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Figure 1: AI’s understanding of vector fields on sphere.
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Figure 2: AI’s understanding of a torus.
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Figure 3: AI’s understanding of fractals.
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Introduction: ODEs and Dynamics

“Science is a differential equation. Religion is a boundary condition." (Alan Turing, 1954)

Figure 4: Alan Turing

In “The Scientific Outlook" (1931), Bertrand Russell articulates a compelling argument: “Ordinary language is
totally unsuited for expressing what physics really asserts, since the words of everyday life are not sufficiently
abstract. Only mathematics and mathematical logic can say as little as the physicist means to say." This
perspective underscores the intrinsic limitations of everyday language in conveying the nuanced and abstract
principles of physics, highlighting the indispensable role of mathematics and mathematical logic in this
realm. Galileo Galilei, too, recognized the mathematical underpinnings of the universe, expressing awe
at its beautifully elegant equations and asserting that the universe’s laws are delineated in the language
of mathematics. This realization gains further significance in the study of dynamic natural phenomena,
which extend beyond the reach of algebra, designed primarily for static situations. The exploration of these
phenomena necessitates the use of differential equations, which relate unknown functions to their derivatives,
offering insights into the complex interplay of changing quantities in the universe.

In fact, differential equations are just one, nonetheless important, aspect of dynamical system. A dynamical
system is a semigroup G acting on a space M . That is, there is a map

Φ : U ⊆ G×M → M
(t, x) 7→ Φt(x)

with proj2(U) = X (where proj2 is the 2nd projection map) and for any x in X:

Φ(0, x) = x

Φ (t2,Φ (t1, x)) = Φ (t2 + t1, x) ,
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for t1, t2 + t1 ∈ I(x) and t2 ∈ I (Φ (t1, x)), where we have defined the set I(x) := {t ∈ T : (t, x) ∈ U} for any
x in X. If G is a group, we will speak of an invertible dynamical system. We are mainly interested in discrete
dynamical systems where

G = N0 or G = Z

and in continuous dynamical systems where

G = R+ or G = R.

Example 0.0.1: The prototypical example of a discrete dynamical system is an iterated map. Let f map an
interval I into itself and consider

Φn = fn = f ◦ fn−1 = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

, G = N0.

Clearly, if f is invertible, so is the dynamical system if we extend this definition for n ∈ Z in the usual way.

Example 0.0.2: The prototypical example of a continuous dynamical system is the flow of an autonomous
differential equation

Φt, G = R,

We will return to this point in chapter  5 .

8
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Part I

Real Systems
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Chapter 1

Initial Value Problems

Let’s see some examples of differential equations.

dy
dx

+ 2
d2y

dx2
= sinx,

d2φ

dt2
+
g

l
sinφ = 0,

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2

The first one is a second order linear constant-coefficient ODE, the second is a nonlinear ODE, as φ is the
dependent variable with respect to the independent one t, and the third is a partial differential equation
(PDE). We formalize the definition.

Let U ⊆ Rm, V ⊆ Rn and k ∈ N0. Then Ck(U, V ) denotes the set of functions U → V having continuous
derivatives up to order k. In addition, we will abbreviate C(U, V ) = C0(U, V ) and Ck(U) = Ck(U,R).

A classical ordinary differential equation (ODE) is a relation of the form

F
(
t, x, x(1), . . . , x(k)

)
= 0 (1.1)

for the unknown function x ∈ Ck(J), J ⊆ R. Here F ∈ C(U) with U an open subset of Rk+2 and

x(k)(t) =
dkx(t)

dtk
, k ∈ N0, (1.2)

are the ordinary derivatives of x. One frequently calls t the independent and x the dependent variable. The
highest derivative appearing in F is called the order of the differential equation. A solution of the ODE ( 1.1 )
is a function ϕ ∈ Ck(I), where I ⊆ J is an interval, such that

F
(
t, ϕ(t), ϕ(1)(t), . . . , ϕ(k)(t)

)
= 0, for all t ∈ I. (1.3)

This implicitly implies
(
t, ϕ(t), ϕ(1)(t), . . . , ϕ(k)(t)

)
∈ U for all t ∈ I. Unfortunately there is not too much one

can say about general differential equations in the above form ( 1.1 ). Hence we will assume that one can solve
F for the highest derivative, resulting in a differential equation of the form

x(k) = f
(
t, x, x(1), . . . , x(k−1)

)
.

By the implicit function theorem this can be done at least locally near some point (t, y) ∈ U if the partial
derivative with respect to the highest derivative does not vanish at that point, ∂F

∂yk
(t, y) ̸= 0. This is the type

of differential equations we will consider from now on.

We have seen in the previous section that the case of real-valued functions is not enough and we should admit
the case x : R → Rn. This leads us to systems of ordinary differential equations

x
(k)
1 = f1

(
t, x, x(1), . . . , x(k−1)

)
,

...

x(k)n = fn

(
t, x, x(1), . . . , x(k−1)

)
.

11
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Such a system is said to be linear, if it is of the form

x
(k)
i = gi(t) +

n∑
l=1

k−1∑
j=0

fi,j,l(t)x
(j)
l .

It is called homogeneous, if gi(t) = 0.

Remark 1.0.1: Any system can always be reduced to a first-order system by changing to the new set of
dependent variables y =

(
x, x(1), . . . , x(k−1)

)
. This yields the new first-order system

ẏ1 = y2,

...

ẏk−1 = yk,

ẏk = f(t, y).

We can even add t to the dependent variables z = (t, y), making the right hand side independent of t

ż1 = 1,

ż2 = z3,

...

żk = zk+1,

żk+1 = f(z).

Such a system, where f does not depend on t, is called autonomous. In particular, it suffices to consider the
case of autonomous first-order systems which we will frequently do.

If plugging in x = φ(t) solves ( 1.1 ), we then call x = φ(t) the (explicit) solution of the ODE. Likewise, the
implicit solution of the form Φ(t, x) = 0 also solves the ODE in a sense that it determines a solution x = φ(t).
It is usually a loss of information or difficulty to write explicitly that requires one to write the implicit form
instead.

Often when we integrate a derivative dy
dx we find that there is a constant C along with it (an immediate

consequence of the Fundamental Theorem of Calculus):∫
dy
dx

dx = y(x) + C,C ∈ R.

As C varies, we can get multiple solutions, sometimes in a geometric sense when graphed on plane, called
integral curves or solution curves. The solution of the following form

y = φ(x,C1, · · · , Cn)

determines a class of solution due to the varying constants and is therefore called the general solution.

Correspondingly, we have particular solution when we actually settle down the constants in a general
solution, according to the initial value condition (IC) or boundary value condition (BC) given. Differential
equation along with initial data or boundary data is as a whole called initial value problem (Cauchy
problem) or boundary value problem (Dirichlet problem). For example, let’s say we have the following
initial value problem

dy
dx

= y, y ⩾ 0, y(0) = 1

Then one can easily obtain a general solution

y(x,C) = Cex.

12
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Plugging in initial data, we determine the constant and particular solution then

Ce0 = C = 1 ⇒ y(x) = ex.

We will present fundamental theorems of first-order ODEs in sketch. Consider the following initial value
problem (IVP)

ẋ = f(t, x), x (t0) = x0. (1.4)

We suppose f ∈ C (U,Rn), where U is an open subset of Rn+1 and (t0, x0) ∈ U

Suppose f is locally Lipschitz continuous in the second argument, uniformly with respect to the first
argument, that is, for every compact set V ⊂ U the following number

L = sup
(t,x)̸=(t,y)∈V

|f(t, x)− f(t, y)|
|x− y|

(which depends on V ) is finite.

Theorem 1.0.1 (Picard-Lindelöf Theorem). Suppose f ∈ C (U,Rn), where U is an open subset of Rn+1, and
(t0, x0) ∈ U . If f is locally Lipschitz continuous in the second argument, uniformly with respect to the first, then
there exists a unique local solution x̄(t) of the IVP (  1.4 ).

Proof. The proof is by using Picard iteration. See [ 11 ] Chapter 2 for more details.

We also have

Theorem 1.0.2 (Peano Theorem). Suppose f is continuous on V = [t0, t0 + T ]× Bδ (x0) and denote its
maximum by M . Then there exists at least one solution of the initial value problem (2.11) for t ∈ [t0, t0 + T0],
where T0 = min

{
T, δM

}
. The analogous result holds for the interval [t0 − T, t0].

In many cases, f will be even differentiable. In particular, recall that f ∈ C1 (U,Rn) implies that f is locally
Lipschitz continuous.

Exercise 1.0.1: Show that f ∈ C1(R) is locally Lipschitz continuous. In fact, show that

|f(y)− f(x)| ≤ sup
ε∈[0,1]

|f ′(x+ ε(y − x))| |x− y|.

Generalize this result to f ∈ C1 (Rm,Rn).

Solution. Lemma  9.1.4 and corollary  9.1.1 conclude the above statement without proof. For a proof, apply [ 8 ]
Theorem 9.19 (where one uses continuity of f ′ to get boundedness of the norm of f ′) to balls centered at
each point, which are convex.

Lemma 1.0.1. Suppose f ∈ Ck (U,Rn) , k ≥ 1, where U is an open subset of Rn+1, and (t0, x0) ∈ U . Then
the local solution x̄ of the IVP (2.11) is Ck+1.

Proof. Let k = 1. Then x̄(t) ∈ C1 by Picard Lindelöf Theorem  1.0.1 . Moreover, using ˙̄x(t) = f(t, x̄(t)) ∈ C1

we infer x̄(t) ∈ C2. The rest follows from induction.

Therefore, if f is smooth, i.e., infinitly differentiable, we have

Theorem 1.0.3 (Fundamental Theorem for ODEs). Let J ⊆ R be an open interval and U ⊆ Rn be an open
subset, and let f : J × U → Rn be a smooth vector-valued function.

ẋi(t) = f i (t, x(t)) , i = 1, · · · , n (1)

xi (t0) = xi0, i = 1, · · · , n (2)

Then,

(a) Existence: For any s0 ∈ J and x0 ∈ U , there exist an open interval J0 ⊆ J containing s0 and an open
subset U0 ⊆ U containing x0, such that for each t0 ∈ J0 and x0 =

(
x10, . . . , x

n
0

)
∈ U0, there is a C1 map

x : J0 → U that solves (1)-(2).

13
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(b) Uniquenes: Any two differentiable solutions to (1)-(2) agree on their common domain.

(c) Smoothness: Let J0 and U0 be as in (a), and define a map θ : J0×J0× U0 → U by letting θ (t, t0, x0) = x(t),
where x : J0 → U is the unique solution to (1)-(2). Then θ is smooth.

Remark 1.0.2: Note that ( 1.4 ) is the same as (1) and (2) in Theorem  1.0.3 , which is a first-order system of
ODE (need not to be linear).

We have a counterpart for implicitly defined first-order ODE, which is a consequence of the above Picard-
Lindelöf  1.0.1 and the implicit function theorem  9.1.2 that locally converts the implicit form to an explicit
form.

Exercise 1.0.2: Write the Existence and Uniqueness theorem for implicitly defined first-order ODE.

Extensibility of Solutions

See [ 11 ] for proofs of the following claims.

Suppose that solutions of the IVP ( 1.4 ) exist locally and are unique (e.g., f is Lipschitz). Let ϕ1, ϕ2 be two
solutions of the IVP ( 1.4 ) defined on the open intervals I1, I2, respectively. Let I = I1 ∩ I2 = (T−, T+)and let
(t−, t+)be the maximal open interval on which both solutions coincide. I claim that (t−, t+) = (T−, T+). In
fact, if t+ < T+, both solutions would also coincide at t+by continuity. Next, considering the IVP with initial
condition x (t+) = ϕ1 (t+) = ϕ2 (t+)shows that both solutions coincide in a neighborhood of t+by Theorem

 1.0.1 . This contradicts maximality of t+and hence t+ = T+. Similarly, t− = T−. Moreover, we get a solution

ϕ(t) =

{
ϕ1(t), t ∈ I1

ϕ2(t), t ∈ I2

defined on I1 ∪ I2. In fact, this even extends to an arbitrary number of solutions and in this way we get a
(unique) solution defined on some maximal interval.

Theorem 1.0.4. Suppose the IVP (  1.4 ) has a unique local solution (e.g. the conditions of Theorem  1.0.1 

are satisfied). Then there exists a unique maximal solution defined on some maximal interval I(t0,x0) =
(T− (t0, x0) , T+ (t0, x0)).

Remark 1.0.3: If we drop the requirement that f is Lipschitz, we still have existence of solutions (see
Theorem  1.0.2 ), but we already know that we loose uniqueness. Even without uniqueness, two given
solutions of the IVP (  1.4 ) can still be glued together at t0 (if necessary) to obtain a solution defined on I1 ∪ I2.
Furthermore, Zorn’s lemma ensures existence of maximal solutions in this case.

Now let us look at how we can tell from a given solution whether an extension exists or not.

Lemma 1.0.2. Let ϕ(t) be a solution of (  1.4 ) defined on the interval (t−, t+). Then there exists an extension
to the interval (t−, t+ + ε) for some ε > 0 if and only if there exists a sequence tn ∈ (t−, t+)such that

lim
n→∞

(tn, ϕ (tn)) = (t+, y) ∈ U.

Similarly for t−.

Our final goal is to show that solutions exist for all t ∈ R if f(t, x) grows at most linearly with respect to x.
But first we need a better criterion which does not require a complete knowledge of the solution.

Theorem 1.0.1. Let ϕ(t) be a solution of (  1.4 ) defined on the interval (t−, t+). Suppose there is a compact
set [t0, t+]× C ⊂ U such that ϕ (tn) ∈ C for some sequence tn ∈ [t0, t+)converging to t+. Then there exists an
extension to the interval (t−, t+ + ε) for some ε > 0.

In particular, if there is such a compact set C for every t+ > t0(C might depend on t+), then the solution exists
for all t > t0. Similarly for t−.

14
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Proof. Let tn → t+. By compactness ϕ (tn) has a convergent subsequence and the claim follows from the
previous lemma.

The logical negation of this result is also of interest.

Theorem 1.0.2. Let I(t0,x0) = (T− (t0, x0) , T+ (t0, x0)) be the maximal interval of existence of a solution starting
at x (t0) = x0. If T+ = T+ (t0, x0) < ∞, then the solution must eventually leave every compact set C with
[t0, T+]× C ⊂ U as t approaches T+. In particular, if U = R × Rn, the solution must tend to infinity as t
approaches T+.

Now we come to the proof of our anticipated result.

Theorem 1.0.5. Suppose U = R× Rn and for every T > 0 there are constants M(T ), L(T ) such that

|f(t, x)| ≤M(T ) + L(T )|x|, (t, x) ∈ [−T, T ]× Rn.

Then all solutions of the IVP (  1.4 ) are defined for all t ∈ R.

Proof. Using the above estimate for f we have (t0 = 0 without loss of generality)

|ϕ(t)| ≤ |x0|+
∫ t

0

(M + L|ϕ(s)|)ds, t ∈ [0, T ] ∩ I.

Setting ψ(t) = M
L + |ϕ(t)| and applying Gronwall’s inequality (see [ 11 ] Lemma 2.7) shows

|ϕ(t)| ≤ |x0| eLT +
M

L

(
eLT − 1

)
.

Thus ϕ lies in a compact ball and the result follows by the previous lemma. Again, let me remark that it
suffices to assume

|f(t, x)| ≤M(t) + L(t)|x|, x ∈ Rn,

where M(t), L(t) are locally integrable.

Exercise 1.0.3: Show that above theorem is false (in general) if the estimate is replaced by

|f(t, x)| ≤M(T ) + L(T )|x|α

with α > 1.
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Chapter 2

General ODEs

We will talk about methods for general ODEs in this chapter, first-order ODEs, order reduction and power
series method for ODE of higher orders. In the next chapter, we will present general theory of linear ODEs.

2.1 First-Order ODEs

The general form of a first-order differential equation is

dy
dx

= F (x, y) (2.1)

where x and y are real variables, and F is a real-valued function of x and y. We will examine several basics
methods to solve them.

2.1.1 Method of Separation of Variables

Equations of the following form are called separable

dy
dx

= f(x)φ(y),

where f(x) and φ(y) are continuous functions of x and y respectively. Separation allows us to integrate the
functions separately, returning the functions to their antiderivative forms. If φ(y) ̸= 0, then

dy
φ(y)

= f(x)dx⇒
∫

dy
φ(y)

=

∫
f(x)dx

Example 2.1.1: Solve the ODE

dy
dx

=
y(−a+ bx)

x(d− cy)
(x ⩾ 0, y ⩾ 0, a, b, c, d ∈ R)

solution:

dy
dx

=
y

d− cy

−a+ bx

x
= φ(y)f(x)

⇒
∫

dy
y

d−cy
=

∫
−a+ bx

x
dx

⇒ d ln |y| − cy + C1 = bx− a ln |x|+ C2

where C1 and C2 are two constants. As x, y ⩾ 0, we have |x| = x, |y| = y, and

C̃ed ln y+a ln x−cy−bx = e0 = 1

17
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or (
eln y

)d · (eln x)a · e−cy−bx = yd · xa · e−cy−bx = C̃,

where we use C̃ to denote the constant however many times for which it is incorporated with other constants.

Example 2.1.2: The  link gives a nice review about the derivation of the logistic differential equation.

dN
dt

= rN

(
1− N

Nm

)
, N(t0) = N0, N(t) ⩾ 0

solution: We use method of separation of variables.

dN
dt

= rN

(
Nm −N

Nm

)
dN

N(Nm −N)
=
rdt
Nm∫

dN
N(Nm −N)

=

∫
rdt
Nm

Let ∫
dN

N(Nm −N)
=

∫ (
A

Nm −N
+
B

N

)
dN

we have {
A−B = 0

BNm = 1
, or

{
A = B

B = 1
Nm

Thus, ∫
rdt
Nm

=
r

Nm
t+ C2

=

∫
dN

N(Nm −N)
=

∫
1

Nm

(
1

Nm−N + 1
N

)dN

=
1

Nm
(ln |N | − ln |Nm −N |) + C1

or |N/(Nm −N)| = C̃ert

Notice that the population N(t) ⩾ 0 with environmental capacity Nm ⩾ N(t), we have |N/(Nm − N)| =
N/(Nm −N). Hence,

N(t) =
Nm

1 + C̃e−rt

Pugging in the IVC N(t0) = N0, we have

N(t) =
Nm

1 +
(
Nm

N0
− 1
)
er(t0−t)

Families of Separable First Order ODE

We introduce two families of ODE that can be converted into a separable type.

The first family is when RHS is homogeneous function, i.e., F (ax, ay) = F (x, y). For example, F (x, y) = 6y
x

is a homogeneous function. To solve
dy
dx

= F (x, y),

18
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we apply a transformation u = y
x , or y = ux. Then

dux
dx

= u+ x
du
dx

= F (x, ux) = F (1, u)

du
F (1, u)− u

=
dx
x

which becomes a separable type.

Example 2.1.3: Solve the ODE
dy
dx

=
y

x
+ tan

y

x

solution: ∫
du

F (1, u)− u
=

∫
dx
x∫

du
u+ tanu− u

=

∫
dx
x

ln | sinu| = ln |x|+ C̃

sinu = sin
y

x
= ±eC̃x

The equation also has tanu = 0, or sinu = 0, as a solution. Notice that c = ±eC̃ has its range (0,+∞) ∪
(−∞, 0) = R− {0}, so the general solution is then

sin
y

x
= cx, c ∈ R

We will use the following simple algebraic identities for the second family.

Lemma 2.1.1.

L1. if ab = c
d , then a+b

b = c+d
d . Trivially true.

L2. if ab = c
d , then a−b

b = c−d
d . Trivially true.

L3. if ab = c
d , then a+b

a−b =
c+d
c−d . Divide the first two.

L4. if ab = c
d , then a

b = c
d = a±c

b±d . Let a
b = c

d = k and directly verify it.

The second family is of the form
dy
dx

=
a1x+ b1y + c1
a2x+ b2y + c2

There are three situations:

1. a1
a2

= b1
b2

= c1
c2

= k. By L4, we immediately have dy
dx = k and y = kx+ C

2. a1
a2

= b1
b2

= k ̸= c1
c2

.
Let u = a2x+ b2y then a1x+b1y

a2x+b2y
= k gives that a1x+ b1y = ku. Then

dy
dx

=
a1x+ b1y + c1
a2x+ b2y + c2

=
ku+ c1
u+ c2

and thus

du
dx

=
d(a2x+ b2y)

dx
= a2 + b2

dy
dx

= a2 + b2

(
ku+ c1
u+ c2

)
= a2 + b2k + b2

c1 − c2k

u+ c2

which is a separable form.
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3. a1
a2

̸= b1
b2
,∃ci ̸= 0 then {

a1x+ b1y + c1 = 0

a2x+ b2y + c2 = 0

represents two instersecting lines on the Oxy plane. Let the intersection point be (α, β) and set{
X = x− α

Y = y − β

which yields {
a1X + b1Y = 0

a2X + b2Y = 0

Thus,
dy
dx

=
a1X + b1Y

a2X + b2Y
= g

(
Y

X

)
which becomes a homogeneous equation we’ve discussed. Notice that if c1 = c2 = 0, we may substitute
u = y/x directly. Besides, equations of the form

dy
dx

= f

(
a1x+ b1y + c1
a2x+ b2y + c2

)
can be solved by the above method too.

Other families include
dy
dx

= f(ax+ by + c)

where we may use substitution u = ax+ by + c, and

y

x

dy
dx

= f(xy)

where we may use substitution u = xy.

Example 2.1.4: solve
(x+ y)dy + (x− y)dx = 0

solution:

(x+ y)dy = (y − x)dx

dy
dx

=
−1 + y/x

1 + y/x
= g

(y
x

)
u =

y

x
⇒
∫

du
−u2−1
u+1

=

∫
dx
x

Since

−
∫

u+ 1

u2 + 1
du = −

∫
u

u2 + 1
du−

∫
du

u2 + 1
= −1

2
ln |u2 + 1| − arctanu+ C1

and ∫
dx
x

= ln |x|+ C2

we have the implicit general solution

ln
√
x2 + y2 + arctan

y

x
= C̃

Exercise 2.1.1: Solve the following ODEs

1. x dy
dx − y +

√
x2 − y2. Hint: divide by

√
x2 = sgn(x)x.
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2. dy
dx = (x+ y)2. Hint: let u = x+ y.

3. dy
dx = 1

(x+y)2 . Hint: let u = x+ y.

Exercise 2.1.2: Solve the following ODEs

1. dy
dx = (x+ 1)2 + (4y + 1)2 + 8xy + 1.

2. y(1 + x2y2)dx = xdy.

3. y
x

dy
dx = 2+x2y2

x−x2y2 . Hint: the second and the third are of the family x
y

dy
dx = f(xy).

2.1.2 Linear ODE and Method of Variation of Parameters

Equations of the form
dy
dx

= P (x)y +Q(x), (2.2)

where P (x) and Q(x) are continuous functions over x, is called first order linear ODE. When Q(x) ̸= 0, we
call it nonhomogeneous, otherwise homogeneous. Notice that the previously defined homogeneity refers
to the LHS being a homogeneous function, while the homogeneity there refers to the fact that the equation
is written as a function of derivatives of the dependent variable y (including 0-order derivative), altogether
equaling 0 rather than some function of x. Namely, the most general form

F

(
x, y,

dy
dx
, · · · , dny

dxn

)
= 0

becomes

F

(
y,

dy
dx
, · · · , dny

dxn

)
= 0

rather than

F

(
y,

dy
dx
, · · · , dny

dxn

)
= f(x)

We observe that the homogeneous first order linear ODE is of a separable type. For

dy
dx

= P (x)y

We have ∫
dy
y

=

∫
P (x)dx

y(x) = C · exp
(∫

P (x)dx
)

We now conjecture that the nonhomogeneous one has a solution like

y(x) = C(x) · exp
(∫

P (x)dx
)

Then

dy
dx

=
C(x) · exp

(∫
P (x)dx

)
dx

=
dC(x)

dx
exp

(∫
P (x)dx

)
+ exp

(∫
P (x)dx

)
C(x)P (x)

=
dC(x)

dx
exp

(∫
P (x)dx

)
+ P (x)y
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Since
dy
dx

= P (x)y +Q(x)

we have

P (x)y +Q(x) =
dC(x)

dx
exp

(∫
P (x)dx

)
+ P (x)y

and

Q(x) =
dC(x)

dx
exp

(∫
P (x)dx

)
⇒dC(x)

dx
= Q(x)exp

(
−
∫
P (x)dx

)
⇒C(x) =

∫ [
Q(x)exp

(
−
∫
P (x)dx

)]
dx+ C̃

The solution to the equation ( 2.2 ) is then

y(x) =

{∫ [
Q(x)exp

(
−
∫
P (x)dx

)]
dx+ C̃

}
exp

(∫
P (x)dx

)
(2.3)

Since we change the constant C by C(x), we call the above method method of variation of parameters.
Later on, we will see this method be applied to higher order ODE. Note that when calculating the integrals,
we let all constants to be 0 and add C̃ instead.

Example 2.1.5: Solve ODE

(x+ 1)
dy
dx

− ny = ex(x+ 1)n,

where n is a constant.
solution: the ODE is a first order linear ODE, as it can be written as

dy
dx

= (
n

n+ 1
)y + ex(x+ 1)n

Let P (x) = n
x+1 and Q(x) = ex(x+ 1)n. Since

exp
(∫

P (x)dx
)

=en ln |x+1| = |x+ 1|n =

{
sgn(x+ 1)(x+ 1)n, n = 2k + 1

(x+ 1)n, n = 2k

=(−1)n−1sgn(x+ 1)(x+ 1)n

we have

y(x) =

{∫ [
Q(x)exp

(
−
∫
P (x)dx

)]
dxC̃

}
exp

(∫
P (x)dx

)
=

{∫ [
(−1)n−1sgn(x+ 1)ex(x+ 1)n

1

(x+ 1)n

]
dxC̃

}
(−1)n−1sgn(x+ 1)(x+ 1)n

=[(−1)n−1sgn(x+ 1)]2(x+ 1)n
(∫

exdx+ C̃

)
=(x+ 1)n(ex + C̃)

Example 2.1.6: This one is a bit different. One can regard x as a function of y to solve it.

dy
dx

=
y

2x− y2

Let
dx(y)

dy
=

(
2

y

)
x− y, P (y) =

2

y
,Q(y) = −y
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then

x =

[∫
Q(y)exp

(
−
∫
P (y)dy

)
dy + C̃

]
exp

(
−
∫
P (y)dy

)
=

[∫
−ye−2 ln |y|dy + C̃

]
e2 ln |y|

=(− ln |y|+ C̃)y2

Example 2.1.7: Solve the ODE
dy
dx

= 6
y

x
− xy2 (2.4)

We often call the ODE of the following form

dy
dx

= P (x)y +Q(x)yn

the n-th order Bernoulli equation, where n ̸= 0, 1 and P (x), Q(x) are continuous functions over x. If y ̸= 0,
we multiply the two sides by y−n:

y−n
dy
dx

= y1−nP (x) +Q(x)

Let z = y1−n be the substitution, then

dz
dx

= (1− n)y−n
dy
dx

= (1− n)[y1−nP (x) +Q(x)] = (1− n)zP (x) + (1− n)Q(x)

which is a nonhomogeneous first order linear ODE, solvable by method of variation of parameter. We now
solve the equation ( 2.4 ). First observe that y = 0 is a solution, and then

y−2 dy
dx

= 6
y−1

x
− x multiply two sides by y−2

dz
dx

=
d(y−1)

dx
=

−6

x
z + x letting z = y−1

Let P (x) = −6/x and Q(x) = x. For the above first order linear ODE,

1

y
= z =

[∫
Q(x)exp

(
−
∫
P (x)dx

)
dx+ C̃

]
exp

(
−
∫
P (x)dx

)
=
x2

8
+
C̃

x6
, or y =

8x6

x8 + C̃

Exercise 2.1.3: Solve the following ODEs:

1. dy
dx = y

x+y3 .

2. ds
dt = −s cos t+ 1

2 sin 2t.

3. dy
dx = x4+y3

xy2 .

4. dy
dx = ay

x + x+1
x . Hint: The second to last is a Bernoulli eq. For the last one, discuss cases a = 0, a = 1, and

a ̸= 0, 1.

2.1.3 Exact Equations and Integrating factor

Exact Equations

Consider a general first order ODE
dy
dx

= f(x, y)

We may write it as dy − f(x, y)dx = 0 and compare it with M(x, y)dx +N(x, y)dy = 0. Exact equation is
an ODE where the LHS of the above equation is exactly the total derivative of a bivariate function u(x, y).
Namely,

du =
∂u

∂x
dx+

∂u

∂y
dy =M(x, y)dx+N(x, y)dy = 0 (2.5)
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So the general solution of the ODE is u(x, y) = C. In particular, we need to find a function u(x, y) such that,
by ( 2.5 ),

∂u

∂x
=M(x, y),

∂u

∂y
= N(x, y)

⇒∂M

∂y
=

∂

∂y

(
∂u

∂x

)
clairaut’s thm
=========

∂

∂x

(
∂u

∂y

)
=
∂N

∂x

Thus ∂M/∂y = ∂N/∂x is the necessary condition for the equation M(x, y)dx + N(x, y)dy to be an exact
equation. We now prove that it is also the sufficient condition for the equation to be exact. Consider

u(x, y) =

∫
M(x, y)dx+

∫ [
N − ∂

∂y

∫
M(x, y)dx

]
dy

and verify that ux =M,uy = N using ∂M/∂y = ∂N/∂x. Therefore, the general solution of the exact equation
is ∫

M(x, y)dx+

∫ [
N − ∂

∂y

∫
M(x, y)dx

]
dy = C (2.6)

Example 2.1.8:
2(3xy2 + 2x3)dx+ 3(2x2y + y2)dy = 0

solution:
M(x, y) = 6xy2 + 4x3, N(x, y) = 6x2y + 3y2

Thus, the necessary and sufficient condition for it being exact ∂M/∂y = ∂N/∂x(= 12xy) is thus satisfied.
Then

u(x, y) =

∫
6xy2 + 4x3dx+ φ(y) = 3x2y2 + x4 + φ(y)

and
∂u

∂y
= 6x2y +

dφ(y)
dy

= 3(2x2y + y2) ⇒ φ′(y) = 3y2, φ(y) = y3 + C

Thus, the general solution is
3x2y2 + x4 + y3 = C

Example 2.1.9: [
y2

(x− y)2
− 1

x

]
dx+

[
1

y
− x2

(x− y)2

]
dy = 0

Notice that the equation can be written as two parts:[
y2

(x− y)2
− 1

x

]
dx+

[
1

y
− x2

(x− y)2

]
dy =

y2dx− x2dy
(x− y)2

+
ydx− xdy

xy

By the procedures to find u, it is easy to see that

u1 = − xy

x− y
for du1 =

y2dx− x2dy
(x− y)2

u2 = ln
∣∣∣y
x

∣∣∣ for du2 =
ydx− xdy

xy

By linearity of d, we see that d(u1 + u2) = 0 and the general solution of the original ODE is therefore

ln
∣∣∣y
x

∣∣∣− xy

x− y
= C

In fact, the linearity of the differentiation as an operator implies the superposition of differential equation.
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some common total derivatives:

•
xdy + ydx = d(xy)

•
ydx− xdy

y2
= d

(
x

y

)
•

−ydx+ xdy
x2

= d
(y
x

)
•

ydx− xdy
xy

= d
(
ln

∣∣∣∣xy
∣∣∣∣)

•
ydx− xdy
x2 + y2

= d
(
arctan

x

y

)
•

ydx− xdy
x2 − y2

=
1

2
d
(
ln

∣∣∣∣x− y

x+ y

∣∣∣∣)

Exercise 2.1.4: Solve the following ODEs:

1. (x2 + y)dx+ (x− 2y)dy = 0.

2.
(
cosx+ 1

y

)
dx+

(
1
y − x

y2

)
dy = 0. Hint: for the the second one, find out a common total derivative from

the above list.

Integrating Factor

The exact equations can be solved by direct integration, so transforming a non-exact equation to an exact one
becomes crucial for solving certain types of equations.

If there exists a function µ = µ(x, y) ̸= 0 such that

µM(x, y)dx+ µN(x, y)dy = 0 (2.7)

becomes an exact equation, namely theres is a function v such that µMdx+ µNdy = dv, we call the function
µ the Integrating factor. The general solution of the equation is then v(x, y) = C.

There may exist multiple integrating factors for a single equation. For example,

ydx− xdy = 0

has factors 1/x2, 1/y2, 1/xy, and 1/(x2 ± y2). I can be proved that if there is a solution for the equation, then
there exists an integrating factor, and such is not unique.

Since the necessary and sufficient condition of exactness of an equation Mdx+Ndy = 0 is ∂M/∂y = ∂N/∂x,
we have

∂(µM)

∂y
=
∂(µN)

∂x

for ( 2.7 ) to be exact. Namely,

N
∂µ

∂x
−M

∂µ

∂y
=

(
∂M

∂y
− ∂N

∂x

)
µ

which is a first order partial differential equation that can be more difficult to solve. However, sometimes
finding a particular solution is much easier under some special conditions. For example, the equation

M(x, y)dx+N(x, y)dy = 0 (2.8)
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has an integrating factor

exp
(∫

ψ(x)dx
)

when

ψ(x) =

(
∂M

∂y
− ∂N

∂x

)
/N

is a only a function of x.

Likewise, ( 2.8 ) has an integrating factor

exp
(∫

φ(y)dy
)

when

φ(y) =

(
∂M

∂y
− ∂N

∂x

)
/−M

is only a function of y.

Example 2.1.10: solve the ODE

dy
dx

= −x
y
+

√
1 +

(
x

y

)2

, (y > 0)

solution:
The equation can be written as, by multiplying y at both sides,

xdx+ ydy =
√
x2 + y2dx

or
1

2
d(x2 + y2) =

√
x2 + y2dx

The equation therefore has the integrating factor

µ =
1√

x2 + y2

Then

d(x2 + y2)

2
√
x2 + y2

= dx∫
d(x2 + y2)

2
√
x2 + y2

=

∫
dx√

x2 + y2 = x+ C ⇒ y2 = C(C + 2x)

Exercise 2.1.5: Solves the following ODEs:

1. (ex + 3y2)dx+ 2xydy = 0.

2. ydx− xdy = (x2 + y2)dx.

3. [x cos(x+ y) + sin(x+ y)]dx+ x cos(x+ y)dy = 0.

4. x(4ydx+2xdy)+ y3(3ydx+5xdy) = 0. Hint: for the last one, use the method of undetermined coefficients
for the integrating factor µ = xmyn. Plugging it into the necessary and sufficient condition of exact
equation.
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2.1.4 First Order Implicit ODE and Its Parametrization

The common form of a first order implicit ODE is often written as

F (x, y, y′) = 0

If we can solve the derivative y′ = f(x, y) from the above equation, we can use the methods in previous
sections (separation, exact euqatio, . . .).

If not, we may parametrize the equation in the following four types:

1.

y = f

(
x,

dy
dx

)
introduce the parameter p = dy/dx, then

y = f(x, p)

differentiate both sides:

p =
dy
dx

=
∂f(x, p)

∂x
=
∂f

∂x

∂x

∂x
+
∂f

∂p

∂p

∂x
=
∂f

∂x
+
∂f

∂p

dp
dx

Since ∂f
∂x and ∂f

∂p are functions about x and p, the above equation is a first order ODE about x and p.

Example 2.1.11: solve (
dy
dx

)3

+ 2x
dy
dx

− y = 0

solution: First notice that y = 0 is a solution. Then observe that the equation is of the form y =
f(x, dy/dx) where we can introduce p = y′

y =

(
dy
dx

)3

+ 2x
dy
dx

= p3 + 2xp

and differentiate it:

p = 3p2
dp
dx

+ 2x
dp
dx

+ 2p

or
3p2dp+ 2xdp+ pdx = 0

When p ̸= 0, we notice that p can act as an integrating factor. Multiply it,

(3p3 + 2xp)dp+ p2dx = 0

Integrating it, we have

3p4

4
+ xp2 = c⇒ x =

c− 3
4p

4

p2
, y = p3 +

2
(
c− 3

4p
4
)

p

2.

x = f

(
y,

dy
dx

)
The same as the first type. For p = dy/dx

1

p
=

dx
dy

=
∂f

∂y
+
∂f

∂p

dp
dy

(2.9)

We reexamine example  2.1.11 :
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Example 2.1.12: Solve the equation by the above method(
dy
dx

)3

+ 2x
dy
dx

− y = 0

solution:
We need to express x in terms of y and dy/dx. It is easy to see

x =
y − p3

2p

for p = y′ ̸= 0. Then by formula ( 2.9 )

1

p
=

1

2p
+

(
−y
2p2

− p

)
dp
dy

and

pdy + (2p3 + y)dp = 0

d(yp) + 2p3dp = 0∫
d(yp) + 2p3dp = yp+

p4

2
= C

y =
c− p4

2p
, x =

y − p3

2p
=
c− 3p4

4p2

which is the parametrized general solution. Of course, y = 0 is still a solution of the equation.

3.

F

(
x,

dy
dx

)
= 0 (2.10)

Let

p =
dy
dx

= y′

From a geometric viewpoint, F (x, p) = 0 represents a curve on the Oxp plane. Parametrize it properly,{
x = φ(t)

p = ψ(t)

where t is the parameter. Notice that on any integral curve solved from the equation ( 2.10 ), the relation
dy = pdx is always true. Plugging the parametrization into the equation ( 2.10 ), we have

dy = ψ(t)φ′(t)dt

Integrating both sides, we have

y =

∫
ψ(t)φ′(t)dt+ c

so the general solution of the equation is{
x = φ(t)

y =
∫
ψ(t)φ′(t)dt+ c

Example 2.1.13: solve the ODE
x3 + y′3 − 3xy′ = 0,

where y′ = dy/dx. Let y′ = p = tx, then {
x = 3t

1+t3

p = 3t2

1+t3
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Thus,

dy = pdx =
3t2

1 + t3

(
3t

1 + t3

)′

dt =
9(1− 2t3)t2

(1 + t3)3
dt

Integrating it, we have

y =

∫
9(1− 2t3)t2

(1 + t3)3
dt =

3

2

1 + 4t3

(1 + t3)2
+ c

The general solution in its parametrized form is thus{
x = 3t

1+t3

y = 3
2

1+4t3

(1+t3)2 + c

4.

F

(
y,

dy
dx

)
= 0

Let p = y′, and then {
y = φ(t)

p = ψ(t)

As dy = pdx⇒ φ′(t)dt = ψ(t)dx, we have

dx =
φ′(t)

ψ(t)
dt

and

x =

∫
φ′(t)

ψ(t)
dt+ c

Similarly, the general solution of this equation is{
x =

∫ φ′(t)
ψ(t) dt+ c

y = φ(t)

Besides, it is easy to see that y = k is also a solution to F (y, 0) = 0 and is thus a solution to the equation.

Example 2.1.14: solve the ODE
y2(1− y′) = (2− y′)2

solution:
let 2− y′ = yt, or y′ = 2− yt, thus

y2(1− y′) = y2(yt− 1) = (yt)2

and
y =

1

t
+ t, y′ = 1− t2

Thus,

dx =
dy
y′

= − 1

t2
dt

Integrating it we have x = 1/t+ c and

y = x+
1

x− c
− c

. Also notice that F (y, y′ = 0) = 0 also has solution y = ±2.

Exercise 2.1.6: solve the following ODEs:

1. xy′3 = 1 + y′.

2. y = y′2ey
′
.

3. Let a be a constant.
y(1 + y′2) = 2a

4. x2 + y′2 = 1.
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2.2 Reduction of Order

We now consider ODEs of higher orders ( 2.11 ) and the method of reduction of order.

F (t, x, x′, · · · , x(n)) = 0. (2.11)

There are three types of such equation that are reducible.

(1) When the equation ( 2.11 ) does not contain x, x′, · · · , x(k−1) for some 1 ≤ k ≤ n. That is, the equation is
of the form

F (t, x(k), x(k+1), · · · , x(n)) = 0. (2.12)

In this case, we let y = x(k).

Example 2.2.1: Consider the ODE

x(5) − 1

t
x(4) = 0.

Solution. Let y = x(4). Then

y′ − 1

t
y = 0.

The solution is y = ct. Thus, the solution of the original equation is

x =

5∑
j=0

cjt
j

with c4 = 0.

(2) When the equation ( 2.11 ) does not contain independent variable t. That is, the equation is of the form

F (x, x′, · · · , x(n)) = 0.

This is an autonomous euqation. Letting y = x′ can reduce the order to n− 1: notice that

d2x

dt2
=

dy
dt

=
dy
dx

dx
dt

=
dy
dx
y

d3x

dt3
= y

(
dy
dx

)2

+ y2
d2y

dx2

· · · · · ·

x(n) = G

(
y,

dy
dx
, · · · , d(n−1)y

dxn−1

)
.

Plug x′, x′′, · · · , x(k) into F to get

K

(
x, y,

dy
dx
, · · · , d(n−1)y

dxn−1

)
= 0.

Example 2.2.2: Consider the ODE
xx′′ + (x′)2 = 0.

Solution. Plug x′ = y, x′′ = dy
dxy into the equation to get

dy
dx
xy + y2 = 0

dy
dx

= −y
x

and y = 0 is also a solution.

y =
c

x
or y = 0

Therefore, the general solution of original equation is

x2 = c1t+ c2.
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(3) Liouvelle’s method for homogeneous linear ODE

x(n) + an−1(t)x
(n−1) + · · ·+ a1(t)x = 0

We shall only present the two dimensional case:

y′′ + P (x)y′ +Q(x)y = 0 (2.13)

If one knows a nowhere-zero solution y1 of ( 2.13 ), then one could find another solution, independent of y1.
We try to find function u(x) such that y = y1u also satisfies equation ( 2.13 ), namely

0 = Q (y1u) + P (y′1u +y1u
′) + (y′′1u+ 2y′1u

′ + y1u
′′)

= (Qy1 + Py′1 + y′′1 )u+ Py1u
′ + 2y′1u

′ + y1u
′′ = (Py1 + 2y′1)u

′ + y1u
′′.

Therefore we should have
du′

u′
= −Py1 + 2y′1

y1
dx

which after integration becomes

log u′ = −
∫
Pdx− 2 log y1

hence

u =

∫
y−2
1 e−

∫
Pdx.

Retracing back, our analysis shows that

y2 = y1

∫
y−2
1 e−

∫
Pdxdx,

is another solution to equation ( 2.13 ). To check independency of y1 and y2, we compute their Wronskian

W (y1, y2) = y1 (y
′
1u+ y1u

′)− y′1y1u = y21u
′ = e−

∫
Pdx,

which never vanishes. We gather what we have proved in the following proposition.

Proposition 2.2.1. If y1 is a nowhere-zero solution of the homogeneous equation ( 2.13 ), then another
independent solution is given by

y2 = y1

∫
y−2
1 e−

∫
Pdxdx.

Exercise 2.2.1: (a) Find the general solution of xy′′ − (x+ 2)y′ + 2y = 0 knowing that y = ex is one particular
solution.

(b) Find the general solution of
(
1− x2

)
y′′ − 2xy′ + 2y = 0 knowing that y = x is one particular solution.

2.3 Power Series Method

Thanks to Jǐrí Lebl’s  latex note 

Note: 1 or 1.5 lecture, §8.1 in [ EP ],§5.1 in [ BD ]

Many functions can be written in terms of a power series

∞∑
k=0

ak(x− x0)
k
.

If we assume that a solution of a differential equation is written as a power series, then perhaps we can use a
method reminiscent of undetermined coefficients. That is, we will try to solve for the numbers ak. Before we
carry out this process, we review some results and concepts about power series.
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As we said, a power series is an expression such as

∞∑
k=0

ak(x− x0)
k
= a0 + a1(x− x0) + a2(x− x0)

2
+ a3(x− x0)

3
+ · · · , (2.14)

where a0, a1, a2, . . . , ak, . . . and x0 are constants. Let

Sn(x) =

n∑
k=0

ak(x− x0)
k
= a0 + a1(x− x0) + a2(x− x0)

2
+ a3(x− x0)

3
+ · · ·+ an(x− x0)

n
,

denote the so-called partial sum. If for some x, the limit

lim
n→∞

Sn(x) = lim
n→∞

n∑
k=0

ak(x− x0)
k

exists, we say the series  2.14 converges at x. At x = x0, the series always converges to a0. When  2.14 

converges at any other x ̸= x0, we say  2.14 is a convergent power series, and we write

∞∑
k=0

ak(x− x0)
k
= lim
n→∞

n∑
k=0

ak(x− x0)
k
.

If the series does not converge for any point x ̸= x0, we say that the series is divergent.

Example 2.3.1: The series
∞∑
k=0

1

k!
xk = 1 + x+

x2

2
+
x3

6
+ · · ·

is convergent for any x. Recall that k! = 1 · 2 · 3 · · · k is the factorial. By convention we define 0! = 1. You may
recall that this series converges to ex.

We say that  2.14 converges absolutely at x whenever the limit

lim
n→∞

n∑
k=0

|ak| |x− x0|k

exists. That is, the series
∑∞
k=0|ak| |x− x0|k is convergent. If  2.14 converges absolutely at x, then it converges

at x. However, the opposite implication is not true.

Example 2.3.2: The series
∞∑
k=1

1

k
xk

converges absolutely for all x in the interval (−1, 1). It converges at x = −1, as
∑∞
k=1

(−1)k

k converges
(conditionally) by the alternating series test. The power series does not converge absolutely at x = −1,
because

∑∞
k=1

1
k does not converge. The series diverges at x = 1.

If a power series converges absolutely at some x1, then for all x such that |x− x0| ≤ |x1 − x0| (that is, x is
closer than x1 to x0) we have |ak(x− x0)

k| ≤ |ak(x1 − x0)
k| for all k. As the numbers |ak(x1 − x0)

k| sum to
some finite limit, summing smaller positive numbers |ak(x− x0)

k| must also have a finite limit. Hence, the
series must converge absolutely at x.

Theorem 2.3.1. For a power series  2.14 , there exists a number ρ (we allow ρ = ∞) called the radius of
convergence such that the series converges absolutely on the interval (x0 − ρ, x0 + ρ) and diverges for x < x0 − ρ
and x > x0 + ρ. We write ρ = ∞ if the series converges for all x.
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x0 x0 + ρx0 − ρ

diverges converges absolutely diverges

Figure 2.1: Convergence of a power series.

See  2.1 . In  2.3.1 the radius of convergence is ρ = ∞ as the series converges everywhere. In  2.3.2 the radius
of convergence is ρ = 1. We note that ρ = 0 is another way of saying that the series is divergent.

A useful test for convergence of a series is the ratio test. Suppose that

∞∑
k=0

ck

is a series and the limit

L = lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣
exists. Then the series converges absolutely if L < 1 and diverges if L > 1.

We apply this test to the series  2.14 . Let ck = ak(x− x0)
k in the test. Compute

L = lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = lim
k→∞

∣∣∣∣∣ak+1(x− x0)
k+1

ak(x− x0)
k

∣∣∣∣∣ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ |x− x0|.

Define A by

A = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ .
Then the series  2.14 converges absolutely if 1 > L = A|x− x0|. If A > 0, then the series converges absolutely
if |x− x0| < 1/A, and diverges if |x− x0| > 1/A. That is, the radius of convergence is 1/A. If A = 0, then the
series always converges.

A similar test is the root test. Suppose
L = lim

k→∞
k
√
|ck|

exists. Then
∑∞
k=0 ck converges absolutely if L < 1 and diverges if L > 1. We can use the same calculation as

above to find A. Let us summarize.

Theorem 2.3.2 (Ratio and root tests for power series). Consider a power series

∞∑
k=0

ak(x− x0)
k

such that

A = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ or A = lim
k→∞

k
√

|ak|

exists. If A = 0, then the radius of convergence of the series is ∞. Otherwise, the radius of convergence is 1/A.

Example 2.3.3: Suppose we have the series

∞∑
k=0

2−k(x− 1)
k
.
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First we compute the limit in the ratio test,

A = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣2−k−1

2−k

∣∣∣∣ = lim
k→∞

2−1 = 1/2.

Therefore the radius of convergence is 2, and the series converges absolutely on the interval (−1, 3). And we
could just as well have used the root test:

A = lim
k→∞

lim
k→∞

k
√
|ak| = lim

k→∞
k

√
|2−k| = lim

k→∞
2−1 = 1/2.

Example 2.3.4: Consider
∞∑
k=0

1

kk
xk.

Compute the limit for the root test,

A = lim
k→∞

k
√
|ak| = lim

k→∞
k

√∣∣∣∣ 1kk
∣∣∣∣ = lim

k→∞

k

√∣∣∣∣1k
∣∣∣∣k = lim

k→∞

1

k
= 0.

So the radius of convergence is ∞: the series converges everywhere. The ratio test would also work here.

The root or the ratio test does not always apply. That is the limit of
∣∣ak+1

ak

∣∣ or k
√

|ak| might not exist. There
exist more sophisticated ways of finding the radius of convergence, but those would be beyond the scope of
this chapter. The two methods above cover many of the series that arise in practice. Often if the root test
applies, so does the ratio test, and vice versa, though the limit might be easier to compute in one way than
the other.

Functions represented by power series are called analytic functions. Not every function is analytic, although
the majority of the functions you have seen in calculus are.

An analytic function f(x) is equal to its Taylor series 

*
 near a point x0. That is, for x near x0 we have

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k
, (2.15)

where f (k)(x0) denotes the kth derivative of f(x) at the point x0.

For example, sine is an analytic function and its Taylor series around x0 = 0 is given by

sin(x) =

∞∑
n=0

(−1)
n

(2n+ 1)!
x2n+1.

In  2.2 we plot sin(x) and the truncations of the series up to degree 5 and 9. You can see that the approximation
is very good for x near 0, but gets worse for x further away from 0. This is what happens in general. To get a
good approximation far away from x0 you need to take more and more terms of the Taylor series.

One of the main properties of power series that we will use is that we can differentiate them term by term.
That is, suppose that

∑
ak(x− x0)

k is a convergent power series. Then for x in the radius of convergence we
have

d

dx

[ ∞∑
k=0

ak(x− x0)
k

]
=

∞∑
k=1

kak(x− x0)
k−1

.

Notice that the term corresponding to k = 0 disappeared as it was constant. The radius of convergence of the
differentiated series is the same as that of the original.

Example 2.3.5: Let us show that the exponential y = ex solves y′ = y. First write

y = ex =

∞∑
k=0

1

k!
xk.

*Named after the English mathematician  Sir Brook Taylor (1685–1731).
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Figure 2.2: The sine function and its Taylor approximations around x0 = 0 of 5th and 9th degree.

Now differentiate

y′ =

∞∑
k=1

k
1

k!
xk−1 =

∞∑
k=1

1

(k − 1)!
xk−1.

We reindex the series by simply replacing k with k + 1. The series does not change, what changes is simply
how we write it. After reindexing the series starts at k = 0 again.

∞∑
k=1

1

(k − 1)!
xk−1 =

∞∑
k+1=1

1(
(k + 1)− 1

)
!
x(k+1)−1 =

∞∑
k=0

1

k!
xk.

That was precisely the power series for ex we started with, so we showed that d
dx [e

x] = ex.

Convergent power series can be added and multiplied together, and multiplied by constants using the following
rules. First, we can add series by adding term by term,( ∞∑

k=0

ak(x− x0)
k

)
+

( ∞∑
k=0

bk(x− x0)
k

)
=

∞∑
k=0

(ak + bk)(x− x0)
k
.

We can multiply by constants,

α

( ∞∑
k=0

ak(x− x0)
k

)
=

∞∑
k=0

αak(x− x0)
k
.

We can also multiply series together,( ∞∑
k=0

ak(x− x0)
k

) ( ∞∑
k=0

bk(x− x0)
k

)
=

∞∑
k=0

ck(x− x0)
k
,

where ck = a0bk + a1bk−1 + · · ·+ akb0. The radius of convergence of the sum or the product is at least the
minimum of the radii of convergence of the two series involved.

2.3.1 Power series for rational functions

Polynomials are simply finite power series. That is, a polynomial is a power series where the ak are zero for
all k large enough. We can always expand a polynomial as a power series about any point x0 by writing the
polynomial as a polynomial in (x − x0). For example, let us write 2x2 − 3x + 4 as a power series around
x0 = 1:

2x2 − 3x+ 4 = 3 + (x− 1) + 2(x− 1)
2
.
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In other words a0 = 3, a1 = 1, a2 = 2, and all other ak = 0. To do this, we know that ak = 0 for all k ≥ 3 as
the polynomial is of degree 2. We write a0 + a1(x− 1) + a2(x− 1)

2, we expand, and we solve for a0, a1, and
a2. We could have also differentiated at x = 1 and used the Taylor series formula  2.15 .

Let us look at rational functions, that is, ratios of polynomials. An important fact is that a series for a function
only defines the function on an interval even if the function is defined elsewhere. For example, for −1 < x < 1,

1

1− x
=

∞∑
k=0

xk = 1 + x+ x2 + · · ·

This series is called the geometric series. The ratio test tells us that the radius of convergence is 1. The series
diverges for x ≤ −1 and x ≥ 1, even though 1

1−x is defined for all x ̸= 1.

We can use the geometric series together with rules for addition and multiplication of power series to expand
rational functions around a point, as long as the denominator is not zero at x0. Note that as for polynomials,
we could equivalently use the Taylor series expansion  2.15 .

Example 2.3.6: Expand x
1+2x+x2 as a power series around the origin (x0 = 0) and find the radius of

convergence.

First, write 1 + 2x+ x2 = (1 + x)
2
=
(
1− (−x)

)2
. Compute

x

1 + 2x+ x2
= x

(
1

1− (−x)

)2

= x

( ∞∑
k=0

(−1)
k
xk

)2

= x

( ∞∑
k=0

ckx
k

)

=

∞∑
k=0

ckx
k+1,

where to get ck, we use the formula for the product of series. We obtain, c0 = 1, c1 = −1 − 1 = −2,
c2 = 1 + 1 + 1 = 3, etc. Therefore

x

1 + 2x+ x2
=

∞∑
k=1

(−1)
k+1

kxk = x− 2x2 + 3x3 − 4x4 + · · ·

The radius of convergence is at least 1. We use the ratio test

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣∣ (−1)
k+2

(k + 1)

(−1)
k+1

k

∣∣∣∣∣ = lim
k→∞

k + 1

k
= 1.

So the radius of convergence is actually equal to 1.

When the rational function is more complicated, it is also possible to use method of partial fractions. For
example, to find the Taylor series for x3+x

x2−1 , we write

x3 + x

x2 − 1
= x+

1

1 + x
− 1

1− x
= x+

∞∑
k=0

(−1)
k
xk −

∞∑
k=0

xk = −x+

∞∑
k=3
k odd

(−2)xk.

2.3.2 Series solutions of linear second order ODEs

Note: 1 or 1.5 lecture, §8.2 in [ EP ], §5.2 and §5.3 in [ BD ]
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Suppose we have a linear second order homogeneous ODE of the form

p(x)y′′ + q(x)y′ + r(x)y = 0.

Suppose that p(x), q(x), and r(x) are polynomials. We will try a solution of the form

y =

∞∑
k=0

ak(x− x0)
k

and solve for the ak to try to obtain a solution defined in some interval around x0.

The point x0 is called an ordinary point if p(x0) ̸= 0. That is, the functions

q(x)

p(x)
and

r(x)

p(x)

are defined for x near x0. If p(x0) = 0, then we say x0 is a singular point. Handling singular points is harder
than ordinary points and so we now focus only on ordinary points.

Example 2.3.7: Let us start with a very simple example

y′′ − y = 0.

Let us try a power series solution near x0 = 0, which is an ordinary point. Every point is an ordinary point in
fact, as the equation is constant coefficient. We already know we should obtain exponentials or the hyperbolic
sine and cosine, but let us pretend we do not know this.

We try

y =

∞∑
k=0

akx
k.

If we differentiate, the k = 0 term is a constant and hence disappears. We therefore get

y′ =

∞∑
k=1

kakx
k−1.

We differentiate yet again to obtain (now the k = 1 term disappears)

y′′ =

∞∑
k=2

k(k − 1)akx
k−2.

We reindex the series (replace k with k + 2) to obtain

y′′ =

∞∑
k=0

(k + 2) (k + 1) ak+2x
k.

Now we plug y and y′′ into the differential equation

0 = y′′ − y =

( ∞∑
k=0

(k + 2) (k + 1) ak+2x
k

)
−

( ∞∑
k=0

akx
k

)

=

∞∑
k=0

(
(k + 2) (k + 1) ak+2x

k − akx
k
)

=

∞∑
k=0

(
(k + 2) (k + 1) ak+2 − ak

)
xk.

As y′′ − y is supposed to be equal to 0, we know that the coefficients of the resulting series must be equal to 0.
Therefore,

(k + 2) (k + 1) ak+2 − ak = 0, or ak+2 =
ak

(k + 2)(k + 1)
.
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The equation above is called a recurrence relation for the coefficients of the power series. It did not matter
what a0 or a1 was. They can be arbitrary. But once we pick a0 and a1, then all other coefficients are determined
by the recurrence relation.

Let us see what the coefficients must be. First, a0 and a1 are arbitrary. Then,

a2 =
a0
2
, a3 =

a1
(3)(2)

, a4 =
a2

(4)(3)
=

a0
(4)(3)(2)

, a5 =
a3

(5)(4)
=

a1
(5)(4)(3)(2)

, . . .

So for even k, that is k = 2n, we have
ak = a2n =

a0
(2n)!

,

and for odd k, that is k = 2n+ 1, we have

ak = a2n+1 =
a1

(2n+ 1)!
.

Let us write down the series

y =

∞∑
k=0

akx
k =

∞∑
n=0

(
a0

(2n)!
x2n +

a1
(2n+ 1)!

x2n+1

)
= a0

∞∑
n=0

1

(2n)!
x2n + a1

∞∑
n=0

1

(2n+ 1)!
x2n+1.

We recognize the two series as the hyperbolic sine and cosine. Therefore,

y = a0 coshx+ a1 sinhx.

Of course, in general we will not be able to recognize the series that appears, since usually there will not be
any elementary function that matches it. In that case we will be content with the series.

Example 2.3.8: Let us do a more complex example. Consider Airy’s equation 

*
 :

y′′ − xy = 0,

near the point x0 = 0. Note that x0 = 0 is an ordinary point.

We try

y =

∞∑
k=0

akx
k.

We differentiate twice (as above) to obtain

y′′ =

∞∑
k=2

k (k − 1) akx
k−2.

We plug y into the equation

0 = y′′ − xy =

( ∞∑
k=2

k (k − 1) akx
k−2

)
− x

( ∞∑
k=0

akx
k

)

=

( ∞∑
k=2

k (k − 1) akx
k−2

)
−

( ∞∑
k=0

akx
k+1

)
.

We reindex to make things easier to sum

0 = y′′ − xy =

(
2a2 +

∞∑
k=1

(k + 2) (k + 1) ak+2x
k

)
−

( ∞∑
k=1

ak−1x
k

)

= 2a2 +

∞∑
k=1

(
(k + 2) (k + 1) ak+2 − ak−1

)
xk.

*Named after the English mathematician  Sir George Biddell Airy (1801–1892).
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Again y′′ − xy is supposed to be 0, so a2 = 0, and

(k + 2) (k + 1) ak+2 − ak−1 = 0, or ak+2 =
ak−1

(k + 2)(k + 1)
.

We jump in steps of three. First, since a2 = 0 we must have , a5 = 0, a8 = 0, a11 = 0, etc. In general,
a3n+2 = 0.

The constants a0 and a1 are arbitrary and we obtain

a3 =
a0

(3)(2)
, a4 =

a1
(4)(3)

, a6 =
a3

(6)(5)
=

a0
(6)(5)(3)(2)

, a7 =
a4

(7)(6)
=

a1
(7)(6)(4)(3)

, . . .

For ak where k is a multiple of 3, that is k = 3n we notice that

a3n =
a0

(2)(3)(5)(6) · · · (3n− 1)(3n)
.

For ak where k = 3n+ 1, we notice

a3n+1 =
a1

(3)(4)(6)(7) · · · (3n)(3n+ 1)
.

In other words, if we write down the series for y, it has two parts

y =

(
a0 +

a0
6
x3 +

a0
180

x6 + · · ·+ a0
(2)(3)(5)(6) · · · (3n− 1)(3n)

x3n + · · ·
)

+

(
a1x+

a1
12
x4 +

a1
504

x7 + · · ·+ a1
(3)(4)(6)(7) · · · (3n)(3n+ 1)

x3n+1 + · · ·
)

= a0

(
1 +

1

6
x3 +

1

180
x6 + · · ·+ 1

(2)(3)(5)(6) · · · (3n− 1)(3n)
x3n + · · ·

)
+ a1

(
x+

1

12
x4 +

1

504
x7 + · · ·+ 1

(3)(4)(6)(7) · · · (3n)(3n+ 1)
x3n+1 + · · ·

)
.

We define

y1(x) = 1 +
1

6
x3 +

1

180
x6 + · · ·+ 1

(2)(3)(5)(6) · · · (3n− 1)(3n)
x3n + · · · ,

y2(x) = x+
1

12
x4 +

1

504
x7 + · · ·+ 1

(3)(4)(6)(7) · · · (3n)(3n+ 1)
x3n+1 + · · · ,

and write the general solution to the equation as y(x) = a0y1(x) + a1y2(x). If we plug in x = 0 into the
power series for y1 and y2, we find y1(0) = 1 and y2(0) = 0. Similarly, y′1(0) = 0 and y′2(0) = 1. Therefore
y = a0y1 + a1y2 is a solution that satisfies the initial conditions y(0) = a0 and y′(0) = a1.

The functions y1 and y2 cannot be written in terms of the elementary functions that you know. See  2.3 for
the plot of the solutions y1 and y2. These functions have many interesting properties. For example, they are
oscillatory for negative x (like solutions to y′′ + y = 0) and for positive x they grow without bound (like
solutions to y′′ − y = 0).

Sometimes a solution may turn out to be a polynomial.

Example 2.3.9: Let us find a solution to the so-called Hermite’s equation of order n 

*
 :

y′′ − 2xy′ + 2ny = 0.

Let us find a solution around the point x0 = 0. We try

y =

∞∑
k=0

akx
k.

*Named after the French mathematician  Charles Hermite (1822–1901).
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Figure 2.3: The two solutions y1 and y2 to Airy’s equation.

We differentiate (as above) to obtain

y′ =

∞∑
k=1

kakx
k−1,

y′′ =

∞∑
k=2

k (k − 1) akx
k−2.

Now we plug into the equation

0 = y′′ − 2xy′ + 2ny

=

( ∞∑
k=2

k(k − 1)akx
k−2

)
− 2x

( ∞∑
k=1

kakx
k−1

)
+ 2n

( ∞∑
k=0

akx
k

)

=

( ∞∑
k=2

k(k − 1)akx
k−2

)
−

( ∞∑
k=1

2kakx
k

)
+

( ∞∑
k=0

2nakx
k

)

=

(
2a2 +

∞∑
k=1

(k + 2)(k + 1)ak+2x
k

)
−

( ∞∑
k=1

2kakx
k

)
+

(
2na0 +

∞∑
k=1

2nakx
k

)

= 2a2 + 2na0 +

∞∑
k=1

(
(k + 2)(k + 1)ak+2 − 2kak + 2nak

)
xk.

As y′′ − 2xy′ + 2ny = 0 we have

(k + 2)(k + 1)ak+2 + (−2k + 2n)ak = 0, or ak+2 =
(2k − 2n)

(k + 2)(k + 1)
ak.

This recurrence relation actually includes a2 = −na0 (which comes about from 2a2 + 2na0 = 0). Again a0
and a1 are arbitrary.

a2 =
−2n

(2)(1)
a0, a3 =

2(1− n)

(3)(2)
a1,

a4 =
2(2− n)

(4)(3)
a2 =

22(2− n)(−n)
(4)(3)(2)(1)

a0,

a5 =
2(3− n)

(5)(4)
a3 =

22(3− n)(1− n)

(5)(4)(3)(2)
a1, . . .
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Let us separate the even and odd coefficients. We find that

a2m =
2m(−n)(2− n) · · · (2m− 2− n)

(2m)!
,

a2m+1 =
2m(1− n)(3− n) · · · (2m− 1− n)

(2m+ 1)!
.

Let us write down the two series, one with the even powers and one with the odd.

y1(x) = 1 +
2(−n)
2!

x2 +
22(−n)(2− n)

4!
x4 +

23(−n)(2− n)(4− n)

6!
x6 + · · · ,

y2(x) = x+
2(1− n)

3!
x3 +

22(1− n)(3− n)

5!
x5 +

23(1− n)(3− n)(5− n)

7!
x7 + · · · .

We then write
y(x) = a0y1(x) + a1y2(x).

We remark that if n is a positive even integer, then y1(x) is a polynomial as all the coefficients in the series
beyond a certain degree are zero. If n is a positive odd integer, then y2(x) is a polynomial. For example, if
n = 4, then

y1(x) = 1 +
2(−4)

2!
x2 +

22(−4)(2− 4)

4!
x4 = 1− 4x2 +

4

3
x4.

2.3.3 Singular points and the method of Frobenius

Note: 1 or 1.5 lectures, §8.4 and §8.5 in [ EP ], §5.4–§5.7 in [ BD ]

While behavior of ODEs at singular points is more complicated, certain singular points are not especially
difficult to solve. Let us look at some examples before giving a general method. We may be lucky and obtain
a power series solution using the method of the previous section, but in general we may have to try other
things.

Examples

Example 2.3.10: Let us first look at a simple first order equation

2xy′ − y = 0.

Note that x = 0 is a singular point. If we try to plug in

y =

∞∑
k=0

akx
k,

we obtain

0 = 2xy′ − y = 2x

( ∞∑
k=1

kakx
k−1

)
−

( ∞∑
k=0

akx
k

)

= a0 +

∞∑
k=1

(2kak − ak)x
k.

First, a0 = 0. Next, the only way to solve 0 = 2kak − ak = (2k − 1) ak for k = 1, 2, 3, . . . is for ak = 0 for all
k. Therefore, in this manner we only get the trivial solution y = 0. We need a nonzero solution to get the
general solution to the equation.

Let us try y = xr for some real number r. Consequently our solution—if we can find one—may only make
sense for positive x. Then y′ = rxr−1. So

0 = 2xy′ − y = 2xrxr−1 − xr = (2r − 1)xr.
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Therefore r = 1/2, or in other words y = x1/2. Multiplying by a constant, the general solution for positive x is

y = Cx1/2.

If C ̸= 0, then the derivative of the solution “blows up” at x = 0 (the singular point). There is only one
solution that is differentiable at x = 0 and that’s the trivial solution y = 0.

Not every problem with a singular point has a solution of the form y = xr, of course. But perhaps we can
combine the methods. What we will do is to try a solution of the form

y = xrf(x),

where f(x) is an analytic function.

Example 2.3.11: Consider the equation

4x2y′′ − 4x2y′ + (1− 2x)y = 0,

and again note that x = 0 is a singular point.

Let us try

y = xr
∞∑
k=0

akx
k =

∞∑
k=0

akx
k+r,

where r is a real number, not necessarily an integer. Again if such a solution exists, it may only exist for
positive x. First let us find the derivatives

y′ =

∞∑
k=0

(k + r) akx
k+r−1,

y′′ =

∞∑
k=0

(k + r) (k + r − 1) akx
k+r−2.

Plugging into our equation we obtain

0 = 4x2y′′ − 4x2y′ + (1− 2x)y

= 4x2

( ∞∑
k=0

(k + r) (k + r − 1) akx
k+r−2

)
− 4x2

( ∞∑
k=0

(k + r) akx
k+r−1

)
+ (1− 2x)

( ∞∑
k=0

akx
k+r

)

=

( ∞∑
k=0

4(k + r) (k + r − 1) akx
k+r

)

−

( ∞∑
k=0

4(k + r) akx
k+r+1

)
+

( ∞∑
k=0

akx
k+r

)
−

( ∞∑
k=0

2akx
k+r+1

)

=

( ∞∑
k=0

4(k + r) (k + r − 1) akx
k+r

)

−

( ∞∑
k=1

4(k + r − 1) ak−1x
k+r

)
+

( ∞∑
k=0

akx
k+r

)
−

( ∞∑
k=1

2ak−1x
k+r

)

= 4r(r − 1) a0x
r + a0x

r +

∞∑
k=1

(
4(k + r) (k + r − 1) ak − 4(k + r − 1) ak−1 + ak − 2ak−1

)
xk+r

=
(
4r(r − 1) + 1

)
a0x

r +

∞∑
k=1

((
4(k + r) (k + r − 1) + 1

)
ak −

(
4(k + r − 1) + 2

)
ak−1

)
xk+r.

To have a solution we must first have
(
4r(r − 1) + 1

)
a0 = 0. Supposing that a0 ̸= 0 we obtain

4r(r − 1) + 1 = 0.
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This equation is called the indicial equation. This particular indicial equation has a double root at r = 1/2.

OK, so we know what r has to be. That knowledge we obtained simply by looking at the coefficient of xr. All
other coefficients of xk+r also have to be zero so(

4(k + r) (k + r − 1) + 1
)
ak −

(
4(k + r − 1) + 2

)
ak−1 = 0.

If we plug in r = 1/2 and solve for ak, we get

ak =
4(k + 1/2 − 1) + 2

4(k + 1/2) (k + 1/2 − 1) + 1
ak−1 =

1

k
ak−1.

Let us set a0 = 1. Then

a1 =
1

1
a0 = 1, a2 =

1

2
a1 =

1

2
, a3 =

1

3
a2 =

1

3 · 2
, a4 =

1

4
a3 =

1

4 · 3 · 2
, · · ·

Extrapolating, we notice that

ak =
1

k(k − 1)(k − 2) · · · 3 · 2
=

1

k!
.

In other words,

y =

∞∑
k=0

akx
k+r =

∞∑
k=0

1

k!
xk+1/2 = x1/2

∞∑
k=0

1

k!
xk = x1/2ex.

That was lucky! In general, we will not be able to write the series in terms of elementary functions.

We have one solution, let us call it y1 = x1/2ex. But what about a second solution? If we want a general
solution, we need two linearly independent solutions. Picking a0 to be a different constant only gets us a
constant multiple of y1, and we do not have any other r to try; we only have one solution to the indicial
equation. Well, there are powers of x floating around and we are taking derivatives, perhaps the logarithm
(the antiderivative of x−1) is around as well. It turns out we want to try for another solution of the form

y2 =

∞∑
k=0

bkx
k+r + (lnx)y1,

which in our case is

y2 =

∞∑
k=0

bkx
k+1/2 + (lnx)x1/2ex.

We now differentiate this equation, substitute into the differential equation and solve for bk. A long computa-
tion ensues and we obtain some recursion relation for bk. The reader can (and should) try this to obtain for
example the first three terms

b1 = b0 − 1, b2 =
2b1 − 1

4
, b3 =

6b2 − 1

18
, . . .

We then fix b0 and obtain a solution y2. Then we write the general solution as y = Ay1 +By2.

2.3.4 The method of Frobenius

Before giving the general method, let us clarify when the method applies. Let

p(x)y′′ + q(x)y′ + r(x)y = 0

be an ODE. As before, if p(x0) = 0, then x0 is a singular point. If, furthermore, the limits

lim
x→x0

(x− x0)
q(x)

p(x)
and lim

x→x0

(x− x0)
2 r(x)

p(x)

both exist and are finite, then we say that x0 is a regular singular point.
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Example 2.3.12: Often, and for the rest of this section, x0 = 0. Consider

x2y′′ + x(1 + x)y′ + (π + x2)y = 0.

Write

lim
x→0

x
q(x)

p(x)
= lim
x→0

x
x(1 + x)

x2
= lim
x→0

(1 + x) = 1,

lim
x→0

x2
r(x)

p(x)
= lim
x→0

x2
(π + x2)

x2
= lim
x→0

(π + x2) = π.

So x = 0 is a regular singular point.

On the other hand if we make the slight change

x2y′′ + (1 + x)y′ + (π + x2)y = 0,

then

lim
x→0

x
q(x)

p(x)
= lim
x→0

x
(1 + x)

x2
= lim
x→0

1 + x

x
= DNE.

Here DNE stands for does not exist. The point 0 is a singular point, but not a regular singular point.

Let us now discuss the general Method of Frobenius 

*
 . We only consider the method at the point x = 0 for

simplicity. The main idea is the following theorem.

Theorem 2.3.3 (Method of Frobenius). Suppose that

p(x)y′′ + q(x)y′ + r(x)y = 0 (2.16)

has a regular singular point at x = 0, then there exists at least one solution of the form

y = xr
∞∑
k=0

akx
k.

A solution of this form is called a Frobenius-type solution.

The method usually breaks down like this:

(i) We seek a Frobenius-type solution of the form

y =

∞∑
k=0

akx
k+r.

We plug this y into equation  2.16 . We collect terms and write everything as a single series.

(ii) The obtained series must be zero. Setting the first coefficient (usually the coefficient of xr) in the series
to zero we obtain the indicial equation, which is a quadratic polynomial in r.

(iii) If the indicial equation has two real roots r1 and r2 such that r1 − r2 is not an integer, then we have two
linearly independent Frobenius-type solutions. Using the first root, we plug in

y1 = xr1
∞∑
k=0

akx
k,

and we solve for all ak to obtain the first solution. Then using the second root, we plug in

y2 = xr2
∞∑
k=0

bkx
k,

and solve for all bk to obtain the second solution.

*Named after the German mathematician  Ferdinand Georg Frobenius (1849–1917).
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(iv) If the indicial equation has a doubled root r, then there we find one solution

y1 = xr
∞∑
k=0

akx
k,

and then we obtain a new solution by plugging

y2 = xr
∞∑
k=0

bkx
k + (lnx)y1,

into equation  2.16 and solving for the constants bk.

(v) If the indicial equation has two real roots such that r1 − r2 is an integer, then one solution is

y1 = xr1
∞∑
k=0

akx
k,

and the second linearly independent solution is of the form

y2 = xr2
∞∑
k=0

bkx
k + C(lnx)y1,

where we plug y2 into  2.16 and solve for the constants bk and C.

(vi) Finally, if the indicial equation has complex roots, then solving for ak in the solution

y = xr1
∞∑
k=0

akx
k

results in a complex-valued function—all the ak are complex numbers. We obtain our two linearly
independent solutions 

*
 by taking the real and imaginary parts of y.

The main idea is to find at least one Frobenius-type solution. If we are lucky and find two, we are done. If we
only get one, we either use the ideas above or even a different method such as reduction of order to obtain a
second solution.

2.3.5 Bessel functions

An important class of functions that arises commonly in physics are the Bessel functions 

†
 . For example,

these functions appear when solving the wave equation in two and three dimensions. First consider Bessel’s
equation of order p:

x2y′′ + xy′ +
(
x2 − p2

)
y = 0.

We allow p to be any number, not just an integer, although integers and multiples of 1/2 are most important in
applications.

When we plug

y =

∞∑
k=0

akx
k+r

into Bessel’s equation of order p, we obtain the indicial equation

r(r − 1) + r − p2 = (r − p)(r + p) = 0.

We obtain two roots, r1 = p and r2 = −p. If p is not an integer, then following the method of Frobenius and
setting a0 = 1, we find linearly independent solutions of the form

y1 = xp
∞∑
k=0

(−1)
k
x2k

22kk!(k + p)(k − 1 + p) · · · (2 + p)(1 + p)
,

y2 = x−p
∞∑
k=0

(−1)
k
x2k

22kk!(k − p)(k − 1− p) · · · (2− p)(1− p)
.

*See Joseph L. Neuringera, The Frobenius method for complex roots of the indicial equation, International Journal of Mathematical
Education in Science and Technology, Volume 9, Issue 1, 1978, 71–77.

†Named after the German astronomer and mathematician  Friedrich Wilhelm Bessel (1784–1846).
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Exercise 2.3.1:

Verify that the indicial equation of Bessel’s equation of order p is (r − p)(r + p) = 0.a)
Suppose p is not an integer. Carry out the computation to obtain the solutions y1 and y2 above.b)

Bessel functions are convenient constant multiples of y1 and y2. First we must define the gamma function

Γ(x) =

∫ ∞

0

tx−1e−t dt.

Notice that Γ(1) = 1. The gamma function also has a wonderful property

Γ(x+ 1) = xΓ(x).

From this property, it follows that Γ(n) = (n−1)! when n is an integer. So the gamma function is a continuous
version of the factorial. We compute:

Γ(k + p+ 1) = (k + p)(k − 1 + p) · · · (2 + p)(1 + p)Γ(1 + p),

Γ(k − p+ 1) = (k − p)(k − 1− p) · · · (2− p)(1− p)Γ(1− p).

Exercise 2.3.2: Verify the identities above using Γ(x+ 1) = xΓ(x).

We define the Bessel functions of the first kind of order p and −p as

Jp(x) =
1

2pΓ(1 + p)
y1 =

∞∑
k=0

(−1)
k

k! Γ(k + p+ 1)

(x
2

)2k+p
,

J−p(x) =
1

2−pΓ(1− p)
y2 =

∞∑
k=0

(−1)
k

k! Γ(k − p+ 1)

(x
2

)2k−p
.

As these are constant multiples of the solutions we found above, these are both solutions to Bessel’s equation
of order p. The constants are picked for convenience.

When p is not an integer, Jp and J−p are linearly independent. When n is an integer we obtain

Jn(x) =

∞∑
k=0

(−1)
k

k! (k + n)!

(x
2

)2k+n
.

In this case
Jn(x) = (−1)

n
J−n(x),

and so J−n is not a second linearly independent solution. The other solution is the so-called Bessel function
of second kind. These make sense only for integer orders n and are defined as limits of linear combinations
of Jp(x) and J−p(x), as p approaches n in the following way:

Yn(x) = lim
p→n

cos(pπ)Jp(x)− J−p(x)

sin(pπ)
.

Each linear combination of Jp(x) and J−p(x) is a solution to Bessel’s equation of order p. Then as we take the
limit as p goes to n, we see that Yn(x) is a solution to Bessel’s equation of order n. It also turns out that Yn(x)
and Jn(x) are linearly independent. Therefore when n is an integer, we have the general solution to Bessel’s
equation of order n:

y = AJn(x) +BYn(x),

for arbitrary constants A and B. Note that Yn(x) goes to negative infinity at x = 0. Many mathematical
software packages have these functions Jn(x) and Yn(x) defined, so they can be used just like say sin(x)
and cos(x). In fact, Bessel functions have some similar properties. For example, −J1(x) is a derivative of
J0(x), and in general the derivative of Jn(x) can be written as a linear combination of Jn−1(x) and Jn+1(x).
Furthermore, these functions oscillate, although they are not periodic. See  2.4 for graphs of Bessel functions.

Example 2.3.13: Other equations can sometimes be solved in terms of the Bessel functions. For example,
given a positive constant λ,

xy′′ + y′ + λ2xy = 0,
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Figure 2.4: Plot of the J0(x) and J1(x) in the first graph and Y0(x) and Y1(x) in the second graph.

can be changed to x2y′′ + xy′ + λ2x2y = 0. Then changing variables t = λx, we obtain via chain rule the
equation in y and t:

t2y′′ + ty′ + t2y = 0,

which we recognize as Bessel’s equation of order 0. Therefore the general solution is y(t) = AJ0(t) +BY0(t),
or in terms of x:

y = AJ0(λx) +BY0(λx).

This equation comes up, for example, when finding the fundamental modes of vibration of a circular drum,
but we digress.
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Chapter 3

Linear ODEs

3.1 Linear ODEs and Linear Systems of ODEs

A linear ODE of n-th order is of the form

n∑
i=0

ai(t)x
(i) = an(t)x

(n) + an−1(t)x
(n−1) + · · ·+ a0(t)x = f(t). (3.1)

where ai(t) and f(t) are continuous functions over the interval [a, b]. The corresponding homogeneous linear
ODE of n-th order is

n∑
i=0

ai(t)x
(i) = an(t)x

(n) + an−1(t)x
(n−1) + · · ·+ a0(t)x = 0. (3.2)

and we hence say the the equation (  3.1 ) is nonhomogeneous. A linear system of ODEs is of the following form
ẋ1 = a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn + f1(t),
ẋ2 = a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn + f2(t),
· · · · · · · · · · · ·
ẋn = an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn + fn(t)

(3.3)

where aij(t) and fi(t) are continuous functions over [a, b]. We can also write it as

ẋ = A(t)x+ f(t),

with obvious meaning of each bold forms.

To use apply Theorem of existence and uniqueness  1.0.1 or  1.0.3 (both of them dealing with first-order system
of ODE, see Remark  1.0.2 ) to ( 3.1 ), we need to convert it into a first-order system of ODE (which turns out to
be linear too).

Proposition 3.1.1.

(1) n-th order linear ODE ( 3.1 ) can be converted into first-order linear system of ODE ( 3.3 ) via change of
variables.

(2) Given IVP of n-th order linear ODE{
x(n) + a1(t)x

(n−1) + · · ·+ an−1(t)x
′ + an(t)x = f(t),

x (t0) = η1, x
′ (t0) = η2, · · · , x(n−1) (t0) = ηn,

(1)

where ai(t), f(t) are continuous over [a, b], t0 ∈ [a, b], and ηi are given constants. Then the solution of it
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can be used to construct the solution of the IVP of the following first-order linear system of ODEs


ẋ =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−an(t) −an−1(t) −an−2(t) · · · −a1(t)


x+



0

0
...
0

f(t)


x(t0) = η

. (2)

Conversely, given solution of (2), we can construct solution of (1).

Scholium. We emphasize that (1) is not just one aspect of (2). There exists first-order linear system of n ODE
that cannot be converted into an n-th order linear ODE. For example,

ẋ =

[
1 0
0 1

]
x, x =

[
x1
x2

]
.

proof of the proposition. (1) This is done just by the same process in Remark  1.0.1 . For example, we use
y = (x, x′, x′′) to convert the equation

x′′′ + 4x′′ − x′ − 2x = 0

to be the system  y′1 = y2
y′2 = y3,
y′3 = −4y3 + y2 + 2y1

(2) Let

x1 = x, x2 = x′, x3 = x′′, · · · , xn = x(n−1),

so

x′1 = x′ = x2, x
′
2 = x′′ = x3, · · · , x′n−1 = x(n−1) = xn,

x′n = x(n) = −an(t)x1 − an−1(t)x2 − · · · − a1(t)xn + f(t)

and

x1 (t0) = x (t0) = η1, x2 (t0) = x′ (t0) = η2, · · · ,
xn (t0) = x(n−1) (t0) = ηn.

Suppose ψ(t) is a solution of (1) over [a, b] ∋ t0. Then ψ(t), ψ′(t), · · · , ψ(n)(t) are continuous over [a, b] and
ψ(t0) = η1, ψ

′(t0) = η2, · · · , ψ(n−1)(t0) = ηn. Define over [a, b],

φ(t) =


φ1(t)
φ2(t)

...
φn(t)

 =


ψ(t)
ψ′(t)

...
ψ(n−1)(t)

 .
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Then φ(t0) = η and

φ′(t) =


φ′
1(t)

φ′
2(t)
...

φ′
n−1(t)
φ′
n(t)

 =


ψ′(t)
ψ′′(t)

...
ψ(n−1)(t)
ψ(n)(t)

 =


φ2(t)
φ3(t)

...
φn(t)

−a1(t)ψ(n−1)(t)− · · · − an(t)ψ(t) + f(t)



=


φ2(t)
φ3(t)

...
φn(t)

−an(t)φ1(t)− · · · − a1(t)φn(t) + f(t)



=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−an(t) −an−1(t) −an−2(t) · · · −a1(t)




φ1(t)
φ2(t)

...
φn−1(t)
φn(t)

+


0
0
...
0
f(t)


Therefore, φ(t) is a solution of (2).

Given solution u(t) of (2) on [a, b] ∋ t0, we let

u(t) =


u1(t)
u2(t)

...
un(t)


and define function w(t) = u1(t). By first equation of (2), we get

w′(t) = u′1(t) = u2(t)

The second equation of (2) reads
w′′(t) = u′2(t) = u3(t)

and so on, until we get
w(n−1)(t) = u′n−1(t) = un(t)

from (n− 1)-th equation. From the last equation, combined with the above observations, we get

w(n)(t) = u′n(t)

= −an(t)u1(t)− an−1(t)u2(t)− · · · − a2(t)un−1(t)− a1(t)un(t) + f(t)

= −a1(t)w(n−1)(t)− a2(t)w
(n−2)(t)− · · · − an(t)w(t) + f(t).

Thus,
w(n)(t) + a1(t)w

(n−1)(t) + a2(t)w
(n−2)(t) + · · ·+ an(t)w(t) = f(t).

Besides,
w (t0) = u1 (t0) = η1, · · · , w(n−1) (t0) = un (t0) = ηn,

so w(t) is a solution of (1).

Therefore, we have the theorem of existence and uniquess for equation ( 3.1 ):

Theorem 3.1.1 (The Existence and Uniquenes of Linear ODE). If ai(t) and f(t) are continuous functions
over [a, b], then for any t0 ∈ [a, b] and initial conditions x0, x

(1)
0 , · · · , x(n−1)

0 , the equation (  3.1 ) exists the only
solution x = φ(t) defined on the interval [a, b] that satisfies the initial conditions:

φ(t0) = x0,
dφ(t0)

dt
= x

(1)
0 , · · · , dn−1φ(t0)

dtn−1
= x

(n−1)
0
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3.2 General Theory of Linear ODEs

3.2.1 The Structure of Solution

We first consider the homogeneous equation ( 3.2 ) and observe the following principle:

Theorem 3.2.1 (Superposition Principle). If x1(t), · · · , xk(t) are k solutions of the equation (  3.2 ), then the
linear combination

∑k
i=1 cixi(t) is still a solution of (  3.2 ).

Proof. The theorem is immediate from the fact that (cu)′ = cu′ and (
∑
ui)

′ =
∑
u′.

Before discussing the general solution of the euqation ( 3.2 ), some notions should be introduced.

Definition 3.2.1 (Linear (in)dependence). For functions x1(t), . . . , xk(t) defined on [a, b], if there exists
constants c1, . . . , ck not all zero such that

∀t ∈ [a, b],

k∑
i=1

cixi(t) ≡ 0

we call these functions linearly dependent; otherwise linearly independent.

For example, functions cos t and sin t are linearly independent for any intervals, while functions cos2 t and
sin2 t− 1 are linearly dependent over any intervals. Functions 1, t, t2, . . . , tn are linearly independent over
any intervals, because it is not true that

c0 + c1t+ c2t
2 + . . .+ cnt

n ≡ 0

holds for every t in a nondiscrete interval since Fundamental Theorem of Algebra implies that the equation
has at most n distinct real roots.

Definition 3.2.2 (Wronskian Determinant). Consider functions x1(t), . . . , xk(t) that are k − 1 times differen-
tiable defined on [a, b]. Define their Wronskian determinant to be

W (t) ≡W [x1(t), . . . , xk(t)] ≡

∣∣∣∣∣∣∣∣∣
x1(t) x2(t) · · · xk(t)
x′1(t) x′2(t) · · · x′k(t)

...
...

. . .
...

x
(k−1)
1 (t) x

(k−1)
2 (t) · · · x

(k−1)
k (t)

∣∣∣∣∣∣∣∣∣
Theorem 3.2.2. If functions x1(t), x2(t), · · · , xn(t) are linearly dependent on the interval [a, b], then the
Wronskian determinant on the interval is 0.

Proof. Since the functions x1(t), x2(t), · · · , xn(t) are linearly dependent on the interval [a, b], by definition,
there exists not-all-zero coefficients ci such that

n∑
i=1

cix1(t) = 0,∀t ∈ [a, b]

We differentiate it n− 1 times:
c1x

′
1(t) + c2x

′
2(t) + · · ·+ cnx

′
n(t) = 0,

c1x
′′
1(t) + c2x

′′
2(t) + · · ·+ cnx

′′
n(t) = 0,

· · · · · ·

c1x
(n−1)
1 (t) + c2x

(n−1)
2 (t) + · · ·+ cnx

(n−1)
n (t) = 0.

t ∈ [a, b]

Notice that we shall regard the above system of linear equations as equations of unknowns “c1, c2, · · · , cn”
with coefficient matrix

A(t) =


x1(t) x2(t) · · · xn(t)
x′1(t) x′2(t) · · · x′n(t)

...
...

. . .
...

x
(n−1)
1 (t) x

(n−1)
2 (t) · · · x

(n−1)
n (t)

 , t ∈ [a, b]
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Namely,
A(t)c = 0 (3.4)

By theory in Linear Algebra, for every fixed t0 ∈ [a, b], we have that nonzero solution c of ( 3.4 ). Thus the
determinant of coefficient matrix, which is W (t), is zero over [a, b].

Remark 3.2.1: However, unlike linear algebra, the converse of this theorem is not true. See the following
example.

Example 3.2.1: Define two functions

x1(t) =

{
t2,−1 ⩽ t < 0

0, 0 ⩽ t ⩽ 1

and

x2(t) =

{
0,−1 ⩽ t < 0

t2, 0 ⩽ t ⩽ 1

over the interval [a, b]. Their Wronskian determinant is

∣∣∣∣x1(t) x2(t)
x′1(t) x′2(t)

∣∣∣∣ =


∣∣∣∣∣t2 0

2t 0

∣∣∣∣∣ = 0,−1 ⩽ t < 0

∣∣∣∣∣0 t2

0 2t

∣∣∣∣∣ = 0, 0 ⩽ t ⩽ 1

However, the two functions are linearly independent, verified by solving c1x1(t) + c2x2(t) = 0 separately for
two intervals.

However, if we add an additional condition to the above Theorem  3.2.2 that x1(t), x2(t), · · · , xn(t) are
solutions of homogeneous linear ODE (  3.2 ), we have the following result (its contrapostive is the converse of
the Theorem  3.2.2 .)

Theorem 3.2.3. If the homogeneous ODE (  3.2 ) has solutions x1(t), x2(t), · · · , xn(t) linearly dependent on the
interval [a, b], then W (t) ̸= 0 ∀t ∈ [a, b].

Proof. We prove by contradiction. Suppose there is a t0 ∈ [a, b] such that W (t0) = 0. Consider the system of
homogeneous linear equations with respect to c1, c2, · · · , cn:

c1x
′
1(t0) + c2x

′
2(t0) + · · ·+ cnx

′
n(t0) = 0,

c1x
′′
1(t0) + c2x

′′
2(t0) + · · ·+ cnx

′′
n(t0) = 0,

· · · · · ·

c1x
(n−1)
1 (t0) + c2x

(n−1)
2 (t0) + · · ·+ cnx

(n−1)
n (t0) = 0.

where its determinant of coefficient matrix W (t0) = 0. Thus, the system has nonzero solution c =
(c1, · · · , cn)T . Now we use these constants to construct a function

x(t) ≡
n∑
i=1

cixi(t), t ∈ [a, b]

By the principle of superposition, the function x(t) is a solution of the ODE ( 3.2 ). Notice that the system
above, line by line, implies that

x(t0) = 0, x′(t0) = 0, · · · , x(n−1)(t0) = 0 (3.5)

53



Lecture Note on Dynamical Systems Anthony Hong

In other words, we can say that x(t) is the solution of the ODE (  3.2 ) that satisfies the initial condition ( 3.5 ).
However, x = 0 is a trivial solution of ODE ( 3.2 ) satisfying the initial condition ( 3.5 ) as well. By theorem of
existence and uniqueness  3.1.1 , the solution of ODE ( 3.2 ) is nonetheless unique. Namely,

x(t) =

n∑
i=1

cixi(t) ≡ 0, t ∈ [a, b]

Since ci’s are not all zero, this contradicts to the linear independence of the solutions xi(t).

According to theorem  3.2.2 and theorem  3.2.3 , we see that the Wronskian determinant of the n solutions
of the homogeneous linear ODE ( 3.2 ) is zero if solutions are linearly dependent or nonzero for over any
nondiscrete interval when the coefficients are continuous if solutions are linear independent.

Now, consider n sets of initial conditions
x1(t0) = 1, x′1(t0) = 0, · · · , x

(n−1)
1 (t0) = 0;

x2(t0) = 0, x′2(t0) = 1, · · · , x
(n−1)
2 (t0) = 0;

· · · · · ·
xn(t0) = 0, x′n(t0) = 0, · · · , x(n−1)

n (t0) = 1.

each of them determining a solution of ( 3.2 ) by theorem of eixstence and uniqueness:

x1(t), x2(t), · · · , xn(t).

Since Wronskian determinant W [x1(t), x2(t), · · · , xn(t)] at t0 is det(I) = 1 ̸= 0, Theorem  3.2.2 implies that
the n solutions x1(t), x2(t), · · · , xn(t) are linearly independent. Therefore, we have the following theorems:

Theorem 3.2.4. Homogeneous linear ODE of order n (  3.2 ) has n linearly independent solutions.

Theorem 3.2.5 (Strucutre of General Solution). If x1(t), x2(t), · · · , xn(t) are n linearly independent solutions
of the equation (  3.2 ), then the general solution of equation (  3.2 ) can be expressed as

x =

n∑
i=1

cixi(t), (3.6)

where ci are any constants. Besides, the general solution includes all the solutions of the equation.

Proof. First, by the principle of superposition, we know ( 3.6 ) is the solution of equation ( 3.2 ), consisting of n
abitrary constants. We point out that these constants are independent of each other. In fact, by regarding ci as
variables and xi(t) as constants, we have

∂x

∂ci
=
∂x(c1x1(t), · · · , cnxn(t))

∂ci
=
∂x(ξ1, · · · , ξn)

∂ci

=

n∑
j=1

∂x

∂ξj

∂ξj
∂ci

=

n∑
j=1

∂(ξ1 + · · ·+ ξn)

∂ξj

∂(cjxj(t))

∂ci

=1 · 0 + · · ·+ 1 · xi(t) + · · ·+ 1 · 0 = xi(t),

we have ∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂c1

∂x
∂c2

· · · ∂x
∂xn

∂x′

∂c1
∂x′

∂c2
· · · ∂x′

∂xn

...
...

. . .
...

∂x(n−1)

∂c1
∂x(n−1)

∂c2
· · · ∂x(n−1)

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣
=W [x1(t), x2(t), · · · , xn(t)] ̸= 0, (t ∈ [a, b])

Therefore,  3.6 is the general solution of the equation ( 3.2 ). Now, we have proved that  3.6 constains all the
solutions. By the solution is uniquely determined by the initial condition, which means that we only need to
show: for any given initial condition

x(t0) = x0, x
′(t0) = x′0, · · · , x(n−1)(t0) = x

(n−1)
0 (3.7)
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we can determine the value of constants ci to let  3.6 satisfies  3.7 .

We let  3.6 satisfies the condition  3.7 to get the following system of linear equation with respect to c1, · · · , cn:
c1x1(t0) + c2x2(t0) + · · ·+ cnxn(t0) = x0,

c1x
′
1(t0) + c2x

′
2(t0) + · · ·+ cnx

′
n(t0) = x′0,

· · · · · ·

c1x
(n−1)
1 (t0) + c2x

(n−1)
2 (t0) + · · ·+ cnx

(n−1)
n (t0) = x

(n−1)
0 .

whose coefficient determinant is W (t0) ̸= 0 by Theorem  3.2.3 . By the theory of Linear Algebra, the above
system of linear equation has the only solution c̃1, · · · , c̃n. Thus, we let the expression  3.6 take c̃1, · · · , c̃n as
constants, and it then satisfies condition  3.7 .

Theorem 3.2.1. All the solutions of the homogeneous linear ODE of order n form an n-dimensional vector space.

3.2.2 Method of Variation of Parameters

We first point out two obvious relationships between equation ( 3.1 ) and equation ( 3.2 ):

1. if x1(t) is a solution of equation ( 3.1 ), and x2(t) is a solution of euqation ( 3.2 ), then x1(t) + x2(t) is still
a solution of equation ( 3.1 ).

2. the difference between any solution of equation ( 3.1 ) is a solution of equation ( 3.2 ).

Theorem 3.2.6. Let x1(t), · · · , xn(t) be a basis of solution set of equation (  3.2 ) and let xp(t) be a solution of
equation (  3.1 ). Then the general solution of equation (  3.1 ) can be written as

x(t) = xp(t) +

n∑
i=1

cixi(t) = xp(t) + xc(t)

where xc(t) is called complementary solution of nonhomogeneous ODE (  3.1 ) and yp(t) is called a particular
solution of (  3.1 ).

Method of variation of parameters requires one to first know the basis (a set of linearly independent
solutions) of equation ( 3.2 ) and then helps one to get a solution (and thus the general solution) of equation
( 3.4 ). It is not a particularly efficient method, and we shall only present the result in order 2. Consider

ay′′ + by′ + cy = f

first find a fundamental pair {y1, y2} of solutions to the corresponding homogeneous equation

ay′′ + by′ + cy = 0

Then set
y = y1c1 + y2c2 (3.8)

assuming that c1 = c1(x) and c2 = c2(x) are unknown functions whose derivatives satisfy the system{
y1c

′
1 + y2c

′
2 = 0

y′1c
′
1 + y′2c

′
2 = f/a

Solve the system for c′1 and c′2; integrate to get the formulas for u and v , and plug the results back into ( 3.8 ).
That formula for y is your solution.

Example 3.2.2: Solve the equation

x′′ + x =
1

cos t

where the fundamental pair {sin t, cos t} is given. We follow the above recipe:
let

x(t) = c1(t) cos t+ c1(t) sin t
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and solve {
cos tc′1 + sin tc′2 = 0

(cos t)′c′1 + (sin t)′c′2 = 1
cos t

or {
cos tc′1 + sin tc′2 = 0

− sin tc′1 + cos tc′2 = 1
cos t

to get {
c′1(t) = − sin t

cos t

c′2(t) = 1
⇒

{
c1(t) = ln | cos t|+ γ1

c′2(t) = t+ γ2

Therefore, the general solution of the ODE is

x = γ1 cos t+ γ2 sin t+ cos t ln | cos t|+ t sin t

where γi are any constants.

For more detials and examples, one may visit the  link .

Exercise 3.2.1: 1. Given fundamental pairs {x1, x2}, solve the following ODEs:

(1)
x′′ − x = cos t, x1 = et, x2 = e−t

(2)

x′′ +
t

1− t
x′ − 1

1− t
x = t− 1, x1 = t, x2 = et

(3)

t2x′′ − 4tx′ + 6x = 36
ln t

t
, x1 = t2, x2 = t3

(4)
t2x′′ − 3tx′ = 8x = 18t2 sin (ln t), x1 = t2 cos (2 ln t), x2 = t2 sin 2 ln t

2. let xi(t)(i = 1, 2, · · · , n) be any n solutions of the the homogeneous linear ODE (  3.2 ), and let W (t) be their
Wronskian determinant. Prove that W (t) satisfies the following first order linear ODE:

W ′ + a1(t)W = 0

and thus

W (t) =W (t0) exp

(
−
∫ t

t0

a1(s)ds
)
t0, t ∈ (a, b)

3.3 Constant Coefficient Linear ODEs

In this section, we focus on solving linear ODE with constant coefficients:

n∑
i=0

ai
dix
dti

= an
dnx
dtn

+ an−1
dn−1x

dtn−1
+ · · ·+ a1

dx
dt

+ a0x = f(t) (3.9)

with its corresponding homogeneous equation

n∑
i=0

ai
dix
dti

= an
dnx
dtn

+ an−1
dn−1x

dtn−1
+ · · ·+ a1

dx
dt

+ a0x = 0 (3.10)
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where the coefficients a0, a1, · · · , an are real constants with an ̸= 0. Besides, we introduce the differential
operator

L :=

n∑
i=0

ai
di

dti
= an

dn

dtn
+ an−1

dn−1

dtn−1
+ · · ·+ a1

d
dt

+ a0

as a handful notation.

We also denote D = d
dt and thus Dn = dn

dtn . Accordingly, we have

L ≡
n∑
i=0

aiD
i = anD

n + · · ·+ a1D + a0

It turns out that it is useful to think of the right-hand side of above euqation as a (formal) n-th degree
polynomial in the “variable” D; it is a polynomial differential operator. For example, A first-degree polynomial
operator with leading coefficient 1 has the form D − a, where a is a real number. It operates on a function
x = x(t) to produce

(D − a)x = Dx− ax = x′ − ax

The important fact about such operators is that any two of them commute:

(D − a)(D − b)x = (D − b)(D − a)x

for any twice differentiable function x = x(t). The proof of the above formula is the following computation:

(D − a)(D − b)x = (D − a)(x′ − bx)

= Dx′ − ax′ − bDx+ abx

= x′′ − ax′ − bx′ + abx

= D(x′ − ax)− b(x′ − ax)

= (D − b)(D − a)x

We see from the proof that
(D − a)(D − b) = D2 − (a+ b)D + ab

Similarly, it can be shown by induction on the number of factors that an operator product of the form

(D − a1)(D − a2) · · · (D − an)

expands–by multiplying out and collecting coefficients–in the same way as does an ordinary product of
algebraic polynomials, regarding D as variables in polynomials. Consequently, the algebra of polynomial
differential operators closely resembles the algebra of ordinary real polynomials.

By the theorem on structure of general solution of linear ODE, we see that we need to find n linearly indepen-
dent solutions of equation ( 3.10 ) first. The tool we will look at for this constant-coefficient homogeneous
linear ODE is called the Euler Characteristic equation.

3.3.1 The Characteristic Equation

Review the first order homogeneous linear ODE

dx
dt

+ ax = 0

we know that it has solution of the form x = e−at, and the general solution of it is just x = ce−at with constant
c. This inspires us to find exponential solutions

x = eλt (3.11)

for equation ( 3.10 ), where λ is an undetermined coefficient.

Notice that

L[eλt] ≡
n∑
i=0

ai
dieλt

dti
=

n∑
i=0

aiλ
ieλt ≡ F (λ)eλt
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where F (λ) :=
∑n
i=0 aiλ

i is an n-th order polynomial of λ. Since eλt > 0, we see that
( 3.11 ) solves ( 3.10 ) ⇔ F (λ) = 0 ⇔ λ is the root of the algebraic equation

F (λ) ≡
n∑
i=0

aiλ
i = anλ

n + · · ·+ a1λ+ a0 = 0

which is called the Characteristic equation or Auxiliary equation, whose roots are called Characteristic
roots.

According to the fundamental theorem of algebra, every polynomial of order n has n zeros, though not
necessarily distinct and not necessarily real. We first check the easiest situation:

Distinct Roots (Real and Complex)

Suppose that we have solved the characteristic equation with n distinct real roots

λ1, λ2, · · · , λn

Then the functions
eλ1t, eλ2t, · · · , eλnt

are solutions of equation ( 3.10 ) and are linearly independent over t ∈ [a, b] because

W (t) =

∣∣∣∣∣∣∣∣∣
eλ1t eλ2t · · · eλnt

λ1e
λ1t λ2e

λ2t · · · λne
λnt

...
...

. . .
...

λn−1
1 eλ1t λn−1

2 eλ2t · · · λn−1
n eλnt

∣∣∣∣∣∣∣∣∣ = e(λ1+···+λn)t

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
λ1 λ2 · · · λn
...

...
. . .

...
λn−1
1 λn−1

2 · · · λn−1
n

∣∣∣∣∣∣∣∣∣
=e(λ1+···+λn)t detVandermonden×n(λ)(where Vi,j = λj−1

i )

=e(λ1+···+λn)t
∏

1⩽j<i⩽n

(λi − λj)

̸=0 due to distinctness of roots and exp’s positivity

We further divide the situation into two subcases:

1. All roots are real, then
eλ1t, · · · , eλnt

are n linearly independent real solutions of equation ( 3.10 ) L[x] = 0, and the general solution is

x = c1e
λ1t + · · ·+ cne

λnt

2. There are complex roots among λi, then the complex roots appear in pairs:
if λ1 = α+ iβ is a characteristic root, then its conjugate λ2 = α− iβ is also a characteristic root. the
equation ( 3.10 ) L[x] = 0 hence has two complex solutions:

eλ1t =eα+iβ = eαt(cosβt+ i sinβt)

eλ2t =eα−iβ = eαt(cosβt− i sinβt)

According to the following lemma, we see that their real and imaginary parts are also solutions of
L[x] = 0, and we then also get two real solutions

eαt cosβt, eαt sinβt

Lemma 3.3.1. If all the coefficients ai(t) in the equation ( 3.2 ) are real-valued functions and z(t) = φ(t)+iψ(t)
is a complex solution of the equation, then the real part and imaginary part of z(t) and the conjugate z̄(t) are
all solutions of the equation.
Furthermore, if the equation

an(t)
dnx
dtn

+ an−1(t)
dn−1x

dtn−1
+ · · ·+ a1(t)

dx
dt

+ a0(t)x = f(t) = u(t) + iv(t)
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has complex solution x = R(t) + iI(t), then R(t) and I(t) solves the following equations respectively:

an(t)
dnx
dtn

+ an−1(t)
dn−1x

dtn−1
+ · · ·+ a1(t)

dx
dt

+ a0(t)x = u(t)

and

an(t)
dnx
dtn

+ an−1(t)
dn−1x

dtn−1
+ · · ·+ a1(t)

dx
dt

+ a0(t)x = v(t)

Repeated Roots (Real and Complex)

Let us now consider the possibility that the characteristic equation

F (λ) ≡
n∑
i=0

aiλ
i = anλ

n + · · ·+ a1λ+ a0 = 0 (3.12)

has repeated roots. For example, suppose that ( 3.12 ) has only two distinct roots, λ0 of multiplicity 1 and λ1
of multiplicity k = n− 1 > 1. Then (after dividing by an) ( 3.12 ) can be rewritten in the form

(λ− λ1)
k(λ− λ0) = 0

Similarly, the corresponding operator L can be written as

L = (D − λ1)
k(D − λ0)

because we notice that
F (λ) = anλ

n + · · ·+ a1λ+ a0

is a the polynomial sharing the same coefficients with

L = anD
n + · · ·+ a1D + a0

The two polynomials are formally the same.
Two solutions of the differential equation L[x] = 0 are certainly x0 = eλ0t and x1 = eλ1t. This is, however, not
sufficient; we need k + 1 linearly independent solutions in order to construct a general solution, because the
equation is of order k + 1. To find the missing k − 1 solutions, we note that

L[x] = (D − λ0)[(D − λ1)
kx] = 0

Consequently, every solution of the k-th order equation

(D − λ1)
kx = 0 (3.13)

will also be a solution of the original equation L[x] = 0. Hence our problem is reduced to that of finding
a general solution of the differential equation in ( 3.13 ). The fact that x1 = eλ1t is one solution of (  3.13 )
suggests that we try the substitution

x(t) = u(t)x1(t) = u(t)eλ1t

where u(t) is a function yet to be determined. Observe that

(D − λ1)[ue
λ1t] =D(ueλ1t)− λ1ue

λ1t

=(Du)eλ1t + uD(eλ1t)− λ1ue
λ1t

=(Du)eλ1t

Upon k applications of this fact, it follows that

(D − λ1)
k[ueλ1t] = (Dku)eλ1t

for any sufficiently differentiable function u(t). Hence x = ueλ1t will be a solution of equation ( 3.13 ) if and
only if Dku = u(k) = 0. But this is so if and only if

u(t) = c1 + c2t+ c3t
2 + · · ·+ ckt

k−1
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a polynomial of degree at most k − 1. Hence our desired solution of equation ( 3.13 ) is

x(t) = ueλ1t = (c1 + c2t+ c3t
2 + · · ·+ ckt

k−1)eλ1t

In particular, we see here the additional solutions teλ1t, t2eλ1t, · · · , tk−1eλ1t of the original ODE L[x] = 0.

The preceding analysis can be carried out with the operator D − λ1 replaced with an arbitrary polynomial
operator. When this is done, the result is a proof of the following theorem.

Theorem 3.3.1. If the characteristic equation in (  3.12 ) has a repeated root λ of multiplicity k, then the part of a
general soution of the differential equation in (  3.10 ) corresponding to λ is of the form

(c1 + c2t+ c3t
2 + · · ·+ ckt

k−1)eλt

We may notice that the k functions
eλt, teλt, · · · , tk−1eλt

are linearly independent on R. Thus a root of multiplicity k corresponds to k linearly independent solutions
of the differential equation. And the end of this section we will prove that ki solutions contributed by i roots
each of multiplicity ki are linearly independent (Lemma 3.2.4).

Example 3.3.1: Find a general solution of the fifth-order differential equation regarding the function y =
y(x):

9y(5) − 6y(4) + y(3) = 0

solution:
The characteristic equation inspirational

9λ5 − 6λ4 + λ3 = λ3(9λ2 − 6λ+ 1) = λ3(3λ− 1)2 = 0

It has triple root λ = 0 and the double root λ = 1
3 . The triple root λ = 0 contributes

c1e
0x + c2xe

0x + c3x
3e0x = c1 + c2x+ c3x

2

to the solution, while the double root λ = 1
3 contributes c4ex/3 + c5xe

x/3. Hence a general solution of the
given differential equation is

y(x) = c1 + c2x+ c3x
2 + c4e

x/3 + c5xe
x/3

Example 3.3.2: Solve the equation
(D3 + 1)x = 0

solution:
Since −1 = 1 · e−iπ (r = 1, θ = −π) we see that the characteristic equation λ3 + 1 = 0 has solution

λk = n
√
r exp

(
i
θ + 2kπ

n

)
=

3
√
1 exp

(
i
−π + 2kπ

3

)
= ei

π
3 , eiπ, ei

5π
3 , k = 1, 2, 3

It other words,

λ1 =
1

2
+ i

√
3

2
, λ2 = −1, λ3 =

1

2
− i

√
3

2

The general solution is then x = c1e
−t + et/2[c2 cos (

√
3t/2) + c3 sin (

√
3t/2)]

Example 3.3.3: The characteristic equation of the differential equation

y(3) + y′ − 10y = 0

is the cubic equation
r3 + r − 10 = 0

To find the roots of the above polynomial, we fist observe that a third order polynomial of the form

P (x) = (x− a)(x− b)(x− c) = x3 − (a+ b+ c)x2 + (ab+ bc+ ca)x− abc
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hints us that the roots of the polynomial have to be the factors of the constant term. We see that the only
possible rational roots are the factors ±1, ±2, ±5, and ±10 of the constant term 10. By trial and error (if not
by inspection) we discover the root 2. We then divide the polynomial by r − 2 to get

r3 + r − 10 = (r − 2)(r2 + 2r + 5) = (r − 2)[(r + 1)2 + 4] = 0

We get the roots
r1 = 2, r2 = −1 + 2i, r3 = −1− 2i

Therefore, the general solution is given by

y(x) = c1e
2x+ c2e

−1t cos 2t+ c3e
−1t sin 2t

For the case where the characteristic equation ( 3.12 ) has complex repeated roots, say λ = α+ iβ is a root of
multiplicity k, then λ̄ = α− iβ is also a root of multiplicity k. Similar to the unrepeated complex case, we can
derive 2k real solutions

eαt cosβt, teαt cosβt, · · · , tk−1eαt cosβt

and
eαt sinβt, teαt sinβt, · · · , tk−1eαt sinβt

Example 3.3.4: The roots of the characteristic equation of a certain differential equation are 3,−5, 0, 0, 0, 0,−5, 2±
3i, and 2± 3i. Write a general solution of this homogeneous differential equation.
solution:
The solution can be read directly from the list of roots. It is

y(x) =c1 + c2x+ c3x
2 + c4x

3 + c5x
3x + c6e

−5x + c7xe
−5x

e2x(c8 cos 3x+ c9 sin 3x) + xe2x(c10 cos 3x+ c11 sin 3x)

Lemma 3.3.2. Suppose the characteristic equation (  3.12 ) has roots λ1, · · · , λm of multiplicity k1, · · · , km
respectively (ki ⩾ 1, and unrepeated root λj has kj = 1), and k1 + · · ·+ km = n, λi ̸= λj when i ̸= j, then
the equation L[x] = 0 has solutions 

eλ1t, teλ1t · · · , tk1−1eλ1t

eλ2t, teλ2t · · · , tk1−1eλ2t

· · · · · ·
eλmt, teλ1t · · · , tkm−1eλmt

and we need to show that these solutions are linearly independent.

Proof. BWOC, suppose these functions are linearly dependent. Then,

m∑
r=1

(A
(r)
0 +A

(r)
1 t+ · · ·+A

(r)
kr−1t

kr−1)eλrt :=

m∑
r=1

Pr(t)e
λrt = 0 (3.14)

where A(r)
j are constants that are not all zero. WLOG, we let the polynomial Pm(t) have at least a non-zero

coefficient. Hence Pm(t) ̸= 0. Divide eq. ( 3.14 ) by eλ1t and differentiate k1 times with respect to t to get

m∑
r=1

Dk1 [Pr(t)e
(λr−λ1)t] =

m∑
r=2

Qr(t)e
(λr−λ1)t = 0 (3.15)

where Qr(t) = (λr − λ1)
k1Pr(t) + Sr(t), with Sr(t) a polynomial or a lower order than Pr(t), so that Pr(t)

and Qr(t) have the same order and Qm(t) ̸= 0. Eq. ( 3.15 ) and eq. ( 3.14 ) are similar but has less terms. If we
do the same process as eq. ( 3.14 ) to eq. (  3.15 ) (i.e. divide eq. ( 3.15 ) by e(λ2−λ1)t and differentiate it by k2
times), then we will get an equation with fewer items. If we keep doing this, after m− 1 times, we will get
the following equation

Rm(t)e(λm−λm−1)t = 0
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which is impossible by ex > 0, Rm(t) ̸= 0 and the fact that Rm(t) and Pm(t) have the same order. It is not
hard to calculate that

Rm(t) = (λm − λ1)
k1(λm − λ2)

k2 · · · (λm − λm−1)
km−1Pm(t) +Wm(t)

with Wm(t) a polynomial or lower order than Pm(t).

We ended this subsection with a notable example.

Example 3.3.5 (Euler–Cauchy Equation): We call the ODE of the following form

(xnDn + a1x
n − 1Dn−1 + · · ·+ an−1xD + an)y =

n∑
i=1

an−1D
iy = 0

the Euler–Cauchy Equation. Notice that we can always assume a0 = 1 becasue otherwise we can divide the
whole eq. by a0. This eq. is solvable by method of substitution to transform it into a homogeneous linear
ODE. In fact, introduce 

*
 

x = et, t = lnx

One may see the procedure on wikipedia for second order. We only give the conclusion below. The
characteristic equation

K(K − 1) · · · (K − n+ 1) + a1K(K − 1) · · · (K − n+ 2) + · · ·+ an = 0

determines the roots. For each root K = K0 of multiplicity m, we have m solutions of the equation

xK0 , xK0 ln |x|, xK0 ln2 |x|, · · · , xK0 lnm−1 |x|

If K = K0 = α+ iβ, then we get 2m real solutions

xα cos (β ln |x|), xα ln |x| cos (β ln |x|), · · · , xα lnm−1 |x| cos (β ln |x|)

xα sin (β ln |x|), xα ln |x| sin (β ln |x|), · · · , xα lnm−1 |x| sin (β ln |x|)

3.3.2 Nonhomogeneous Linear ODEs

We have noted before that to solve nonhomogeneous linear ODE one first solves its homogeneous counterpart
and then using method of variation of parameters to find a particular solution. However, there are some
special forms of nonhomogeneous linear ODE which we can solve directly in a neater way. We will talk about
the method of undetermined coefficients and Laplace Transform method.

Method of Undetermined Coefficients

Given a nonhomogeneous linear ODE of n-th order.

L[x] :=
dnx
dtn

+ a1
dn−1x

dtn−1
+ · · ·+ an−1

dx
dt

+ anx = f(t)

whose characteristic equation is

F (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0

We by the type of f(t) consider two types that can be applied with the Method of Undetermined Coefficients.

I . Polynomial & exponential form: f(t) = (b0t
m + b1t

m−1 + · · ·+ bm−1t+ bm)eλ0t

II . Triangular form: f(t) = [A(t) cosβt+B(t) cosβt]eαt

*if x < 0 then use x = −et to get the same result. For convenience, we assume x > 0 and plug in t = ln |x| at the end.
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Type I:
For f(t) = (b0t

m + b1t
m−1 + · · ·+ bm−1t+ bm)eλ0t, where λ0 can be 0, we have a particular solution of the

form
x̃ = tk(B0t

m +B1t
m−1 + · · ·+Bm−1 +Bm)eλ0t

where k is the multiplicity of the root λ0 of the characteristic equation F (λ) = 0 (when λ0 is a distinct
root, take k = 1; when λ0 is not a root of the characteristic equation, take k = 0), and B0, B1, · · · , Bm are
coefficients to be determined (plugging the corresponded form back into the original equation). For the case
λ0 ̸= 0, we can do the transformation x = yeλ0t and transform the solution back after solving the transformed
equation.

Example 3.3.6: Solve the ODE
(D2 − 2D − 3)x = 3t+ 1

The first step is always finding the general solution of the homogeneous counterpart

(D2 − 2D − 3)x = 0

The characteristic eq. F (λ) = λ2 − 2λ− 3 = 0 has solutions λ1 = 3, λ2 = −1. Hence the general solution of
the homogeneous eq. is xc = c1e

3t + c2e
−t. We then need to find a particular solution of the original. Notice

that λ0 = 0 is not a root of the characteristic eq. Thus, we set a particular solution a polynomial of the same
order as f(t) = 3t+ 1

xp = B0t+B1

Plugging it into the original results in

−2B0 − 3B0t− 3B1 = 3t+ 1 ⇒ −3B0 = 3,−2B0 − 3B1 = 1 ⇒ B0 = −1B1 =
1

3

Thus, xp = −t+ 1
3 and the general solution of the ODE (D2 − 2D − 3)x = 3t+ 1 is

x(t) = xc + xp = c1e
3t + c2e

−t − t+
1

3

Example 3.3.7: Solve the ODE
(D2 − 2D − 3)x = e−2t

We from example 3.2.9 get the general solution of the corresponding homogeneous eq.

xc = c1e
3t + c2e

−t

We now seek a particular solution of the equation. Since f(t) = e−2t and λ0 = −2 is not a root of the
characteristic equation λ2 − 2λ− 3 = 0, we see that a particular solution is x̃ = Ae−2t, which, plugged into
the original eq, results in

4Ae−2t + 4Ae−2t − 3Ae−2t = e−2t ⇒ 4A+ 4A− 3A = 1 ⇒ A = 1/5, xp =
1

5
e−2t

The general solution is then

x(t) = xc + xp = c1e
3t + c2e

−t +
1

5
e−2t

Example 3.3.8: Solve the ODE

(D3 + 3D2 + 3D + 1)x = e−t(t− 5)

Its characteristic equation λ3 + 3λ2 + 3λ+ 1 = (λ+ 1)3 = 0 has λ1,2,3 = −1 as a root of multiplicity 3. The
general solution of the homogeneous equation is then

xc = (c1 + c2t+ c3t
2)e−t

63



Lecture Note on Dynamical Systems Anthony Hong

A particular solution of the equation is given by

x̃ = t3(A+Bt)e−t

which, plugged into the original eq, results in

(6A+ 24Bt)e−t = e−t(t− 5) ⇒ A = −5

6
, B =

1

24
⇒ xp =

1

24
t3(t− 20)e−t

The general solution is then

x(t) = xc + xp = (c1 + c2t+ c3t
2)e−t +

1

24
t3(t− 20)e−t

Type II:
For f(t) = [A(t) cosβt+B(t) cosβt]eαt, where α, β are constants, A(t), B(t) are real-coefficient polynomials
with their highest order denoted as m, we have particular solution

x̃ = tk[P (t) cosβt+Q(t) sinβt]eαt

where k is the multiplicity of the root α + iβ of the characteristic equqation F (λ) = 0, and P (t), Q(t) are
real-coefficient polynomials of order lower than m to be determined by plugging in. Note that if α+ iβ is a
root of a polynomial then the conjugate α+ iβ is also a root (Complex Conjugate Root Theorem).

Example 3.3.9: Solve the ODE
(D2 + 4D + 4)x = cos 2t

Its characteristic equation λ2 + 4λ+ 4 = (λ+ 2)2 = 0 has λ1,2 = −2 as a root of multiplicity 2. The general
solution of the homogeneous equation is then

xc = (c1 + c2t)e
−2t

Notice that
A(t) = 1, B(t) = 0,m = 0, β = 2, α = 0

Since ±2i is not a root of F (λ) = 0, A particular solution of the equation is then given by

x̃ = A cos 2t+B cos 2t

which, plugged into the original eq, results in

8B cos 2t− 8A sin 2t = cos 2t⇒ A = 0, B =
1

8
⇒ xp =

1

8
sin 2t

The general solution is then

x(t) = xc + xp = (c1 + c2t)e
−2t +

1

8
sin 2t

Example 3.3.10: Determine the appropriate form for a particular solution of the fifth-order equation

(D − 2)3(D2 + 9)x = t2e2t + t sin 3t

Its characteristic equation (λ − 2)3(λ2 + 9) = 0 has roots λ = 2, 2, 2,+3i,−3i. The general solution of the
homogeneous equation is then

xc = (c1 + c2t+ c3t
2)e2t + c4 cos 3t+ c5 sin 3t

We get a particular solution of the form

x̃ = t3[At2 +Bt+ C]e2t + t[(Dt+ E) cos 3t+ (Ft+G) sin 3t]

Exercise 3.3.1: 1. Solve the following ODEs:

(1)
x′′ + x = sin t− cos 2t

(2)
x′′ − 4x′ + 4x = et + e2t + 1

(3)
x′′ − 2x′ + 2x = tet cos t
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Laplace Transform Method

Definition 3.3.3 (Laplace Transform). Given a function f(t) defined for all t ≥ 0, the Laplace transform of
f is the function F defined as follows:

F : D ⊆ C → C

s 7→ F (s) = L [f(t)](s) :=

∫ +∞

0

f(t)e−stdt

where D is the domain of the transform where the integral converges for s ∈ D.

In fact, the domain D always takes the form Re(s) > σ for which |f(t)| < Meσt with some positive constants
σ and M . | · | stands for the norm (modulus) in C. Below is a table of frequently used Laplace transforms.

function f(t) = L −1[F (s)](t) transform L [f(t)](s) Domain D
unit step: u(t) = 1[0,+∞) 1/s Re(s) > 0

delayed unit step: uc(t) = u(t− c) = 1[c,+∞) e−cs/s Re(s) > 0
unit impulse (Dirac function): δ(t) 1 all s

delayed unit impulse: δc(t) = δ(t− c) e−cs Re(s) > 0
t 1/s2 Re(s) > 0

tn(n = 0, 1, · · · ) n!/sn+1 Re(s) > 0
tq(Re(q) > −1) Γ(q + 1)/sq+1 Re(s) > 0

ezt 1/(s− z) Re(s) > Re(z)
tezt 1/(s− z)2 Re(s) > Re(z)

tnezt(n > −1) n!/(s− z)n+1 Re(s) > Re(z)
sinωt ω/(s2 + ω2) Re(s) > 0
cosωt s/(s2 + ω2) Re(s) > 0
sinhωt ω/(s2 − ω2) Re(s) > |ω|
coshωt s/(s2 − ω2) Re(s) < |ω|
t sinωt 2sω/(s2 + ω2)2 Re(s) > 0
t cosωt (s2 − ω2)/(s2 + ω2)2 Re(s) > 0
eλt sinωt ω/(s− λ)2 + ω2 Re(s) > λ
eλt cosωt (s− λ)/(s− λ)2 + ω2 Re(s) > λ
teλt sinωt 2ω(s− λ)/[(s− λ)2 + ω2]2 Re(s) > λ
teλt cosωt (s− λ)2 − ω2/[(s− λ)2 + ω2]2 Re(s) > λ

Now we explain how can Laplace transform help us solve initial value problem:

suppose we have an ODE

L[x] =
n∑
i=0

ai
dix
dti

= an
dnx
dtn

+ an−1
dn−1x

dtn−1
+ · · ·+ a1

dx
dt

+ a0 = f(t), an = 1

with initial values
x(0) = x0, x

′(0) = x′0, · · · , x(n−1)(0) = x
(n−1)
0

and f(t) is continuous, defined on t ∈ [0,∞) with |f(t)| < Meσt. Denote

F (s) = L [f(t)](s) ≡
∫ +∞

0

f(t)e−stdt

X(s) = L [x(t)](s) ≡
∫ +∞

0

x(t)e−stdt

Then

L [x′(t)](s) ≡
∫ +∞

0

x′(t)e−stdt =
∫ +∞

0

e−std(x(t))

=
[
e−stx(t)

]∞
0

−
∫ +∞

0

(−s)x(t)e−stdt

= 0− x(0) + s

∫ +∞

0

x(t)e−stdt = sX(s)− x0
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By induction (assume L [x(k)(t)](s) = skX(s)− sk−1x0 − sk−2x′0 − · · · − x
(k−1)
0 ) we see

L [x(n)(t)](s) = snX(s)−
n−1∑
i=0

x
(i)
0 sn−1−i, n ≥ 1

because

L [x(k+1)(t)](s) ≡
∫ +∞

0

x(k+1)(t)e−stdt =
∫ +∞

0

e−std(x(k)(t))

=
[
e−stx(k)(t)

]∞
0

+ s

∫ +∞

0

x(k)(t)e−stdt

= −x(k)(0) + s[x(k)(t)](s)

= s

(
skX(s)−

k−1∑
i=0

x
(i)
0 sk−1−i

)
− x

(k)
0

= sk+1X(s)−
k∑
i=0

x
(i)
0 sk−i

Therefore, transform two sides of the equation L[x] = f(t) gives

L

[
n∑
i=0

ai
dix
dti

]
=a0X(s) +

n∑
i=1

ai

s(i)X(s)−
i−1∑
j=0

x
(i)
0 si−1−j


=a0X(s) + a1 (sX(s)− x0)

+ a2
(
s2X(s)− sx0 − x′0

)
+ · · ·

+ an

(
snX(s)− sn−1x0 − sn−2x′0 − · · · − x

(n−1)
0

)
= F (s)

Let

A(s) = ans
n + an−1s

n−1 + · · ·+ a0 =

n∑
i=0

ais
i

B(s) = (a1 + a2s+ · · ·+ ans
n−1)x0 + (a2 + · · ·+ ans

n−2)x′0 + · · ·+ anx
(n−1)
0

Then L[x] = f(t) transforms to
A(s)X(s) = F (s) +B(s)

Since A(s), B(s), and F (s) are known (computable) polynomials we have

X(s) =
F (s) +B(s)

A(s)
⇒ x(t) = L −1[X(s)](t) = L −1

[
F (s) +B(s)

A(s)

]
(t)

as the solution of the original ODE.

Before we explore some of the properties of the Laplace transform, we shall first see examples to which it can
be applied.

Example 3.3.11: solve the following IVP

dx
dt

− x = e2t, i.v. x(0) = 0

solution:
F (s) = L [e2t](s) =

1

s− 2
, s > 2

A(s) = s− 1

B(s) = x0 = 0
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Thus

X(s) =
F (s) +B(s)

A(s)
=

1
s−2

s− 1
=

1

(s− 1)(s− 2)
=

1

s− 2
− 1

s− 1

⇒ x(t) = L −1

[
1

s− 2
− 1

s− 1

]
(t) = L −1

[
1

s− 2

]
(t)− L −1

[
1

s− 1

]
(t) = e2t − et

is the solution of IVP.

Example 3.3.12: solve the following IVP

d2y

dx2
+ 2

dy
dx

+ y = e−x, i.v. y(1) = y′(1) = 0

solution: Notice that we need to have initial values at x = 0. Hence, we do the translation z = φ(x) = x− 1
or x = φ−1(z) = ϕ(z) = z + 1 so that

y(x) = y(ϕ(z))

dy(ϕ(z))
dz

=
dy
dx

· dϕ(z)
dz

=
dy
dx

· 1 =
dy
dx

d2y(ϕ(z))

dz2
=

d
dz

(
dy(ϕ(z))

dz

)
=

d
dz

(
dy
dx

· dϕ(z)
dz

)
=

d
dz

(
dy
dx

(ϕ(z))

)
· dϕ(z)

dz
+

d
dz

(
dϕ(z)

dz

)
=

[
d

dx

(
dy
dx

)
· dϕ(z)

dz

]
· dϕ(z)

dz
+

d
dz

(
dϕ(z)

dz

)
=

d2y

dx2

(
dϕ(z)

dz

)2

+
d2ϕ(z)

dz2

=
d2y

dx2
· 12 + 0 =

d2y

dx2

Therefore the IVP becomes

d2y

dx2
+ 2

dy
dx

+ y = e−z−1 = e−1e−z, i.v. y(0) = y′(0) = 0

we then perform the Laplace transform method:

F (s) = L [e−1e−z](s) =
1

e
· 1

s+ 1
, s > −1

A(s) = s2 + 2s+ 1

B(s) = (1s+ 2)y0 + y′0 = 0

Thus

Y (s) =
F (s) +B(s)

A(s)
=

1
e ·

1
s+1

s2 + 2x+ 1
=

1

e

1

(s+ 1)3
=

1

2e

2!

(s+ 1)3

⇒ y(z) = L −1

[
1

2e

2!

(s+ 1)3

]
(z) =

1

2
· z2e−z−1

However, one should carefully interpret this result. In particular, writing y(x) = y(ϕ(z)) will give an incorrect
answer because this notation misunderstands y as a mapping. A safer way of writing this can be

y = g(z) =
1

2
· z2e−z−1

and we want to write y in terms of x by combining the above result with relationship between x and z.

y = g(z) = g(φ(x)) = g(x− 1) =
1

2
· (x− 1)2e−x
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which is the solution of IVP.

We then list some properties of the Laplace transform.

some common total derivatives:

•
xdy + ydx = d(xy)

•
ydx− xdy

y2
= d

(
x

y

)
•

−ydx+ xdy
x2

= d
(y
x

)
•

ydx− xdy
xy

= d
(
ln

∣∣∣∣xy
∣∣∣∣)

•
ydx− xdy
x2 + y2

= d
(
arctan

x

y

)
•

ydx− xdy
x2 − y2

=
1

2
d
(
ln

∣∣∣∣x− y

x+ y

∣∣∣∣)

Exercise 3.3.2: 1. Given fundamental pairs {x1, x2}, solve the following ODEs:

(1) x1 = et, x2 = e−t.
x′′ − x = cos t

(2) x1 = t, x2 = et.

x′′ +
t

1− t
x′ − 1

1− t
x = t− 1

(3) x1 = t2, x2 = t3.

t2x′′ − 4tx′ + 6x = 36
ln t

t

(4) x1 = t2 cos (2 ln t), x2 = t2 sin 2 ln t.

t2x′′ − 3tx′ = 8x = 18t2 sin (ln t)

2. let xi(t)(i = 1, 2, · · · , n) be any n solutions of the the homogeneous linear ODE (  3.2 ), and let W (t) be their
Wronskian determinant. Prove that W (t) satisfies the following first order linear ODE:

W ′ + a1(t)W = 0

and thus

W (t) =W (t0)t0 exp

(
−
∫ t

t0

a1(s)ds
)
, t ∈ (a, b)

3.4 Systems of Constant Coefficient Linear ODEs

We now present general theory of systems of linear ODEs. We first look an example.

Example 3.4.1: We consider salt and brine tanks, and water flows from one to the other and back. Let the
tanks be evenly mixed.
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x1 x2

rrVol. = V Vol. = V

Figure 3.1: A closed system of two brine tanks.

Suppose we have two tanks, each containing volume V liters of salt brine. The amount of salt in the first tank
is x1 grams, and the amount of salt in the second tank is x2 grams. The liquid is perfectly mixed and flows at
the rate r liters per second out of each tank into the other. See  3.1 .

The rate of change of x1, that is x′1, is the rate of salt coming in minus the rate going out. The rate coming in
is the density of the salt in tank 2, that is x2

V , times the rate r. The rate coming out is the density of the salt in
tank 1, that is x1

V , times the rate r. In other words it is

x′1 =
x2
V
r − x1

V
r =

r

V
x2 −

r

V
x1 =

r

V
(x2 − x1).

Similarly we find the rate x′2, where the roles of x1 and x2 are reversed. All in all, the system of ODEs for this
problem is

x′1 =
r

V
(x2 − x1),

x′2 =
r

V
(x1 − x2).

In this system we cannot solve for x1 or x2 separately. We must solve for both x1 and x2 at once, which is
intuitively clear since the amount of salt in one tank affects the amount in the other. We can’t know x1 before
we know x2, and vice versa.

We don’t yet know how to find all the solutions, but intuitively we can at least find some solutions. Suppose
we know that initially the tanks have the same amount of salt. That is, we have an initial condition such as
x1(0) = x2(0) = C. Then clearly the amount of salt coming and out of each tank is the same, so the amounts
are not changing. In other words, x1 = C and x2 = C (the constant functions) is a solution: x′1 = x′2 = 0,
and x2 − x1 = x1 − x2 = 0, so the equations are satisfied.

Let us think about the setup a little bit more without solving it. Suppose the initial conditions are x1(0) = A
and x2(0) = B, for two different constants A and B. Since no salt is coming in or out of this closed system,
the total amount of salt is constant. That is, x1 + x2 is constant, and so it equals A+ B. Intuitively if A is
bigger than B, then more salt will flow out of tank one than into it. Eventually, after a long time we would
then expect the amount of salt in each tank to equalize. In other words, the solutions of both x1 and x2
should tend towards A+B

2 . Once you know how to solve systems you will find out that this really is so.

3.4.1 The Matrix Exponential

Consider the following autonomous linear first-order system

ẋ(t) = Ax(t), x(0) = x0 (3.16)
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where A is an n by n matrix. If we perform the Picard iteration we obtain

x0(t) = x0

x1(t) = x0 +

∫ t

0

Ax0(s)ds = x0 +Ax0

∫ t

0

ds = x0 + tAx0

x2(t) = x0 +

∫ t

0

Ax1(s)ds = x0 +Ax0

∫ t

0

ds+A2x0

∫ t

0

sds

= x0 + tAx0 +
t2

2
A2x0

and hence by induction

xm(t) =

m∑
j=0

tj

j!
Ajx0. (3.17)

The limit as m→ ∞ is given by

x(t) = lim
m→∞

xm(t) =

∞∑
j=0

tj

j!
Ajx0. (3.18)

In the one dimensional case (n = 1) this series is just the usual exponential and hence we will write

x(t) = exp(tA)x0, (3.19)

where we define the matrix exponential by

exp(A) =

∞∑
j=0

1

j!
Aj . (3.20)

Hence, in order to understand our original problem, we have to understand the matrix exponential! The
Picard iteration ensures convergence of exp(A)x0 for every vector x0 and choosing the canonical basis vectors
of Rn we see that all matrix elements converge. However, for later use we want to introduce a suitable norm
for matrices and give a direct proof for convergence of the above series in this norm.

We will use Cn rather than Rn as underlying vector space since C is algebraically closed (which will be
important later on, when we compute the matrix exponential with the help of the Jordan canonical form). So
let A be a complex matrix acting on Cn and introduce the matrix norm

∥A∥ = sup
x:|x|=1

|Ax| (3.21)

It is not hard to see that the vector space of n by n matrices Cn×n becomes a Banach space with this norm
(Problem  3.4.1 ). Moreover, using (Problem  3.4.2 )∥∥Aj∥∥ ≤ ∥A∥j

convergence of the series ( 3.20 ) follows from convergence of
∑∞
j=0

∥A∥j

j! = exp(∥A∥).

Exercise 3.4.1: Show that the space of n by n matrices Cn×n together with the matrix norm is a Banach space.
In particular, show that a sequence of matrices converges if and only if all matrix entries converge. (Hint: Show
that the matrix entries ajk of A satisfy maxj,k |ajk| ≤ ∥A∥ and ∥A∥ ≤ nmaxj,k |ajk|.)

Exercise 3.4.2: Show that the matrix norm satisfies

∥AB∥ ≤ ∥A∥∥B∥.

(This shows that Cn×n is even a Banach algebra.) Conclude
∥∥Aj∥∥ ≤ ∥A∥j .
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However, note that in general exp(A + B) ̸= exp(A) exp(B) unless A and B commute, that is, unless the
commutator

[A,B] = AB −BA

vanishes. In this case you can mimic the proof of the one dimensional case to obtain

Lemma 3.4.1. Suppose A and B commute. Then

exp(A+B) = exp(A) exp(B), [A,B] = 0.

If we perform a linear change of coordinates,

y = U−1x,

then the matrix exponential in the new coordinates is given by

U−1 exp(A)U = exp
(
U−1AU

)
.

This follows from ( 3.20 ) by using U−1AjU =
(
U−1AU

)j
together with continuity of the matrix product.

Hence in order to compute exp(A) we need a coordinate transform which renders A as simple as possible:

Theorem 3.4.1 (Jordan canonical form). Let A be an n by n matrix. Then there exists a linear change of
coordinates U such that A transforms into a block matrix,

U−1AU =

 J1
. . .

Jm


with each block of the form

J = αI+N =



α 1
α 1

α
. . .
. . . 1

α

 (3.22)

Here N is a matrix with ones in the first diagonal above the main diagonal and zeros elsewhere.

The numbers α are the eigenvalues of A and the new basis vectors uj (the columns of U ) consist of generalized
eigenvectors of A. The general procedure of finding the Jordan canonical form is quite cumbersome and
hence and we defer the details to Appendix. In particular, since most computer algebra systems can easily do
this job for us!

Example 3.4.2: Let

In[1]:= A =

−11 −35 −24
−1 −1 −2
8 22 17

;

Then the command

In[2]:= {U, J} = JordanDecomposition[A];

gives us the transformation matrix U plus the Jordan canonical form J = U−1AU .

In[3]:= J // MatrixForm

Out[3]//MatrixForm=

1 0 0
0 2 1
0 0 2


If you don’t trust me (or Mathematica), you can also check it:
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In[4]:= A == U.J.Inverse[U]

Out[4]= True

To compute the exponential we observe

exp
(
U−1AU

)
=

 exp (J1)
. . .

exp (Jm)


and hence it remains to compute the exponential of a single Jordan block J = αI+N as in ( 3.22 ). Since αI
commutes with N , we infer from Lemma  3.4.1 that

exp(J) = exp(αI) exp(N) = eα
k−1∑
j=0

1

j!
N j .

The series for exp(N) terminates after k terms, where k is the size of N . In fact, it is not hard to see that N j

is a matrix with ones in the j ’th diagonal above the main diagonal and vanishes once j reaches the size of J :

N =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , N2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , N3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


and N4 = 0. In summary, exp(J) explicitly reads

exp(J) = eα



1 1 1
2! · · · 1

(k−1)!

1 1
. . .

...

1
. . . 1

2!
. . . 1

1


.

Note that if A is in Jordan canonical form, then it is not hard to see that

det(exp(A)) = exp(tr(A))

Since both the determinant and the trace are invariant under linear transformations, the formula also holds
for arbitrary matrices. In fact, we even have (exercise):

Lemma 3.4.2. A vector u is an eigenvector of A corresponding to the eigenvalue α if and only if u is an
eigenvector of exp(A) corresponding to the eigenvalue eα.

Moreover, the Jordan structure of A and exp(A) are the same. In particular, both the geometric and algebraic
multiplicities of α and eα are the same.

Clearly Mathematica can also compute the exponential for us: In [5] := MatrixExp[J]// MatrixForm Out
[5]//MatrixForm=  e 0 0

0 e2 e2

0 0 e2


To end this section let me emphasize, that both the eigenvalues and generalized eigenvectors can be complex
even if the matrix A has only real entries. However, in many applications only real solutions are of interest.
For such a case there is also a real Jordan canonical form which we want to mention briefly.

So suppose the matrix A has only real entries. If an eigenvalue α is real, both real and imaginary parts of a
generalized eigenvector are again generalized eigenvectors. In particular, they can be chosen real and there is
nothing else to do for such an eigenvalue.
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If α is nonreal, there must be a corresponding complex conjugate block J∗ = α∗I+N and the corresponding
generalized eigenvectors can be assumed to be the complex conjugates of our original ones. Therefore we can
replace the pairs uj , u∗j in our basis by Re (uj) and Im (uj). In this new basis the block J ⊕ J∗ is replaced by

R I
R I

R
. . .
. . . I

R


where

R =

(
Re(α) Im(α)
− Im(α) Re(α)

)
and I =

(
1 0
0 1

)
.

Since the matrices (
1 0
0 1

)
and

(
0 1
−1 0

)
commute, the exponential is given by

exp(R) exp(R) exp(R) 1
2! · · · exp(R) 1

(n−1)!

exp(R) exp(R)
. . .

...

exp(R)
. . . exp(R) 1

2!
. . . exp(R)

exp(R)


where

exp(R) = eRe(α)

(
cos(Im(α)) sin(Im(α))
− sin(Im(α)) cos(Im(α))

)

3.4.2 Linear Autonomous First-Order Systems

In the previous section we have seen that the solution of the autonomous linear first-order system ( 3.16 ) is
given by

x(t) = exp(tA)x0. (3.23)

In particular, the map exp(tA) provides an isomorphism between all initial conditions x0 and all solutions.
Hence the set of all solutions is a vector space isomorphic to Rn (respectively Cn if we allow complex initial
values).

In order to understand the dynamics of the system ( 3.16 ), we need to understand the properties of the function
exp(tA). We will start with the case of two dimensions which covers all prototypical cases. Furthermore, we
will assume A as well as x0 to be real-valued.

In this situation there are two eigenvalues, α1 and α2, which are either both real or otherwise complex
conjugates of each other. We begin with the generic case where A is diagonalizable and hence there are two
linearly independent eigenvectors, u1 and u2, which form the columns of U . In particular,

U−1AU =

(
α1 0
0 α2

)
and the solution ( 3.23 ) is given by

x(t) = U exp
(
tU−1AU

)
U−1x0 = U

(
eα1t 0
0 eα2t

)
U−1x0.

Abbreviating y0 = U−1x0 = (y0,1, y0,2) we obtain

x(t) = y0,1e
α1tu1 + y0,2e

α2tu2. (3.24)
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In the case where both eigenvalues are real, all quantities in ( 3.24 ) are real. Otherwise we have α2 = α∗
1 and

we can assume u2 = u∗1 without loss of generality. Let us write α1 ≡ α = λ+ iω and α2 ≡ α∗ = λ− iω. Then
Euler’s formula

eiω = cos(ω) + i sin(ω)

implies
eαt = eλt(cos(ωt) + i sin(ωt)), α = λ+ iω. (3.25)

Moreover, x∗0 = x0 implies y0,1u1 + y0,2u2 = y∗0,1u2 + y∗0,2u1 which shows y∗0,1 = y0,2. Hence, both terms in
( 3.24 ) are complex conjugates of each other implying

x(t) = 2Re
(
y0,1e

α1tu1
)

= 2 cos(ωt)eλtRe (y0,1u1)− 2 sin(ωt)eλt Im (y0,1u1) .

This finishes the case where A is diagonalizable.

If A is not diagonalizable, both eigenvalues must be equal α1 = α2 ≡ α. The columns u1 and u2 of the matrix
U are the eigenvector and generalized eigenvector of A, respectively. Hence

U−1AU =

(
α 1
0 α

)
and with a similar computation as before the solution is given by

x(t) = (y0,1 + y0,2t) e
αtu1 + y0,2e

αtu2.

This finishes the case where A is not diagonalizable. Next, let us try to understand the qualitative behavior
for large t. For this we need to understand the function exp(αt). From ( 3.25 ) we can read off that exp(αt)
will converge to 0 as t→ ∞ if λ = Re(α) < 0 and grow exponentially if λ = Re(α) > 0. It remains to discuss
the possible cases according to the respective signs of Re (α1) and Re (α2).

Case 1. Suppose that the eigenvalues of A are real and positive. We find two corresponding eigenvectors and
plot them in the plane. For example, take the matrix [ 1 1

0 2 ]. The eigenvalues are 1 and 2 and corresponding
eigenvectors are [ 10 ] and [ 11 ]. See  3.2 .
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Figure 3.2: Eigenvectors of A.

Let (x, y) be a point on the line determined by an
eigenvector v⃗ for an eigenvalue λ. That is, [ xy ] = αv⃗
for some scalar α. Then[

x
y

]′
= A

[
x
y

]
= A(αv⃗) = α(P v⃗) = αλv⃗.

The derivative is a multiple of v⃗ and hence points
along the line determined by v⃗. As λ > 0, the deriva-
tive points in the direction of v⃗ when α is positive
and in the opposite direction when α is negative.
We draw the lines determined by the eigenvectors,
and we draw arrows on the lines to indicate the
directions. See  3.3 .

We fill in the rest of the arrows for the vector field
and we also draw a few solutions. See  3.4 . The picture looks like a source with arrows coming out from the
origin. Hence we call this type of picture a source or sometimes an unstable node.

Case 2. Suppose both eigenvalues are negative. For example, take the negation of the matrix in case 1,[−1 −1
0 −2

]
. The eigenvalues are −1 and −2 and corresponding eigenvectors are the same, [ 10 ] and [ 11 ]. The

calculation and the picture are almost the same. The only difference is that the eigenvalues are negative and
hence all arrows are reversed. We get the picture in  3.5 . We call this kind of picture a sink or a stable node.
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Figure 3.3: Eigenvectors of A with directions.
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Figure 3.4: Example source vector field with eigenvectors
and solutions.

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

Figure 3.5: Example sink vector field with eigenvectors and
solutions.
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Figure 3.6: Example saddle vector field with eigenvectors
and solutions.

Case 3. Suppose one eigenvalue is positive and one is negative. For example the matrix
[
1 1
0 −2

]
. The

eigenvalues are 1 and −2 and corresponding eigenvectors are [ 10 ] and
[

1
−3

]
. We reverse the arrows on one

line (corresponding to the negative eigenvalue) and we obtain the picture in  3.6 . We call this picture a saddle
point.

For the next three cases we will assume the eigenvalues are complex. In this case the eigenvectors are also
complex and we cannot just plot them in the plane.

Case 4. Suppose the eigenvalues are purely imaginary, that is, ±ib. For example, let A =
[

0 1
−4 0

]
. The

eigenvalues are ±2i and corresponding eigenvectors are [ 1
2i ] and

[
1

−2i

]
. Consider the eigenvalue 2i and its

eigenvector [ 1
2i ]. The real and imaginary parts of v⃗e2it are

Re

[
1
2i

]
e2it =

[
cos(2t)

−2 sin(2t)

]
, Im

[
1
2i

]
e2it =

[
sin(2t)
2 cos(2t)

]
.

We can take any linear combination of them to get other solutions, which one we take depends on the initial
conditions. Now note that the real part is a parametric equation for an ellipse. Same with the imaginary part
and in fact any linear combination of the two. This is what happens in general when the eigenvalues are
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purely imaginary. So when the eigenvalues are purely imaginary, we get ellipses for the solutions. This type
of picture is sometimes called a center. See  3.7 .
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Figure 3.7: Example center vector field.
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Figure 3.8: Example spiral source vector field.

Case 5. Now suppose the complex eigenvalues have a positive real part. That is, suppose the eigenvalues are
a± ib for some a > 0. For example, let A =

[
1 1
−4 1

]
. The eigenvalues turn out to be 1± 2i and eigenvectors are

[ 1
2i ] and

[
1

−2i

]
. We take 1 + 2i and its eigenvector [ 1

2i ] and find the real and imaginary parts of v⃗e(1+2i)t are

Re

[
1
2i

]
e(1+2i)t = et

[
cos(2t)

−2 sin(2t)

]
, Im

[
1
2i

]
e(1+2i)t = et

[
sin(2t)
2 cos(2t)

]
.

Note the et in front of the solutions. The solutions grow in magnitude while spinning around the origin.
Hence we get a spiral source. See  3.8 .

Case 6. Finally suppose the complex eigenvalues have a negative real part. That is, suppose the eigenvalues
are −a ± ib for some a > 0. For example, let A =

[−1 −1
4 −1

]
. The eigenvalues turn out to be −1 ± 2i and

eigenvectors are
[

1
−2i

]
and [ 1

2i ]. We take −1 − 2i and its eigenvector [ 1
2i ] and find the real and imaginary

parts of v⃗e(−1−2i)t are

Re

[
1
2i

]
e(−1−2i)t = e−t

[
cos(2t)
2 sin(2t)

]
, Im

[
1
2i

]
e(−1−2i)t = e−t

[
− sin(2t)
2 cos(2t)

]
.

Note the e−t in front of the solutions. The solutions shrink in magnitude while spinning around the origin.
Hence we get a spiral sink. See  3.9 .
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Figure 3.9: Example spiral sink vector field.

We summarize the behavior of linear homogeneous two-
dimensional systems given by a nonsingular matrix in  3.1 .
Systems where one of the eigenvalues is zero (the matrix
is singular) come up in practice from time to time, see

 3.4.1 , and the pictures are somewhat different (simpler
in a way). See the exercises.

Exercise 3.4.3: Take the equation mx′′ + cx′ + kx = 0,
with m > 0, c ≥ 0, k > 0 for the mass-spring system.

Convert this to a system of first order equations.a)
Classify for what m, c, k do you get which behavior.b)
Explain from physical intuition why you do not get
all the different kinds of behavior here?

c)
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Eigenvalues Behavior

real and both positive source / unstable node
real and both negative sink / stable node
real and opposite signs saddle
purely imaginary center point / ellipses
complex with positive real part spiral source
complex with negative real part spiral sink

Table 3.1: Summary of behavior of linear homogeneous two-dimensional systems.

Exercise 3.4.4: What happens in the case when A = [ 1 1
0 1 ]? In this case the eigenvalue is repeated and there is

only one independent eigenvector. What picture does this look like?

Exercise 3.4.5: What happens in the case when A = [ 1 1
1 1 ]? Does this look like any of the pictures we have

drawn?

Exercise 3.4.6: Which behaviors are possible if A is diagonal, that is A = [ a 0
0 b ]? You can assume that a and b

are not zero.

Exercise 3.4.7: Take the system from  3.4.1 , x′1 = r
V (x2 − x1), x′2 = r

V (x1 − x2). As we said, one of the
eigenvalues is zero. What is the other eigenvalue, how does the picture look like and what happens when t goes to
infinity.

Exercise 3.4.101: Describe the behavior of the following systems without solving:

x′ = x+ y, y′ = x− y.a) x′1 = x1 + x2, x′2 = 2x2.b)
x′1 = −2x2, x′2 = 2x1.c) x′ = x+ 3y, y′ = −2x− 4y.d)
x′ = x− 4y, y′ = −4x+ y.e)

Exercise 3.4.102: Suppose that x⃗ ′ = Ax⃗ where A is a 2 by 2 matrix with eigenvalues 2 ± i. Describe the
behavior.

Exercise 3.4.103: Take [ xy ]
′
= [ 0 1

0 0 ] [
x
y ]. Draw the vector field and describe the behavior. Is it one of the behaviors

that we have seen before?

Now we come to the general case. As before, the considerations of the previous section show that it suffices
to consider the case of one Jordan block

exp(tJ) = eαt



1 t t2

2! · · · tn−1

(n−1)!

1 t
. . .

...

1
. . . t2

2!
. . . t

1


.

In particular, every solution is a linear combination of terms of the type tj exp(αt). Since exp(αt) decays faster
than any polynomial, our entire Jordan block converges to zero if λ = Re(α) < 0. If λ = 0, exp(αt) = exp(iωt)
will remain at least bounded, but the polynomial terms will diverge. However, if we start in the direction of
the eigenvector (1, 0, . . . , 0), we won’t see the polynomial terms. In summary,

Theorem 3.4.2. A solution of the linear system ( 3.16 ) converges to 0 as t→ ∞ if the initial condition x0 lies in
the subspace spanned by the generalized eigenspaces corresponding to eigenvalues with negative real part. It will
remain bounded if x0 lies in the subspace spanned by the generalized eigenspaces corresponding to eigenvalues
with negative real part plus the eigenspaces corresponding to eigenvalues with vanishing real part.

Note that to get the behavior as t→ −∞, you just need to replace negative by positive.
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A linear system (not necessarily autonomous) is called stable if all solutions remain bounded as t→ ∞ and
asymptotically stable if all solutions converge to 0 as t→ ∞.

Theorem 3.4.1. The linear system (  3.16 ) is stable if all eigenvalues α of A satisfy Re(α) ≤ 0 and for all
eigenvalues with Re(α) = 0 the algebraic and geometric multiplicities are equal.

The linear system ( 3.16 ) is asymptotically stable if all eigenvalues α of A satisfy Re(α) < 0. Finally, observe
that the solution of the inhomogeneous equation

ẋ(t) = Ax(t) + g(t), x(0) = x0

is given by

x(t) = exp(tA)x0 +

∫ t

0

exp((t− s)A)g(s)ds,

which can be verified by a straightforward computation (however, we will in fact prove a more general result
in Theorem ?? below). As always for linear equations, note that the solutions consists of the general solution
of the linear equation plus a particular solution of the inhomogeneous equation.

3.5 Systems of Non-constant Coefficient Linear ODEs

In this section we want to consider the case of linear systems, where the coefficient matrix can depend on t.
As a preparation let me remark that a matrix A(t) is called differentiable with respect to t if all coefficients
are. In this case we will denote by d

dtA(t) ≡ Ȧ(t) the matrix, whose coefficients are the derivatives of the
coefficients of A(t). The usual rules of calculus hold in this case as long as one takes noncommutativity of
matrices into account. For example we have the product rule

d

dt
A(t)B(t) = Ȧ(t)B(t) +A(t)Ḃ(t)

and, if det(A(t)) ̸= 0,
d

dt
A(t)−1 = −A(t)−1Ȧ(t)A(t)−1

(exercise. Hint: AA−1 = I). Note that the order is important! We now turn to the general linear first-order
system

ẋ(t) = A(t)x(t), (3.26)

where A ∈ C (I,Rn×n). Clearly our theory from chapter  1 applies:

Theorem 3.5.1. The linear first-order system (  3.26 ) has a unique solution satisfying the initial condition
x (t0) = x0. Moreover, this solution is defined for all t ∈ I.

Proof. This follows directly from Theorem  1.0.5 since we can choose L(T ) = max[0,T ] ∥A(t)∥ for every
T ∈ I.

It seems tempting to suspect that the solution is given by the formula x(t) = exp
(∫ t

t0
A(s)ds

)
x0. However, as

soon as you try to verify this guess, noncommutativity of matrices will get into your way. In fact, this formula
only solves our initial value problem if [A(t), A(s)] = 0 for all t, s ∈ R. Hence it is of little use. So we still
need to find the right generalization of exp ((t− t0)A).

We start by observing that linear combinations of solutions are again solutions. Hence the set of all solutions
forms a vector space. This is often referred to as superposition principle. In particular, the solution
corresponding to the initial condition x (t0) = x0 can be written as

ϕ (t, t0, x0) =

n∑
j=1

ϕ (t, t0, δj)x0,j ,

where δj are the canonical basis vectors, (i.e, δj,k = 1 if j = k and δj,k = 0 if j ̸= k ) and x0,j are the
components of x0 (i.e., x0 =

∑n
j=1 δjx0,j ). Using the solutions ϕ (t, t0, δj) as columns of a matrix

Π(t, t0) = (ϕ (t, t0, δ1) , . . . , ϕ (t, t0, δn)) ,
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we see that there is a linear mapping x0 7→ ϕ (t, t0, x0) given by

ϕ (t, t0, x0) = Π (t, t0)x0.

The matrix Π(t, t0) is called principal matrix solution (at t0) and it solves the matrix valued initial value
problem

Π̇ (t, t0) = A(t)Π (t, t0) , Π(t0, t0) = I. (3.27)

Again observe that our basic existence and uniqueness result applies. In fact, it is easy to check, that a matrix
X(t) satisfies Ẋ = A(t)X if and only if every column satisfies ( 3.26 ). In particular, X(t)c solves ( 3.26 ) for
every constant vector c in this case. In summary,

Theorem 3.5.2. The solutions of the system (  3.26 ) form an n dimensional vector space. Moreover, there exists
a matrix-valued solution Π(t, t0) such that the solution satisfying the initial condition x (t0) = x0 is given by
Π(t, t0)x0.

Example 3.5.1: In the simplest case, where A(t) ≡ A is constant, we of course have Π(t, t0) = e(t−t0)A.

Example 3.5.2: Consider the system

ẋ =

(
1 t
0 2

)
x

which explicitly reads
ẋ1 = x1 + tx2, ẋ2 = 2x2.

We need to find the solution corresponding to the initial conditions x (t0) = δ1 = (1, 0) respectively x (t0) =
δ2 = (0, 1). In the first case x (t0) = δ1, the second equation gives x2(t) = 0 and plugging this into the first
equation shows x1(t) = et−t0 , that is, ϕ (t, t0, δ1) = (et−t0 , 0). Similarly, in the second case x (t0) = (0, 1), the
second equation gives x2(t) = e2(t−t0) and plugging this into the first equation shows x1(t) = e2(t−t0)(t− 1)−
et−t0 (t0 − 1), that is, ϕ (t, t0, δ2) =

(
e2(t−t0)(t− 1)− et−t0 (t0 − 1) , e2(t−t0)

)
. Putting everything together we

obtain

Π(t, t0) =

(
et−t0 e2(t−t0)(t− 1)− et−t0 (t0 − 1)
0 e2(t−t0)

)
.

Furthermore, Π(t, t0) satisfies
Π(t, t1)Π (t1, t0) = Π (t, t0) (3.28)

since both sides solve Π̇ = A(t)Π and coincide for t = t1. In particular, choosing t = t0, we see that Π(t, t0) is
an isomorphism with inverse Π(t, t0)

−1
= Π(t0, t).

More generally, taking n solutions ϕ1, . . . , ϕn we obtain a matrix solution U(t) = (ϕ1(t), . . . , ϕn(t)). The
determinant of U(t) is called Wronski determinant

W (t) = det (ϕ1(t), . . . , ϕn(t)) .

If detU(t) ̸= 0, the matrix solution U(t) is called a fundamental matrix solution. Moreover, if U(t) is a
matrix solution, so is U(t)C, where C is a constant matrix. Hence, given two fundamental matrix solutions
U(t) and V (t) we always have V (t) = U(t)U (t0)

−1
V (t0), since a matrix solution is uniquely determined by

an initial condition. In particular, the principal matrix solution can be obtained from any fundamental matrix
solution via Π(t, t0) = U(t)U (t0)

−1.

The following lemma shows that it suffices to check detU(t) ̸= 0 for one t ∈ R.

Lemma 3.5.1. The Wronskian determinant of n solutions satisfies

W (t) =W (t0) exp

(∫ t

t0

tr(A(s))ds

)
. (3.29)

This is known as Abel’s identity or Liouville’s formula.
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Proof. By ( 3.27 ) we have
Π(t+ ε, t) = I+A(t)ε+ o(ε)

and using U(t+ ε) = Π(t+ ε, t)U(t) we obtain (exercise)

W (t+ ε) = det(I+A(t)ε+ o(ε))W (t) = (1 + tr(A(t))ε+ o(ε))W (t)

implying
d

dt
W (t) = tr(A(t))W (t)

This equation is separable and the solution is given by ( 3.29 ).

Now let us turn to the inhomogeneous system

ẋ = A(t)x+ g(t), x (t0) = x0, (3.30)

where A ∈ C (I,Rn × Rn) and g ∈ C (I,Rn). Since the difference of two solutions of the inhomogeneous
system ( 3.30 ) satisfies the corresponding homogeneous system ( 3.26 ), it suffices to find one particular
solution. This can be done using the following ansatz

x(t) = Π (t, t0) c(t), c (t0) = x0,

which is known as variation of constants (also variation of parameters). Differentiating this ansatz we see

ẋ(t) = A(t)x(t) + Π (t, t0) ċ(t)

and comparison with ( 3.30 ) yields
ċ(t) = Π (t0, t) g(t).

Integrating this equation shows

c(t) = x0 +

∫ t

t0

Π(t0, s) g(s)ds

and we obtain (using ( 3.28 ))

Theorem 3.5.3. The solution of the inhomogeneous system corresponding to the initial condition x (t0) = x0 is
given by

x(t) = Π (t, t0)x0 +

∫ t

t0

Π(t, s)g(s)ds,

where Π(t, t0) is the principal matrix solution of the corresponding homogeneous system.

To end this section, let me emphasize that there is no general way of solving linear systems except for the
trivial case n = 1. However, if one solution is known, one can reduce the order by one (see the following
exercise).

Exercise 3.5.1 (Reduction of order (d’Alembert)): Suppose one solution x0(t) of the 2× 2 system ẋ = A(t)x is
known and make the change of coordinates

x(t) = X(t)y(t), where X(t) =

(
x0,1(t) 0
x0,2(t) 1

)
.

Show that, if x0,1(t) ̸= 0, the differential equation for the new coordinates y(t) reads

ẏ = X(t)−1A(t)

(
0 0
0 1

)
y.

In particular, the right hand side does not involve y1. Hence this system can be solved by first solving the second
component (which involves only y2 ) and then integrating the first component. Generalize this result to n× n
systems.
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Exercise 3.5.2 (Periodic linear system): We may consider the case A(t+ T ) = A(t) with period T in (  3.26 ),
which implies that x(t+ T ) is again a solution if x(t) is. Show the following lemma and theorem

Lemma 3.5.2. Suppose A(t) is periodic with period T . Then the principal matrix solution satisfies

Π(t+ T, t0 + T ) = Π (t, t0) .

Theorem 3.5.4 (Floquet). Suppose A(t) is periodic. Then the principal matrix solution of the corresponding
linear system has the form

Π(t, t0) = P (t, t0) exp ((t− t0)Q (t0)) ,

where P (., t0) has the same period as A(.)andP (t0, t0) = I.

(see [ 11 ] section 3.5 for periodic linear system).
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Chapter 4

Boundary Value Problems

T chapter 5 and perhaps Richard Haberman Applied partial differential equations section 5.3-5.10. In essense,
S and L consider a second order ode with bc that comes from a class of pdes due to some transformation.
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Chapter 5

Dynamical Systems

Need to include [ 10 ] flow on line and other qualitative analyses.
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Chapter 6

Chaos

Do as [ 10 ] did to incorporate T chapter 9 under chaos theory.
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Part II

Complex Systems
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Chapter 7

Differential Equations in Complex
Domains

T chapter 4
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Chapter 8

Riemann Surfaces

[ 5 ] chapter 1 and 2. [ 1 ] and [ 4 ].
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Chapter 9

Appendix

9.1 Inverse and Implicit Function Theorem

Proposition 9.1.1. Suppose U ⊆ Rn and V ⊆ Rm are open subsets and F : U → V is a diffeomorphism.
Then m = n, and for each a ∈ U , the total derivative DF (a) is invertible, with DF (a)−1 = D

(
F−1

)
(F (a)).

Proof. Because F−1 ◦ F = IdU , the chain rule implies that for each a ∈ U ,

IdRn = D (IdU ) (a) = D
(
F−1 ◦ F

)
(a) = D

(
F−1

)
(F (a)) ◦DF (a).

Similarly, F ◦F−1 = IdV implies that DF (a) ◦D
(
F−1

)
(F (a)) is the identity on Rm. This implies that DF (a)

is invertible with inverse D
(
F−1

)
(F (a)), and therefore m = n.

Next we study the relationship between total and partial derivatives. Suppose U ⊆ Rn is open and F : U → Rm
is differentiable at a ∈ U . As a linear map between Euclidean spaces Rn and Rm, DF (a) can be identified
with an m× n matrix. The next proposition identifies that matrix as the Jacobian of F .

Proposition 9.1.2. Let U ⊆ Rn be open, and suppose F : U → Rm is differentiable at a ∈ U . Then all of the
partial derivatives of F at a exist, and DF (a) is the linear map whose matrix is the Jacobian of F at a :

DF (a) =

(
∂F j

∂xi
(a)

)
.

Proof. Let B = DF (a), and for v ∈ Rn small enough that a+ v ∈ U , let R(v) = F (a+ v)− F (a)−Bv. The
fact that F is differentiable at a implies that each component of the vector-valued function R(v)/|v| goes to
zero as v → 0. The i th partial derivative of F j at a, if it exists, is

∂F j

∂xi
(a) = lim

t→0

F j (a+ tei)− F j(a)

t
= lim
t→0

Bji t+Rj (tei)

t

= Bji + lim
t→0

Rj (tei)

t
.

The norm of the quotient on the right above is
∣∣Rj (tei)∣∣ / |tei|, which approaches zero as t → 0. It follows

that ∂F j/∂xi(a) exists and is equal to Bji as claimed.

Theorem 9.1.1 (Inverse Function Theorem). Suppose U and V are open subsets of Rn, and F : U → V is a
smooth function. If DF (a) is invertible at some point a ∈ U , then there exist connected neighborhoods U0 ⊆ U of
a and V0 ⊆ V of F (a) such that F |U0

: U0 → V0 is a diffeomorphism.

The proof of this theorem is based on an elementary result about metric spaces, which we describe first.

Let X be a metric space. A map G : X → X is said to be a contraction if there is a constant λ ∈ (0, 1) such
that d(G(x), G(y)) ≤ λd(x, y) for all x, y ∈ X. Clearly, every contraction is continuous. A fixed point of a
map G : X → X is a point x ∈ X such that G(x) = x.
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Lemma 9.1.3 (Contraction Lemma). Let X be a nonempty complete metric space. Every contraction
G : X → X has a unique fixed point.

Proof. Uniqueness is immediate, for if x and x′ are both fixed points of G, the contraction property implies
d (x, x′) = d (G(x), G (x′)) ≤ λd (x, x′), which is possible only if x = x′.

To prove the existence of a fixed point, let x0 be an arbitrary point in X, and define a sequence (xn)
∞
n=0

inductively by xn+1 = G (xn). For any i ≥ 1 we have d (xi, xi+1) = d (G (xi−1) , G (xi)) ≤ λd (xi−1, xi), and
therefore by induction

d (xi, xi+1) ≤ λid (x0, x1) .

If N is a positive integer and j ≥ i ≥ N ,

d (xi, xj) ≤ d (xi, xi+1) + d (xi+1, xi+2) + · · ·+ d (xj−1, xj)

≤
(
λi + · · ·+ λj−1

)
d (x0, x1)

≤ λi

( ∞∑
n=0

λn

)
d (x0, x1)

≤ λN
1

1− λ
d (x0, x1) .

Since this last expression can be made as small as desired by choosing N large, the sequence (xn) is Cauchy
and therefore converges to a limit x ∈ X. Because G is continuous,

G(x) = G
(
lim
n→∞

xn

)
= lim
n→∞

G (xn) = lim
n→∞

xn+1 = x,

so x is the desired fixed point.

Lemma 9.1.4 (Lipschitz Estimate for C1 Functions). Let U ⊆ Rn be an open subset, and suppose F : U → Rm
is of class C1. Then F is Lipschitz continuous on every compact convex subset K ⊆ U . The Lipschitz constant
can be taken to be supx∈K |DF (x)| (Frobenius norm).

Theorem 9.1.1. If U ⊆ Rn is an open subset and F : U → Rm is of class C1, then f is locally Lipschitz
continuous.

Proof. Each point of U is contained in a ball whose closure is contained in U , and Lemma  9.1.4 shows that
the restriction of F to such a ball is Lipschitz continuous.

Proof of the inverse function theorem. We begin by making some simple modifications to the function F to
streamline the proof. First, the function F1 defined by

F1(x) = F (x+ a)− F (a)

is smooth on a neighborhood of 0 and satisfies F1(0) = 0 and DF1(0) = DF (a); clearly, F is a diffeomorphism
on a connected neighborhood of a if and only if F1 is a diffeomorphism on a connected neighborhood of 0 .
Second, the function F2 = DF1(0)

−1 ◦ F1 is smooth on the same neighborhood of 0 and satisfies F2(0) = 0
and DF2(0) = In; and if F2 is a diffeomorphism in a neighborhood of 0 , then so is F1 and therefore also
F . Henceforth, replacing F by F2, we assume that F is defined in a neighborhood U of 0, F (0) = 0, and
DF (0) = In. Because the determinant of DF (x) is a continuous function of x, by shrinking U if necessary,
we may assume that DF (x) is invertible for each x ∈ U .

Let H(x) = x − F (x) for x ∈ U . Then DH(0) = In − In = 0. Because the matrix entries of DH(x) are
continuous functions of x, there is a number δ > 0 such that Bδ(0) ⊆ U and for all x ∈ B̄δ(0), we have
|DH(x)| ≤ 1

2 . If x, x′ ∈ B̄δ(0), the Lipschitz estimate for smooth functions (Lemma  9.1.4 ) implies

|H (x′)−H(x)| ≤ 1

2
|x′ − x| . (9.1)

In particular, taking x′ = 0, this implies

|H(x)| ≤ 1

2
|x|. (9.2)
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Since x′ − x = F (x′)− F (x) +H (x′)−H(x), it follows that

|x′ − x| ≤ |F (x′)− F (x)|+ |H (x′)−H(x)| ≤ |F (x′)− F (x)|+ 1

2
|x′ − x| ,

and rearranging gives
|x′ − x| ≤ 2 |F (x′)− F (x)| (9.3)

for all x, x′ ∈ B̄δ(0). In particular, this shows that F is injective on B̄δ(0). Now let y ∈ Bδ/2(0) be arbitrary. We
will show that there exists a unique point x ∈ Bδ(0) such that F (x) = y. Let G(x) = y+H(x) = y+x−F (x),
so that G(x) = x if and only if F (x) = y. If |x| ≤ δ, ( 9.2 ) implies

|G(x)| ≤ |y|+ |H(x)| < δ

2
+

1

2
|x| ≤ δ, (9.4)

so G maps B̄δ(0) to itself. It then follows from ( 9.1 ) that |G(x)−G (x′)| = |H(x)−H (x′)| ≤ 1
2 |x− x′|, so G

is a contraction. Since B̄δ(0) is a complete metric space, the contraction lemma implies that G has a unique
fixed point x ∈ B̄δ(0). From ( 9.4 ), |x| = |G(x)| < δ, so in fact x ∈ Bδ(0), thus proving the claim.

Let V0 = Bδ/2(0) and U0 = Bδ(0) ∩ F−1 (V0). Then U0 is open in Rn, and the argument above shows that
F : U0 → V0 is bijective, so F−1 : V0 → U0 exists. Substituting x = F−1(y) and x′ = F−1 (y′) into ( 9.3 )
shows that F−1 is continuous. Thus F : U0 → V0 is a homeomorphism, and it follows that U0 is connected
because V0 is.

The only thing that remains to be proved is that F−1 is smooth. If we knew it were smooth, Proposition
 9.1.1 would imply that D

(
F−1

)
(y) = DF (x)−1, where x = F−1(y). We begin by showing that F−1 is

differentiable at each point of V0, with total derivative given by this formula.

Let y ∈ V0 be arbitrary, and set x = F−1(y) and L = DF (x). We need to show that

lim
y′→y

F−1 (y′)− F−1(y)− L−1 (y′ − y)

|y′ − y|
= 0.

Given y′ ∈ V0\{y}, write x′ = F−1 (y′) ∈ U0\{x}. Then

F−1 (y′)− F−1(y)− L−1 (y′ − y)

|y′ − y|

= L−1

(
L (x′ − x)− (y′ − y)

|y′ − y|

)
=

|x′ − x|
|y′ − y|

L−1

(
−F (x′)− F (x)− L (x′ − x)

|x′ − x|

)
.

The factor |x′ − x| / |y′ − y| above is bounded thanks to (C.17), and because L−1 is linear and therefore
bounded, the norm of the second factor is bounded by a constant multiple of

|F (x′)− F (x)− L (x′ − x)|
|x′ − x|

.

As y′ → y, it follows that x′ → x by continuity of F−1, and then (??) goes to zero because L = DF (x) and F
is differentiable. This completes the proof that F−1 is differentiable.

By Proposition  9.1.2 , the partial derivatives of F−1 are defined at each point y ∈ V0. Observe that the formula
D
(
F−1

)
(y) = DF

(
F−1(y)

)−1
implies that the matrix-valued function y 7→ D

(
F−1

)
(y) can be written as

the composition

y
F−1

7−→ F−1(x)
DF7−→ DF

(
F−1(y)

) i7−→ DF
(
F−1(y)

)−1
, (9.5)

where i is matrix inversion. In this composition, F−1 is continuous; DF is smooth because its component
functions are the partial derivatives of F ; and i is smooth because Cramer’s rule expresses the entries of
an inverse matrix as rational functions of the entries of the matrix. Because D

(
F−1

)
is a composition of
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continuous functions, it is continuous. Thus the partial derivatives of F−1 are continuous, so F−1 is of class
C1.

Now assume by induction that we have shown that F−1 is of class Ck. This means that each of the functions
in ( 9.5 ) is of class Ck. Because D

(
F−1

)
is a composition of Ck functions, it is itself Ck; this implies that

the partial derivatives of F−1 are of class Ck, so F−1 itself is of class Ck+1. Continuing by induction, we
conclude that F−1 is smooth.

Theorem 9.1.2. Suppose U ⊆ Rn is an open subset, and F : U → Rn is a smooth function whose Jacobian
determinant is nonzero at every point in U .

(a) F is an open map.

(b) If F is injective, then F : U → F (U) is a diffeomorphism.

Proof. For each a ∈ U , the fact that the Jacobian determinant of F is nonzero implies that DF (a) is invertible,
so the inverse function theorem implies that there exist open subsets Ua ⊆ U containing a and Va ⊆ F (U)
containing F (a) such that F restricts to a diffeomorphism F |Ua

: Ua → Va. In particular, this means that each
point of F (U) has a neighborhood contained in F (U), so F (U) is open. If U0 ⊆ U is an arbitrary open subset,
the same argument with U replaced by U0 shows that F (U0) is also open; this proves (a). If in addition F is
injective, then the inverse map F−1 : F (U) → U exists for set-theoretic reasons; on a neighborhood of each
point F (a) ∈ F (U) it is equal to the inverse of F |Ua

, so it is smooth.

The next result is one of the most important consequences of the inverse function theorem. It gives conditions
under which a level set of a smooth function is locally the graph of a smooth function.

Theorem 9.1.2 (Implicit Function Theorem). Let U ⊆ Rn × Rk be an open subset, and let (x, y) =(
x1, . . . , xn, y1, . . . , yk

)
denote the standard coordinates on U . Suppose Φ : U → Rk is a smooth function,

(a, b) ∈ U , and c = Φ(a, b). If the k × k matrix (
∂Φi

∂yj
(a, b)

)
is nonsingular, then there exist neighborhoods V0 ⊆ Rn of a andW0 ⊆ Rk of b and a smooth function F : V0 →W0

such that Φ−1(c)∩ (V0 ×W0) is the graph of F , that is, Φ(x, y) = c for (x, y) ∈ V0 ×W0 if and only if y = F (x).

Proof. Consider the smooth function Ψ : U → Rn × Rk defined by Ψ(x, y) = (x,Φ(x, y)). Its total derivative
at (a, b) is

DΨ(a, b) =

(
In 0

∂Φi

∂xj (a, b)
∂Φi

∂yj (a, b)

)
,

which is nonsingular because it is block lower triangular and the two blocks on the main diagonal are
nonsingular. Thus by the inverse function theorem there exist connected neighborhoods U0 of (a, b) and Y0 of
(a, c) such that Ψ : U0 → Y0 is a diffeomorphism. Shrinking U0 and Y0 if necessary, we may assume that U0 =
V ×W is a product neighborhood.

Writing Ψ−1(x, y) = (A(x, y), B(x, y)) for some smooth functions A and B, we compute

(x, y) = Ψ
(
Ψ−1(x, y)

)
= Ψ(A(x, y), B(x, y))

= (A(x, y),Φ(A(x, y), B(x, y))).
(9.6)

Comparing the first components in this equation, we find that A(x, y) = x, so Ψ−1 has the form Ψ−1(x, y) =
(x,B(x, y)).

Now let V0 = {x ∈ V : (x, c) ∈ Y0} and W0 =W , and define F : V0 →W0 by F (x) = B(x, c). Comparing the
second components in ( 9.6 ) yields

c = Φ(x,B(x, c)) = Φ(x, F (x))
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whenever x ∈ V0, so the graph of F is contained in Φ−1(c). Conversely, suppose (x, y) ∈ V0 × W0 and
Φ(x, y) = c. Then Ψ(x, y) = (x,Φ(x, y)) = (x, c), so

(x, y) = Ψ−1(x, c) = (x,B(x, c)) = (x, F (x)),

which implies that y = F (x). This completes the proof.

9.2 Jordan Canonical Form

In this section we want to review some further facts on the Jordan canonical form. In addition, we want to
draw some further consequences to be used later on.

Consider a decomposition Cn = V1 ⊕ V2. Such a decomposition is said to reduce A if both subspaces V1 and
V2 are invariant under A, that is, AVj ⊆ Vj , j = 1, 2. Changing to a new basis u1, . . . , un such that u1, . . . , um
is a basis for V1 and um+1, . . . , un is a basis for V2, implies that A is transformed to the block form

U−1AU =

(
A1 0
0 A2

)
in these new coordinates. Moreover, we even have

U−1 exp(A)U = exp
(
U−1AU

)
=

(
exp (A1) 0

0 exp (A2)

)
.

Hence we need to find some invariant subspaces which reduce A. If we look at one-dimensional subspaces we
must have

Ax = αx, x ̸= 0, (9.7)

for some α ∈ C. If ( 9.7 ) holds, α is called an eigenvalue of A and x is called eigenvector. In particular, α is
an eigenvalue if and only if Ker(A− α) ̸= {0} and hence Ker(A− α) is called the eigenspac of α in this case.
Since Ker(A−α) ̸= {0} implies that A−α is not invertible, the eigenvalues are the zeros of the characteristic
polynomial of A,

χA(z) =

m∏
j=1

(z − αj)
aj = det(zI−A),

where αi ̸= αj . The number aj is called algebraic multiplicity of αj and gj = dimKer (A− αj) is called
geometric multiplicity of αj . The set of all eigenvalues of A is called the spectrum of A,

σ(A) = {α ∈ C | Ker(A− α) ̸= {0}}.

If the algebraic and geometric multiplicities of all eigenvalues happen to be the same, we can find a basis
consisting only of eigenvectors and U−1AU is a diagonal matrix with the eigenvalues as diagonal entries.
Moreover, U−1 exp(A)U is again diagonal with the exponentials of the eigenvalues as diagonal entries.

However, life is not that simple and we only have gj ≤ aj in general. It turns out that the right objects to look
at are the generalized eigenspaces

Vj = Ker (A− αj)
aj .

Lemma 9.2.1. Let A be an n by n matrix and let Vj = Ker (A− αj)
aj . Then the Vj ’s are invariant subspaces

and Cn can be written as a direct sum
Cn = V1 ⊕ · · · ⊕ Vm.

As a consequence we obtain

Theorem 9.2.1 (Cayley-Hamilton). Every matrix satisfies its own characteristic equation

χA(A) = 0.
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So, if we choose a basis uj of generalized eigenvectors, the matrix U = (u1, . . . , un) transforms A to a block
structure

U−1AU =

 A1

. . .
Am

 ,

where each matrix Aj has only the eigenvalue αj . Hence it suffices to restrict our attention to this case.

A vector u ∈ Cn is called a cyclic vector for A if the vectors Aju, 0 ≤ j ≤ n− 1 span Cn, that is,

Cn =


n−1∑
j=0

ajA
ju | aj ∈ C

 .

The case where A has only one eigenvalue and where there exists a cyclic vector u is quite simple. Take

U =
(
u, (A− α)u, . . . , (A− α)n−1u

)
,

then U transforms A to

J = U−1AU =



α 1
α 1

α
. . .
. . . 1

α

 , (9.8)

since χA(A) = (A−α)n = 0 by the Cayley-Hamilton theorem. The matrix ( 9.8 ) is called a Jordan block. It is
of the form αI+N , where N is nilpotent, that is, Nn = 0.

Hence, we need to find a decomposition of the spaces Vj into a direct sum of spaces Vjk, each of which has a
cyclic vector ujk.

We again restrict our attention to the case where A has only one eigenvalue α and set

Kj = Ker(A− α)j .

In the cyclic case we have Kj = ⊕jk=1 span
{
(A− α)n−k

}
. In the general case, using Kj ⊆ Kj+1, we can find

Lk such that

Kj =

j⊕
k=1

Lk.

In the cyclic case Ln = span{u} and we would work our way down to L1 by applying A − α recursively.
Mimicking this, we set Mn = Ln and since (A−α)Lj+1 ⊆ Lj we have Ln−1 = (A−α)Ln⊕Mn−1. Proceeding
like this we can find Ml such that

Lk =

n⊕
l=k

(A− α)n−lMl

Now choose a basis uj for M1 ⊕ · · · ⊕Mn, where each uj lies in some Ml. Let Vj be the subspace generated
by (A− α)luj . Then V = V1 ⊕ · · · ⊕ Vm by construction of the sets Mk and each Vj has a cyclic vector uj . In
summary, we get

Theorem 9.2.2 (Jordan canonical form). Let A be an n by n matrix. Then there exists a basis for Cn, such that
A is of block form with each block as in (  9.8 ).

In addition, to the matrix exponential we will also need its inverse. That is, given a matrix A we want to find
a matrix B such that

A = exp(B).
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In this case we will call B = ln(A) a matrix logarithm of A. Clearly, by (??) this can only work if det(A) ̸= 0.
Hence suppose that det(A) ̸= 0. It is no restriction to assume that A is in Jordan canonical form and to
consider the case of only one Jordan block, A = αI+N . Motivated by the power series for the logarithm,

ln(1 + x) =

∞∑
j=1

(−1)j+1

j
xj , |x| < 1,

we set

B = ln(α)I+
n−1∑
j=1

(−1)j+1

jαj
N j

=



ln(α) 1
α

−1
2α2 · · · (−1)n

(n−1)αn−1

ln(α) 1
α

. . .
...

ln(α)
. . . −1

2α2

. . . 1
α

ln(α)


By construction we have exp(B) = A. Note that B is not unique since different branches of ln(α) will give
different matrices. Moreover, it might be complex even if A is real. In fact, if A has a negative eigenvalue, then
ln(α) = ln(|α|) + iπ implies that ln(A) will be complex. We can avoid this situation by taking the logarithm of
A2.

Lemma 9.2.2. A matrix A has a logarithm if and only if det(A) ̸= 0. Moreover, if A is real and all real
eigenvalues are positive, then there is a real logarithm. In particular, if A is real we can find a real logarithm
for A2.

Proof. Since the eigenvalues of A2 are the squares of the eigenvalues of A (show this), it remains to show
that B is real if all real eigenvalues are positive.

In these only the Jordan block corresponding to complex eigenvalues could cause problems. We consider the
real Jordan canonical form (??) and note that for

R =

(
Re(α) Im(α)
− Im(α) Re(α)

)
= r

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
, α = reiφ,

the logarithm is given by

ln(R) = ln(r)I+
(

0 −φ
φ 0

)
.

Now write the real Jordan block RI+N as R
(
I+R−1N

)
. Then one can check that

log(RI+N) = log(R)I+
n−1∑
j=1

(−1)j+1

j
R−jN j

is the required logarithm.

Similarly, note that the resolvent (A− z)−1 can also be easily computed in Jordan canonical form, since for a
Jordan block we have

(J − z)−1 =
1

α− z

n−1∑
j=0

1

(z − α)j
N j .

In particular, note that the resolvent has a pole at each eigenvalue with the residue being the projector onto
the corresponding generalized eigenspace. For later use we also introduce the subspaces

E±(A) =
⊕

|αj |±1<1

Ker (A− αj)
aj ,

E0(A) =
⊕

|αj |=1

Ker (A− αj)
aj ,
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where αj are the eigenvalues of A and aj are the corresponding algebraic multiplicities. The subspaces
E+(A), E−(A), E0(A) are called contracting, expanding, unitary subspace ofA, respectively. The restriction
of A to these subspaces is denoted by A+, A−, A0, respectively.

Exercise 9.2.1: Denote by r(A) = maxj {|αj |} the spectral radius of A. Show that for every ε > 0 there is a
norm ∥.∥ε such that

∥A∥ε = sup
x:∥x∥ε=1

∥Ax∥ε ≤ r(A) + ε.

Hint: It suffices to prove the claim for a Jordan block J = αI + N (why?). Now choose a diagonal matrix
Q = diag (1, ε, . . . , εn) and observe Q−1JQ = αI+ εN .

Exercise 9.2.2: Suppose A(λ) is Ck and has no unitary subspace. Then the projectors P±(A(λ)) onto the
contracting, expanding subspace are Ck.

Hint: Use the formulas

P−(A(λ)) =
1

2πi

∫
|z|=1

dz

z −A(λ)
, P+(A(λ)) = I− P−(A(λ)).
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