the full edge set correctly. In particular, using the notation of
part (b), as long as this minimum is lower bounded as τ∗(Θ∗) > c4(τ(n, d, α) + λn), then the
graphical Lasso recovers the correct edge set with high probability.

The proof of Proposition 11.10 is based on an extension of the primal–dual witness tech-
nique used to prove Theorem 7.21 in Chapter 7. In particular, it involves constructing a pair
of matrices (Θ̃, Z̃), where Θ̃ ! 0 is a primal optimal solution and Z̃ a corresponding dual
optimum. This pair of matrices is required to satisfy the zero subgradient conditions that
define the optimum of the graphical Lasso (11.10)—namely

Σ̂ − Θ̃−1 + λnZ̃ = 0 or equivalently Θ̃−1 = Σ̂ + λnZ̃.

The matrix Z̃ must belong to the subgradient of the |||· |||1,off function, evaluated at Θ̃, meaning
that |||Z̃|||max,off ≤ 1, and that Z̃ jk = sign(Θ̃ jk) whenever Θ̃ jk � 0. We refer the reader to the
bibliographic section for further details and references for the proof.

Proposition 11.10 also implies bounds on the operator norm error in the estimate Θ̂.

Corollary 11.11 (Operator norm bounds) Under the conditions of Proposition 11.10,

consider the graphical Lasso estimate Θ̂with regularization parameter λn =
c1
α

√
log d

n + δ
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for some δ ∈ (0, 1]. Then with probability at least 1 − c2e−c3n δ2
, we have

|||Θ̂ −Θ∗|||2 ≤ c4 |||A|||2
⎧⎪⎪⎨⎪⎪⎩(1 + 8α−1)

√
log d

n
+ λn

⎫⎪⎪⎬⎪⎪⎭ , (11.17a)

where A denotes the adjacency matrix of the graph G (including ones on the diagonal).
In particular, if the graph has maximum degree m, then

|||Θ̂ −Θ∗|||2 ≤ c4(m + 1)

⎧⎪⎪⎨⎪⎪⎩(1 + 8α−1)

√
log d

n
+ λn

⎫⎪⎪⎬⎪⎪⎭ . (11.17b)

Proof These claims follow in a straightforward way from Proposition 11.10 and certain
properties of the operator norm exploited previously in Chapter 6. In particular, Proposi-
tion 11.10 guarantees that for any pair ( j, k) � E, we have |Θ̂ jk − Θ∗

jk| = 0, whereas the

bound (11.16) ensures that for any pair ( j, k) ∈ E, we have |Θ̂ jk − Θ∗
jk| ≤ c4

{
τ(n, d, α) + λn

}
.

Note that the same bound holds whenever j = k. Putting together the pieces, we conclude
that

|Θ̂ jk − Θ∗
jk| ≤ c4

{
τ(n, d, α) + λn} Ajk, (11.18)

where A is the adjacency matrix, including ones on the diagonal. Using the matrix-theoretic
properties from Exercise 6.3(c), we conclude that

|||Θ̂ −Θ∗|||2 ≤ ||||Θ̂ −Θ∗||||2 ≤ c4
{
τ(n, d, α) + λn

} |||A|||2,
thus establishing the bound (11.17a). The second inequality (11.17b) follows by noting that
|||A|||2 ≤ m+1 for any graph of degree at most m. (See the discussion following Corollary 6.24
for further details.)

As we noted in Chapter 6, the bound (11.17b) is not tight for a general graph with
maximum degree m. In particular, a star graph with one hub connected to m other nodes
(see Figure 6.1(b)) has maximum degree m, but satisfies |||A|||2 = 1 +

√
m − 1, so that the

bound (11.17a) implies the operator norm bound |||Θ̂ −Θ∗|||2 �
√

m log d
n . This guarantee is

tighter by a factor of
√

m than the conservative bound (11.17b).
It should also be noted that Proposition 11.10 also implies bounds on the Frobenius norm

error. In particular, the elementwise bound (11.18) implies that

|||Θ̂ −Θ∗|||F ≤ c3

√
2s + d

⎧⎪⎪⎨⎪⎪⎩(1 + 8α−1)

√
log d

n
+ λn

⎫⎪⎪⎬⎪⎪⎭ , (11.19)

where s is the total number of edges in the graph. We leave the verification of this claim as
an exercise for the reader.

11.2.2 Neighborhood-based methods

The Gaussian graphical Lasso is a global method, one that estimates the full graph simul-
taneously. An alternative class of procedures, known as neighborhood-based methods, are
instead local. They are based on the observation that recovering the full graph is equivalent
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to recovering the neighborhood set (11.5) of each vertex j ∈ V , and that these neighborhoods
are revealed via the Markov properties of the graph.

Neighborhood-based regression
Recall our earlier Definition 11.5 of the Markov properties associated with a graph. In our
discussion following this definition, we also noted that for any given vertex j ∈ V , the neigh-
borhoodN( j) is a vertex cutset that breaks the graph into the disjoint pieces { j} and V\N+( j),
where we have introduced the convenient shorthand N+( j) := { j} ∪ N( j). Consequently, by
applying the definition (11.5), we conclude that

Xj ⊥⊥ XV\N+( j) | XN( j). (11.20)

Thus, the neighborhood structure of each node is encoded in the structure of the conditional
distribution. What is a good way to detect these conditional independence relationships and
hence the neighborhood? A particularly simple method is based on the idea of neighborhood
regression: for a given vertex j ∈ V , we use the random variables X\{ j} := {Xk | k ∈ V \ { j}}
to predict Xj, and keep only those variables that turn out to be useful.

Let us now formalize this idea in the Gaussian case. In this case, by standard properties
of multivariate Gaussian distributions, the conditional distribution of Xj given X\{ j} is also
Gaussian. Therefore, the random variable Xj has a decomposition as the sum of the best
linear prediction based on X\{ j} plus an error term—namely

Xj =
〈
X\{ j}, θ∗j

〉
+ Wj, (11.21)

where θ∗j ∈ Rd−1 is a vector of regression coefficients, and Wj is a zero-mean Gaussian
variable, independent of X\{ j}. (See Exercise 11.3 for the derivation of these and related
properties.) Moreover, the conditional independence relation (11.20) ensures that θ∗jk = 0 for
all k � N( j). In this way, we have reduced the problem of Gaussian graph selection to that
of detecting the support in a sparse linear regression problem. As discussed in Chapter 7, the
Lasso provides a computationally efficient approach to such support recovery tasks.

In summary, the neighborhood-based approach to Gaussian graphical selection proceeds
as follows. Given n samples {x1, . . . , xn}, we use X ∈ Rn×d to denote the design matrix with
xi ∈ Rd as its ith row, and then perform the following steps.

Lasso-based neighborhood regression:

1 For each node j ∈ V:

(a) Extract the column vector Xj ∈ Rn and the submatrix X\{ j} ∈ Rn×(d−1).
(b) Solve the Lasso problem:

θ̂ = arg min
θ∈Rd−1

{
1
2n
‖Xj − X\{ j}θ‖2

2 + λn‖θ‖1

}
. (11.22)

(c) Return the neighborhood estimate N̂( j) = {k ∈ V \ { j} | θ̂k � 0}.
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2 Combine the neighborhood estimates to form an edge estimate Ê, using either the
OR rule or the AND rule.

Note that the first step returns a neighborhood estimate N̂( j) for each vertex j ∈ V .
These neighborhood estimates may be inconsistent, meaning that for a given pair of distinct
vertices ( j, k), it may be the case that k ∈ N̂( j) whereas j � N̂(k). Some rules to resolve this
issue include:

• the OR rule that declares that ( j, k) ∈ ÊOR if either k ∈ N̂( j) or j ∈ N̂(k);
• the AND rule that declares that ( j, k) ∈ ÊAND if k ∈ N̂( j) and j ∈ N̂(k).

By construction, the AND rule is more conservative than the OR rule, meaning that ÊAND ⊆
ÊOR. The theoretical guarantees that we provide end up holding for either rule, since we
control the behavior of each neighborhood regression problem.

Graph selection consistency
We now state a result that guarantees selection consistency of neighborhood regression.
As with our previous analysis of the Lasso in Chapter 7 and the graphical Lasso in Sec-
tion 11.2.1, we require an incoherence condition. Given a positive definite matrix Γ and a
subset S of its columns, we say Γ is α-incoherent with respect to S if

max
k�S

‖ΓkS (ΓS S )−1‖1 ≤ 1 − α. (11.23)

Here the scalar α ∈ (0, 1] is the incoherence parameter. As discussed in Chapter 7, if we view
Γ as the covariance matrix of a random vector Z ∈ Rd, then the row vector ΓkS (ΓS S )−1 speci-
fies the coefficients of the optimal linear predictor of Zk given the variables ZS := {Zj, j ∈ S }.
Thus, the incoherence condition (11.23) imposes a limit on the degree of dependence be-
tween the variables in the correct subset S and any variable outside of S .

The following result guarantees graph selection consistency of the Lasso-based neighbor-
hood procedure, using either the AND or the OR rules, for a Gauss–Markov random field in
which the covariance matrix Σ∗ = (Θ∗)−1 has maximum degree m, and diagonals scaled such
that diag(Σ∗) ≤ 1. This latter inequality entails no loss of generality, since it can always be
guaranteed by rescaling the variables. Our statement involves the �∞-matrix-operator norm
|||A|||2 := maxi=1,...,d

∑d
j=1 |Ai j|.

Finally, in stating the result, we assume that the sample size is lower bounded as n �
m log d. This assumption entails no loss of generality, because a sample size of this order is
actually necessary for any method. See the bibliographic section for further details on such
information-theoretic lower bounds for graphical model selection.

Theorem 11.12 (Graph selection consistency) Consider a zero-mean Gaussian ran-
dom vector with covarianceΣ∗ such that for each j ∈ V, the submatrixΣ∗\{ j} := cov(X\{ j})
is α-incoherent with respect toN( j), and |||(Σ∗N( j),N( j))

−1|||∞ ≤ b for some b ≥ 1. Suppose

that the neighborhood Lasso selection method is implemented with λn = c0
{ 1
α

√
log d

n +δ
}
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for some δ ∈ (0, 1]. Then with probability greater than 1− c2e−c3n min{δ2, 1
m }, the estimated

edge set Ê, based on either the AND or OR rules, has the following properties:

(a) No false inclusions: it includes no false edges, so that Ê ⊆ E.
(b) All significant edges are captured: it includes all edges ( j, k) for which |Θ∗

jk| ≥ 7 b λn.

Of course, if the non-zero entries of the precision matrix are bounded below in absolute
value as min( j,k)∈E |Θ∗

jk| > 7 b λn, then in fact Theorem 11.12 guarantees that Ê = E with high
probability.

Proof It suffices to show that for each j ∈ V , the neighborhoodN( j) is recovered with high
probability; we can then apply the union bound over all the vertices. The proof requires an
extension of the primal–dual witness technique used to prove Theorem 7.21. The main differ-
ence is that Theorem 11.12 applies to random covariates, as opposed to the case of determin-
istic design covered by Theorem 7.21. In order to reduce notational overhead, we adopt the
shorthand Γ∗ = cov(X\{ j}) along with the two subsets S = N( j) and S c = V \ N+( j). In this
notation, we can write our observation model as Xj = X\{ j}θ∗ + Wj, where X\{ j} ∈ Rn×(d−1)

while Xj and Wj are both n-vectors. In addition, we let Γ̂ = 1
n XT

\{ j}X\{ j} denote the sample

covariance defined by the design matrix, and we use Γ̂S S to denote the submatrix indexed
by the subset S , with the submatrix Γ̂S cS defined similarly.

Proof of part (a): We follow the proof of Theorem 7.21 until equation (7.53), namely

ẑS c = Γ̂S cS (Γ̂S S )−1ẑS︸�����������︷︷�����������︸
μ∈Rd−s

+XT
S c

[
In − XS (XT

S XS )−1XT
S

] ( Wj

λn n

)
︸�������������������������������������︷︷�������������������������������������︸

VS c∈Rd−s

. (11.24)

As argued in Chapter 7, in order to establish that the Lasso support is included within S , it
suffices to establish the strict dual feasibility condition ‖̂zS c‖∞ < 1. We do so by establishing
that

P
[
‖μ‖∞ ≥ 1 − 3

4
α

]
≤ c1e−c2nα2−log d (11.25a)

and

P
[
‖VS c‖∞ ≥ α

4

]
≤ c1e−c2nδ2α2−log d. (11.25b)

Taken together, these bounds ensure that ‖̂zS c‖∞ ≤ 1 − α
2 < 1, and hence that the Lasso

support is contained within S = N( j), with probability at least 1− c1e−c2nδ2α2−log d, where the
values of the universal constants may change from line to line. Taking the union bound over
all d vertices, we conclude that Ê ⊆ E with probability at least 1 − c1e−c2nδ2α2

.

Let us begin by establishing the bound (11.25a). By standard properties of multivariate
Gaussian vectors, we can write

XT
S c = Γ

∗
S cS (Γ∗S S )−1XS + W̃T

S c , (11.26)

where W̃S c ∈ Rn×|S c | is a zero-mean Gaussian random matrix that is independent of XS .



11.2 Estimation of Gaussian graphical models 363

Observe moreover that

cov(W̃S c ) = Γ∗S cS c − Γ∗S cS (Γ∗S S )−1Γ∗S S c & Γ∗.

Recalling our assumption that diag(Γ∗) ≤ 1, we see that the elements of W̃S c have variance
at most 1.

Using the decomposition (11.26) and the triangle inequality, we have

‖μ‖∞ =
∥∥∥∥Γ∗S cS (Γ∗S S )−1ẑS +

W̃T
S c√
n

XS√
n

(Γ̂S S )−1ẑS

∥∥∥∥∞
(i)≤ (1 − α) +

∥∥∥∥ W̃T
S c√
n

XS√
n

(Γ̂S S )−1ẑS︸�����������������︷︷�����������������︸
Ṽ∈R|S c |

∥∥∥∥∞, (11.27)

where step (i) uses the population-level α-incoherence condition. Turning to the remaining
stochastic term, conditioned on the design matrix, the vector Ṽ is a zero-mean Gaussian
random vector, each entry of which has standard deviation at most

1√
n
‖XS√

n
(Γ̂S S )−1ẑS ‖2 ≤ 1√

n
|||XS√

n
(Γ̂S S )−1|||2 ‖̂zS ‖2

≤ 1√
n

√
|||(Γ̂S S )−1|||2

√
m

(i)≤ 2

√
b m
n

,

where inequality (i) follows with probability at least 1 − 4e−c1n, using standard bounds on
Gaussian random matrices (see Theorem 6.1). Using this upper bound to control the condi-
tional variance of Ṽ , standard Gaussian tail bounds and the union bound then ensure that

P
[‖Ṽ‖∞ ≥ t

] ≤ 2 |S c| e− nt2
8bm ≤ 2 e−

nt2
8bm+log d.

We now set t =
[ 64bm log d

n + 1
64α

2]1/2, a quantity which is less than α
4 as long as n ≥ c bm log d

α
for

a sufficiently large universal constant. Thus, we have established that ‖Ṽ‖∞ ≤ α
4 with proba-

bility at least 1− c1e−c2nα2−log d. Combined with the earlier bound (11.27), the claim (11.25a)
follows.

Turning to the bound (11.25b), note that the matrix Π := In − XS (XT
S XS )−1XT

S has the
range of XS as its nullspace. Thus, using the decomposition (11.26), we have

VS c = W̃T
S c Π

(
Wj

λnn

)
,

where W̃S c ∈ R|S c | is independent of Π and Wj. Since Π is a projection matrix, we have
‖ΠWj‖2 ≤ ‖Wj‖2. The vector Wj ∈ Rn has i.i.d. Gaussian entries with variance at most 1,
and hence the event E = { ‖Wj‖2√

n ≤ 2
}

holds with probability at least 1− 2e−n. Conditioning on
this event and its complement, we find that

P
[‖VS c‖∞ ≥ t] ≤ P

[
‖VS c‖∞ ≥ t | E

]
+ 2e−c3n.
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Conditioned on E, each element of VS c has variance at most 4
λ2

nn , and hence

P
[‖VS c‖∞ ≥ α

4
] ≤ 2 e−

λ2
nnα2

256 +log |S c | + 2e−n,

where we have combined the union bound with standard Gaussian tail bounds. Since λn =

c0
{ 1
α

√
log d

n + δ
}

for a universal constant c0 that may be chosen, we can ensure that λ2
nnα2

256 ≥
c2nα2δ2 + 2 log d for some constant c2, for which it follows that

P
[‖VS c‖∞ ≥ α

4
] ≤ c1e−c2nδ2α2−log d + 2e−n.

Proof of part (b): In order to prove part (b) of the theorem, it suffices to establish �∞-bounds
on the error in the Lasso solution. Here we provide a proof in the case m ≤ log d, referring
the reader to the bibliographic section for discussion of the general case. Again returning to
the proof of Theorem 7.21, equation (7.54) guarantees that

‖̂θS − θ∗S ‖∞ ≤
∥∥∥∥(Γ̂S S )−1XT

S
Wj

n

∥∥∥∥∞ + λn |||(Γ̂S S )−1|||∞

≤
∥∥∥∥(Γ̂S S )−1XT

S
Wj

n

∥∥∥∥∞ + λn

{
|||(Γ̂S S )−1 − (Γ∗S S )−1|||∞ + |||(Γ∗S S )−1|||∞

}
. (11.28)

Now for any symmetric m × m matrix, we have

|||A|||∞ = max
i=1,...,m

m∑
�=1

|Ai�| ≤
√

m max
i=1,...,m

√√
m∑

�=1

|Ai�|2 ≤
√

m|||A|||2.

Applying this bound to the matrix A = (Γ̂S S )−1 − (Γ∗S S )−1, we find that

|||(Γ̂S S )−1 − (Γ∗S S )−1|||∞ ≤
√

m|||(Γ̂S S )−1 − (Γ∗S S )−1|||2. (11.29)

Since |||Γ∗S S |||2 ≤ |||Γ∗S S |||∞ ≤ b, applying the random matrix bound from Theorem 6.1 allows
us to conclude that

|||(Γ̂S S )−1 − (Γ∗S S )−1|||2 ≤ 2b

⎛⎜⎜⎜⎜⎜⎝√m
n
+

1√
m
+ 10

√
log d

n

⎞⎟⎟⎟⎟⎟⎠ ,
with probability at least 1 − c1e−c2

n
m−log d. Combined with the earlier bound (11.29), we find

that

|||(Γ̂S S )−1 − (Γ∗S S )−1|||∞ ≤ 2b

⎛⎜⎜⎜⎜⎜⎝
√

m2

n
+ 1 + 10

√
m log d

n

⎞⎟⎟⎟⎟⎟⎠ (i)≤ 6b, (11.30)

where inequality (i) uses the assumed lower bound n � m log d ≥ m2. Putting together the
pieces in the bound (11.28) leads to

‖̂θS − θ∗S ‖∞ ≤
∥∥∥∥ (Γ̂S S )−1XT

S
Wj

n︸�����������︷︷�����������︸
US

∥∥∥∥∞ + 7bλn. (11.31)

Now the vector Wj ∈ Rn has i.i.d. Gaussian entries, each zero-mean with variance at most
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var(Xj) ≤ 1, and is independent of XS . Consequently, conditioned on XS , the quantity US is
a zero-mean Gaussian m-vector, with maximal variance

1
n
‖ diag(Γ̂S S )−1‖∞ ≤ 1

n

{
|||(Γ̂S S )−1 − (Γ∗S S )−1|||∞ + |||(Γ∗S S )−1|||∞

}
≤ 7b

n
,

where we have combined the assumed bound |||(Γ∗S S )−1|||∞ ≤ b with the inequality (11.30).
Therefore, the union bound combined with Gaussian tail bounds implies that

P
[‖US ‖∞ ≥ bλn

] ≤ 2|S |e− nλ2
n

14
(i)≤ c1e−c2nbδ2−log d,

where, as in our earlier argument, inequality (i) can be guaranteed by a sufficiently large
choice of the pre-factor c0 in the definition of λn. Substituting back into the earlier bound
(11.31), we find that ‖̂θS −θ∗S ‖∞ ≤ 7bλn with probability at least 1 − c1e−c2n{δ2∧ 1

m }−log d. Finally,
taking the union bound over all vertices j ∈ V causes a loss of at most a factor log d in the
exponent.

11.3 Graphical models in exponential form

Let us now move beyond the Gaussian case, and consider the graph estimation problem
for a more general class of graphical models that can be written in an exponential form. In
particular, for a given graph G = (V, E), consider probability densities that have a pairwise
factorization of the form

pΘ∗(x1, . . . , xd) ∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩∑j∈V

φ j(x j;Θ∗
j) +

∑
( j,k)∈E

φ jk(x j, xk;Θ∗
jk)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (11.32)

where Θ∗
j is a vector of parameters for node j ∈ V , and Θ∗

jk is a matrix of parameters for
edge ( j, k). For instance, the Gaussian graphical model is a special case in which Θ∗

j = θ∗j
and Θ∗

jk = θ∗jk are both scalars, the potential functions take the form

φ j(x j; θ∗j) = θ∗j x j, φ jk(x j, xk; θ∗jk) = θ∗jk x jxk, (11.33)

and the density (11.32) is taken with respect to Lebesgue measure over Rd. The Ising
model (11.3) is another special case, using the same choice of potential functions (11.33),
but taking the density with respect to the counting measure on the binary hypercube

{
0, 1

}d.

Let us consider a few more examples of this factorization:

Example 11.13 (Potts model) The Potts model, in which each variable Xs takes values
in the discrete set {0, . . . , M − 1} is another special case of the factorization (11.32). In this
case, the parameter Θ∗

j = {Θ j;a, a = 1, . . . , M−1} is an (M−1)-vector, whereas the parameter
Θ∗

jk = {Θ∗
jk;ab, a, b = 1, . . . , M − 1} is an (M − 1) × (M − 1) matrix. The potential functions

take the form

φ j(x j;Θ∗
j) =

M−1∑
a=1

Θ∗
j;a I[x j = a] (11.34a)
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and

φ jk(x j, xk;Θ∗
jk) =

M−1∑
a=1

M−1∑
b=1

Θ∗
jk;ab I[x j = a, xk = b]. (11.34b)

Here I[x j = a] is a zero–one indicator function for the event that {x j = a}, with the indicator
function I[x j = a, xk = b] defined analogously. Note that the Potts model is a generalization
of the Ising model (11.3), to which it reduces for variables taking M = 2 states. ♣
Example 11.14 (Poisson graphical model) Suppose that we are interested in modeling a
collection of random variables (X1, . . . , Xd), each of which represents some type of count
data taking values in the set of positive integers Z+ = {0, 1, 2, . . .}. One way of building
a graphical model for such variables is by specifying the conditional distribution of each
variable given its neighbors. In particular, suppose that variable Xj, when conditioned on its
neighbors, is a Poisson random variable with mean

μ j = exp

⎛⎜⎜⎜⎜⎜⎜⎝θ∗j + ∑
k∈N( j)

θ∗jk xk

⎞⎟⎟⎟⎟⎟⎟⎠ .
This form of conditional distribution leads to a Markov random field of the form (11.32)
with

φ j(x j; θ∗j) = θ∗j x j − log(x!) for all j ∈ V , (11.35a)

φ jk(x j, xk; θ∗jk) = θ∗jk x jxk for all ( j, k) ∈ E. (11.35b)

Here the density is taken with respect to the counting measure on Z+ for all variables. A
potential deficiency of this model is that, in order for the density to be normalizable, we
must necessarily have θ∗jk ≤ 0 for all ( j, k) ∈ E. Consequently, this model can only capture
competitive interactions between variables. ♣

One can also consider various types of mixed graphical models, for instance in which
some of the nodes take discrete values, whereas others are continuous-valued. Gaussian
mixture models are one important class of such models.

11.3.1 A general form of neighborhood regression

We now consider a general form of neighborhood regression, applicable to any graphical
model of the form (11.32). Let {xi}ni=1 be a collection of n samples drawn i.i.d. from such a
graphical model; here each xi is a d-vector. Based on these samples, we can form a matrix
X ∈ Rn×d with xT

i as the ith row. For j = 1, . . . , d, we let Xj ∈ Rn denote the jth column of
X. Neighborhood regression is based on predicting the column Xj ∈ Rn using the columns
of the submatrix X\{ j} ∈ Rn×(d−1).

Consider the conditional likelihood of Xj ∈ Rn given X\{ j} ∈ Rn×(d−1). As we show in
Exercise 11.6, for any distribution of the form (11.32), this conditional likelihood depends
only on the vector of parameters

Θ j+ := {Θ j,Θ jk, k ∈ V \ { j}} (11.36)
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that involve node j. Moreover, in the true model Θ∗, we are guaranteed that Θ∗
jk = 0 when-

ever ( j, k) � E, so that it is natural to impose some type of block-based sparsity penalty on
Θ j+. Letting ||| · ||| denote some matrix norm, we arrive at a general form of neighborhood
regression:

Θ̂ j+ = arg min
Θ j+

{
−1

n

n∑
i=1

log pΘ j+(xi j | xi \{ j})︸����������������������������︷︷����������������������������︸
Ln(Θ j+; x j,x\{ j})

+λn

∑
k∈V\{ j}

|||Θ jk|||
}
. (11.37)

This formulation actually describes a family of estimators, depending on which norm ||| · |||
that we impose on each matrix component Θ jk. Perhaps the simplest is the Frobenius norm,
in which case the estimator (11.37) is a general form of the group Lasso; for details, see equa-
tion (9.66) and the associated discussion in Chapter 9. Also, as we verify in Exercise 11.5,
this formula reduces to �1-regularized linear regression (11.22) in the Gaussian case.

11.3.2 Graph selection for Ising models

In this section, we consider the graph selection problem for a particular type of non-Gaussian
distribution, namely the Ising model. Recall that the Ising distribution is over binary vari-
ables, and takes the form

pθ∗(x1, . . . , xd) ∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩∑j∈V

θ∗j x j +
∑

( j,k)∈E

θ∗jk x jxk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (11.38)

Since there is only a single parameter per edge, imposing an �1-penalty suffices to encourage
sparsity in the neighborhood regression. For any given node j ∈ V , we define the subset of
coefficients associated with it—namely, the set

θ j+ :=
{
θ j, θ jk, k ∈ V \ { j}

}
.

For the Ising model, the neighborhood regression estimate reduces to a form of logistic
regression—specifically

θ̂ j+ = arg min
θ j+∈Rd

{
1
n

n∑
i=1

f
(
θ j xi j +

∑
k∈V\{ j}

θ jk xi jxik

)
︸���������������������������������︷︷���������������������������������︸

Ln(θ j+; ,x j, x\{ j})

+λn

∑
k∈V\{ j}

|θ jk|
}
, (11.39)

where f (t) = log(1 + et) is the logistic function. See Exercise 11.7 for details.
Under what conditions does the estimate (11.39) recover the correct neighborhood set

N( j)? As in our earlier analysis of neighborhood linear regression and the graphical Lasso,
such a guarantee requires some form of incoherence condition, limiting the influence of
irrelevant variables—those outside N( j)—on variables inside the set. Recalling the cost
function Ln in the optimization problem (11.39), let θ∗j+ denote the minimizer of the pop-
ulation objective function L(θ j+) = E[Ln(θ j+; Xj,X\{ j})]. We then consider the Hessian of
the cost functionL evaluated at the “true parameter” θ∗j+—namely, the d-dimensional matrix
J := ∇2L(θ∗j+). For a given α ∈ (0, 1], we say that J satisfies an α-incoherence condition at
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node j ∈ V if

max
k�S

‖JkS (JS S )−1‖1 ≤ 1 − α, (11.40)

where we have introduced the shorthand S = N( j) for the neighborhood set of node j. In
addition, we assume the submatrix JS S has its smallest eigenvalue lower bounded by some
cmin > 0. With this set-up, the following result applies to an Ising model (11.38) defined on a
graph G with d vertices and maximum degree at most m, with Fisher information J at node
j satisfying the cmin-eigenvalue bound, and the α-incoherence condition (11.40).

Theorem 11.15 Given n i.i.d. samples with n > c0m2 log d, consider the estima-

tor (11.39) with λn =
32
α

√
log d

n + δ for some δ ∈ [0, 1]. Then with probability at least

1 − c1e−c2(nδ2+log d), the estimate θ̂ j+ has the following properties:

(a) It has a support Ŝ = supp(̂θ) that is contained within the neighborhood set N( j).
(b) It satisfies the �∞-bound ‖̂θ j+ − θ∗j+‖∞ ≤ c3

cmin

√
mλn.

As with our earlier results on the neighborhood and graphical Lasso, part (a) guarantees
that the method leads to no false inclusions. On the other hand, the �∞-bound in part (b) en-
sures that the method picks up all significant variables. The proof of Theorem 11.15 is based
on the same type of primal–dual witness construction used in the proof of Theorem 11.12.
See the bibliographic section for further details.

11.4 Graphs with corrupted or hidden variables

Thus far, we have assumed that the samples {xi}ni=1 are observed perfectly. This idealized
setting can be violated in a number of ways. The samples may be corrupted by some type
of measurement noise, or certain entries may be missing. In the most extreme case, some
subset of the variables are never observed, and so are known as hidden or latent variables.
In this section, we discuss some methods for addressing these types of problems, focusing
primarily on the Gaussian case for simplicity.

11.4.1 Gaussian graph estimation with corrupted data

Let us begin our exploration with the case of corrupted data. Letting X ∈ Rn×d denote the data
matrix corresponding to the original samples, suppose that we instead observe a corrupted
version Z. In the simplest case, we might observe Z = X+V, where the matrix V represents
some type of measurement error. A naive approach would be simply to apply a standard
Gaussian graph estimator to the observed data, but, as we will see, doing so typically leads
to inconsistent estimates.
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Correcting the Gaussian graphical Lasso
Consider the graphical Lasso (11.10), which is usually based on the sample covariance ma-
trix Σ̂x =

1
n XTX = 1

n

∑
i=1 xixT

i of the raw samples. The naive approach would be instead to
solve the convex program

Θ̂NAI = arg min
Θ∈Sd×d

{
〈〈Θ, Σ̂z〉〉 − log detΘ + λn|||Θ|||1,off

}
, (11.41)

where Σ̂z =
1
n ZTZ = 1

n

∑n
i=1 zizT

i is now the sample covariance based on the observed data
matrix Z. However, as we explore in Exercise 11.8, the addition of noise does not preserve
Markov properties, so that—at least in general—the estimate Θ̂NAI will not lead to consistent
estimates of either the edge set, or the underlying precision matrix Θ∗. In order to obtain a
consistent estimator, we need to replace Σ̂z with an unbiased estimator of cov(x) based on
the observed data matrix Z. In order to develop intuition, let us explore a few examples.

Example 11.16 (Unbiased covariance estimate for additive corruptions) In the additive
noise setting (Z = X+V), suppose that each row vi of the noise matrix V is drawn i.i.d. from
a zero-mean distribution, say with covariance Σv. In this case, a natural estimate of Σx :=
cov(x) is given by

Γ̂ :=
1
n

ZTZ − Σv. (11.42)

As long as the noise matrix V is independent of X, then Γ̂ is an unbiased estimate of Σx.
Moreover, as we explore in Exercise 11.12, when both X and V have sub-Gaussian rows,

then a deviation condition of the form ‖Γ̂ − Σx‖max �
√

log d
n holds with high probability. ♣

Example 11.17 (Missing data) In other settings, some entries of the data matrix X might
be missing, with the remaining entries observed. In the simplest model of missing data—
known as missing completely at random—entry (i, j) of the data matrix is missing with some
probability ν ∈ [0, 1). Based on the observed matrix Z ∈ Rn×d, we can construct a new matrix
Z̃ ∈ Rn×d with entries

Z̃i j =

⎧⎪⎪⎨⎪⎪⎩ Zi j

1−ν if entry (i, j) is observed,
0 otherwise.

With this choice, it can be verified that

Γ̂ =
1
n

Z̃TZ̃ − ν diag
⎛⎜⎜⎜⎜⎝ Z̃TZ̃

n

⎞⎟⎟⎟⎟⎠ (11.43)

is an unbiased estimate of the covariance matrix Σx = cov(x), and moreover, under suitable

tail conditions, it also satisfies the deviation condition ‖Γ̂ − Σx‖max �
√

log d
n with high

probability. See Exercise 11.13 for more details. ♣
More generally, any unbiased estimate Γ̂ of Σx defines a form of the corrected graphical

Lasso estimator

Θ̃ = arg min
Θ∈Sd×d

+

{
〈〈Θ, Γ̂〉〉 − log detΘ + λn|||Θ|||1,off

}
. (11.44)
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As with the usual graphical Lasso, this is a strictly convex program, so that the solution
(when it exists) must be unique. However, depending on the nature of the covariance es-
timate Γ̂, it need not be the case that the program (11.44) has any solution at all! In this
case, equation (11.44) is nonsensical, since it presumes the existence of an optimal solution.
However, in Exercise 11.9, we show that as long as λn > ‖Γ̂ − Σx‖max, then this optimiza-
tion problem has a unique optimum that is achieved, so that the estimator is meaningfully
defined. Moreover, by inspecting the proofs of the claims in Section 11.2.1, it can be seen
that the estimator Θ̃ obeys similar Frobenius norm and edge selection bounds as the usual
graphical Lasso. Essentially, the only differences lie in the techniques used to bound the
deviation ‖Γ̂ − Σx‖max.

Correcting neighborhood regression
We now describe how the method of neighborhood regression can be corrected to deal
with corrupted or missing data. Here the underlying optimization problem is typically non-
convex, so that the analysis of the estimator becomes more interesting than the corrected
graphical Lasso.

As previously described in Section 11.2.2, the neighborhood regression approach involves
solving a linear regression problem, in which the observation vector Xj ∈ Rn at a given node
j plays the role of the response variable, and the remaining (d − 1) variables play the role
of the predictors. Throughout this section, we use X to denote the n × (d − 1) matrix with
{Xk, k ∈ V \ { j}} as its columns, and we use y = Xj to denote the response vector. With this
notation, we have an instance of a corrupted linear regression model, namely

y = Xθ∗ + w and Z ∼ Q(· | X), (11.45)

where the conditional probability distribution Q varies according to the nature of the cor-
ruption. In application to graphical models, the response vector y might also be further cor-
rupted, but this case can often be reduced to an instance of the previous model. For instance,
if some entries of y = Xj are missing, then we can simply discard those data points in per-
forming the neighborhood regression at node j, or if y is subject to further noise, it can be
incorporated into the model.

As before, the naive approach would be simply to solve a least-squares problem involving
the cost function 1

2n‖y − Zθ‖2
2. As we explore in Exercise 11.10, doing so will lead to an in-

consistent estimate of the neighborhood regression vector θ∗. However, as with the graphical
Lasso, the least-squares estimator can also be corrected. What types of quantities need to be
“corrected” in order to obtain a consistent form of linear regression? Consider the following
population-level objective function

L(θ) = 1
2θ

TΓθ − 〈θ, γ〉 , (11.46)

where Γ := cov(x) and γ := cov(x, y). By construction, the true regression vector is the
unique global minimizer of L. Thus, a natural strategy is to solve a penalized regression
problem in which the pair (γ,Γ) are replaced by data-dependent estimates (̂γ, Γ̂). Doing so
leads to the empirical objective function

Ln(θ) = 1
2θ

TΓ̂θ − 〈θ, γ̂〉 . (11.47)

To be clear, the estimates (̂γ, Γ̂) must be based on the observed data (y,Z). In Examples 11.16
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and 11.17, we described suitable unbiased estimators Γ̂ for the cases of additive corruptions
and missing entries, respectively. Exercises 11.12 and 11.13 discuss some unbiased estima-
tors γ̂ of the cross-covariance vector γ.

Combining the ingredients, we are led to study the following corrected Lasso estimator

min
‖θ‖1≤

√
n

log d

{
1
2θ

TΓ̂θ − 〈̂γ, θ〉 + λn‖θ‖1

}
. (11.48)

Note that it combines the objective function (11.47) with an �1-penalty, as well as an �1-
constraint. At first sight, including both the penalty and constraint might seem redundant,
but as shown in Exercise 11.11, this combination is actually needed when the objective func-
tion (11.47) is non-convex. Many of the standard choices of Γ̂ lead to non-convex programs:
for instance, in the high-dimensional regime (n < d), the previously described choices of Γ̂
given in equations (11.42) and (11.43) both have negative eigenvalues, so that the associated
optimization problem is non-convex.

When the optimization problem (11.48) is non-convex, it may have local optima in addi-
tion to global optima. Since standard algorithms such as gradient descent are only guaranteed
to converge to local optima, it is desirable to have theory that applies them. More precisely,
a local optimum for the program (11.48) is any vector θ̃ ∈ Rd such that〈

∇Ln(̃θ), θ − θ̃
〉
≥ 0 for all θ such that ‖θ‖1 ≤

√
n

log d . (11.49)

When θ̃ belongs to the interior of the constraint set—that is, when it satisfies the inequal-
ity ‖̃θ‖1 <

√
n

log d strictly—then this condition reduces to the usual zero-gradient condition

∇Ln(̃θ) = 0. Thus, our specification includes both local minima, local maxima and saddle
points.

We now establish an interesting property of the corrected Lasso (11.48): under suitable
conditions—ones that still permit non-convexity—any local optimum is relatively close to
the true regression vector. As in our analysis of the ordinary Lasso from Chapter 7, we
impose a restricted eigenvalue (RE) condition on the covariance estimate Γ̂: more precisely,
we assume that there exists a constant κ > 0 such that〈

Δ, Γ̂Δ
〉
≥ κ‖Δ‖2

2 − c0
log d

n
‖Δ‖2

1 for all Δ ∈ Rd. (11.50)

Interestingly, such an RE condition can hold for matrices Γ̂ that are indefinite (with both
positive and negative eigenvalues), including our estimators for additive corruptions and
missing data from Examples 11.16 and 11.17. See Exercises 11.12 and 11.13, respectively,
for further details on these two cases.

Moreover, we assume that the minimizer θ∗ of the population objective (11.46) has spar-
sity s and �2-norm at most one, and that the sample size n is lower bounded as n ≥ s log d.
These assumptions ensure that ‖θ∗‖1 ≤ √

s ≤
√

n
log d , so that θ∗ is feasible for the non-convex

Lasso (11.48).
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Proposition 11.18 Under the RE condition (11.50), suppose that the pair (̂γ, Γ̂) satisfy
the deviation condition

‖Γ̂θ∗ − γ̂‖max ≤ ϕ(Q, σw)

√
log d

n
, (11.51)

for a pre-factor ϕ(Q, σw) depending on the conditional distribution Q and noise stan-

dard deviation σw. Then for any regularization parameter λn ≥ 2
(
2c0 + ϕ(Q, σw)

) √ log d
n ,

any local optimum θ̃ to the program (11.48) satisfies the bound

‖̃θ − θ∗‖2 ≤ 2
κ

√
s λn. (11.52)

In order to gain intuition for the constraint (11.51), observe that the optimality of θ∗ for
the population-level objective (11.46) implies that ∇L(θ∗) = Γθ∗−γ = 0. Consequently, con-
dition (11.51) is the sample-based and approximate equivalent of this optimality condition.
Moreover, under suitable tail conditions, it is satisfied with high probability by our previ-
ous choices of (̂γ, Γ̂) for additively corrupted or missing data. Again, see Exercises 11.12
and 11.13 for further details.

Proof We prove this result in the special case when the optimum occurs in the interior of
the set ‖θ‖1 ≤

√
n

log d . (See the bibliographic section for references to the general result.) In

this case, any local optimum θ̃ must satisfy the condition ∇Ln(̃θ)+ λn̂z = 0, where ẑ belongs
to the subdifferential of the �1-norm at θ̃. Define the error vector Δ̂ := θ̃ − θ∗. Adding and
subtracting terms and then taking inner products with Δ̂ yields the inequality〈

Δ̂, ∇Ln(θ∗ + Δ̂) − ∇Ln(θ∗)
〉
≤ |
〈
Δ̂, ∇Ln(θ∗)

〉
| − λn

〈̂
z, Δ̂

〉
≤ ‖Δ̂‖1‖∇Ln(θ∗)‖∞ + λn

{‖θ∗‖1 − ‖̃θ‖1
}
,

where we have used the facts that
〈̂
z, θ̃

〉
= ‖̃θ‖1 and

〈̂
z, θ∗

〉 ≤ ‖θ∗‖1. From the proof of
Theorem 7.8, since the vector θ∗ is S -sparse, we have

‖θ∗‖1 − ‖̃θ‖1 ≤ ‖Δ̂S ‖1 − ‖Δ̂S c‖1. (11.53)

Since ∇Ln(θ) = Γ̂θ − γ̂, the deviation condition (11.51) is equivalent to the bound

‖∇Ln(θ∗)‖∞ ≤ ϕ(Q, σw)

√
log d

n
,

which is less than λn/2 by our choice of regularization parameter. Consequently, we have〈
Δ̂, Γ̂Δ̂

〉
≤ λn

2
‖Δ̂‖1 + λn

{‖Δ̂S ‖1 − ‖Δ̂S c‖1
}
=

3
2
λn‖Δ̂S ‖1 − 1

2
λn‖Δ̂S c‖1. (11.54)

Since θ∗ is s-sparse, we have ‖θ∗‖1 ≤ √
s‖θ∗‖2 ≤

√
n

log d , where the final inequality follows

from the assumption that n ≥ s log d. Consequently, we have

‖Δ̂‖1 ≤ ‖̂θ‖1 + ‖θ∗‖1 ≤ 2
√

n
log d

.
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Combined with the RE condition (11.50), we have〈
Δ̂, Γ̂Δ̂

〉
≥ κ‖Δ̂‖2

2 − c0
log d

n
‖Δ̂‖2

1 ≥ κ‖Δ̂‖2
2 − 2c0

√
log d

n
‖Δ̂‖1.

Recombining with our earlier bound (11.54), we have

κ‖Δ̂‖2
2 ≤ 2c0

√
log d

n
‖Δ̂‖1 +

3
2
λn‖Δ̂S ‖1 − 1

2
λn‖Δ̂S c‖1

≤ 1
2
λn‖Δ̂‖1 +

3
2
λn‖Δ̂S ‖1 − 1

2
λn‖Δ̂S c‖1

= 2λn‖Δ̂S ‖1.

Since ‖Δ̂S ‖1 ≤ √
s‖Δ̂‖2, the claim follows.

11.4.2 Gaussian graph selection with hidden variables

In certain settings, a given set of random variables might not be accurately described using
a sparse graphical model on their own, but can be when augmented with an additional set of
hidden variables. The extreme case of this phenomenon is the distinction between indepen-
dence and conditional independence: for instance, the random variables X1 = Shoe size

and X2 = Gray hair are likely to be dependent, since few children have gray hair. How-
ever, it might be reasonable to model them as being conditionally independent given a third
variable—namely X3 = Age.

How to estimate a sparse graphical model when only a subset of the variables are ob-
served? More precisely, consider a family of d + r random variables—say written as X :=
(X1, . . . , Xd, Xd+1, . . . , Xd+r)—and suppose that this full vector can be modeled by a sparse
graphical model with d + r vertices. Now suppose that we observe only the subvector
XO := (X1, . . . , Xd), with the other components XH := (Xd+1, . . . , Xd+r) staying hidden. Given
this partial information, our goal is to recover useful information about the underlying graph.

In the Gaussian case, this problem has an attractive matrix-theoretic formulation. In par-
ticular, the observed samples of XO give us information about the covariance matrix Σ∗OO.
On the other hand, since we have assumed that the full vector is Markov with respect to a
sparse graph, the Hammersley–Clifford theorem implies that the inverse covariance matrix
Θ( of the full vector X = (XO, XH) is sparse. This (d + r)-dimensional matrix can be written
in the block-partitioned form

Θ( =
[
Θ(

OO Θ(
OH

Θ(
HO Θ(

HH

]
. (11.55)

The block-matrix inversion formula (see Exercise 11.3) ensures that the inverse of the d-
dimensional covariance matrix Σ∗OO has the decomposition

(Σ∗OO)−1 = Θ(
OO︸︷︷︸
Γ∗

−Θ(
OH(Θ(

HH)−1Θ(
HO︸���������������︷︷���������������︸

Λ∗

. (11.56)

By our modeling assumptions, the matrix Γ∗ := Θ(
OO is sparse, whereas the second com-

ponent Λ∗ := Θ(
OH(Θ(

HH)−1Θ(
HO has rank at most min{r, d}. Consequently, it has low rank
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whenever the number of hidden variables r is substantially less than the number of observed
variables d. In this way, the addition of hidden variables leads to an inverse covariance matrix
that can be decomposed as the sum of a sparse and a low-rank matrix.

Now suppose that we are given n i.i.d. samples xi ∈ Rd from a zero-mean Gaussian
with covariance Σ∗OO. In the absence of any sparsity in the low-rank component, we require
n > d samples to obtain any sort of reasonable estimate (recall our results on covariance
estimation from Chapter 6). When n > d, then the sample covariance matrix Σ̂ = 1

n

∑n
i=1 xixT

i

will be invertible with high probability, and hence setting Y := (Σ̂)−1, we can consider an
observation model of the form

Y = Γ∗ − Λ∗ + W. (11.57)

Here W ∈ Rd×d is a stochastic noise matrix, corresponding to the difference between the
inverses of the population and sample covariances. This observation model (11.57) is a
particular form of additive matrix decomposition, as previously discussed in Section 10.7.

How to estimate the components of this decomposition? In this section, we analyze a very
simple two-step estimator, based on first computing a soft-thresholded version of the inverse
sample covariance Y as an estimate of Γ∗, and secondly, taking the residual matrix as an
estimate of Λ∗. In particular, for a threshold νn > 0 to be chosen, we define the estimates

Γ̂ := Tνn ((Σ̂)−1) and Λ̂ := Γ̂ − (Σ̂)−1. (11.58)

Here the hard-thresholding operator is given by Tνn (v) = v I[|v| > νn].
As discussed in Chapter 10, sparse-plus-low-rank decompositions are unidentifiable un-

less constraints are imposed on the pair (Γ∗,Λ∗). As with our earlier study of matrix decom-
positions in Section 10.7, we assume here that the low-rank component satisfies a “spik-
iness” constraint, meaning that its elementwise max-norm is bounded as ‖Λ∗‖max ≤ α

d . In
addition, we assume that the matrix square root of the true precision matrix Θ∗ = Γ∗ − Λ∗

has a bounded �∞-operator norm, meaning that

||| √Θ∗|||∞ = max
j=1,...,d

d∑
k=1

| √Θ∗| jk ≤
√

M. (11.59)

In terms of the parameters (α, M), we then choose the threshold parameter νn in our esti-
mates (11.58) as

νn := M

⎛⎜⎜⎜⎜⎜⎝4
√

log d
n

+ δ

⎞⎟⎟⎟⎟⎟⎠ + α

d
for some δ ∈ [0, 1]. (11.60)

Proposition 11.19 Consider a precision matrix Θ∗ that can be decomposed as the
difference Γ∗ − Λ∗, where Γ∗ has most s non-zero entries per row, and Λ∗ is α-spiky.
Given n > d i.i.d. samples from the N(0, (Θ∗)−1) distribution and any δ ∈ (0, 1], the
estimates (Γ̂, Λ̂) satisfy the bounds

‖Γ̂ − Γ∗‖max ≤ 2M

⎛⎜⎜⎜⎜⎜⎝4
√

log d
n

+ δ

⎞⎟⎟⎟⎟⎟⎠ + 2α
d

(11.61a)
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and

|||Λ̂ − Λ∗|||2 ≤ M

⎛⎜⎜⎜⎜⎜⎝2
√

d
n
+ δ

⎞⎟⎟⎟⎟⎟⎠ + s ‖Γ̂ − Γ∗‖max (11.61b)

with probability at least 1 − c1e−c2nδ2
.

Proof We first prove that the inverse sample covariance matrix Y := (Σ̂)−1 is itself a good
estimate of Θ∗, in the sense that, for all δ ∈ (0, 1],

|||Y −Θ∗|||2 ≤ M
(
2

√
d
n
+ δ

)
(11.62a)

and

‖Y −Θ∗‖max ≤ M
(
4

√
log d

n
+ δ

)
(11.62b)

with probability at least 1 − c1e−c2nδ2
.

To prove the first bound (11.62a), we note that

(Σ̂)−1 −Θ∗ =
√
Θ∗

{
n−1VTV − Id

}√
Θ∗, (11.63)

where V ∈ Rn×d is a standard Gaussian random matrix. Consequently, by sub-multiplicativity
of the operator norm, we have

|||(Σ̂)−1 −Θ∗|||2 ≤ |||
√
Θ∗|||2|||n−1VTV − Id |||2 |||

√
Θ∗|||2 = |||Θ∗|||2 |||n−1VTV − Id |||2

≤ |||Θ∗|||2
⎛⎜⎜⎜⎜⎜⎝2
√

d
n
+ δ

⎞⎟⎟⎟⎟⎟⎠ ,
where the final inequality holds with probability 1 − c1e−nδ2

, via an application of Theo-
rem 6.1. To complete the proof, we note that

|||Θ∗|||2 ≤ |||Θ∗|||∞ ≤ (||| √Θ∗|||∞)2 ≤ M,

from which the bound (11.62a) follows.
Turning to the bound (11.62b), using the decomposition (11.63) and introducing the short-

hand Σ̃ = VTV
n − Id, we have

‖(Σ̂)−1 −Θ∗‖max = max
j,k=1,...,d

∣∣∣eT
j

√
Θ∗Σ̃

√
Θ∗ek

∣∣∣
≤ max

j,k=1,...,d
‖ √Θ∗e j‖1 ‖Σ̃

√
Θ∗ek‖∞

≤ ‖Σ̃‖max max
j=1,...,d

‖ √Θ∗e j‖2
1.

Now observe that

max
j=1,...,d

‖ √Θ∗e j‖1 ≤ max
‖u‖1=1

‖ √Θ∗u‖1 = max
�=1,...,d

d∑
k=1

|[√Θ∗]|k� = |||
√
Θ∗|||∞,

where the final inequality uses the symmetry of
√
Θ∗. Putting together the pieces yields that
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‖(Σ̂)−1 −Θ∗‖max ≤ M‖Σ̃‖max. Since Σ̃ = VTV/n− I, where V ∈ Rn×d is a matrix of i.i.d. stan-

dard normal variates, we have ‖Σ̃‖max ≤ 4
√

log d
n + δ with probability at least 1− c1e−c2nδ2

for
all δ ∈ [0, 1]. This completes the proof of the bound (11.62b).

Next we establish bounds on the estimates (Γ̂, Λ̂) previously defined in equation (11.58).
Recalling our shorthand Y = (Σ̂)−1, by the definition of Γ̂ and the triangle inequality, we
have

‖Γ̂ − Γ∗‖max ≤ ‖Y −Θ∗‖max + ‖Y − Tνn (Y)‖max + ‖Λ∗‖max

≤ M

⎛⎜⎜⎜⎜⎜⎝4
√

log d
n

+ δ

⎞⎟⎟⎟⎟⎟⎠ + νn +
α

d

≤ 2M

⎛⎜⎜⎜⎜⎜⎝4
√

log d
n

+ δ

⎞⎟⎟⎟⎟⎟⎠ + 2α
d

,

thereby establishing inequality (11.61a).
Turning to the operator norm bound, the triangle inequality implies that

|||Λ̂ − Λ∗|||2 ≤ |||Y −Θ∗|||2 + |||̂Γ − Γ∗|||2 ≤ M

⎛⎜⎜⎜⎜⎜⎝2
√

d
n
+ δ

⎞⎟⎟⎟⎟⎟⎠ + |||̂Γ − Γ∗|||2.
Recall that Γ∗ has at most s-non-zero entries per row. For any index ( j, k) such that Γ∗jk = 0,
we have Θ∗

jk = Λ∗
jk, and hence

|Yjk| ≤ |Yjk − Θ∗
jk| + |Λ∗

jk| ≤ M

⎛⎜⎜⎜⎜⎜⎝4
√

log d
n

+ δ

⎞⎟⎟⎟⎟⎟⎠ + α

d
≤ νn.

Consequently Γ̂ jk = Tνn (Yjk) = 0 by construction. Therefore, the error matrix Γ̂ − Γ∗ has at
most s non-zero entries per row, whence

|||̂Γ − Γ∗|||2 ≤ |||̂Γ − Γ∗|||∞ = max
j=1,...,d

d∑
k=1

|̂Γ jk − Γ∗jk| ≤ s‖Γ̂ − Γ∗‖max.

Putting together the pieces yields the claimed bound (11.61b).

11.5 Bibliographic details and background

Graphical models have a rich history, with parallel developments taking place in statistical
physics (Ising, 1925; Bethe, 1935; Baxter, 1982), information and coding theory (Gallager,
1968; Richardson and Urbanke, 2008), artificial intelligence (Pearl, 1988) and image pro-
cessing (Geman and Geman, 1984), among other areas. See the books (Lauritzen, 1996;
Mézard and Montanari, 2008; Wainwright and Jordan, 2008; Koller and Friedman, 2010)
for further background. The Ising model from Example 11.4 was first proposed as a model
for ferromagnetism in statistical physics (Ising, 1925), and has been extensively studied. The
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Hammersley–Clifford theorem derives its name from the unpublished manuscript (Hammer-
sley and Clifford, 1971). Grimmett (1973) and Besag (1974) were the first to publish proofs
of the result; see Clifford (1990) for further discussion of its history. Lauritzen (1996) pro-
vides discussion of how the Markov factorization equivalence can break down when the
strict positivity condition is not satisfied. There are a number of connections between the
classical theory of exponential families (Barndorff-Nielson, 1978; Brown, 1986) and graph-
ical models; see the monograph (Wainwright and Jordan, 2008) for further details.

The Gaussian graphical Lasso (11.10) has been studied by a large number of researchers
(e.g., Friedman et al., 2007; Yuan and Lin, 2007; Banerjee et al., 2008; d’Aspremont et al.,
2008; Rothman et al., 2008; Ravikumar et al., 2011), in terms of both its statistical and
optimization-related properties. The Frobenius norm bounds in Proposition 11.9 were first
proved by Rothman et al. (2008). Ravikumar et al. (2011) proved the model selection results
given in Proposition 11.10; they also analyzed the estimator for more general non-Gaussian
distributions, and under a variety of tail conditions. There are also related analyses of Gaus-
sian maximum likelihood using various forms of non-convex penalties (e.g., Lam and Fan,
2009; Loh and Wainwright, 2017). Among others, Friedman et al. (2007) and d’Asprémont
et al. (2008) have developed efficient algorithms for solving the Gaussian graphical Lasso.

Neighborhood-based methods for graph estimation have their roots in the notion of pseudo-
likelihood, as studied in the classical work of Besag (1974; 1975; 1977). Besag (1974) dis-
cusses various neighbor-based specifications of graphical models, including the Gaussian
graphical model from Example 11.3, the Ising (binary) graphical model from Example 11.4,
and the Poisson graphical model from Example 11.14. Meinshausen and Bühlmann (2006)
provided the first high-dimensional analysis of the Lasso as a method for neighborhood se-
lection in Gaussian graphical models. Their analysis, and that of related work by Zhao and
Yu (2006), was based on assuming that the design matrix itself satisfies the α-incoherence
condition, whereas the result given in Theorem 11.12, adapted from Wainwright (2009b),
imposes these conditions on the population, and then proves that the sample versions satisfy
them with high probability. Whereas we only proved Theorem 11.12 when the maximum
degree m is at most log d, the paper (Wainwright, 2009b) provides a proof for the general
case.

Meinshausen (2008) discussed the need for stronger incoherence conditions with the
Gaussian graphical Lasso (11.10) as opposed to the neighborhood selection method; see
also Ravikumar et al. (2011) for further comparison of these types of incoherence condi-
tions. Other neighborhood-based methods have also been studied in the literature, including
methods based on the Dantzig selector (Yuan, 2010) and the CLIME-based method (Cai
et al., 2011). Exercise 11.4 works through some analysis for the CLIME estimator.

Ravikumar et al. (2010) analyzed the �1-regularized logistic regression method for Ising
model selection using the primal–dual witness method; Theorem 11.15 is adapted from their
work. Other authors have studied different methods for graphical model selection in discrete
models, including various types of entropy tests, thresholding methods and greedy meth-
ods (e.g., Netrapalli et al., 2010; Anandkumar et al., 2012; Bresler et al., 2013; Bresler,
2014). Santhanam and Wainwright (2012) prove lower bounds on the number of samples re-
quired for Ising model selection; combined with the improved achievability results of Bento
and Montanari (2009), these lower bounds show that �1-regularized logistic regression is
an order-optimal method. It is more natural—as opposed to estimating each neighborhood
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separately—to perform a joint estimation of all neighborhoods simultaneously. One way in
which to do so is to sum all of the conditional likelihoods associated with each node, and
then optimize the sum jointly, ensuring that all edges use the same parameter value in each
neighborhood. The resulting procedure is equivalent to the pseudo-likelihood method (Be-
sag, 1975, 1977). Hoefling and Tibshirani (2009) compare the relative efficiency of various
pseudo-likelihood-type methods for graph estimation.

The corrected least-squares cost (11.47) is a special case of a more general class of
corrected likelihood methods (e.g., Carroll et al., 1995; Iturria et al., 1999; Xu and You,
2007). The corrected non-convex Lasso (11.48) was proposed and analyzed by Loh and
Wainwright (2012; 2017). A related corrected form of the Dantzig selector was analyzed
by Rosenbaum and Tsybakov (2010). Proposition 11.18 is a special case of more general re-
sults on non-convex M-estimators proved in the papers (Loh and Wainwright, 2015, 2017).

The matrix decomposition approach to Gaussian graph selection with hidden variables
was pioneered by Chandrasekaran et al. (2012b), who proposed regularizing the global
likelihood (log-determinant function) with nuclear and �1-norms. They provided sufficient
conditions for exact recovery of sparsity and rank using the primal–dual witness method,
previously used to analyze the standard graphical Lasso (Ravikumar et al., 2011). Ren and
Zhou (2012) proposed more direct approaches for estimating such matrix decompositions,
such as the simple estimator analyzed in Proposition 11.19. Agarwal et al. (2012) analyzed
both a direct approach based on thresholding and truncated SVD, as well as regularization-
based methods for more general problems of matrix decomposition. As with other work on
matrix decomposition problems (Candès et al., 2011; Chandrasekaran et al., 2011), Chan-
drasekaran et al. (2012b) performed their analysis under strong incoherence conditions, es-
sentially algebraic conditions that ensure perfect identifiability for the sparse-plus-low-rank
problem. The milder constraint, namely of bounding the maximum entry of the low-rank
component as in Proposition 11.19, was introduced by Agarwal et al. (2012).

In addition to the undirected graphical models discussed here, there is also a substan-
tial literature on methods for directed graphical models; we refer the reader to the sources
(Spirtes et al., 2000; Kalisch and Bühlmann, 2007; Bühlmann and van de Geer, 2011) and
references therein for more details. Liu et al. (2009; 2012) propose and study the non-
paranormal family, a nonparametric generalization of the Gaussian graphical model. Such
models are obtained from Gaussian models by applying a univariate transformation to the
random variable at each node. The authors discuss methods for estimating such models; see
also Xue and Zou (2012) for related results.

11.6 Exercises

Exercise 11.1 (Properties of log-determinant function) Let Sd×d denote the set of symmet-
ric matrices, and Sd×d

+ denote the cone of symmetric and strictly positive definite matrices. In
this exercise, we study properties of the (negative) log-determinant function F : Sd×d → R
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given by

F(Θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

d∑
j=1

log γ j(Θ) if Θ ∈ Sd×d
+ ,

+∞ otherwise,

where γ j(Θ) > 0 are the eigenvalues of Θ.

(a) Show that F is a strictly convex function on its domain Sd×d
+ .

(b) For Θ ∈ Sd×d
+ , show that ∇F(Θ) = −Θ−1.

(c) For Θ ∈ Sd×d
+ , show that ∇F2(Θ) = Θ−1 ⊗Θ−1.

Exercise 11.2 (Gaussian MLE) Consider the maximum likelihood estimate of the inverse
covariance matrix Θ∗ for a zero-mean Gaussian. Show that it takes the form

Θ̂MLE =

⎧⎪⎪⎨⎪⎪⎩Σ̂−1 if Σ̂ ! 0,
not defined otherwise,

where Σ̂ = 1
n

∑n
i=1 xixT

i is the empirical covariance matrix for a zero-mean vector. (When
Σ̂ is rank-deficient, you need to show explicitly that there exists a sequence of matrices for
which the likelihood diverges to infinity.)

Exercise 11.3 (Gaussian neighborhood regression) Let X ∈ Rd be a zero-mean jointly
Gaussian random vector with strictly positive definite covariance matrix Σ∗. Consider the
conditioned random variable Z := (Xj | X\{ j}), where we use the shorthand \{ j} = V \ { j}.
(a) Establish the validity of the decomposition (11.21).
(b) Show that θ∗j = (Σ∗\{ j}, \{ j})

−1 Σ\{ j}, j.
(c) Show that θ∗jk = 0 whenever k � N( j).

Hint: The following elementary fact could be useful: let A be an invertible matrix, given
in the block-partitioned form

A =

[
A11 A12

A21 A22

]
.

Then letting B = A−1, we have (see Horn and Johnson (1985))

B22 =
(
A22 − A21(A11)−1A12

)−1 and B12 = (A11)−1A12
[
A21(A11)−1A12 − A22

]−1
.

Exercise 11.4 (Alternative estimator of sparse precision matrix) Consider a d-variate Gaus-
sian random vector with zero mean, and a sparse precision matrix Θ∗. In this exercise, we
analyze the estimator

Θ̂ = arg min
Θ∈Rd×d

{‖Θ‖1} such that ‖Σ̂Θ − Id‖max ≤ λn, (11.64)

where Σ̂ is the sample covariance based on n i.i.d. samples.

(a) For j = 1, . . . , d, consider the linear program

Γ̂ j ∈ arg min
Γ j∈Rd

‖Γ j‖1 such that ‖Σ̂Γ j − e j‖max ≤ λn, (11.65)
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where e j ∈ Rd is the jth canonical basis vector. Show that Θ̂ is optimal for the original
program (11.64) if and only if its jth column Θ̂ j is optimal for the program (11.65).

(b) Show that ‖̂Γ j‖1 ≤ ‖Θ∗
j‖1 for each j = 1, . . . , d whenever the regularization parameter is

lower bounded as λn ≥ |||Θ∗|||1‖Σ̂ − Σ∗‖max.
(c) State and prove a high-probability bound on ‖Σ̂ − Σ∗‖max. (For simplicity, you may as-

sume that max j=1,...,d Σ
∗
j j ≤ 1.)

(d) Use the preceding parts to show that, for an appropriate choice of λn, there is a universal
constant c such that

‖Θ̂ −Θ∗‖max ≤ c |||Θ∗|||21
√

log d
n

(11.66)

with high probability.

Exercise 11.5 (Special case of general neighborhood regression) Show that the general
form of neighborhood regression (11.37) reduces to linear regression (11.22) in the Gaussian
case. (Note: You may ignore constants, either pre-factors or additive ones, that do not depend
on the data.)

Exercise 11.6 (Structure of conditional distribution) Given a density of the form (11.32),
show that the conditional likelihood of Xj given X\{ j} depends only on

Θ j+ := {Θ j,Θ jk, k ∈ V \ { j}}.
Prove that Θ jk = 0 whenever ( j, k) � E.

Exercise 11.7 (Conditional distribution for Ising model) For a binary random vector X ∈
{−1, 1}d, consider the family of distributions

pθ(x1, . . . , xd) = exp
{ ∑

( j,k)∈E

θ jk x jxk − Φ(θ)
}
, (11.67)

where E is the edge set of some undirected graph G on the vertices V = {1, 2, . . . , d}.
(a) For each edge ( j, k) ∈ E, show that ∂Φ(θ)

∂θ jk
= Eθ[XjXk].

(b) Compute the conditional distribution of Xj given the subvector of random variables
X\{ j} := {Xk, k ∈ V \ { j}}. Give an expression in terms of the logistic function f (t) =

log(1 + et).

Exercise 11.8 (Additive noise and Markov properties) Let X = (X1, . . . , Xd) be a zero-mean
Gaussian random vector that is Markov with respect to some graph G, and let Z = X + V ,
where V ∼ N(0, σ2Id) is an independent Gaussian noise vector. Supposing that σ2|||Θ∗|||2 <

1, derive an expression for the inverse covariance of Z in terms of powers of σ2Θ∗. Interpret
this expression in terms of weighted path lengths in the graph.

Exercise 11.9 (Solutions for corrected graphical Lasso) In this exercise, we explore prop-
erties of the corrected graphical Lasso from equation (11.44).
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(a) Defining Σx := cov(x), show that as long as λn > ‖Γ̂ − Σx‖max, then the corrected
graphical Lasso (11.44) has a unique optimal solution.

(b) Show what can go wrong when this condition is violated. (Hint: It suffices to consider a
one-dimensional example.)

Exercise 11.10 (Inconsistency of uncorrected Lasso) Consider the linear regression model
y = Xθ∗ + w, where we observe the response vector y ∈ Rn and the corrupted matrix Z =

X + V. A naive estimator of θ∗ is

θ̃ = arg min
θ∈Rd

{
1

2n
‖y − Zθ‖2

2

}
,

where we regress y on the corrupted matrix Z. Suppose that each row of X is drawn i.i.d.
from a zero-mean distribution with covariance Σ, and that each row of V is drawn i.i.d. (and
independently from X) from a zero-mean distribution with covariance σ2I. Show that θ̃ is
inconsistent even if the sample size n → +∞ with the dimension fixed.

Exercise 11.11 (Solutions for corrected Lasso) Show by an example in two dimensions
that the corrected Lasso (11.48) may not achieve its global minimum if an �1-bound of the
form ‖θ‖1 ≤ R for some radius R is not imposed.

Exercise 11.12 (Corrected Lasso for additive corruptions) In this exercise, we explore
properties of corrected linear regression in the case of additive corruptions (Example 11.16),
under the standard model y = Xθ∗ + w.

(a) Assuming that X and V are independent, show that Γ̂ from equation (11.42) is an un-
biased estimate of Σx = cov(x), and that γ̂ = ZTy/n is an unbiased estimate of cov(x, y).

(b) Now suppose that in addition both X and V are generated with i.i.d. rows from a zero-
mean distribution, and that each element Xi j and Vi j is sub-Gaussian with parameter 1,
and that the noise vector w is independent with i.i.d. N(0, σ2) entries. Show that there is
a universal constant c such that

‖Γ̂θ∗ − γ̂‖∞ ≤ c
(
σ + ‖θ∗‖2)

√
log d

n

with high probability.
(c) In addition to the previous assumptions, suppose that Σv = νId for some ν > 0. Show

that Γ̂ satisfies the RE condition (11.50) with high probability. (Hint: The result of Ex-
ercise 7.10 may be helpful to you.)

Exercise 11.13 (Corrected Lasso for missing data) In this exercise, we explore properties
of corrected linear regression in the case of missing data (Example 11.17). Throughout, we
assume that the missing entries are removed completely independently at random, and that
X has zero-mean rows, generated in an i.i.d. fashion from a 1-sub-Gaussian distribution.

(a) Show that the matrix Γ̂ from equation (11.43) is an unbiased estimate of Σx := cov(x),
and that the vector γ̂ = ZTy

n is an unbiased estimate of cov(x, y).
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(b) Assuming that the noise vector w ∈ Rn has i.i.d. N(0, σ2) entries, show there is a uni-
versal constant c such that

‖Γ̂θ∗ − γ̂‖∞ ≤ c
(
σ + ‖θ∗‖2)

√
log d

n
with high probability.

(c) Show that Γ̂ satisfies the RE condition (11.50) with high probability. (Hint: The result
of Exercise 7.10 may be helpful to you.)
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Reproducing kernel Hilbert spaces

Many problems in statistics—among them interpolation, regression and density estimation,
as well as nonparametric forms of dimension reduction and testing—involve optimizing over
function spaces. Hilbert spaces include a reasonably broad class of functions, and enjoy a
geometric structure similar to ordinary Euclidean space. A particular class of function-based
Hilbert spaces are those defined by reproducing kernels, and these spaces—known as repro-
ducing kernel Hilbert spaces (RKHSs)—have attractive properties from both the compu-
tational and statistical points of view. In this chapter, we develop the basic framework of
RKHSs, which are then applied to different problems in later chapters, including nonpara-
metric least-squares (Chapter 13) and density estimation (Chapter 14).

12.1 Basics of Hilbert spaces

Hilbert spaces are particular types of vector spaces, meaning that they are endowed with
the operations of addition and scalar multiplication. In addition, they have an inner product
defined in the usual way:

Definition 12.1 An inner product on a vector space V is a mapping 〈·, ·〉V : V×V→ R
such that

〈 f , g〉V = 〈g, f 〉V for all f , g ∈ V, (12.1a)

〈 f , f 〉V ≥ 0 for all f ∈ V, with equality iff f = 0, (12.1b)

〈 f + αg, h〉V = 〈 f , h〉V + α 〈g, h〉V for all f , g, h ∈ V and α ∈ R. (12.1c)

A vector space equipped with an inner product is known as an inner product space. Note
that any inner product induces a norm via ‖ f ‖V :=

√〈 f , f 〉V. Given this norm, we can then
define the usual notion of Cauchy sequence—that is, a sequence ( fn)∞n=1 with elements in V
is Cauchy if, for all ε > 0, there exists some integer N(ε) such that

‖ fn − fm‖V < ε for all n, m ≥ N(ε).

383
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Definition 12.2 A Hilbert space H is an inner product space (〈·, ·〉H , H) in which
every Cauchy sequence ( fn)∞n=1 in H converges to some element f ∗ ∈ H.

A metric space in which every Cauchy sequence ( fn)∞n=1 converges to an element f ∗ of the
space is known as complete. Thus, we can summarize by saying that a Hilbert space is a
complete inner product space.

Example 12.3 (Sequence space �2(N)) Consider the space of square-summable real-valued
sequences, namely

�2(N) :=
{

(θ j)∞j=1 |
∞∑
j=1

θ2
j < ∞

}
.

This set, when endowed with the usual inner product 〈θ, γ〉�2(N) =
∑∞

j=1 θ jγ j, defines a clas-
sical Hilbert space. It plays an especially important role in our discussion of eigenfunctions
for reproducing kernel Hilbert spaces. Note that the Hilbert space Rm, equipped with the
usual Euclidean inner product, can be obtained as a finite-dimensional subspace of �2(N): in
particular, the space Rm is isomorphic to the “slice”{

θ ∈ �2(N) | θ j = 0 for all j ≥ m + 1
}
. ♣

Example 12.4 (The space L2[0, 1]) Any element of the space L2[0, 1] is a function
f : [0, 1] → R that is Lebesgue-integrable, and whose square satisfies the bound ‖ f ‖2

L2[0,1] =∫ 1

0
f 2(x) dx < ∞. Since this norm does not distinguish between functions that differ only on

a set of zero Lebesgue measure, we are implicitly identifying all such functions. The space
L2[0, 1] is a Hilbert space when equipped with the inner product 〈 f , g〉L2[0,1] =

∫ 1

0
f (x)g(x) dx.

When the space L2[0, 1] is clear from the context, we omit the subscript in the inner product
notation. In a certain sense, the space L2[0, 1] is equivalent to the sequence space �2(N). In
particular, let (φ j)∞j=1 be any complete orthonormal basis of L2[0, 1]. By definition, the basis
functions satisfy ‖φ j‖L2[0,1] = 1 for all j ∈ N, and 〈φi, φ j〉 = 0 for all i � j, and, moreover,
any function f ∈ L2[0, 1] has the representation f =

∑∞
j=1 ajφ j, where aj := 〈 f , φ j〉 is the jth

basis coefficient. By Parseval’s theorem, we have

‖ f ‖2
L2[0,1] =

∞∑
j=1

a2
j ,

so that f ∈ L2[0, 1] if and only if the sequence a = (aj)∞j=1 ∈ �2(N). The correspondence
f ↔ (aj)∞j=1 thus defines an isomorphism between L2[0, 1] and �2(N). ♣

All of the preceding examples are instances of separable Hilbert spaces, for which there
is a countable dense subset. For such Hilbert spaces, we can always find a collection of func-
tions (φ j)∞j=1, orthonormal in the Hilbert space—meaning that 〈φi, φ j〉H = δi j for all positive
integers i, j—such that any f ∈ H can be written in the form f =

∑∞
j=1 ajφ j for some se-

quence of coefficients (aj)∞j=1 ∈ �2(N). Although there do exist non-separable Hilbert spaces,
here we focus primarily on the separable case.
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The notion of a linear functional plays an important role in characterizing reproducing
kernel Hilbert spaces. A linear functional on a Hilbert space H is a mapping L : H → R
that is linear, meaning that L( f + αg) = L( f ) + αL(g) for all f , g ∈ H and α ∈ R. A linear
functional is said to be bounded if there exists some M < ∞ such that |L( f )| ≤ M‖ f ‖H for all
f ∈ H. Given any g ∈ H, the mapping f �→ 〈 f , g〉H defines a linear functional. It is bounded,
since by the Cauchy–Schwarz inequality we have |〈 f , g〉H| ≤ M ‖ f ‖H for all f ∈ H, where
M := ‖g‖H. The Riesz representation theorem guarantees that every bounded linear func-
tional arises in exactly this way.

Theorem 12.5 (Riesz representation theorem) Let L be a bounded linear functional
on a Hilbert space. Then there exists a unique g ∈ H such that L( f ) = 〈 f , g〉H for all
f ∈ H. (We refer to g as the representer of the functional L.)

Proof Consider the nullspace N(L) = {h ∈ H | L(h) = 0}. Since L is a bounded linear
operator, the nullspace is closed (see Exercise 12.1). Moreover, as we show in Exercise 12.3,
for any such closed subspace, we have the direct sum decomposition H = N(L) + [N(L)]⊥,
where [N(L)]⊥ consists of all g ∈ H such that 〈h, g〉H = 0 for all h ∈ N(L). If N(L) = H,
then we take g = 0. Otherwise, there must exist a non-zero element g0 ∈ [N(L)]⊥, and by
rescaling appropriately, we may find some g ∈ [N(L)]⊥ such that ‖g‖H = L(g) > 0. We then
define h := L( f )g − L(g) f , and note that L(h) = 0 so that h ∈ N(L). Consequently, we must
have 〈g, h〉H = 0, which implies that L( f ) = 〈g, f 〉H as desired. As for uniqueness, suppose
that there exist g, g′ ∈ H such that 〈g, f 〉H = L( f ) = 〈g′, f 〉H for all f ∈ H. Rearranging
yields 〈g − g′, f 〉H = 0 for all f ∈ H, and setting f = g − g′ shows that ‖g − g′‖2

H = 0, and
hence g = g′ as claimed.

12.2 Reproducing kernel Hilbert spaces

We now turn to the notion of a reproducing kernel Hilbert space, or RKHS for short. These
Hilbert spaces are particular types of function spaces—more specifically, functions f with
domain X mapping to the real line R. There are many different but equivalent ways in which
to define an RKHS. One way is to begin with the notion of a positive semidefinite kernel
function, and use it to construct a Hilbert space in an explicit way. A by-product of this con-
struction is the reproducing property of the kernel. An alternative, and somewhat more ab-
stract, way is by restricting attention to Hilbert spaces in which the evaluation functionals—
that is, the mappings from the Hilbert space to the real line obtained by evaluating each
function at a given point—are bounded. These functionals are particularly relevant in sta-
tistical settings, since many applications involve sampling a function at a subset of points
on its domain. As our development will clarify, these two approaches are equivalent in that
the kernel acts as the representer for the evaluation functional, in the sense of the Riesz
representation theorem (Theorem 12.5).
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12.2.1 Positive semidefinite kernel functions

Let us begin with the notion of a positive semidefinite kernel function. It is a natural gener-
alization of the idea of a positive semidefinite matrix to the setting of general functions.

Definition 12.6 (Positive semidefinite kernel function) A symmetric bivariate func-
tionK : X×X → R is positive semidefinite (PSD) if for all integers n ≥ 1 and elements
{xi}ni=1 ⊂ X, the n × n matrix with elements Ki j := K(xi, x j) is positive semidefinite.

This notion is best understood via some examples.

Example 12.7 (Linear kernels) When X = Rd, we can define the linear kernel function
K(x, x′) := 〈x, x′〉. It is clearly a symmetric function of its arguments. In order to verify the
positive semidefiniteness, let {xi}ni=1 be an arbitrary collection of points in Rd, and consider
the matrix K ∈ Rn×n with entries Ki j = 〈xi, x j〉. For any vector α ∈ Rn, we have

αTKα =

n∑
i, j=1

αiα j〈xi, x j〉 =
∥∥∥∥ n∑

i=1

aixi

∥∥∥∥2

2
≥ 0.

Since n ∈ N, {xi}ni=1 and α ∈ Rn were all arbitrary, we conclude that K is positive semi-
definite. ♣
Example 12.8 (Polynomial kernels) A natural generalization of the linear kernel on Rd is
the homogeneous polynomial kernelK(x, z) = (〈x, z〉)m of degree m ≥ 2, also defined on Rd.
Let us demonstrate the positive semidefiniteness of this function in the special case m = 2.
Note that we have

K(x, z) =
( d∑

j=1

x jz j
)2
=

d∑
j=1

x2
j z

2
j + 2

∑
i< j

xix j(ziz j).

Setting D = d +
(

d
2

)
, let us define a mapping Φ : Rd → RD with entries

Φ(x) =

⎡⎢⎢⎢⎢⎢⎣ x2
j , for j = 1, 2, . . . , d√

2xix j, for i < j

⎤⎥⎥⎥⎥⎥⎦ , (12.2)

corresponding to all polynomials of degree two in (x1, . . . , xd). With this definition, we see
that K can be expressed as a Gram matrix—namely, in the form K(x, z) = 〈Φ(x), Φ(z)〉RD .
Following the same argument as Example 12.7, it is straightforward to verify that this Gram
representation ensures that K must be positive semidefinite.

An extension of the homogeneous polynomial kernel is the inhomogeneous polynomial
kernel K(x, z) =

(
1 + 〈x, z〉 )m, which is based on all polynomials of degree m or less. We

leave it as an exercise for the reader to check that it is also a positive semidefinite kernel
function. ♣
Example 12.9 (Gaussian kernels) As a more exotic example, given some compact subset
X ⊆ Rd, consider the Gaussian kernel K(x, z) = exp

(
− 1

2σ2 ‖x − z‖2
2

)
. Here, unlike the linear
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kernel and polynomial kernels, it is not immediately obvious that K is positive semidefinite,
but it can be verified by building upon the PSD nature of the linear and polynomial kernels
(see Exercise 12.19). The Gaussian kernel is a very popular choice in practice, and we return
to study it further in the sequel. ♣

12.2.2 Feature maps in �2(N)

The mapping x �→ Φ(x) defined for the polynomial kernel in equation (12.2) is often referred
to as a feature map, since it captures the sense in which the polynomial kernel function
embeds the original data into a higher-dimensional space. The notion of a feature mapping
can be used to define a PSD kernel in far more generality. Indeed, any function Φ : X →
�2(N) can be viewed as mapping the original spaceX to some subset of the space �2(N) of all
square-summable sequences. Our previously discussed mapping (12.2) for the polynomial
kernel is a special case, since RD is a finite-dimensional subspace of �2(N).

Given any such feature map, we can then define a symmetric kernel via the inner product
K(x, z) = 〈Φ(x), Φ(z)〉�2(N). It is often the case, for suitably chosen feature maps, that this
kernel has a closed-form expression in terms of the pair (x, z). Consequently, we can com-
pute inner products between the embedded data pairs (Φ(x),Φ(z)) without actually having
to work in �2(N), or some other high-dimensional space. This fact underlies the power of
RKHS methods, and goes under the colloquial name of the “kernel trick”. For example, in
the context of the mth-degree polynomial kernel on Rd from Example 12.8, evaluating the
kernel requires on the order of d basic operations, whereas the embedded data lies in a space
of roughly dm (see Exercise 12.11). Of course, there are other kernels that implicitly embed
the data in some infinite-dimensional space, with the Gaussian kernel from Example 12.9
being one such case.

Let us consider a particular form of feature map that plays an important role in subsequent
analysis:

Example 12.10 (PSD kernels from basis expansions) Consider the sinusoidal Fourier basis
functions φ j(x) := sin

( (2 j−1)πx
2

)
for all j ∈ N = {1, 2, . . .}. By construction, we have

〈φ j, φk〉L2[0,1] =

∫ 1

0
φ j(x)φk(x) dx =

⎧⎪⎪⎨⎪⎪⎩1 if j = k,
0 otherwise,

so that these functions are orthonormal in L2[0, 1]. Now given some sequence (μ j)∞j=1 of
non-negative weights for which

∑∞
j=1 μ j < ∞, let us define the feature map

Φ(x) :=
(√

μ1φ1(x),
√
μ2φ2(x),

√
μ3φ3(x), . . .

)
.

By construction, the element Φ(x) belongs to �2(N), since

‖Φ(x)‖2
�2(N) =

∞∑
j=1

μ jφ
2
j(x) ≤

∞∑
j=1

μ j < ∞.
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Consequently, this particular choice of feature map defines a PSD kernel of the form

K(x, z) := 〈Φ(x), Φ(z)〉�2(N) =

∞∑
j=1

μ jφ j(x)φ j(z).

As our development in the sequel will clarify, a very broad class of PSD kernel functions
can be generated in this way. ♣

12.2.3 Constructing an RKHS from a kernel

In this section, we show how any positive semidefinite kernel function K defined on the
Cartesian product spaceX×X can be used to construct a particular Hilbert space of functions
on X. This Hilbert space is unique, and has the following special property: for any x ∈ X,
the function K(·, x) belongs to H, and satisfies the relation

〈 f , K(·, x)〉H = f (x) for all f ∈ H. (12.3)

This property is known as the kernel reproducing property for the Hilbert space, and it
underlies the power of RKHS methods in practice. More precisely, it allows us to think
of the kernel itself as defining a feature map1 x �→ K(·, x) ∈ H. Inner products in the
embedded space reduce to kernel evaluations, since the reproducing property ensures that
〈K(·, x), K(·, z)〉H = K(x, z) for all x, z ∈ X. As mentioned earlier, this computational
benefit of the RKHS embedding is often referred to as the kernel trick.

How does one use a kernel to define a Hilbert space with the reproducing property (12.3)?
Recalling the definition of a Hilbert space, we first need to form a vector space of functions,
and then we need to endow it with an appropriate inner product. Accordingly, let us begin by
considering the set H̃ of functions of the form f (·) = ∑n

j=1 α jK(·, x j) for some integer n ≥ 1,
set of points {x j}nj=1 ⊂ X and weight vector α ∈ Rn. It is easy to see that the set H̃ forms a
vector space under the usual definitions of function addition and scalar multiplication.

Given any pair of functions f , f in our vector space—let us suppose that they take the
form f (·) = ∑n

j=1 α jK(·, x j) and f (·) = ∑n̄
k=1 ᾱkK(·, xk)—we propose to define their inner

product as 〈
f , f

〉
H̃

:=
n∑

j=1

n̄∑
k=1

α jᾱkK(x j, xk). (12.4)

It can be verified that this definition is independent of the particular representation of the
functions f and f . Moreover, this proposed inner product does satisfy the kernel reproducing
property (12.3), since by construction, we have

〈 f , K(·, x)〉H̃ =
n∑

j=1

α jK(x j, x) = f (x).

Of course, we still need to verify that the definition (12.4) defines a valid inner prod-
uct. Clearly, it satisfies the symmetry (12.1a) and linearity requirements (12.1c) of an inner

1 This view—with the kernel itself defining an embedding from X to H—is related to but slightly different than
our earlier perspective, in which the feature map Φ was a mapping from X to �2(N). Mercer’s theorem allows
us to connect these two points of view; see equation (12.14) and the surrounding discussion.
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product. However, we need to verify the condition (12.1b)—namely, that 〈 f , f 〉H ≥ 0 with
equality if and only if f = 0. After this step, we will have a valid inner product space, and
the final step is to take closures of it (in a suitable sense) in order to obtain a Hilbert space.
With this intuition in place, we now provide a formal statement, and then prove it:

Theorem 12.11 Given any positive semidefinite kernel function K , there is a unique
Hilbert space H in which the kernel satisfies the reproducing property (12.3). It is
known as the reproducing kernel Hilbert space associated with K .

Proof As outlined above, there are three remaining steps in the proof, and we divide our
argument accordingly.

Verifying condition (12.1b): The positive semidefiniteness of the kernel functionK implies
that ‖ f ‖H̃2 = 〈 f , f 〉H̃ ≥ 0 for all f , so we need only show that ‖ f ‖2

H̃
= 0 if and only if f = 0.

Consider a function of the form f (·) = ∑n
i=1 αiK(·, xi), and suppose that

〈 f , f 〉H̃ =
n∑

i, j=1

αiα jK(x j, xi) = 0.

We must then show that f = 0, or equivalently that f (x) =
∑n

i=1 αiK(x, xi) = 0 for all x ∈ X.
Let (a, x) ∈ R ×X be arbitrary, and note that by the positive semidefiniteness of K , we have

0 ≤ ‖aK(·, x) +
n∑

i=1

αiK(·, xi)‖2
H = a2K(x, x) + 2a

n∑
i=1

αiK(x, xi).

Since K(x, x) ≥ 0 and the scalar a ∈ R is arbitrary, this inequality can hold only if∑n
i=1 αiK(x, xi) = 0. Thus, we have shown that the pair (H̃, 〈·, ·〉H̃) is an inner product space.

Completing the space: It remains to extend H̃ to a complete inner product space—that is,
a Hilbert space—with the given reproducing kernel. If ( fn)∞n=1 is a Cauchy sequence in H̃,
then for each x ∈ X, the sequence

(
fn(x)

)∞
n=1 is Cauchy in R, and so must converge to some

real number. We can thus define the pointwise limit function f (x) := limn→∞ fn(x), and we
let H be the completion of H̃ by these objects. We define the norm of the limit function f as
‖ f ‖H := limn→∞ ‖ fn‖H̃.

In order to verify that this definition is sensible, we need to show that for any Cauchy se-
quence (gn)∞n=1 in H̃ such that limn→∞ gn(x) = 0 for all x ∈ X, we also have limn→∞ ‖gn‖H̃ = 0.
Taking subsequences as necessary, suppose that limn→∞ ‖gn‖2

H̃
= 2ε > 0, so that for n,m suf-

ficiently large, we have ‖gn‖2
H̃
≥ ε and ‖gm‖2

H̃
> ε. Since the sequence (gn)∞n=1 is Cauchy,

we also have ‖gn − gm‖H̃ < ε/2 for n,m sufficiently large. Now since gm ∈ H̃, we can write
gm(·) =

∑Nm
i=1 αiK(·, xi), for some finite positive integer Nm and vector α ∈ RNm . By the
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reproducing property, we have

〈gm, gn〉H̃ =
Nm∑
i=1

αign(xi) → 0 as n → +∞,

since gn(x) → 0 for each fixed x. Hence, for n sufficiently large, we can ensure that
|〈gm, gn〉H̃| ≤ ε/2. Putting together the pieces, we have

‖gn − gm‖H̃ = ‖gn‖2
H̃
+ ‖gm‖2

H̃
− 2 〈gn, gm〉H̃ ≥ ε + ε − ε = ε.

But this lower bound contradicts the fact that ‖gn − gm‖H̃ ≤ ε/2.
Thus, the norm that we have defined is sensible, and it can be used to define an inner

product on H via the polarization identity

〈 f , g〉H := 1
2

{
‖ f + g‖2

H − ‖ f ‖2
H + ‖g‖2

H

}
.

With this definition, it can be shown that 〈K(·, x), f 〉H = f (x) for all f ∈ H, so that K(·, x)
is again reproducing over H.

Uniqueness: Finally, let us establish uniqueness. Suppose that G is some other Hilbert
space with K as its reproducing kernel, so that K(·, x) ∈ G for all x ∈ X. Since G is
complete and closed under linear operations, we must have H ⊆ G. Consequently, H is a
closed linear subspace of G, so that we can write G = H ⊕ H⊥. Let g ∈ H⊥ be arbitrary, and
note that K(·, x) ∈ H. By orthogonality, we must have 0 = 〈K(·, x), g〉G = g(x), from which
we conclude that H⊥ = {0}, and hence that H = G as claimed.

12.2.4 A more abstract viewpoint and further examples

Thus far, we have seen how any positive semidefinite kernel function can be used to build
a Hilbert space in which the kernel satisfies the reproducing property (12.3). In the context
of the Riesz representation theorem (Theorem 12.5), the reproducing property is equivalent
to asserting that the function K(·, x) acts as the representer for the evaluation functional
at x—namely, the linear functional Lx : H → R that performs the operation f �→ f (x).
Thus, it shows that in any reproducing kernel Hilbert space, the evaluation functionals are
all bounded. This perspective leads to the natural question: How large is the class of Hilbert
spaces for which the evaluation functional is bounded? It turns out that this class is exactly
equivalent to the class of reproducing kernel Hilbert spaces defined in the proof of Theo-
rem 12.11. Indeed, an alternative way in which to define an RKHS is as follows:

Definition 12.12 A reproducing kernel Hilbert space H is a Hilbert space of real-
valued functions on X such that for each x ∈ X, the evaluation functional Lx : H → R
is bounded (i.e., there exists some M < ∞ such that |Lx( f )| ≤ M‖ f ‖H for all f ∈ H).

Theorem 12.11 shows that any PSD kernel can be used to define a reproducing kernel
Hilbert space in the sense of Definition 12.12. In order to complete the equivalence, we need
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to show that all Hilbert spaces specified by Definition 12.12 can be equipped with a repro-
ducing kernel function. Let us state this claim formally, and then prove it:

Theorem 12.13 Given any Hilbert spaceH in which the evaluation functionals are all
bounded, there is a unique PSD kernel K that satisfies the reproducing property (12.3).

Proof When Lx is a bounded linear functional, the Riesz representation (Theorem 12.5)
implies that there must exist some element Rx of the Hilbert space H such that

f (x) = Lx( f ) = 〈 f , Rx〉H for all f ∈ H. (12.5)

Using these representers of evaluation, let us define a real-valued function K on the Carte-
sian product space X × X via K(x, z) := 〈Rx, Rz〉H. Symmetry of the inner product ensures
that K is a symmetric function, so that it remains to show that K is positive semidefinite.
For any n ≥ 1, let {xi}ni=1 ⊆ X be an arbitrary collection of points, and consider the n × n
matrix K with elements Ki j = K(xi, x j). For an arbitrary vector α ∈ Rn, we have

αTKα =

n∑
j,k=1

α jαkK(x j, xk) =
〈 n∑

j=1

α jRx j ,

n∑
j=1

α jRx j

〉
H

= ‖
n∑

j=1

α jRxj‖2
H ≥ 0,

which proves the positive semidefiniteness.
It remains to verify the reproducing property (12.3). It actually follows easily, since for

any x ∈ X, the function K(·, x) is equivalent to Rx(·). In order to see this equivalence, note
that for any y ∈ X, we have

K(y, x)
(i)
= 〈Ry, Rx〉H (ii)

= Rx(y),

where step (i) follows from our original definition of the kernel function, and step (ii) follows
since Ry is the representer of evaluation at y. It thus follows that our kernel satisfies the re-
quired reproducing property (12.3). Finally, in Exercise 12.4, we argue that the reproducing
kernel of an RKHS must be unique.

Let us consider some more examples to illustrate our different viewpoints on RKHSs.

Example 12.14 (Linear functions onRd) In Example 12.7, we showed that the linear kernel
K(x, z) = 〈x, z〉 is positive semidefinite on Rd. The constructive proof of Theorem 12.11
dictates that the associated RKHS is generated by functions of the form

z �→
n∑

i=1

αi 〈z, xi〉 =
〈
z,

n∑
i=1

αi xi

〉
.

Each such function is linear, and therefore the associated RKHS is the class of all linear
functions—that is, functions of the form fβ(·) = 〈·, β〉 for some vector β ∈ Rm. The in-
duced inner product is given by

〈
fβ, fβ̃

〉
H

:=
〈
β, β̃

〉
. Note that for each z ∈ Rd, the function
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K(·, z) = 〈·, z〉 ≡ fz is linear. Moreover, for any linear function fβ, we have〈
fβ, K(·, z)

〉
H
= 〈β, z〉 = fβ(z),

which provides an explicit verification of the reproducing property (12.3). ♣
Definition 12.12 and the associated Theorem 12.13 provide us with one avenue of verify-

ing that a given Hilbert space is not an RKHS, and so cannot be equipped with a PSD kernel.
In particular, the boundedness of the evaluation functionals Rx in an RKHS has a very im-
portant consequence: in particular, it ensures that convergence of a sequence of functions in
an RKHS implies pointwise convergence. Indeed, if fn → f ∗ in the Hilbert space norm, then
for any x ∈ X, we have∣∣∣ fn(x) − f ∗(x)

∣∣∣ = ∣∣∣ 〈Rx, fn − f ∗〉H
∣∣∣ ≤ ‖Rx‖H ‖ fn − f ∗‖H → 0, (12.6)

where we have applied the Cauchy–Schwarz inequality. This property is not shared by an
arbitrary Hilbert space, with the Hilbert space L2[0, 1] from Example 12.4 being one case
where this property fails.

Example 12.15 (The space L2[0, 1] is not an RKHS) From the argument above, it suf-
fices to provide a sequence of functions ( fn)∞n=1 that converge to the all-zero function in
L2[0, 1], but do not converge to zero in a pointwise sense. Consider the sequence of func-
tions fn(x) = xn for n = 1, 2, . . .. Since

∫ 1

0
f 2
n (x) dx = 1

2n+1 , this sequence is contained in
L2[0, 1], and moreover ‖ fn‖L2[0,1] → 0. However, fn(1) = 1 for all n = 1, 2, . . ., so that this
norm convergence does not imply pointwise convergence. Thus, if L2[0, 1] were an RKHS,
then this would contradict inequality (12.6).

An alternative way to see that L2[0, 1] is not an RKHS is to ask whether it is possible to
find a family of functions {Rx ∈ L2[0, 1], x ∈ [0, 1]} such that∫ 1

0
f (y)Rx(y) dy = f (x) for all f ∈ L2[0, 1].

This identity will hold if we define Rx to be a “delta-function”—that is, infinite at x and zero
elsewhere. However, such objects certainly do not belong to L2[0, 1], and exist only in the
sense of generalized functions. ♣

Although L2[0, 1] itself is too large to be a reproducing kernel Hilbert space, we can obtain
an RKHS by imposing further restrictions on our functions. One way to do so is by imposing
constraints on functions and their derivatives. The Sobolev spaces form an important class
that arise in this way: the following example describes a first-order Sobolev space that is an
RKHS.

Example 12.16 (A simple Sobolev space) A function f over [0, 1] is said to be abso-
lutely continuous (or abs. cts. for short) if its derivative f ′ exists almost everywhere and is
Lebesgue-integrable, and we have f (x) = f (0) +

∫ x

0
f ′(z) dz for all x ∈ [0, 1]. Now consider

the set of functions

H1[0, 1] :=
{
f : [0, 1] → R | f (0) = 0, and f is abs. cts. with f ′ ∈ L2[0, 1]

}
. (12.7)

Let us define an inner product on this space via 〈 f , g〉H1 :=
∫ 1

0
f ′(z)g′(z) dz; we claim that

the resulting Hilbert space is an RKHS.



12.2 Reproducing kernel Hilbert spaces 393

One way to verify this claim is by exhibiting a representer of evaluation: for any x ∈ [0, 1],
consider the function Rx(z) = min{x, z}. It is differentiable at every point z ∈ [0, 1] \ {x}, and
we have R′

x(z) = I[0,x](z), corresponding to the binary-valued indicator function for member-
ship in the interval [0, x]. Moreover, for any z ∈ [0, 1], it is easy to verify that

min{x, z} =
∫ z

0
I[0,x](u) du, (12.8)

so that Rx is absolutely continuous by definition. Since Rx(0) = 0, we conclude that Rx is an
element of H1[0, 1]. Finally, to verify that Rx is the representer of evaluation, we calculate

〈 f , Rx〉H1 =

∫ 1

0
f ′(z)R′

x(z) dz =
∫ x

0
f ′(z) dz = f (x),

where the final equality uses the fundamental theorem of calculus.
As shown in the proof of Theorem 12.13, the function K(·, x) is equivalent to the rep-

resenter Rx(·). Thus, the kernel associated with the first-order Sobolev space on [0, 1] is
given by K(x, z) = Rx(z) = min{x, z}. To confirm that is positive semidefinite, note that
equation (12.8) implies that

K(x, z) =
∫ 1

0
I[0,x](u)I[0,z](u) du =

〈
I[0,x], I[0,z]

〉
L2[0,1] ,

thereby providing a Gram representation of the kernel that certifies its PSD nature. We con-
clude that K(x, z) = min{x, z} is the unique positive semidefinite kernel function associated
with this first-order Sobolev space. ♣
Let us now turn to some higher-order generalizations of the first-order Sobolev space from
Example 12.16.

Example 12.17 (Higher-order Sobolev spaces and smoothing splines) For some fixed in-
teger α ≥ 1, consider the class Hα[0, 1] of real-valued functions on [0, 1] that are α-times
differentiable (almost everywhere), with the α-derivative f (α) being Lebesgue-integrable,
and such that f (0) = f (1)(0) = · · · = f (α−1)(0) = 0. (Here f (k) denotes the kth-order derivative
of f .) We may define an inner product on this space via

〈 f , g〉H :=
∫ 1

0
f (α)(z)g(α)(z) dz. (12.9)

Note that this set-up generalizes Example 12.16, which corresponds to the case α = 1.
We now claim that this inner product defines an RKHS, and more specifically, that the

kernel is given by

K(x, y) =
∫ 1

0

(x − z)α−1
+

(α − 1)!
(y − z)α−1

+

(α − 1)!
dz,

where (t)+ := max{0, t}. Note that the function Rx(·) := K(·, x) is α-times differentiable
almost everywhere on [0, 1] with R(α)

x (y) = (x − y)α−1
+ /(α − 1)!. To verify that Rx acts as the

representer of evaluation, recall that any function f : [0, 1] → R that is α-times differentiable
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almost everywhere has the Taylor-series expansion

f (x) =
α−1∑
�=0

f (�)(0)
x�

�!
+

∫ 1

0
f (α)(z)

(x − z)α−1
+

(α − 1)!
dz. (12.10)

Using the previously mentioned properties of Rx and the definition (12.9) of the inner prod-
uct, we obtain

〈Rx, f 〉H =
∫ 1

0
f (α)(z)

(x − z)α−1
+

(α − 1)!
dz = f (x),

where the final equality uses the Taylor-series expansion (12.10), and the fact that the first
(α − 1) derivatives of f vanish at 0.

In Example 12.29 to follow, we show how to augment the Hilbert space so as to remove
the constraint on the first (α − 1) derivatives of the functions f . ♣

12.3 Mercer’s theorem and its consequences

We now turn to a useful representation of a broad class of positive semidefinite kernel func-
tions, namely in terms of their eigenfunctions. Recall from classical linear algebra that any
positive semidefinite matrix has an orthonormal basis of eigenvectors, and the associated
eigenvalues are non-negative. The abstract version of Mercer’s theorem generalizes this de-
composition to positive semidefinite kernel functions.

LetP be a non-negative measure over a compact metric spaceX, and consider the function
class L2(X;P) with the usual squared norm

‖ f ‖2
L2(X;P) =

∫
X

f 2(x) dP(x).

Since the measure P remains fixed throughout, we frequently adopt the shorthand notation
L2(X) or even just L2 for this norm. Given a symmetric PSD kernel function K : X×X → R
that is continuous, we can define a linear operator TK on L2(X) via

TK ( f )(x) :=
∫
X
K(x, z) f (z) dP(z). (12.11a)

We assume that the kernel function satisfies the inequality∫
X×X

K2(x, z) dP(x) dP(z) < ∞, (12.11b)

which ensures that TK is a bounded linear operator on L2(X). Indeed, we have

‖TK ( f )‖2
L2(X) =

∫
X

( ∫
X
K(x, y) f (x) dP(x)

)2
dP(y)

≤ ‖ f ‖2
L2(X)

∫
X×X

K2(x, y) dP(x) dP(y),

where we have applied the Cauchy–Schwarz inequality. Operators of this type are known as
Hilbert–Schmidt operators.
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Let us illustrate these definitions with some examples.

Example 12.18 (PSD matrices) Let X = [d] := {1, 2, . . . , d} be equipped with the Ham-
ming metric, and let P({ j}) = 1 for all j ∈ {1, 2, . . . , d} be the counting measure on this
discrete space. In this case, any function f : X → R can be identified with the d-dimensional
vector ( f (1), . . . , f (d)), and a symmetric kernel function K : X × X → R can be identified
with the symmetric d × d matrix K with entries Ki j = K(i, j). Consequently, the integral
operator (12.11a) reduces to ordinary matrix–vector multiplication

TK ( f )(x) =
∫
X
K(x, z) f (z) dP(z) =

d∑
z=1

K(x, z) f (z).

By standard linear algebra, we know that the matrix K has an orthonormal collection of
eigenvectors in Rd, say {v1, . . . , vd}, along with a set of non-negative eigenvalues μ1 ≥ μ2 ≥
· · · ≥ μd, such that

K =

d∑
j=1

μ jv jvT
j . (12.12)

Mercer’s theorem, to be stated shortly, provides a substantial generalization of this decom-
position to a general positive semidefinite kernel function. ♣

Example 12.19 (First-order Sobolev kernel) Now suppose that X = [0, 1], and that P is
the Lebesgue measure. Recalling the kernel function K(x, z) = min{x, z}, we have

TK ( f )(x) =
∫ 1

0
min{x, z} f (z) dz =

∫ x

0
z f (z) dz +

∫ 1

x
x f (z) dz.

We return to analyze this particular integral operator in Example 12.23. ♣
Having gained some intuition for the general notion of a kernel integral operator, we are

now ready for the statement of the abstract Mercer’s theorem.

Theorem 12.20 (Mercer’s theorem) Suppose that X is compact, the kernel function
K is continuous and positive semidefinite, and satisfies the Hilbert–Schmidt condi-
tion (12.11b). Then there exist a sequence of eigenfunctions (φ j)∞j=1 that form an or-
thonormal basis of L2(X;P), and non-negative eigenvalues (μ j)∞j=1 such that

TK (φ j) = μ jφ j for j = 1, 2, . . .. (12.13a)

Moreover, the kernel function has the expansion

K(x, z) =
∞∑
j=1

μ jφ j(x)φ j(z), (12.13b)

where the convergence of the infinite series holds absolutely and uniformly.
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Remarks: The original theorem proved by Mercer applied only to operators defined on
L2([a, b]) for some finite a < b. The more abstract version stated here follows as a conse-
quence of more general results on the eigenvalues of compact operators on Hilbert spaces;
we refer the reader to the bibliography section for references.

Among other consequences, Mercer’s theorem provides intuition on how reproducing
kernel Hilbert spaces can be viewed as providing a particular embedding of the function
domain X into a subset of the sequence space �2(N). In particular, given the eigenfunctions
and eigenvalues guaranteed by Mercer’s theorem, we may define a mapping Φ : X → �2(N)
via

x �→ Φ(x) :=
(√

μ1 φ1(x),
√
μ2 φ2(x),

√
μ3 φ3(x), . . .

)
. (12.14)

By construction, we have

‖Φ(x)‖2
�2(N) =

∞∑
j=1

μ jφ
2
j(x) = K(x, x) < ∞,

showing that the map x �→ Φ(x) is a type of (weighted) feature map that embeds the original
vector into a subset of �2(N). Moreover, this feature map also provides an explicit inner
product representation of the kernel over �2(N)—namely

〈Φ(x), Φ(z)〉�2(N) =

∞∑
j=1

μ j φ j(x) φ j(z) = K(x, z).

Let us illustrate Mercer’s theorem by considering some examples:

Example 12.21 (Eigenfunctions for a symmetric PSD matrix) As discussed in Exam-
ple 12.18, a symmetric PSD d-dimensional matrix can be viewed as a kernel function on
the space [d]× [d], where we adopt the shorthand [d] := {1, 2, . . . , d}. In this case, the eigen-
function φ j : [d] → R can be identified with the vector v j := (φ j(1), . . . , φ j(d)) ∈ Rd. Thus,
in this special case, the eigenvalue equation TK (φ j) = μ jφ j is equivalent to asserting that
v j ∈ Rd is an eigenvector of the kernel matrix. Consequently, the decomposition (12.13b)
then reduces to the familiar statement that any symmetric PSD matrix has an orthonormal
basis of eigenfunctions, with associated non-negative eigenvalues, as previously stated in
equation (12.12). ♣
Example 12.22 (Eigenfunctions of a polynomial kernel) Let us compute the eigenfunc-
tions of the second-order polynomial kernel K(x, z) = (1 + xz)2 defined over the Cartesian
product [−1, 1] × [−1, 1], where the unit interval is equipped with the Lebesgue measure.
Given a function f : [−1, 1] → R, we have∫ 1

−1
K(x, z) f (z) dz =

∫ 1

−1

(
1 + 2xz + x2z2

)
f (z) dz

=

{∫ 1

−1
f (z) dz

}
+

{
2
∫ 1

−1
z f (z) dz

}
x +

{∫ 1

−1
z2 f (z) dz

}
x2,

showing that any eigenfunction of the kernel integral operator must be a polynomial of
degree at most two. Consequently, the eigenfunction problem can be reduced to an ordinary
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eigenvalue problem in terms of the coefficients in the expansion f (x) = a0 + a1x + a2x2.
Following some simple algebra, we find that, if f is an eigenfunction with eigenvalue μ,
then these coefficients must satisfy the linear system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 2/3
0 4/3 0

2/3 0 2/5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a0

a1

a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a0

a1

a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Solving this ordinary eigensystem, we find the following eigenfunction–eigenvalue pairs

φ1(x) = −0.9403 − 0.3404x2, with μ1 = 2.2414,

φ2(x) = x, with μ2 = 1.3333,

φ3(x) = −0.3404 + 0.9403x2, with μ3 = 0.1586. ♣
Example 12.23 (Eigenfunctions for a first-order Sobolev space) In Example 12.16, we in-
troduced the first-order Sobolev space H1[0, 1]. In Example 12.19, we found that its kernel
function takes the form K(x, z) = min{x, z}, and determined the form of the associated inte-
gral operator. Using this previous development, if φ : [0, 1] → R is an eigenfunction of TK
with eigenvalue μ � 0, then it must satisfy the relation TK (φ) = μφ, or equivalently∫ x

0
zφ(z) dz +

∫ 1

x
xφ(z) dz = μφ(x) for all x ∈ [0, 1].

Since this relation must hold for all x ∈ [0, 1], we may take derivatives with respect to x. Do-
ing so twice yields the second-order differential equation μφ′′(x)+φ(x) = 0. Combined with
the boundary condition φ(0) = 0, we obtain φ(x) = sin(x/

√
μ) as potential eigenfunctions.

Now using the boundary condition
∫ 1

0
zφ(z) dz = μφ(1), we deduce that the eigenfunction–

eigenvalue pairs are given by

φ j(t) = sin
(2 j − 1)πt

2
and μ j =

(
2

(2 j − 1) π

)2

for j = 1, 2, . . ..
♣

Example 12.24 (Translation-invariant kernels) An important class of kernels have a trans-
lation-invariant form. In particular, given a function ψ : [−1, 1] → R that is even (meaning
that ψ(u) = ψ(−u) for all u ∈ [−1, 1]), let us extend its domain to the real line by the periodic
extension ψ(u + 2k) = ψ(u) for all u ∈ [−1, 1] and integers k ∈ Z.

Using this function, we may define a translation-invariant kernel on the Cartesian product
space [−1, 1] × [−1, 1] via K(x, z) = ψ(x − z). Note that the evenness of ψ ensures that this
kernel is symmetric. Moreover, the kernel integral operator takes the form

TK ( f )(x) =
∫ 1

−1
ψ(x − z) f (z) dz︸������������������︷︷������������������︸

(ψ∗ f )(x)

,

and thus is a convolution operator.
A classical result from analysis is that the eigenfunctions of convolution operators are

given by the Fourier basis; let us prove this fact here. We first show that the cosine functions
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φ j(x) = cos(π jx) for j = 0, 1, 2, . . . are eigenfunctions of the operator TK . Indeed, we have

TK (φ j)(x) =
∫ 1

−1
ψ(x − z) cos(π jz) dz =

∫ 1−x

−1−x
ψ(−u) cos(2π j(x + u)) du,

where we have made the change of variable u = z − x. Note that the interval of integration
[−1− x, 1− x] is of length 2, and since both ψ(−u) and cos(2π(x+ u)) have period 2, we can
shift the interval of integration to [−1, 1]. Combined with the evenness of ψ, we conclude
that TK (φ j)(x) =

∫ 1

−1
ψ(u) cos(2π j(x + u)) du. Using the elementary trigonometric identity

cos(π j(x + u)) = cos(π jx) cos(π ju) − sin(π jx) sin(π ju),

we find that

TK (φ j)(x) =
{∫ 1

−1
ψ(u) cos(π ju) du

}
cos(π jx) −

{∫ 1

−1
ψ(u) sin(π ju) du

}
sin(π jx)

= c j cos(π jx),

where c j =
∫ 1

−1
ψ(u) cos(π ju) du is the jth cosine coefficient of ψ. In this calculation, we have

used the evenness of ψ to argue that the integral with the sine function vanishes.
A similar argument shows that each of the sinusoids

φ̃ j(x) = sin( jπx) for j = 1, 2, . . .

are also eigenfunctions with eigenvalue c j. Since the functions {φ j, j = 0, 1, 2, . . .} ∪ {φ̃ j,

j = 1, 2, . . .} form a complete orthogonal basis of L2[−1, 1], there are no other eigenfunctions
that are not linear combinations of these functions. Consequently, by Mercer’s theorem, the
kernel function has the eigenexpansion

K(x, z) =
∞∑
j=0

c j
{
cos(π jx) cos(π jz) + sin(π jx) sin(π jz)

}
=

∞∑
j=0

c j cos(π j(x − z)),

where c j are the (cosine) Fourier coefficients of ψ. Thus, we see that K is positive semi-
definite if and only if c j ≥ 0 for j = 0, 1, 2, . . .. ♣
Example 12.25 (Gaussian kernel) As previously introduced in Example 12.9, a popu-
lar choice of kernel on some subset X ⊆ Rd is the Gaussian kernel given by K(x, z) =

exp(−‖x−z‖2
2

2σ2 ), where σ > 0 is a bandwidth parameter. To keep our calculations relatively
simple, let us focus here on the univariate case d = 1, and let X be some compact interval of
the real line. By a rescaling argument, we can restrict ourselves to the case X = [−1, 1], so
that we are considering solutions to the integral equation∫ 1

−1
e−

(x−z)2

2σ2 φ j(z) dz = μ jφ j(x). (12.15)

Note that this problem cannot be tackled by the methods of the previous example, since we
are not performing the periodic extension of our function.2 Nonetheless, the eigenvalues of
the Gaussian integral operator are very closely related to the Fourier transform.

2 If we were to consider the periodically extended version, then the eigenvalues would be given by the cosine
coefficients c j =

∫ 1
−1 exp

( − u2

2σ2

)
cos(π ju) du, with the cosine functions as eigenfunctions.
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In the remainder of our development, let us consider a slightly more general integral
equation. Given a bounded, continuous and even function Ψ : R→ [0,∞), we may define its
(real-valued) Fourier transform ψ(u) =

∫ ∞
−∞Ψ(ω)e−iωu dω, and use it to define a translation-

invariant kernel via K(x, z) := ψ(x − z). We are then led to the integral equation∫ 1

−1
ψ(x − z)φ j(z) dz = μ jφ j(x). (12.16)

Classical theory on integral operators can be used to characterize the spectrum of this inte-
gral operator. More precisely, for any operator such that logΨ(ω)  −ωα for some α > 1,
there is a constant c such that the eigenvalues (μ j)∞j=1 associated with the integral equation
(12.16) scale as μ j  e−c j log j as j → +∞. See the bibliographic section for further discussion
of results of this type.

The Gaussian kernel is a special case of this set-up with the pair Ψ(ω) = exp(−σ2ω2

2 ) and
ψ(u) = exp(− u2

2σ2 ). Applying the previous reasoning guarantees that the eigenvalues of the
Gaussian kernel over a compact interval scale as μ j  exp(−c j log j) as j → +∞. We
thus see that the Gaussian kernel class is relatively small, since its eigenvalues decay at
exponential rate. (The reader should contrast this fast decay with the significantly slower
μ j  j−2 decay rate of the first-order Sobolev class from Example 12.23.) ♣

An interesting consequence of Mercer’s theorem is in giving a relatively explicit charac-
terization of the RKHS associated with a given kernel.

Corollary 12.26 Consider a kernel satisfying the conditions of Mercer’s theorem with
associated eigenfunctions (φ j)∞j=1 and non-negative eigenvalues (μ j)∞j=1. It induces the
reproducing kernel Hilbert space

H :=

⎧⎪⎪⎨⎪⎪⎩ f =
∞∑
j=1

β jφ j | for some (β j)∞j=1 ∈ �2(N) with
∞∑
j=1

β2
j

μ j
< ∞

⎫⎪⎪⎬⎪⎪⎭ , (12.17a)

along with inner product

〈 f , g〉H :=
∞∑
j=1

〈 f , φ j〉 〈g, φ j〉
μ j

, (12.17b)

where 〈·, ·〉 denotes the inner product in L2(X;P).

Let us make a few comments on this claim. First, in order to assuage any concerns regarding
division by zero, we can restrict all sums to only indices j for which μ j > 0. Second, note
that Corollary 12.26 shows that the RKHS associated with a Mercer kernel is isomorphic to
an infinite-dimensional ellipsoid contained with �2(N)—namely, the set

E :=

⎧⎪⎪⎨⎪⎪⎩(β j)∞j=1 ∈ �2(N) |
∞∑
j=1

β2
j

μ j
≤ 1

⎫⎪⎪⎬⎪⎪⎭ . (12.18)
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We study the properties of such ellipsoids at more length in Chapters 13 and 14.

Proof For the proof, we take μ j > 0 for all j ∈ N. This assumption entails no loss of
generality, since otherwise the same argument can be applied with relevant summations
truncated to the positive eigenvalues of the kernel function. Recall that 〈·, ·〉 denotes the
inner product on L2(X;P).

It is straightforward to verify that H along with the specified inner product 〈·, ·〉H is a
Hilbert space. Our next step is to show that H is in fact a reproducing kernel Hilbert space,
and satisfies the reproducing property with respect to the given kernel. We begin by showing
that for each fixed x ∈ X, the function K(·, x) belongs to H. By the Mercer expansion,
we have K(·, x) =

∑∞
j=1 μ jφ j(x)φ j(·), so that by definition (12.17a) of our Hilbert space, it

suffices to show that
∑∞

j=1 μ jφ
2
j(x) < ∞. By the Mercer expansion, we have

∞∑
j=1

μ jφ
2
j(x) = K(x, x) < ∞,

so that K(·, x) ∈ H.
Let us now verify the reproducing property. By the orthonormality of (φ j)∞j=1 in L2(X;P)

and Mercer’s theorem, we have 〈K(·, x), φ j〉 = μ jφ j(x) for each j ∈ N. Thus, by defini-
tion (12.17b) of our Hilbert inner product, for any f ∈ H, we have

〈 f , K(·, x)〉H =
∞∑
j=1

〈 f , φ j〉 〈K(·, x), φ j〉
μ j

=

∞∑
j=1

〈 f , φ j〉φ j(x) = f (x),

where the final step again uses the orthonormality of (φ j)∞j=1. Thus, we have shown that H is
the RKHS with kernel K . (As discussed in Theorem 12.11, the RKHS associated with any
given kernel is unique.)

12.4 Operations on reproducing kernel Hilbert spaces

In this section, we describe a number of operations on reproducing kernel Hilbert spaces
that allow us to build new spaces.

12.4.1 Sums of reproducing kernels

Given two Hilbert spaces H1 and H2 of functions defined on domains X1 and X2, respec-
tively, consider the space

H1 +H2 :=
{
f1 + f2 | f j ∈ H j, j = 1, 2

}
,

corresponding to the set of all functions obtained as sums of pairs of functions from the two
spaces.
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Proposition 12.27 Suppose that H1 and H2 are both RKHSs with kernels K1 and K2,
respectively. Then the space H = H1 +H2 with norm

‖ f ‖2
H := min

f= f1+ f2
f1∈H1, f2∈H2

{‖ f1‖2
H1
+ ‖ f2‖2

H2

}
(12.19)

is an RKHS with kernel K = K1 +K2.

Remark: This construction is particularly simple when H1 and H2 share only the constant
zero function, since any function f ∈ H can then be written as f = f1 + f2 for a unique pair
( f1, f2), and hence ‖ f ‖2

H = ‖ f1‖2
H1
+ ‖ f2‖2

H2
. Let us illustrate the use of summation with some

examples:

Example 12.28 (First-order Sobolev space and constant functions) Consider the kernel
functions on [0, 1] × [0, 1] given by K1(x, z) = 1 and K2(x, z) = min{x, z}. They generate the
reproducing kernel Hilbert spaces

H1 = span{1} and H2 = H1[0, 1],

where span{1} is the set of all constant functions, and H1[0, 1] is the first-order Sobolev
space from Example 12.16. Note that H1 ∩ H2 = {0}, since f (0) = 0 for any element of H2.
Consequently, the RKHS with kernel K(x, z) = 1 + min{x, z} consists of all functions

H1[0, 1] :=
{
f : [0, 1] → R | f is absolutely continuous with f ′ ∈ L2[0, 1]

}
,

equipped with the squared norm ‖ f ‖2
H̄1[0,1]

= f 2(0) +
∫ 1

0
( f ′(z))2 dz. ♣

As a continuation of the previous example, let us describe an extension of the higher-order
Sobolev spaces from Example 12.17:

Example 12.29 (Extending higher-order Sobolev spaces) For an integer α ≥ 1, consider
the kernel functions on [0, 1] × [0, 1] given by

K1(x, z) =
α−1∑
�=0

x�

�!
z�

�!
and K2(x, z) =

∫ 1

0

(x − y)α−1
+

(α − 1)!
(z − y)α−1

+

(α − 1)!
dy.

The first kernel generates an RKHS H1 of polynomials of degree α − 1, whereas the second
kernel generates the α-order Sobolev space H2 = Hα[0, 1] previously defined in Exam-
ple 12.17.

Letting f (�) denote the �th-order derivative, recall that any function f ∈ Hα[0, 1] satisfies
the boundary conditions f (�)(0) = 0 for � = 0, 1, . . . , α − 1. Consequently, we haveH1∩H2 =

{0} so that Proposition 12.27 guarantees that the kernel

K(x, z) =
α−1∑
�=0

x�

�!
z�

�!
+

∫ 1

0

(x − y)α−1
+

(α − 1)!
(z − y)α−1

+

(α − 1)!
dy (12.20)

generates the Hilbert space Hα[0, 1] of all functions that are α-times differentiable almost



402 Reproducing kernel Hilbert spaces

everywhere, with f (α) Lebesgue-integrable. As we verify in Exercise 12.15, the associated
RKHS norm takes the form

‖ f ‖2
H =

α−1∑
�=0

(
f (�)(0)

)2
+

∫ 1

0

(
f (α)(z)

)2 dz. (12.21)
♣

Example 12.30 (Additive models) It is often convenient to build up a multivariate func-
tion from simpler pieces, and additive models provide one way in which to do so. For
j = 1, 2, . . . , M, let H j be a reproducing kernel Hilbert space, and let us consider func-
tions that have an additive decomposition of the form f =

∑M
j=1 f j, where f j ∈ H j. By

Proposition 12.27, the space H of all such functions is itself an RKHS equipped with the
kernel function K =

∑M
j=1 K j. A commonly used instance of such an additive model is

when the individual Hilbert space H j corresponds to functions of the jth coordinate of a
d-dimensional vector, so that the space H consists of functions f : Rd → R that have the
additive decomposition

f (x1, . . . , xd) =
d∑

j=1

f j(x j),

where f j : R → R is a univariate function for the jth coordinate. Since H j ∩Hk = {0} for
all j � k, the associated Hilbert norm takes the form ‖ f ‖2

H =
∑d

j=1 ‖ f j‖2
H j

. We provide some
additional discussion of these additive decompositions in Exercise 13.9 and Example 14.11
to follow in later chapters.

More generally, it is natural to consider expansions of the form

f (x1, . . . , xd) =
d∑

j=1

f j(x j) +
∑
j�k

f jk(x j, xk) + · · · .

When the expansion functions are chosen to be mutually orthogonal, such expansions are
known as functional ANOVA decompositions. ♣

We now turn to the proof of Proposition 12.27.

Proof Consider the direct sum F := H1 ⊕ H2 of the two Hilbert spaces; by definition, it is
the Hilbert space {( f1, f2) | f j ∈ H j, j = 1, 2} of all ordered pairs, along with the norm

‖( f1, f2)‖2
F := ‖ f1‖2

H1
+ ‖ f2‖2

H2
. (12.22)

Now consider the linear operator L : F → H defined by ( f1, f2) �→ f1 + f2, and note that
it maps F onto H. The nullspace N(L) of this operator is a subspace of F, and we claim
that it is closed. Consider some sequence

(
( fn,− fn)

)∞
n=1 contained within the nullspace N(L)

that converges to a point ( f , g) ∈ F. By the definition of the norm (12.22), this convergence
implies that fn → f in H1 (and hence pointwise) and − fn → g in H2 (and hence pointwise).
Overall, we conclude that f = −g, meaning ( f , g) ∈ N(L).

Let N⊥ be the orthogonal complement of N(L) in F, and let L⊥ be the restriction of L to
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N⊥. Since this map is a bijection between N⊥ and H, we may define an inner product on H
via

〈 f , g〉H := 〈L−1
⊥ ( f ), L−1

⊥ (g)〉F.
It can be verified that the space H with this inner product is a Hilbert space.

It remains to check that H is an RKHS with kernel K = K1 + K2, and that the norm
‖ · ‖2

H takes the given form (12.19). Since the functions K1(·, x) and K2(·, x) belong to H1

and H2, respectively, the function K(·, x) = K1(·, x) + K2(·, x) belongs to H. For a fixed
f ∈ F, let ( f1, f2) = L−1

⊥ ( f ) ∈ F, and for a fixed x ∈ X, let (g1, g2) = L−1
⊥ (K(·, x)) ∈ F.

Since (g1 − K1(·, x), g2 − K2(·, x)) must belong to N(L), it must be orthogonal (in F) to the
element ( f1, f2) ∈ N⊥. Consequently, we have 〈(g1 − K1(·, x), g2 − K2(·, x)), ( f1, f2)〉F = 0,
and hence

〈 f1, K1(·, x)〉H1
+ 〈 f2, K2(·, x)〉H2

= 〈 f1, g1〉H1
+ 〈 f2, g2〉H2

= 〈 f , K(·, x)〉H .

Since 〈 f1, K1(·, x)〉H1
〈 f2, K2(·, x)〉H2

= f1(x)+ f2(x) = f (x), we have established that K has
the reproducing property.

Finally, let us verify that the norm ‖ f ‖H := ‖L−1
⊥ ( f )‖F that we have defined is equivalent to

the definition (12.19). For a given f ∈ H, consider some pair ( f1, f2) ∈ F such that f = f1+ f2,
and define (v1, v2) = ( f1, f2) − L−1

⊥ ( f ). We have

‖ f1‖2
H1
+ ‖ f2‖2

H2

(i)
= ‖( f1, f2)‖2

F
(ii)
= ‖(v1, v2)‖2

F + ‖L−1
⊥ ( f )‖2

F
(iii)
= ‖(v1, v2)‖2

F + ‖ f ‖2
H,

where step (i) uses the definition (12.22) of the norm in F, step (ii) follows from the Pythag-
orean property, as applied to the pair (v1, v2) ∈ N(L) and L−1

⊥ ( f ) ∈ N⊥, and step (iii) uses our
definition of the norm ‖ f ‖H. Consequently, we have shown that for any pair f1, f2 such that
f = f1 + f2, we have

‖ f ‖2
H ≤ ‖ f1‖2

H1
+ ‖ f2‖2

H2
,

with equality holding if and only if (v1, v2) = (0, 0), or equivalently ( f1, f2) = L−1
⊥ ( f ). This

establishes the equivalence of the definitions.

12.4.2 Tensor products

Consider two separable Hilbert spacesH1 andH2 of functions, say with domainsX1 andX2,
respectively. They can be used to define a new Hilbert space, denoted by H1 ⊗ H2, known
as the tensor product of H1 and H2. Consider the set of functions h : X1 ×X2 → R that have
the form{

h =
n∑

j=1

f jg j | for some n ∈ N and such that f j ∈ H1, gj ∈ H2 for all j ∈ [n]
}
.

If h =
∑n

j=1 f jg j and h̃ =
∑m

k=1 f̃kg̃k are two members of this set, we define their inner product

〈h, h̃〉H :=
n∑

j=1

m∑
k=1

〈 f j, f̃k〉H1 〈gj, g̃k〉H2 . (12.23)
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Note that the value of the inner product depends neither on the chosen representation of h
nor on that of h̃; indeed, using linearity of the inner product, we have

〈h, h̃〉H =
m∑

k=1

〈(h + f̃k), g̃k〉H2 ,

where (h + f̃k) ∈ H2 is the function given by x2 �→ 〈h(·, x2), f̃k〉H1 . A similar argument
shows that the inner product does not depend on the representation of h̃, so that the inner
product (12.23) is well defined.

It is straightforward to check that the inner product (12.23) is bilinear and symmetric, and
that 〈h, h〉2H = ‖h‖2

H ≥ 0 for all h ∈ H. It remains to check that ‖h‖H = 0 if and only if
h = 0. Consider some h ∈ H with the representation h =

∑n
j=1 f jg j. Let (φ j)∞j=1 and (ψk)∞k=1

be complete orthonormal bases of H1 and H2, respectively, ordered such that

span{ f1, . . . , fn} ⊆ span{φ1, . . . , φn} and span{g1, . . . , gn} ⊆ span{ψ1, . . . , ψn}.
Consequently, we can write f equivalently as the double summation f =

∑n
j, j=1 α j,kφ jψk for

some set of real numbers {α j,k}nj,k=1. Using this representation, we are guaranteed the equal-
ity ‖ f ‖2

H =
∑n

j=1
∑n

k=1 α
2
j,k, which shows that ‖ f ‖H = 0 if and only if α j,k = 0 for all ( j, k), or

equivalently f = 0.

In this way, we have defined the tensor product H = H1 ⊗ H2 of two Hilbert spaces. The
next result asserts that when the two component spaces have reproducing kernels, then the
tensor product space is also a reproducing kernel Hilbert space:

Proposition 12.31 Suppose that H1 and H2 are reproducing kernel Hilbert spaces of
real-valued functions with domains X1 and X2, and equipped with kernels K1 and K2,
respectively. Then the tensor product space H = H1 ⊗ H2 is an RKHS of real-valued
functions with domain X1 × X2, and with kernel function

K((x1, x2), (x′1, x′2)) = K1(x1, x′1)K2(x2, x′2). (12.24)

Proof In Exercise 12.16, it is shown that K defined in equation (12.24) is a positive semi-
definite function. By definition of the tensor product space H = H1 ⊗ H2, for each pair
(x1, x2) ∈ X1 × X2, the function K((·, ·), (x1, x2)) = K1(·, x1)K2(·, x2) is an element of the
tensor product space H. Let f =

∑n
j,k=1 α j,kφ jψk be an arbitrary element of H. By definition

of the inner product (12.23), we have

〈 f , K((·, ·), (x1, x2))〉H =
n∑

j,k=1

α j,k〈φ j, K1(·, x1)〉H1 〈ψk, K2(·, x2)〉H2

=

n∑
j,k=1

α j,kφ j(x1)ψk(x2) = f (x1, x2),

thereby verifying the reproducing property.
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12.5 Interpolation and fitting

Reproducing kernel Hilbert spaces are useful for the classical problems of interpolating and
fitting functions. An especially attractive property is the ease of computation: in particular,
the representer theorem allows many optimization problems over the RKHS to be reduced
to relatively simple calculations involving the kernel matrix.

12.5.1 Function interpolation

Let us begin with the problem of function interpolation. Suppose that we observe n samples
of an unknown function f ∗ : X → R, say of the form yi = f ∗(xi) for i = 1, 2, . . . , n, where the
design sequence {xi}ni=1 is known to us. Note that we are assuming for the moment that the
function values are observed without any noise or corruption. In this context, some questions
of interest include:

• For a given function classF , does there exist a function f ∈F that exactly fits the data,
meaning that f (xi) = yi for all i = 1, 2, . . . , n?

• Of all functions inF that exactly fit the data, which does the “best” job of interpolating
the data?
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Figure 12.1 Exact interpolation of n = 11 equally sampled function values using
RKHS methods. (a) Polynomial kernel K(x, z) = (1+ x z)12. (b) First-order Sobolev
kernel K(x, z) = 1 + min{x, z}.

The first question can often be answered in a definitive way—in particular, by producing a
function that exactly fits the data. The second question is vaguely posed and can be answered
in multiple ways, depending on our notion of “best”. In the context of a reproducing kernel
Hilbert space, the underlying norm provides a way of ordering functions, and so we are led
to the following formalization: of all the functions that exactly fit the data, choose the one
with minimal RKHS norm. This approach can be formulated as an optimization problem in
Hilbert space—namely,

choose f̂ ∈ arg min
f∈H

‖ f ‖H such that f (xi) = yi for i = 1, 2, . . . , n. (12.25)
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This method is known as minimal norm interpolation, and it is feasible whenever there ex-
ists at least one function f ∈ H that fits the data exactly. We provide necessary and sufficient
conditions for such feasibility in the result to follow. Figure 12.1 illustrates this minimal
Hilbert norm interpolation method, using the polynomial kernel from Example 12.8 in Fig-
ure 12.1(a), and the first-order Sobolev kernel from Example 12.23 in Figure 12.1(b).

For a general Hilbert space, the optimization problem (12.25) may not be well defined, or
may be computationally challenging to solve. Hilbert spaces with reproducing kernels are
attractive in this regard, as the computation can be reduced to simple linear algebra involving
the kernel matrix K ∈ Rn×n with entries Ki j = K(xi, x j)/n. The following result provides
one instance of this general phenomenon:

Proposition 12.32 Let K ∈ Rn×n be the kernel matrix defined by the design points
{xi}ni=1. The convex program (12.25) is feasible if and only if y ∈ range(K), in which
case any optimal solution can be written as

f̂ (·) = 1√
n

n∑
i=1

α̂iK(·, xi), where Kα̂ = y/
√

n.

Remark: Our choice of normalization by 1/
√

n is for later theoretical convenience.

Proof For a given vector α ∈ Rn, define the function fα(·) := 1√
n

∑n
i=1 αiK(·, xi), and

consider the set L :=
{
fα | α ∈ Rn}. Note that for any fα ∈ L, we have

fα(x j) =
1√
n

n∑
i=1

αiK(x j, xi) =
√

n(Kα) j,

where (Kα) j is the jth component of the vector Kα ∈ Rn. Thus, the function fα ∈ L sat-
isfies the interpolation condition if and only if Kα = y/

√
n. Consequently, the condition

y ∈ range(K) is sufficient. It remains to show that this range condition is necessary, and that
the optimal interpolating function must lie in L.

Note that L is a finite-dimensional (hence closed) linear subspace of H. Consequently,
any function f ∈ H can be decomposed uniquely as f = fα + f⊥, where fα ∈ L and f⊥ is
orthogonal to L. (See Exercise 12.3 for details of this direct sum decomposition.) Using this
decomposition and the reproducing property, we have

f (x j) = 〈 f , K(·, x j)〉H = 〈 fα + f⊥, K(·, x j)〉H = fα(x j),

where the final equality follows because K(·, x j) belongs to L, and we have
〈 f⊥, K(·, x j)〉H = 0 due to the orthogonality of f⊥ and L. Thus, the component f⊥ has
no effect on the interpolation property, showing that the condition y ∈ range(K) is also a
necessary condition. Moreover, since fα and f⊥ are orthogonal, we are guaranteed to have
‖ fα + f⊥‖2

H = ‖ fα‖2
H + ‖ f⊥‖2

H. Consequently, for any Hilbert norm interpolant, we must have
f⊥ = 0.
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12.5.2 Fitting via kernel ridge regression

In a statistical setting, it is usually unrealistic to assume that we observe noiseless observa-
tions of function values. Rather, it is more natural to consider a noisy observation model,
say of the form

yi = f ∗(xi) + wi, for i = 1, 2, . . . , n,

where the coefficients {wi}ni=1 model noisiness or disturbance in the measurement model. In
the presence of noise, the exact constraints in our earlier interpolation method (12.25) are
no longer appropriate; instead, it is more sensible to minimize some trade-off between the fit
to the data and the Hilbert norm. For instance, we might only require that the mean-squared
differences between the observed data and fitted values be small, which then leads to the
optimization problem

min
f∈H

‖ f ‖H such that
1
2n

n∑
i=1

(
yi − f (xi)

)2 ≤ δ2, (12.26)

where δ > 0 is some type of tolerance parameter. Alternatively, we might minimize the
mean-squared error subject to a bound on the Hilbert radius of the solution, say

min
f∈H

1
2n

n∑
i=1

(
yi − f (xi)

)2 such that ‖ f ‖H ≤ R (12.27)

for an appropriately chosen radius R > 0. Both of these problems are convex, and so by
Lagrangian duality, they can be reformulated in the penalized form

f̂ = arg min
f∈H

{ 1
2n

n∑
i=1

(yi − f (xi))2 + λn‖ f ‖2
H

}
. (12.28)

Here, for a fixed set of observations {(xi, yi)}ni=1, the regularization parameter λn ≥ 0 is a
function of the tolerance δ or radius R. This form of function estimate is most convenient
to implement, and in the case of a reproducing kernel Hilbert space considered here, it is
known as the kernel ridge regression estimate, or KRR estimate for short. The following re-
sult shows how the KRR estimate is easily computed in terms of the kernel matrix K ∈ Rn×n

with entries Ki j = K(xi, x j)/n.

Proposition 12.33 For all λn > 0, the kernel ridge regression estimate (12.28) can be
written as

f̂ (·) = 1√
n

n∑
i=1

α̂iK(·, xi), (12.29)

where the optimal weight vector α̂ ∈ Rn is given by

α̂ =
(
K + λnIn)−1 y√

n
. (12.30)
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Remarks: Note that Proposition 12.33 is a natural generalization of Proposition 12.32, to
which it reduces when λn = 0 (and the kernel matrix is invertible). Given the kernel matrix
K, computing α̂ via equation (12.30) requires at most O(n3) operations, using standard rou-
tines in numerical linear algebra (see the bibliography for more details). Assuming that the
kernel function can be evaluated in constant time, computing the n × n matrix requires an
additional O(n2) operations. See Figure 12.2 for some illustrative examples.
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Figure 12.2 Illustration of kernel ridge regression estimates of function f ∗(x) =
3x
2 − 9

5 x2 based on n = 11 samples, located at design points xi = −0.5 + 0.10 (i − 1)
over the interval [−0.5, 0.5]. (a) Kernel ridge regression estimate using the second-
order polynomial kernel K(x, z) = (1+ xz)2 and regularization parameter λn = 0.10.
(b) Kernel ridge regression estimate using the first-order Sobolev kernel K(x, z) =
1 + min{x, z} and regularization parameter λn = 0.10.

We now turn to the proof of Proposition 12.33.

Proof Recall the argument of Proposition 12.32, and the decomposition f = fα + f⊥. Since
f⊥(xi) = 0 for all i = 1, 2, . . . , n, it can have no effect on the least-squares data component
of the objective function (12.28). Consequently, following a similar line of reasoning to the
proof of Proposition 12.32, we again see that any optimal solution must be of the specified
form (12.29).

It remains to prove the specific form (12.30) of the optimal α̂. Given a function f of the
form (12.29), for each j = 1, 2, . . . , n, we have

f (x j) =
1√
n

n∑
i=1

αiK(x j, xi) =
√

n eT
j Kα,

where e j ∈ Rn is the canonical basis vector with 1 in position j, and we have recalled that
Kji = K(x j, xi)/n. Similarly, we have the representation

‖ f ‖2
H =

1
n

〈 n∑
i=1

αiK(·, xi),
n∑

j=1

α jK(·, x j)
〉
H

= αTKα.
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Substituting these relations into the cost function, we find that it is a quadratic in the vector
α, given by

1
n
‖y − √

nKα‖2
2 + λαTKα =

1
n
‖y‖2

2 + αT(K2 + λK
)
α − 2√

n
yTKα.

In order to find the minimum of this quadratic function, we compute the gradient and set it
equal to zero, thereby obtaining the stationary condition

K
(
K + λIn

)
α = K

y√
n
.

Thus, we see that the vector α̂ previously defined in equation (12.30) is optimal. Note that
any vector β ∈ Rn such that Kβ = 0 has no effect on the optimal solution.

We return in Chapter 13 to study the statistical properties of the kernel ridge regression
estimate.

12.6 Distances between probability measures

There are various settings in which it is important to construct distances between probability
measures, and one way in which to do so is via measuring mean discrepancies over a given
function class. More precisely, let P and Q be a pair of probability measures on a space X,
and letF be a class of functions f : X → R that are integrable with respect to P and Q. We
can then define the quantity

ρF (P,Q) := sup
f∈F

∣∣∣∣∣∫ f (dP − dQ)
∣∣∣∣∣ = sup

f∈F

∣∣∣EP[ f (X)] − EQ[ f (Z)]
∣∣∣ . (12.31)

It can be verified that, for any choice of function classF , this always defines a pseudometric,
meaning that ρF satisfies all the metric properties, except that there may exist pairs P � Q
such that ρF (P,Q) = 0. WhenF is sufficiently rich, then ρF becomes a metric, known as
an integral probability metric. Let us provide some classical examples to illustrate:

Example 12.34 (Kolmogorov metric) Suppose that P and Q are measures on the real line.
For each t ∈ R, let I(−∞,t] denote the {0, 1}-valued indicator function for the event {x ≤ t}, and
consider the function classF =

{
I(−∞,t] | t ∈ R}. We then have

ρF (P,Q) = sup
t∈R

∣∣∣P(X ≤ t) − Q(X ≤ t)
∣∣∣ = ‖FP − FQ‖∞,

where FP and FQ are the cumulative distribution functions of P and Q, respectively. Thus,
this choice leads to the Kolmogorov distance between P and Q. ♣
Example 12.35 (Total variation distance) Consider the classF = { f : X → R | ‖ f ‖∞ ≤ 1}
of real-valued functions bounded by one in the supremum norm. With this choice, we have

ρF (P,Q) = sup
‖ f ‖∞≤1

∣∣∣ ∫ f (dP − dQ)
∣∣∣.
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As we show in Exercise 12.17, this metric corresponds to (two times) the total variation
distance

‖P − Q‖1 = sup
A⊂X

|P(A) − Q(A)|,

where the supremum ranges over all measurable subsets of X. ♣
When we choose F to be the unit ball of an RKHS, we obtain a mean discrepancy

pseudometric that is easy to compute. In particular, given an RKHS with kernel function K ,
consider the associated pseudometric

ρH(P,Q) := sup
‖ f ‖H≤1

∣∣∣EP[ f (X)] − EQ[ f (Z)]
∣∣∣.

As verified in Exercise 12.18, the reproducing property allows us to obtain a simple closed-
form expression for this pseudometric—namely,

ρ2
H(P,Q) = E

[K(X, X′) +K(Z, Z′) − 2K(X, Z)
]
, (12.32)

where X, X′ ∼ P and Z,Z′ ∼ Q are all mutually independent random vectors. We refer to
this pseudometric as a kernel means discrepancy, or KMD for short.

Example 12.36 (KMD for linear and polynomial kernels) Let us compute the KMD for
the linear kernel K(x, z) = 〈x, z〉 on Rd. Letting P and Q be two distributions on Rd with
mean vectors μp = EP[X] and μq = EQ[Z], respectively, we have

ρ2
H(P,Q) = E

[
〈X, X′〉 + 〈Z, Z′〉 − 2〈X, Z〉

]
= ‖μp‖2

2 + ‖μq‖2
2 − 2

〈
μp, μq

〉
= ‖μp − μq‖2

2.

Thus, we see that the KMD pseudometric for the linear kernel simply computes the Eu-
clidean distance of the associated mean vectors. This fact demonstrates that KMD in this
very special case is not actually a metric (but rather just a pseudometric), since ρH(P,Q) = 0
for any pair of distributions with the same means (i.e., μp = μq).

Moving onto polynomial kernels, let us consider the homogeneous polynomial kernel of
degree two, namely K(x, z) = 〈x, z〉2. For this choice of kernel, we have

E[K(X, X′)] = E

⎡⎢⎢⎢⎢⎢⎢⎣( d∑
j=1

XjX′
j

)2
⎤⎥⎥⎥⎥⎥⎥⎦ = d∑

i, j=1

E[XiXj]E[X′
i X

′
j] = |||Γp|||2F ,

where Γp ∈ Rd×d is the second-order moment matrix with entries [Γp]i j = E[XiXj], and the
squared Frobenius norm corresponds to the sum of the squared matrix entries. Similarly,
we have E[K(Z, Z′)] = |||Γq|||2F , where Γq is the second-order moment matrix for Q. Finally,
similar calculations yield that

E[K(X, Z)] =
d∑

i, j=1

[Γp]i j[Γq]i j = 〈〈Γp, Γq〉〉,
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where 〈〈·, ·〉〉 denotes the trace inner product between symmetric matrices. Putting together
the pieces, we conclude that, for the homogeneous second-order polynomial kernel, we have

ρ2
H(P,Q) = |||Γp − Γq|||2F . ♣

Example 12.37 (KMD for a first-order Sobolev kernel) Let us now consider the KMD in-
duced by the kernel function K(x, z) = min{x, z}, defined on the Cartesian product
[0, 1] × [0, 1]. As seen previously in Example 12.16, this kernel function generates the first-
order Sobolev space

H1[0, 1] =
{

f : R[0, 1] → R | f (0) = 0 and
∫ 1

0
( f ′(x))2 dx < ∞

}
,

with Hilbert norm ‖ f ‖2
H1[0,1] =

∫ 1

0
( f ′(x))2 dx. With this choice, we have

ρ2
H(P,Q) = E

[
min{X, X′} + min{Z, Z′} − 2 min{X,Z}

]
. ♣

12.7 Bibliographic details and background

The notion of a reproducing kernel Hilbert space emerged from the study of positive semi-
definite kernels and their links to Hilbert space structure. The seminal paper by Aron-
szajn (1950) develops a number of the basic properties from first principles, including
Propositions 12.27 and 12.31 as well as Theorem 12.11 from this chapter. The use of the
kernel trick for computing inner products via kernel evaluations dates back to Aizerman et
al. (1964), and underlies the success of the support vector machine developed by Boser et
al. (1992), and discussed in Exercise 12.20. The book by Wahba (1990) contains a wealth
of information on RKHSs, as well as the connections between splines and penalized meth-
ods for regression. See also the books by Berlinet and Thomas-Agnan (2004) as well as
Gu (2002). The book by Schölkopf and Smola (2002) provides a number of applications
of kernels in the setting of machine learning, including the support vector machine (Ex-
ercise 12.20) and related methods for classification, as well as kernel principal components
analysis. The book by Steinwart and Christmann (2008) also contains a variety of theoretical
results on kernels and reproducing kernel Hilbert spaces.

The argument underlying the proofs of Propositions 12.32 and 12.33 is known as the
representer theorem, and is due to Kimeldorf and Wahba (1971). From the computational
point of view, it is extremely important, since it allows the infinite-dimensional problem of
optimizing over an RKHS to be reduced to an n-dimensional convex program. Bochner’s
theorem relates the positive semidefiniteness of kernel functions to the non-negativity of
Fourier coefficients. In its classical formulation, it applies to the Fourier transform over
Rd, but it can be generalized to all locally compact Abelian groups (Rudin, 1990). The
results used to compute the asymptotic scaling of the eigenvalues of the Gaussian kernel in
Example 12.25 are due to Widom (1963; 1964).

There are a number of papers that study the approximation-theoretic properties of various
types of reproducing kernel Hilbert spaces. For a given Hilbert space H and norm ‖ · ‖, such



412 Reproducing kernel Hilbert spaces

results are often phrased in terms of the function

A( f ∗; R) := inf
‖ f ‖H≤R

‖ f − f ∗‖p, (12.33)

where ‖g‖p := (
∫
X gp(x) dx)1/p is the usual Lp-norm on a compact space X. This function

measures how quickly the Lp(X)-error in approximating some function f ∗ decays as the
Hilbert radius R is increased. See the papers (Smale and Zhou, 2003; Zhou, 2013) for results
on this form of the approximation error. A reproducing kernel Hilbert space is said to be
Lp(X)-universal if limR→∞ A( f ∗; R) = 0 for any f ∗ ∈ Lp(X). There are also various other
forms of universality; see the book by Steinwart and Christmann (2008) for further details.

Integral probability metrics of the form (12.31) have been studied extensively (Müller,
1997; Rachev et al., 2013). The particular case of RKHS-based distances are computation-
ally convenient, and have been studied in the context of proper scoring rules (Dawid, 2007;
Gneiting and Raftery, 2007) and two-sample testing (Borgwardt et al., 2006; Gretton et al.,
2012).

12.8 Exercises

Exercise 12.1 (Closedness of nullspace) Let L be a bounded linear functional on a Hilbert
space. Show that the subspace null(L) = { f ∈ H | L( f ) = 0} is closed.

Exercise 12.2 (Projections in a Hilbert space) Let G be a closed convex subset of a Hilbert
space H. In this exercise, we show that for any f ∈ H, there exists a unique ĝ ∈ G such that

‖̂g − f ‖H = inf
g∈G

‖̂g − f ‖H︸���������︷︷���������︸
p∗

.

This element ĝ is known as the projection of f onto G.

(a) By the definition of infimum, there exists a sequence (gn)∞n=1 contained in G such that
‖gn − f ‖H → p∗. Show that this sequence is a Cauchy sequence. (Hint: First show that
‖ f − gn+gm

2 ‖H converges to p∗.)
(b) Use this Cauchy sequence to establish the existence of ĝ.
(c) Show that the projection must be unique.
(d) Does the same claim hold for an arbitrary convex set G?

Exercise 12.3 (Direct sum decomposition in Hilbert space) Let H be a Hilbert space, and
let G be a closed linear subspace of H. Show that any f ∈ H can be decomposed uniquely as
g + g⊥, where g ∈ G and g⊥ ∈ G⊥. In brief, we say that H has the direct sum decomposition
G⊕G⊥. (Hint: The notion of a projection onto a closed convex set from Exercise 12.2 could
be helpful to you.)

Exercise 12.4 (Uniqueness of kernel) Show that the kernel function associated with any
reproducing kernel Hilbert space must be unique.

Exercise 12.5 (Kernels and Cauchy–Schwarz)
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(a) For any positive semidefinite kernel K : X × X → R, prove that

K(x, z) ≤
√
K(x, x)K(z, z) for all x, z ∈ X.

(b) Show how the classical Cauchy–Schwarz inequality is a special case.

Exercise 12.6 (Eigenfunctions for linear kernels) Consider the ordinary linear kernel
K(x, z) = 〈x, z〉 on Rd equipped with a probability measure P. Assuming that a random
vector X ∼ P has all its second moments finite, show how to compute the eigenfunctions of
the associated kernel operator acting on L2(X;P) in terms of linear algebraic operations.

Exercise 12.7 (Different kernels for polynomial functions) For an integer m ≥ 1, consider
the kernel functions K1(x, z) = (1 + xz)m and K2(x, z) =

∑m
�=0

x�

�!
z�
�! .

(a) Show that they are both PSD, and generate RKHSs of polynomial functions of degree
at most m.

(b) Why does this not contradict the result of Exercise 12.4?

Exercise 12.8 True or false? If true, provide a short proof; if false, give an explicit counter-
example.

(a) Given two PSD kernels K1 and K2, the bivariate function K(x, z) = min j=1,2 K j(x, z) is
also a PSD kernel.

(b) Let f : X → H be a function from an arbitrary space X to a Hilbert space H. The
bivariate function

K(x, z) =
〈 f (x), f (z)〉H
‖ f (x)‖H‖ f (z)‖H

defines a PSD kernel on X × X.

Exercise 12.9 (Left–right multiplication and kernels) Let K : X × X → R be a posi-
tive semidefinite kernel, and let f : X → R be an arbitrary function. Show that K̃(x, z) =
f (x)K(x, z) f (z) is also a positive semidefinite kernel.

Exercise 12.10 (Kernels and power sets) Given a finite set S , its power setP(S ) is the set of
all the subsets of S . Show that the function K : P(S )×P(S ) → R given by K(A, B) = 2|A∩B|

is a positive semidefinite kernel function.

Exercise 12.11 (Feature map for polynomial kernel) Recall from equation (12.14) the
notion of a feature map. Show that the polynomial kernel K(x, z) =

(
1 + 〈x, z〉 )m defined

on the Cartesian product space Rd × Rd can be realized by a feature map x �→ Φ(x) ∈ RD,
where D =

(
d+m

m

)
.

Exercise 12.12 (Probability spaces and kernels) Consider a probability space with events
E and probability law P. Show that the real-valued function

K(A, B) := P[A ∩ B] − P[A]P[B]

is a positive semidefinite kernel function on E × E.
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Exercise 12.13 (From sets to power sets) Suppose that K : S ×S → R is a symmetric PSD
kernel function on a finite set S . Show that

K′(A, B) =
∑

x∈A, z∈B

K(x, z)

is a symmetric PSD kernel on the power set P(S ).

Exercise 12.14 (Kernel and function boundedness) Consider a PSD kernelK : X×X → R
such that K(x, z) ≤ b2 for all x, z ∈ X. Show that ‖ f ‖∞ ≤ b for any function f in the unit
ball of the associated RKHS.

Exercise 12.15 (Sobolev kernels and norms) Show that the Sobolev kernel defined in equa-
tion (12.20) generates the norm given in equation (12.21).

Exercise 12.16 (Hadamard products and kernel products) In this exercise, we explore prop-
erties of product kernels and the Hadamard product of matrices.

(a) Given two n × n matrices Γ and Σ that are symmetric and positive semidefinite, show
that the Hadamard product matrix Σ + Γ ∈ Rn×n is also positive semidefinite. (The
Hadamard product is simply the elementwise product—that is, (Σ + Γ)i j = Σi jΓi j for all
i, j = 1, 2, . . . , n.)

(b) Suppose that K1 and K2 are positive semidefinite kernel functions on X × X. Show that
the functionK(x, z) := K1(x, z)K2(x, z) is a positive semidefinite kernel function. (Hint:
The result of part (a) could be helpful.)

Exercise 12.17 (Total variation norm) Given two probability measures P andQ onX, show
that

sup
‖ f ‖∞≤1

|
∫

f (dP − dQ)| = 2 sup
A⊂X

|P(A) − Q(A)|,

where the left supremum ranges over all measurable functions f : X → R, and the right
supremum ranges over all measurable subsets A of X.

Exercise 12.18 (RKHS-induced semi-metrics) LetH be a reproducing kernel Hilbert space
of functions with domain X, and let P and Q be two probability distributions on X. Show
that

sup
‖ f ‖H≤1

∣∣∣EP[ f (X)] − EQ[ f (Z)]
∣∣∣2 = E[K(X, X′) +K(Z, Z′) − 2K(X, Z)],

where X, X′ ∼ P and Z,Z′ ∼ Q are jointly independent.

Exercise 12.19 (Positive semidefiniteness of Gaussian kernel) Let X be a compact subset
ofRd. In this exercise, we work through a proof of the fact that the Gaussian kernelK(x, z) =

e−
‖x−z‖22

2σ2 on X × X is positive semidefinite.

(a) Let K̃ be a PSD kernel, and let p be a polynomial with non-negative coefficients. Show
that K(x, z) = p

(K̃(x, z)
)

is a PSD kernel.
(b) Show that the kernel K1(x, z) = e〈x, z〉/σ2

is positive semidefinite. (Hint: Part (a) and the
fact that a pointwise limit of PSD kernels is also PSD could be useful.)
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(c) Show that the Gaussian kernel is PSD. (Hint: The result of Exercise 12.9 could be use-
ful.)

Exercise 12.20 (Support vector machines and kernel methods) In the problem of binary
classification, one observes a collection of pairs {(xi, yi)}ni=1, where each feature vector xi ∈
Rd is associated with a label yi ∈ {−1,+1}, and the goal is derive a classification function
that can be applied to unlabelled feature vectors. In the context of reproducing kernel Hilbert
spaces, one way of doing so is by minimizing a criterion of the form

f̂ = arg min
f∈H

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

max{0, 1 − yi f (xi)} + 1
2
λn‖ f ‖2

H

⎫⎪⎪⎬⎪⎪⎭ , (12.34)

where H is a reproducing kernel Hilbert space, and λn > 0 is a user-defined regularization
parameter. The classification rule is then given by x �→ sign( f̂ (x)).

(a) Prove that f̂ can be written in the form f̂ (·) = 1√
n

∑n
i=1 α̂iK(·, xi), for some vector α̂ ∈ Rn.

(b) Use part (a) and duality theory to show that an optimal coefficient vector α̂ can be ob-
tained by solving the problem

α̂ ∈ arg max
α∈Rn

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

αi − 1
2
αTK̃α

⎫⎪⎪⎬⎪⎪⎭ s.t. αi ∈ [0, 1
λn
√

n ] for all i = 1, . . . , n,

and where K̃ ∈ Rn×n has entries K̃i j := yiy jK(xi, x j)/n.



13

Nonparametric least squares

In this chapter, we consider the problem of nonparametric regression, in which the goal is
to estimate a (possibly nonlinear) function on the basis of noisy observations. Using results
developed in previous chapters, we analyze the convergence rates of procedures based on
solving nonparametric versions of least-squares problems.

13.1 Problem set-up

A regression problem is defined by a set of predictors or covariates x ∈ X, along with
a response variable y ∈ Y. Throughout this chapter, we focus on the case of real-valued
response variables, in which the space Y is the real line or some subset thereof. Our goal is
to estimate a function f : X → Y such that the error y − f (x) is as small as possible over
some range of pairs (x, y). In the random design version of regression, we model both the
response and covariate as random quantities, in which case it is reasonable to measure the
quality of f in terms of its mean-squared error (MSE)

L f := EX,Y
[
(Y − f (X))2]. (13.1)

The function f ∗ minimizing this criterion is known as the Bayes’ least-squares estimate or
the regression function, and it is given by the conditional expectation

f ∗(x) = E[Y | X = x], (13.2)

assuming that all relevant expectations exist. See Exercise 13.1 for further details.
In practice, the expectation defining the MSE (13.1) cannot be computed, since the joint

distribution over (X, Y) is not known. Instead, we are given a collection of samples {(xi, yi)}ni=1,
which can be used to compute an empirical analog of the mean-squared error, namely

L̂ f :=
1
n

n∑
i=1

(
yi − f (xi)

)2
. (13.3)

The method of nonparametric least squares, to be discussed in detail in this chapter, is based
on minimizing this least-squares criterion over some suitably controlled function class.

13.1.1 Different measures of quality

Given an estimate f of the regression function, it is natural to measure its quality in terms
of the excess risk—namely, the difference between the optimal MSE L f ∗ achieved by the

416
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regression function f ∗, and that achieved by the estimate f . In the special case of the least-
squares cost function, it can be shown (see Exercise 13.1) that this excess risk takes the
form

L f − L f ∗ = EX
[
( f (X) − f ∗(X))2]︸��������������������︷︷��������������������︸

‖ f ∗− f ‖2
L2(P)

, (13.4)

where P denotes the distribution over the covariates. When this underlying distribution is
clear from the context, we frequently adopt the shorthand notation ‖ f − f ∗‖2 for the L2(P)-
norm.

In this chapter, we measure the error using a closely related but slightly different measure,
one that is defined by the samples {xi}ni=1 of the covariates. In particular, they define the
empirical distribution Pn := 1

n

∑n
i=1 δxi that places a weight 1/n on each sample, and the

associated L2(Pn)-norm is given by

‖ f − f ∗‖L2(Pn) :=
[1
n

n∑
i=1

(
f (xi) − f ∗(xi)

)2]1/2
. (13.5)

In order to lighten notation, we frequently use ‖ f̂ − f ∗‖n as a shorthand for the more cum-
bersome ‖ f̂ − f ∗‖L2(Pn). Throughout the remainder of this chapter, we will view the samples
{xi}ni=1 as being fixed, a set-up known as regression with a fixed design. The theory in this
chapter focuses on error bounds in terms of the empirical L2(Pn)-norm. Results from Chap-
ter 14 to follow can be used to translate these bounds into equivalent results in the population
L2(P)-norm.

13.1.2 Estimation via constrained least squares

Given a fixed collection {xi}ni=1 of fixed design points, the associated response variables {yi}ni=1
can always be written in the generative form

yi = f ∗(xi) + vi, for i = 1, 2, . . . , n, (13.6)

where vi is a random variable representing the “noise” in the ith response variable. Note
that these noise variables must have zero mean, given the form (13.2) of the regression
function f ∗. Apart from this zero-mean property, their structure in general depends on the
distribution of the conditioned random variable (Y | X = x). In the standard nonparametric
regression model, we assume the noise variables are drawn in an i.i.d. manner from the
N(0, σ2) distribution, where σ > 0 is a standard deviation parameter. In this case, we can
write vi = σwi, where wi ∼ N(0, 1) is a Gaussian random variable.

Given this set-up, one way in which to estimate the regression function f ∗ is by con-
strained least squares—that is, by solving the problem1

f̂ ∈ arg min
f∈F

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

(yi − f (xi))2

⎫⎪⎪⎬⎪⎪⎭ , (13.7)

1 Although the renormalization by n−1 in the definition (13.7) has no consequence on f̂ , we do so in order to
emphasize the connection between this method and the L2(Pn)-norm.
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whereF is a suitably chosen subset of functions. When vi ∼ N(0, σ2), note that the estimate
defined by the criterion (13.7) is equivalent to the constrained maximum likelihood estimate.
However, as with least-squares regression in the parametric setting, the estimator is far more
generally applicable.

Typically, we restrict the optimization problem (13.7) to some appropriately chosen sub-
set ofF—for instance, a ball of radius R in an underlying norm ‖ · ‖F . ChoosingF to be
a reproducing kernel Hilbert space, as discussed in Chapter 12, can be useful for computa-
tional reasons. It can also be convenient to use regularized estimators of the form

f̂ ∈ arg min
f∈F

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

(yi − f (xi))2 + λn‖ f ‖2
F

⎫⎪⎪⎬⎪⎪⎭ , (13.8)

where λn > 0 is a suitably chosen regularization weight. We return to analyze such estimators
in Section 13.4.

13.1.3 Some examples

Let us illustrate the estimators (13.7) and (13.8) with some examples.

Example 13.1 (Linear regression) For a given vector θ ∈ Rd, define the linear function
fθ(x) = 〈θ, x〉. Given a compact subset C ⊆ Rd, consider the function class

FC :=
{
fθ : Rd → R | θ ∈ C}.

With this choice, the estimator (13.7) reduces to a constrained form of least-squares estima-
tion, more specifically

θ̂ ∈ arg min
θ∈C

{
1
n
‖y − Xθ‖2

2

}
,

where X ∈ Rn×d is the design matrix with the vector xi ∈ Rd in its ith row. Particular instances
of this estimator include ridge regression, obtained by setting

C =
{
θ ∈ Rd | ‖θ‖2

2 ≤ R2

}
for some (squared) radius R2 > 0. More generally, this class of estimators contains all the
constrained �q-ball estimators, obtained by setting

C =
{
θ ∈ Rd |

d∑
j=1

|θ j|q ≤ Rq

}
for some q ∈ [0, 2] and radius Rq > 0. See Figure 7.1 for an illustration of these sets for
q ∈ (0, 1]. The constrained form of the Lasso (7.19), as analyzed in depth in Chapter 7, is a
special but important case, obtained by setting q = 1.

Whereas the previous example was a parametric problem, we now turn to some nonpara-
metric examples:
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Example 13.2 (Cubic smoothing spline) Consider the class of twice continuously differ-
entiable functions f : [0, 1] → R, and for a given squared radius R > 0, define the function
class

F (R) :=
{

f : [0, 1] → R |
∫ 1

0
( f ′′(x))2 dx ≤ R

}
, (13.9)

where f ′′ denotes the second derivative of f . The integral constraint on f ′′ can be under-
stood as a Hilbert norm bound in the second-order Sobolev space Hα[0, 1] introduced in
Example 12.17. In this case, the penalized form of the nonparametric least-squares estimate
is given by

f̂ ∈ arg min
f

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

(yi − f (xi))2 + λn

∫ 1

0
( f ′′(x))2 dx

⎫⎪⎪⎬⎪⎪⎭ , (13.10)

where λn > 0 is a user-defined regularization parameter. It can be shown that any minimizer
f̂ is a cubic spline, meaning that it is a piecewise cubic function, with the third derivative
changing at each of the distinct design points xi. In the limit as R → 0 (or equivalently, as
λn → +∞), the cubic spline fit f̂ becomes a linear function, since we have f ′′ = 0 only for a
linear function. ♣

The spline estimator in the previous example turns out to be a special case of a more gen-
eral class of estimators, based on regularization in a reproducing kernel Hilbert space (see
Chapter 12 for background). Let us consider this family more generally:

Example 13.3 (Kernel ridge regression) Let H be a reproducing kernel Hilbert space,
equipped with the norm ‖ · ‖H. Given some regularization parameter λn > 0, consider the
estimator

f̂ ∈ arg min
f∈H

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

(yi − f (xi))2 + λn‖ f ‖2
H

⎫⎪⎪⎬⎪⎪⎭ .

As discussed in Chapter 12, the computation of this estimate can be reduced to solving a
quadratic program involving the empirical kernel matrix defined by the design points {xi}ni=1.
In particular, if we define the kernel matrix with entries Ki j = K(xi, x j)/n, then the solution
takes the form f̂ (·) = 1√

n

∑n
i=1 α̂iK(·, xi), where α̂ :=

(
K + λnIn

)−1 y√
n . In Exercise 13.3, we

show how the spline estimator from Example 13.2 can be understood in the context of kernel
ridge regression. ♣
Let us now consider an example of what is known as shape-constrained regression.

Example 13.4 (Convex regression) Suppose that f ∗ : C → R is known to be a convex
function over its domain C, some convex and open subset of Rd. In this case, it is natural to
consider the least-squares estimator with a convexity constraint—namely

f̂ ∈ arg min
f : C→R

f is convex

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

(
yi − f (xi)

)2⎫⎪⎪⎬⎪⎪⎭ .
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As stated, this optimization problem is infinite-dimensional in nature. Fortunately, by
exploiting the structure of convex functions, it can be converted to an equivalent finite-
dimensional problem. In particular, any convex function f is subdifferentiable at each point
in the (relative) interior of its domain C. More precisely, at any interior point x ∈ C, there
exists at least one vector z ∈ Rd such that

f (y) ≥ f (x) + 〈z, y − x〉 for all y ∈ C. (13.11)

Any such vector is known as a subgradient, and each point x ∈ C can be associated with
the set ∂ f (x) of its subgradients, which is known as the subdifferential of f at x. When f is
actually differentiable at x, then the lower bound (13.11) holds if and only if z = ∇ f (x), so
that we have ∂ f (x) = {∇ f (x)}. See the bibliographic section for some standard references in
convex analysis.

Applying this fact to each of the sampled points {xi}ni=1, we find that there must exist
subgradient vectors z̃i ∈ Rd such that

f (x) ≥ f (xi) + 〈̃zi, x − xi〉 for all x ∈ C. (13.12)

Since the cost function depends only on the values ỹi := f (xi), the optimum does not de-
pend on the function behavior elsewhere. Consequently, it suffices to consider the collection
{(̃yi, z̃i)}ni=1 of function value and subgradient pairs, and solve the optimization problem

min
{(̃yi,zi)}ni=1

1
n

n∑
i=1

(
yi − ỹi

)2 (13.13)

such that ỹ j ≥ ỹi + 〈̃zi, x j − xi〉 for all i, j = 1, 2, . . . , n.

Note that this is a convex program in N = n(d + 1) variables, with a quadratic cost function
and a total of 2

(
n
2

)
linear constraints.

An optimal solution {(̂yi, ẑi)}ni=1 can be used to define the estimate f̂ : C → R via

f̂ (x) := max
i=1,...,n

{̂
yi + 〈̂zi, x − xi〉}. (13.14)

As the maximum of a collection of linear functions, the function f̂ is convex. Moreover, a
short calculation—using the fact that {(̂yi, ẑi)}ni=1 are feasible for the program (13.13)—shows
that f̂ (xi) = ŷi for all i = 1, 2, . . . , n. Figure 13.1(a) provides an illustration of the convex
regression estimate (13.14), showing its piecewise linear nature.

There are various extensions to the basic convex regression estimate. For instance, in the
one-dimensional setting (d = 1), it might be known a priori that f is a non-decreasing
function, so that its derivative (or, more generally, subgradients) are non-negative. In this
case, it is natural to impose additional non-negativity constraints (̃z j ≥ 0) on the subgradients
in the estimator (13.13). Figure 13.1(b) compares the standard convex regression estimate
with the estimator that imposes these additional monotonicity constraints. ♣

13.2 Bounding the prediction error

From a statistical perspective, an essential question associated with the nonparametric least-
squares estimate (13.7) is how well it approximates the true regression function f ∗. In this
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(a) Convex regression (b) Convex vs convex/monotonic regression

Figure 13.1 (a) Illustration of the convex regression estimate (13.14) based on a
fixed design with n = 11 equidistant samples over the interval C = [−1, 1]. (b) Ordi-
nary convex regression compared with convex and monotonic regression estimate.

section, we develop some techniques to bound the error ‖ f̂ − f ∗‖n, as measured in the L2(Pn)-
norm. In Chapter 14, we develop results that allow such bounds to be translated into bounds
in the L2(P)-norm.

Intuitively, the difficulty of estimating the function f ∗ should depend on the complexity
of the function class F in which it lies. As discussed in Chapter 5, there are a variety of
ways of measuring the complexity of a function class, notably by its metric entropy or its
Gaussian complexity. We make use of both of these complexity measures in the results to
follow.

Our first main result is defined in terms of a localized form of Gaussian complexity: it
measures the complexity of the function classF , locally in a neighborhood around the true
regression function f ∗. More precisely, we define the set

F ∗ :=F − { f ∗} = { f − f ∗ | f ∈F }, (13.15)

corresponding to an f ∗-shifted version of the original function class F . For a given radius
δ > 0, the local Gaussian complexity around f ∗ at scale δ is given by

Gn(δ;F ∗) := Ew

[
sup
g∈F ∗
‖g‖n≤δ

∣∣∣1
n

n∑
i=1

wig(xi)
∣∣∣], (13.16)

where the variables {wi}ni=1 are i.i.d. N(0, 1) variates. Throughout this chapter, this complex-
ity measure should be understood as a deterministic quantity, since we are considering the
case of fixed covariates {xi}ni=1.

A central object in our analysis is the set of positive scalars δ that satisfy the critical
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inequality

Gn(δ;F ∗)
δ

≤ δ

2σ
. (13.17)

As we verify in Lemma 13.6, whenever the shifted function class F ∗ is star-shaped,2 the
left-hand side is a non-increasing function of δ, which ensures that the inequality can be
satisfied. We refer to any δn > 0 satisfying inequality (13.17) as being valid, and we use
δ∗n > 0 to denote the smallest positive radius for which inequality (13.17) holds. See the
discussion following Theorem 13.5 for more details on the star-shaped property and the
existence of valid radii δn.

Figure 13.2 illustrates the non-increasing property of the function δ �→ Gn(δ)/δ for two
different function classes: a first-order Sobolev space in Figure 13.2(a), and a Gaussian ker-
nel space in Figure 13.2(b). Both of these function classes are convex, so that the star-shaped
property holds for any f ∗. Setting σ = 1/2 for concreteness, the critical radius δ∗n can be de-
termined by finding where this non-increasing function crosses the line with slope one, as
illustrated. As will be clarified later, the Gaussian kernel class is much smaller than the
first-order Sobolev space, so that its critical radius is correspondingly smaller. This ordering
reflects the natural intuition that it should be easier to perform regression over a smaller
function class.
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Figure 13.2 Illustration of the critical radius for sample size n = 100 and two dif-
ferent function classes. (a) A first-order Sobolev space. (b) A Gaussian kernel class.
In both cases, the function δ �→ Gn(δ;F )

δ
, plotted as a solid line, is non-increasing, as

guaranteed by Lemma 13.6. The critical radius δ∗n, marked by a gray dot, is deter-
mined by finding its intersection with the line of slope 1/(2σ) with σ = 1, plotted as
the dashed line. The set of all valid δn consists of the interval [δ∗n,∞).

Some intuition: Why should the inequality (13.17) be relevant to the analysis of the
nonparametric least-squares estimator? A little calculation is helpful in gaining intuition.
Since f̂ and f ∗ are optimal and feasible, respectively, for the constrained least-squares prob-

2 A function classH is star-shaped if for any h ∈ H and α ∈ [0, 1], the rescaled function αh also belongs
toH .
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lem (13.7), we are guaranteed that

1
2n

n∑
i=1

(yi − f̂ (xi))2 ≤ 1
2n

n∑
i=1

(yi − f ∗(xi))2.

Recalling that yi = f ∗(xi) + σwi, some simple algebra leads to the equivalent expression

1
2
‖ f̂ − f ∗‖2

n ≤
σ

n

n∑
i=1

wi
(
f̂ (xi) − f ∗(xi)

)
, (13.18)

which we call the basic inequality for nonparametric least squares.
Now, by definition, the difference function f̂ − f ∗ belongs to F ∗, so that we can bound

the right-hand side by taking the supremum over all functions g ∈F ∗ with ‖g‖n ≤ ‖ f̂ − f ∗‖n.
Reasoning heuristically, this observation suggests that the squared error δ2 := E[‖ f̂ − f ∗‖2

n]
should satisfy a bound of the form

δ2

2
≤ σ Gn(δ;F ∗) or equivalently

δ

2σ
≤ Gn(δ;F ∗)

δ
. (13.19)

By definition (13.17) of the critical radius δ∗n, this inequality can only hold for values of δ ≤
δ∗n. In summary, this heuristic argument suggests a bound of the form E[‖ f̂ − f ∗‖2

n] ≤ (δ∗n)2.

To be clear, the step from the basic inequality (13.18) to the bound (13.19) is not rigor-
ously justified for various reasons, but the underlying intuition is correct. Let us now state a
rigorous result, one that applies to the least-squares estimator (13.7) based on observations
from the standard Gaussian noise model yi = f ∗(xi) + σwi.

Theorem 13.5 Suppose that the shifted function class F ∗ is star-shaped, and let δn

be any positive solution to the critical inequality (13.17). Then for any t ≥ δn, the
nonparametric least-squares estimate f̂n satisfies the bound

P
[
‖ f̂n − f ∗‖2

n ≥ 16 t δn

]
≤ e−

nt δn
2σ2 . (13.20)

Remarks: The bound (13.20) provides non-asymptotic control on the regression error
‖ f̂ − f ∗‖2

2. By integrating this tail bound, it follows that the mean-squared error in the
L2(Pn)-semi-norm is upper bounded as

E
[‖ f̂n − f ∗‖2

n
] ≤ c

{
δ2

n +
σ2

n

}
for some universal constant c.

As shown in Exercise 13.5, for any function class F that contains the constant function
f ≡ 1, we necessarily have δ2

n ≥ 2
π

σ2

n , so that (disregarding constants) the δ2
n term is always

the dominant one.
For concreteness, we have stated the result for the case of additive Gaussian noise (vi =

σwi). However, as the proof will clarify, all that is required is an upper tail bound on the
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random variable

Zn(δ) := sup
g∈F ∗
‖g‖n≤δ

∣∣∣1
n

n∑
i=1

vi

σ
g(xi)

∣∣∣
in terms of its expectation. The expectation E[Zn(δ)] defines a more general form of (poten-
tially non-Gaussian) noise complexity that then determines the critical radius.

The star-shaped condition on the shifted function classF ∗ =F − f ∗ is needed at various
parts of the proof, including in ensuring the existence of valid radii δn (see Lemma 13.6
to follow). In explicit terms, the function class F ∗ is star-shaped if for any g ∈ F and
α ∈ [0, 1], the function αg also belongs to F ∗. Equivalently, we say that F is star-shaped
around f ∗. For instance, if F is convex, then as illustrated in Figure 13.3 it is necessarily
star-shaped around any f ∗ ∈ F . Conversely, if F is not convex, then there must exist
choices f ∗ ∈ F such that F ∗ is not star-shaped. However, for a general non-convex set
F , it is still possible thatF ∗ is star-shaped for some choices of f ∗. See Figure 13.3 for an
illustration of these possibilities, and Exercise 13.4 for further details.

F

f ∗
f

F

f ∗
f †

f

(a) (b)

Figure 13.3 Illustration of star-shaped properties of sets. (a) The set F is convex,
and hence is star-shaped around any of its points. The line between f ∗ and f is
contained within F , and the same is true for any line joining any pair of points in
F . (b) A setF that is not star-shaped around all its points. It fails to be star-shaped
around the point f ∗, since the line drawn to f ∈ F does not lie within the set.
However, this set is star-shaped around the point f †.

If the star-shaped condition fails to hold, then Theorem 13.5 can instead by applied with
δn defined in terms of the star hull

star(F ∗; 0) :=
{
αg | g ∈F ∗, α ∈ [0, 1]

}
=
{
α( f − f ∗) | f ∈F , α ∈ [0, 1]}. (13.21)

Moreover, since the function f ∗ is not known to us, we often replace F ∗ with the larger
class

∂F :=F −F =
{
f1 − f2 | f1, f2 ∈F }

, (13.22)

or its star hull when necessary. We illustrate these considerations in the concrete examples
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to follow.

Let us now verify that the star-shaped condition ensures existence of the critical radius:

Lemma 13.6 For any star-shaped function classH , the function δ �→ Gn(δ;H )
δ

is non-
increasing on the interval (0,∞). Consequently, for any constant c > 0, the inequality

Gn(δ;H )
δ

≤ c δ (13.23)

has a smallest positive solution.

Proof So as to ease notation, we drop the dependence of Gn on the function class H
throughout this proof. Given a pair 0 < δ ≤ t, it suffices to show that δ

tGn(t) ≤ Gn(δ). Given
any function h ∈H with ‖h‖n ≤ t, we may define the rescaled function h̃ = δ

t h, and write

1
n

{δ
t

n∑
i=1

wih(xi)
}
=

1
n

{ n∑
i=1

wĩh(xi)
}
.

By construction, we have ‖̃h‖n ≤ δ; moreover, since δ ≤ t, the star-shaped assumption
guarantees that h̃ ∈ H . Consequently, for any h̃ formed in this way, the right-hand side is
at most Gn(δ) in expectation. Taking the supremum over the setH ∩ {‖h‖n ≤ t} followed by
expectations yields Gn(t) on the left-hand side. Combining the pieces yields the claim.

In practice, determining the exact value of the critical radius δ∗n may be difficult, so that
we seek reasonable upper bounds on it. As shown in Exercise 13.5, we always have δ∗n ≤ σ,
but this is a very crude result. By bounding the local Gaussian complexity, we will obtain
much finer results, as illustrated in the examples to follow.

13.2.1 Bounds via metric entropy

Note that the localized Gaussian complexity corresponds to the expected absolute maximum
of a Gaussian process. As discussed in Chapter 5, Dudley’s entropy integral can be used to
upper bound such quantities.

In order to do so, let us begin by introducing some convenient notation. For any function
class H , we define Bn(δ;H ) := {h ∈ star(H ) | ‖h‖n ≤ δ}, and we let Nn(t;Bn(δ;H ))
denote the t-covering number of Bn(δ;H ) in the norm ‖ · ‖n. With this notation, we have the
following corollary:
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Corollary 13.7 Under the conditions of Theorem 13.5, any δ ∈ (0, σ] such that

16√
n

∫ δ

δ2
4σ

√
log Nn(t; Bn(δ;F ∗)) dt ≤ δ2

4σ
(13.24)

satisfies the critical inequality (13.17), and hence can be used in the conclusion of
Theorem 13.5.

Proof For any δ ∈ (0, σ], we have δ2

4σ < δ, so that we can construct a minimal δ2

4σ -covering
of the set Bn(δ;F ∗) in the L2(Pn)-norm, say {g1, . . . , gM}. For any function g ∈ Bn(δ;F ∗),
there is an index j ∈ [M] such that ‖gj − g‖n ≤ δ2

4σ . Consequently, we have∣∣∣∣1n
n∑

i=1

wig(xi)
∣∣∣∣ (i)≤

∣∣∣∣1n
n∑

i=1

wig j(xi)
∣∣∣∣ + ∣∣∣∣1n

n∑
i=1

wi
(
g(xi) − gj(xi)

)∣∣∣∣
(ii)≤ max

j=1,...,M

∣∣∣∣1n
n∑

i=1

wig j(xi)
∣∣∣∣ +

√∑n
i=1 w2

i

n

√∑n
i=1

(
g(xi) − gj(xi)

)2
n

(iii)≤ max
j=1,...,M

∣∣∣∣1n
n∑

i=1

wig j(xi)
∣∣∣∣ +

√∑n
i=1 w2

i

n
δ2

4σ
,

where step (i) follows from the triangle inequality, step (ii) follows from the Cauchy–
Schwarz inequality and step (iii) uses the covering property. Taking the supremum over
g ∈ Bn(δ;F ∗) on the left-hand side and then expectation over the noise, we obtain

Gn(δ) ≤ Ew

⎡⎢⎢⎢⎢⎢⎣ max
j=1,...,M

∣∣∣∣1n
n∑

i=1

wig j(xi)
∣∣∣∣⎤⎥⎥⎥⎥⎥⎦ + δ2

4σ
, (13.25)

where we have used the fact that Ew

√∑n
i=1 w2

i
n ≤ 1.

It remains to upper bound the expected maximum over the M functions in the cover, and
we do this by using the chaining method from Chapter 5. Define the family of Gaussian
random variables Z(gj) := 1√

n

∑n
i=1 wig j(xi) for j = 1, . . . , M. Some calculation shows that

they are zero-mean, and their associated semi-metric is given by

ρ2
Z(gj, gk) := var(Z(gj) − Z(gk)) = ‖gj − gk‖2

n.

Since ‖g‖n ≤ δ for all g ∈ Bn(δ;F ∗), the coarsest resolution of the chaining can be set to
δ, and we can terminate it at δ2

4σ , since any member of our finite set can be reconstructed
exactly at this resolution. Working through the chaining argument, we find that

Ew

⎡⎢⎢⎢⎢⎢⎣ max
j=1,...,M

∣∣∣∣1n
n∑

i=1

wig j(xi)
∣∣∣∣⎤⎥⎥⎥⎥⎥⎦ = Ew

[
max

j=1,...,M

|Z(gj)|√
n

]
≤ 16√

n

∫ δ

δ2
4σ

√
log Nn(t;Bn(δ;F ∗)) dt.

Combined with our earlier bound (13.25), this establishes the claim.
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Some examples are helpful in understanding the uses of Theorem 13.5 and Corollary 13.7,
and we devote the following subsections to such illustrations.

13.2.2 Bounds for high-dimensional parametric problems

We begin with some bounds for parametric problems, allowing for a general dimension.

Example 13.8 (Bound for linear regression) As a warm-up, consider the standard linear
regression model yi = 〈θ∗, xi〉 + wi, where θ∗ ∈ Rd. Although it is a parametric model,
some insight can be gained by analyzing it using our general theory. The usual least-squares
estimate corresponds to optimizing over the function class

Flin =
{
fθ(·) = 〈θ, ·〉 | θ ∈ Rd}.

Let X ∈ Rn×d denote the design matrix, with xi ∈ Rd as its ith row. In this example, we use
our general theory to show that the least-squares estimate satisfies a bound of the form

‖ f̂θ − fθ∗ ‖2
n =

‖X(̂θ − θ∗)‖2
2

n
� σ2 rank(X)

n
(13.26)

with high probability. To be clear, in this special case, this bound (13.26) can be obtained by
a direct linear algebraic argument, as we explore in Exercise 13.2. However, it is instructive
to see how our general theory leads to concrete predictions in a special case.

We begin by observing that the shifted function classF ∗
lin is equal toFlin for any choice

of f ∗. Moreover, the set Flin is convex and hence star-shaped around any point (see Exer-
cise 13.4), so that Corollary 13.7 can be applied. The mapping θ �→ ‖ fθ‖n =

‖Xθ‖2√
n defines a

norm on the subspace range(X), and the set Bn(δ;Flin) is isomorphic to a δ-ball within the
space range(X). Since this range space has dimension given by rank(X), by a volume ratio
argument (see Example 5.8), we have

log Nn
(
t;Bn(δ;Flin)

) ≤ r log
(
1 +

2δ
t

)
, where r := rank(X).

Using this upper bound in Corollary 13.7, we find that

1√
n

∫ δ

0

√
log Nn(t;Bn(δ;Flin) dt ≤

√
r
n

∫ δ

0

√
log(1 +

2δ
t

) dt

(i)
= δ

√
r
n

∫ 1

0

√
log(1 +

2
u

) du

(ii)
= c δ

√
r
n
,

where we have made the change of variables u = t/δ in step (i), and the final step (ii) follows
since the integral is a constant. Putting together the pieces, an application of Corollary 13.7
yields the claim (13.26). In fact, the bound (13.26) is minimax-optimal up to constant factors,
as we will show in Chapter 15. ♣

Let us now consider another high-dimensional parametric problem, namely that of sparse
linear regression.
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Example 13.9 (Bounds for linear regression over �q-“balls”) Consider the case of sparse
linear regression, where the d-variate regression vector θ is assumed to lie within the �q-ball
of radius Rq—namely, the set

Bq(Rq) :=
{
θ ∈ Rd |

d∑
j=1

|θ j|q ≤ Rq

}
. (13.27)

See Figure 7.1 for an illustration of these sets for different choices of q ∈ (0, 1]. Consider
class of linear functions fθ(x) = 〈θ, x〉 given by

Fq(Rq) :=
{
fθ | θ ∈ Bq(Rq)

}
. (13.28)

We adopt the shorthandFq when the radius Rq is clear from context.
In this example, we focus on the range q ∈ (0, 1). Suppose that we solve the least-squares

problem with �q regularization—that is, we compute the estimate

θ̂ ∈ arg min
θ∈Bq(Rq)

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

(
yi − 〈xi, θ〉 )2⎫⎪⎪⎬⎪⎪⎭ . (13.29)

Unlike the �1-constrained Lasso analyzed in Chapter 7, note that this is not a convex pro-
gram. Indeed, for q ∈ (0, 1), the function classFq(Rq) is not convex, so that there exists θ∗ ∈
Bq(Rq) such that the shifted classF ∗

q =Fq − fθ∗ is not star-shaped. Accordingly, we instead
focus on bounding the metric entropy of the function class Fq(Rq) −Fq(Rq) = 2Fq(Rq).
Note that for all q ∈ (0, 1) and numbers a, b ∈ R, we have |a+ b|q ≤ |a|q + |b|q, which implies
that 2Fq(Rq) is contained withFq(2Rq).

It is known that for q ∈ (0, 1), and under mild conditions on the choice of t relative to the
triple (n, d,Rq), the metric entropy of the �q-ball with respect to �2-norm is upper bounded
by

log N2,q(t) ≤ Cq

[
R

2
2−q
q
(1

t
) 2q

2−q log d
]
, (13.30)

where Cq is a constant depending only on q.
Given our design vectors {xi}ni=1, consider the n× d design matrix X with xT

i as its ith row,
and let Xj ∈ Rn denote its jth column. Our objective is to bound the metric entropy of the
set of all vectors of the form

Xθ√
n
=

1√
n

d∑
j=1

Xjθ j (13.31)

as θ ranges over Bq(Rq), an object known as the q-convex hull of the renormalized
column vectors {X1, . . . , Xd}/√n. Letting C denote a numerical constant such that
max j=1,...,d ‖Xj‖2/

√
n ≤ C, it is known that the metric entropy of this q-convex hull has the

same scaling as the original �q-ball. See the bibliographic section for further discussion of
these facts about metric entropy.

Exploiting this fact and our earlier bound (13.30) on the metric entropy of the �q-ball, we
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find that

1√
n

∫ δ

δ2
4σ

√
log Nn

(
t; Bn(δ;Fq(2Rq))

)
dt � R

1
2−q
q

√
log d

n

∫ δ

0

(1
t

) q
2−q dt

� R
1

2−q
q

√
log d

n
δ1− q

2−q ,

a calculation valid for all q ∈ (0, 1). Corollary 13.7 now implies that the critical condi-
tion (13.17) is satisfied as long as

R
1

2−q
q

√
σ2 log d

n
� δ1+ q

2−q or equivalently Rq
(σ2 log d

n
)1− q

2 � δ2.

Theorem 13.5 then implies that

‖ f̂θ − fθ∗ ‖2
n =

‖X(̂θ − θ∗)‖2
2

n
� Rq

(σ2 log d
n

)1− q
2 ,

with high probability. Although this result is a corollary of our general theorem, this rate is
minimax-optimal up to constant factors, meaning that no estimator can achieve a faster rate.
See the bibliographic section for further discussion and references of these connections. ♣

13.2.3 Bounds for nonparametric problems

Let us now illustrate the use of our techniques for some nonparametric problems.

Example 13.10 (Bounds for Lipschitz functions) Consider the class of functions

FLip(L) :=
{
f : [0, 1] → R | f (0) = 0, f is L-Lipschitz

}
. (13.32)

Recall that f is L-Lipschitz means that | f (x) − f (x′)| ≤ L|x − x′| for all x, x′ ∈ [0, 1]. Let us
analyze the prediction error associated with nonparametric least squares over this function
class.

Noting the inclusion

FLip(L) −FLip(L) = 2FLip(L) ⊆FLip(2L),

it suffices to upper bound the metric entropy of FLip(2L). Based on our discussion
from Example 5.10, the metric entropy of this class in the supremum norm scales as
log N∞(ε;FLip(2L)) , (L/ε). Consequently, we have

1√
n

∫ δ

0

√
log Nn(t; Bn(δ;FLip(2L))) dt �

∫ δ

0

√
log N∞(t; FLip(2L)) dt

� 1√
n

∫ δ

0
(L/t)

1
2 dt

� 1√
n

√
Lδ,

where � denotes an inequality holding apart from constants not dependent on the triplet
(δ, L, n). Thus, it suffices to choose δn > 0 such that

√
Lδn√
n � δ2

n
σ

, or equivalently δ2
n ,

( Lσ2

n

) 2
3 .



430 Nonparametric least squares

Putting together the pieces, Corollary 13.7 implies that the error in the nonparametric least-
squares estimate satisfies the bound

‖ f̂ − f ∗‖2
n �

(Lσ2

n

)2/3
(13.33)

with probability at least 1 − c1e−c2

(
n

Lσ2

)1/3

. ♣

Example 13.11 (Bounds for convex regression) As a continuation of the previous example,
let us consider the class of convex 1-Lipschitz functions, namely

Fconv([0, 1]; 1) :=
{
f : [0, 1] → R | f (0) = 0 and f is convex and 1-Lipschitz

}
.

As discussed in Example 13.4, computation of the nonparametric least-squares estimate over
such convex classes can be reduced to a type of quadratic program. Here we consider the
statistical rates that are achievable by such an estimator.

It is known that the metric entropy ofFconv, when measured in the infinity norm, satisfies
the upper bound

log N(ε;Fconv, ‖ · ‖∞) �
(1
ε

)1/2
(13.34)

for all ε > 0 sufficiently small. (See the bibliographic section for details.) Thus, we can
again use an entropy integral approach to derive upper bounds on the prediction error. In
particular, calculations similar to those in the previous example show that the conditions of
Corollary 13.7 hold for δ2

n ,
(σ2

n

) 4
5 , and so we are guaranteed that

‖ f̂ − f ∗‖2
n �

(σ2

n

)4/5
(13.35)

with probability at least 1 − c1e−c2

(
n
σ2

)1/5

.
Note that our error bound (13.35) for convex Lipschitz functions is substantially faster

than our earlier bound (13.33) for Lipschitz functions without a convexity constraint—in
particular, the respective rates are n−4/5 versus n−2/3. In Chapter 15, we show that both of
these rates are minimax-optimal, meaning that, apart from constant factors, they cannot be
improved substantially. Thus, we see that the additional constraint of convexity is signif-
icant from a statistical point of view. In fact, as we explore in Exercise 13.8, in terms of
their estimation error, convex Lipschitz functions behave exactly like the class of all twice-
differentiable functions with bounded second derivative, so that the convexity constraint
amounts to imposing an extra degree of smoothness. ♣

13.2.4 Proof of Theorem 13.5

We now turn to the proof of our previously stated theorem.



13.2 Bounding the prediction error 431

Establishing a basic inequality
Recall the basic inequality (13.18) established in our earlier discussion. In terms of the
shorthand notation Δ̂ = f̂ − f ∗, it can be written as

1
2
‖Δ̂‖2

n ≤
σ

n

n∑
i=1

wiΔ̂(xi). (13.36)

By definition, the error function Δ̂ = f̂ − f ∗ belongs to the shifted function classF ∗.

Controlling the right-hand side
In order to control the stochastic component on the right-hand side, we begin by stating
an auxiliary lemma in a somewhat more general form, since it is useful for subsequent
arguments. Let H be an arbitrary star-shaped function class, and let δn > 0 satisfy the
inequality Gn(δ;H )

δ
≤ δ

2σ . For a given scalar u ≥ δn, define the event

A(u) :=
{
∃ g ∈H ∩ {‖g‖n ≥ u} | ∣∣∣σ

n

n∑
i=1

wig(xi)
∣∣∣ ≥ 2‖g‖nu

}
. (13.37)

The following lemma provides control on the probability of this event:

Lemma 13.12 For all u ≥ δn, we have

P[A(u)] ≤ e−
nu2

2σ2 . (13.38)

Let us prove the main result by exploiting this lemma, in particular with the settings
H =F ∗ and u =

√
tδn for some t ≥ δn, so that we have

P[Ac(
√

tδn)] ≥ 1 − e−
ntδn
2σ2 .

If ‖Δ̂‖n <
√

t δn, then the claim is immediate. Otherwise, we have Δ̂ ∈F ∗ and ‖Δ̂‖n ≥
√

t δn,
so that we may condition on Ac(

√
tδn) so as to obtain the bound

∣∣∣σ
n

n∑
i=1

wiΔ̂(xi)
∣∣∣ ≤ 2 ‖Δ̂‖n

√
tδn.

Consequently, the basic inequality (13.36) implies that ‖Δ̂‖2
n ≤ 4‖Δ̂‖n

√
tδn, or equivalently

that ‖Δ̂‖2
n ≤ 16tδn, a bound that holds with probability at least 1 − e−

ntδn
2σ2 .

In order to complete the proof of Theorem 13.5, it remains to prove Lemma 13.12.

Proof of Lemma 13.12
Our first step is to reduce the problem to controlling a supremum over a subset of functions
satisfying the upper bound ‖̃g‖n ≤ u. Suppose that there exists some g ∈ H with ‖g‖n ≥ u
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such that ∣∣∣∣σn
n∑

i=1

wig(xi)
∣∣∣∣ ≥ 2‖g‖nu. (13.39)

Defining the function g̃ := u
‖g‖n

g, we observe that ‖̃g‖n = u. Since g ∈ H and u
‖g‖n

∈ (0, 1],
the star-shaped assumption implies that g̃ ∈ H . Consequently, we have shown that if there
exists a function g satisfying the inequality (13.39), which occurs whenever the event A(u)
is true, then there exists a function g̃ ∈H with ‖̃g‖n = u such that∣∣∣∣1n

n∑
i=1

wig̃(xi)
∣∣∣∣ = u

‖g‖n

∣∣∣∣σn
n∑

i=1

wig(xi)
∣∣∣∣ ≥ 2u2.

We thus conclude that

P[A(u)] ≤ P[Zn(u) ≥ 2u2], where Zn(u) := sup
g̃∈H
‖̃g‖n≤u

|σ
n

n∑
i=1

wig̃(xi)|. (13.40)

Since the noise variables wi ∼ N(0, 1) are i.i.d., the variable σ
n

∑n
i=1 wig̃(xi) is zero-mean

and Gaussian for each fixed g̃. Therefore, the variable Zn(u) corresponds to the supremum of
a Gaussian process. If we view this supremum as a function of the standard Gaussian vector
(w1, . . . ,wn), then it can be verified that the associated Lipschitz constant is at most σu√

n .

Consequently, Theorem 2.26 guarantees the tail bound P
[
Zn(u) ≥ E[Zn(u)] + s

] ≤ e−
ns2

2u2σ2 ,
valid for any s > 0. Setting s = u2 yields

P
[
Zn(u) ≥ E[Zn(u)] + u2] ≤ e−

nu2

2σ2 . (13.41)

Finally, by definition of Zn(u) and Gn(u), we have E[Zn(u)] = σGn(u). By Lemma 13.6, the
function v �→ Gn(v)

v is non-decreasing, and since u ≥ δn by assumption, we have

σ
Gn(u)

u
≤ σ

Gn(δn)
δn

(i)≤ δn/2 ≤ δn,

where step (i) uses the critical condition (13.17). Putting together the pieces, we have shown
that E[Zn(u)] ≤ uδn. Combined with the tail bound (13.41), we obtain

P[Zn(u) ≥ 2u2]
(ii)≤ P[Zn(u) ≥ uδn + u2] ≤ e−

nu2

2σ2 ,

where step (ii) uses the inequality u2 ≥ uδn.

13.3 Oracle inequalities

In our analysis thus far, we have assumed that the regression function f ∗ belongs to the
function class F over which the constrained least-squares estimator (13.7) is defined. In
practice, this assumption might be violated, but it is nonetheless of interest to obtain bounds
on the performance of the nonparametric least-squares estimator. In such settings, we expect
its performance to involve both the estimation error that arises in Theorem 13.5, and some
additional form of approximation error, arising from the fact that f ∗ �F .
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A natural way in which to measure approximation error is in terms of the best approxima-
tion to f ∗ using functions fromF . In the setting of interest in this chapter, the error in this
best approximation is given by inf f∈F ‖ f − f ∗‖2

n. Note that this error can only be achieved
by an “oracle” that has direct access to the samples { f ∗(xi)}ni=1. For this reason, results that
involve this form of approximation error are referred to as oracle inequalities. With this set-
up, we have the following generalization of Theorem 13.5. As before, we assume that we
observe samples {(yi, xi)}ni=1 from the model yi = f ∗(xi) + σwi, where wi ∼ N(0, 1). The
reader should also recall the shorthand notation ∂F = { f1 − f2 | f1, f2 ∈F }. We assume
that this set is star-shaped; if not, it should be replaced by its star hull in the results to follow.

Theorem 13.13 Let δn be any positive solution to the inequality

Gn(δ; ∂F )
δ

≤ δ

2σ
. (13.42a)

There are universal positive constants (c0, c1, c2) such that for any t ≥ δn, the nonpara-
metric least-squares estimate f̂n satisfies the bound

‖ f̂ − f ∗‖2
n ≤ inf

γ∈(0,1)

{1 + γ

1 − γ
‖ f − f ∗‖2

n +
c0

γ (1 − γ)
tδn

}
for all f ∈F (13.42b)

with probability greater than 1 − c1e−c2
ntδn
σ2 .

Remarks: Note that the guarantee (13.42b) is actually a family of bounds, one for each
f ∈ F . When f ∗ ∈ F , then we can set f = f ∗, so that the bound (13.42b) reduces to
asserting that ‖ f̂ − f ∗‖2

n � tδn with high probability, where δn satisfies our previous critical
inequality (13.17). Thus, up to constant factors, we recover Theorem 13.5 as a special case
of Theorem 13.13. In the more general setting when f ∗ � F , setting t = δn and taking the
infimum over f ∈F yields an upper bound of the form

‖ f̂ − f ∗‖2
n � inf

f∈F
‖ f − f ∗‖2

n + δ2
n. (13.43a)

Similarly, by integrating the tail bound, we are guaranteed that

E
[
‖ f̂ − f ∗‖2

n

]
� inf

f∈F
‖ f − f ∗‖2

n + δ2
n +

σ2

n
. (13.43b)

These forms of the bound clarify the terminology oracle inequality: more precisely, the
quantity inf f∈F ‖ f − f ∗‖2

n is the error achievable only by an oracle that has access to un-
corrupted samples of the function f ∗. The bound (13.43a) guarantees that the least-squares
estimate f̂ has prediction error that is at most a constant multiple of the oracle error, plus a
term proportional to δ2

n. The term inf f∈F ‖ f − f ∗‖2
n can be viewed a form of approximation

error that decreases as the function class F grows, whereas the term δ2
n is the estimation

error that increases as F becomes more complex. This upper bound can thus be used to
chooseF as a function of the sample size so as to obtain a desirable trade-off between the
two types of error. We will see specific instantiations of this procedure in the examples to
follow.



434 Nonparametric least squares

13.3.1 Some examples of oracle inequalities

Theorem 13.13 as well as oracle inequality (13.43a) are best understood by applying them
to derive explicit rates for some particular examples.

Example 13.14 (Orthogonal series expansion) Let (φm)∞m=1 be an orthonormal basis of
L2(P), and for each integer T = 1, 2, . . ., consider the function class

Fortho(1; T ) :=
{
f =

T∑
m=1

βmφm |
T∑

m=1

β2
m ≤ 1

}
, (13.44)

and let f̂ be the constrained least-squares estimate over this class. Its computation is straight-
forward: it reduces to a version of linear ridge regression (see Exercise 13.10).

Let us consider the guarantees of Theorem 13.13 for f̂ as an estimate of some function
f ∗ in the unit ball of L2(P). Since (φm)∞m=1 is an orthonormal basis of L2(P), we have f ∗ =∑∞

m=1 θ
∗
mφm for some coefficient sequence (θ∗m)∞m=1. Moreover, by Parseval’s theorem, we have

the equivalence ‖ f ∗‖2
2 =

∑∞
m=1(θ∗m)2 ≤ 1, and a straightforward calculation yields that

inf
f∈Fortho(1;T )

‖ f − f ∗‖2
2 =

∞∑
m=T+1

(θ∗m)2, for each T = 1, 2, . . ..

Moreover, this infimum is achieved by the truncated function f̃T =
∑T

m=1 θ
∗
mφm; see Exer-

cise 13.10 for more details.
On the other hand, since the estimator over Fortho(1; T ) corresponds to a form of ridge

regression in dimension T , the calculations from Example 13.8 imply that the critical equa-
tion (13.42a) is satisfied by δ2

n , σ2 T
n . Setting f = f̃T in the oracle inequality (13.43b) and

then taking expectations over the covariates X = {xi}ni=1 yields that the least-squares estimate
f̂ overFortho(1; T ) satisfies the bound

EX,w
[‖ f̂ − f ∗‖2

n

]
�

∞∑
m=T+1

(θ∗m)2 + σ2 T
n
. (13.45)

This oracle inequality allows us to choose the parameter T , which indexes the number of
coefficients used in our basis expansion, so as to balance the approximation and estimation
errors.

The optimal choice of T will depend on the rate at which the basis coefficients (θ∗m)∞m=1
decay to zero. For example, suppose that they exhibit a polynomial decay, say |θ∗m| ≤ Cm−α

for some α > 1/2. In Example 13.15 to follow, we provide a concrete instance of such poly-
nomial decay using Fourier coefficients and α-times-differentiable functions. Figure 13.4(a)
shows a plot of the upper bound (13.45) as a function of T , with one curve for each of the
sample sizes n ∈ {100, 250, 500, 1000}. The solid markers within each curve show the point
T ∗ = T ∗(n) at which the upper bound is minimized, thereby achieving the optimal trade-
off between approximation and estimation errors. Note how this optimum grows with the
sample size, since more samples allow us to reliably estimate a larger number of coeffi-
cients. ♣

As a more concrete instantiation of the previous example, let us consider the approxima-
tion of differentiable functions over the space L2[0, 1].
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Figure 13.4 Plot of upper bound (13.45) versus the model dimension T , in all cases
with noise variance σ2 = 1. Each of the four curves corresponds to a different sample
size n ∈ {100, 250, 500, 1000}. (a) Polynomial decaying coefficients |θ∗m| ≤ m−1. (b)
Exponential decaying coefficients |θ∗m| ≤ e−m/2.

Example 13.15 (Fourier bases and differentiable functions) Define the constant function
φ0(x) = 1 for all x ∈ [0, 1], and the sinusoidal functions

φm(x) :=
√

2 cos(2mπx) and φ̃m(x) :=
√

2 sin(2mπx) for m = 1, 2, . . ..

It can be verified that the collection {φ0} ∪ {φm}∞m=1 ∪ {φ̃m}∞m=1 forms an orthonormal basis of
L2[0, 1]. Consequently, any function f ∗ ∈ L2[0, 1] has the series expansion

f ∗ = θ∗0 +
∞∑

m=1

{
θ∗mφm + θ̃∗mφ̃m

}
.

For each M = 1, 2, . . ., define the function class

G (1; M) =
{
β0 +

M∑
m=1

(βmφm + β̃mφ̃m) | β2
0 +

M∑
m=1

(β2
m + β̃2

m) ≤ 1
}
. (13.46)

Note that this is simply a re-indexing of a function class Fortho(1; T ) of the form (13.44)
with T = 2M + 1.

Now suppose that for some integer α ≥ 1, the target function f ∗ is α-times differentiable,
and suppose that

∫ 1

0
[( f ∗)(α)(x)]2 dx ≤ R for some radius R. It can be verified that there is a

constant c such that (β∗m)2 + (̃β∗m)2 ≤ c
m2α for all m ≥ 1, and, moreover, we can find a function

f ∈ G (1; M) such that

‖ f − f ∗‖2
2 ≤

c′R
M2α . (13.47)

See Exercise 13.11 for details on these properties.
Putting together the pieces, the bound (13.45) combined with the approximation-theoretic
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guarantee (13.47) implies that the least-squares estimate f̂M over G (1; M) satisfies the bound

EX,w
[‖ f̂M − f ∗‖2

n

]
� 1

M2α + σ2 (2M + 1)
n

.

Thus, for a given sample size n and assuming knowledge of the smoothness α and noise
variance σ2, we can choose M = M(n, α, σ2) so as to balance the approximation and esti-
mation error terms. A little algebra shows that the optimal choice is M , (n/σ2)

1
2α+1 , which

leads to the overall rate

EX,w

[
‖ f̂M − f ∗‖2

n

]
�

(σ2

n

) 2α
2α+1

.

As will be clarified in Chapter 15, this n−
2α

2α+1 decay in mean-squared error is the best that
can be expected for general univariate α-smooth functions. ♣

We now turn to the use of oracle inequalities in high-dimensional sparse linear regression.

Example 13.16 (Best sparse approximation) Consider the standard linear model yi =

fθ∗(xi) + σwi, where fθ∗(x) := 〈θ∗, x〉 is an unknown linear regression function, and wi ∼
N(0, 1) is an i.i.d. noise sequence. For some sparsity index s ∈ {1, 2, . . . , d}, consider the
class of all linear regression functions based on s-sparse vectors—namely, the class

Fspar(s) :=
{
fθ | θ ∈ Rd, ‖θ‖0 ≤ s

}
,

where ‖θ‖0 =
∑d

j=1 I[θ j � 0] counts the number of non-zero coefficients in the vector θ ∈ Rd.
Disregarding computational considerations, a natural estimator is given by

θ̂ ∈ arg min
θ∈Fspar(s)

‖y − Xθ‖2
n, (13.48)

corresponding to performing least squares over the set of all regression vectors with at most
s non-zero coefficients. As a corollary of Theorem 13.13, we claim that the L2(Pn)-error of
this estimator is upper bounded as

‖ f̂θ − fθ∗ ‖2
n � inf

θ∈Fspar(s)
‖ fθ − fθ∗ ‖2

n + σ2 s log( ed
s )

n︸��������︷︷��������︸
δ2

n

(13.49)

with high probability. Consequently, up to constant factors, its error is as good as the best
s-sparse predictor plus the penalty term δ2

n, arising from the estimation error. Note that the
penalty term grows linearly with the sparsity s, but only logarithmically in the dimension d,
so that it can be very small even when the dimension is exponentially larger than the sample
size n. In essence, this result guarantees that we pay a relatively small price for not knowing
in advance the best s-sized subset of coefficients to use.

In order to derive this result as a corollary of Theorem 13.13, we need to compute the
local Gaussian complexity (13.42a) for our function class. Making note of the inclusion
∂Fspar(s) ⊂Fspar(2s), we haveGn

(
δ; ∂Fspar(s)

) ≤ Gn(δ;Fspar(2s)). Now let S ⊂ {1, 2, . . . , d}
be an arbitrary 2s-sized subset of indices, and let XS ∈ Rn×2s denote the submatrix with
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columns indexed by S . We can then write

Gn(δ;Fspar(2s)) = Ew
[

max
|S |=2s

Zn(S )
]
, where Zn(S ) := sup

θS ∈R2s

‖XS θS ‖2/
√

n≤δ

∣∣∣wTXS θS

n

∣∣∣.
Viewed as a function of the standard Gaussian vector w, the variable Zn(S ) is Lipschitz with
constant at most δ√

n , from which Theorem 2.26 implies the tail bound

P
[
Zn(S ) ≥ E[Zn(S )] + tδ

] ≤ e−
nt2
2 for all t > 0. (13.50)

We now upper bound the expectation. Consider the singular value decomposition XS =

UDVT, where U ∈ Rn×2s and V ∈ Rd×2s are matrices of left and right singular vectors, re-
spectively, and D ∈ R2s×2s is a diagonal matrix of the singular values. Noting that ‖XS θS ‖2 =

‖DVTθS ‖2, we arrive at the upper bound

E[Zn(S )] ≤ E[ sup
β∈R2s

‖β‖2≤δ

| 1√
n
〈UTw, β〉|] ≤ δ√

n
E
[
‖UTw‖2

]
.

Since w ∼ N(0, In) and the matrix U has orthonormal columns, we have UTw ∼ N(0, I2s),
and therefore E‖UTw‖2 ≤ √

2s. Combining this upper bound with the earlier tail bound
(13.50), an application of the union bound yields

P

⎡⎢⎢⎢⎢⎢⎣max
|S |=2s

Zn(S ) ≥ δ
(√2s

n
+ t

)⎤⎥⎥⎥⎥⎥⎦ ≤ (
d
2s

)
e−

nt2
2 , valid for all t ≥ 0.

By integrating this tail bound, we find that

E
[
max|S |=2s Zn(S )

]
δ

=
Gn(δ)

δ
�

√
s
n
+

√
log

(
d
2s

)
n

�

√
s log( ed

s )
n

,

so that the critical inequality (13.17) is satisfied for δ2
n , σ2 s log(ed/s)

n , as claimed. ♣

13.3.2 Proof of Theorem 13.13

We now turn to the proof of our oracle inequality; it is a relatively straightforward extension
of the proof of Theorem 13.5. Given an arbitrary f̃ ∈F , since it is feasible and f̂ is optimal,
we have

1
2n

n∑
i=1

(yi − f̂ (xi))2 ≤ 1
2n

n∑
i=1

(yi − f̃ (xi))2.

Using the relation yi = f ∗(xi) + σwi, some algebra then yields

1
2
‖Δ̂‖2

n ≤
1
2
‖ f̃ − f ∗‖2

n + |
σ

n

n∑
i=1

wiΔ̃(xi)
∣∣∣∣, (13.51)

where we have defined Δ̂ := f̂ − f ∗ and Δ̃ = f̂ − f̃ .
It remains to analyze the term on the right-hand side involving Δ̃. We break our analysis
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into two cases.

Case 1: First suppose that ‖Δ̃‖n ≤
√

tδn. We then have

‖Δ̂‖2
n = ‖ f̂ − f ∗‖2

n = ‖( f̃ − f ∗) + Δ̃‖2
n

(i)≤
{
‖ f̃ − f ∗‖n +

√
tδn

}2
(ii)≤ (

1 + 2β
)‖ f̃ − f ∗‖2

n +
(
1 +

2
β

)
tδn,

where step (i) follows from the triangle inequality, and step (ii) is valid for any β > 0, us-
ing the Fenchel–Young inequality. Now setting β =

γ

1−γ for some γ ∈ (0, 1), observe that
1 + 2β = 1+γ

1−γ , and 1 + 2
β
=

2−γ
γ

≤ 2
γ (1−γ) , so that the stated claim (13.42b) follows.

Case 2: Otherwise, we may assume that ‖Δ̃‖n >
√

tδn. Noting that the function Δ̃ belongs
to the difference class ∂F :=F −F , we then apply Lemma 13.12 with u =

√
tδn and

H = ∂F . Doing so yields that

P
[
2 |σ

n

n∑
i=1

wiΔ̃(xi)| ≥ 4
√

tδn ‖Δ̃‖n

]
≤ e−

ntδn
2σ2 .

Combining with the basic inequality (13.51), we find that, with probability at least 1−2e−
ntδn
2σ2 ,

the squared error is bounded as

‖Δ̂‖2
n ≤ ‖ f̃ − f ∗‖2

n + 4
√

tδn ‖Δ̃‖n

≤ ‖ f̃ − f ∗‖2
n + 4

√
tδn

{
‖Δ̂‖n + ‖ f̃ − f ∗‖n

}
,

where the second step follows from the triangle inequality. Applying the Fenchel–Young
inequality with parameter β > 0, we find that

4
√

tδn ‖Δ̂‖n ≤ 4β‖Δ̂‖2
n +

4
β

tδn

and

4
√

tδn‖ f̃ − f ∗‖n ≤ 4β‖ f̃ − f ∗‖2
n +

4
β

tδn.

Combining the pieces yields

‖Δ̂‖2
n ≤ (1 + 4β)‖ f̃ − f ∗‖2

n + 4β‖Δ̂‖2
n +

8
β

tδn.

For all β ∈ (0, 1/4), rearranging yields the bound

‖Δ̂‖2
n ≤

1 + 4β
1 − 4β

‖ f̃ − f ∗‖2
n +

8
β (1 − 4β)

tδn.

Setting γ = 4β yields the claim.
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13.4 Regularized estimators

Up to this point, we have analyzed least-squares estimators based on imposing explicit con-
straints on the function class. From the computational point of view, it is often more conve-
nient to implement estimators based on explicit penalization or regularization terms. As we
will see, these estimators enjoy statistical behavior similar to their constrained analogs.

More formally, given a space F of real-valued functions with an associated semi-norm
‖ · ‖F , consider the family of regularized least-squares problems

f̂ ∈ arg min
f∈F

{ 1
2n

n∑
i=1

(
yi − f (xi)

)2
+ λn‖ f ‖2

F

}
, (13.52)

where λn ≥ 0 is a regularization weight to be chosen by the statistician. We state a general
oracle-type result that does not require f ∗ to be a member ofF .

13.4.1 Oracle inequalities for regularized estimators

Recall the compact notation ∂F = F −F . As in our previous theory, the statistical error
involves a local Gaussian complexity over this class, which in this case takes the form

Gn(δ;B∂F (3)) := Ew

[
sup

g∈∂F
‖g‖F≤3, ‖g‖n≤δ

∣∣∣∣1n
n∑

i=1

wi f (xi)
∣∣∣∣], (13.53)

where wi ∼ N(0, 1) are i.i.d. variates. When the function classF and rescaled ball B∂F (3) =
{g ∈ ∂F | ‖g‖F ≤ 3} are clear from the context, we adopt Gn(δ) as a convenient shorthand.
For a user-defined radius R > 0, we let δn > 0 be any number satisfying the inequality

Gn(δ)
δ

≤ R
2σ

δ. (13.54)

Theorem 13.17 Given the previously described observation model and a convex func-
tion classF , suppose that we solve the convex program (13.52) with some regulariza-
tion parameter λn ≥ 2δ2

n. Then there are universal positive constants (c j, c′j) such that

‖ f̂ − f ∗‖2
n ≤ c0 inf

‖ f ‖F≤R
‖ f − f ∗‖2

n + c1R2{δ2
n + λn

}
(13.55a)

with probability greater than 1 − c2e−c3
nR2δ2

n
σ2 . Similarly, we have

E‖ f̂ − f ∗‖2
n ≤ c′0 inf

‖ f ‖F≤R
‖ f − f ∗‖2

n + c′1 R2 {δ2
n + λn}. (13.55b)

We return to prove this claim in Section 13.4.4.

13.4.2 Consequences for kernel ridge regression

Recall from Chapter 12 our discussion of the kernel ridge regression estimate (12.28). There
we showed that this KRR estimate has attractive computational properties, in that it only re-
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quires computing the empirical kernel matrix, and then solving a linear system (see Propo-
sition 12.33). Here we turn to the complementary question of understanding its statistical
behavior. Since it is a special case of the general estimator (13.52), Theorem 13.17 can be
used to derive upper bounds on the prediction error. Interestingly, these bounds have a very
intuitive interpretation, one involving the eigenvalues of the empirical kernel matrix.

From our earlier definition, the (rescaled) empirical kernel matrix K ∈ Rn×n is symmetric
and positive semidefinite, with entries of the form Ki j = K(xi, x j)/n. It is thus diagonaliz-
able with non-negative eigenvalues, which we take to be ordered as μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂n ≥ 0.
The following corollary of Theorem 13.17 provides bounds on the performance of the kernel
ridge regression estimate in terms of these eigenvalues:

Corollary 13.18 For the KRR estimate (12.28), the bounds of Theorem 13.17 hold for
any δn > 0 satisfying the inequality√

2
n

√√ n∑
j=1

min{δ2, μ̂ j} ≤ R
4σ

δ2. (13.56)

We provide the proof in Section 13.4.3. Before doing so, let us examine the implications of
Corollary 13.18 for some specific choices of kernels.

Example 13.19 (Rates for polynomial regression) Given some integer m ≥ 2, consider the
kernel function K(x, z) = (1 + x z)m−1. The associated RKHS corresponds to the space of
all polynomials of degree at most m − 1, which is a vector space with dimension m. Conse-
quently, the empirical kernel matrix K ∈ Rn×n can have rank at most min{n,m}. Therefore,
for any sample size n larger than m, we have

1√
n

√√ n∑
j=1

min{δ2, μ̂ j} ≤ 1√
n

√√ m∑
j=1

min{δ2, μ̂ j} ≤ δ

√
m
n
.

Consequently, the critical inequality (13.56) is satisfied for all δ � σ
R

√m
n , so that the KRR

estimate satisfies the bound

‖ f̂ − f ∗‖2
n � inf

‖ f ‖H≤R
‖ f − f ∗‖2

n + σ2 m
n
,

both in high probability and in expectation. This bound is intuitively reasonable: since the
space of m − 1 polynomials has a total of m free parameters, we expect that the ratio m/n
should converge to zero in order for consistent estimation to be possible. More generally,
this same bound with m = r holds for any kernel function that has some finite rank r ≥ 1. ♣
We now turn to a kernel function with an infinite number of eigenvalues:

Example 13.20 (First-order Sobolev space) Previously, we introduced the kernel function
K(x, z) = min{x, z} defined on the unit square [0, 1]× [0, 1]. As discussed in Example 12.16,
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the associated RKHS corresponds to a first-order Sobolev space

H1[0, 1] :=
{
f : [0, 1] → R | f (0) = 0, and f is abs. cts. with f ′ ∈ L2[0, 1]

}
.

As shown in Example 12.23, the kernel integral operator associated with this space has the
eigendecomposition

φ j(x) = sin(x/
√
μ j), μ j =

( 2
(2 j − 1)π

)2 for j = 1, 2, . . .,

so that the eigenvalues drop off at the rate j−2. As the sample size increases, the eigenvalues
of the empirical kernel matrix K approach those of the population kernel operator. For the
purposes of calculation, Figure 13.5(a) suggests the heuristic of assuming that μ̂ j ≤ c

j2 for
some universal constant c. Our later analysis in Chapter 14 will provide a rigorous way of
making such an argument.3
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Figure 13.5 Log–log behavior of the eigenspectrum of the empirical kernel matrix
based on n = 2000 samples drawn i.i.d. from the uniform distribution over the inter-
val X for two different kernel functions. The plotted circles correspond to empirical
eigenvalues, whereas the dashed line shows the theoretically predicted drop-off of
the population operator. (a) The first-order Sobolev kernelK(x, z) = min{x, z} on the
interval X = [0, 1]. (b) The Gaussian kernel K(x, z) = exp(− (x−z)2

2σ2 ) with σ = 0.5 on
the interval X = [−1, 1].

Under our heuristic assumption, we have

1√
n

√√ n∑
j=1

min{δ2, μ̂ j} ≤ 1√
n

√√ n∑
j=1

min{δ2, c j−2} ≤ 1√
n

√√
kδ2 + c

n∑
j=k+1

j−2,

where k is the smallest positive integer such that ck−2 ≤ δ2. Upper bounding the final sum

3 In particular, Proposition 14.25 shows that the critical radii computed using the population and empirical
kernel eigenvalues are equivalent up to constant factors.
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by an integral, we have c
∑n

j=k+1 j−2 ≤ c
∫ ∞

k+1
t−2 dt ≤ ck−1 ≤ kδ2, and hence

1√
n

√√ n∑
j=1

min{δ2, μ̂ j} ≤ c′
√

k
n
δ ≤ c′′

√
δ

n
.

Consequently, the critical inequality (13.56) is satisfied by δ3/2
n , σ

R
√

n , or equivalently δ2
n ,(σ2

R2
1
n

)2/3. Putting together the pieces, Corollary 13.18 implies that the KRR estimate will
satisfy the upper bound

‖ f̂ − f ∗‖2
n � inf

‖ f ‖H≤R
‖ f − f ∗‖2

n + R2δ2
n , inf

‖ f ‖H≤R
‖ f − f ∗‖2

n + R2/3 (σ2

n
)2/3

,

both with high probability and in expectation. As will be seen later in Chapter 15, this rate
is minimax-optimal for the first-order Sobolev space. ♣

Example 13.21 (Gaussian kernel) Now let us consider the same issues for the Gaussian

kernel K(x, z) = e−
(x−z)2

2σ2 on the square [−1, 1] × [−1, 1]. As discussed in Example 12.25, the
eigenvalues of the associated kernel operator scale as μ j , e−c j log j as j → +∞. Accord-
ingly, let us adopt the heuristic that the empirical eigenvalues satisfy a bound of the form
μ̂ j ≤ c0e−c1 j log j. Figure 13.5(b) provides empirical justification of this scaling for the Gaus-
sian kernel: notice how the empirical plots on the log–log scale agree qualitatively with the
theoretical prediction. Again, Proposition 14.25 in Chapter 14 allows us to make a rigorous
argument that reaches the conclusion sketched here.

Under our heuristic assumption, for a given δ > 0, we have

1√
n

√√ n∑
j=1

min{δ2, μ̂ j} ≤ 1√
n

√√ n∑
j=1

min{δ2, c0 e−c1 j log j}

≤ 1√
n

√√
kδ2 + c0

n∑
j=k+1

e−c1 j log j,

where k is the smallest positive integer such that c0e−c1k log k ≤ δ2.
Some algebra shows that the critical inequality will be satisfied by δ2

n , σ2

R2

log( Rn
σ )

n , so that
nonparametric regression over the Gaussian kernel class satisfies the bound

‖ f̂ − f ∗‖2
n � inf

‖ f ‖H≤R
‖ f − f ∗‖2

n + R2δ2
n = inf

‖ f ‖H≤R
‖ f − f ∗‖2

n + cσ2 log( Rn
σ

)
n

,

for some universal constant c. The estimation error component of this upper bound is very
fast—within a logarithmic factor of the n−1 parametric rate—thereby revealing that the Gaus-
sian kernel class is much smaller than the first-order Sobolev space from Example 13.20.
However, the trade-off is that the approximation error decays very slowly as a function of
the radius R. See the bibliographic section for further discussion of this important trade-off.

♣
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13.4.3 Proof of Corollary 13.18

The proof of this corollary is based on a bound on the local Gaussian complexity (13.53) of
the unit ball of an RKHS. Since it is of independent interest, let us state it as a separate result:

Lemma 13.22 Consider an RKHS with kernel function K . For a given set of design
points {xi}ni=1, let μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂n ≥ 0 be the eigenvalues of the normalized kernel
matrix K with entries Ki j = K(xi, x j)/n. Then for all δ > 0, we have

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
‖ f ‖H≤1
‖ f ‖n≤δ

∣∣∣∣1n
n∑

i=1

wi f (xi)
∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤

√
2
n

√√ n∑
j=1

min{δ2, μ̂ j}, (13.57)

where wi ∼ N(0, 1) are i.i.d. Gaussian variates.

Proof It suffices to restrict our attention to functions of the form

g(·) = 1√
n

n∑
i=1

αiK(·, xi), (13.58)

some vector of coefficients α ∈ Rn. Indeed, as argued in our proof of Proposition 12.33, any
function f in the Hilbert space can be written in the form f = g+ g⊥, where g⊥ is a function
orthogonal to all functions of the form (13.58). Thus, we must have g⊥(xi) = 〈g⊥, K(·, xi)〉H
= 0, so that neither the objective nor the constraint ‖ f ‖n ≤ δ have any dependence on g⊥.
Lastly, by the Pythagorean theorem, we have ‖ f ‖2

H = ‖g‖2
H + ‖g⊥‖2

H, so that we may assume
without loss of generality that g⊥ = 0.

In terms of the coefficient vector α ∈ Rn and kernel matrix K, the constraint ‖g‖n ≤ δ is
equivalent to ‖Kα‖2 ≤ δ, whereas the inequality ‖g‖2

H ≤ 1 corresponds to ‖g‖2
H = αTKα ≤ 1.

Thus, we can write the local Gaussian complexity as an optimization problem in the vector
α ∈ Rn with a linear cost function and quadratic constraints—namely,

Gn(δ) =
1√
n
Ew

[
sup

αTKα≤1
αK2α≤δ2

∣∣∣wTKα
∣∣∣].

Since the kernel matrix K is symmetric and positive semidefinite, it has an eigendecom-
position4 of the form K = UTΛU, where U is orthogonal and Λ is diagonal with entries
μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂n > 0. If we then define the transformed vector β = Kα, we find (following
some algebra) that the complexity can be written as

Gn(δ) =
1√
n
Ew

[
sup
β∈D

|wTβ|], where D :=
{
β ∈ Rn | ‖β‖2

2 ≤ δ2,

n∑
j=1

β2
j

μ̂ j
≤ 1

}
4 In this argument, so as to avoid potential division by zero, we assume that K has strictly positive eigenvalues;

otherwise, we can simply repeat the argument given here while restricting the relevant summations to positive
eigenvalues.
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is the intersection of two ellipses. Now define the ellipse

E :=
{
β ∈ Rn |

n∑
j=1

η jβ
2
j ≤ 2

}
, where η j = max{δ−2, μ̂−1

j }.

We claim that D ⊂ E; indeed, for any β ∈ D, we have

n∑
j=1

max{δ−2, μ̂−1
j } β2

j ≤
n∑

j=1

β2
j

δ2 +

n∑
j=1

β2
j

μ̂ j
≤ 2.

Applying Hölder’s inequality with the norm induced by E and its dual, we find that

Gn(δ) ≤ 1√
n
E
[
sup
β∈E

∣∣∣〈w, β〉
∣∣∣] ≤ √

2
n
E

√√√ n∑
j=1

w2
j

η j
.

Jensen’s inequality allows us to move the expectation inside the square root, so that

Gn(δ) ≤
√

2
n

√√√ n∑
j=1

E[w2
j]

η j
=

√
2
n

√√ n∑
j=1

1
η j

,

and substituting (η j)−1 = (max{δ−2, μ̂−1
j })−1 = min{δ2, μ̂ j} yields the claim.

13.4.4 Proof of Theorem 13.17

Finally, we turn to the proof of our general theorem on regularized M-estimators. By rescal-
ing the observation model by R, we can analyze an equivalent model with noise variance
(σ

R )2, and with the rescaled approximation error inf‖ f ‖F≤1 ‖ f − f ∗‖2
n. Our final mean-squared

error then should be multiplied by R2 so as to obtain a result for the original problem.
In order to keep the notation streamlined, we introduce the shorthand σ̃ = σ/R. Let f̃ be

any element of F such that ‖ f̃ ‖F ≤ 1. At the end of the proof, we optimize this choice.
Since f̂ and f̃ are optimal and feasible (respectively) for the program (13.52), we have

1
2

n∑
i=1

(
yi − f̂ (xi)

)2
+ λn‖ f̂ ‖2

F ≤ 1
2

n∑
i=1

(
yi − f̃ (xi)

)2
+ λn‖ f̃ ‖2

F .

Defining the errors Δ̂ = f̂ − f ∗ and Δ̃ = f̂ − f̃ and recalling that yi = f ∗(xi)+ σ̃wi, performing
some algebra yields the modified basic inequality

1
2
‖Δ̂‖2

n ≤
1
2
‖ f̃ − f ∗‖2

n +
σ̃

n

∣∣∣ n∑
i=1

wiΔ̃(xi)
∣∣∣ + λn

{‖ f̃ ‖2
F − ‖ f̂ ‖2

F

}
, (13.59)

where wi ∼ N(0, 1) are i.i.d. Gaussian variables.
Since ‖ f̃ ‖F ≤ 1 by assumption, we certainly have the possibly weaker bound

1
2
‖Δ̂‖2

n ≤
1
2
‖ f̃ − f ∗‖2

n +
σ̃

n

∣∣∣ n∑
i=1

wiΔ̃(xi)
∣∣∣ + λn. (13.60)
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Consequently, if ‖Δ̃‖n ≤
√

tδn, we can then follow the same argument as in the proof of The-
orem 13.13, thereby establishing the bound (along with the extra term λn from our modified
basic inequality).

Otherwise, we may assume that ‖Δ̃‖n >
√

tδn, and we do so throughout the remainder of
the proof. We now split the argument into two cases.

Case 1: First, suppose that ‖ f̂ ‖F ≤ 2. The bound ‖ f̃ ‖F ≤ 1 together with the inequality
‖ f̂ ‖F ≤ 2 implies that ‖Δ̃‖F ≤ 3. Consequently, by applying Lemma 13.12 over the set of
functions {g ∈ ∂F | ‖g‖F ≤ 3}, we conclude that

σ̃

n

∣∣∣ n∑
i=1

wiΔ̃(xi)
∣∣∣ ≤ c0

√
tδn‖Δ̃‖n with probability at least 1 − e−

t2

2σ̃2 .

By the triangle inequality, we have

2
√

tδn‖Δ̃‖n ≤ 2
√

tδn‖Δ̂‖n + 2
√

tδn‖ f̃ − f ∗‖n

≤ 2
√

tδn‖Δ̂‖n + 2tδn +
‖ f̃ − f ∗‖2

n

2
, (13.61)

where the second step uses the Fenchel–Young inequality. Substituting these upper bounds
into the basic inequality (13.60), we find that

1
2‖Δ̂‖2

n ≤ 1
2

(
1 + c0

)‖ f̃ − f ∗‖2
n + 2c0tδn + 2c0

√
tδn‖Δ̂‖n + λn,

so that the claim follows by the quadratic formula, modulo different values of the numerical
constants.

Case 2: Otherwise, we may assume that ‖ f̂ ‖F > 2 > 1 ≥ ‖ f̃ ‖F . In this case, we have

‖ f̃ ‖2
F − ‖ f̂ ‖2

F =
{‖ f̃ ‖F + ‖ f̂ ‖F }︸�������������︷︷�������������︸

>1

{‖ f̃ ‖F − ‖ f̂ ‖F }︸�������������︷︷�������������︸
<0

≤ {‖ f̃ ‖F − ‖ f̂ ‖F }︸�������������︷︷�������������︸
<0

.

Writing f̂ = f̃ +Δ̃ and noting that ‖ f̂ ‖F ≥ ‖Δ̃‖F −‖ f̃ ‖F by the triangle inequality, we obtain

λn
{‖ f̃ ‖2

F − ‖ f̂ ‖2
F

} ≤ λn
{‖ f̃ ‖F − ‖ f̂ ‖F }

≤ λn
{
2‖ f̃ ‖F − ‖Δ̃‖F }

≤ λn
{
2 − ‖Δ̃‖F },

where we again use the bound ‖ f̃ ‖F ≤ 1 in the final step.
Substituting this upper bound into our modified basic inequality (13.59) yields the upper

bound

1
2
‖Δ̂‖2

n ≤
1
2
‖ f̃ − f ∗‖2

n +
∣∣∣ σ̃
n

n∑
i=1

wiΔ̃(xi)
∣∣∣ + 2λn − λn‖Δ̃‖F . (13.62)

Our next step is to upper bound the stochastic component in the inequality (13.62).
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Lemma 13.23 There are universal positive constants (c1, c2) such that, with proba-

bility greater than 1 − c1e
− nδ2

n
c2σ̃2 , we have∣∣∣∣ σ̃n

n∑
i=1

wiΔ(xi)
∣∣∣∣ ≤ 2δn‖Δ‖n + 2δ2

n‖Δ‖F +
1

16
‖Δ‖2

n, (13.63)

a bound that holds uniformly for all Δ ∈ ∂F with ‖Δ‖F ≥ 1.

We now complete the proof of the theorem using this lemma. We begin by observing that,
since ‖ f̃ ‖F ≤ 1 and ‖ f̂ ‖F > 2, the triangle inequality implies that ‖Δ̃‖F ≥ ‖ f̂ ‖F − ‖ f̃ ‖F > 1,
so that Lemma 13.23 may be applied. Substituting the upper bound (13.63) into the inequal-
ity (13.62) yields

1
2
‖Δ̂‖2

n ≤
1
2
‖ f̃ − f ∗‖2

n + 2δn‖Δ̃‖n +
{
2δ2

n − λn
}‖Δ̃‖F + 2λn +

‖Δ̃‖2
n

16

≤ 1
2
‖ f̃ − f ∗‖2

n + 2δn‖Δ̃‖n + 2λn +
‖Δ̃‖2

n

16
, (13.64)

where the second step uses the fact that 2δ2
n − λn ≤ 0 by assumption.

Our next step is to convert the terms involving Δ̃ into quantities involving Δ̂: in particular,
by the triangle inequality, we have ‖Δ̃‖n ≤ ‖ f̃ − f ∗‖n + ‖Δ̂‖n. Thus, we have

2δn‖Δ̃‖n ≤ 2δn‖ f̃ − f ∗‖n + 2δn‖Δ̂‖n, (13.65a)

and in addition, combined with the inequality (a + b)2 ≤ 2a2 + 2b2, we find that

‖Δ̃‖2
n

16
≤ 1

8

{
‖ f̃ − f ∗‖2

n + ‖Δ̂‖2
n

}
. (13.65b)

Substituting inequalities (13.65a) and (13.65b) into the earlier bound (13.64) and performing
some algebra yields

{ 1
2 − 1

8 }‖Δ̂‖2
n ≤ { 1

2 +
1
8 }‖ f̃ − f ∗‖2

n + 2δn‖ f̃ − f ∗‖n + 2δn‖Δ̂‖n + 2λn.

The claim (13.55a) follows by applying the quadratic formula to this inequality.

It remains to prove Lemma 13.23. We claim that it suffices to prove the bound (13.63) for
functions g ∈ ∂F such that ‖g‖F = 1. Indeed, suppose that it holds for all such functions,
and that we are given a function Δ with ‖Δ‖F > 1. By assumption, we can apply the in-
equality (13.63) to the new function g := Δ/‖Δ‖F , which belongs to ∂F by the star-shaped
assumption. Applying the bound (13.63) to g and then multiplying both sides by ‖Δ‖F , we
obtain ∣∣∣∣ σ̃n

n∑
i=1

wiΔ(xi)
∣∣∣∣ ≤ c1 δn‖Δ‖n + c2 δ

2
n‖Δ‖F +

1
16

‖Δ‖2
n

‖Δ‖F
≤ c1 δn‖Δ‖n + c2 δ

2
n‖Δ‖F +

1
16
‖Δ‖2

n,

where the second inequality uses the fact that ‖Δ‖F > 1 by assumption.
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In order to establish the bound (13.63) for functions with ‖g‖F = 1, we first consider it
over the ball {‖g‖n ≤ t}, for some fixed radius t > 0. Define the random variable

Zn(t) := sup
‖g‖F≤1
‖g‖n≤t

∣∣∣∣ σ̃n
n∑

i=1

wig(xi)
∣∣∣∣.

Viewed as a function of the standard Gaussian vector w, it is Lipschitz with parameter at
most σ̃t/

√
n. Consequently, Theorem 2.26 implies that

P
[
Zn(t) ≥ E[Zn(t)] + u

] ≤ e−
nu2

2σ̃2 t2 . (13.66)

We first derive a bound for t = δn. By the definitions of Gn and the critical radius, we have
E[Zn(δn)] ≤ σ̃Gn(δn) ≤ δ2

n. Setting u = δn in the tail bound (13.66), we find that

P[Zn(δn) ≥ 2δ2
n] ≤ e−

nδ2
n

2σ̃2 . (13.67a)

On the other hand, for any t > δn, we have

E[Zn(t)] = σ̃Gn(t) = t
σ̃Gn(t)

t

(i)≤ t
σ̃Gn(δn)

δn

(ii)≤ tδn,

where inequality (i) follows from Lemma 13.6, and inequality (ii) follows by our choice of
δn. Using this upper bound on the mean and setting u = t2/32 in the tail bound (13.66) yields

P
[
Zn(t) ≥ tδn +

t2

32

]
≤ e−c2

nt2

σ̃2 for each t > δn. (13.67b)

We are now equipped to complete the proof by a “peeling” argument. Let E denote the
event that the bound (13.63) is violated for some function g ∈ ∂F with ‖g‖F = 1. For real
numbers 0 ≤ a < b, let E(a, b) denote the event that it is violated for some function such
that ‖g‖n ∈ [a, b] and ‖g‖F = 1. For m = 0, 1, 2, . . ., define tm = 2mδn. We then have the
decomposition E = E(0, t0) ∪ (⋃∞

m=0 E(tm, tm+1)
)

and hence, by the union bound,

P[E] ≤ P[E(0, t0)] +
∞∑

m=0

P[E(tm, tm+1)]. (13.68)

The final step is to bound each of the terms in this summation. Since t0 = δn, we have

P[E(0, t0)] ≤ P[Zn(δn) ≥ 2δ2
n] ≤ e−

nδ2
n

2σ̃2 , (13.69)

using our earlier tail bound (13.67a). On the other hand, suppose that E(tm, tm+1) holds, mean-
ing that there exists some function g with ‖g‖F = 1 and ‖g‖n ∈ [tm, tm+1] such that∣∣∣∣ σ̃n

n∑
i=1

wig(xi)
∣∣∣∣ (i)≥ 2δn‖g‖n + 2δ2

n +
1
16
‖g‖2

n

(i)≥ 2δntm + 2δ2
n +

1
8

t2
m

(ii)
= δntm+1 + 2δ2

n +
1

32
t2
m+1,
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where step (i) follows since ‖g‖n ≥ tm, and step (ii) follows since tm+1 = 2tm. This lower
bound implies that Zn(tm+1) ≥ δntm+1 +

t2
m+1
32 , and applying the tail bound (13.67b) yields

P
[
E(tm, tm+1)

]
≤ e−c2

nt2m+1
σ̃2 = e−c2

n 22m+2δ2
n

σ̃2 .

Substituting this inequality and our earlier bound (13.69) into equation (13.68) yields

P[E] ≤ e−
nδ2

n
2σ̃2 +

∞∑
m=0

e−c2
n 22m+2δ2

n
σ̃2 ≤ c1e−c2

nδ2
n

σ̃2 ,

where the reader should recall that the precise values of universal constants may change
from line to line.

13.5 Bibliographic details and background

Nonparametric regression is a classical problem in statistics with a lengthy and rich history.
Although this chapter is limited to the method of nonparametric least squares, there are a
variety of other cost functions that can be used for regression, which might be preferable for
reasons of robustness. The techniques described this chapter are relevant for analyzing any
such M-estimator—that is, any method based on minimizing or maximizing some criterion
of fit. In addition, nonparametric regression can be tackled via methods that are not most
naturally viewed as M-estimators, including orthogonal function expansions, local poly-
nomial representations, kernel density estimators, nearest-neighbor methods and scatterplot
smoothing methods, among others. We refer the reader to the books (Gyorfi et al., 2002;
Härdle et al., 2004; Wasserman, 2006; Eggermont and LaRiccia, 2007; Tsybakov, 2009)
and references therein for further background on these and other methods.

An extremely important idea in this chapter was the use of localized forms of Gaussian
or Rademacher complexity, as opposed to the global forms studied in Chapter 4. These lo-
calized complexity measures are needed in order to obtain optimal rates for nonparametric
estimation problems. The idea of localization plays an important role in empirical process
theory, and we embark on a more in-depth study of it in Chapter 14 to follow. Local function
complexities of the form given in Corollary 13.7 are used extensively by van de Geer (2000),
whereas other authors have studied localized forms of the Rademacher and Gaussian com-
plexities (Koltchinskii, 2001, 2006; Bartlett et al., 2005). The bound on the localized Rade-
macher complexity of reproducing kernel Hilbert spaces, as stated in Lemma 13.22, is due to
Mendelson (2002); see also the paper by Bartlett and Mendelson (2002) for related results.
The peeling technique used in the proof of Lemma 13.23 is widely used in empirical process
theory (Alexander, 1987; van de Geer, 2000).

The ridge regression estimator from Examples 13.1 and 13.8 was introduced by Hoerl and
Kennard (1970). The Lasso estimator from Example 13.1 is treated in detail in Chapter 7.
The cubic spline estimator from Example 13.2, as well as the kernel ridge regression estima-
tor from Example 13.3, are standard methods; see Chapter 12 as well as the books (Wahba,
1990; Gu, 2002) for more details. The �q-ball constrained estimators from Examples 13.1
and 13.9 were analyzed by Raskutti et al. (2011), who also used information-theoretic meth-
ods, to be discussed in Chapter 15, in order to derive matching lower bounds. The results
on metric entropies of q-convex hulls in this example are based on results from Carl and



13.6 Exercises 449

Pajor (1988), as well as Guédon and Litvak (2000); see also the arguments given by Raskutti
et al. (2011) for details on the specific claims given here.

The problems of convex and/or monotonic regression from Example 13.4 are particular
examples of what is known as shape-constrained estimation. It has been the focus of classi-
cal work (Hildreth, 1954; Brunk, 1955, 1970; Hanson and Pledger, 1976), as well as much
recent and on-going work (e.g., Balabdaoui et al., 2009; Cule et al., 2010; Dümbgen et al.,
2011; Seijo and Sen, 2011; Chatterjee et al., 2015), especially in the multivariate setting.
The books (Rockafellar, 1970; Hiriart-Urruty and Lemaréchal, 1993; Borwein and Lewis,
1999; Bertsekas, 2003; Boyd and Vandenberghe, 2004) contain further information on sub-
gradients and other aspects of convex analysis. The bound (13.34) on the sup-norm (L∞)
metric entropy for bounded convex Lipschitz functions is due to Bronshtein (1976); see also
Section 8.4 of Dudley (1999) for more details. On the other hand, the class of all convex
functions f : [0, 1] → [0, 1] without any Lipschitz constraint is not totally bounded in the
sup-norm metric; see Exercise 5.1 for details. Guntuboyina and Sen (2013) provide bounds
on the entropy in the Lp-metrics over the range p ∈ [1,∞) for convex functions without the
Lipschitz condition.

Stone (1985) introduced the class of additive nonparametric regression models discussed
in Exercise 13.9, and subsequent work has explored many extensions and variants of these
models (e.g., Hastie and Tibshirani, 1986; Buja et al., 1989; Meier et al., 2009; Ravikumar
et al., 2009; Koltchinskii and Yuan, 2010; Raskutti et al., 2012). Exercise 13.9 in this chapter
and Exercise 14.8 in Chapter 14 explore some properties of the standard additive model.

13.6 Exercises

Exercise 13.1 (Characterization of the Bayes least-squares estimate)

(a) Given a random variable Z with finite second moment, show that the function G(t) =
E[(Z − t)2] is minimized at t = E[Z].

(b) Assuming that all relevant expectations exist, show that the minimizer of the population
mean-squared error (13.1) is given by the conditional expectation f ∗(x) = E[Y | X = x].
(Hint: The tower property and part (a) may be useful to you.)

(c) Let f be any other function for which the mean-squared error EX,Y[(Y − f (X))2] is finite.
Show that the excess risk of f is given by ‖ f − f ∗‖2

2, as in equation (13.4).

Exercise 13.2 (Prediction error in linear regression) Recall the linear regression model
from Example 13.8 with fixed design. Show via a direct argument that

E
[‖ f̂θ − fθ∗ ‖2

n
] ≤ σ2 rank(X)

n
,

valid for any observation noise that is zero-mean with variance σ2.

Exercise 13.3 (Cubic smoothing splines) Recall the cubic spline estimate (13.10) from
Example 13.2, as well as the kernel function K(x, z) =

∫ 1

0
(x − y)+ (z − y)+ dy from Exam-

ple 12.29.
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(a) Show that the optimal solution must take the form

f̂ (x) = θ̂0 + θ̂1x +
1√
n

∑
i=1

α̂iK(x, xi)

for some vectors θ̂ ∈ R2 and α̂ ∈ Rn.
(b) Show that these vectors can be obtained by solving the quadratic program

(̂θ, α̂) = arg min
(θ,α)∈R2×Rn

{
1
2n
‖y − Xθ − √

nKα‖2
2 + λnα

TKα

}
,

where K ∈ Rn×n is the kernel matrix defined by the kernel function in part (a), and
X ∈ Rn×2 is a design matrix with ith row given by [1 xi].

Exercise 13.4 (Star-shaped sets and convexity) In this exercise, we explore some properties
of star-shaped sets.

(a) Show that a set C is star-shaped around one of its points x∗ if and only if the point
αx + (1 − α)x∗ belongs to C for any x ∈ C and any α ∈ [0, 1].

(b) Show that a set C is convex if and only if it is star-shaped around each one of its points.

Exercise 13.5 (Lower bounds on the critical inequality) Consider the critical inequal-
ity (13.17) in the case f ∗ = 0, so thatF ∗ =F .

(a) Show that the critical inequality (13.17) is always satisfied for δ2 = 4σ2.
(b) Suppose that a convex function class F contains the constant function f ≡ 1. Show

that any δ ∈ (0, 1] satisfying the critical inequality (13.17) must be lower bounded as
δ2 ≥ min

{
1, 8

π
σ2

n

}
.

Exercise 13.6 (Local Gaussian complexity and adaptivity) This exercise illustrates how,
even for a fixed base function class, the local Gaussian complexity Gn(δ;F ∗) of the shifted
function class can vary dramatically as the target function f ∗ is changed. For each θ ∈ Rn, let
fθ(x) = 〈θ, x〉 be a linear function, and consider the classF�1 (1) = { fθ | ‖θ‖1 ≤ 1}. Suppose
that we observe samples of the form

yi = fθ∗(ei) +
σ√

n
wi = θ∗i +

σ√
n

wi,

where wi ∼ N(0, 1) is an i.i.d. noise sequence. Let us analyze the performance of the �1-
constrained least-squares estimator

θ̂ = arg min
fθ∈F�1 (1)

{1
n

n∑
i=1

(
yi − fθ(ei)

)2}
= arg min

θ∈Rd

‖θ‖1≤1

{1
n

n∑
i=1

(
yi − θi

)2}
.

(a) For any fθ∗ ∈F�1 (1), show thatGn(δ;F ∗
�1

(1)) ≤ c1

√
log n

n for some universal constant c1,

and hence that ‖̂θ − θ∗‖2
2 ≤ c′1σ

√
log n

n with high probability.
(b) Now consider some fθ∗ with θ∗ ∈ {e1, . . . , en}—that is, one of the canonical basis vectors.

Show that there is a universal constant c2 such that the local Gaussian complexity is

bounded as Gn(δ;F ∗
�1

(1)) ≤ c2 δ

√
log n
n , and hence that ‖̂θ − θ∗‖2

2 ≤ c′2
σ2 log n

n with high
probability.
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Exercise 13.7 (Rates for polynomial regression) Consider the class of all (m − 1)-degree
polynomials

Pm =
{
fθ : R→ R | θ ∈ Rm}, where fθ(x) =

m−1∑
j=0

θ j x j,

and suppose that f ∗ ∈ Pm. Show that there are universal positive constants (c0, c1, c2) such
that the least-squares estimator satisfies

P
[
‖ f̂ − f ∗‖2

n ≥ c0
σ2m log n

n

]
≤ c1e−c2m log n.

Exercise 13.8 (Rates for twice-differentiable functions) Consider the function classF of
functions f : [0, 1] → R that are twice differentiable with ‖ f ‖∞ + ‖ f ′‖∞ + ‖ f ′′‖∞ ≤ C for
some constant C < ∞. Show that there are positive constants (c0, c1, c2), which may depend
on C but not on (n, σ2), such that the non-parametric least-squares estimate satisfies

P
[
‖ f̂ − f ∗‖2

n ≥ c0
(σ2

n
) 4

5
] ≤ c1e−c2(n/σ2)1/5

.

(Hint: Results from Chapter 5 may be useful to you.)

Exercise 13.9 (Rates for additive nonparametric models) Given a convex and symmetric
class G of univariate functions g : R→ R equipped with a norm ‖ · ‖G , consider the class of
additive functions over Rd, namely

Fadd =
{
f : Rd → R | f =

d∑
j=1

gj for some gj ∈ G with ‖gj‖G ≤ 1}. (13.70)

Suppose that we have n i.i.d. samples of the form yi = f ∗(xi) + σwi, where each xi =

(xi1, . . . , xid) ∈ Rd, wi ∼ N(0, 1), and f ∗ :=
∑d

j=1 g∗j is some function in Fadd, and that we
estimate f ∗ by the constrained least-squares estimate

f̂ := arg min
f∈Fadd

{1
n

n∑
i=1

(
yi − f (xi)

)2}
.

For each j = 1, . . . , d, define the jth-coordinate Gaussian complexity

Gn, j(δ; 2G ) = E
[

sup
‖g j‖G ≤2
‖g j‖n≤δ

∣∣∣1
n

n∑
i=1

wig j(xi j)
∣∣∣],

and let δn, j > 0 be the smallest positive solution to the inequality Gn, j(δ;2G )
δ

≤ δ
2σ .

(a) Defining δn,max = max j=1,...,d δn, j, show that, for each t ≥ δn,max, we have

σ

n

∣∣∣∣ n∑
i=1

wiΔ̂(xi)
∣∣∣∣ ≤ dtδn,max + 2

√
tδn,max

( d∑
j=1

‖Δ̂ j‖n

)
with probability at least 1 − c1de−c2ntδn,max . (Note that f̂ =

∑d
j=1 ĝ j for some ĝ j ∈ G , so

that the function Δ̂ j = ĝ j − g∗j corresponds to the error in coordinate j, and Δ̂ :=
∑d

j=1 Δ̂ j

is the full error function.)
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(b) Suppose that there is a universal constant K ≥ 1 such that√√ n∑
j=1

‖gj‖2
n ≤

√
K ‖

d∑
j=1

gj‖n for all gj ∈ G .

Use this bound and part (a) to show that ‖ f̂ − f ∗‖2
n] ≤ c3 K d δ2

n,max with high probability.

Exercise 13.10 (Orthogonal series expansions) Recall the function classFortho(1; T ) from
Example 13.14 defined by orthogonal series expansion with T coefficients.

(a) Given a set of design points {x1, . . . , xn}, define the n × T matrix Φ ≡ Φ(xn
1) with

(i, j)th entry Φi j = φ j(xi). Show that the nonparametric least-squares estimate f̂ over
Fortho(1; T ) can be obtained by solving the ridge regression problem

min
θ∈RT

{
1
n
‖y −Φ θ‖2

2 + λn‖θ‖2
2

}
for a suitable choice of regularization parameter λn ≥ 0.

(b) Show that inf f∈Fortho(1;T ) ‖ f − f ∗‖2
2 =

∑∞
j=T+1

θ2
j .

Exercise 13.11 (Differentiable functions and Fourier coefficients) For a given integer α ≥ 1
and radius R > 0, consider the class of functionsFα(R) ⊂ L2[0, 1] such that:

• The function f is α-times differentiable, with
∫ 1

0
( f (α)(x))2 dx ≤ R.

• It and its derivatives satisfy the boundary conditions f ( j)(0) = f ( j)(1) = 0 for all j =
0, 1, . . . , α.

(a) For a function f ∈Fα(R) ∩ {‖ f ‖2 ≤ 1}, let {β0, (βm, βm)∞m=1} be its Fourier coefficients as
previously defined in Example 13.15. Show that there is a constant c such that β2

m+ β̃2
m ≤

cR
m2α for all m ≥ 1.

(b) Verify the approximation-theoretic guarantee (13.47).
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Localization and uniform laws

As discussed previously in Chapter 4, uniform laws of large numbers concern the deviations
between sample and population averages, when measured in a uniform sense over a given
function class. The classical forms of uniform laws are asymptotic in nature, guaranteeing
that the deviations converge to zero in probability or almost surely. The more modern ap-
proach is to provide non-asymptotic guarantees that hold for all sample sizes, and provide
sharp rates of convergence. In order to achieve the latter goal, an important step is to localize
the deviations to a small neighborhood of the origin. We have already encountered a form of
localization in our discussion of nonparametric regression from Chapter 13. In this chapter,
we turn to a more in-depth study of this technique and its use in establishing sharp uniform
laws for various types of processes.

14.1 Population and empirical L2-norms

We begin our exploration with a detailed study of the relation between the population and
empirical L2-norms. Given a function f : X → R and a probability distribution P over X,
the usual L2(P)-norm is given by

‖ f ‖2
L2(P) :=

∫
X

f 2(x)P(dx) = E
[
f 2(X)

]
, (14.1)

and we say that f ∈ L2(P) whenever this norm is finite. When the probability distribution P
is clear from the context, we adopt ‖ f ‖2 as a convenient shorthand for ‖ f ‖L2(P).

Given a set of n samples {xi}ni=1 := {x1, x2, . . . , xn}, each drawn i.i.d. according to P, con-
sider the empirical distribution

Pn(x) :=
1
n

n∑
i=1

δxi (x)

that places mass 1/n at each sample. It induces the empirical L2-norm

‖ f ‖2
L2(Pn) :=

1
n

n∑
i=1

f 2(xi) =
∫
X

f 2(x)Pn(dx). (14.2)

Again, to lighten notation, when the underlying empirical distribution Pn is clear from con-
text, we adopt the convenient shorthand ‖ f ‖n for ‖ f ‖L2(Pn).

In our analysis of nonparametric least squares from Chapter 13, we provided bounds on

453
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the L2(Pn)-error in which the samples {xi}ni=1 were viewed as fixed. By contrast, throughout
this chapter, we view the samples as being random variables, so that the empirical norm is
itself a random variable. Since each xi ∼ P, the linearity of expectation guarantees that

E[‖ f ‖2
n] = E

⎡⎢⎢⎢⎢⎢⎣1
n

n∑
i=1

f 2(xi)

⎤⎥⎥⎥⎥⎥⎦ = ‖ f ‖2
2 for any function f ∈ L2(P).

Consequently, under relatively mild conditions on the random variable f (x), the law of
large numbers implies that ‖ f ‖2

n converges to ‖ f ‖2
2. Such a limit theorem has its usual non-

asymptotic analogs: for instance, if the function f is uniformly bounded, that is, if

‖ f ‖∞ := sup
x∈X

| f (x)| ≤ b for some b < ∞,

then Hoeffding’s inequality (cf. Proposition 2.5 and equation (2.11)) implies that

P
[∣∣∣‖ f ‖2

n − ‖ f ‖2
2

∣∣∣ ≥ t
]
≤ 2e−

nt2

2b4 .

As in Chapter 4, our interest is in extending this type of tail bound—valid for a single
function f —to a result that applies uniformly to all functions in a certain function class
F . Our analysis in this chapter, however, will be more refined: by using localized forms of
complexity, we obtain optimal bounds.

14.1.1 A uniform law with localization

We begin by stating a theorem that controls the deviations in the random variable∣∣∣‖ f ‖n − ‖ f ‖2

∣∣∣, when measured in a uniform sense over a function class F . We then illus-
trate some consequences of this result in application to nonparametric regression.

As with our earlier results on nonparametric least squares from Chapter 13, our result is
stated in terms of a localized form of Rademacher complexity. For the current purposes, it
is convenient to define the complexity at the population level. For a given radius δ > 0 and
function classF , consider the localized population Rademacher complexity

Rn(δ;F ) = Eε,x

[
sup
f∈F
‖ f ‖2≤δ

∣∣∣1
n

n∑
i=1

εi f (xi)
∣∣∣], (14.3)

where {xi}ni=1 are i.i.d. samples from some underlying distributionP, and {εi}ni=1 are i.i.d. Rade-
macher variables taking values in {−1,+1} equiprobably, independent of the sequence {xi}ni=1.

In the following result, we assume thatF is star-shaped around the origin, meaning that,
for any f ∈ F and scalar α ∈ [0, 1], the function α f also belongs to F . In addition, we
require the function class to be b-uniformly bounded, meaning that there is a constant b < ∞
such that ‖ f ‖∞ ≤ b for all f ∈F .
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Theorem 14.1 Given a star-shaped and b-uniformly bounded function class F , let
δn be any positive solution of the inequality

Rn(δ;F ) ≤ δ2

b
. (14.4)

Then for any t ≥ δn, we have∣∣∣∣‖ f ‖2
n − ‖ f ‖2

2

∣∣∣∣ ≤ 1
2
‖ f ‖2

2 +
t2

2
for all f ∈F (14.5a)

with probability at least 1 − c1e−c2
nt2

b2 . If in addition nδ2
n ≥ 2

c2
log(4 log(1/δn)), then∣∣∣ ‖ f ‖n − ‖ f ‖2

∣∣∣ ≤ c0 δn for all f ∈F (14.5b)

with probability at least 1 − c′1e−c′2
nδ2

n
b2 .

It is worth noting that a similar result holds in terms of the localized empirical Rademacher
complexity, namely the data-dependent quantity

R̂n(δ) ≡ R̂n(δ;F ) := Eε

[
sup
f∈F
‖ f ‖n≤δ

1
n

n∑
i=1

εi f (xi)
∣∣∣], (14.6)

and any positive solution δ̂n to the inequality

R̂n(δ) ≤ δ2

b
. (14.7)

Since the Rademacher complexity R̂n depends on the data, this critical radius δ̂n is a ran-
dom quantity, but it is closely related to the deterministic radius δn defined in terms of the
population Rademacher complexity (14.3). More precisely, let δn and δ̂n denote the small-
est positive solutions to inequalities (14.4) and (14.7), respectively. Then there are universal

constants c < 1 < C such that, with probability at least 1 − c1e−c2
nδ2

n
b , we are guaranteed that

δ̂n ∈ [cδn, Cδn], and hence∣∣∣‖ f ‖n − ‖ f ‖2

∣∣∣ ≤ c0

c
δ̂n for all f ∈F . (14.8)

See Proposition 14.25 in the Appendix (Section 14.5) for the details and proof.

Theorem 14.1 is best understood by considering some concrete examples.

Example 14.2 (Bounds for quadratic functions) For a given coefficient vector θ ∈ R3,
define the quadratic function fθ(x) := θ0 + θ1x + θ2x2, and let us consider the set of all
bounded quadratic functions over the unit interval [−1, 1], that is, the function class

P2 :=
{
fθ for some θ ∈ R3 such that maxx∈[−1,1] | fθ(x)| ≤ 1

}
. (14.9)

Suppose that we are interested in relating the population and empirical L2-norms uniformly
over this family, when the samples are drawn from the uniform distribution over [−1, 1].
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We begin by exploring a naive approach, one that ignores localization and hence leads
to a sub-optimal rate. From our results on VC dimension in Chapter 4—in particular, see
Proposition 4.20—it is straightforward to see that P2 has VC dimension at most 3. In con-
junction with the boundedness of the function class, Lemma 4.14 guarantees that for any
δ > 0, we have

Eε

[
sup
fθ∈P2
‖ fθ‖2≤δ

∣∣∣1
n

n∑
i=1

εi f (xi)
∣∣∣] (i)≤ 2

√
3 log(n + 1)

n
≤ 4

√
log(n + 1)

n
(14.10)

for any set of samples {xi}ni=1. As we will see, this upper bound is actually rather loose for
small values of δ, since inequality (i) makes no use of the localization condition ‖ fθ‖2 ≤ δ.

Based on the naive upper bound (14.10), we can conclude that there is a constant c0 such
that inequality (14.4) is satisfied with δn = c0

( log(n+1)
n

)1/4. Thus, for any t ≥ c0
( log(n+1)

n

)1/4,
Theorem 14.1 guarantees that∣∣∣∣‖ f ‖2

n − ‖ f ‖2
2

∣∣∣∣ ≤ 1
2‖ f ‖2

2 + t2 for all f ∈ P2 (14.11)

with probability at least 1 − c1e−c2t2
. This bound establishes that ‖ f ‖2

2 and ‖ f ‖2
n are of the

same order for all functions with norm ‖ f ‖2 ≥ c0
( log(n+1)

n

)1/4, but this order of fluctuation is
sub-optimal. As we explore in Exercise 14.3, an entropy integral approach can be used to
remove the superfluous logarithm from this result, but the slow n−1/4 rate remains.

Let us now see how localization can be exploited to yield the optimal scaling n−1/2. In
order to do so, it is convenient to re-parameterize our quadratic functions in terms of an
orthonormal basis of L2[−1, 1]. In particular, the first three functions in the Legendre basis
take the form

φ0(x) =
1√
2
, φ1(x) =

√
3
2

x and φ2(x) =

√
5
8

(3x2 − 1).

By construction, these functions are orthonormal in L2[−1, 1], meaning that the inner prod-
uct 〈φ j, φk〉L2[−1,1] :=

∫ 1

−1
φ j(x)φk(x) dx is equal to one if j = k, and zero otherwise. Using

these basis functions, any polynomial function in P2 then has an expansion of the form
fγ(x) = γ0φ0(x) + γ1φ1(x) + γ2φ2(x), where ‖ fγ‖2 = ‖γ‖2 by construction. Given a set of n
samples, let us define an n × 3 matrix M with entries Mi j = φ j(xi). In terms of this matrix,
we then have

E
[

sup
fγ∈P2
‖ fγ‖2≤δ

∣∣∣1
n

n∑
i=1

εi fγ(xi)
∣∣∣] ≤ E[ sup

‖γ‖2≤δ

∣∣∣1
n
εTMγ

∣∣∣]
(i)≤ δ

n
E
[
‖εTM‖2

]
(ii)≤ δ

n

√
E[‖εTM‖2

2],

where step (i) follows from the Cauchy–Schwarz inequality, and step (ii) follows from
Jensen’s inequality and concavity of the square-root function. Now since the Rademacher
variables are independent, we have

Eε[‖εTM‖2
2] = trace(MMT) = trace(MTM).
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By the orthonormality of the basis {φ0, φ1, φ2}, we have Ex[trace(MTM)] = 3n. Putting to-
gether the pieces yields the upper bound

E
[

sup
fγ∈P2
‖ fγ‖2≤δ

∣∣∣1
n

n∑
i=1

εi fγ(xi)
∣∣∣] ≤ √

3 δ√
n

.

Based on this bound, we see that there is a universal constant c such that inequality (14.4)
is satisfied with δn =

c√
n . Applying Theorem 4.10 then guarantees that for any t ≥ c√

n , we
have ∣∣∣∣‖ f ‖2

n − ‖ f ‖2
2

∣∣∣∣ ≤ ‖ f ‖2
2

2
+

1
2

t2 for all f ∈ P2, (14.12)

a bound that holds with probability at least 1 − c1e−c2nt2
. Unlike the earlier bound (14.11),

this result has exploited the localization and thereby increased the rate from the slow one of( log n
n

)1/4 to the optimal one of ( 1
n )1/2. ♣

Whereas the previous example concerned a parametric class of functions, Theorem 14.1
also applies to nonparametric function classes. Since metric entropy has been computed for
many such classes, it provides one direct route for obtaining upper bounds on the solutions
of inequalities (14.4) or (14.7). One such avenue is summarized in the following:

Corollary 14.3 Let Nn(t;Bn(δ;F )) denote the t-covering number of the setBn(δ;F ) =
{ f ∈F | ‖ f ‖n ≤ δ} in the empirical L2(Pn)-norm. Then the empirical version of critical
inequality (14.7) is satisfied for any δ > 0 such that

64√
n

∫ δ

δ2
2b

√
log Nn

(
t;Bn(δ;F )

)
dt ≤ δ2

b
. (14.13)

The proof of this result is essentially identical to the proof of Corollary 13.7, so that we leave
the details to the reader.

In order to make use of Corollary 14.3, we need to control the covering number Nn in
the empirical L2(Pn)-norm. One approach is based on observing that the covering number
Nn can always bounded by the covering number Nsup in the supremum norm ‖ · ‖∞. Let us
illustrate this approach with an example.

Example 14.4 (Bounds for convex Lipschitz functions) Recall from Example 13.11 the
class of convex 1-Lipschitz functions

Fconv([0, 1]; 1) :=
{
f : [0, 1] → R | f (0) = 0, and f is convex and 1-Lipschitz

}
.

From known results, the metric entropy of this function class in the sup-norm is upper
bounded as log Nsup(t;Fconv) � t−1/2 for all t > 0 sufficiently small (see the bibliographic
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section for details). Thus, in order to apply Corollary 14.3, it suffices to find δ > 0 such that

1√
n

∫ δ

0
(1/t)1/4 dt =

1√
n

4
3

δ3/4 � δ2.

Setting δ = c n−2/5 for a sufficiently large constant c > 0 is suitable, and applying Theo-
rem 14.1 with this choice yields∣∣∣‖ f ‖2 − ‖ f ‖n

∣∣∣ ≤ c′ n−2/5 for all f ∈Fconv([0, 1]; 1)

with probability greater than 1 − c1e−c2n1/5
. ♣

In the exercises at the end of this chapter, we explore various other results that can be derived
using Corollary 14.3.

14.1.2 Specialization to kernel classes

As discussed in Chapter 12, reproducing kernel Hilbert spaces (RKHSs) have a number
of attractive computational properties in application to nonparametric estimation. In this
section, we discuss the specialization of Theorem 14.1 to the case of a function classF that
corresponds to the unit ball of an RKHS.

Recall that any RKHS is specified by a symmetric, positive semidefinite kernel function
K : X × X → R. Under mild conditions, Mercer’s theorem (as stated previously in Theo-
rem 12.20) ensures that K has a countable collection of non-negative eigenvalues (μ j)∞j=1.
The following corollary shows that the population form of the localized Rademacher com-
plexity for an RKHS is determined by the decay rate of these eigenvalues, and similarly, the
empirical version is determined by the eigenvalues of the empirical kernel matrix.

Corollary 14.5 Let F =
{
f ∈ H | ‖ f ‖H ≤ 1

}
be the unit ball of an RKHS with

eigenvalues (μ j)∞j=1. Then the localized population Rademacher complexity (14.3) is
upper bounded as

Rn(δ;F ) ≤
√

2
n

√√ ∞∑
j=1

min{μ j, δ2}. (14.14a)

Similarly, letting (̂μ j)n
j=1 denote the eigenvalues of the renormalized kernel matrix K ∈

Rn×n with entries Ki j = K(xi, x j)/n, the localized empirical Rademacher complex-
ity (14.6) is upper bounded as

R̂n(δ;F ) ≤
√

2
n

√√ n∑
j=1

min{̂μ j, δ2}. (14.14b)

Given knowledge of the eigenvalues of the kernel (operator or matrix), these upper bounds
on the localized Rademacher complexities allow us to specify values δn that satisfy the in-
equalities (14.4) and (14.7), in the population and empirical cases, respectively. Lemma 13.22
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from Chapter 13 provides an upper bound on the empirical Gaussian complexity for a kernel
class, which yields the claim (14.14b). The proof of inequality (14.14a) is based on tech-
niques similar to the proof of Lemma 13.22; we work through the details in Exercise 14.4.

Let us illustrate the use of Corollary 14.5 with some examples.

Example 14.6 (Bounds for first-order Sobolev space) Consider the first-order Sobolev
space

H1[0, 1] :=
{
f : [0, 1] → R | f (0) = 0, and f is abs. cts. with f ′ ∈ L2[0, 1]

}
.

Recall from Example 12.16 that it is a reproducing kernel Hilbert space with kernel function
K(x, z) = min{x, z}. From the result of Exercise 12.14, the unit ball { f ∈ H1[0, 1] | ‖ f ‖H ≤ 1}
is uniformly bounded with b = 1, so that Corollary 14.5 may be applied. Moreover, from
Example 12.23, the eigenvalues of this kernel function are given by μ j =

( 2
(2 j−1) π

)2 for j =
1, 2, . . .. Using calculations analogous to those from Example 13.20, it can be shown that

1√
n

√√ ∞∑
j=1

min{δ2, μ j} ≤ c′
√

δ

n

for some universal constant c′ > 0. Consequently, Corollary 14.5 implies that the critical
inequality (14.4) is satisfied for δn = cn−1/3. Applying Theorem 14.1, we conclude that

sup
‖ f ‖H1[0,1]≤1

∣∣∣‖ f ‖2 − ‖ f ‖n

∣∣∣ ≤ c0 n−1/3

with probability greater than 1 − c1e−c2n1/3
. ♣

Example 14.7 (Bounds for Gaussian kernels) Consider the RKHS generated by the Gaus-
sian kernel K(x, z) = e−

1
2 (x−z)2

defined on the unit square [−1, 1] × [−1, 1]. As discussed in
Example 13.21, there are universal constants (c0, c1) such that the eigenvalues of the associ-
ated kernel operator satisfy a bound of the form

μ j ≤ c0 e−c1 j log j for j = 1, 2, . . ..

Following the same line of calculation as in Example 13.21, it is straightforward to show

that inequality (14.14a) is satisfied by δn = c0

√
log(n+1)

n for a sufficiently large but universal
constant c0. Consequently, Theorem 14.1 implies that, for the unit ball of the Gaussian kernel
RKHS, we have

sup
‖ f ‖H≤1

∣∣∣‖ f ‖2 − ‖ f ‖n

∣∣∣ ≤ c0

√
log(n + 1)

n

with probability greater than 1 − 2e−c1 log(n+1). By comparison to the parametric function
class discussed in Example 14.2, we see that the unit ball of a Gaussian kernel RKHS obeys
a uniform law with a similar rate. This fact illustrates that the unit ball of the Gaussian kernel
RKHS—even though nonparametric in nature—is still relatively small. ♣
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14.1.3 Proof of Theorem 14.1

Let us now return to prove Theorem 14.1. By a rescaling argument, it suffices to consider the
case b = 1. Moreover, it is convenient to redefine δn as a positive solution to the inequality

Rn(δ;F ) ≤ δ2

16
. (14.15)

This new δn is simply a rescaled version of the original one, and we shall use it to prove a
version of the theorem with c0 = 1.

With these simplifications, our proof is based on the family of random variables

Zn(r) := sup
f∈B2(r;F )

∣∣∣‖ f ‖2
2 − ‖ f ‖2

n

∣∣∣, where B2(r;F ) = { f ∈F | ‖ f ‖2 ≤ r}, (14.16)

indexed by r ∈ (0, 1]. We let E0 and E1, respectively, denote the events that inequality
(14.5a) or inequality (14.5b) are violated. We also define the auxiliary events A0(r) :=
{Zn(r) ≥ r2/2}, and

A1 :=
{
Zn(‖ f ‖2) ≥ δn ‖ f ‖2 for some f ∈F with ‖ f ‖2 ≥ δn

}
.

The following lemma shows that it suffices to control these two auxiliary events:

Lemma 14.8 For any star-shaped function class, we have

E0
(i)⊆ A0(t) and E1

(ii)⊆ A0(δn) ∪A1. (14.17)

Proof Beginning with the inclusion (i), we divide the analysis into two cases. First, sup-
pose that there exists some function with norm ‖ f ‖2 ≤ t that violates inequality (14.5a).
For this function, we must have

∣∣∣‖ f ‖2
n − ‖ f ‖2

2

∣∣∣ > t2

2 , showing that Zn(t) > t2

2 so that A0(t)
must hold. Otherwise, suppose that the inequality (14.5a) is violated by some function with
‖ f ‖2 > t. Any such function satisfies the inequality

∣∣∣‖ f ‖2
2 − ‖ f ‖2

n

∣∣∣ > ‖ f ‖2
2/2. We may then de-

fine the rescaled function f̃ = t
‖ f ‖2

f ; by construction, it has ‖ f̃ ‖2 = t, and also belongs toF
due to the star-shaped condition. Hence, reasoning as before, we find that A0(t) must also
hold in this case.

Turning to the inclusion (ii), it is equivalent to show that Ac
0(δn) ∩ Ac

1 ⊆ Ec
1. We split the

analysis into two cases:

Case 1: Consider a function f ∈ F with ‖ f ‖2 ≤ δn. Then on the complement of A0(δn),
either we have ‖ f ‖n ≤ δn, in which case

∣∣∣‖ f ‖n − ‖ f ‖2

∣∣∣ ≤ δn, or we have ‖ f ‖n ≥ δn, in which
case ∣∣∣‖ f ‖n − ‖ f ‖2

∣∣∣ = ∣∣∣‖ f ‖2
2 − ‖ f ‖2

n

∣∣∣
‖ f ‖n + ‖ f ‖2

≤ δ2
n

δn
= δn.

Case 2: Next consider a function f ∈ F with ‖ f ‖2 > δn. In this case, on the complement
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of A1, we have ∣∣∣‖ f ‖n − ‖ f ‖2

∣∣∣ = ∣∣∣ ‖ f ‖2
n − ‖ f ‖2

2

∣∣∣
‖ f ‖n + ‖ f ‖2

≤ ‖ f ‖2 δn

‖ f ‖n + ‖ f ‖2
≤ δn,

which completes the proof.

In order to control the events A0(r) and A1, we need to control the tail behavior of the
random variable Zn(r).

Lemma 14.9 For all r, s ≥ δn, we have

P
[
Zn(r) ≥ rδn

4
+

s2

4

]
≤ 2e−c2n min{ s4

r2 ,s2}. (14.18)

Setting both r and s equal to t ≥ δn in Lemma 14.9 yields the bound P[A0(t)] ≤ 2e−c2nt2
.

Using inclusion (i) in Lemma 14.8, this completes the proof of inequality (14.5a).

Let us now prove Lemma 14.9.

Proof Beginning with the expectation, we have

E[Zn(r)]
(i)≤ 2E

[
sup

f∈B2(r;F )

∣∣∣1
n

n∑
i=1

εi f 2(xi)
∣∣∣] (ii)≤ 4E

[
sup

f∈B2(r;F )

∣∣∣1
n

n∑
i=1

εi f (xi)
∣∣∣] = 4Rn(r),

where step (i) uses a standard symmetrization argument (in particular, see the proof of The-
orem 4.10 in Chapter 4); and step (ii) follows from the boundedness assumption (‖ f ‖∞ ≤ 1
uniformly for all f ∈ F ) and the Ledoux–Talagrand contraction inequality (5.61) from
Chapter 5. Given our star-shaped condition on the function class, Lemma 13.6 guarantees
that the function r �→ Rn(r)/r is non-increasing on the interval (0,∞). Consequently, for any
r ≥ δn, we have

Rn(r)
r

(iii)≤ Rn(δn)
δn

(iv)≤ δn

16
, (14.19)

where step (iii) follows from the non-increasing property, and step (iv) follows from our
definition of δn. Putting together the pieces, we find that the expectation is upper bounded
as E[Zn(r)] ≤ rδn

4 .
Next we establish a tail bound above the expectation using Talagrand’s inequality from

Theorem 3.27. Let f be an arbitrary member of B2(r;F ). Since ‖ f ‖∞ ≤ 1 for all f ∈F , the
recentered functions g = f 2 − E[ f 2(X)] are bounded as ‖g‖∞ ≤ 1, and moreover

var(g) ≤ E[ f 4] ≤ E[ f 2] ≤ r2,

using the fact that f ∈ B2(r;F ). Consequently, by applying Talagrand’s concentration in-
equality (3.83), we find that there is a universal constant c such that

P
[
Zn(r) ≥ E[Z(r)] +

s2

4

]
≤ 2 exp

(
− ns4

c (r2 + rδn + s2)

)
≤ e−c2n min{ s4

r2 ,s2},
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where the final step uses the fact that r ≥ δn.

It remains to use Lemmas 14.8 and 14.9 to establish inequality (14.5b). By combining
inclusion (ii) in Lemma 14.8 with the union bound, it suffices to bound the sum P[A0(δn)]+
P[A1]. Setting r = s = δn in the bound (14.18) yields the bound P[A0(δn)] ≤ e−c1nδ2

n ,
whereas setting s2 = rδn yields the bound

P
[
Zn(r) ≥ rδn

2
] ≤ 2e−c2nδ2

n . (14.20)

Given this bound, one is tempted to “complete” the proof by setting r = ‖ f ‖2, and ap-
plying the tail bound (14.20) to the variable Zn(‖ f ‖2). The delicacy here is that the tail
bound (14.20) applies only to a deterministic radius r, as opposed to the random1 radius ‖ f ‖2.
This difficulty can be addressed by using a so-called “peeling” argument. For m = 1, 2, . . .,
define the events

Sm := { f ∈F | 2m−1δn ≤ ‖ f ‖2 ≤ 2mδn}.
Since ‖ f ‖2 ≤ ‖ f ‖∞ ≤ 1 by assumption, any function F ∩ {‖ f ‖2 ≥ δn} belongs to some Sm

for m ∈ {1, 2, . . . , M}, where M ≤ 4 log(1/δn).
By the union bound, we have P(A1) ≤ ∑M

m=1 P(A1 ∩ Sm). Now if the event A1 ∩ Sm

occurs, then there is a function f with ‖ f ‖2 ≤ rm := 2mδn such that∣∣∣‖ f ‖2
n − ‖ f ‖2

2

∣∣∣ ≥ ‖ f ‖2 δn ≥ 1
2 rmδn.

Consequently, we have P[Sm ∩ E1] ≤ P[Z(rm) ≥ 1
2 rmδn] ≤ e−c2nδ2

n , and putting together the
pieces yields

P[A1] ≤
M∑

m=1

e−nδ2
n/16 ≤ e−c2nδ2

n+log M ≤ e−
c2nδ2

n
2 ,

where the final step follows from the assumed inequality c2
2 nδ2

n ≥ log(4 log(1/δn)).

14.2 A one-sided uniform law

A potentially limiting aspect of Theorem 14.1 is that it requires the underlying function class
to be b-uniformly bounded. To a certain extent, this condition can be relaxed by instead
imposing tail conditions of the sub-Gaussian or sub-exponential type. See the bibliographic
discussion for references to results of this type.

However, in many applications—including the problem of nonparametric least squares
from Chapter 13—it is the lower bound on ‖ f ‖2

n that is of primary interest. As discussed
in Chapter 2, for ordinary scalar random variables, such one-sided tail bounds can often
be obtained under much milder conditions than their corresponding two-sided analogs.
Concretely, in the current context, for any fixed function f ∈ F , applying the lower tail
bound (2.23) to the i.i.d. sequence { f (xi)}ni=1 yields the guarantee

P
[‖ f ‖2

n ≤ ‖ f ‖2
2 − t

] ≤ e−
nt2

2E[ f 4(x)] . (14.21)

1 It is random because the norm of the function f that violates the bound is a random variable.
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Consequently, whenever the fourth moment can be controlled by some multiple of the sec-
ond moment, then we can obtain non-trivial lower tail bounds.

Our goal in this section is to derive lower tail bounds of this type that hold uniformly over
a given function class. Let us state more precisely the type of fourth-moment control that is
required. In particular, suppose that there exists a constant C such that

E[ f 4(x)] ≤ C2 E[ f 2(x)] for all f ∈F with ‖ f ‖2 ≤ 1. (14.22a)

When does a bound of this type hold? It is certainly implied by the global condition

E[ f 4(x)] ≤ C2(E[ f 2(x)]
)2 for all f ∈F . (14.22b)

However, as illustrated in Example 14.11 below, there are other function classes for which
the milder condition (14.22a) can hold while the stronger condition (14.22b) fails.

Let us illustrate these fourth-moment conditions with some examples.

Example 14.10 (Linear functions and random matrices) For a given vector θ ∈ Rd, de-
fine the linear function fθ(x) = 〈x, θ〉, and consider the class of all linear functions Flin =

{ fθ | θ ∈ Rd}. As discussed in more detail in Example 14.13 to follow shortly, uniform laws
for ‖ f ‖2

n over such a function class are closely related to random matrix theory. Note that the
linear function class Flin is never uniformly bounded in a meaningful way. Nonetheless, it
is still possible for the strong moment condition (14.22b) to hold under certain conditions
on the zero-mean random vector x.

For instance, suppose that for each θ ∈ Rd, the random variable fθ(x) = 〈x, θ〉 is Gaussian.
In this case, using the standard formula (2.54) for the moments of a Gaussian random vector,
we have E[ f 4

θ (x)] = 3
(
E[ f 2

θ (x)]
)2, showing that condition (14.22b) holds uniformly with

C2 = 3. Note that C does not depend on the variance of fθ(x), which can be arbitrarily
large. Exercise 14.6 provides some examples of non-Gaussian variables for which the fourth-
moment condition (14.22b) holds in application to linear functions. ♣
Example 14.11 (Additive nonparametric models) Given a univariate function class G ,
consider the class of functions on Rd given by

Fadd =
{
f : Rd → R | f =

d∑
j=1

gj for some gj ∈ G }. (14.23)

The problem of estimating a function of this type is known as additive regression, and it
provides one avenue for escaping the curse of dimension; see the bibliographic section for
further discussion.

Suppose that the univariate function class G is uniformly bounded, say ‖gj‖∞ ≤ b for all
gj ∈ G , and consider a distribution over x ∈ Rd under which each gj(x j) is a zero-mean ran-
dom variable. (This latter assumption can always be ensured by a recentering step.) Assume
moreover that the design vector x ∈ Rd has four-way independent components—that is, for
any distinct quadruple ( j, k, �,m), the random variables (x j, xk, x�, xm) are jointly indepen-
dent. For a given δ ∈ (0, 1], consider a function f =

∑d
j=1 gj ∈F such that E[ f 2(x)] = δ2, or
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equivalently, using our independence conditions, such that

E[ f 2(x)] =
d∑

j=1

‖gj‖2
2 = δ2.

For any such function, the fourth moment can be bounded as

E[ f 4(x)] = E
[( d∑

j=1

gj(x j)
)4]

=

d∑
j=1

E[g4
j(x j)] + 6

∑
j�k

E[g2
j(x j)]E[g2

k(xk)]

≤
d∑

j=1

E[g4
j(x j)] + 6δ4,

where we have used the zero-mean property, and the four-way independence of the coor-
dinates. Since ‖gj‖∞ ≤ b for each gj ∈ G , we have E[g4

j(x j)] ≤ b2E[g2
j(x j)], and putting

together the pieces yields

E[ f 4(x)] ≤ b2δ2 + 6δ4 ≤ (
b2 + 6

)
δ2,

where the final step uses the fact that δ ≤ 1 by assumption. Consequently, for any δ ∈ (0, 1],
the weaker condition (14.22a) holds with C2 = b2 + 6. ♣

Having seen some examples of function classes that satisfy the moment conditions (14.22a)
and/or (14.22b), let us now state a one-sided uniform law. Recalling that Rn denotes the pop-
ulation Rademacher complexity, consider the usual type of inequality

Rn(δ;F )
δ

≤ δ

128C
, (14.24)

where the constant C appears in the fourth-moment condition (14.22a). Our statement also
involves the convenient shorthand B2(δ) :=

{
f ∈F | ‖ f ‖2 ≤ δ

}
.

Theorem 14.12 Consider a star-shaped classF of functions, each zero-mean under
P, and such that the fourth-moment condition (14.22a) holds uniformly over F , and
suppose that the sample size n is large enough to ensure that there is a solution δn ≤ 1
to the inequality (14.24). Then for any δ ∈ [δn, 1], we have

‖ f ‖2
n ≥ 1

2‖ f ‖2
2 for all f ∈F \ B2(δ) (14.25)

with probability at least 1 − e−c1
nδ2

C2 .

Remark: The set F \ B2(δ) can be replaced with F whenever the set F ∩ B2(δ) is
cone-like—that is, whenever any non-zero function f ∈ B2(δ) ∩ F can be rescaled by
α := δ/‖ f ‖2 ≥ 1, thereby yielding a new function g := α f that remains withinF .

In order to illustrate Theorem 14.12, let us revisit our earlier examples.
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Example 14.13 (Linear functions and random matrices, continued) Recall the linear func-
tion class Flin introduced previously in Example 14.10. Uniform laws over this function
class are closely related to earlier results on non-asymptotic random matrix theory from
Chapter 6. In particular, supposing that the design vector x has a zero-mean distribution
with covariance matrix Σ, the function fθ(x) = 〈x, θ〉 has L2(P)-norm

‖ fθ‖2
2 = θTE[xxT]θ = ‖ √Σθ‖2

2 for each fθ ∈F . (14.26)

On the other hand, given a set of n samples {xi}ni=1, we have

‖ fθ‖2
n =

1
n

n∑
i=1

〈xi, θ〉2 = 1
n
‖Xθ‖2

2, (14.27)

where the design matrix X ∈ Rn×d has the vector xT
i as its ith row. Consequently, in applica-

tion to this function class, Theorem 14.12 provides a uniform lower bound on the quadratic
forms 1

n‖Xθ‖2
2: in particular, as long as the sample size n is large enough to ensure that δn ≤ 1,

we have
1
n
‖Xθ‖2

2 ≥
1
2
‖ √Σθ‖2

2 for all θ ∈ Rd. (14.28)

As one concrete example, suppose that the covariate vector x follows a N(0,Σ) distribu-
tion. For any θ ∈ Sd−1, the random variable 〈x, θ〉 is sub-Gaussian with parameter at most
||| √Σ|||2, but this quantity could be very large, and potentially growing with the dimension
d. However, as discussed in Example 14.10, the strong moment condition (14.22b) always
holds with C2 = 3, regardless of the size of ||| √Σ|||2. In order to apply Theorem 14.12, we
need to determine a positive solution δn to the inequality (14.24). Writing each x =

√
Σw,

where w ∼ N(0,Σ), note that we have ‖ fθ(x)‖2 = ‖ √Σθ‖2. Consequently, by definition of
the local Rademacher complexity, we have

Rn(δ;Flin) = E
[

sup
θ∈Rd

‖ √Σθ‖2≤δ

∣∣∣∣〈1
n

n∑
i=1

εiwi,
√
Σθ

〉∣∣∣∣] = δE‖1
n

n∑
i=1

εiwi‖2.

Note that the random variables {εiwi}ni=1 are i.i.d. and standard Gaussian (since the sym-
metrization by independent Rademacher variables has no effect). Consequently, previous

results from Chapter 2 guarantee that E‖ 1
n

∑n
i=1 εiwi‖2 ≤

√
d
n . Putting together the pieces, we

conclude that δ2
n � d

n . Therefore, for this particular ensemble, Theorem 14.12 implies that,
as long as n � d, then

‖Xθ‖2
2

n
≥ 1

2
‖ √Σθ‖2

2 for all θ ∈ Rd (14.29)

with high probability. The key part of this lower bound is that the maximum eigenvalue
||| √Σ|||2 never enters the result.

As another concrete example, the four-way independent and B-bounded random variables
described in Exercise 14.6 also satisfy the moment condition (14.22b) with C2 = B + 6. A
similar calculation then shows that, with high probability, this ensemble also satisfies a lower
bound of the form (14.29) where Σ = Id. Note that these random variables need not be sub-
Gaussian—in fact, the condition does not even require the existence of moments larger than
four. ♣
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In Exercise 14.7, we illustrate the use of Theorem 14.12 for controlling the restricted eigen-
values (RE) of some random matrix ensembles.

Let us now return to a nonparametric example:

Example 14.14 (Additive nonparametric models, continued) In this example, we return to
the class Fadd of additive nonparametric models previously introduced in Example 14.11.
We let εn be the critical radius for the univariate function class G in the definition (14.23);
thus, the scalar εn satisfies an inequality of the form Rn(ε;F ) � ε2. In Exercise 14.8, we
prove that the critical radius δn for the d-dimensional additive familyFadd satisfies the upper
bound δn �

√
d εn. Consequently, Theorem 14.12 guarantees that

‖ f ‖2
n ≥ 1

2‖ f ‖2
2 for all f ∈Fadd with ‖ f ‖2 ≥ c0

√
d εn (14.30)

with probability at least 1 − e−c1ndε2
n .

As a concrete example, suppose that the univariate function class G is given by a first-
order Sobolev space; for such a family, the univariate rate scales as ε2

n  n−2/3 (see Exam-
ple 13.20 for details). For this particular class of additive models, with probability at least
1 − e−c1dn1/3

, we are guaranteed that

‖
d∑

j=1

gj‖2
n︸����︷︷����︸

‖ f ‖2
n

≥ 1
2

d∑
j=1

‖gj‖2
2︸����︷︷����︸

‖ f ‖2
2

(14.31)

uniformly over all functions of the form f =
∑d

j=1 gj with ‖ f ‖2 �
√

dn−1/3. ♣

14.2.1 Consequences for nonparametric least squares

Theorem 14.12, in conjunction with our earlier results from Chapter 13, has some immedi-
ate corollaries for nonparametric least squares. Recall the standard model for nonparametric
regression, in which we observe noisy samples of the form yi = f ∗(xi)+σwi, where f ∗ ∈F
is the unknown regression function. Our corollary involves the local complexity of the
shifted function classF ∗ =F − f ∗.

We let δn and εn (respectively) be any positive solutions to the inequalities

Rn(δ;F )
δ

(i)≤ δ

128C
and

Gn(ε;F ∗)
ε

(ii)≤ ε

2σ
, (14.32)

where the localized Gaussian complexity Gn(ε;F ∗) was defined in equation (13.16), prior
to the statement of Theorem 13.5. To be clear, the quantity εn is a random variable, since it
depends on the covariates {xi}ni=1, which are modeled as random in this chapter.
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Corollary 14.15 Under the conditions of Theorems 13.5 and 14.12, there are univer-
sal positive constants (c0, c1, c2) such that the nonparametric least-squares estimate f̂
satisfies

Pw,x

[
‖ f̂ − f ∗‖2

2 ≥ c0
(
ε2

n + δ2
n
)] ≤ c1e−c2

nδ2
n

σ2+C2 . (14.33)

Proof We split the argument into two cases:

Case 1: Suppose that δn ≥ εn. We are then guaranteed that δn is a solution to inequality (ii)
in equation (14.32). Consequently, we may apply Theorem 13.5 with t = δn to find that

Pw
[‖ f̂ − f ∗‖n ≥ 16δ2

n
] ≤ e−

nδ2
n

2σ2 .

On the other hand, Theorem 14.12 implies that

Px,w

[
‖ f̂ − f ∗‖2

2 ≥ 2δ2
n + 2‖ f̂ − f ∗‖2

n

]
≤ e−c2

nδ2
n

C2 .

Putting together the pieces yields that

Px,w

[
‖ f̂ − f ∗‖2

2 ≥ c0δ
2
n

]
≤ c1e−c2

nδ2
n

σ2+C2 ,

which implies the claim.

Case 2: Otherwise, we may assume that the eventA := {δn < εn} holds. Note that this event
depends on the random covariates {xi}ni=1 via the random quantity εn. It suffices to bound the
probability of the event E ∩A, where

E :=
{
‖ f̂ − f ∗‖2

2 ≥ 16ε2
n + 2δ2

n

}
.

In order to do so, we introduce a third event, namely B :=
{‖ f̂ − f ∗‖2

n ≤ 8ε2
n
}
, and make note

of the upper bound

P[E ∩A] ≤ P[E ∩ B] + P[A∩Bc].

On one hand, we have

P[E ∩ B] ≤ P
[
‖ f̂ − f ∗‖2

2 ≥ 2‖ f̂ − f ∗‖2
n + 2δ2

n

]
≤ e−c2

nδ2
n

C2 ,

where the final inequality follows from Theorem 14.12.
On the other hand, let I[A] be a zero–one indicator for the event A := {δn < εn}. Then

applying Theorem 13.5 with t = εn yields

P[A∩Bc] ≤ Ex

[
e−

nε2
n

2σ2 I[A]
]
≤ e−

nδ2
n

2σ2 .

Putting together the pieces yields the claim.
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14.2.2 Proof of Theorem 14.12

Let us now turn to the proof of Theorem 14.12. We first claim that it suffices to consider
functions belonging to the boundary of the δ-ball—namely, the set ∂B2(δ) = { f ∈ F |
‖ f ‖2 = δ}. Indeed, suppose that the inequality (14.25) is violated for some g ∈ F with
‖g‖2 > δ. By the star-shaped condition, the function f := δ

‖g‖2
g belongs toF and has norm

‖ f ‖2 = δ. Finally, by rescaling, the inequality ‖g‖2
n < 1

2‖g‖2
2 is equivalent to ‖ f ‖2

n < 1
2‖ f ‖2

2.
For any function f ∈ ∂B2(δ), it is equivalent to show that

‖ f ‖2
n ≥

3
4
‖ f ‖2

2 −
δ2

4
. (14.34)

In order to prove this bound, we make use of a truncation argument. For a level τ > 0 to be
chosen, consider the truncated quadratic

ϕτ(u) :=

⎧⎪⎪⎨⎪⎪⎩u2 if |u| ≤ τ,
τ2 otherwise,

(14.35)

and define fτ(x) = sign( f (x))
√
ϕτ( f (x)). By construction, for any f ∈ ∂B2(δ), we have

‖ f ‖2
n ≥ ‖ fτ‖2

n, and hence

‖ f ‖2
n ≥ ‖ fτ‖2

2 − sup
f∈∂B2(δ)

∣∣∣∣‖ fτ‖2
n − ‖ fτ‖2

2

∣∣∣∣. (14.36)

The remainder of the proof consists of showing that a suitable choice of truncation level
τ ensures that

‖ fτ‖2
2 ≥ 3

4‖ f ‖2
2 for all f ∈ ∂B2(δ) (14.37a)

and

P[Zn ≥ 1
4δ

2] ≤ c1e−c2nδ2
where Zn := sup

f∈∂B2(δ)

∣∣∣∣‖ fτ‖2
n − ‖ fτ‖2

2

∣∣∣∣. (14.37b)

These two bounds in conjunction imply that the lower bound (14.34) holds with probability
at least 1 − c1e−c2nδ2

, uniformly all f with ‖ f ‖2 = δ.

Proof of claim (14.37a): Letting I[| f (x)| ≥ τ] be a zero–one indicator for the event
| f (x)| ≥ τ, we have

‖ f ‖2
2 − ‖ fτ‖2

2 ≤ E
[
f 2(x) I[| f (x)| ≥ τ]

]
≤
√
E[ f 4(x)]

√
P[| f (x)| ≥ τ],

where the last step uses the Cauchy–Schwarz inequality. Combining the moment bound
(14.22a) with Markov’s inequality yields

‖ f ‖2
2 − ‖ fτ‖2

2 ≤ C ‖ f ‖2

√
E[ f 4(x)]

τ4 ≤ C2 ‖ f ‖2
2

τ2 ,

where the final inequality uses the moment bound (14.22a) again. Setting τ2 = 4C2 yields
the bound ‖ f ‖2

2 − ‖ fτ‖2
2 ≤ 1

4‖ f ‖2
2, which is equivalent to the claim (14.37a).
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Proof of claim (14.37b): Beginning with the expectation, a standard symmetrization argu-
ment (see Proposition 4.11) guarantees that

Ex[Zn] ≤ 2Ex,ε

[
sup

f∈B2(δ;F )

∣∣∣∣1n
n∑

i=1

εi f 2
τ (xi)

∣∣∣∣].
Our truncation procedure ensures that f 2

τ (x) = ϕτ( f (x)), where ϕτ is a Lipschitz function
with constant L = 2τ. Consequently, the Ledoux–Talagrand contraction inequality (5.61)
guarantees that

Ex[Zn] ≤ 8τEx,ε

[
sup

f∈B2(δ;F )

∣∣∣∣1n
n∑

i=1

εi f (xi)
∣∣∣∣] ≤ 8τRn(δ;F ) ≤ 8τ

δ2

128C
,

where the final step uses the assumed inequality Rn(δ;F ) ≤ δ2

128C . Our previous choice
τ = 2C ensures that Ex[Zn] ≤ 1

8δ
2.

Next we prove an upper tail bound on the random variable Zn, in particular using Tala-
grand’s theorem for empirical processes (Theorem 3.27). By construction, we have
‖ f 2

τ ‖∞ ≤ τ2 = 4C2, and

var( f 2
τ (x)) ≤ E[ f 4

τ (x)] ≤ τ2‖ f ‖2
2 = 4C2 δ2.

Consequently, Talagrand’s inequality (3.83) implies that

P
[
Zn ≥ E[Zn] + u

] ≤ c1 exp
(
− c2nu2

Cδ2 +C2u

)
. (14.38)

Since E[Zn] ≤ δ2

8 , the claim (14.37b) follows by setting u = δ2

8 .

14.3 A uniform law for Lipschitz cost functions

Up to this point, we have considered uniform laws for the difference between the empirical
squared norm ‖ f ‖2

n and its expectation ‖ f ‖2
2. As formalized in Corollary 14.15, such results

are useful, for example, in deriving bounds on the L2(P)-error of the nonparametric least-
squares estimator. In this section, we turn to a more general class of prediction problems,
and a type of uniform law that is useful for many of them.

14.3.1 General prediction problems

A general prediction problem can be specified in terms of a space X of covariates or predic-
tors, and a space Y of response variables. A predictor is a function f that maps a covariate
x ∈ X to a prediction ŷ = f (x) ∈ Ỹ. Here the space Ỹ may be either the same as the re-
sponse space Y, or a superset thereof. The goodness of a predictor f is measured in terms
of a cost function L : Ỹ ×Y → R, whose value L(̂y, y) corresponds to the cost of predicting
ŷ ∈ Ỹ when the underlying true response is some y ∈ Y. Given a collection of n samples
{(xi, yi)}ni=1, a natural way in which to determine a predictor is by minimizing the empirical
cost

Pn(L( f (x), y)) :=
1
n

n∑
i=1

L( f (xi), yi). (14.39)
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Although the estimator f̂ is obtained by minimizing the empirical cost (14.39), our ulti-
mate goal is in assessing its quality when measured in terms of the population cost function

P(L( f (x), y)) := Ex,y
[L( f (x), y)

]
, (14.40)

and our goal is thus to understand when a minimizer of the empirical cost (14.39) is a near-
minimizer of the population cost.

As discussed previously in Chapter 4, this question can be addressed by deriving a suitable
type of uniform law of large numbers. More precisely, for each f ∈ F , let us define the
function L f : X ×Y → R+ via L f (x, y) = L( f (x), y), and let us write

Pn(L f ) = Pn(L( f (x), y)) and L f := P(L f ) = P(L( f (x), y)).

In terms of this convenient shorthand, our question can be understand as deriving a Glivenko–
Cantelli law for the so-called cost class

{L f | f ∈F }
.

Throughout this section, we study prediction problems for which Y is some subset of the
real line R. For a given constant L > 0, we say that the cost function L is L-Lipschitz in its
first argument if

|L(z, y) − L(̃z, y)| ≤ L|z − z̃| (14.41)

for all pairs z, z̃ ∈ Ỹ and y ∈ Y. We say that the population cost function f �→ P(L f ) is
γ-strongly convex with respect to the L2(P)-norm at f ∗ if there is some γ > 0 such that

P
[
L f︸︷︷︸

L( f (x),y)

− L∗
f︸︷︷︸

L( f ∗(x),y)

− ∂L
∂z

∣∣∣∣
f ∗︸︷︷︸

∂L
∂z ( f ∗(x),y)

(
f − f ∗

)︸���︷︷���︸
f (x)− f ∗(x)

]
≥ γ

2
‖ f − f ∗‖2

2 (14.42)

for all f ∈ F . Note that it is sufficient (but not necessary) for the function z �→ L(z, y) to
be γ-strongly convex in a pointwise sense for each y ∈ Y. Let us illustrate these conditions
with some examples.

Example 14.16 (Least-squares regression) In a standard regression problem, the response
space Y is the real line or some subset thereof, and our goal is to estimate a regression
function x �→ f (x) ∈ R. In Chapter 13, we studied methods for nonparametric regression
based on the least-squares costL(z, y) = 1

2 (y−z)2. This cost function is not globally Lipschitz
in general; however, it does become Lipschitz in certain special cases. For instance, consider
the standard observation model y = f ∗(x) + ε in the special case of bounded noise—say
|ε| ≤ c for some constant c. If we perform nonparametric regression over a b-uniformly
bounded function classF , then for all f , g ∈F , we have∣∣∣L( f (x), y) − L(g(x), y)

∣∣∣ = 1
2

∣∣∣(y − f (x))2 − (y − g(x))2
∣∣∣

≤ 1
2

∣∣∣ f 2(x) − g2(x)
∣∣∣ + |y| | f (x) − g(x)|

≤ (
b + (b + c)

)| f (x) − g(x)|,
so that the least squares satisfies the Lipschitz condition (14.41) with L = 2b + c. Of course,
this example is rather artificial since it excludes any types of non-bounded noise variables ε,
including the canonical case of Gaussian noise.

In terms of strong convexity, note that, for any y ∈ R, the function z �→ 1
2 (y−z)2 is strongly
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convex with parameter γ = 1, so that f �→ L f satisfies the strong convexity condition (14.42)
with γ = 1. ♣
Example 14.17 (Robust forms of regression) A concern with the use of the squared cost
function in regression is its potential lack of robustness: if even a very small subset of obser-
vations are corrupted, then they can have an extremely large effect on the resulting solution.
With this concern in mind, it is interesting to consider a more general family of cost func-
tions, say of the form

L(z, y) = Ψ(y − z), (14.43)

where Ψ : R → [0,∞] is a function that is a symmetric around zero with Ψ(0) = 0, and
almost everywhere differentiable with ‖Ψ′‖∞ ≤ L. Note that the least-squares cost fails to
satisfy the required derivative bound, so it does not fall within this class.

Examples of cost functions in the family (14.43) include the �1-norm Ψ�1 (u) = |u|, as well
as Huber’s robust function

ΨHuber(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u2

2
if |u| ≤ τ,

τu − τ2

2
otherwise,

(14.44)

where τ > 0 is a parameter to be specified. The Huber cost function offers some sort of
compromise between the least-squares cost and the �1-norm cost function.

By construction, the function Ψ�1 is almost everywhere differentiable with ‖Ψ′
�1
‖∞ ≤ 1,

whereas the Huber cost function is everywhere differentiable with ‖Ψ′
Huber‖∞ ≤ τ. Conse-

quently, the �1-norm and Huber cost functions satisfy the Lipschitz condition (14.41) with
parameters L = 1 and L = τ, respectively. Moreover, since the Huber cost function is locally
equivalent to the least-squares cost, the induced cost function (14.43) is locally strongly
convex under fairly mild tail conditions on the random variable y − f (x). ♣
Example 14.18 (Logistic regression) The goal of binary classification is to predict a label
y ∈ {−1,+1} on the basis of a covariate vector x ∈ X. Suppose that we model the conditional
distribution of the label y ∈ {−1,+1} as

P f (y | x) =
1

1 + e−2y f (x) , (14.45)

where f : X → R is the discriminant function to be estimated. The method of maximum
likelihood then corresponds to minimizing the cost function

L f (x, y) := L( f (x), y) = log
(
1 + e−2y f (x)). (14.46)

It is easy to see that the function L is 1-Lipschitz in its first argument. Moreover, at the
population level, we have

P(L f − L f ∗) = Ex,y

[
log

1 + e−2 f (x)y

1 + e−2 f ∗(x)y

]
= Ex

[
D(P f ∗(· | x) ‖P f (· | x))

]
,

corresponding to the expected value of the Kullback–Leibler divergence between the two
conditional distributions indexed by f ∗ and f . Under relatively mild conditions on the be-
havior of the random variable f (x) as f ranges overF , this cost function will be γ-strongly
convex. ♣
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Example 14.19 (Support vector machines and hinge cost) Support vector machines are
another method for binary classification, again based on estimating discriminant functions
f : X → R. In their most popular instantiation, the discriminant functions are assumed to
belong to some reproducing kernel Hilbert space H, equipped with the norm ‖ · ‖H. The
support vector machine is based on the hinge cost function

L( f (x), y) = max
{
0, 1 − y f (x)

}
, (14.47)

which is 1-Lipschitz by inspection. Again, the strong convexity properties of the population
cost f �→ P(L f ) depend on the distribution of the covariates x, and the function class F
over which we optimize.

Given a set of n samples {(xi, yi)}ni=1, a common choice is to minimize the empirical risk

Pn(L( f (x), y)) =
1
n

n∑
i=1

max
{
0, 1 − yi f (xi)

}
over a ball ‖ f ‖H ≤ R in some reproducing kernel Hilbert space. As explored in Exer-
cise 12.20, this optimization problem can be reformulated as a quadratic program in n
dimensions, and so can be solved easily. ♣

14.3.2 Uniform law for Lipschitz cost functions

With these examples as underlying motivation, let us now turn to stating a general uniform
law for Lipschitz cost functions. Let f ∗ ∈ F minimize the population cost function f �→
P(L f ), and consider the shifted function class.

F ∗ := { f − f ∗ | f ∈F }. (14.48)

Our uniform law involves the population version of the localized Rademacher complexity

Rn(δ;F ∗) := Ex,ε

[
sup
g∈F ∗
‖g‖2≤δ

∣∣∣1
n

n∑
i=1

εi g(xi)
∣∣∣]. (14.49)

Theorem 14.20 (Uniform law for Lipschitz cost functions) Given a uniformly 1-
bounded function class F that is star-shaped around the population minimizer f ∗,
let δ2

n ≥ c
n be any solution to the inequality

Rn
(
δ;F ∗) ≤ δ2. (14.50)

(a) Suppose that the cost function is L-Lipschitz in its first argument. Then we have

sup
f∈F

∣∣∣Pn(L f − L f ∗) − P(L f − L f ∗)
∣∣∣

‖ f − f ∗‖2 + δn
≤ 10Lδn (14.51)

with probability greater than 1 − c1e−c2nδ2
n .

(b) Suppose that the cost function is L-Lipschitz and γ-strongly convex. Then for any
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function f̂ ∈F such that Pn(L f̂ − L f ∗) ≤ 0, we have

‖ f̂ − f ∗‖2 ≤
(
20L
γ

+ 1
)
δn (14.52a)

and

P(L f̂ − L f ∗) ≤ 10L
(
20L
γ

+ 2
)
δ2

n, (14.52b)

where both inequalities hold with the same probability as in part (a).

Under certain additional conditions on the function class, part (a) can be used to guar-
antee consistency of a procedure that chooses f̂ ∈ F to minimize the empirical cost f �→
Pn(L f ) over F . In particular, since f ∗ ∈ F by definition, this procedure ensures that
Pn(L f̂ − L f ∗) ≤ 0. Consequently, for any function class F with2 ‖ · ‖2-diameter at most
D, the inequality (14.51) implies that

P
(L f̂

) ≤ P(L f ∗
)
+ 10Lδn

{
2D + δn

}
(14.53)

with high probability. Thus, the bound (14.53) implies the consistency of the empirical cost
minimization procedure in the following sense: up to a term of order δn, the value P(L f̂ ) is
as small as the optimum P(L f ∗) = min f∈F P(L f ).

Proof of Theorem 14.20
The proof is based on an analysis of the family of random variables

Zn(r) = sup
‖ f− f ∗‖2≤r

∣∣∣Pn(L f − L f ∗) − P(L f − L f ∗)
∣∣∣,

where r > 0 is a radius to be varied. The following lemma provides suitable control on the
upper tails of these random variables:

Lemma 14.21 For each r ≥ δn, the variable Zn(r) satisfies the tail bound

P
[
Zn(r) ≥ 8L rδn + u

] ≤ c1 exp
(
− c2nu2

L2r2 + Lu

)
. (14.54)

Deferring the proof of this intermediate claim for the moment, let us use it to complete the
proof of Theorem 14.20; the proof itself is similar to that of Theorem 14.1. Define the events
E0 := {Zn(δn) ≥ 9Lδ2

n}, and

E1 := {∃ f ∈F | |Pn(L f − L f ∗) − P(L f − L f ∗)| ≥ 10Lδn ‖ f − f ∗‖2 and ‖ f − f ∗‖2 ≥ δn}.
If there is some function f ∈ F that violates the bound (14.51), then at least one of
the events E0 or E1 must occur. Applying Lemma 14.21 with u = Lδ2

n guarantees that
P[E0] ≤ c1e−c2nδ2

n . Moreover, using the same peeling argument as in Theorem 14.1, we find
2 A function classF has ‖ · ‖2-diameter at most D if ‖ f ‖2 ≤ D for all f ∈ F . In this case, we have
‖ f̂ − f ∗‖2 ≤ 2D.
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that P[E1] ≤ c1e−c′2nδ2
n , valid for all δ2

n ≥ c
n . Putting together the pieces completes the proof

of the claim (14.51) in part (a).
Let us now prove the claims in part (b). By examining the proof of part (a), we see that it

actually implies that either ‖ f̂ − f ∗‖2 ≤ δn, or∣∣∣Pn(L f̂ − L f ∗) − P(L f̂ − L f ∗)
∣∣∣ ≤ 10Lδn ‖ f̂ − f ∗‖2.

Since Pn(L f̂ − L f ∗) ≤ 0 by assumption, we see that any minimizer must satisfy either the

bound ‖ f̂ − f ∗‖2 ≤ δn, or the bound P(L f̂ − L f ∗) ≤ 10Lδn‖ f̂ − f ∗‖2. On one hand, if the
former inequality holds, then so does inequality (14.52a). On the other hand, if the latter
inequality holds, then, combined with the strong convexity condition (14.42), we obtain
‖ f̂ − f ∗‖2 ≤ 10L

γ
, which also implies inequality (14.52a).

In order to establish the bound (14.52b), we make use of inequality (14.52a) within the
original inequality (14.51); we then perform some algebra, recalling that f̂ satisfies the in-
equality Pn(L f̂ − L f ∗) ≤ 0.

It remains to prove Lemma 14.21. By a rescaling argument, we may assume that b = 1. In
order to bound the upper tail of Zn(r), we need to control the differences L f −L f ∗ uniformly
over all functions f ∈ F such that ‖ f − f ∗‖2 ≤ r. By the Lipschitz condition on the cost
function and the boundedness of the functions f , we have |L f − L f ∗ |∞ ≤ L‖ f − f ∗‖∞ ≤ 2L.
Moreover, we have

var(L f − L f ∗) ≤ P[(L f − L f ∗)2]
(i)≤ L2‖ f − f ∗‖2

2

(ii)≤ L2 r2,

where inequality (i) follows from the Lipschitz condition on the cost function, and inequality
(ii) follows since ‖ f − f ∗‖2 ≤ r. Consequently, by Talagrand’s concentration theorem for
empirical processes (Theorem 3.27), we have

P
[
Zn(r) ≥ 2E[Zn(r)] + u

]
≤ c1 exp

{
− c2nu2

L2r2 + Lu

}
. (14.55)

It remains to upper bound the expectation: in particular, we have

E[Zn(r)]
(i)≤ 2E

[
sup

‖ f− f ∗‖2≤r

∣∣∣∣1n
n∑

i=1

εi

{
L( f (xi), yi) − L( f ∗(xi), yi)

}∣∣∣∣]
(ii)≤ 4 L E

[
sup

‖ f− f ∗‖2≤r

∣∣∣1
n

n∑
i=1

εi( f (xi) − f ∗(xi))
∣∣∣]

= 4 LRn(r;F ∗)
(iii)≤ 4 L rδn, valid for all r ≥ δn,

where step (i) follows from a symmetrization argument; step (ii) follows from the L-Lipschitz
condition on the first argument of the cost function, and the Ledoux–Talagrand contraction
inequality (5.61); and step (iii) uses the fact that the function r �→ R̄n(r;F ∗)

r is non-increasing,
and our choice of δn. Combined with the tail bound (14.55), the proof of Lemma 14.21 is
complete.
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14.4 Some consequences for nonparametric density estimation

The results and techniques developed thus far have some useful applications to the problem
of nonparametric density estimation. The problem is easy to state: given a collection of i.i.d.
samples {xi}ni=1, assumed to have been drawn from an unknown distribution with density f ∗,
how do we estimate the unknown density? The density estimation problem has been the
subject of intensive study, and there are many methods for tackling it. In this section, we
restrict our attention to two simple methods that are easily analyzed using the results from
this and preceding chapters.

14.4.1 Density estimation via the nonparametric maximum likelihood estimate

Perhaps the most easily conceived method for density estimation is via a nonparametric
analog of maximum likelihood. In particular, suppose that we fix some base class of densities
F , and then maximize the likelihood of the observed samples over this class. Doing so leads
to a constrained form of the nonparametric maximum likelihood estimate (MLE)—namely

f̂ ∈ arg min
f∈F

Pn(−log f (x)) = arg min
f∈F

⎧⎪⎪⎨⎪⎪⎩−1
n

n∑
i=1

log f (xi)

⎫⎪⎪⎬⎪⎪⎭ . (14.56)

To be clear, the class of densitiesF must be suitably restricted for this estimator to be well
defined, which we assume to be the case for the present discussion. (See Exercise 14.9 for an
example in which the nonparametric MLE f̂ fails to exist.) As an alternative to constraining
the estimate, it also possible to define a regularized form of the nonparametric MLE.

In order to illustrate the use of some bounds from this chapter, let us analyze the estima-
tor (14.56) in the simple case when the true density f ∗ is assumed to belong to F . Given
an understanding of this case, it is relatively straightforward to derive a more general result,
in which the error is bounded by a combination of estimation error and approximation error
terms, with the latter being non-zero when f ∗ �F .

For reasons to be clarified, it is convenient to measure the error in terms of the squared
Hellinger distance. For densities f and g with respect to a base measure μ, it is given by

H2( f ‖ g) :=
1
2

∫
X

( √
f − √

g
)2 dμ. (14.57a)

As we explore in Exercise 14.10, a useful connection here is that the Kullback–Leibler (KL)
divergence is lower bounded by (a multiple of) the squared Hellinger distance—viz.

D( f ‖ g) ≥ 2H2( f ‖ g). (14.57b)

Up to a constant pre-factor, the squared Hellinger distance is equivalent to the L2(μ)-
norm difference of the square-root densities. For this reason, the square-root function class
G = {g = √

f for some f ∈F } plays an important role in our analysis, as does the shifted
square-root function class G ∗ := G − √

f ∗.
In the relatively simple result to be given here, we assume that there are positive constants

(b, ν) such that the square-root density class G is
√

b-uniformly bounded, and star-shaped
around

√
f ∗, and moreover that the unknown density f ∗ ∈ F is uniformly lower bounded
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as

f ∗(x) ≥ ν > 0 for all x ∈ X.

In terms of the population Rademacher complexity Rn, our result involves the critical in-
equality

Rn(δ;G ∗) ≤ δ2

√
b + ν

. (14.58)

With this set-up, we have the following guarantee:

Corollary 14.22 Given a class of densities satisfying the previous conditions, let δn

be any solution to the critical inequality (14.58) such that δ2
n ≥

(
1 + b

ν

) 1
n . Then the

nonparametric density estimate f̂ satisfies the Hellinger bound

H2( f̂ ‖ f ∗) ≤ c0 δ
2
n (14.59)

with probability greater than 1 − c1e−c2
ν

b+ν nδ2
n .

Proof Our proof is based on applying Theorem 14.20(b) to the transformed function class

H =

{√
f + f ∗

2 f ∗

∣∣∣∣∣∣ f ∈F
}

equipped with the cost functions Lh(x) = −log h(x). Since F is b-uniformly bounded and
f ∗(x) ≥ ν for all x ∈ X, for any h ∈ H , we have

‖h‖∞ =

∥∥∥∥∥∥
√

f + f ∗

2 f ∗

∥∥∥∥∥∥∞ ≤
√

1
2

(b
ν
+ 1

)
=

1√
2ν

√
b + ν.

Moreover, for any h ∈ H , we have h(x) ≥ 1/
√

2 for all x ∈ X and whence the mean value
theorem applied to the logarithm, combined with the triangle inequality, implies that∣∣∣Lh(x) − Lh̃(x)

∣∣∣ ≤ √
2 |h(x) − h̃(x)| for all x ∈ X, and h, h̃ ∈ H ,

showing that the logarithmic cost function is L-Lipschitz with L =
√

2. Finally, by construc-
tion, for any h ∈ H and with h∗ := f ∗+ f ∗

2 f ∗ = 1, we have

‖h − h∗‖2
2 = E f ∗

[{( f + f ∗

2 f ∗
) 1

2 − 1
}2]

= 2H2
(

f + f ∗

2
‖ f ∗

)
.

Therefore, the lower bound (14.57b) on the squared Hellinger distance in terms of the KL
divergence is equivalent to asserting that P(Lh − L∗

h) ≥ ‖h − h∗‖2
2, meaning that the cost

function is 2-strongly convex around h∗. Consequently, the claim (14.59) follows via an
application of Theorem 14.20(b).



14.4 Some consequences for nonparametric density estimation 477

14.4.2 Density estimation via projections

Another very simple method for density estimation is via projection onto a function class
F . Concretely, again given n samples {xi}ni=1, assumed to have been drawn from an unknown
density f ∗ on a space X, consider the projection-based estimator

f̂ ∈ arg min
f∈F

{
1
2
‖ f ‖2

2 − Pn( f )
}
= arg min

f∈F

⎧⎪⎪⎨⎪⎪⎩1
2
‖ f ‖2

2 −
1
n

n∑
i=1

f (xi)

⎫⎪⎪⎬⎪⎪⎭ . (14.60)

For many choices of the underlying function class F , this estimator can be computed in
closed form. Let us consider some examples to illustrate.

Example 14.23 (Density estimation via series expansion) This is a follow-up on Exam-
ple 13.14, where we considered the use of series expansion for regression. Here we consider
the use of such expansions for density estimation—say, for concreteness, of univariate densi-
ties supported on [0, 1]. For a given integer T ≥ 1, consider a collection of functions {φm}Tm=1,
taken to be orthogonal in L2[0, 1], and consider the linear function class

Fortho(T ) :=
{
f =

T∑
m=1

βmφm | β ∈ RT , β1 = 1
}
. (14.61)

As one concrete example, we might define the indicator functions

φm(x) =

⎧⎪⎪⎨⎪⎪⎩1 if x ∈ (m − 1,m]/T ,
0 otherwise.

(14.62)

With this choice, an expansion of the form f =
∑T

m=1 βmφm(T ) yields a piecewise constant
function that is non-negative and integrates to 1. When used for density estimation, it is
known as a histogram estimate, and is perhaps the simplest type of density estimate.

Another example is given by truncating the Fourier basis previously described in Exam-
ple 13.15. In this case, since the first function φ1(x) = 1 for all x ∈ [0, 1] and the remaining
functions are orthogonal, we are guaranteed that the function expansion integrates to one.
The resulting density estimate is known as a projected Fourier-series estimate. A minor point
is that, since the sinusoidal functions are not non-negative, it is possible that the projected
Fourier-series density estimate could take negative values; this concern could be alleviated
by projecting the function values back onto the orthant.

For the function class Fortho(T ), the density estimate (14.60) is straightforward to com-
pute: some calculation shows that

f̂T =

T∑
m=1

β̂mφm, where β̂m =
1
n

n∑
i=1

φm(xi). (14.63)

For example, when using the histogram basis (14.62), the coefficient β̂m corresponds to the
fraction of samples that fall into the interval (m − 1, m]/T . When using a Fourier basis
expansion, the estimate β̂m corresponds to an empirical Fourier-series coefficient. In either
case, the estimate f̂T is easy to compute.

Figure 14.1 shows plots of histogram estimates of a Gaussian density N(1/2, (0.15)2),
with the plots in Figure 14.1(a) and (b) corresponding to sample sizes n = 100 and n = 2000,
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respectively. In addition to the true density in light gray, each plot shows the histogram
estimate for T ∈ {5, 20}. By construction, each histogram estimate is piecewise constant,
and the parameter T determines the length of the pieces, and hence how quickly the estimate
varies. For sample size n = 100, the estimate with T = 20 illustrates the phenomenon of
overfitting, whereas for n = 2000, the estimate with T = 5 leads to oversmoothing.
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Figure 14.1 Plots of the behavior of the histogram density estimate. Each plot shows
the true function (in this case, a Gaussian distribution N(1/2, (0.15)2)) in light gray
and two density estimates using T = 5 bins (solid line) and T = 20 bins (dashed
line). (a) Estimates based on n = 100 samples. (b) Estimates based on n = 2000
samples.

Figure 14.2 shows some plots of the Fourier-series estimator for estimating the density

f ∗(x) =

⎧⎪⎪⎨⎪⎪⎩3/2 for x ∈ [0, 1/2],
1/2 for x ∈ (1/2, 1].

(14.64)

As in Figure 14.1, the plots in Figure 14.2(a) and (b) are for sample sizes n = 100 and n =

2000, respectively, with the true density f ∗ shown in a gray line. The solid and dashed lines
show the truncated Fourier-series estimator with T = 5 and T = 20 coefficients, respectively.
Again, we see overfitting by the estimator with T = 20 coefficients when the sample size is
small (n = 100). For the larger sample size (n = 2000), the estimator with T = 20 is more
accurate than the T = 5 estimator, which suffers from oversmoothing. ♣

Having considered some examples of the density estimate (14.60), let us now state a the-
oretical guarantee on its behavior. As with our earlier results, this guarantee applies to the
estimate based on a star-shaped class of densities F , which we assume to be uniformly
bounded by some b. Recalling that Rn denotes the (localized) Rademacher complexity, we
let δn > 0 be any positive solution to the inequality Rn(δ;F ) ≤ δ2

b .
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Figure 14.2 Plots of the behavior of the orthogonal series density estimate (14.63)
using Fourier series as the orthonormal basis. Each plot shows the true function f ∗
from equation (14.64) in light gray, and two density estimates for T = 5 (solid line)
and T = 20 (dashed line). (a) Estimates based on n = 100 samples. (b) Estimates
based on n = 2000 samples.

Corollary 14.24 There are universal constants c j, j = 0, 1, 2, 3, such that for any
density f ∗ uniformly bounded by b, the density estimate (14.60) satisfies the oracle
inequality

‖ f̂ − f ∗‖2
2 ≤ c0 inf

f∈F
‖ f − f ∗‖2

2 + c1δ
2
n (14.65)

with probability at least 1 − c2e−c3nδ2
n .

The proof of this result is very similar to our oracle inequality for nonparametric regression
(Theorem 13.13). Accordingly, we leave the details as an exercise for the reader.
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14.5 Appendix: Population and empirical Rademacher complexities

Let δn > 0 and δ̂n > 0 be the smallest positive solutions to the inequalities Rn(δn) ≤ δ2
n

and R̂n(δ̂n) ≤ δ̂2
n, respectively. Note that these inequalities correspond to our previous defini-

tions (14.4) and (14.7), with b = 1. (The general case b � 1 can be recovered by a rescaling
argument.) In this appendix, we show that these quantities satisfy a useful sandwich relation:

Proposition 14.25 For any 1-bounded and star-shaped function class F , the popu-
lation and empirical radii satisfy the sandwich relation

δn

4
(i)≤ δ̂n

(ii)≤ 3δn, (14.66)

with probability at least 1 − c1e−c2nδ2
n .

Proof For each t > 0, let us define the random variable

Zn(t) := Eε

[
sup
f∈F
‖ f ‖2≤t

∣∣∣1
n

n∑
i=1

εi f (xi)
∣∣∣],

so that Rn(t) = Ex[Zn(t)] by construction. Define the events

E0(t) :=
{∣∣∣Zn(t) − Rn(t)

∣∣∣ ≤ δnt
8

}
and E1 :=

⎧⎪⎪⎨⎪⎪⎩sup
f∈F

∣∣∣‖ f ‖2
n − ‖ f ‖2

2

∣∣∣
‖ f ‖2

2 + δ2
n

≤ 1
2

⎫⎪⎪⎬⎪⎪⎭ .

Note that, conditioned on E1, we have

‖ f ‖n ≤
√

3
2‖ f ‖2

2 +
1
2δ

2
n ≤ 2‖ f ‖2 + δn (14.67a)

and

‖ f ‖2 ≤
√

2‖ f ‖2
n + δ2

n ≤ 2‖ f ‖n + δn, (14.67b)

where both inequalities hold for all f ∈F . Consequently, conditioned on E1, we have

Zn(t) ≤ Eε

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
f∈F

‖ f ‖n≤2t+δn

∣∣∣1
n

n∑
i=1

εi f (xi)
∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = R̂n(2t + δn) (14.68a)

and

R̂n(t) ≤ Zn(2t + δn). (14.68b)

Equipped with these inequalities, we now proceed to prove our claims.

Proof of upper bound (ii) in (14.66): Conditioned on the events E0(7δn) and E1, we have

R̂n(3δn)
(i)≤ Zn(7δn)

(ii)≤ Rn(7δn) + 7
8δ

2
n,

where step (i) follows from inequality (14.68b) with t = 3δn, and step (ii) follows from
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E0(7δn). Since 7δn ≥ δn, the argument used to establish the bound (14.19) guarantees that
Rn(7δn) ≤ 7δ2

n. Putting together the pieces, we have proved that

R̂n(3δn) ≤ 8δ2
n < (3δn)2.

By definition, the quantity δ̂n is the smallest positive number satisfying this inequality, so
that we conclude that δ̂n ≤ 3δn, as claimed.

Proof of lower bound (i) in (14.66): Conditioning on the events E0(δn) and E1, we have

δ2
n = Rn(δn)

(i)≤ Zn(δn) + 1
8δ

2
n

(ii)≤ R̂n(3δn) + 1
8δ

2
n

(iii)≤ 3δnδ̂n +
1
8δ

2
n,

where step (i) follows E0(δn), step (ii) follows from inequality (14.68a) with t = δn, and step
(iii) follows from the same argument leading to equation (14.19). Rearranging yields that
7
8δ

2
n ≤ 3δnδ̂n, which implies that δ̂n ≥ δn/4.

Bounding the probabilities of E0(t) and E1: On one hand, Theorem 14.1 implies that
P[Ec

1] ≤ c1e−c2nδ2
n .

Otherwise, we need to bound the probability P[Ec
0(αδn)] for an arbitrary constant α ≥ 1.

In particular, our proof requires control for the choices α = 1 and α = 7. From theorem 16
of Bousquet et al. (2003), we have

P[Ec
0(αδn)] = P

[∣∣∣Zn(αδn) − Rn(αδn)
∣∣∣ ≥ αδ2

n

8

]
≤ 2 exp

(
− 1

64
nαδ4

n

2Rn(αδn) + αδ2
n

12

)
.

For any α ≥ 1, we have Rn(αδn) ≥ Rn(δn) = δ2
n, whence P[Ec

0(αδn)] ≤ 2e−c2nδ2
n .

14.6 Bibliographic details and background

The localized forms of the Rademacher and Gaussian complexities used in this chapter
are standard objects in mathematical statistics (Koltchinskii, 2001, 2006; Bartlett et al.,
2005). Localized entropy integrals, such as the one underlying Corollary 14.3, were in-
troduced by van de Geer (2000). The two-sided results given in Section 14.1 are based on
b-uniform boundedness conditions on the functions. This assumption, common in much
of non-asymptotic empirical process theory, allows for the use of standard concentration
inequalities for empirical processes (e.g., Theorem 3.27) and the Ledoux–Talagrand con-
traction inequality (5.61). For certain classes of unbounded functions, two-sided bounds can
also be obtained based on sub-Gaussian and/or sub-exponential tail conditions; for instance,
see the papers (Mendelson et al., 2007; Adamczak, 2008; Adamczak et al., 2010; Mendel-
son, 2010) for results of this type. One-sided uniform laws related to Theorem 14.12 have
been proved by various authors (Raskutti et al., 2012; Oliveira, 2013; Mendelson, 2015).
The proof given here is based on a truncation argument.

Results on the localized Rademacher complexities, as stated in Corollary 14.5, can be
found in Mendelson (2002). The class of additive regression models from Example 14.11
were introduced by Stone (1985), and have been studied in great depth (e.g., Hastie and
Tibshirani, 1986; Buja et al., 1989). An interesting extension is the class of sparse additive
models, in which the function f is restricted to have a decomposition using at most s � d
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univariate functions; such models have been the focus of more recent study (e.g., Meier
et al., 2009; Ravikumar et al., 2009; Koltchinskii and Yuan, 2010; Raskutti et al., 2012).

The support vector machine from Example 14.19 is a popular method for classification
introduced by Boser et al. (1992); see the book by Steinwart and Christmann (2008) for fur-
ther details. The problem of density estimation treated briefly in Section 14.4 has been the
subject of intensive study; we refer the reader to the books (Devroye and Györfi, 1986; Sil-
verman, 1986; Scott, 1992; Eggermont and LaRiccia, 2001) and references therein for more
details. Good and Gaskins (1971) proposed a roughness-penalized form of the nonparamet-
ric maximum likelihood estimate; see Geman and Hwang (1982) and Silverman (1982) for
analysis of this and some related estimators. We analyzed the constrained form of the non-
parametric MLE under the simplifying assumption that the true density f ∗ belongs to the
density class F . In practice, this assumption may not be satisfied, and there would be an
additional form of approximation error in the analysis, as in the oracle inequalities discussed
in Chapter 13.

14.7 Exercises

Exercise 14.1 (Bounding the Lipschitz constant) In the setting of Proposition 14.25, show
that E

[
sup‖ f ‖2≤t ‖ f ‖n

]
≤ √

5t for all t ≥ δn.

Exercise 14.2 (Properties of local Rademacher complexity) Recall the localized Rade-
macher complexity

Rn(δ) := Ex,ε

[
sup
f∈F
‖ f ‖2≤δ

∣∣∣1
n

n∑
i=1

εi f (xi)
∣∣∣],

and let δn be the smallest positive solution to the inequality Rn(δ) ≤ δ2. Assume that function
classF is star-shaped around the origin (so that f ∈F implies α f ∈F for all α ∈ [0, 1]).

(a) Show that Rn(s) ≤ max
{
δ2

n, sδn
}
. (Hint: Lemma 13.6 could be useful.)

(b) For some constant C ≥ 1, let tn > 0 be the small positive solution to the inequality
Rn(t) ≤ Ct2. Show that tn ≤ δn√

C
. (Hint: Part (a) could be useful.)

Exercise 14.3 (Sharper rates via entropy integrals) In the setting of Example 14.2, show
that there is a universal constant c′ such that

Eε

[
sup
fθ∈P2
‖ fθ‖2≤δ

∣∣∣1
n

n∑
i=1

εi f (xi)
∣∣∣] ≤ c′

√
1
n
.

Exercise 14.4 (Uniform laws for kernel classes) In this exercise, we work through the
proof of the bound (14.14a) from Corollary 14.5.

(a) Letting (φ j)∞j=1 be the eigenfunctions of the kernel operator, show that

sup
‖ f ‖H≤1
‖ f ‖2≤δ

∣∣∣ n∑
i=1

εi f (xi)
∣∣∣ = sup

θ∈K

∣∣∣ ∞∑
j=1

θ jz j

∣∣∣,
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where z j :=
∑n

i=1 εiφ j(xi) and

D :=
{
(θ)∞j=1 |

∞∑
j=1

θ2
j ≤ δ,

∞∑
j=1

θ2
j

μ j
≤ 1

}
.

(b) Defining the sequence η j = min{δ2, μ j} for j = 1, 2, . . ., show that D is contained within
the ellipse E := {(θ)∞j=1 |

∑∞
j=1 θ

2
j/η j ≤ 2

}
.

(c) Use parts (a) and (b) to show that

Eε,x

[
sup
‖ f ‖H≤1
‖ f ‖2≤δ

∣∣∣1
n

n∑
i=1

εi f (xi)
∣∣∣] ≤ √

2
n

√√ ∞∑
j=1

min{δ2, μ j}.

Exercise 14.5 (Empirical approximations of kernel integral operators) Let K be a PSD
kernel function satisfying the conditions of Mercer’s theorem (Theorem 12.20), and define
the associated representer Rx(·) = K(·, x). Letting H be the associated reproducing kernel
Hilbert space, consider the integral operator TK as defined in equation (12.11a).

(a) Letting {xi}ni=1 denote i.i.d. samples from P, define the random linear operator T̂K :
H→ H via

f �→ T̂K ( f ) :=
1
n

n∑
i=1

[
Rxi ⊗ Rxi

]
( f ) =

1
n

n∑
i=1

f (xi)Rxi .

Show that E[T̂K ] = TK .
(b) Use techniques from this chapter to bound the operator norm

|||T̂K − TK |||H := sup
‖ f ‖H≤1

‖(T̂K − TK
)
( f )‖H.

(c) Letting φ j denote the jth eigenfunction of TK , with associated eigenvalue μ j > 0, show
that

‖T̂K (φ j) − μ jφ j‖H ≤ |||T̂K − TK |||H
μ j

.

Exercise 14.6 (Linear functions and four-way independence) Recall the classFlin of linear
functions from Example 14.10. Consider a random vector x ∈ Rd with four-way independent
components—i.e., the variables (x j, xk, x�, xm) are independent for all distinct quadruples of
indices. Assume, moreover, that each component has mean zero and variance one, and that
E[x4

j] ≤ B. Show that the strong moment condition (14.22b) is satisfied with C = B + 6.

Exercise 14.7 (Uniform laws and sparse eigenvalues) In this exercise, we explore the use
of Theorem 14.12 for bounding sparse restricted eigenvalues (see Chapter 7). Let X ∈ Rn×d

be a random matrix with i.i.d.N(0,Σ) rows. For a given parameter s > 0, define the function
classFspcone = { fθ | ‖θ‖1 ≤ √

s‖θ‖2}, where fθ(x) = 〈x, θ〉. Letting ρ2(Σ) denote the maximal
diagonal entry of Σ, show that, as long as

n > c0
ρ2(Σ)
γmin(Σ)

s log(
ed
s

)
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for a sufficiently large constant c, then we are guaranteed that

‖ fθ‖2
n︸︷︷︸

‖Xθ‖2
2/n

≥ 1
2
‖ fθ‖2

2︸︷︷︸
‖ √Σθ‖2

2

for all fθ ∈Fspcone

with probability at least 1 − e−c1n. Thus, we have proved a somewhat sharper version of
Theorem 7.16. (Hint: Exercise 7.15 could be useful to you.)

Exercise 14.8 (Estimation of nonparametric additive models) Recall from Example 14.11
the class Fadd of additive models formed by some base class G that is convex and 1-
uniformly bounded (‖g‖∞ ≤ 1 for all g ∈ G ). Let δn be the smallest positive solution to
the inequality Rn(δ;F ) ≤ δ2. Letting εn be the smallest positive solution to the inequality
Rn(ε;G ) ≤ ε2, show that δ2

n � d ε2
n .

Exercise 14.9 (Nonparametric maximum likelihood) Consider the nonparametric density
estimate (14.56) over the class of all differentiable densities. Show that the minimum is
not achieved. (Hint: Consider a sequence of differentiable approximations to the density
function placing mass 1/n at each of the data points.)

Exercise 14.10 (Hellinger distance and Kullback–Leibler divergence) Prove the lower
bound (14.57b) on the Kullback–Leibler divergence in terms of the squared Hellinger dis-
tance.

Exercise 14.11 (Bounds on histogram density estimation) Recall the histogram estimator
defined by the basis (14.62), and suppose that we apply it to estimate a density f ∗ on the
unit interval [0, 1] that is differentiable with ‖ f ′‖∞ ≤ 1. Use the oracle inequality from
Corollary 14.24 to show that there is a universal constant c such that

‖ f̂ − f ∗‖2
2 ≤ cn−2/3 (14.69)

with high probability.



15

Minimax lower bounds

In the preceding chapters, we have derived a number of results on the convergence rates
of different estimation procedures. In this chapter, we turn to the complementary question:
Can we obtain matching lower bounds on estimation rates? This question can be asked both
in the context of a specific procedure or algorithm, and in an algorithm-independent sense.
We focus on the latter question in this chapter. In particular, our goal is to derive lower
bounds on the estimation error achievable by any procedure, regardless of its computational
complexity and/or storage.

Lower bounds of this type can yield two different but complementary types of insight.
A first possibility is that they can establish that known—and possibly polynomial-time—
estimators are statistically “optimal”, meaning that they have estimation error guarantees that
match the lower bounds. In this case, there is little purpose in searching for estimators with
lower statistical error, although it might still be interesting to study optimal estimators that
enjoy lower computational and/or storage costs, or have other desirable properties such as
robustness. A second possibility is that the lower bounds do not match the best known upper
bounds. In this case, assuming that the lower bounds are tight, one has a strong motivation
to study alternative estimators.

In this chapter, we develop various techniques for establishing such lower bounds. Of
particular relevance to our development are the properties of packing sets and metric entropy,
as discussed in Chapter 5. In addition, we require some basic aspects of information theory,
including entropy and the Kullback–Leibler divergence, as well as other types of divergences
between probability measures, which we provide in this chapter.

15.1 Basic framework

Given a class of distributions P, we let θ denote a functional on the space P—that is, a
mapping from a distribution P to a parameter θ(P) taking values in some space Ω. Our goal
is to estimate θ(P) based on samples drawn from the unknown distribution P.

In certain cases, the quantity θ(P) uniquely determines the underlying distribution P,
meaning that θ(P0) = θ(P1) if and only if P0 = P1. In such cases, we can think of θ as
providing a parameterization of the family of distributions. Such classes include most of
the usual finite-dimensional parametric classes, as well as certain nonparametric problems,
among them nonparametric regression problems. For such classes, we can write P = {Pθ |
θ ∈ Ω}, as we have done in previous chapters.

In other settings, however, we might be interested in estimating a functional P �→ θ(P)
that does not uniquely specify the distribution. For instance, given a class of distributions P

485
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on the unit interval [0, 1] with differentiable density functions f , we might be interested in
estimating the quadratic functional P �→ θ(P) =

∫ 1

0
( f ′(t))2 dt ∈ R. Alternatively, for a class

of unimodal density functions f on the unit interval [0, 1], we might be interested in esti-
mating the mode of the density θ(P) = arg maxx∈[0,1] f (x). Thus, the viewpoint of estimating
functionals adopted here is considerably more general than a parameterized family of distri-
butions.

15.1.1 Minimax risks

Suppose that we are given a random variable X drawn according to a distribution P for which
θ(P) = θ∗. Our goal is to estimate the unknown quantity θ∗ on the basis of the data X. An
estimator θ̂ for doing so can be viewed as a measurable function from the domain X of the
random variable X to the parameter space Ω. In order to assess the quality of any estimator,
we let ρ : Ω ×Ω→ [0,∞) be a semi-metric,1 and we consider the quantity ρ(̂θ, θ∗). Here the
quantity θ∗ is fixed but unknown, whereas the quantity θ̂ ≡ θ̂(X) is a random variable, so that
ρ(̂θ, θ∗) is random. By taking expectations over the observable X, we obtain the deterministic
quantity EP[ρ(̂θ, θ∗)]. As the parameter θ∗ is varied, we obtain a function, typically referred
to as the risk function, associated with the estimator.

The first property to note is that it makes no sense to consider the set of estimators that
are good in a pointwise sense. For any fixed θ∗, there is always a very good way in which
to estimate it: simply ignore the data, and return θ∗. The resulting deterministic estimator
has zero risk when evaluated at the fixed θ∗, but of course is likely to behave very poorly
for other choices of the parameter. There are various ways in which to circumvent this and
related difficulties. The Bayesian approach is to view the unknown parameter θ∗ as a random
variable; when endowed with some prior distribution, we can then take expectations over the
risk function with respect to this prior. A closely related approach is to model the choice of θ∗

in an adversarial manner, and to compare estimators based on their worst-case performance.
More precisely, for each estimator θ̂, we compute the worst-case risk supP∈P EP[ρ(̂θ, θ(P))],
and rank estimators according to this ordering. The estimator that is optimal in this sense
defines a quantity known as the minimax risk—namely,

M(θ(P); ρ) := inf
θ̂

sup
P∈P

EP
[
ρ(̂θ, θ(P))

]
, (15.1)

where the infimum ranges over all possible estimators, by which we mean measurable func-
tions of the data. When the estimator is based on n i.i.d. samples from P, we use Mn to
denote the associated minimax risk.

We are often interested in evaluating minimax risks defined not by a norm, but rather by
a squared norm. This extension is easily accommodated by letting Φ : [0,∞) → [0,∞) be an
increasing function on the non-negative real line, and then defining a slight generalization
of the ρ-minimax risk—namely

M(θ(P);Φ ◦ ρ) := inf
θ̂

sup
P∈P

EP
[
Φ
(
ρ(̂θ, θ(P))

)]
. (15.2)

1 In our usage, a semi-metric satisfies all properties of a metric, except that there may exist pairs θ � θ′ for
which ρ(θ, θ′) = 0.
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A particularly common choice is Φ(t) = t2, which can be used to obtain minimax risks for
the mean-squared error associated with ρ.

15.1.2 From estimation to testing

With this set-up, we now turn to the primary goal of this chapter: developing methods for
lower bounding the minimax risk. Our first step is to show how lower bounds can be obtained
via “reduction” to the problem of obtaining lower bounds for the probability of error in a
certain testing problem. We do so by constructing a suitable packing of the parameter space
(see Chapter 5 for background on packing numbers and metric entropy).

More precisely, suppose that {θ1, . . . , θM} is a 2δ-separated set2 contained in the space
θ(P), meaning a collection of elements ρ(θ j, θk) ≥ 2δ for all j � k. For each θ j, let us
choose some representative distribution Pθ j —that is, a distribution such that θ(Pθ j ) = θ j—
and then consider the M-ary hypothesis testing problem defined by the family of distribu-
tions {Pθ j , j = 1, . . . , M}. In particular, we generate a random variable Z by the following
procedure:

(1) Sample a random integer J from the uniform distribution over the index set [M] :=
{1, . . . , M}.

(2) Given J = j, sample Z ∼ Pθ j .

We let Q denote the joint distribution of the pair (Z, J) generated by this procedure. Note
that the marginal distribution over Z is given by the uniformly weighted mixture distribution
Q̄ := 1

M

∑M
j=1 Pθ j . Given a sample Z from this mixture distribution, we consider the M-ary

hypothesis testing problem of determining the randomly chosen index J. A testing function
for this problem is a mapping ψ : Z → [M], and the associated probability of error is given
by Q[ψ(Z) � J], where the probability is taken jointly over the pair (Z, J). This error proba-
bility may be used to obtain a lower bound on the minimax risk as follows:

Proposition 15.1 (From estimation to testing) For any increasing function Φ and
choice of 2δ-separated set, the minimax risk is lower bounded as

M(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
ψ
Q[ψ(Z) � J], (15.3)

where the infimum ranges over test functions.

Note that the right-hand side of the bound (15.3) involves two terms, both of which depend
on the choice of δ. By assumption, the function Φ is increasing in δ, so that it is maximized
by choosing δ as large as possible. On the other hand, the testing error Q[ψ(Z) � J] is
defined in terms of a collection of 2δ-separated distributions. As δ → 0+, the underlying
testing problem becomes more difficult, and so that, at least in general, we should expect
that Q[ψ(Z) � J] grows as δ decreases. If we choose a value δ∗ sufficiently small to ensure

2 Here we enforce only the milder requirement ρ(θ j, θk) ≥ 2δ, as opposed to the strict inequality required for a
packing set. This looser requirement turns out to be convenient in later calculations.
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that this testing error is at least 1/2, then we may conclude that M(θ(P),Φ ◦ ρ) ≥ 1
2Φ(δ∗).

For a given choice of δ, the other additional degree of freedom is our choice of packing set,
and we will see a number of different constructions in the sequel.

We now turn to the proof of the proposition.

Proof For any P ∈ P with parameter θ = θ(P), we have

EP
[
Φ(ρ(̂θ, θ))

] (i)≥ Φ(δ) P[Φ(ρ(̂θ, θ)) ≥ Φ(δ)]
(ii)≥ Φ(δ) P[ρ(̂θ, θ) ≥ δ],

where step (i) follows from Markov’s inequality, and step (ii) follows from the increasing
nature of Φ. Thus, it suffices to lower bound the quantity

sup
P∈P

P[ρ(̂θ, θ(P)) ≥ δ].

Recall that Q denotes the joint distribution over the pair (Z, J) defined by our construction.
Note that

sup
P∈P

P[ρ(̂θ, θ(P)) ≥ δ] ≥ 1
M

M∑
j=1

Pθ j [ρ(̂θ, θ j) ≥ δ] = Q[ρ(̂θ, θJ) ≥ δ],

so we have reduced the problem to lower bounding the quantity Q[ρ(̂θ, θJ) ≥ δ].
Now observe that any estimator θ̂ can be used to define a test—namely, via

ψ(Z) := arg min
�∈[M]

ρ(θ�, θ̂). (15.4)

(If there are multiple indices that achieve the minimizing argument, then we break such
ties in an arbitrary but well-defined way.) Suppose that the true parameter is θ j: we then
claim that the event {ρ(θ j, θ̂) < δ} ensures that the test (15.4) is correct. In order to see this
implication, note that, for any other index k ∈ [M], an application of the triangle inequality

2δ

θ j
θk

θ̂

Figure 15.1 Reduction from estimation to testing using a 2δ-separated set in the
space Ω in the semi-metric ρ. If an estimator θ̂ satisfies the bound ρ(̂θ, θ j) < δ when-
ever the true parameter is θ j, then it can be used to determine the correct index j in
the associated testing problem.
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guarantees that

ρ(θk, θ̂) ≥ ρ(θk, θ j)︸���︷︷���︸
≥2δ

− ρ(θ j, θ̂)︸�︷︷�︸
<δ

> 2δ − δ = δ,

where the lower bound ρ(θ j, θk) ≥ 2δ follows by the 2δ-separated nature of our set. Conse-
quently, we have ρ(θk, θ̂) > ρ(θ j, θ̂) for all k � j, so that, by the definition (15.4) of our test,
we must have ψ(Z) = j. See Figure 15.1 for the geometry of this argument.

Therefore, conditioned on J = j, the event {ρ(̂θ, θ j) < δ} is contained within the event
{ψ(Z) = j}, which implies that Pθ j [ρ(̂θ, θ j) ≥ δ] ≥ Pθ j [ψ(Z) � j]. Taking averages over the
index j, we find that

Q[ρ(̂θ, θJ) ≥ δ] =
1
M

M∑
j=1

Pθ j
[
ρ(̂θ, θ j) ≥ δ

] ≥ Q[ψ(Z) � J].

Combined with our earlier argument, we have shown that

sup
P∈P

EP[Φ(ρ(̂θ, θ))] ≥ Φ(δ) Q[ψ(Z) � J].

Finally, we may take the infimum over all estimators θ̂ on the left-hand side, and the infimum
over the induced set of tests on the right-hand side. The full infimum over all tests can only
be smaller, from which the claim follows.

15.1.3 Some divergence measures

Thus far, we have established a connection between minimax risks and error probabilities
in testing problems. Our next step is to develop techniques for lower bounding the error
probability, for which we require some background on different types of divergence mea-
sures between probability distributions. Three such measures of particular importance are
the total variation (TV) distance, the Kullback–Leibler (KL) divergence and the Hellinger
distance.

Let P and Q be two distributions on X with densities p and q with respect to some un-
derlying base measure ν. Note that there is no loss of generality in assuming the existence
of densities, since any pair of distributions have densities with respect to the base measure
ν = 1

2 (P+Q). The total variation (TV) distance between two distributions P and Q is defined
as

‖P − Q‖TV := sup
A⊆X

|P(A) − Q(A)|. (15.5)

In terms of the underlying densities, we have the equivalent definition

‖P − Q‖TV =
1
2

∫
X
|p(x) − q(x)| ν(dx), (15.6)

corresponding to one-half the L1(ν)-norm between the densities. (See Exercise 3.13 from
Chapter 3 for details on this equivalence.) In the sequel, we will see how the total variation
distance is closely connected to the Bayes error in binary hypothesis testing.
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A closely related measure of the “distance” between distributions is the Kullback–Leibler
divergence. When expressed in terms of the densities q and p, it takes the form

D(Q ‖P) =
∫
X

q(x) log
q(x)
p(x)

ν(dx), (15.7)

where ν is some underlying base measure defining the densities. Unlike the total variation
distance, it is not actually a metric, since, for example, it fails to be symmetric in its argu-
ments in general (i.e., there are pairs for which D(Q ‖P) � D(P ‖Q)). However, it can be
used to upper bound the TV distance, as stated in the following classical result:

Lemma 15.2 (Pinsker–Csiszár–Kullback inequality) For all distributions P and Q,

‖P − Q‖TV ≤
√

1
2 D(Q ‖P). (15.8)

Recall that this inequality arose in our study of the concentration of measure phenomenon
(Chapter 3). This inequality is also useful here, but instead in the context of establishing
minimax lower bounds. See Exercise 15.6 for an outline of the proof of this bound.

A third distance that plays an important role in statistical problems is the squared Hellinger
distance, given by

H2(P ‖Q) :=
∫ (√

p(x) − √
q(x)

)2

ν(dx). (15.9)

It is simply the L2(ν)-norm between the square-root density functions, and an easy calcula-
tion shows that it takes values in the interval [0, 2]. When the base measure is clear from the
context, we use the notation H2(p ‖ q) and H2(P ‖Q) interchangeably.

Like the KL divergence, the Hellinger distance can also be used to upper bound the TV
distance:

Lemma 15.3 (Le Cam’s inequality) For all distributions P and Q,

‖P − Q‖TV ≤ H(P ‖Q)

√
1 − H2(P ‖Q)

4
. (15.10)

We work through the proof of this inequality in Exercise 15.5.

Let (P1, . . . ,Pn) be a collection of n probability measures, each defined on X, and let
P1:n =

⊗n
i=1 Pi be the product measure defined on Xn. If we define another product measure

Q1:n in a similar manner, then it is natural to ask whether the divergence between P1:n and
Q1:n has a “nice” expression in terms of divergences between the individual pairs.

In this context, the total variation distance behaves badly: in general, it is difficult to
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express the distance ‖P1:n − Q1:n‖TV in terms of the individual distances ‖Pi − Qi‖TV. On the
other hand, the Kullback–Leibler divergence exhibits a very attractive decoupling property,
in that we have

D(P1:n ‖Q1:n) =
n∑

i=1

D(Pi ‖Qi). (15.11a)

This property is straightforward to verify from the definition. In the special case of i.i.d.
product distributions—meaning that Pi = P1 and Qi = Q1 for all i—then we have

D(P1:n ‖Q1:n) = nD(P1 ‖Q1). (15.11b)

Although the squared Hellinger distance does not decouple in quite such a simple way, it
does have the following property:

1
2 H2(P1:n ‖Q1:n) = 1 −

n∏
i=1

(
1 − 1

2 H2(Pi ‖Qi)
)
. (15.12a)

Thus, in the i.i.d. case, we have
1
2 H2(P1:n ‖Q1:n) = 1 −

(
1 − 1

2 H2(P1 ‖Q1)
)n ≤ 1

2 nH2(P1 ‖Q1). (15.12b)

See Exercises 15.3 and 15.7 for verifications of these and related properties, which play an
important role in the sequel.

15.2 Binary testing and Le Cam’s method

The simplest type of testing problem, known as a binary hypothesis test, involves only two
distributions. In this section, we describe the connection between binary testing and the
total variation norm, and use it to develop various lower bounds, culminating in a general
technique known as Le Cam’s method.

15.2.1 Bayes error and total variation distance

In a binary testing problem with equally weighted hypotheses, we observe a random variable
Z drawn according to the mixture distribution Q̄ := 1

2P0 +
1
2P1. For a given decision rule

ψ : Z → {0, 1}, the associated probability of error is given by

Q[ψ(Z) � J] = 1
2P0[ψ(Z) � 0] + 1

2P1[ψ(Z) � 1].

If we take the infimum of this error probability over all decision rules, we obtain a quantity
known as the Bayes risk for the problem. In the binary case, the Bayes risk can actually
be expressed explicitly in terms of the total variation distance ‖P1 − P0‖TV, as previously
defined in equation (15.5)—more precisely, we have

inf
ψ
Q[ψ(Z) � J] = 1

2

{
1 − ‖P1 − P0‖TV

}
. (15.13)

Note that the worst-case value of the Bayes risk is one-half, achieved when P1 = P0, so that
the hypotheses are completely indistinguishable. At the other extreme, the best-case Bayes
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risk is zero, achieved when ‖P1 − P0‖TV = 1. This latter equality occurs, for instance, when
P0 and P1 have disjoint supports.

In order to verify the equivalence (15.13), note that there is a one-to-one correspondence
between decision rules ψ and measurable partitions (A, Ac) of the space X; more precisely,
any decision rule ψ is uniquely determined by the set A = {x ∈ X | ψ(x) = 1}. Thus, we have

sup
ψ

Q[ψ(Z) = J] = sup
A⊆X

{
1
2P1(A) + 1

2P0(Ac)
}
= 1

2 sup
A⊆X

{P1(A) − P0(A)} + 1
2 .

Since supψ Q[ψ(Z) = J] = 1 − infψ Q[ψ(Z) � J], the claim (15.13) then follows from the
definition (15.5) of the total variation distance.

The representation (15.13), in conjunction with Proposition 15.1, provides one avenue
for deriving lower bounds. In particular, for any pair of distributions P0,P1 ∈ P such that
ρ(θ(P0), θ(P1)) ≥ 2δ, we have

M(θ(P),Φ ◦ ρ) ≥ Φ(δ)
2

{1 − ‖P1 − P0‖TV} . (15.14)

Let us illustrate the use of this simple lower bound with some examples.

Example 15.4 (Gaussian location family) For a fixed variance σ2, let Pθ be the distribution
of aN(θ, σ2) variable; letting the mean θ vary over the real line defines the Gaussian location
family {Pθ, θ ∈ R}. Here we consider the problem of estimating θ under either the absolute
error |̂θ−θ| or the squared error (̂θ−θ)2 using a collection Z = (Y1, . . . ,Yn) of n i.i.d. samples
drawn from a N(θ, σ2) distribution. We use Pn

θ to denote this product distribution.
Let us apply the two-point Le Cam bound (15.14) with the distributions Pn

0 and Pn
θ . We

set θ = 2δ, for some δ to be chosen later in the proof, which ensures that the two means
are 2δ-separated. In order to apply the two-point Le Cam bound, we need to bound the total
variation distance ‖Pn

θ − Pn
0‖TV. From the second-moment bound in Exercise 15.10(b), we

have

‖Pn
θ − Pn

0‖2
TV ≤ 1

4

{
enθ2/σ2 − 1

}
= 1

4

{
e4nδ2/σ2 − 1

}
. (15.15)

Setting δ = 1
2

σ√
n thus yields

inf
θ̂

sup
θ∈R
Eθ

[|̂θ − θ|] ≥ δ

2

{
1 − 1

2

√
e − 1

}
≥ δ

6
=

1
12

σ√
n

(15.16a)

and

inf
θ̂

sup
θ∈R
Eθ

[
(̂θ − θ)2] ≥ δ2

2

{
1 − 1

2

√
e − 1

}
≥ δ2

6
=

1
24

σ2

n
. (15.16b)

Although the pre-factors 1/12 and 1/24 are not optimal, the scalings σ/
√

n and σ2/n are
sharp. For instance, the sample mean θ̃n := 1

n

∑n
i=1 Yi satisfies the bounds

sup
θ∈R
Eθ

[|̃θn − θ|] = √
2
π

σ√
n

and sup
θ∈R
Eθ[(̃θn − θ)2] =

σ2

n
.

In Exercise 15.8, we explore an alternative approach, based on using the Pinsker–Csiszár–
Kullback inequality from Lemma 15.2 to upper bound the TV distance in terms of the KL
divergence. This approach yields a result with sharper constants. ♣
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Mean-squared error decaying as n−1 is typical for parametric problems with a certain type
of regularity, of which the Gaussian location model is the archetypal example. For other
“non-regular” problems, faster rates become possible, and the minimax lower bounds take a
different form. The following example provides one illustration of this phenomenon:

Example 15.5 (Uniform location family) Let us consider the uniform location family,
in which, for each θ ∈ R, the distribution Uθ is uniform over the interval [θ, θ + 1]. We
let Un

θ denote the product distribution of n i.i.d. samples from Uθ. In this case, it is not
possible to use Lemma 15.2 to control the total variation norm, since the Kullback–Leibler
divergence between Uθ and Uθ′ is infinite whenever θ � θ′. Accordingly, we need to use an
alternative distance measure: in this example, we illustrate the use of the Hellinger distance
(see equation (15.9)).

Given a pair θ, θ′ ∈ R, let us compute the Hellinger distance between Uθ and Uθ′ . By
symmetry, it suffices to consider the case θ′ > θ. If θ′ > θ+1, then we have H2(Uθ ‖Uθ′) = 2.
Otherwise, when θ′ ∈ (θ, θ + 1], we have

H2(Uθ ‖Uθ′) =
∫ θ′

θ

dt +
∫ θ′+1

θ+1
dt = 2 |θ′ − θ|.

Consequently, if we take a pair θ, θ′ such that |θ′ − θ| = 2δ := 1
4n , then the relation (15.12b)

guarantees that

1
2

H2(Un
θ ‖Un

θ′) ≤
n
2

2 |θ′ − θ| = 1
4
.

In conjunction with Lemma 15.3, we find that

‖Un
θ −Un

θ′ ‖2
TV ≤ H2(Un

θ ‖Un
θ′) ≤ 1

2 .

From the lower bound (15.14) with Φ(t) = t2, we conclude that, for the uniform location
family, the minimax risk is lower bounded as

inf
θ̂

sup
θ∈R
Eθ[(̂θ − θ)2] ≥

(1 − 1√
2
)

128
1
n2 .

The significant aspect of this lower bound is the faster n−2 rate, which should be contrasted
with the n−1 rate in the regular situation. In fact, this n−2 rate is optimal for the uniform
location model, achieved for instance by the estimator θ̃ = min{Y1, . . . ,Yn}; see Exercise 15.9
for details. ♣

Le Cam’s method is also useful for various nonparametric problems, for instance those in
which our goal is to estimate some functional θ : F → R defined on a class of densitiesF .
For instance, a standard example is the problem of estimating a density at a point, say x = 0,
in which case θ( f ) := f (0) is known as an evaluation functional.

An important quantity in the Le Cam approach to such problems is the Lipschitz constant
of the functional θ with respect to the Hellinger norm, given by

ω(ε; θ,F ) := sup
f ,g∈F

{
|θ( f ) − θ(g)| | H2( f ‖ g) ≤ ε2

}
. (15.17)
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Here we use H2( f ‖ g) to mean the squared Hellinger distance between the distributions
associated with the densities f and g. Note that the quantity ω measures the size of the fluc-
tuations of θ( f ) when f is perturbed in a Hellinger neighborhood of radius ε. The following
corollary reveals the importance of this Lipschitz constant (15.17):

Corollary 15.6 (Le Cam for functionals) For any increasing function Φ on the non-
negative real line and any functional θ : F → R, we have

inf
θ̂

sup
f∈F

E
[
Φ
(̂
θ − θ( f )

)] ≥ 1
4
Φ

(
1
2

ω
( 1
2
√

n
; θ,F

))
. (15.18)

Proof We adopt the shorthand ω(t) ≡ ω(t; θ,F ) throughout the proof. Setting ε2 = 1
4n ,

choose a pair f , g that achieve3 the supremum defining ω(1/(2
√

n)). By a combination of
Le Cam’s inequality (Lemma 15.3) and the decoupling property (15.12b) for the Hellinger
distance, we have

‖Pn
f − Pn

g‖2
TV ≤ H2(Pn

f ‖Pn
g) ≤ nH2(P f ‖Pg) ≤ 1

4 .

Consequently, Le Cam’s bound (15.14) with δ = 1
2ω

( 1
2
√

n

)
implies that

inf
θ̂

sup
f∈F

E
[
Φ
(̂
θ − θ( f )

)] ≥ 1
4
Φ

(
1
2

ω
( 1
2
√

n

))
,

as claimed.

The elegance of Corollary 15.6 is in that it reduces the calculation of lower bounds to
a geometric object—namely, the Lipschitz constant (15.17). Some concrete examples are
helpful to illustrate the basic ideas.

Example 15.7 (Pointwise estimation of Lipschitz densities) Let us consider the family
of densities on [− 1

2 ,
1
2 ] that are bounded uniformly away from zero, and are Lipschitz with

constant one—that is, | f (x) − f (y)| ≤ |x − y| for all x, y ∈ [− 1
2 ,

1
2 ]. Suppose that our goal

is to estimate the linear functional f �→ θ( f ) := f (0). In order to apply Corollary 15.6, it
suffices to lower bound ω( 1

2
√

n ; θ,F ) and we can do so by choosing a pair f0, g ∈ F with
H2( f0 ‖ g) = 1

4n , and then evaluating the difference |θ( f0) − θ(g)|. Let f0 ≡ 1 be the uniform
density on [− 1

2 ,
1
2 ]. For a parameter δ ∈ (0, 1

6 ] to be chosen, consider the function

φ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
δ − |x| for |x| ≤ δ,
|x − 2δ| − δ for x ∈ [δ, 3δ],
0 otherwise.

(15.19)

See Figure 15.2 for an illustration. By construction, the function φ is 1-Lipschitz, uniformly

3 If the supremum is not achieved, then we can choose a pair that approximate it to any desired accuracy, and
repeat the argument.
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bounded with ‖φ‖∞ = δ ≤ 1
6 , and integrates to zero—that is,

∫ 1/2

−1/2
φ(x) dx = 0. Conse-

quently, the perturbed function g := f0 + φ is a density function belonging to our class, and
by construction, we have the equality |θ( f0) − θ(g)| = δ.
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Figure 15.2 Illustration of the hat function φ from equation (15.19) for δ = 0.12. It
is 1-Lipschitz, uniformly bounded as ‖φ‖∞ ≤ δ, and it integrates to zero.

It remains to control the squared Hellinger distance. By definition, we have

1
2 H2( f0 ‖ g) = 1 −

∫ 1/2

−1/2

√
1 + φ(t) dt.

Define the function Ψ(u) =
√

1 + u, and note that supu∈R |Ψ′′(u)| ≤ 1
4 . Consequently, by a

Taylor-series expansion, we have

1
2 H2( f0 ‖ g) =

∫ 1/2

−1/2
{Ψ(0) − Ψ(φ(t))} dt ≤

∫ 1/2

−1/2

{
−Ψ′(0)φ(t) + 1

8φ
2(t)

}
dt. (15.20)

Observe that ∫ 1/2

−1/2
φ(t) dt = 0 and

∫ 1/2

−1/2
φ2(t) dt = 4

∫ δ

0
(δ − x)2 dx = 4

3δ
3.

Combined with our Taylor-series bound (15.20), we find that

H2( f0 ‖ g) ≤ 2
8 · 4

3 δ3 = 1
3δ

3.

Consequently, setting δ3 = 3
4n ensures that H2( f0 ‖ g) ≤ 1

4n . Putting together the pieces,
Corollary 15.6 with Φ(t) = t2 implies that

inf
θ̂

sup
f∈F

E
[(̂
θ − f (0)

)2] ≥ 1
16

ω2
( 1
2
√

n

)
� n−2/3.

This n−2/3 lower bound for the Lipschitz family can be achieved by various estimators, so
that we have derived a sharp lower bound. ♣

We now turn to the use of the two-class lower bound for a nonlinear functional in a non-
parametric problem. Although the resulting bound is non-trivial, it is not a sharp result—
unlike in the previous examples. Later, we will develop Le Cam’s refinement of the two-
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class approach so as to obtain sharp rates.

Example 15.8 (Lower bounds for quadratic functionals) Given positive constants c0 < 1
< c1 and c2 > 1, consider the class of twice-differentiable density functions

F2([0, 1]) :=
{

f : [0, 1] → [c0, c1]
∣∣∣∣ ‖ f ′′‖∞ ≤ c2 and

∫ 1

0
f (x) dx = 1

}
(15.21)

that are uniformly bounded above and below, and have a uniformly bounded second deriva-
tive. Consider the quadratic functional f �→ θ( f ) :=

∫ 1

0
( f ′(x))2 dx. Note that θ( f ) provides a

measure of the “smoothness” of the density: it is zero for the uniform density, and becomes
large for densities with more erratic behavior. Estimation of such quadratic functionals arises
in a variety of applications; see the bibliographic section for further discussion.

We again use Corollary 15.6 to derive a lower bound. Let f0 denote the uniform distribu-
tion on [0, 1], which clearly belongs toF2. As in Example 15.7, we construct a perturbation
g of f0 such that H2( f0 ‖ g) = 1

4n ; Corollary 15.6 then gives a minimax lower bound of the
order (θ( f0) − θ(g))2.

In order to construct the perturbation, let φ : [0, 1] → R be a fixed twice-differentiable
function that is uniformly bounded as ‖φ‖∞ ≤ 1

2 , and such that∫ 1

0
φ(x) dx = 0 and b� :=

∫ 1

0
(φ(�)(x))2 dx > 0 for � = 0, 1. (15.22)

Now divide the unit interval [0, 1] into m sub-intervals [x j, x j+1], with x j =
j

m for j =

0, . . . ,m − 1. For a suitably small constant C > 0, define the shifted and rescaled functions

φ j(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C
m2 φ

(
m(x − x j)

)
if x ∈ [x j, x j+1],

0 otherwise.
(15.23)

We then consider the density g(x) := 1 +
∑m

j=1 φ j(x). It can be seen that g ∈ F2 as long
as the constant C is chosen sufficiently small. See Figure 15.3 for an illustration of this
construction.

Let us now control the Hellinger distance. Following the same Taylor-series argument as
in Example 15.7, we have

1
2

H2( f0 ‖ g) = 1 −
∫ 1

0

√√
1 +

m∑
j=1

φ j(x) dx ≤ 1
8

∫ 1

0

( m∑
j=1

φ j(x)
)2

dx

=
1
8

m∑
j=1

∫ 1

0
φ2

j(x) dx

= c b0
1

m4 ,

where c > 0 is a universal constant. Consequently, the choice m4 := 2c b0 n ensures that
H2( f0 ‖ g) ≤ 1

n , as required for applying Corollary 15.6.
It remains to evaluate the difference θ( f0) and θ(g). On one hand, we have θ( f0) = 0,



15.2 Binary testing and Le Cam’s method 497

0 0.5 1
-0.02

-0.01

0

0.01

0.02

0 0.5 1
-0.5

0

0.5

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 15.3 Illustration of the construction of the density g. Upper left: an exam-
ple of a base function φ. Upper right: function φ j is a rescaled and shifted version
of φ. Lower left: original uniform distribution. Lower right: final density g is the
superposition of the uniform density f0 with the sum of the shifted functions {φ j}mj=1.

whereas on the other hand, we have

θ(g) =
∫ 1

0

⎛⎜⎜⎜⎜⎜⎜⎝ m∑
j=1

φ′j(x)

⎞⎟⎟⎟⎟⎟⎟⎠
2

dx = m
∫ 1

0
(φ′j(x))2 dx =

C2b1

m2 .

Recalling the specified choice of m, we see that |θ(g) − θ( f0)| ≥ K√
n for some universal

constant K independent of n. Consequently, Corollary 15.6 with Φ(t) = t implies that

sup
f∈F2

E
[|̂θ( f ) − θ( f )|] � n−1/2. (15.24)

This lower bound, while valid, is not optimal—there is no estimator that can achieve error
of the order of n−1/2 uniformly over F2. Indeed, we will see that the minimax risk scales
as n−4/9, but proving this optimal lower bound requires an extension of the basic two-point
technique, as we describe in the next section. ♣

15.2.2 Le Cam’s convex hull method

Our discussion up until this point has focused on lower bounds obtained by single pairs of
hypotheses. As we have seen, the difficulty of the testing problem is controlled by the total
variation distance between the two distributions. Le Cam’s method is an elegant generaliza-
tion of this idea, one which allows us to take the convex hulls of two classes of distributions.
In many cases, the separation in total variation norm as measured over the convex hulls is
much smaller than the pointwise separation between two classes, and so leads to better lower
bounds.

More concretely, consider two subsets P0 and P1 of P that are 2δ-separated, in the sense
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that

ρ(θ(P0), θ(P1)) ≥ 2δ for all P0 ∈ P0 and P1 ∈ P1. (15.25)

Lemma 15.9 (Le Cam) For any 2δ-separated classes of distributions P0 and P1 con-
tained within P, any estimator θ̂ has worst-case risk at least

sup
P∈P

EP
[
ρ
(̂
θ, θ(P)

)] ≥ δ

2
sup

P0∈conv(P0)
P1∈conv(P1)

{
1 − ‖P0 − P1‖TV

}
. (15.26)

Proof For any estimator θ̂, let us define the random variables

Vj(̂θ) =
1
2δ

inf
P j∈P j

ρ(̂θ, θ(P j)), for j = 0, 1.

We then have

sup
P∈P

EP
[
ρ(̂θ, θ(P))

] ≥ 1
2

{
EP0

[
ρ(̂θ, θ(P0))

]
+ EP1

[
ρ(̂θ, θ(P1))

]}
≥ δ

{
EP0 [V0(̂θ)] + EP1 [V1(̂θ)]

}
.

Since the right-hand side is linear in P0 and P1, we can take suprema over the convex hulls,
and thus obtain the lower bound

sup
P∈P

EP
[
ρ(̂θ, θ(P))

] ≥ δ sup
P0∈conv(P0)
P1∈conv(P1)

{
EP0 [V0(̂θ)] + EP1 [V1(̂θ)]

}
.

By the triangle inequality, we have

ρ(̂θ, θ(P0)) + ρ(̂θ, θ(P1)) ≥ ρ(θ(P0), θ(P1)) ≥ 2δ.

Taking infima over P j ∈ P j for each j = 0, 1, we obtain

inf
P0∈P0

ρ(̂θ, θ(P0)) + inf
P1∈P1

ρ(̂θ, θ(P1)) ≥ 2δ,

which is equivalent to V0(̂θ) + V1(̂θ) ≥ 1. Since Vj(̂θ) ≥ 0 for j = 0, 1, the variational
representation of the TV distance (see Exercise 15.1) implies that, for any P j ∈ conv(P j),
we have

EP0 [V0(̂θ)] + EP1 [V1(̂θ)] ≥ 1 − ‖P1 − P0‖TV,

which completes the proof.

In order to see how taking the convex hulls can decrease the total variation norm, it is
instructive to return to the Gaussian location model previously introduced in Example 15.4:

Example 15.10 (Sharpened bounds for Gaussian location family) In Example 15.4, we
used a two-point form of Le Cam’s method to prove a lower bound on mean estimation in the
Gaussian location family. A key step was to upper bound the TV distance ‖Pn

θ − Pn
0‖TV be-

tween the n-fold product distributions based on the Gaussian models N(θ, σ2) and N(0, σ2),
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respectively. Here let us show how the convex hull version of Le Cam’s method can be used
to sharpen this step, so as obtain a bound with tighter constants. In particular, setting θ = 2δ
as before, consider the two familiesP0 = {Pn

0} andP1 = {Pn
θ , P

n
−θ}. Note that the mixture dis-

tribution P̄ := 1
2P

n
θ +

1
2P

n
−θ belongs to conv(P1). From the second-moment bound explored

in Exercise 15.10(c), we have

‖P̄ − Pn
0‖2

TV ≤ 1
4

{
e

1
2 (

√
nθ
σ )4 − 1

}
= 1

4

{
e

1
2 ( 2

√
nδ

σ )4 − 1
}
. (15.27)

Setting δ = σt
2
√

n for some parameter t > 0 to be chosen, the convex hull Le Cam bound (15.26)
yields

min
θ̂

sup
θ∈R
Eθ[|̂θ − θ|] ≥ σ

4
√

n
sup
t>0

{
t
(
1 − 1

2

√
e

1
2 t4 − 1

)} ≥ 3
20

σ√
n
.

This bound is an improvement over our original bound (15.16a) from Example 15.4, which
has the pre-factor of 1

12 ≈ 0.08, as opposed to 3
20 = 0.15 obtained from this analysis. Thus,

even though we used the same base separation δ, our use of mixture distributions reduced
the TV distance—compare the bounds (15.27) and (15.15)—thereby leading to a sharper
result. ♣

In the previous example, the gains from extending to the convex hull are only in terms of
the constant pre-factors. Let us now turn to an example in which the gain is more substan-
tial. Recall Example 15.8 in which we investigated the problem of estimating the quadratic
functional f �→ θ( f ) =

∫ 1

0
( f ′(x))2 dx over the class F2 from equation (15.21). Let us now

demonstrate how the use of Le Cam’s method in its full convex hull form allows for the
derivation of an optimal lower bound for the minimax risk.

Example 15.11 (Optimal bounds for quadratic functionals) For each binary vector α ∈
{−1,+1}m, define the distribution Pα with density given by

fα(x) = 1 +
m∑

j=1

α jφ j(x).

Note that the perturbed density g constructed in Example 15.8 is a special member of this
family, generated by the binary vector α = (1, 1, . . . , 1). Let Pn

α denote the product distribu-
tion on Xn formed by sampling n times independently from Pα, and define the two classes
P0 := {Un} and P1 := {Pn

α, α ∈ {−1,+1}m}. With these choices, we then have

inf
P j∈conv(P j)

j=0,1

‖P0 − P1‖TV ≤ ‖Un − Q‖TV ≤ H(Un ‖Q),

where Q := 2−m ∑
α∈{−1,+1}m Pn

α is the uniformly weighted mixture over all 2m choices of Pn
α.

In this case, since Q is not a product distribution, we can no longer apply the decom-
position (15.12a) so as to bound the Hellinger distance H(Un ‖Q) by a univariate version.
Instead, some more technical calculations are required. One possible upper bound is given
by

H2(Un ‖Q) ≤ n2
m∑

j=1

( ∫ 1

0
φ2

j(x) dx
)2
. (15.28)
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Figure 15.4 Illustration of some densities of the form fα(x) = 1 +
∑m

j=1 α jφ j(x) for
different choices of sign vectors α ∈ {−1, 1}m. Note that there are 2m such densities
in total.

See the bibliographic section for discussion of this upper bound as well as related results.
If we take the upper bound (15.28) as given, then using the calculations from Example 15.8
—in particular, recall the definition of the constants b� from equation (15.22)—we find that

H2(Un ‖Q) ≤ mn2 b2
0

m10 = b2
0

n2

m9 .

Setting m9 = 4b2
0n2 yields that ‖U1:n − Q‖TV ≤ H(U1:n ‖P1:n) ≤ 1/2, and hence Lemma 15.9

implies that

sup
f∈F2

E|̂θ( f ) − θ( f )| ≥ δ/4 =
C2b1

8m2 � n−4/9.

Thus, by using the full convex form of Le Cam’s method, we have recovered a better lower
bound on the minimax risk (n−4/9 � n−1/2). This lower bound turns out to be unimprovable;
see the bibliographic section for further discussion. ♣

15.3 Fano’s method

In this section, we describe an alternative method for deriving lower bounds, one based on a
classical result from information theory known as Fano’s inequality.
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15.3.1 Kullback–Leibler divergence and mutual information

Recall our basic set-up: we are interested in lower bounding the probability of error in
an M-ary hypothesis testing problem, based on a family of distributions {Pθ1 , . . . ,PθM }. A
sample Z is generated by choosing an index J uniformly at random from the index set
[M] := {1, . . . , M}, and then generating data according to PθJ . In this way, the observation
follows the mixture distribution QZ = Q̄ := 1

M

∑M
j=1 Pθ j . Our goal is to identify the index J of

the probability distribution from which a given sample has been drawn.
Intuitively, the difficulty of this problem depends on the amount of dependence between

the observation Z and the unknown random index J. In the extreme case, if Z were actually
independent of J, then observing Z would have no value whatsoever. How to measure the
amount of dependence between a pair of random variables? Note that the pair (Z, J) are in-
dependent if and only if their joint distribution QZ,J is equal to the product of its marginals—
namely, QZQJ . Thus, a natural way in which to measure dependence is by computing some
type of divergence measure between the joint distribution and the product of marginals. The
mutual information between the random variables (Z, J) is defined in exactly this way, using
the Kullback–Leibler divergence as the underlying measure of distance—that is

I(Z, J) := D(QZ,J ‖QZ QJ). (15.29)

By standard properties of the KL divergence, we always have I(Z, J) ≥ 0, and moreover
I(Z, J) = 0 if and only if Z and J are independent.

Given our set-up and the definition of the KL divergence, the mutual information can
be written in terms of component distributions {Pθ j , j ∈ [M]} and the mixture distribution
Q̄ ≡ QZ—in particular as

I(Z; J) =
1
M

M∑
j=1

D(Pθ j ‖ Q̄), (15.30)

corresponding to the mean KL divergence between Pθ j and Q̄, averaged over the choice of
index j. Consequently, the mutual information is small if the distributions Pθ j are hard to
distinguish from the mixture distribution Q̄ on average.

15.3.2 Fano lower bound on minimax risk

Let us now return to the problem at hand: namely, obtaining lower bounds on the minimax
error. The Fano method is based on the following lower bound on the error probability in an
M-ary testing problem, applicable when J is uniformly distributed over the index set:

P[ψ(Z) � J] ≥ 1 − I(Z; J) + log 2
log M

. (15.31)

When combined with the reduction from estimation to testing given in Proposition 15.1, we
obtain the following lower bound on the minimax error:
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Proposition 15.12 Let {θ1, . . . , θM} be a 2δ-separated set in the ρ semi-metric on
Θ(P), and suppose that J is uniformly distributed over the index set {1, . . . , M}, and (Z |
J = j) ∼ Pθ j . Then for any increasing function Φ : [0,∞) → [0,∞), the minimax risk is
lower bounded as

M(θ(P);Φ ◦ ρ) ≥ Φ(δ)
{

1 − I(Z; J) + log 2
log M

}
, (15.32)

where I(Z; J) is the mutual information between Z and J.

We provide a proof of the Fano bound (15.31), from which Proposition 15.12 follows, in
the sequel (see Section 15.4). For the moment, in order to gain intuition for this result,
it is helpful to consider the behavior of the different terms of δ → 0+. As we shrink δ,
then the 2δ-separation criterion becomes milder, so that the cardinality M ≡ M(2δ) in the
denominator increases. At the same time, in a generic setting, the mutual information I(Z; J)
will decrease, since the random index J ∈ [M(2δ)] can take on a larger number of potential
values. By decreasing δ sufficiently, we may thereby ensure that

I(Z; J) + log 2
log M

≤ 1
2
, (15.33)

so that the lower bound (15.32) implies thatM(θ(P);Φ◦ρ) ≥ 1
2Φ(δ). Thus, we have a generic

scheme for deriving lower bounds on the minimax risk.
In order to derive lower bounds in this way, there remain two technical and possibly

challenging steps. The first requirement is to specify 2δ-separated sets with large cardinality
M(2δ). Here the theory of metric entropy developed in Chapter 5 plays an important role,
since any 2δ-packing set is (by definition) 2δ-separated in the ρ semi-metric. The second
requirement is to compute—or more realistically to upper bound—the mutual information
I(Z; J). In general, this second step is non-trivial, but various avenues are possible.

The simplest upper bound on the mutual information is based on the convexity of the
Kullback–Leibler divergence (see Exercise 15.3). Using this convexity and the mixture rep-
resentation (15.30), we find that

I(Z; J) ≤ 1
M2

M∑
j,k=1

D(Pθ j ‖Pθk ). (15.34)

Consequently, if we can construct a 2δ-separated set such that all pairs of distributions Pθ j

and Pθk are close on average, the mutual information can be controlled. Let us illustrate the
use of this upper bound for a simple parametric problem.

Example 15.13 (Normal location model via Fano method) Recall from Example 15.4 the
normal location family, and the problem of estimating θ ∈ R under the squared error. There
we showed how to lower bound the minimax error using Le Cam’s method; here let us derive
a similar lower bound using Fano’s method.

Consider the 2δ-separated set of real-valued parameters {θ1, θ2, θ3} = {0, 2δ,−2δ}. Since



15.3 Fano’s method 503

Pθ j = N(θ j, σ2), we have

D(P1:n
θ j ‖P1:n

θk ) =
n

2σ2

(
θ j − θk)2 ≤ 2nδ2

σ2 for all j, k = 1, 2, 3.

The bound (15.34) then ensures that I(Z; Jδ) ≤ 2nδ2

σ2 , and choosing δ2 = σ2

20n ensures that
2nδ2/σ2+log 2

log 3 < 0.75. Putting together the pieces, the Fano bound (15.32) with Φ(t) = t2

implies that

sup
θ∈R
Eθ[(̂θ − θ)2] ≥ δ2

4
=

1
80

σ2

n
.

In this way, we have re-derived a minimax lower bound of the order σ2/n, which, as dis-
cussed in Example 15.4, is of the correct order. ♣

15.3.3 Bounds based on local packings

Let us now formalize the approach that was used in the previous example. It is based on
a local packing of the parameter space Ω, which underlies what is called the “generalized
Fano” method in the statistics literature. (As a sidenote, this nomenclature is very mislead-
ing, because the method is actually based on a substantial weakening of the Fano bound,
obtained from the inequality (15.34).)

The local packing approach proceeds as follows. Suppose that we can construct a 2δ-
separated set contained within Ω such that, for some quantity c, the Kullback–Leibler diver-
gences satisfy the uniform upper bound√

D(Pθ j ‖Pθk ) ≤ c
√

n δ for all j � k. (15.35a)

The bound (15.34) then implies that I(Z; J) ≤ c2nδ2, and hence the bound (15.33) will hold
as long as

log M(2δ) ≥ 2
{
c2nδ2 + log 2

}
. (15.35b)

In summary, if we can find a 2δ-separated family of distributions such that conditions (15.35a)
and (15.35b) both hold, then we may conclude that the minimax risk is lower bounded as
M(θ(P),Φ ◦ ρ) ≥ 1

2Φ(δ).

Let us illustrate the local packing approach with some examples.

Example 15.14 (Minimax risks for linear regression) Consider the standard linear re-
gression model y = Xθ∗ + w, where X ∈ Rn×d is a fixed design matrix, and the vector
w ∼ N(0, σ2In) is observation noise. Viewing the design matrix X as fixed, let us obtain
lower bounds on the minimax risk in the prediction (semi-)norm ρX(̂θ, θ∗) := ‖X(̂θ−θ∗)‖2√

n , as-
suming that θ∗ is allowed to vary over Rd.

For a tolerance δ > 0 to be chosen, consider the set{
γ ∈ range(X) | ‖γ‖2 ≤ 4δ

√
n
}
,

and let {γ1, . . . , γM} be a 2δ
√

n-packing in the �2-norm. Since this set sits in a space of dimen-
sion r = rank(X), Lemma 5.7 implies that we can find such a packing with log M ≥ r log 2
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elements. We thus have a collection of vectors of the form γ j = Xθ j for some θ j ∈ Rd, and
such that

‖Xθ j‖2√
n

≤ 4δ, for each j ∈ [M], (15.36a)

2δ ≤ ‖X(θ j − θk)‖2√
n

≤ 8δ for each j � k ∈ [M] × [M]. (15.36b)

Let Pθ j denote the distribution of y when the true regression vector is θ j; by the definition
of the model, under Pθ j , the observed vector y ∈ Rn follows a N(

Xθ j, σ2In
)

distribution.
Consequently, the result of Exercise 15.13 ensures that

D(Pθ j ‖Pθk ) =
1

2σ2 ‖X(θ j − θk)‖2
2 ≤

32nδ2

σ2 , (15.37)

where the inequality follows from the upper bound (15.36b). Consequently, for r sufficiently
large, the lower bound (15.35b) can be satisfied by setting δ2 = σ2

64
r
n , and we conclude that

inf
θ̂

sup
θ∈Rd

E
[1
n
‖X(̂θ − θ)‖2

2

]
≥ σ2

128
rank(X)

n
.

This lower bound is sharp up to constant pre-factors: as shown by our analysis in Example
13.8 and Exercise 13.2, it can be achieved by the usual linear least-squares estimate. ♣
Let us now see how the upper bound (15.34) and Fano’s method can be applied to a non-
parametric problem.

Example 15.15 (Minimax risk for density estimation) Recall from equation (15.21) the
family F2 of twice-smooth densities on [0, 1], bounded uniformly above, bounded uni-
formly away from zero, and with uniformly bounded second derivative. Let us consider
the problem of estimating the entire density function f , using the Hellinger distance as our
underlying metric ρ.

In order to construct a local packing, we make use of the family of perturbed densities
from Example 15.11, each of the form fα(x) = 1 +

∑m
j=1 α jφ j(x), where α ∈ {−1,+1}m

and the function φ j was defined in equation (15.23). Although there are 2m such perturbed
densities, it is convenient to use only a well-separated subset of them. Let MH( 1

4 ;Hm) denote
the 1

4 -packing number of the binary hypercube {−1,+1}m in the rescaled Hamming metric.
From our calculations in Example 5.3, we know that

log MH( 1
4 ; Hm) ≥ m D( 1

4 ‖ 1
2 ) ≥ m

10
.

(See in particular equation (5.3).) Consequently, we can find a subset T ⊂ {−1,+1}m with
cardinality at least em/10 such that

dH(α, β) =
1
m

m∑
j=1

I[α j � β j] ≥ 1/4 for all α � β ∈ T. (15.38)

We then consider the family of M = em/10 distributions {Pα, α ∈ T}, where Pα has density fα.
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We first lower bound the Hellinger distance between distinct pairs fα and fβ. Since φ j is
non-zero only on the interval I j = [x j, x j+1], we can write∫ 1

0

( √
fα(x) −

√
fβ(x)

)2

dx =
m−1∑
j=0

∫
I j

( √
fα(x) −

√
fβ(x)

)2

dx.

But on the interval I j, we have( √
fα(x) +

√
fβ(x)

)2

= 2
(

fα(x) + fβ(x)
)
≤ 4,

and therefore∫
I j

( √
fα(x) −

√
fβ(x)

)2

dx ≥ 1
4

∫
I j

(
fα(x) − fβ(x)

)2

≥
∫

I j

φ2
j(x) dx whenever α j � β j.

Since
∫

I j
φ2

j(x) dx =
∫ 1

0
φ2(x) dx = b0

m5 and any distinct α � β differ in at least m/4 positions,

we find that H2(Pα ‖Pβ) ≥ m
4

b0
m5 = b0

m4 ≡ 4δ2. Consequently, we have constructed a 2δ-
separated set with δ2 = b0

4m4 .
Next we upper bound the pairwise KL divergence. By construction, we have fα(x) ≥ 1/2

for all x ∈ [0, 1], and thus

D(Pα ‖Pβ) ≤
∫ 1

0

( √
fα(x) − √

fβ(x)
)2

fα(x)
dx

≤ 2
∫ 1

0

( √
fα(x) −

√
fβ(x)

)2 dx ≤ 4b0

m4 , (15.39)

where the final inequality follows by a similar sequence of calculations. Overall, we have
established the upper bound D(Pn

α ‖Pn
β) = nD(Pα ‖Pβ) ≤ 4b0

n
m4 = 4nδ2. Finally, we must

ensure that

log M =
m
10

≥ 2
{
4nδ2 + log 2

}
= 2

{
4b0

n
m4 + log 2

}
.

This equality holds if we choose m = n1/5

C for a sufficiently small constant C. With this
choice, we have δ2  m−4  n−4/5, and hence conclude that

sup
f∈F2

H2( f̂ ‖ f ) � n−4/5.

This rate is minimax-optimal for densities with two orders of smoothness; recall that we
encountered the same rate for the closely related problem of nonparametric regression in
Chapter 13. ♣

As a third example, let us return to the high-dimensional parametric setting, and study
minimax risks for the problem of sparse linear regression, which we studied in detail in
Chapter 7.
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Example 15.16 (Minimax risk for sparse linear regression) Consider the high-dimensional
linear regression model y = Xθ∗ + w, where the regression vector θ∗ is known a priori to
be sparse, say with at most s < d non-zero coefficients. It is then natural to consider the
minimax risk over the set

Sd(s) := Bd
0(s) ∩ B2(1) =

{
θ ∈ Rd | ‖θ‖0 ≤ s, ‖θ‖2 ≤ 1

}
(15.40)

of s-sparse vectors within the Euclidean unit ball.
Let us first construct a 1/2-packing of the set Sd(s). From our earlier results in Chapter 5

(in particular, see Exercise 5.8), there exists a 1/2-packing of this set with log cardinality
at least log M ≥ s

2 log d−s
s . We follow the same rescaling procedure as in Example 15.14 to

form a 2δ-packing such that ‖θ j − θk‖2 ≤ 4δ for all pairs of vectors in our packing set. Since
the vector θ j − θk is at most 2s-sparse, we have√

D(Pθ j ‖Pθk ) =
1√
2σ

‖X(θ j − θk)‖2 ≤ γ2s√
2σ

4δ,

where γ2s := max|T |=2s σmax(XT )/
√

n. Putting together the pieces, we see that the minimax
risk is lower bounded by any δ > 0 for which

s
2

log
d − s

s
≥ 128

γ2
2s

σ2 nδ2 + 2 log 2.

As long as s ≤ d/2 and s ≥ 10, the choice δ2 = σ2

400γ2
2s

s log d−s
s suffices. Putting together the

pieces, we conclude that in the range 10 ≤ s ≤ d/2, the minimax risk is lower bounded as

M(Sd(s); ‖ · ‖2) � σ2

γ2
2s

s log ed
s

n
. (15.41)

The constant obtained by this argument is not sharp, but this lower bound is otherwise unim-
provable: see the bibliographic section for further details. ♣

15.3.4 Local packings with Gaussian entropy bounds

Our previous examples have also used the convexity-based upper bound (15.34) on the mu-
tual information. We now turn to a different upper bound on the mutual information, appli-
cable when the conditional distribution of Z given J is Gaussian.

Lemma 15.17 Suppose J is uniformly distributed over [M] = {1, . . . , M} and that Z
conditioned on J = j has a Gaussian distribution with covariance Σ j. Then the mutual
information is upper bounded as

I(Z; J) ≤ 1
2

⎧⎪⎪⎨⎪⎪⎩log det cov(Z) − 1
M

M∑
j=1

log det(Σ j)

⎫⎪⎪⎬⎪⎪⎭ . (15.42)
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This upper bound is a consequence of the maximum entropy property of the multivariate
Gaussian distribution; see Exercise 15.14 for further details. In the special case when Σ j = Σ

for all j ∈ [M], it takes on the simpler form

I(Z; J) ≤ 1
2

log
(
det cov(Z)

det(Σ)

)
. (15.43)

Let us illustrate the use of these bounds with some examples.

Example 15.18 (Variable selection in sparse linear regression) Let us return to the model
of sparse linear regression from Example 15.16, based on the standard linear model y =

Xθ∗ + w, where the unknown regression vector θ∗ ∈ Rd is s-sparse. Here we consider the
problem of lower bounding the minimax risk for the problem of variable selection—namely,
determining the support set S = { j ∈ {1, 2, . . . , d} | θ∗j � 0}, which is assumed to have cardi-
nality s � d.

In this case, the problem of interest is itself a multiway hypothesis test—namely, that
of choosing from all

(
d
s

)
possible subsets. Consequently, a direct application of Fano’s in-

equality leads to lower bounds, and we can obtain different such bounds by constructing
various ensembles of subproblems. These subproblems are parameterized by the pair (d, s),
as well as the quantity θmin = min j∈S |θ∗j |. In this example, we show that, in order to achieve
a probability of error below 1/2, any method requires a sample size of at least

n > max
{

8
log(d + s − 1)

log(1 + θ2
min
σ2 )

, 8
log

(
d
s

)
log(1 + s θ2

min
σ2 )

}
, (15.44)

as long as min
{
log(d + s − 1), log

(
d
s

)}
≥ 4 log 2.

For this problem, our observations consist of the response vector y ∈ Rn and design
matrix X ∈ Rn×d. We derive lower bounds by first conditioning on a particular instantiation
X = {xi}ni=1 of the design matrix, and using a form of Fano’s inequality that involves the
mutual information IX(y; J) between the response vector y and the random index J with the
design matrix X held fixed. In particular, we have

P
[
ψ(y,X) � J | X = {xi}ni=1

] ≥ 1 − IX(y; J) + log 2
log M

,

so that by taking averages over X, we can obtain lower bounds on P[ψ(y,X) � J] that in-
volve the quantity EX[IX(y; J)].

Ensemble A: Consider the class M =
(

d
s

)
of all possible subsets of cardinality s, enumerated

in some fixed way. For the �th subset S �, let θ� ∈ Rd have values θmin for all indices j ∈ S �,
and zeros in all other positions. For a fixed covariate vector xi ∈ Rd, an observed response
yi ∈ R then follows the mixture distribution 1

M

∑M
�=1 Pθ� , where Pθ� is the distribution of a

N(〈xi, θ
�〉, σ2) random variable.
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By the definition of mutual information, we have

IX(y; J) = HX(y) − HX(y | J)

(i)≤
⎡⎢⎢⎢⎢⎢⎣ n∑

i=1

HX(yi)

⎤⎥⎥⎥⎥⎥⎦ − HX(y | J)

(ii)
=

n∑
i=1

{HX(y1) − HX(y1 | J)}

=

n∑
i=1

IX(yi; J), (15.45)

where step (i) follows since independent random vectors have larger entropy than dependent
ones (see Exercise 15.4), and step (ii) follows since (y1, . . . , yn) are independent conditioned
on J. Next, applying Lemma 15.17 repeatedly for each i ∈ [n] with Z = yi, conditionally on
the matrix X of covariates, yields

IX(y; J) ≤ 1
2

n∑
i=1

log
var(yi | xi)

σ2 .

Now taking averages over X and using the fact that the pairs (yi, xi) are jointly i.i.d., we find
that

EX

[
IX(y; J)

] ≤ n
2
E[log

var(y1 | x1)
σ2 ] ≤ n

2
log

Ex1 [var(y1 | x1)]
σ2 ,

where the last inequality follows Jensen’s inequality, and concavity of the logarithm.
It remains to upper bound the variance term. Since the random vector y1 follows a mixture

distribution with M components, we have

Ex1 [var(y1 | x1)] ≤ Ex1

[
E[y2

1 | x1]
]
= Ex1

[
xT

1
{ 1
M

M∑
j=1

θ j ⊗ θ j}x1 + σ2
]

= trace
( 1

M

M∑
j=1

(θ j ⊗ θ j)
)
+ σ2.

Now each index j ∈ {1, 2, . . . , d} appears in
(

d−1
s−1

)
of the total number of subsets M =

(
d
s

)
, so

that

trace
( 1

M

M∑
j=1

θ j ⊗ θ j
)
= d

(
d−1
s−1

)(
d
s

) θ2
min = sθ2

min.

Putting together the pieces, we conclude that

EX

[
IX(y; J)

] ≤ n
2

log
(
1 +

sθ2
min

σ2

)
,

and hence the Fano lower bound implies that

P[ψ(y, X) � J] ≥ 1 −
n
2 log(1 + sθ2

min
σ2 ) + log 2

log
(

d
s

) ,
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from which the first lower bound in equation (15.44) follows as long as log
(

d
s

)
≥ 4 log 2, as

assumed.

Ensemble B: Let θ ∈ Rd be a vector with θmin in its first s − 1 coordinates, and zero in all
remaining d − s + 1 coordinates. For each j = 1, . . . , d, let e j ∈ Rd denote the jth standard
basis vector with a single one in position j. Define the family of M = d − s + 1 vectors
θ j := θ+ θmine j for j = s, . . . , d. By a straightforward calculation, we have E[Y | x] = 〈x, γ〉,
where γ := θ + 1

M θmines→d, and the vector es→d ∈ Rd has ones in positions s through d, and
zeros elsewhere. By the same argument as for ensemble A, it suffices to upper bound the
quantity Ex1 [var(y1 | x1)]. Using the definition of our ensemble, we have

Ex1 [var(y1 | x1)] = σ2 + trace

⎧⎪⎪⎨⎪⎪⎩ 1
M

M∑
j=1

(θ j ⊗ θ j − γ ⊗ γ)

⎫⎪⎪⎬⎪⎪⎭ ≤ σ2 + θ2
min. (15.46)

Recall that we have assumed that log(d − s + 1) > 4 log 2. Using Fano’s inequality and the
upper bound (15.46), the second term in the lower bound (15.44) then follows. ♣

Let us now turn to a slightly different problem, namely that of lower bounds for principal
component analysis. Recall from Chapter 8 the spiked covariance ensemble, in which a
random vector x ∈ Rd is generated via

x d
=
√
νξθ∗ + w. (15.47)

Here ν > 0 is a given signal-to-noise ratio, θ∗ is a fixed vector with unit Euclidean norm,
and the random quantities ξ ∼ N(0, 1) and w ∼ N(0, Id) are independent. Observe that
the d-dimensional random vector x is zero-mean Gaussian with a covariance matrix of the
form Σ := Id + ν

(
θ∗ ⊗ θ∗

)
. Moreover, by construction, the vector θ∗ is the unique maximal

eigenvector of the covariance matrix Σ.
Suppose that our goal is to estimate θ∗ based on n i.i.d. samples of the random vector x. In

the following example, we derive lower bounds on the minimax risk in the squared Euclidean
norm ‖̂θ − θ∗‖2

2. (As discussed in Chapter 8, recall that there is always a sign ambiguity in
estimating eigenvectors, so that in computing the Euclidean norm, we implicitly assume that
the correct direction is chosen.)

Example 15.19 (Lower bounds for PCA) Let {Δ1, . . . ,ΔM} be a 1/2-packing of the unit
sphere in Rd−1; from Example 5.8, for all d ≥ 3, there exists such a set with cardinality
log M ≥ (d − 1) log 2 ≥ d/2. For a given orthonormal matrix U ∈ R(d−1)×(d−1) and tolerance
δ ∈ (0, 1) to be chosen, consider the family of vectors

θ j(U) =
√

1 − δ2

[
1

0d−1

]
+ δ

[
0

UΔ j

]
for j ∈ [M], (15.48)

where 0d−1 denotes the (d − 1)-dimensional vector of zeros. By construction, each vector
θ j(U) lies on the unit sphere in Rd, and the collection of all M vectors forms a δ/2-packing
set. Consequently, we can lower bound the minimax risk by constructing a testing problem
based on the family of vectors (15.48). In fact, so as to make the calculations clean, we con-
struct one testing problem for each choice of orthonormal matrix U, and then take averages
over a randomly chosen matrix.
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Let Pθ j(U) denote the distribution of a random vector from the spiked ensemble (15.47)
with leading eigenvector θ∗ := θ j(U). By construction, it is a zero-mean Gaussian random
vector with covariance matrix

Σ j(U) := Id + ν
(
θ j(U) ⊗ θ j(U)

)
.

Now for a fixed U, suppose that we choose an index J ∈ [M] uniformly at random, and then
drawn n i.i.d. samples from the distribution PθJ (U). Letting Zn

1(U) denote the samples thus
obtained, Fano’s inequality then implies that the testing error is lower bounded as

P[ψ(Zn
1(U)) � J | U] ≥ 1 − I(Zn

1(U); J) + log 2
d/2

, (15.49)

where we have used the fact that log M ≥ d/2. For each fixed U, the samples Zn
1(U) are con-

ditionally independent given J. Consequently, following the same line of reasoning leading
to equation (15.45), we can conclude that I(Zn

1(U); J) ≤ nI(Z(U); J), where Z(U) denotes a
single sample.

Since the lower bound (15.49) holds for each fixed choice of orthonormal matrix U, we
can take averages when U is chosen uniformly at random. Doing so simplifies the task of
bounding the mutual information, since we need only bound the averaged mutual informa-
tion EU[I(Z(U); J)]. Since det(Σ j(U)) = 1 + ν for each j ∈ [M], Lemma 15.17 implies that

EU[I(Z(U); J) ≤ 1
2

{
EU log det(cov(Z(U))) − log(1 + ν)

}
≤ 1

2

{
log detEU(cov(Z(U)))︸������������︷︷������������︸

:=Γ

− log(1 + ν)
}
, (15.50)

where the second step uses the concavity of the log-determinant function, and Jensen’s in-
equality. Let us now compute the entries of the expected covariance matrix Γ. It can be seen
that Γ11 = 1 + ν − νδ2; moreover, using the fact that UΔ j is uniformly distributed over the
unit sphere in dimension (d − 1), the first column is equal to

Γ(2→d),1 = νδ
√

1 − δ2 1
M

M∑
j=1

EU[UΔ j] = 0.

Letting Γlow denote the lower square block of side length (d − 1), we have

Γlow = Id−1 +
δ2ν

M

M∑
j=1

E
[
(UΔ j) ⊗ (UΔ j)

]
=
(
1 +

δ2ν

d − 1

)
Id−1,

again using the fact that the random vector UΔ j is uniformly distributed over the sphere in
dimension d−1. Putting together the pieces, we have shown that Γ = blkdiag

(
Γ11,Γlow

)
, and

hence

log detΓ = (d − 1) log
(
1 +

νδ2

d − 1

)
+ log

(
1 + ν − νδ2).

Combining our earlier bound (15.50) with the elementary inequality log(1 + t) ≤ t, we find
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that

2EU

[
I(Z(U); J)

]
≤ (d − 1) log

(
1 +

νδ2

d − 1

)
+ log

(
1 − ν

1 + ν
δ2
)

≤
(
ν − ν

1 + ν

)
δ2

=
ν2

1 + ν
δ2.

Taking averages over our earlier Fano bound (15.49) and using this upper bound on the aver-
aged mutual information, we find that the minimax risk for estimating the spiked eigenvector
in squared Euclidean norm is lower bounded as

M(PCA; Sd−1, ‖ · ‖2
2) � min

{1 + ν

ν2

d
n
, 1
}
.

In Corollary 8.7, we proved that the maximum eigenvector of the sample covariance achieves
this squared Euclidean error up to constant pre-factors, so that we have obtained a sharp
characterization of the minimax risk. ♣

As a follow-up to the previous example, we now turn to the sparse variant of princi-
pal components analysis. As discussed in Chapter 8, there are a number of motivations for
studying sparsity in PCA, including the fact that it allows eigenvectors to be estimated at
substantially faster rates. Accordingly, let us now prove some lower bounds for variable
selection in sparse PCA, again working under the spiked model (15.47).

Example 15.20 (Lower bounds for variable selection in sparse PCA) Suppose that our
goal is to determine the scaling of the sample size required to ensure that the support set of
an s-sparse eigenvector θ∗ can be recovered. Of course, the difficulty of the problem depends
on the minimum value θmin = min j∈S |θ∗j |. Here we show that if θmin � 1√

s , then any method
requires n � 1+ν

ν2 s log(d − s + 1) samples to correctly recover the support. In Exercise 15.15,
we prove a more general lower bound for arbitrary scalings of θmin.

Recall our analysis of variable selection in sparse linear regression from Example 15.18:
here we use an approach similar to ensemble B from that example. In particular, fix a subset
S of size s − 1, and let ε ∈ {−1, 1}d be a vector of sign variables. For each j ∈ S c := [d] \ S ,
we then define the vector

[θ j(ε)]� =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1√

s if � ∈ S ,
ε j√

s if � = j,

0 otherwise.

In Example 15.18, we computed averages over a randomly chosen orthonormal matrix U;
here instead we average over the choice of random sign vectors ε.

Let Pθ j(ε) denote the distribution of the spiked vector (15.47) with θ∗ = θ j(ε), and let
Z(ε) be a sample from the mixture distribution 1

M

∑
j∈S c Pθ j(ε). Following a similar line of

calculation as Example 15.19, we have

Eε

[
I(Z(ε); J)

] ≤ 1
2

{
log det

(
Γ
) − log(1 + ν)

}
,

where Γ := Eε[cov(Z(ε))] is the averaged covariance matrix, taken over the uniform dis-
tribution over all Rademacher vectors. Letting Es−1 denote a square matrix of all ones with



512 Minimax lower bounds

side length s − 1, a straightforward calculation yields that Γ is a block diagonal matrix with
ΓS S = Is−1 +

ν
s Es−1 and ΓS cS c =

(
1 + ν

s (d−s+1)

)
Id−s+1. Consequently, we have

2Eε

[
I(Z(ε); J)

] ≤ log
(
1 + ν

s − 1
s

)
+ (d − s + 1) log

(
1 +

ν

s (d − s + 1)

)
− log(1 + ν)

= log
(
1 − ν

1 + ν

1
s

)
+ (d − s + 1) log

(
1 +

ν

s (d − s + 1)

)
≤ 1

s

{
− ν

1 + ν
+ ν

}
=

1
s

ν2

1 + ν
.

Recalling that we have n samples and that log M = log(d − s − 1), Fano’s inequality implies
that the probability of error is bounded away from zero as long as the ratio

n
s log(d − s + 1)

ν2

1 + ν

is upper bounded by a sufficiently small but universal constant, as claimed. ♣

15.3.5 Yang–Barron version of Fano’s method

Our analysis thus far has been based on relatively naive upper bounds on the mutual infor-
mation. These upper bounds are useful whenever we are able to construct a local packing of
the parameter space, as we have done in the preceding examples. In this section, we develop
an alternative upper bound on the mutual information. It is particularly useful for nonpara-
metric problems, since it obviates the need for constructing a local packing.

Lemma 15.21 (Yang–Barron method) Let NKL(ε;P) denote the ε-covering number of
P in the square-root KL divergence. Then the mutual information is upper bounded as

I(Z; J) ≤ inf
ε>0

{
ε2 + log NKL(ε;P)

}
. (15.51)

Proof Recalling the form (15.30) of the mutual information, we observe that for any dis-
tribution Q, the mutual information is upper bounded by

I(Z; J) =
1
M

M∑
j=1

D(Pθ j ‖ Q̄)
(i)≤ 1

M

M∑
j=1

D(Pθ j ‖Q) ≤ max
j=1,...,M

D(Pθ j ‖Q), (15.52)

where inequality (i) uses the fact that the mixture distribution Q̄ := 1
M

∑M
j=1 Pθ j minimizes the

average Kullback–Leibler divergence over the family {Pθ1 , . . . ,PθM }—see Exercise 15.11 for
details.

Since the upper bound (15.52) holds for any distribution Q, we are free to choose it: in
particular, we let {γ1, . . . , γN} be an ε-covering of Ω in the square-root KL pseudo-distance,
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and then set Q = 1
N

∑N
k=1 Pγk . By construction, for each θ j with j ∈ [M], we can find some

γk such that D(Pθ j ‖Pγk ) ≤ ε2. Therefore, we have

D(Pθ j ‖Q) = Eθ j

[
log

dPθ j

1
N

∑N
�=1 dPγ�

]
≤ Eθ j

[
log

dPθ j

1
N dPγk

]
= D(Pθ j ‖Pγk ) + log N

≤ ε2 + log N.

Since this bound holds for any choice of j ∈ [M] and any choice of ε > 0, the claim (15.51)
follows.

In conjunction with Proposition 15.12, Lemma 15.21 allows us to prove a minimax lower
bound of the order δ as long as the pair (δ, ε) ∈ R2

+ are chosen such that

log M(δ; ρ,Ω) ≥ 2
{
ε2 + log NKL(ε;P) + log 2

}
.

Finding such a pair can be accomplished via a two-step procedure:

(A) First, choose εn > 0 such that

ε2
n ≥ log NKL(εn;P). (15.53a)

Since the KL divergence typically scales with n, it is usually the case that ε2
n also grows

with n, hence the subscript in our notation.
(B) Second, choose the largest δn > 0 that satisfies the lower bound

log M(δn; ρ,Ω) ≥ 4ε2
n + 2 log 2. (15.53b)

As before, this two-step procedure is best understood by working through some examples.

Example 15.22 (Density estimation revisited) In order to illustrate the use of the Yang–
Barron method, let us return to the problem of density estimation in the Hellinger metric, as
previously considered in Example 15.15. Our analysis involved the class F2, as defined in
equation (15.21), of densities on [0, 1], bounded uniformly above, bounded uniformly away
from zero, and with uniformly bounded second derivative. Using the local form of Fano’s
method, we proved that the minimax risk in squared Hellinger distance is lower bounded
as n−4/5. In this example, we recover the same result more directly by using known results
about the metric entropy.

For uniformly bounded densities on the interval [0, 1], the squared Hellinger metric is
sandwiched above and below by constant multiples of the L2([0, 1])-norm:

‖p − q‖2
2 :=

∫ 1

0

(
p(x) − q(x)

)2 dx.

Moreover, again using the uniform lower bound, the Kullback–Leibler divergence between
any pair of distributions in this family is upper bounded by a constant multiple of the squared
Hellinger distance, and hence by a constant multiple of the squared Euclidean distance. (See
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equation (15.39) for a related calculation.) Consequently, in order to apply the Yang–Barron
method, we need only understand the scaling of the metric entropy in the L2-norm. From
classical theory, it is known that the metric entropy of the class F2 in L2-norm scales as
log N(δ;F2, ‖ · ‖2)  (1/δ)1/2 for δ > 0 sufficiently small.

Step A: Given n i.i.d. samples, the square-root Kullback–Leibler divergence is multiplied
by a factor of

√
n, so that the inequality (15.53a) can be satisfied by choosing εn > 0 such

that

ε2
n �

( √
n

εn

)1/2

.

In particular, the choice ε2
n  n1/5 is sufficient.

Step B: With this choice of εn, the second condition (15.53b) can be satisfied by choosing
δn > 0 such that (

1
δn

)1/2

� n2/5,

or equivalently δ2
n  n−4/5. In this way, we have a much more direct re-derivation of the n−4/5

lower bound on the minimax risk. ♣
As a second illustration of the Yang–Barron approach, let us now derive some minimax

risks for the problem of nonparametric regression, as discussed in Chapter 13. Recall that
the standard regression model is based on i.i.d. observations of the form

yi = f ∗(xi) + σwi, for i = 1, 2, . . . , n,

where wi ∼ N(0, 1). Assuming that the design points {xi}ni=1 are drawn in an i.i.d. fashion
from some distribution P, let us derive lower bounds in the L2(P)-norm:

‖ f̂ − f ∗‖2
2 =

∫
X

[
f̂ (x) − f ∗(x)

]2
P(dx).

Example 15.23 (Minimax risks for generalized Sobolev families) For a smoothness pa-
rameter α > 1/2, consider the ellipsoid �2(N) given by

Eα =
{
(θ j)∞j=1 |

∞∑
j=1

j2α θ2
j ≤ 1

}
. (15.54a)

Given an orthonormal sequence (φ j)∞j=1 in L2(P), we can then define the function class

Fα :=

⎧⎪⎪⎨⎪⎪⎩ f =
∞∑
j=1

θ jφ j | (θ j)∞j=1 ∈ Eα

⎫⎪⎪⎬⎪⎪⎭ . (15.54b)

As discussed in Chapter 12, these function classes can be viewed as particular types of
reproducing kernel Hilbert spaces, where α corresponds to the degree of smoothness. For
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any such function class, we claim that the minimax risk in squared L2(P)-norm is lower
bounded as

inf
f̂

sup
f∈Fα

E[‖ f̂ − f ‖2
2] � min

{
1,

(σ2

n

) 2α
2α+1

}
, (15.55)

and here we prove this claim via the Yang–Barron technique.
Consider a function of the form f =

∑∞
j=1 θ jφ j for some θ ∈ �2(N), and observe that

by the orthonormality of (φ j)∞j=1, Parseval’s theorem implies that ‖ f ‖2
2 =

∑∞
j=1 θ

2
j . Conse-

quently, based on our calculations from Example 5.12, the metric entropy of Fα scales as
log N(δ;Fα, ‖ · ‖2)  (1/δ)1/α. Accordingly, we can find a δ-packing { f 1, . . . , f M} of Fα in
the ‖ · ‖2-norm with log M � (1/δ)1/α elements.

Step A: For this part of the calculation, we first need to upper bound the metric entropy
in the KL divergence. For each j ∈ [M], let P f j denote the distribution of y given {xi}ni=1
when the true regression function is f j, and let Q denote the n-fold product distribution
over the covariates {xi}ni=1. When the true regression function is f j, the joint distribution over
(y, {xi}ni=1) is given by P f j × Q, and hence for any distinct pair of indices j � k, we have

D(P f j × Q ‖P f k × Q) = Ex
[
D(P f j ‖P f k )

]
= Ex

[ 1
2σ2

n∑
i=1

(
f j(xi) − f k(xi)

)2]
=

n
2σ2 ‖ f j − f k‖2

2.

Consequently, we find that

log NKL(ε) = log N
(σ √

2√
n

ε; Fα, ‖ · ‖2

)
� ( √n

σε

)1/α
,

where the final inequality again uses the result of Example 5.12. Consequently, inequal-
ity (15.53a) can be satisfied by setting ε2

n  
( n
σ2

) 1
2α+1 .

Step B: It remains to choose δ > 0 to satisfy the inequality (15.53b). Given our choice of
εn and the scaling of the packing entropy, we require

(
1/δ

)1/α ≥ c
{( n

σ2

) 1
2α+1

+ 2 log 2
}
. (15.56)

As long as n/σ2 is larger than some universal constant, the choice δ2
n  

(σ2

n

) 2α
2α+1 satisfies the

condition (15.56). Putting together the pieces yields the claim (15.55). ♣
In the exercises, we explore a number of other applications of the Yang–Barron method.

15.4 Appendix: Basic background in information theory

This appendix is devoted to some basic information-theoretic background, including a proof
of Fano’s inequality. The most fundamental concept is that of the Shannon entropy: it is a



516 Minimax lower bounds

functional on the space of probability distributions that provides a measure of their disper-
sion.

Definition 15.24 Let Q be a probability distribution with density q = dQ
dμ with respect

to some base measure μ. The Shannon entropy is given by

H(Q) := −E[log q(X)] = −
∫
X

q(x) log q(x)μ(dx), (15.57)

when this integral is finite.

The simplest form of entropy arises when Q is supported on a discrete set X, so that q
can be taken as a probability mass function—hence a density with respect to the counting
measure on X. In this case, the definition (15.57) yields the discrete entropy

H(Q) = −
∑
x∈X

q(x) log q(x). (15.58)

It is easy to check that the discrete entropy is always non-negative. Moreover, when X is
a finite set, it satisfies the upper bound H(Q) ≤ log |X|, with equality achieved when Q is
uniform over X. See Exercise 15.2 for further discussion of these basic properties.

An important remark on notation is needed before proceeding: Given a random variable
X ∼ Q, one often writes H(X) in place of H(Q). From a certain point of view, this is abusive
use of notation, since the entropy is a functional of the distribution Q as opposed to the ran-
dom variable X. However, as it is standard practice in information theory, we make use of
this convenient notation in this appendix.

Definition 15.25 Given a pair of random variables (X, Y) with joint distribution QX,Y ,
the conditional entropy of X | Y is given by

H(X | Y) := EY
[
H(QX|Y)

]
= EY

[∫
X

q(x | Y) log q(x | Y)μ(dx)
]
. (15.59)

We leave the reader to verify the following elementary properties of entropy and mutual
information. First, conditioning can only reduce entropy:

H(X | Y) ≤ H(X). (15.60a)

As will be clear below, this inequality is equivalent to the non-negativity of the mutual
information I(X; Y). Secondly, the joint entropy can be decomposed into a sum of singleton
and conditional entropies as

H(X,Y) = H(Y) + H(X | Y). (15.60b)
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This decomposition is known as the chain rule for entropy. The conditional entropy also
satisfies a form of chain rule:

H(X,Y | Z) = H(X | Z) + H(X | Y,Z). (15.60c)

Finally, it is worth noting the connections between entropy and mutual information. By
expanding the definition of mutual information, we see that

I(X; Y) = H(X) + H(Y) − H(X,Y). (15.60d)

By replacing the joint entropy with its chain rule decomposition (15.60b), we obtain

I(X; Y) = H(Y) − H(Y | X). (15.60e)

With these results in hand, we are now ready to prove the Fano bound (15.31). We do
so by first establishing a slightly more general result. Introducing the shorthand notation
qe = P[ψ(Z) � J], we let h(qe) = −qe log qe − (1 − qe) log(1 − qe) denote the binary entropy.
With this notation, the standard form of Fano’s inequality is that the error probability in any
M-ary testing problem is lower bounded as

h(qe) + qe log(M − 1) ≥ H(J | Z). (15.61)

To see how this lower bound implies the stated claim (15.31), we note that

H(J | Z)
(i)
= H(J) − I(Z; J)

(ii)
= log M − I(Z; J),

where equality (i) follows from the representation of mutual information in terms of entropy,
and equality (ii) uses our assumption that J is uniformly distributed over the index set. Since
h(qe) ≤ log 2, we find that

log 2 + qe log M ≥ log M − I(Z; J),

which is equivalent to the claim (15.31).
It remains to prove the lower bound (15.61). Define the {0, 1}-valued random variable

V := I[ψ(Z) � J], and note that H(V) = h(qe) by construction. We now proceed to expand
the conditional entropy H(V, J | Z) in two different ways. On one hand, by the chain rule,
we have

H(V, J | Z) = H(J | Z) + H(V | J,Z) = H(J | Z), (15.62)

where the second equality follows since V is a function of Z and J. By an alternative appli-
cation of the chain rule, we have

H(V, J | Z) = H(V | Z) + H(J | V,Z) ≤ h(qe) + H(J | V,Z),

where the inequality follows since conditioning can only reduce entropy. By the definition
of conditional entropy, we have

H(J | V,Z) = P[V = 1]H(J | Z, V = 1) + P[V = 0]H(J | Z,V = 0).

If V = 0, then J = ψ(Z), so that H(J | Z,V = 0) = 0. On the other hand, if V = 1, then we
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know that J � ψ(Z), so that the conditioned random variable (J | Z,V = 1) can take at most
M − 1 values, which implies that

H(J | Z,V = 1) ≤ log(M − 1),

since entropy is maximized by the uniform distribution. We have thus shown that

H(V, J | Z) ≤ h(qe) + log(M − 1),

and combined with the earlier equality (15.62), the claim (15.61) follows.

15.5 Bibliographic details and background

Information theory was introduced in the seminal work of Shannon (1948; 1949); see also
Shannon and Weaver (1949). Kullback and Leibler (1951) introduced the Kullback–Leibler
divergence, and established various connections to both large-deviation theory and testing
problems. Early work by Lindley (1956) also established connections between information
and statistical estimation. Kolmogorov was the first to connect information theory and metric
entropy; in particular, see appendix II of the paper by Kolmogorov and Tikhomirov (1959).
The book by Cover and Thomas (1991) is a standard introductory-level text on information
theory. The proof of Fano’s inequality given here follows their book.

The parametric problems discussed in Examples 15.4 and 15.5 were considered in Le
Cam (1973), where he described the lower bounding approach now known as Le Cam’s
method. In this same paper, Le Cam also shows how a variety of nonparametric problems
can also be treated by this method, using results on metric entropy. The paper by Hasmin-
skii (1978) used the weakened form of the Fano method, based on the upper bound (15.34)
on the mutual information, to derive lower bounds on density estimation in the uniform
metric; see also the book by Hasminskii and Ibragimov (1981), as well as their survey
paper (Hasminskii and Ibragimov, 1990). Assouad (1983) developed a method for deriv-
ing lower bounds based on placing functions at vertices of the binary hypercube. See also
Birgé (1983; 1987; 2005) for further refinements on methods for deriving both lower and up-
per bounds. The chapter by Yu (1996) provides a comparison of both Le Cam’s and Fano’s
method, as well Assouad’s method (Assouad, 1983). Examples 15.8, 15.11 and 15.15 fol-
low parts of her development. Birgé and Massart (1995) prove the upper bound (15.28) on
the squared Hellinger distance; see theorem 1 in their paper for further details. In their paper,
they study the more general problem of estimating functionals of the density and its first k
derivatives under general smoothness conditions of order α. The quadratic functional prob-
lem considered in Examples 15.8 and 15.11 correspond to the special case with k = 1 and
α = 2. The refined upper bound on mutual information from Lemma 15.21 is due to Yang
and Barron (1999). Their work showed how Fano’s method can be applied directly with
global metric entropies, as opposed to constructing specific local packings of the function
class, as in the local packing version of Fano’s method discussed in Section 15.3.3.

Guntuboyina (2011) proves a generalization of Fano’s inequality to an arbitrary f -diver-
gence. See Exercise 15.12 for further background on f -divergences and their properties. His
result reduces to the classical Fano’s inequality when the underlying f -divergence is the
Kullback–Leibler divergence. He illustrates how such generalized Fano bounds can be used
to derive minimax bounds for various classes of problems, including covariance estimation.
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Lower bounds on variable selection in sparse linear regression using the Fano method,
as considered in Example 15.18, were derived by Wainwright (2009a). See also the pa-
pers (Reeves and Gastpar, 2008; Fletcher et al., 2009; Akcakaya and Tarokh, 2010; Wang
et al., 2010) for further results of this type. The lower bound on variable selection in sparse
PCA from Example 15.20 was derived in Amini and Wainwright (2009); the proof given
here is somewhat more streamlined due to the symmetrization with Rademacher variables.

The notion of minimax risk discussed in this chapter is the classical one, in which no ad-
ditional constraints (apart from measurability) are imposed on the estimators. Consequently,
the theory allows for estimators that may involve prohibitive computational, storage or com-
munication costs to implement. A more recent line of work has been studying constrained
forms of statistical minimax theory, in which the infimum over estimators is suitably re-
stricted (Wainwright, 2014). In certain cases, there can be substantial gaps between the clas-
sical minimax risk and their computationally constrained analogs (e.g., Berthet and Rigollet,
2013; Ma and Wu, 2013; Wang et al., 2014; Zhang et al., 2014; Cai et al., 2015; Gao et al.,
2015). Similarly, privacy constraints can lead to substantial differences in the classical and
private minimax risks (Duchi et al., 2014, 2013).

15.6 Exercises

Exercise 15.1 (Alternative representation of TV norm) Show that the total variation norm
has the equivalent variational representation

‖P1 − P0‖TV = 1 − inf
f0+ f1≥1

{
E0[ f0] + E1[ f1]

}
,

where the infimum runs over all non-negative measurable functions, and the inequality is
taken pointwise.

Exercise 15.2 (Basics of discrete entropy) Let Q be the distribution of a discrete random
variable on a finite set X. Letting q denote the associated probability mass function, its
Shannon entropy has the explicit formula

H(Q) ≡ H(X) = −
∑
x∈X

q(x) log q(x),

where we interpret 0 log 0 = 0.

(a) Show that H(X) ≥ 0.
(b) Show that H(X) ≤ log |X|, with equality achieved when X has the uniform distribution

over X.

Exercise 15.3 (Properties of Kullback–Leibler divergence) In this exercise, we study some
properties of the Kullback–Leibler divergence. Let P and Q be two distributions having
densities p and q with respect to a common base measure.

(a) Show that D(P ‖Q) ≥ 0 with equality if and only if the equality p(x) = q(x) holds
P-almost everywhere.

(b) Given a collection of non-negative weights such that
∑m

j=1 λ j = 1, show that

D(
m∑

j=1

λ jP j ‖Q) ≤
m∑

j=1

λ jD(P j ‖Q) (15.63a)
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and

(15.63b)D(Q ‖
m∑

j=1

λ jP j) ≤
m∑

j=1

λ jD(Q ‖P j).

(c) Prove that the KL divergence satisfies the decoupling property (15.11a) for product mea-
sures.

Exercise 15.4 (More properties of Shannon entropy) Let (X,Y,Z) denote a triplet of ran-
dom variables, and recall the definition (15.59) of the conditional entropy.

(a) Prove that conditioning reduces entropy—that is, H(X | Y) ≤ H(X).
(b) Prove the chain rule for entropy:

H(X,Y,Z) = H(X) + H(Y | X) + H(Z | Y, X).

(c) Conclude from the previous parts that

H(X,Y,Z) ≤ H(X) + H(Y) + H(Z),

so that joint entropy is maximized by independent variables.

Exercise 15.5 (Le Cam’s inequality) Prove the upper bound (15.10) on the total variation
norm in terms of the Hellinger distance. (Hint: The Cauchy–Schwarz inequality could be
useful.)

Exercise 15.6 (Pinsker–Csiszár–Kullback inequality) In this exercise, we work through a
proof of the Pinsker–Csiszár–Kullback inequality (15.8) from Lemma 15.2.

(a) When P and Q are Bernoulli distributions with parameters δp ∈ [0, 1] and δq ∈ [0, 1],
show that inequality (15.8) reduces to

2 (δp − δq)2 ≤ δp log
δp

δq
+ (1 − δp) log

1 − δp

1 − δq
. (15.64)

Prove the inequality in this special case.
(b) Use part (a) and Jensen’s inequality to prove the bound in the general case. (Hint: Letting

p and q denote densities, consider the set A := {x ∈ X | p(x) ≥ q(x)}, and try to reduce
the problem to a version of part (a) with δp = P[A] and δq = Q[A].)

Exercise 15.7 (Decoupling for Hellinger distance) Show that the Hellinger distance satis-
fies the decoupling relation (15.12a) for product measures.

Exercise 15.8 (Sharper bounds for Gaussian location family) Recall the normal location
model from Example 15.4. Use the two-point form of Le Cam’s method and the Pinsker–
Csiszár–Kullback inequality from Lemma 15.2 to derive the sharper lower bounds

inf
θ̂

sup
θ∈R
Eθ[|̂θ − θ|] ≥ 1

8
σ√

n
and inf

θ̂
sup
θ∈R
Eθ[(̂θ − θ)2] ≥ 1

16
σ2

n
.

Exercise 15.9 (Achievable rates for uniform shift family) In the context of the uniform
shift family (Example 15.5), show that the estimator θ̃ = min{Y1, . . . ,Yn} satisfies the bound
supθ∈R E[(̃θ − θ)2] ≤ 2

n2 .
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Exercise 15.10 (Bounds on the TV distance)

(a) Prove that the squared total variation distance is upper bounded as

‖P − Q‖2
TV ≤

1
4

{∫
X

p2(x)
q(x)

ν(dx) − 1
}
,

where p and q are densities with respect to the base measure ν.
(b) Use part (a) to show that

‖Pn
θ,σ − Pn

0,σ‖2
TV ≤ 1

4

{
e
( √

nθ
σ

)2

− 1
}
, (15.65)

where, for any γ ∈ Rn, we usePn
γ,σ to denote the n-fold product distribution of aN(γ, σ2)

variate.
(c) Use part (a) to show that

‖P̄ − Pn
0,σ‖2

TV ≤ 1
4

{
e

1
2

( √
nθ
σ

)4

− 1
}
, (15.66)

where P̄ = 1
2P

n
θ,σ +

1
2P

n
−θ,σ is a mixture distribution.

Exercise 15.11 (Mixture distributions and KL divergence) Given a collection of distribu-
tions {P1, . . . ,PM}, consider the mixture distribution Q̄ = 1

M

∑M
j=1 P j. Show that

1
M

M∑
j=1

D(P j ‖ Q̄) ≤ 1
M

M∑
j=1

D(P j ‖Q)

for any other distribution Q.

Exercise 15.12 ( f -divergences) Let f : R+ → R be a strictly convex function. Given two
distributions P and Q (with densities p and q, respectively), their f -divergence is given by

Df (P ‖Q) :=
∫

q(x) f
(
p(x)/q(x)

)
ν(dx). (15.67)

(a) Show that the Kullback–Leibler divergence corresponds to the f -divergence defined by
f (t) = t log t.

(b) Compute the f -divergence generated by f (t) = −log(t).
(c) Show that the squared Hellinger divergence H2(P ‖Q) is also an f -divergence for an

appropriate choice of f .
(d) Compute the f -divergence generated by the function f (t) = 1 − √

t.

Exercise 15.13 (KL divergence for multivariate Gaussian) For j = 1, 2, let Q j be a d-
variate normal distribution with mean vector μ j ∈ Rd and covariance matrix Σ j ! 0.

(a) If Σ1 = Σ2 = Σ, show that

D(Q1 ‖Q2) = 1
2 〈μ1 − μ2, Σ

−1 (μ1 − μ2)〉.
(b) In the general setting, show that

D(Q1 ‖Q2) = 1
2

{
〈μ1 − μ2, Σ

−1
2 (μ1 − μ2)〉 + log

det(Σ2)
det(Σ1)

+ trace
(
Σ−1

2 Σ1
) − d

}
.
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Exercise 15.14 (Gaussian distributions and maximum entropy) For a given σ > 0, let Qσ

be the class of all densities q with respect to Lebesgue measure on the real line such that∫ ∞
−∞ xq(x) = 0, and

∫ ∞
−∞ q(x)x2 dx ≤ σ2. Show that the maximum entropy distribution over

this family is the Gaussian N(0, σ2).

Exercise 15.15 (Sharper bound for variable selection in sparse PCA) In the context of
Example 15.20, show that for a given θmin = min j∈S |θ∗j | ∈ (0, 1), support recovery in sparse
PCA is not possible whenever

n < c0
1 + ν

ν2

log(d − s + 1)
θ2

min

for some constant c0 > 0. (Note: This result sharpens the bound from Example 15.20, since
we must have θ2

min ≤ 1
s due to the unit norm and s-sparsity of the eigenvector.)

Exercise 15.16 (Lower bounds for sparse PCA in �2-error) Consider the problem of es-
timating the maximal eigenvector θ∗ based on n i.i.d. samples from the spiked covariance
model (15.47). Assuming that θ∗ is s-sparse, show that any estimator θ̂ satisfies the lower
bound

sup
θ∗∈B0(s)∩Sd−1

E[‖̂θ − θ∗‖2
2] ≥ c0

ν + 1
ν2

s log
( ed

s

)
n

for some universal constant c0 > 0. (Hint: The packing set from Example 15.16 may be
useful to you. Moreover, you might consider a construction similar to Example 15.19, but
with the random orthonormal matrix U replaced by a random permutation matrix along with
random sign flips.)

Exercise 15.17 (Lower bounds for generalized linear models) Consider the problem of
estimating a vector θ∗ ∈ Rd with Euclidean norm at most one, based on regression with a
fixed set of design vectors {xi}ni=1, and responses {yi}ni=1 drawn from the distribution

Pθ(y1, . . . , yn
)
=

n∏
i=1

[
h(yi) exp

(
yi 〈xi, θ〉 − Φ(〈xi, θ〉)

s(σ)

)]
,

where s(σ) > 0 is a known scale factor, and Φ : R → R is the cumulant function of the
generalized linear model.

(a) Compute an expression for the Kullback–Leibler divergence between Pθ and Pθ′ involv-
ing Φ and its derivatives.

(b) Assuming that ‖Φ′′‖∞ ≤ L < ∞, give an upper bound on the Kullback–Leibler diver-
gence that scales quadratically in the Euclidean norm ‖θ − θ′‖2.

(c) Use part (b) and previous arguments to show that there is a universal constant c > 0 such
that

inf
θ̂

sup
θ∈Bd

2(1)
E
[
‖̂θ − θ‖2

2

]
≥ min

{
1, c

s(σ)
L η2

max

d
n

}
,

where ηmax = σmax(X/
√

n) is the maximum singular value. (Here as usual X ∈ Rn×d is
the design matrix with xi as its ith row.)

(d) Explain how part (c) yields our lower bound on linear regression as a special case.
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Exercise 15.18 (Lower bounds for additive nonparametric regression) Recall the class of
additive functions first introduced in Exercise 13.9, namely

Fadd =

{
f : Rd → R

∣∣∣∣∣∣ f =
d∑

j=1

gj for gj ∈ G
}
,

where G is some fixed class of univariate functions. In this exercise, we assume that the base
class has metric entropy scaling as log N(δ;G , ‖ · ‖2)  ( 1

δ

)1/α for some α > 1/2, and that we
compute L2(P)-norms using a product measure over Rd.

(a) Show that

inf
f̂

sup
f∈Fadd

E
[‖ f̂ − f ‖2

2
] � d

(σ2

n

) 2α
2α+1

.

By comparison with the result of Exercise 14.8, we see that the least-squares estimator
is minimax-optimal up to constant factors.

(b) Now consider the sparse variant of this model, namely based on the sparse additive
model (SPAM) class

Fspam =

{
f : Rd → R

∣∣∣∣∣∣ f =
∑
j∈S

g j for gj ∈ G , and a subset |S | ≤ s
}
.

Show that

inf
f̂

sup
f∈Fspam

E
[‖ f̂ − f ‖2

2
] � s

(σ2

n

) 2α
2α+1

+ σ2 s log
( ed

s

)
n

.
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