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Chapter 1

Course information

Course description

This is an advanced course on the statistical analysis of network data, covering theory, methodol- ogy, and
applications. The course will cover basic graph theory, commonly used models for random graphs (e.g. Erdos-
Renyi, exponential random graph models, stochastic block models, random dot product graphs, graphons),
and canonical statistical inference problems within these frameworks (e.g. hypothesis testing, community
detection, construction of prediction intervals). Time per- mitting, additional topics such as dynamic network
modeling and causal inference under network interference will also be discussed. This course is intended for
PhD students with appropriately strong mathematical background. However, the course is open to anyone
interested in the topic.

Prerequisites

At a minimum, students are expected to be familiar with probability and statistics at the level of Math
493/494. Background in linear algebra at the level of Math 309 is also expected. Graduate level coursework
in statistics is a plus. Prior exposure to graph theory is not expected. Proficiency in R/Python/MATLAB
is expected for homework assignments.
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Chapter 2

Notes

MATH 586 Fall 2023
Statistics for Networks

Lecture 1: Graph Theory Basics

Lecturer: Robert Lunde Scribe: Sayan Das

1.1 Introduction

Why Networks?

- Network: “Collection of interconnected things” (Oxford English Dictionary)

- Modern datasets are not only large but complex: useful to model relationships as networks.

- Networks and graphs are not the same, but graph theory is very useful for studying networks.

Why Statistical Network Analysis?

To address scientific/business questions related to network data, we need to be able to do statistics on
networks. For example two-sample testing, community detection, and regression with network information.

1.2 Basics of Graph Theory

A graph G is defined by the pair (V,E), where V is the vertex set, is the edge set and we write G = (V,E).
Note that edges must contain vertices belonging to V .

- For undirected graphs, each edge is a set e.g. {1, 2}.

- For directed graphs, each edge is a ordered pair e.g. (1, 2).

1-9



- For weighted graph, we can define triple (V,E,w), where w : E → R is a weight function assigning a
weight to each edge.

(a) Undirected graph with V =
{a, b, c} and E = {{a, b}, {b, c}}

(b) Directed graph with V =
{a, b, c} and E = {(b, a), (b, c)}

(c) Weighted graph with V =
{a, b, c}, E = {(b, a), (b, c)} and
W ((b, a)) = 5, W ((b, c)) = 3

Figure 1.1: Examples of undirected, directed, and weighted graphs.

- Two nodes u and v are adjacent if there exists an edge between u and v.

- The neighborhood of node u is given by N(u) is the set of neighbors adjacent to node u.

Figure 1.2: Example of a neighborhood of a node. Here N(2) = {1}, N(1) = {2, 3}, and N(4) = {∅}. So,
the node {4} is isolated.

- A node u is isolated if |N(u)| = 0.

- For undirected graphs, the degree of node u, often denoted as du, is given by du = |N(u)|.

- For directed graphs, we have two notions of degree:

- In-degree of node u which is the number of edges with endpoint u.

- Out-degree of node u which is the number of edges with starting point u.

- A set is called independent if no vertices in the set are adjacent.

- A graph G is bipartite if vertices can be divided into two disjoint independent sets V1 and V2 such that
every edge connects a vertex in V1 to one in V2.

1-10



Figure 1.3: Example of bipartite graph. Note that, the sets of nodes in the set ‘authors’ (and also in the set
‘papers’) are independent

Figure 1.4: Example of hypergraph with V = {1, 2, 3, 4} and E = {{1, 2, 3}, {3, 4}}

- A hypergraph G = (V,E) is a graph where edges can have cardinality greater than 2.

Note that Figures 1.2 and 1.3 are alternative ways of expressing the same network. In Figure 1.2, we
considered a bipartite graph formulation, where the two disjoint node sets represent authors and papers. In
Figure 1.3, we considered a hyperedge setup where papers represent edges (collaborations).

MATH 586 Fall 2023
Statistics for Networks

Lecture 2: Graphs and Subgraphs

Lecturer: Robert Lunde Scribe: Ayoushman Bhattacharya

2.3 Representation of a Graph

A graph G = (V,E) can equivalently be expressed in terms of an adjacency matrix A. Consider the vertex
set V = {1, . . . , n}. Then, the adjacency matrix A is a n× n matrix such that

Aij =

{
1, if there is an edge from i to j

0, otherwise
.

For undirected graphs, we make do not make distinction between (i, j) and (j, i), that is, Aij = Aji; in other
words, A is symmetric. Adjacency matrix for weighted graphs can also be defined similarly.
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• Degree of undirected graphs:

di =

n∑
j=1

Aij =

n∑
i=1

Aij

• Typically Aii = 0 i.e. no self loops.

2.4 Subgraphs

Given a graph G, we are often interested to subgraphs.

Definition 2.4.1 (Subgraph). A subgraph H = (VH , EH) is a graph such that VH ⊆ V and EH ⊆ E.

1

2

3

4

(a) Parent graph

2

3

4

(b) Subgraph

Figure 2.5: Subgraph of a parent graph

• A subgraph induced by the vertex set U ⊆ V has vertex set U and all edges containing vertices U .

1

2

3

4

(a) Parent graph

1

2

3

(b) Induced subgraph on {1, 2, 3}

1

2

3

(c) Subgraph on {1, 2, 3}

Figure 2.6: Induced subgraph of a parent graph

• A clique is an induced subgraph that is complete.
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1

2

3

4

Figure 2.7: Clique with 4 vertices

Definition 2.4.2 (Complete Graph). An undirected graph is complete if every pair of distinct vertices has
an edge.

• A regular graph is a graph where every vertex has same degree.

1

2

3

4

Figure 2.8: A regular graph

• Here are some examples of other subgraphs that are often used in network literature.

1

2 3

(a) Two-star

1

2

3

4

(b) Three-star

12

3

4

5

6

7

(c) Wheel

1

2

3

4

(d) Cycle

Figure 2.9: Different types of subgraphs
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Definition 2.4.3 (Graph Isomorphism). An isomorphism of G and H is a bijection f : V (G) 7→ V (H)
between vertex sets of G and H such that u and v are adjacent if and only if f(u) and f(v) are adjacent.

1

2

34

5

(a)

a

c

eb

d

(b)

Figure 2.10: Graph Isomorphism: f(a) = 1, f(d) = 2, f(b) = 3, f(e) = 4, f(c) = 5

• A walk is an alternating sequence {v0, e1, v1, . . . , el−1, vl} where ei = {vi−1, vi}.

1 2 3 4

5

(a) Graph

1 2 3 4

(b) A walk from 1 to 4

1 2 3 4

5

(c) A walk from 1 to 4

Figure 2.11: Walk

• Trails are walks without repeated edges.

• Paths are walks without repeated vertices.

• Cycle is a walk with the same starting and end points.

• A vertex v is reachable from u if there exists a walk from u to v.

• A graph is connected if every vertex is reachable from another.

– Weakly connected: Undirected version of the graph is connected.

– Strongly connected: Directed graph is connected.

• A (connected) component is a maximally connected subgraph.

• Common distance/metric of graphs: geodesic distance or shortest path distance, where d(u, v) is given
by the length of shortest path between u and v. Distance can be infinity if v is not reachable from u.
A metric has to satisfy:

2-14



– d(x, y) = 0 ⇐⇒ x = y (we assume this property for geodesic distance);

– d(x, y) = d(y, x);
(This is true for undirected graphs, but may not hold for directed graphs)

– d(x, z) ≤ d(x, y) + d(y, z).

• Diameter: longest path length between vertices. For a graph that is not connected the diameter is
infinity.

MATH 586 Fall 2023
Statistics for Networks

Lecture 3: Spectral graph theory I

Lecturer: Robert Lunde Scribe: Yi Luo

3.5 Counting Walks Using the Adjacency Matrix

Ak gives information about the number of walks with length k. For example, for k = 2, we see that:

A2
ij =

n∑
k=1

AikAkj

Every walk of length 2 from i to j must visit an intermediate node before arriving at j. Moreover, when a
walk is present, AikAkj = 1 and is 0 otherwise. Since walks with different intermediate nodes are different
walks, it is clear that A2

ij gives us the total number of walks of length 2 from i to j.

Now, for k = 3, observe that:

(A3)ij = (A2 ×A)ij =
[∑n

k=1AikAkj · · ·
∑n

k=1AikAkn

] A1j

...
Anj

 .
By similar reasoning, every walk of length 3 from i to j must consist of a walk of length 2 and an edge from
the last node in the previous walk to node j. Thus, we see that this claim also holds true for k = 3. The
fact that Ak gives information about the number of walks with length k can be proven for arbitrary k by
induction.

The k = 3 case is practically important since trace(A3) is related to the number of triangles in undirected
graphs with no self-loops. In particular, we have

# triangles = tr(A3)/6.

To see this, note that for a given triangle with nodes i, j, k, we could have started the walk from any of
the vertices. Moreover, we could have moved clockwise or counterclockwise. Therefore, a given triangle is
counted as 6 different walks; by dividing by 6, we adjust for double-counting.

The trace of powers of A can be calculated with help of eigen-decomposition, for example

A = V DV T , tr(A) = tr(D) =

n∑
i=1

λi;

A3 = V D3V T , tr(A3) = tr(D3) =

n∑
i=1

λ3i .
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3.6 Spectral Graph Theory

We first start by reviewing the notion of eigenvalues and eigenvectors. In what follows, let A be a real, n×n
matrix.

Definition 3.6.1. λ is a (right) eigenvalue with corresponding (right) eigenvector v ̸= 0 if:

Av = λv

The above notion corresponds to right multiplication of a matrix A by an appropriate vector v. It is also
possible to consider left eigenvalues and eigenvectors. A left eigenvalue/eigenvector pair (λ, v) satisfies:

vTA = λvT ⇐⇒ AT v = λv.

Thus, while left and right eigenvalues/eigenvectors may differ in general, they are equivalent when A is
symmetric.

The eigenvalues of A are the roots of the characteristic polynomial pλ(A), defined as:

pλ(A) = det(A− λI).

The idea is that Av = λv for v ̸= 0 implies that (A − λI) is singular for appropriate λ and thus the
determinant is 0 for these choices of λ. The quantity pλ(A) is a polynomial in λ.

Note that in general, polynomials can have complex roots; thus eigenvalues of real matrices can be imaginary
(eigenvectors can have complex numbers as components as well). However, note the following:

Proposition 3.6.2. Suppose A is a n× n real, symmetric matrix. Then, all eigenvalues of A are real.

Since the spectrum of real, symmetric matrices are well-behaved, it is common to consider undirected graphs
when one is interested in eigenvalues and eigenvectors.

One may consider a related quantity known as singular values. For a real m× n matrix A, a singular value
and associated left and right singular vectors satisfy:

Av = σu ⇐⇒ ATu = σv

Unlike eigenvalues, singular values are non-negative.

3.6.1 Eigendecomposition

Any real symmetric n× n matrix admits an eigendecomposition of the form:

A = UDU⊤

with U orthonormal (U⊤U = I, UU⊤ = I), and D is a diagonal matrix of the form

D =

λ1 0
. . .

0 λn

 , λ1 ≥ · · · ≥ λn.

It should be noted that in certain situations, it is more natural to order the elements of D by magnitude
instead.

It is also common to express A in outer product form; that is, A =
∑n

i=1 λiuiu
⊤
i .
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3.6.2 Single Value Decomposition

We now consider SVD, a more general decomposition.

Any m× n real matrix A permits a factorization of the form:

A = U︸︷︷︸
m×m

D︸︷︷︸
m×n

V T︸︷︷︸
n×n

,

where D is diagonal and the number of nonzero elements r satisfies r ≤ min(m,n). The nondiagonal elements
are the singular values σr ≤ . . . ≤ σ1. U and V are both orthonormal; that is, UTU = UUT = Im and
V TV = V V T = In.

Using the left and right-singular vectors, A can be written also be written in outer product form as follows:

A =

r∑
i=1

σiuiv
⊤
i .

Moreover, using the SVD to express AA⊤ (and A⊤A), we see that:

A⊤A = (UDV ⊤)⊤(UDV ⊤) = V D⊤U⊤UDV ⊤ = V D⊤DV ⊤

AA⊤ = (UDV ⊤)(UDV ⊤)⊤ = UDD⊤U⊤,

We recognize these expressions as eigendecompositions for ATA and AAT , respectively. Therefore, we attain
the following relation between the singular values of A and the eigenvalues of AA⊤ (and A⊤A):

σ2
i (A) = λi(AA

⊤) = λi(A
⊤A).

For symmetric A, if we order the eigenvalues by magnitude, we have the relation:

σi(A) = |λi(A)|

3.6.3 Variational Representations for Eigenvalues

For real symmetric matrices, one can alternatively express the maximum eigenvalue as the solution to a
maximization problem:

λmax = max
∥v∥=1

v⊤Av = max
v ̸=0

v⊤Av

v⊤v

Of course, the maximum is attained with the corresponding eigenvector vn. One elementary way of proving
this identity is using the method of Lagrange multipliers to solve the constrained optimization problem.

Suppose that λn ≥ . . . ≥ λ1. Then, we have the following representation for λk:

λk = max
v ̸=0

v⊤
j v=0 ∀j: k<j≤n

vTAv

vT v

where v1, . . . vn are the eigenvectors associated with λ1, . . . , λn. This may also be proved using Lagrange
multipliers.

We also have the following result, which states that the eigenvalues are also solutions of an optimization
problem over a more general constraint set:
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Theorem 3.6.3. Variational Form/Max-min Form/Courant-Fischer-Weyl Max-min Form:

Let A be an n× n real, symmetric matrix with eigenvalues λn ≥ · · · ≥ λ1, then

λk = min
U

{
max
x ̸=0

{
x⊤Ax

x⊤x
, x ∈ U

}
,dim(U) = k

}
= max

U

{
min
x ̸=0

{
x⊤Ax

x⊤x
, x ∈ U

}
,dim(U) = n− k + 1

}
.

3.6.4 The Maximum Eigenvalue of A

Using the properties of eigenvalues derived above, we can now state an important result about the maximum
eigenvalue of an adjacency matrix. This result establishes that this eigenvalue is closely related to degrees.

Proposition 3.6.4. Let A be n× n adjacency matrix corresponding to an undirected graph. We have:

dave ≤ λmax ≤ dmax,

where dave denotes the average degree on the graph and dmax denotes the maximum degree on the graph.

Proof. To show λmax ≥ dave,

λmax = max
v ̸=0

v⊤Av

v⊤v

≥
∑n

i=1

∑n
j=1Aij∑n

i=1 1

≥ dave.

where above we chose the all-ones vector 1 to lower bound the variational form.

To prove the upper bound, consider an eigenvector v of the greatest eigenvalue λmax. We can choose a
component vj of v such that j takes maximum value of the components |v1|, . . . , |vn|. In what follows let
i ∼ j denote vertex i adjacent to vertex j. Then,

|λmax| =
|λmaxvj |

|vj |
=

|
∑n

i=1Ajivi|
|vj |

≤
∑
i∼j

|vi|
|vj |

≤ dj ≤ dmax.

The result follows.
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4.7 Laplacian Matrix

We now introduce the Laplacian matrix, which is an important object in spectral graph theory. In this
lecture, we assume that the adjacency matrix A corresponds to an undirected graph with no self-loops.
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Definition 4.7.1 (Laplacian matrix). The Laplacian matrix L is given by L = D−A,whereD = diag(d1, . . . , dn).
The entries of L are given by:

Lij =

{
di if i = j

−Aij if i ̸= j

To study the Laplacian matrix, it is helpful to consider an object known as the (oriented) incidence matrix.
To construct this oriented incidence matrix, for each {i, j} ∈ E, we pick an orientation, where one node is
the head, the other is the tail (note that the choice is completely arbitrary). We have the following notion:

Definition 4.7.2 (Incidence matrix). Define the |V | × |E| incidence matrix B as

Bij =


1 if i is in jth edge, i is head

−1 if i is in jth edge, i is tail

0 o.w.

Now observe that

L = BB⊤.

To see this, note that for i ̸= j, the term BikBjk is nonzero if and only if nodes i and j belong to the kth
edge. Moreover, when it is nonzero, one vertex is the head and the other is the tail. Thus,

(BB⊤)ij =

|E|∑
k=1

BikBjk = −Aij .

For i = j, each possible edge involving node i is counted once. Therefore,

(BB⊤)ii =

|E|∑
k=1

B2
ik = di

Reall that a n× n matrix A is positive semidefinite if x⊤Ax ≥ 0 ∀ x. We claim the following:

Proposition 4.7.3. L is positive semidefinite.

Proof. By using the representation L = BBT , we have:

x⊤(BB⊤)x = (B⊤x)⊤(B⊤x)

=
∑

(i,j)∈E

(xi − xj)
2 ≥ 0

Recall that positive semi-definiteness implies that all eigenvalues of the matrix are non-negative. It will turn
out that the eigenvalue zero of the Laplacian gives us substantial information about the connectivity of the
graph.

Before we explore these properties, note the following variational characterization of the minimum eigenvalue.

Proposition 4.7.4. Suppose that A is a real symmetric n× n matrix. Then,

λmin = min
∥x∥=1

xTAx = min
x ̸=0

xTAx

xTx
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The following proposition establishes that L has at least one 0 eigenvector and provides a corresponding
eigenvector.

Proposition 4.7.5. The vector 1 = (1, . . . , 1) is always an eigenvector of L, with eigenvalue 0.

Proof. Note that for 1, we have that:

1TL1 =
∑

(i,j)∈E

(1− 1)2 = 0

Since 1⃗ attains the minimum value of xTLx, it follows that it must be an eigenvector of the eigenvalue 0.

We now state the following result regarding the multiplicity of the zero eigenvalue.

Proposition 4.7.6. The multiplicity of the eigenvalue 0 for L gives the number of connected components in
the graph.

Proof. Step 1: Show # zero eigenvalues ≥ # connected components in graph.
For each connected component, consider a vector that is constant on the connected component and is 0 for
all other entries.

It is clear that these vectors are orthogonal. Moreover, since there are no edges between vertices in different
connected components, it is clear that for these vectors:

vTLv =
∑

(i,j)∈E

(vi − vj)
2 = 0

Thus, they correspond to zero eigenvalues.

Step 2: # zero eigenvalues ≤ # connected components.
We argue by contradiction. Suppose there exists another zero eigenvector vk+1, where vk+1 ̸= 0. Now we
claim that vk+1 must be constant on connected components.

To see this, suppose that it is not constant on a connected component. Suppose that the entries of the
eigenvector corresponding to this component can be grouped into K groups taking distinct values, where
K > 2 by assumption. Since the component is connected, there must be a path from one group to the other.
Thus for this edge, (vi − vj)

2 > 0 and thus v is not an 0 eigenvector, a contradiction.

Now, suppose vk+1 is constant on ith component, then vk+1 and vi are not orthogonal, which is a contradic-
tion.

4.8 Normalized Matrices

Normalized versions of the adjacency matrix and Laplacian also play an important role in spectral graph
theory. We define these notions below.

Definition 4.8.1 (Normalized adjacency matrix). The normalized adjacency matrix A is given by

A = D−1/2AD−1/2, where D−1/2 = diag(d
−1/2
1 , . . . , d−1/2

n )

Definition 4.8.2 (Normalized Laplacian). The normalized Laplacian matrix L is defined as:

L = I −A,
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where L satisfies:

Lij =


1 i = j

− 1√
di

√
dj

i ̸= j, Aij = 1

0 o.w.

Note that L can also be expressed as:

L = D−1/2LD−1/2

Let αi denote eigenvalue i of A, λi equal eigenvalue i of L, we have

1 = α1 ≥ . . . ≥ αn ≥ −1

0 ≤ λ1 ≤ . . . ≤ λn ≤ 2

We will prove some of these properties next class.
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5.9 Normalized Matrices (Continued)

Let A denote the normalized adjacency matrix and L denote the normalized Laplacian matrix, then it can
be shown that:

x⊤Lx = x⊤(I −A)x

=
∑
i∈V

x2i −
∑

(i,j)∈E

2xixj√
di
√
dj

=
∑

(i,j)∈E

(
xi√
di

− xj√
dj

)2

≥ 0

Thus, L is also positive semidefinite. From the above expression, it is clear that D1/21 is an eigenvector
corresponding to the eigenvalue 0.

Moreover, we see that for any eigenvector of L corresponding to a 0 eigenvalue, we see that we can choose

Proposition 5.9.1. Let αi denote eigenvalue i of A, and λi denote eigenvalue i of L, then we have

1 = α1 ≥ . . . ≥ αn ≥ −1

0 ≤ λ1 ≤ . . . ≤ λn ≤ 2
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Proof. By utilizing the positive semi-definite property, we have

x⊤Lx ≥ 0

x⊤(I −A)x ≥ 0

x⊤x− x⊤Ax ≥ 0

x⊤x ≥ x⊤Ax

1 ≥ x⊤Ax
x⊤x

.

Similarly,

x⊤(I +A)x ≥ 0

x⊤x ≥ −x⊤Ax
x⊤Ax
x⊤x

≥ −1

5.10 Norms on Matrices

Definition 5.10.1 (Norm). Norm ∥ · ∥ is a function X 7→ R that satisfies

1. ∥x∥ ≥ 0

2. ∥x∥ = 0Leftrightarrowx = 0

3. ∥αx∥ = |α| · ∥x∥, where α is a scalar

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Definition 5.10.2 (Frobenius norm). Let B be an m×n matrix, the Frobenius norm of B, denoted ∥B∥F ,
is given by

∥B∥F =

√√√√ m∑
i=1

n∑
j=1

B2
ij

=
√
trace(BB⊤)

=
√
trace(UΣU⊤) by eigendecomposition

=

√√√√ r∑
i=1

σ2
i (B) r represents the rank

Definition 5.10.3 (Operator norm).

∥B∥op = sup
∥v∥=1

∥Bv∥ = sup
v ̸=0

∥Bv∥
∥v∥

Proposition 5.10.4. ∥B∥op = σmax(B)
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Proof.

∥B∥2op =

(
sup

∥v∥=1

∥Bv∥

)2

= sup
∥v∥=1

∥Bv∥22

= sup
v ̸=0

(Bv)⊤Bv

v⊤v
= sup

v ̸=0

v⊤(B⊤B)v

v⊤v
= σ2

max(B)

Proposition 5.10.5. ∥B∥op ≤ ∥B∥F

Proposition 5.10.6. ∥Bv∥ ≤ ∥B∥op∥v∥

Proof. ∥Bv∥ ≤ supv ̸=0
∥Bv∥
∥v∥ ∥v∥

Proposition 5.10.7. ∥AB∥op ≤ ∥A∥op∥B∥op

Proof. ∥A(Bv)∥
∥Bv∥ ∥Bv∥ ≤ supBv ̸=0

∥A(Bv)∥
∥Bv∥ · sup∥v∥=1 ∥Bv∥

Proposition 5.10.8. ∥AB∥F ≤ ∥A∥F ∥B∥op and ∥AB∥F ≤ ∥A∥op∥B∥F

Proof.

∥AB∥2F =

n∑
i=1

∥Abi∥2 ≤
n∑

i=1

∥A∥2op∥bi∥2

= ∥A∥2op
n∑

i=1

∥bi∥2 = ∥A∥2op∥B∥2F

Proposition 5.10.9. Frobenius norm is invariant under orthogonal transformations. Suppose U⊤U = I,
then ∥UM∥F = ∥M∥F

Proof.

∥UB∥F =
√
trace

(
(UB)(UB)⊤

)
=
√
trace

(
UBB⊤U⊤

)
=
√
trace(BB⊤) = ∥B∥F

The following are other common matrix norms,

∥B∥∞ = max
i,j

|Bij |

∥B∥2→∞ = max
i

∥bi∥2.

For finite dimensional vector spaces, we have equivalentce of norms. Let ∥ · ∥α and ∥ · ∥β be two norms, then
there exist constants c1, c2 such that

c1∥x∥α ≤ ∥x∥β ≤ c2∥x∥α ∀x
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6.11 Norm on Matrices (Continued)

Proposition 6.11.1. If UUT = I, then ∥UA∥2op = ∥A∥2op

Proof.

∥UA∥2op = sup
x ̸=0

(UAx)T (UAx)

xTx
= sup

x̸=0

xTATUTUAx

xTx
= sup

x ̸=0

xTATAx

xTx
= ∥A∥2op

6.12 Spectral Perturbation

Suppose our n× n symmetric matrix can be expressed as

A = M︸︷︷︸
signal

+ E︸︷︷︸
noise

.

Q: Are eigenvalues/eigenvectors of A ”close” to M?

With PCA, we are interested in eigenvalues/eigenvectors of

Σ̂ =
1

n

n∑
i=1

XiX
T
i , E[Xi] = 0, Xi ∈ Rp,

Σ = E[XXT ],

Σ̂ = Σ + E.

In fixed dimensions, Σ̂− Σ
P−→ 0.

Also true (under different conditions for different norms) when d is growing with n.

6.12.1 Eigenvalue Perturbation

Theorem 6.12.1 (Weyl’s inequality). Suppose A, B are real symmetric matrices with eigenvalues λn ≥
· · · ≥ λ1, and γn ≥ · · · ≥ γ1, respectively. Then

max
1≤i≤n

|λi − γi| ≤ ∥A−B∥op.

Example 6.12.2. A = Σ̂, B = Σ. Thus

max
1≤i≤n

|λi(Σ̂)− λi(Σ)| ≤ ∥Σ̂− Σ∥op.
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Theorem 6.12.3 (Hoffman-Wielandt inequality). Under the same conditions as Weyl’s theorem,

n∑
i=1

(λi − γi)
2 ≤ ∥A−B∥2F .

Q: In typical statistical applications, how large is ∥Σ̂− Σ∥op?

A: If Σ = I and X ”light-tailed”, then we have

∥Σ̂− Σ∥op ≤
√
d

n
+
d

n
w.h.p,

∥Σ̂− Σ∥∞ ≤
√

log d

n
w.h.p.

6.12.2 Eigenvector perturbation

When are, for example, eigenvectors of Σ̂ and Σ close?

How can we compare v1, . . . , vk with v̂1, . . . , v̂k?

Recall:

aT b = ∥a∥∥b∥cosθ,
If ∥a∥ = ∥b∥ = 1, aT b = cosθ.

Definition 6.12.4 (Canonical angle). Let E be a matrix with orthonormal columns, F another with or-
thonormal columns. The first canonical angle is given by

θ1 = cos−1

 sup
x∈col(E), y∈col(F )

∥x∥=1, ∥y∥=1

xT y


= cos−1

(
sup

x ̸=0, y ̸=0

(Ex)T (Fy)

∥x∥∥y∥

)

= cos−1

(
sup

x ̸=0, y ̸=0

xT (ETF )y

∥x∥∥y∥

)
= cos−1

(
σmax(E

TF )
)
.

where σmax(A) = supx ̸=0, y ̸=0
xTAy
∥x∥∥y∥ is the maximum singular value.

The kth canonical angle is given by

θk = cos−1

 sup
x∈col(E), y∈col(F )

∥x∥=1, ∥y∥=1

xT xr=0, yT yr=0, ∀0<r<k

xT y


= cos−1

(
σk(E

TF )
)
.

Definition 6.12.5. Let sinΘ = diag(sin θ1, . . . , sin θk). This turns out that ∥sinΘ∥F is a metric on
d−dimensional linear space.
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Theorem 6.12.6 (Davis-Kahan sinΘ theorem). Let Σ̂, Σ ∈ Rp×p be symmetric with eigenvalues λ1 ≥ · · · ≥
λp, and λ̂1 ≥ · · · ≥ λ̂p, receptively. Fix 1 ≤ r ≤ s ≤ p, and let d = s − r + 1 and V = (vr, vr+1, . . . , vs),

V̂ = (v̂r, . . . , v̂s) ∈ Rp×d satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j. If δ = inf{|λ̂ − λ| : λ ∈ [λs, λr], λ̂ ∈
(−∞, λ̂s−1]

⋃
[λ̂r+1,∞)} > 0, then

∥sinΘ|F ≤ ∥Σ̂− Σ∥F
δ

.

We also have

sinΘ(v̂j , vj) ≤
∥Σ̂− Σ∥op

min(|λ̂j−1 − λj |, |λ̂j+1 − λj |)
.
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7.13 Sparsity

Suppose we flip a coin with probability p for each possible interaction {i, j} or (i, j) in graph and assign an
edge if heads. Then

E[# heads] = E[

n∑
i=1

n∑
j=1

Aij ]

= p

(
n

2

)

In most of the time, real-world graphs are actually much more sparser, or we can say

# edges

n2
→ 0

Definition 7.13.1. Sparse graphA graph is called sparse if # edges
n2 → 0 and the average degree grows with

n

Definition 7.13.2. Very sparse graphThe number of edges divided by n2 goes to 0 and the average degrees
converges to a constant as n grows

Most undirected graphs have one giant component with more than 90 % of vertices, but there are graphs
that have smaller components as well

7.14 Degree distribution

Most of real world networks have heavy tailed degree distributions.

Before we discuss heavy-tailed distributions, what does it mean for a distribution to have a light tail?
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Definition 7.14.1. Sub-exponential distributionsA random variable X is sub− Exp(K1) if:

P (|X − E[X]| ≥ t) ≤ 2 exp(
−t
K1

) ∀t ≥ 0

Recall the union bound:

P (

n⋃
i=1

Ai) ≤
n∑

i=1

P (Ai)

and also:

max
1≤i≤n

xi > t ⇐⇒ (x1 > t) ∪ (x2 > t) ∪ ... ∪ (xn > t)

Suppose that X1, . . . , Xn ∼ sub-exp(K1) (which might depends on t), then we have:

P ( max
1≤i≤n

|Xi − E[X]| > t) = P (

n⋃
i=1

|Xi − E[X]| > t)

≤
n∑

i=1

P (|Xi − E[Xi]| > t)

Now choose t = c log(n) for appropriate c . Then for n large enough,

max
1≤i≤n

Xi ≤ c log(n) (w.h.p)

Now suppose

log(f(x)) = −a log(x) + b

= log(x−a) + b

=⇒ f(x) = Cx−a

This implies that for some α:
P (X > t) = Ct−α

if P (X > t) ∼ t−α then X has Pareto tail (or ”scale-free”). Recall that the Pareto distribution has
P (X > t) = (Xm

t )α ∀t ≥ Xm.

For a network, α is usually in the range between 2 and 3 and for α < 2 the second moment does not exist.

7.15 Transitivity

A common question arise is given there is an edge/connection between (i, k) and (k, j). What is the proba-
bility that there is an edge/connection from i to j

Definition 7.15.1. Transitivity coefficient

C =
#closed paths of length 2

#paths of length 2

=
6×# triangles

# paths of length 2
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i j

k

Figure 7.12: A triangle
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8.16 Global Structure of Real-World Networks

In the realm of real-world networks, several key characteristics stand out:

• Sparsity

• Giant Connected Component

• Heavy-Tailed Degree Distributions (commonly known as Scale-Free Networks)

• Small World Phenomenon

– High transitivity + small average geodesic distances (typically around log n, where n represents
the number of vertices).

• Community Structure: These are essentially dense subnetworks within larger networks.

Understanding these features is essential, and we place particular emphasis on the significance of communities
for the following reasons:

• Communities often represent functional subunits within a system.

• Social networks frequently contain distinct sub-communities.

• Analyzing network patterns becomes more insightful when considering community structure. For
instance, biological networks reveal specific functions within dense subnetworks.

These elements collectively form some of the most critical aspects of network analysis.

8.17 Local Structure of Networks

One of the fundamental questions in network analysis revolves around identifying the importance of individual
nodes. To elucidate this concept, consider the example of a Twitter network, where some individuals may
hold more prominence, or in biological networks, certain segments may be more crucial.
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Node importance can be quantified through various measures, including:

• Degree: For directed networks, both in-degree and out-degree are relevant.

• Eigenvector Centrality: Calculated as λxi =
∑

j ̸=iAijxj , which yields a higher score for nodes

connected to more influential peers. For undirected networks, it simplifies to λx = A⊤x, a result
derived from the Perron-Frobenius Theorem.

Definition 8.17.1. An n× n binary matrix A is considered ”irreducible” if its associated graph is strongly
connected.

Theorem 8.17.2 (Perron-Frobenius). Suppose that A is an n×n, irreducible matrix with spectral radius of
ρ(A) > 0. We have the following:

• ρ(A) is a simple eigenvalue and is positive.

• A possesses both positive left and right eigenvectors.

This theorem implies that under certain conditions, the spectral radius can align with the maximum eigen-
value, which is inherently simple.

There exists a variation of the Perron-Frobenius theorem for non-negative matrices, although the corre-
sponding eigenvectors may not strictly require positivity.

8.17.1 Pagerank Centrality

Pagerank centrality provides a scoring mechanism for nodes based on the influence they inherit from con-
nections to highly influential nodes. It can be expressed as:

ci = α

n∑
j=1

Aji

doutj

cj + 1

Here, α serves as a normalization factor to account for nodes’ connectedness to influential counterparts.
Additionally, an offset factor is included, analogous to the Perron-Frobenius theorem, which accommodates
cases where irreducibility may not hold. This offset factor ensures strict positivity.

The formula can be represented in matrix form as:

c = αA⊤D−1c+ I

Where D = diag(dout1 , . . . , doutn ).
c = (I − αA⊤D−1)−1

8.17.2 Assortativity Coefficient

The assortativity coefficient measures the similarity between neighboring nodes. It is calculated using the
formula:

rx =

∑
(i,j)∈E)(Xi − x̄)(Xj − x̄)√∑

(i,j)∈E)(Xi − x̄)2
∑

(i,j)∈E)(Xj − x̄)2

Here, X̄ represents the average of attribute values associated with nodes.
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The coefficient provides a correlation measure that can be computed for various networks. The sum of
individual assortativity coefficients (ri) across nodes gives an overall network assortativity (r).

In essence, the assortativity coefficient helps gauge how closely related neighboring nodes are within a
network.
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Before staring the new topic of sampling, we will first finish some last parts about local

structures of network.

9.18 Last Part of Local Structures of Networks

9.18.1 Measures of Node Importance

Many have been proposed, here are some commonly used.

-Eigenvector Centrality

-Page Rank Centrality

-Closeness Centrality

Ci =
1

n

n∑
i=1

d(i, j),where d(, ) is geodistic distrance

-Local Transitivity

Ci =
# neighbours of i that sharing an edge

# pairs of neighbours

C =

n∑
i=1

Ci

Remark: this measure is different from transitivity.

9.18.2 Measure of Similarity

-Assortativity Coefficient (e.g. assortative by degree)

-Common Neighbours

S(i, j) =

n∑
k=1

AikAjk

S
′
(i, j) =

∑n
k=1AikAjk√

didj
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9.19 Introduction

When we study the network structure of some objects, it is often the case that modelling the whole collection
of objects in a single group is impossible due to unavailability of the data and lack of ability to handle this
large graph computationally. We then consider sampling this collection to can infer the structure by the
samples. Let G = (V,E) be a population graph that includes the all from which we sample. We take a
sample of nodes E∗ ⊆ E and edges V ∗ ⊆ V to form a sample graph G∗ = (V ∗, E∗). Suppose we have some
graph parameter η(G). Can we learn this parameter from our samples by building an estimator η̂ from G∗?
What are some common network sampling schemes?

Our experience in classical statistical point estimation tells us we may just build η̂ = η(G∗), but it turns out
that this does not quite work in the graph setting. [1] example 5.1 illustrates the subtlety.

9.20 Network Sampling Schemes

We give some examples of commonly used network sampling schemes.

1 Induced subgraph sampling/node sampling: Take a random sample of n vertices from the pop-
ulation graph G and observe the subgroup induced by these vertices.

2 Incident subgraph sampling/edge sampling: Take a random sample of m edges from the popu-
lation graph G and observe the subgroup with all of these edges and vertices incident to them. This is
a dual version of node sampling.

3 Ego Sampling: Observe all the nodes that are neighbors of a fixed vertex and often complete them
by the induced subgraph.

4 Snowball sampling: Pick a subset of the vertex set V0 ⊆ V as the seed nodes. In the first wave,
we include neighbors of seed nodes that aren’t themselves seeds, resulting in V1 ⊇ V0 Inductively, in
the k-th wave, we include neighbors of Vk−1 that have not appeared in the sample. This sampling
process typically continues until no new nodes recruited or some stopping criteria met. Note that the
number of recruits can also be a fixed number. This sampling is closely related to respondent-driven
data (RDS).

9.21 Sampling Bias

Now we come back to our original inference question. How can we account for the sampling bias associated
with these different schemes? Suppose we have a population U = {1, · · · , N}, each unit i ∈ U associated
with a scalar value of interested yi. The inclusion probability of the unit i is the probability of inclusion
of the unit i in any sample with respect to the sampling design D and will be denoted by πi. We then look
at a simple estimation case: the estimation for the population mean

µ =
1

N

N∑
i=1

yi

When sampling with unequal probabilities (that is, there are higher chances of picking some over others),
the sample mean can be biased. The Horvitz-Thompson estimator solves this problem via weighted
mean. Let S be the indices of a sample of vertices of size n. Let πi be the probability of including node i in
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the sample. Assuming πi > 0 for each unit i, the estimator is given by

µ̂ =
1

N

∑
i∈S

yi
πi

Theorem 9.21.1. Horvitz-Thompson estimator is an unbiased estimator, assuming πi > 0.

Proof. Letting zi be the Bernoulli variable indicating whether node i belongs to the S, We calculate the
expectation

E(µ̂) = E

(
1

N

∑
i∈S

yi
πi

)
= E

(
1

N

∑
i∈U

yizi
πi

)

= E

(
1

N

N∑
i=1

yizi
πi

)
=

1

N

N∑
i=1

yi
πi

E(zi)

=
1

N

N∑
i=1

yi
πi
πi =

1

N

N∑
i=1

yi = µ

where we used the fact E(zi) = P(zi = 1) = πi

MATH 586 Fall 2023
Statistics for Networks

Lecture 10: Network Sampling II and Markov Chain I

Lecturer: Robert Lunde Scribe: Anthony Hong

10.22 Horvitz-Thompson Estimator (cont’d)

Let G = (V,E) be the population graph and G∗ = (V ∗, E∗) be the sample graph and η(G) be the graph
parameter of interest. Let the population be U = {1, · · · , N}, each unit i ∈ U associated with a scalar value
of interested yi, and let µ be the population mean. We continue our study of network sampling. Recall the
Horvitz-Thompson estimator is given by

µ̂ =
1

N

∑
i∈S

yi
πi

where S is the indices of a sample of vertices of size n, πi be the probability of including node i in the sample.
Letting zi be the Bernoulli variable indicating whether node i belongs to the S, we notice that E(zizj) = πij
(the probability of including both) and E(zi) = πi and E(zj) = πj . Then the variance is given by

Var(µ̂) = Var

(
1

N

∑
i∈U

yizi
πi

)

=
1

N2

∑
i∈U

∑
j∈U

yiyj
πiπj

Cov(zi, zj)

=
1

N2

∑
i∈U

∑
j∈U

yiyj

(
πij
πiπj

− 1

)
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and we have the estimator

σ̂2
µ̂ =

1

N2

∑
i∈S

∑
j∈S

yiyj

(
1

πiπj
− 1

πij

)
so that E(σ̂) = Var

We can also compute Horvitz-estimate for parameter of the form

T =
∑

(i,j)∈U2

yij

where yij is the value of interest for each edge (i, j). The estimator is given by

T̂ =
∑

(i,j)∈S2

yij
πij

We end this section with estimation of the number of vertices N on the graph, or the total population. One
common method for estimating N is called “capture-recapture”. Consider a sampling without replacement
with two stages:

(1) Mark all vertices in first stage to get S1;

(2) In the second stage, count how many vertices re-appear.

Calculate the estimator
N̂ =

n2
m
n1

where |S1| = n1, |S2| = n2, and m is the number of vertices re-appear in the second stage. To see why this
estimator works, we see this sampling gives a hypergeometric distribution below

L(m;N) =

(
n1

m

)(
N−n1

n2−m

)(
N

n1+n2

)
It is an exercise to see that the MLE of N is then N̂ .

10.23 Stochastic Process: Markov chain on discrete space

A stochastic process is a collection of E-valued random variables {Xt : Ω → E}t∈T with state space
(E, E) and parameter set T . For each ω ∈ Ω, let X(ω) denote the function T → E; t 7→ Xt(ω); then
X(ω) is an element of ET , the collection of all functions from T to E. We may regard the stochastic
process (Xt)t∈T as a random variable X that takes value in the product space (ET , ET ), since the map
X : Ω → ET ;ω 7→ X(ω) is measurable relative to D and ET . When T = N = {0, 1, · · · } and (E, E) = (I, I),
we come to the definition of the first major class of stochastic process in this note, adapted from [2]:

Definition 10.23.1 (Discrete-Time Markov Chain). We say (Xn)n∈N is a discrete-time Markov chain
with initial distribution λ and transition matrix P = (pij)i,j∈N

, or Markov(λ, P ) for short, if

(i) X0 has distribution λ, i.e., ∀i0 ∈ I : P(X0 = i0) = λi0

(ii) for n ≥ 0, conditional on Xn = i, Xn+1 has distribution (pij)j∈I , i.e., P(Xn+1 = j|Xn = i) = pij ;

(iii) for n ≥ 0, (Xn+1 = j|Xn = i) is independent of X0, · · · , Xn−1. ♦
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We leave it as an exercise by induction to show that (iii) is equivalent of saying

∀i0, · · · , in+1 ∈ I : P(Xn+1 = in+1|X0 = i0, · · · , Xn = in) = P(Xn+1 = in+1|Xn = in)

Continuous-time Markov chain (Xt)t≥0 is a stochastic process with t belonging to an uncountable
parameter set T = [0,∞) and random variables Xt : Ω → I, where I is still a countable set. Formal
treatment of this requires us to understand Q-matrices (see [2] chapter 2 and 3). We continue our study of
the discrete version. Here are two properties of it.

Proposition 10.23.2.

(i) (Xn)0≤n≤N is Markov(λ, P ) if and only if

∀i0, · · · , iN ∈ I : P(X0 = i0, · · · , X1 = i1, · · · , XN = iN ) = λi0pi0i1pi1i2 · · · piN−1iN

(ii) (Markov property): Let (Xn)n≥0 be Markov(λ, P ). Then, conditional on Xm = i, (Xn+m)n≥0 is
Markov(δi, P ) and is independent of the random variables X0, · · · , Xm, where δi = (δij : j ∈ I) is the
unit mass at i and

δij =

{
1, if i = j,

0, if i ̸= j.

We regard distributions and measures λ as row vectors whose components are indexed by I, just as P is a
matrix whose entries are indexed by I×I. We extend the matrix multiplication and multiplication of matrix
by row vector to the general sense in the obvious way, defining a new measure λP and a new matrix P 2 by

(λP )j =
∑
i∈I

λipij, (P 2)ij =
∑
k∈I

pikpkj .

We define Pm similarly for any n. We set P 0 = I where (I)ij = δij . We write p
(n)
ij = (Pn)ij for the (i, j)

entry in Pn. In the case where λi > 0 we shall write Pi(A) for the conditional probability P(A|X0 = i).
By the Markov property at time m = 0, under Pi, (Xn)n≥0 is Markov(δi, P ). So the behaviour of (Xn)n≥0

under Pi does not depend on λ.

Theorem 10.23.3 ( [2] Theorem 1.1.3). Let (Xn)n≥0 be Markov(λ, P ). Then, for all n,m ≥ 0,

(i) P(Xn = j) = (λPn)j;

(ii) Pi(Xn = j) = P(Xn+m = j|Xm = i) = p
(n)
ij

Proof. (i) By Proposition 2.2 (i)

P(Xn = j) =
∑
i0∈I

· · ·
∑

in−1∈I

P(X0 = i0, · · · , Xn−1 = in−1, Xn = j)

=
∑
i0∈I

· · ·
∑

in−1∈I

λi0pi0i1 · · · pin−1j = (λPn)j

(ii) By the Markov property, conditional on Xm = i, (Xm+n)n≥0 is Markov(δi, P ); then take λ = δi in
(i).

In light of this theorem we call p
(n)
ij the n-step transition probability from i to j. The following examples

illustrates how to calculate it.
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Example 10.23.4 ( [2] Example 1.1.4). Suppose that whether it rains tomorrow depends on previous
weather conditions only through whether it is raining today. Suppose further that if it is raining today, then
it won’t rain tomorrow with probability α, and if it is not raining today, then it will rain tomorrow with
probability β. If we say that the system is in state 0 when it rains and state 1 when it does not, then the
preceding system is a two-state Markov chain having transition probability matrix

P =

(
1− α α
β 1− β

)
and is represented by Figure 3.

0 1

α

β

Figure 10.13: A two-state Markov chain

We exploit the relation Pn+1 = PnP to write

p
(n+1)
00 = (Pn+1)00 = (PnP )00 =

∑
k=0,1

p
(n)
0k pk0 = p

(n)
00 p00 + p

(n)
01 p10 = p

(n)
00 (1− α) + p

(n)
01 β

We also know that pn00 + p
(n)
01 = P0(Xn = 0 or 2) = 1, so by eliminating p

(n)
01 we get a recurrence relation for

p
(n)
00 :

p
(n+1)
00 = p

(n)
00 (1− α− β) + β, p

(0)
00 = 1.

This has a unique solution:

p
(n)
00 =

{
β

α+β + α
α+β (1− α− β)n, for α+ β > 0,

1, for α+ β = 0. ♢

As illustrated in the scenario above, we percieve X = (Xn)n≥0 as a kind of “random walker” on a graph
with |I| vertices (|I| = 2 in this case). The example only specifies the P matrix, but a complete discrete-time
Markov chain also includes an intial distirbution by which the random variable X0 assigns the position i0
where the walker is born. X1 assigns i1 where the walker goes from i0, · · · , Xn+1 assigns in+1 where the
walker goes from in. pij is the probability that X will go to position j given X is currently at position i,
but notice that X’s choice is regardless of the time or step when X is at. Namely,

∀i0, · · · , in+1 ∈ I : P(Xn+1 = in+1|X0 = i0, · · · , Xn = in) = P(Xn+1 = in+1|Xn = in) = pij

MATH 586 Fall 2023
Statistics for Networks

Lecture 11:Random Walks Continued, Part II

Lecturer: Robert Lunde Scribe: Samuel Naranjo Rincon

11-35



11.24 Introduction

A random walk on a graph is a time-homogeneous discrete time markov chain with n states, where the
transition probability is given by:

P (Xn+1 = j|Xn = i) =

{
1
di

Aij = 1

0 o.w.

So, the probability of a ste, or edge ij, is given by the conditional probability P (Xn+1 = j|xn = i). And this
is influenced by the degree of node i.

11.25 Markov Properties:

We have that Markov chains hold this probability property:

P (Xn+1 = λn+1|(Xn = λn, ..., (X0 = λ0) = P ((Xn+1 = λn+1|(Xn = λn)

This Markov property implies:
P (Xn = λn, .., Xo = λ0)
= P (Xn = λn|Xn−1 = λn−1, ..., X0 = λ0) ∗ P (Xn−1 = λn−1, ..., X0 = λ0)
= P (Xn = λn|Xn−1 = λn−1) ∗ P (Xn−1 = λn−1|Xn−2 = λn−2) ∗ ... ∗ P (X0 = λ0)

Proposition:
Pm
ij = P (Xm = j|X0 = i)

Proof for m=2:

P (X2 = j|X0 = i) =

w∑
k=1

P (X2 = j|X1 = k,X0 = i)P (X1 = k|X0 = i)

=

n∑
k=1

P (X2 = j|X1 = k)P (X1 = k|X0 = i) =

n∑
k=1

PikPkj = P 2
ij
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Let π0 = (P (X0 = 1), ..., P (Xo = n))

Proposition:
P (Xm = i) = (π

′

0P
m)i

P (X1 = i) =

w∑
k=1

P (X1 = i|X0 = k)P (X0 = k)

=

w∑
k=1

π0(k)Pki

= (π
′

0P
m)i

• (Xt)t≥1 is stationary if from any n, t1, ..., tn ≥ 1 and for any t: (Xk1, ..., Xkn)
d
= (Xt1+τ , ..., Xtn+τ )

• A Markov chain is stationary if π0 satisfies:

π
′

0p = π
′

0

π
′

0p
2 = (π

′

0p)p

= π
′

0p

= π
′

0

• A stochastic process Xt where t ≥ 1 is time reversible if for any n, tn and τ :

(Xt, ..., xtn)
d
= (Xτ−t1, ..., Xτ−tn)

• A Markov chain is reversible if the detailed balance condition, given by:
λ(i)Pij = λ(j)Pji∀ holds.

Proposition:
If detailed balance condition holds, (Xt) where t ≥ 1 is stationary.
Proof :

n
k=1λ(k)Pkj =

n∑
k=1

λ(j)Pjk

=⇒
n∑

k=1

λ(k)Pkj = λ(j)

n∑
k=1

Pjk

=⇒
n∑

k=1

P (X1 = j|X0 = k)P (X0 = k) = λ(j)

=⇒ P (X1 = j) = λ(j)
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Proposition:
λ(i) = di

2|Ei| is a stationary distribution for a random walk on a graph.

Proof :
Plug into a detailed balance:

di
2|Ei|

1

di
=

di
2|Ej |

1

dj

if Aij = 1

Question: When does lim
k→∞

P t = π where π =


λ
λ
...
λ



For random walks on graphs, this holds when graph is connected and not bipartite.
Observe that P = D−1A
It also turns out that P is similar to A = D−1/2AD−1/2

This is because we know that two matrices A and B are similar if there exists matrix C such that: A = CBC−1

We start with that and show the following:

P = D−1/2AD−1/2

P t = D−1/2AtD−1/2

= D−1/2
n∑

k=1

λtAvkv
′

kD
−1/2
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12.26 Introduction

Fundamental Theorem of Markov Chain is a general result that establishes conditions under which

lim
t→∞

P t = Π,

where

Π =


π
π
.
.
.
π
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In otherwords, ∀i, j, limt→∞ P t
ij = π(j) = P (x0 = j).

For a Random Walk on a graph, limt→∞ P t = Π, if G is connected and not bipartite.

P = D−1A (Random Walk Laplacian)

P = D− 1
2AD− 1

2 where A = D− 1
2AD− 1

2 (normalized adjacency matrix).

P t = D− 1
2AD− 1

2

P t =
∑n

k=1 D
− 1

2λtkνkν
′

kD
− 1

2 and recall that x
′
αx =

∑
(i,j)∈E

(
xi√
di

− xj√
dj

)
P t

ij =
∑n

k=1 λ
t
kνk(i)ν

′

k(j)
√

di

dj

P t
ij = 1t

√
didj

2|E|2|E|

√
di

dj
+
∑n

k=1 λ
t
kνk(i)ν

′

k(j)
√

di

dj
with |λ| < 1

P t
ij =

dj

2|E| +R where
dj

2|E| = π(j)

12.27 Lemma:

Suppose that G is bipartite. Then λmin = −1 if and only if G is bipartite.

If λ is an eigenvalue of A then so is −λ.

Proof:

If G is bipartite, then:

A =

[
0 B
B′ 0

]

Suppose

[
x
y

]
is eigenvector of A with value λ

A

[
x
y

]
= λ

[
x
y

]
so

By = λx

B
′
x = λy

Consider

[
x
y

]
where

A

[
x
−y

]
=

[
−By
B

′
x

]
=

[
−λx
λy

]
= −λ

[
x
−y

]
Proposition:

Suppose G is connected. Then λmin = −1 iff G is bipartite.

Proof:

12-39



|λmin| = |
∑
i,j

Ai,jνinuj | where ||ν|| = 1

≤
∑
i,j

|Ai,j ||νi||νj |

≤
∑
i,j

|Ai,j |zi · zj

where Z is eigenvectors corresponding to λmax

For equality to hold, it must be the case that |νiνj | = Zi · Zj , ∀(i, j) ∈ E

For each edge, one coordinate must be positive, the other negative.

We can partition nodes into the following sets: U = {i : vi > 0} and V = {j : vj < 0}, since no edges can be
present within U an V. G connected and λmin = −1, then G is Bipartite.

Let ∆(t) = maxi,j |Pij

λj
− 1| we can show that ∆(t) = γt

λmin
where γ = max(λ2, |λn|)

Proof:

∆(t) = maxi,j |
Pij

λj
− 1|

≤ maxi,j

n∑
k=2

|λk|t|Vk(i)|Vk(j)|
λj

·

√
di
dj

≤ maxi,jγ
t

n∑
k=1

|Vk(i)||Vk(j)|√
λiλj

where λ(i) =
di
2|E|

≤ maxi,jγ
t (
∑n

k=1 |V 2
k (i)|)(

∑n
k=1 |V 2

k (j)|)
λmin

where ||V u|| = 1

=
γt

λmin
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13.28 Introduction

A random walk on a graph is a Markov chain where:

Pij = P (Xn+1 = j | Xn = i) =

{
1
di

if Aij = 1

0 otherwise

The stationary distribution π is given by:
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π =

(
D1

2|E|
, . . . ,

Dn

2|E|

)
If G is connected and not bipartite, then we have:

lim
t→∞

P t
ij = πj , where π =

(
1√
Di

, . . . ,
1√
Dn

)T

For a lazy random walk on the graph:

Q =
1

2
I +

1

2
P

Define the discrepancy as:

∆(t) = max
i,j

∣∣P t
ij − πj

∣∣
For a random walk (RW) on a graph, we have:

∆(t) ≤ γt

πmin

where

γ = max
i,j

(Di, Dj)

and

πmin = min (π1, . . . , πn)

For two probability mass functions P and Q, the total variation distance is defined as:

∥P −Q∥TV = sup
A∈A

|P (A)−Q(A)|

For discrete distributions, it is clear that

max
A∈A

P (A)−Q(A)

is attained by

A = {x : P (x) ≥ Q(x)}

Using similar arguments,

max
A∈A

Q(A)− P (A)

is attained by

Ac = {x : P (x) < Q(x)}

The total variation distance between two probability mass functions P and Q is:

∥P −Q∥TV =
1

2

∑
x∈S

|P (x)−Q(x)|
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This can be rewritten as:

∥P −Q∥TV =
1

2

(∑
x∈A

|P (x)−Q(x)|+
∑
x∈Ac

|P (x)−Q(x)|

)

where A and Ac are defined as above.

We are often interested in:

sup
x∈X

∥P t(· | X0 = i)− π∥TV

The total variation distance is given by:

∥P t(· | X0 = i)− π∥TV =
1

2

n∑
j=1

∣∣∣∣P t
ij

πj
− 1

∣∣∣∣πj
This can be further bounded by:

≤ 1

2

n∑
j=1

max
i,j

∣∣∣∣P t
ij

πj
− 1

∣∣∣∣πj
And simplified to:

= ∆(t)
1

2

n∑
j=1

πj
πj

= ∆(t)

The total variation distance can be expressed as:

∥P t(· | X0 = i)− π∥TV =
1

2

n∑
j=1

∣∣∣∣P t
ij

πj
− 1

∣∣∣∣πj
This can be further bounded by:

≤ 1

2

n∑
j=1

max
i,j

∣∣∣∣P t
ij

πj
− 1

∣∣∣∣πj
And simplified to:

= ∆(t)
1

2

n∑
j=1

πj
πj

= ∆(t)

For the supremum over i we have:

sup
i

∥P t(· | X0 = i)− π∥TV ≤ 1
√
πmin

γt
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Conductance

The conductance of the cut (S, Sc) is defined as:

ϕ(S, Sc) =
|∂(S)|

min(d(S), d(S))

where

∂(S) = {(i, j) ∈ E | i ∈ S, j ∈ Sc}

and

d(S) =
∑
i∈S

di

Recall

π(S) =
∑
i∈S

di
2|E|

Thus, we have

ϕ(S, Sc) =
|∂(S)|

2|E|π(S)

Observe
|∂(S)|
2|E|

=
∑
i∈S

∑
j∈Sc

π(i)Pij

π(S, Sc)

since

π(S, Sc) =
∑
i∈S

∑
j∈Sc

π(i)Pij

∑
i∈S

∑
j∈Sc

di
2|E|

Pij =
∑
i∈S

∑
j∈Sc

di
2|E|

1

di
1(Aij = 1)

Which simplifies to:

=
|∂(S)|
2|E|

which is a tighter bound.

MATH 586 Fall 2023
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Lecture 14: Random Walks in Graph IV
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14.29 Random Walks on graph Review

14.29.1 Matrix representations

Pij = P (Xn+1 = j|Xn = i) =

{
1
di

if Aij = 1,

0 otherwise.

With this transition matrix, a stationary distribution is given by

π = (
d1
2|E|

, . . . ,
dn
2|E|

)

14.29.2 Total Variaton norm

∥P −Q∥TV = sup
A∈A

|P (A)−Q(A)| = 1

2

∑
X∈S

|p(x)− q(x)|

The second equality holds if p,q are discrete

For random walks on the graph:

sup ∥P t(·|x0 = i)− π∥TV ≤ γ

πmin
where γ = max(λ2, |λn|), πmin =

mini di
2|E|

14.29.3 Conductance of a cut

ϕ(S, S̄) =
|∂(S)|

min(d(S), d(S̄)

where ∂(S) = {(u, v) ∈ E : u ∈ S, v ∈ S̄}, d(S) =
∑

i∈S di

Conductance of graph

ϕG = min
S
ϕ(S, S̄) = min

|S|≤ |v|
2

|∂(S)|
d(S)

= min
|S|≤ |V |

2

π(S, S̄)

π(S)

Another notion of conductance

Φ(S, S̄) =
π(S, S̄)

π(S)π(S̄)

ΦG = min
S

Φ(S, S̄)

Theorem 14.29.1 (Cheeger Inequality).

ϕ2G
2

≤ 1− λ2(A) ≤ 2ϕG,
Φ2

G

8
≤ 1− λ2(A) ≤ ΦG

Suppose that G is a directed graph, we could write P = D−1A, but connectness is not guaranteed. Then,
we could transform P = (1 − α)D−1A + αB to make it connected. Here, we use doiut =

∑n
j=1Aij and

B =


1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n

.
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14.30 Metropolis-Hasting Algorithm

Recall for the previous random walks in graph, we have π = ( D1

2|E| , · · · ,
Dn

2|E| ).

Suppose we want to modify a Markov Chain to have a different stationary measure. Let P (·|·) be the
transition kernel associated with the original Markov chain. Consider the following algorithm.

Algorithm 1 Metropolis-Hasting for Random Walks in Graph

1: Generate Yn+1 ∼ P (·|Xn = xn)

2: Xn+1 =

{
yn+1 with probability ρ(Xn, Xn+1)

xn with probability 1− ρ(Xn, Xn+1)

3: ρ(x, y) = min(ϕ(y)P (x|y)
ϕ(x)P (y|x) , 1)

Show that π is stationary distribution using detailed balance πiQij = πjQji∀i, j.

πiPij
πjPji

πiPij
= πjPji

Example, suppose we want to have the stationary distribution of interest is π = ( 1n , · · · ,
1
n ), then we just

want to have ρ(x, y) = min(dx

dy
, 1), and Qij =

{
1
di

if di ≤ dj
1
dj

if dj > di

MATH 586 Fall 2023
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Lecture 15: Random Graph

Lecturer: Robert Lunde Scribe: Sayan Das

15.31 Random Graph models

• Starting point : some notion of uniform distribution on graphs.

• Gn,m is a model on nodes where all graphs with m edges equally likely,

P (G = g) =
1((
n
2

)
m

) , for all g with m edges.

• Gn,p model : assign to each graph g with n nodes and m edges.

P (G = g) = pm(1− p)(
n
2)−m

Equivalently, Aij = Aji ∼ Ber(p). For Gn,p, it is immediate that Di ∼ Bin(n− 1, p), Di =
∑

j ̸=iAij .

• It is common study Gn,p with p→ 0.
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• Key questions: what are thresholds for certain graph properties to appear?
For example, it can be shown that

lim
n→∞

P (Gn is connected) =

{
1, c > 1

0, c < 1
, pn =

c log(n)

n
.

• It can be shown

P (G contains isolated node) → 1, if pn <
log n

n

• It will often be the case that Gn,p and Gn,m have analogous properties if one considers p = m

(n2)
.

Idea: Some threshold where giant components emerge. Let pn = λ
n , if λ > 1: giant component; λ < 1:

multiple smaller components.

Theorem: Suppose λ > 1, then ∃ a constant B such that with probability tending to 1, there is only one
component with more than B log n vertices. Moreover, the size of the largest component is Θ(n).

Theorem: Suppose p = λ/n, λ < 1. For all sufficiently large a,

P
(

max
1≤i≤n

|Si| > a log n
)
→ 0

where |Si| is the size of component that contains node i.

MATH 586 Fall 2023
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Lecture 16:

Lecturer: Robert Lunde Scribe: Wei Li

16.32 Exponential Random Graph Models

Definition: Suppose (X1, . . . , Xn) ∼ Pθ, where P = {Pθ : θ ∈ Θ}. A statistic T ((X1, . . . , Xn)) is sufficient
for θ if the distribution of (X1, . . . , Xn)|T doesn’t depend on θ.

Theorem: A statistic T (X1, . . . , Xn) is sufficient for θ if and only if the joint pdf/pmf permits a factorization
of the form,

f(x1, . . . , xn) = h(x1, . . . , xn) g(T, θ).

Exponential family: A class of distribution P = {Pθ : θ ∈ Θ} is an exponential family if pdf/pmf permits
factorization of the form,

f(x; θ) = h(x) exp(η(θ)TT (x)−A(θ)) = h(x1, . . . , xn) g(T, θ)(Factorization form).

Example 1: Poi(λ)

f(x;λ) =
e−λλx

x!
=

1

x!
expx log(λ)− λ.

Example 2: Bin(n, p)

PX(x) =

(
n

x

)
px(1− p)n−x =

(
n

x

)( p

1− p

)x
(1− p)n =

(
n

x

)
exp

(
x log

( 1

1− p

)
− (−n log(1− p))

)
.
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Canonical form of the exponential family:

f(x; η) = h(x) exp(ηTT (x)−A(η)).

Suppose T =
∑

1≤i<j≤nAij . Let X ∈ {0, 1}(
n
2), then

f(x; θ) ∝ exp (θT )

∝ exp (θ
∑

1≤i<j≤n

aij)

f(x; p) = p
∑

1≤i<j≤n aij (1− p)(
n
2)−

∑
1≤i<j≤n aij

=
( p

1− p

)∑
1≤i<j≤n aij

(1− p)(
n
2)

= expT log
( p

1− p

)
−
(
n

2

)
log(1− p)

∝ exp(Tθ).
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17.33 Review

17.33.1 Exponential families

P = {Pθ : θ ∈ Θ} is an exponential family if the pdf/pmf permits a representation of the form:

f(x; θ) = h(x) exp(η(θ)⊤T (x)−A(θ)).

By factorization theorem, T (x) is sufficient.

17.33.2 Canonical form of Exp family

Let η = η(t). Consider parameterization:

f(x; η) = h(x) exp(η⊤T (x)−A(η))A(η) = log

∫
h(x) exp(T⊤η)

log normalizer
dµ.

17.34 Exponential Random Graph Modes (ERGMs)

• Sufficient statistics T (x) = (T1(x), · · · , Tk(x)).

• Construct exponential family of form f(x; θ) = exp(T (x)⊤θ)/z(θ), where x ∈ {0, 1}(
n
2).

17-47



17.34.1 MGD of Exponential Families

MT (s) = Ees
⊤T

=

∫
exp(s⊤T )h(x) exp(η⊤T −A(η))dµ

= exp(−A(η))
∫

exp((s+ η)⊤T (x))h(x)dµ(x)

= exp(A(η + s)−A(η))

KT (s) = logMT (s).

For exponential families,

KT (s) = A(η + s)−A(η)

∂

∂si
[KT (s)]s=0 = lim

n→0

A(η + hei)−A(η)

h

=
∂

∂ηi
A(η) = ETi

∂2

∂si∂sj
[KT (s)]s=0 = Cov(Ti, Tj).

where ei = denotes the unit vector such that (ei)i = 1 and (ei)j = 0 for j ̸= i.

Similarly,

∂2

∂ηi∂ηj
A(η) = Cov(Ti, Tj).

Consider maximum likelihood equation of η,

L(x; η) = h(x) exp(η⊤T (x)−A(η))

l(x; η) = logL(xj , η)− log h(x) + η⊤T (x)−A(η).

Then,

∂l

∂ηi
= 0 ⇒ Ti(x)−

∂

∂ni
A(η) = 0 ⇒ Ti(x) = EηTi(x).

Expectations of Exponential (λ) is 1/λ, expecation of Poisson (λ) is λ, matrix of mixed partials is given by
−ΣT .

A(η) = log

∫
h(x) exp(T⊤(x)η)dµ(x).

For ERGMs, x ∈ {0, 1}(
n
2),

A(η) = log
∑
x∈X

h(x) exp(T⊤(x)η).

For h(x) = 1,

∂

∂η
A(η) =

∑
x∈X exp(η⊤T (x)i)Ti(x)∑

x∈X exp(η⊤T (x))
.
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17.35 One alternative method for estimation: MCMCMLE

Consider ERGM with distribution of the form: p(x; θ) = exp(T (x)⊤θ)/Z(θ).

Since
L(x; θ)

L(x; θ0)
=

exp(T⊤θ)

Z(θ)
/
exp(T⊤θ0)

Z(θ0)
= exp(T⊤(θ − θ0))/(Z(θ)/Z(θ0)),

we can express MLE as:

θ̂MLE = arg max
θ∈Θ0

L(x; θ)

L(x; θ0)
= arg max

θ∈Θ0

exp(T⊤(θ − θ0))/(Z(θ)/Z(θ0)).

This leads to ∑
x∈X

exp(T (x)⊤θ)/Z(θ) = 1

⇒ Z(θ) =
∑
x∈X

exp(T⊤θ),

and thus

Z(θ)

Z(θ0)
=
∑
x∈X

eT (x)⊤θ

Z(θ0)
=
∑
x∈X

eT (x)⊤(θ−θ0)
eT (x)⊤θ0

Z(θ0)
= Eθ0(e

T (x)⊤(θ−θ0)).

We can approximate Eθ0(e
T (x)⊤(θ−θ0)) via simulation

Eθ0(e
T (x)⊤(θ−θ0)) ≈ 1

B

B∑
i=1

eT (Y (i))⊤(θ−θ0),

where Y (1), · · · , Y (B) are simulated from p(x; θ0).

We want Markov Chain with stationary measure π(x) = p(x; θ0):

ρ(x, y) = min(
π(y)p(x|y)
π(x)p(y|x)

, 1).
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18.36 Review

• Exponential Family

P (x; θ) = h(x) exp(η(θ)TT (x)−A(θ)
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Canonical Form:

P (x; η) = h(x) exp(ηTT (x)−A(η))

T (x) is a sufficient statistic. (T is sufficient for θ if X|T = t does not depend on θ)

• Exponential Random Graph Model

Choose sufficient statistic T = (T1(x, . . . , Tk(x))
Construct exponential family as form:

p(x; θ) = exp(T (x)T θ)/Z(θ), where x ∈ {0, 1}(
2
n)

.

18.37 Problem with fitting ERGM

• Normalization factor Z(θ) is difficult to estimate.
-One solution: MCMCMLE.

• Degeneracy
Model puts disproportionate mass on a few possible configurations of the graph.
For models like edge-triangle model, ERGM tends to put a lot of mass on complete/empty graphs.

• Estimation method (e.g MCMCMLE) don’t often perform well
Bhamidi, Bresler, Sly (2008) shows that if θ is non-negative, then one of the following are true with n
large:
-ERGM is essentially the same as Erdos-Renyi.
or
-ERGM mixes exponentially slowly.

• Chatterjee and Diaconis (2013) extend result above and show under condition θ ≥ 0, ERGM with large
n behaves like ER or mixture of ER.

• Some proponents of ERGM’s argue that asymptotic regime where the number of sufficient statistics
fixed with n is unrealistic.
-The number of sufficient statistics to change should be allowed.
-However, sufficiency is a strong condition-questionable whether constructing models based on sufficient
statistics would fit well to begin with.

• Instability
Small changes in parameters lead to large changes in probabilistic behavior.

p(x; θ) = exp(T (x)T θ)/Z(θ)

18.38 Pros and Cons of ERGM’s

• Pros
-It can construct relatively intuitive/ interpretable models.
-Inference for parameters is well understood. (e.g. Asymptotic Normality of MLE)
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• Cons
-Models can be difficult to fit.
-Common parametrizations/setups may be ill-behaved.
-Sufficient statistics likely aren’t sufficient for real-world graphs.

MATH 586 Fall 2023
Statistics for Networks

Lecture 19: Block Models

Lecturer: Robert Lunde Scribe: Jingtao Shang

19.39 Block Models

• Each vertex assumed to belong to one of k communities 1,...,k.

• Generative model
Aij ∼ Bernoulli(Brs)

,
where r is conmmunity of node i, s is the community of node j, B is k × k matrix of connection
probability.

19.40 Stochastic Block Models

• It is often the case community assignments are unknown/random.

• Generative Model:
-Let α = (α1, . . . , αk) denote the vector where αj is probability a node belongs to community j.
-Let Z1, . . . , Zn ∼Multinomial(1, α).
-Aij ∼ Bernoulli(BZi,Zj

) and P (Aij |Zi = r, Zj = s) = Brs

• Joint PMF of SBM
Assuming Z1, . . . , Zn are known

L(B,α) = f(Z,A) =

n∏
i=1

αZi

∏
1≤i<j≤n

B
Aij

ZiZj
(1−BZiZj

)1−Aij

If Z1, . . . , Zn are unknown,

L(B,α) =
∑

Z∈{1,...,k}n

f(Z,α)

P (Aij) = E(P (Aij |Zj , Zj)) =

k∑
i=1

k∑
j=1

αiBijαj

So, what is the distribution of Di =
∑

i̸=j Aij?

P (Di ≤ t) = E[P (Di ≤ t|Zi)], where Di|Zi = r ∼ Binomial(n− 1,

k∑
j=1

Brjαi)
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• Low rank nature of SBM’s -Let Pij = P (Aij = 1|Zi, Zj)
-Suppose we rearrange labels so that communities are grouped together, for simplicity, suppose we
have ordered them from 1 to k. Then,

P =


B11 B12 . . . B1k

B21 B22 . . . B2k

...
...

. . .
...

Bk1 Bk2 . . . Bkk


We can also express P as

P = ΘBΘT

where Θ = (θ1, . . . , θn)
T ∈ Rn×k is a matrix such that each now θi contains only one non-zero entry,

where the Θij is equal to 1 only if node i belongs to community j.

ΘB =

B1r1 . . . B1rn
...

. . .
...

Bnr1 . . . Bnrn

 , where r1, . . . , rn are memberships of nodes 1, . . . , n

((ΘB)ΘT )ij = Brjri = Brirj (assuming the graph is undirected)

• Mixed Membership SBM

Suppose η1, . . . , ηn
iid∼ P, where

∑k
j=1 ηij = 1 and Aij ∼ Bernoulli(ηTi (Bijηj))

• Degree-corrected SBM
Let θ1, . . . , θn be additional degree parameters for each node (fixed or random). Then,

Aij ∼ Bernoulli(θiθjBZiZj
), where Z1, . . . , Zn ∼Mutinomial(1, α)

MATH 586 Fall 2023
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Lecture 20: Community Detection

Lecturer: Robert Lunde Scribe: Shourjo Chakraborty

20.41 Introduction

Goal: Suppose we have a sample of n network data points with k communities. Our goal is to accurately
estimate the community labels, say Z1, Z2, . . . , Zn up to a permutation.

Example: Let n = 3 and k = 2. Suppose the orginal labels of X1, X2 is 1 and of X3 is 2 whereas the
estimated labels of X1, X2 is 2 and of X3 is 1. In this case, the communities are detected correctly so we
can change the estimated labels by applying a permutation π such that π(1) = 2 and π(2) = 1.

Notions of performance of community estimation/clustering:
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• A natural statistic following the example above will be

T (z, ẑ) =
1

n
max
π∈Sk

n∑
i=1

I(zi = π(ẑi))

We want T (z, ẑ) to be close to 1.

• It is also meaningful to consider

T̃ (z, ẑ) = min
i

max
π∈Sk

∑n
j=1 I(zj = π(ẑj), zj = i)∑n

l=1 I(zl = i)

Here, we are looking at the proportion of correctly estimated labels within each community and we
want the minimum of these to be as large as possible which means T̃ (z, ẑ) close to 1 is desired.

Notions of consistency: We are interested to look at the performances of T or T̃ or any other statistic in
the asymptotic setup. For this we define the following two notions of consistency.

• Strong consistency/Exact recovery: P(T (z, ẑ) = 1) = 1) = 1− o(1)

• Weak consistency/Almost exact recovery: P(T (z, ẑ) = 1− o(1)) = 1) = 1− o(1)

20.42 Community Detection algorithms

One of the most commonly used algorithm for community detection is spectral clustering.

Algorithm 2 Spectral clustering for community detection in network data

1: Compute A = V̂ D̂V̂ ⊺

2: Run clustering algorithm (k-means, k-medians, etc) on V̂k ∈ Rn×k

3: Return the clusters as estimated communities.

(Note: Recall that the matrix P (expectation of the adjacency matrix A conditioned on community labels)
is low rank. So, P = V DV ⊺ where λi = 0 for all i > k + 1.)

Proof: To build intuition, suppose k = 2, n = 2m, B is of the form B =

(
p q
q p

)
. Moreover, suppose

{1, . . . ,m} belong to class 1, {m+ 1, . . . , 2m} to class 2. So, P will be

P =



p · · · p q · · · q
...

...
...

...
p · · · p q · · · q
q · · · q p · · · p
...

...
...

...
q · · · q p · · · p


Each of the blocks in P have dimension m×m. Clearly P is of rank 2. The eigenvalues of P are λ1 = n(p+q)

2

and λ2 = n(p−q)
2 with corresponding eigenvectors v1 = 1√

n
(1, 1, . . . , 1) and v2 = 1√

n
(1, . . . , 1,−1, . . . ,−1).
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21.43 Review (Community Detection in SBMs)

Stochastic Block Model

Definition 21.43.1 (SBM(α,B)). Suppose G is a graph with adjacency matrix A ∈ M(n) has K com-
munities, and node-wise G community memberships are described by i.i.d generalized Bernoulli variables
Z1, . . . , Zn ∼ P , with P (Zi = k) = αk. We have

• Aij ∈ Bernoulli(BZiZj
)

• P = E [A | Z1, . . . , Zn] = ΘBΘT , where Rn×K ∋ Θ = (θ1, . . . , θn) and Θij = 1 if and only if node i is
a member of community j.

We call G the stochastic block model parametrized by (α,B) or SBM(α,B).

Community Detection via Spectral Clustering

To estimate community memberships Z1, . . . , Zn, we can perform spectral clustering via the following algo-
rithm:

1. Compute spectral decomposition of A = V PV

2. Take Vk ∈ Rn×k, corresponding to the largest k eigenvalues

3. Run clustering algorithm of your choice (e.g., k-means, k-medians) on Vk

4. Return cluster assignments as estimated community memberships

21.44 Spectral Clustering (an example)

Consider the community detection example from the previous lecture, where we have a graph G with

• a vertex set |V| = 2m with vertces 1, . . . ,m in community C1 and vertices m+1, . . . , 2m in community
C2,

• an edge with probability p if it connects two vertices in the same community and probability q if it
connects two vertices in different communities,
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which we may summarize as

B =

[
p q
q p

]
,

=⇒ P = ΘBΘT

=

[
p1m1

T
m q1m1

T
m

q1m1
T
m p1m1

T
m

]
.

Spectral decomposition then gives us a 2-dimensional eigenspace v = (v1, v2) spanned by

λ1 = n

(
p+ q

2

)
, v1 = (1, . . . , 1, 1, . . . , 1)/

√
n

λ2 = n

(
p− q

2

)
, v2 = (1, . . . , 1,−1, . . . ,−1)/

√
n

Remark 21.44.1. Note that we assume p > q here; if p = q, then this reduces to the Erdos-Renyi model,
and if p < q, then we would simply swap labels between ”in-” and ”out-community” edges to recover the
same model.

Bounding the approximation error

We now define the error term E = A − P , i.e., the error in estimating A and the ensuing community
memberships: we wish to place a bound on the norm of E. Random matrix theory gives something of an
all-purpose bound

∥E∥op ≤ C
√
n,

but it is, in general, difficult to make a sharp estimate of C. However, taking p→ 0 (i.e., pn → 0) at a given
sparsity rate, we have a bound of order ∥E∥op ≤ √

npn. Define

δ = min (λ2/n, (λ1 − λ2)/n) .

If we take v̂i to be an eigenvalue of P (i.e., an estimate of an eigenvalue vi of A) and define θ(u,w) =
arccos(u · w/∥v∥∥w∥), then a a variant of the Pauls-Kahan theorem yields

sin θ(v̂2, v2) ≤
∥E∥op
nδ

≤ δC√
n

→ 0.

Since v2 = (1, . . . , 1,−1, . . . ,−1)/
√
n, we can write

sin θ(v̂2, v2) =
1√
n

min
s=±1

∥s
√
nv̂2 −

√
nv2∥2

=⇒ min
s=±1

n

2

n∑
i=1

|eTi (sv̂2 − v2)| ≤
C2

δ2
,

where ei are the canonical basis vectors of Rn and the last inequality follows from the lemma below.

Lemma 21.44.2. For unit vectors v̂i, vi and θi := arccos(v̂Ti vi), we have

min
s=±1

∥sv̂i − vi∥2 ≤
√
2 sin θi.
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Proof. Choose s so that sv̂vTi vi ≥ 0. Let ṽi = sv̂i and write

min
s=±1

∥sv̂i − vi∥2 ≤ ∥ṽ2 − v2∥2

≤
√
2
(
1− (ṽTi vi)

2
)1/2

=
√
2 sin θi

21.45 Eigenstructure of SBM/Degree-Corrected SBM

In the example discussed above, we used the eigenstructure of P to be bound the error of our approximation;
to generalize this approach, we need to broaden our understanding of the eigenstructure of P in the SBM
case.

Theorem 21.45.1. Suppose B ∈ GL(K,R) ⊂ M(K,R) is full rank and P = ΘBΘT . Then P has an
eigendecomposition P = UDUT where U = ΘX and X ∈M(K,R).

Proof. Let ∆ = diag(
√
n1, . . . ,

√
nK), where nj is the number of vertices belonging to community j. Since

Θ∆−1 is orthonormal, we write P as

P = ΘBΘT

= Θ∆−1 (∆B∆)
(
∆−1

)T
= UDUT ,

where the eigendecomposition B = V DV T gives U = Θ∆−1V . Then X = ∆−1V is orthornormal.

We also wish to consider the case of the degree-corrected SBM; here, we recover an analogous result, with
the (similar) main takeaway that we decompose P into degree-dependent and degree-independent terms.

Theorem 21.45.2. Let Ψ be the vector of degree parameters corresponding the degree-corrected SBM defined
by P , which we suppose has the form

UDUT = P = diag(Ψ)ΘBΘT diag(Ψ).

Then there exists H ∈ SO(K) such that

Ui = Ψ̃iH,

where Ψ̃i depends only on the degree parameter of node i.

21.46 Review

SBM(α, β)
-SBM is a random graph model, which tends to produce graphs containing communities and assigns a
probability value to each pair i, j (edge) in the network.
- To perform community detection, one can fit the model to observed network data using a maximum
likelihood method.

- Suppose there K communities
- Z1, . . . , Zn ∼ P , where P (Zi = k) = αk, Aij ∼ Bernoulli

(
BZiZj

)
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P = E [A | Z1, · · · , Zn]

= ΘBΘ⊤ ,

where Θ ∈ Rn×k and Θ = (θ1, · · · , θn), θij =
{

1, if i belongs to community j,
0, otherwise

21.47 Spectral Clustering

Community Detection:
Goal: Estimate community membership: Z1, · · · , Zn.

21.47.1 Algorithm

Spectral Clustering:
1. Compute spectral decomposition of A = V̂ DV̂ ⊤,
2. Take V̂k ∈ Rn×k. corresponding to k eigenvalues with largest magnitude,
3. Rum clustering algorithm (e.g. k means, k medians),
4. Retum cluster assignments as estimated communities.

21.47.2 Example

Suppose 1, · · · ,m belong to community 1,
m+ 1, · · · , 2m belong to en community 2, then we have:

B =

[
p q
q p

]
, P = ΘBΘ⊤ =

[
p1m1

⊤
m q1m1

⊤
m

q1m1
⊤
m p1m1

⊤
m

]
, n = 2m

λ1 =
(
p+q
2

)
× n, v1 = (1, . . . 1)/

√
n

λ2 =
(
p−q
2

)
× n v2 = (1, . . . , 1︸ ︷︷ ︸

m

,−1, . . . ,−1︸ ︷︷ ︸
m

)

The expression is A = P + E, with the signal noise: E = A− P .

We need to know magnitude of ∥E∥op .
- A general purpose bound from random matrix theory gives:

∥E∥op ⩽ c
√
n, w.h.p.

(it’s not tight and can be sharper considering the value of p, q )

Essentially, if p→ 0, for a certain sparsity range, we have bound of order: ∥E∥op ≤ √
npn.

The noise has lower order than the signal(this is the intuition of why the method works).

∥p∥lop ∼
(
p+ q

2

)
× n

∥E∥op ≤ c
√
n w.h.p.

Let δ = min
(
λ2

n ,
λ1−λ2

n

)
, a variant of Davis-Kahan yields:
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sinΘ (v̂2, v2) ≤
∥E∥op
n× δ

≤ c
√
n

nδ
≤ c√

nδ
.

√
nv2 = {1, . . . 1,−1, . . .− 1}

√
n sin θ(v̂2, v2)

√√√√ n∑
i=1

(v̂2,i − 1)
2

= min
c∈{−1,1}

∥c
√
nv̂2 −

√
nv2∥.

It follows that:
#| {i ∈ {1, 2, · · · , n}, sign (cv̂2 ̸= v2)} | ≤ c2

δ2

21.48 Eigenstructure of SBM

Suppose B ∈ Rk×k full rank, P = ΘBΘ⊤. Then P = UDU⊤, where U = ΘX,X ∈ Rk×k

Proof:
Let ∆ = diag

(√
n1, · · · ,

√
nk
)
, where nj is # vertices belong to community j.

Express P as:

P =
(
θ∆−1

)
∆B∆

(
θ∆−1

)⊤
Observation: (

θ∆−1
)⊤ (

θ∆−1
)
= Ik

Let ZDZ⊤ be eigen-decomposition of △B∆, we can show: θ∆−1z are orthonormal, with(
θ∆−1z

)⊤ (
θ∆−1z

)
z⊤
(
θ∆−1

)⊤ (
θ∆−1z

)
MATH 586 Fall 2023
Statistics for Networks

Lecture 22:Community Detection

Lecturer: Robert Lunde Scribe: Zongxi Yu

22.49 Review

SBM(β, α)
- Suppose there are k communities.

- Z1, . . . , Zn
iid∼ P , where P (Zi = j) = αj .

- Aij = Aji ∼ Bernoulli
(
BZiZj

)
.

- Let P = E [A | Z1, · · · , Zn].

- P = ΘBΘ⊤ where Θ ∈ Rn×k, and θij =

{
1, if node i belongs to community j
0, otherwise

.
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22.50 Lemma

Representation of P matrix

Consider eigen-decomposition P = UDU⊤. Then, U = ΘX,X ∈ Rk×k. (assuming rank of B is k)

Lemma for DCSBM
Consider mean matrix P = diag(ψ)ΘBΘ⊤diag(ψ), where ψ = (ψ1, ψ2, · · · , ψn) are degree parameters. Let

P = UDU⊤, where Uik = ψiHk∗(belongs to communityk, ψ̂2 is related to degree parameter).

Recall example where B =

[
p q
q p

]
nodes 1, · · · ,m belong to community 1, nodes m + 1, · · · , 2m belong

to community 2.

Claim: For v̂i,vi unit vectors, minc∈{−1,1} ∥cv̂i − vi∥2 ≤
√
2 sin θi.

Proof
Choose c so that v̂i

⊤vi ≥ 0: let v̂i = cvi for this choice of c.
min

c∈{−1,1}
∥cv̂i − vi∥2 ≤ ∥v̂i − vi∥2

=

√√√√ d∑
j=1

(v̂ij − vij)2

=

√√√√ d∑
j=1

(v̂2ij + v2ij − 2(v̂ijvij))

=

√
2(1− v̂i

⊤vi))

=

√
2
√
(1− v̂i

⊤vi)(1 + v̂i
⊤vi)√

(1 + v̂i
⊤vi)

≤
√
2

√
(1− v̂i

⊤vi)2

≤
√
1− cos2 θ1(Recall: sin

2 θ + cos2 θ = 1)

≤
√
2

√
sin2 θi

Support that we are clustering based on sign of v̂2, we misclassify node i if (
√
nv̂2(i)−

√
nv2(i) ≥ 1.

n∑
i=1

1

n
1node i misclassified ≤ min

c∈{−1,1}

1

n
∥
√
n(v̂2 − v2)∥22

=
1

n

d∑
j=1

(
√
n(v̂2(j)− v2(j)))

2

Strong consistency typically holds when npn

lgn → ∞, weak consistency when npn → ∞.
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22.51 Two Spectral Procedures for DCSBM

SCORE
1. Compute eigen-decomposition A = v̂D̂v̂⊤.

2. Construct matrix R ∈ Rn×(k−1), where Rij =
v̂j+1(i)
v̂1(i)

.

3. Run clustering algorithm (e.g k-means, k-medians on R).
4. Return k clusters.

Spherical Spectral Clustering

1. Compute eigen-decomposition A = v̂D̂v̂⊤.
2. Normalize each row of v̂ ∈ Rn×k by its norm. Let v∗k be resulting matrix.
3. Run k-means/k-median clustering on v∗k.
4. Return k clusters.

22.52 Likelihood-based Methods

Karner and Newman proposed Poisson profile likelihood.
Aij = Aji ∼ Poisson

(
λZiZj

)
, where λZiZj = BZiZj .

They also assume Aii = 2× 1i has self loop.

P (G|λ, z) =
∏

1≤i<j≤h

(λZiZj
)Aijexp(−λZiZj

)

(Aij) !
×

n∏
i=1

1
2 (λZiZi)

Aii/2exp(− 1
2λZiZi)

(λii/2) !

= (λrs)
ors/2exp(−1

2
OrOsλrs)×

1∏
1≤<i<j≤n

Aij !

n∏
i=1

2Aij/2(Aij/2)

where ORSi =
∑

ij Aij(zi = r, zj = s)
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23.53 Review

23.53.1 SBM(α, β)

z1, . . . , zn ∼ P ,
where P (zi = k) = αk

Aij = Aji ∼ Bernoulli(Bzizj ), and B ∈ [0, 1]k×k.
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23.53.2 Degree-corrected SBM

z1, . . . , zn ∼ P as before
ψ1, . . . , ψn degree parameters
Aij = Aji ∼ Bernoulli(ψiψjBzizj ).

R is Rn×(k−1) matrix
where Rij =

Vj+1(i)
V1(i)

23.53.3 Community detection for degree-corrected SBM’s

1. Score
Run k-means/k-medians on eigenvector ratios

2. Spherical Spectral Clustering
Run k-means/k-medians on normalized rows Ṽk.

23.54 Likelihood-Based Methods

Assume

Aij = Aji ∼ Poisson(λzizj )

Aii = 2× 1(i has self loop)

P (G|λ, z) =
∏

i<j

(
λzizj

)Aij
exp(−λzizj )∏n

i=1
1
2 (λzizj )

Aii/2 exp
(
− 1

2λzizj
)

We can re-express as

1∏
i<j Aij !

∏n
i=1 2

Aii/2
(
Aii

2

)
!
× (λrs)

Ors/2 exp

(
−1

2
nrnsλrs

)
,

where nr = # vertices in community r and Ors is defined as

Ors =
∑
ij

Aij1(zi = r, zj = s)

Ignoring constants, Log-likelihood is of the form:

logP (G|λ, z) =
∑
rs

(Ors log λrs − nrnsλrs)

MLE is given by

λ̂rs =
Ors

nrns

Plugging this into profile likelihood, ignoring constants, likelihood based criteria for community detection

logP (G|z) =
∑
rs

Ors log
Ors

nrns

Pros of likelihood-based method
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• Consistent under mild condition

Con: Computationally expensive (need to compute quantify for each possible assignment of latent positions
to find maximum).

For DCSBM, a similar derivation yields

L(G|z) =
∑
rs

Ors log
Or

OrOs

where Or =
∑

sOrs and Ors =
∑

ij Aij1(zi = r, zj = s).

23.55 Modularity

Very popular method where one only considers edges with communities Modularity function:

Q(z) =
∑

ij(Aij − Pij)1(zi = zj)

for a choice of null model for P .

• Common choices of null model: Erdös-Reyni, degree-corrected Erdos-Reyni.

• Goal: Find community membership that maximizes Q (surprise factor relative to null model with no
communities).

Under ER model, P can be estimated as Pij =
L
n2 , where L = # edges and

QER(z) =
∑
r

(
Orr −

n2r
r2
L

)
For Newman-Girvan modularity, estimate of Pij is

didj

2

QNM (z) =
∑
r

(
Orr −

O2
r

L2

)

• Newman-Girvan modularity only works when within-community probabilities are larger than some
quantity related to between-community probabilities.

• There are computational approximations for NG.

• Typically for weak consistency, we need npn → ∞

• However certain methods have also been studied/shown to be consistent for npn → c

• Regularize L = D−1/2AD−1/2 for special clustering in very sparse graphs.
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24.56 Review

Graphons

Aij = Aji ∼ Bernoulli(W (ξi, ξj)), where ξ1, . . . , ξn ∼ Uniform[0, 1], unknown latent positions.

Consider the integral

T f(x) =

∫ 1

0

W (x, y)f(y)dy

Let (λr)r∈N, (φ)r∈N be the associated eigenvalues and eigenvectors. Suppose W (u, v) admits a finite rank
representation of the form:

W (u, v) =

d∑
r=1

λrϕr(u)ϕr(v)

We can rewrite W (ξi, ξj) as < xi, xj > − < yi, yj >m where xik =
√
λkvk(i), yil =

√
λlvl(i), with x

corresponding to the positive and y to the negative eigenvalues.

RDPG

Aij = Aji ∼ Bernoulli(< xi, xj >) with xi ∈ Rp and x1, . . . , xn i.i.d.

GRDPG

Aij = Aji ∼ Bernoulli(< xi, xj > − < yi, yj >) with xi, yi ∈ Rp

We showed that SBM, MMSBM and PCSBM are all GRDPG.

24.57 Identifiability issues with RDPG

Let Q be an orthonormal matrix s.t. Q⊤Q = I, QQ⊤ = I. Then:

< Qxi, Qxj > = (Qxi)⊤(Qxj)

= x⊤i Q
⊤Qxj

= x⊤i xj

=< xi, xj >

In other words, Qx and x give us some distribution for A. For generalized RDPG, if one assumes x and y
uncorrelated, then the source of non identifiability are of the form Q = (Qx, Qy). In fact

< Qxxi, Q
xxj > − < Qyyi, Q

yyj >=< xi, xj > − < yi, yj >

One way to circumvent the identifiability issues is to consider the internal parameters that don’t depend on
A.

For triangles, a natural notion of subgraph frequecy is given by:

T =
1(
n
3

) ∑
1≤i<j<k<n

AijAjkAki
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For a given tuple (i, j, k), AijAjkAki is Bernoulli with mean

θ = E[(< xi, xj > − < yi, yj >)(< xj , xk > − < yj , yk >)(< xk, xi > − < yk, yi >)]

This is the same regardless the orientation of (X, y).

Sparse generalized RDPG models

Aij = Aji ∼ Bernoulli(Pn[< xi, xj >< yi, yj >]) where Pn → 0.

If we let x̂i =
√
Pnxi, ŷi =

√
Pnyi, then Pn[< xi, xj >< yi, yj >] =< x̂i, x̂j > − < x̂i, x̂j >

Estimating zi = (xi, yi)

We can estimate zi = (xi, yi) with the adjacency spectral embedding. Take the eigendecomposition A =
V DV ⊤, where D is sorted so that the positive eigenvalues are listed first in descending order.

(x̂i1, . . . , x̂in) = (
√
λ1v1(i), . . . ,

√
λpvp(i))

(ŷi1, . . . , ŷin) = (
√
λp+1vp+1(i), . . . ,

√
λqvq(i))

with p larger positive and q the smallest negative eigenvalues.

Suppose

p =

d∑
r=1

λrvrv
⊤
r

Then

< x̂i, x̂j > − < x̂i, x̂j >≈ Pi,j =

d∑
r=1

λrvr(i)vr(j)
⊤

Theorem 24.57.1 (Error Bound for estimating zr = (xi, yi)). Suppose ẑ1, . . . , ẑn estimated by adjacency

spectra embedding. Then ∃c > 1 such that if p(n) =W ( log
4c n
n )

There exist a sequence of transformations such that:

max
1≤i<n

||ẑi − zi|| = Op(
log n√
n

)
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25.58 Review

RDPG Model

Aji = Aij ∼ Bernoulli
(
⟨xi, xj⟩

)
, where x1, . . . , xn

i.i.d∼ P , xi ∈ Rd.

25-64



GRDPG Model

Aji = Aij ∼ Bernoulli
(
⟨xi, xj⟩ − ⟨yi, yj⟩

)
, where (x1, y1), . . . , (xn, yn)

i.i.d∼ P , xi ∈ Rp, yi ∈ Rq.

Error Bound for estimating zi = (xi, yi)

Let zi = (xi, yi), Z̃i =
√
ϕnzi.

Proposition 25.58.1. Suppose A(n) ∈ {0, 1}n
∏

n generated by GPPG, with latent positions z̃1, . . . , z̃n. Let

ẑ1, . . . , ẑn be adjacency spectra embedding. Then for c > 1 such that if p(n) =W ( log
4c n
n ) and some sequence

(Qn)n≥1

max
1≤i<n

||ẑi − zi|| = Op(
log n√
n

), (25.1)

where Qn are a sequence of transformation that involve orthogonal matrices acting on positive parts separately

Qn =

[
Q⊕ 0
0 Q⊖

]
.

Theorem 25.58.2. Under the same conditions as the previous proposition,

√
nW

(
Qnẑi − z̃i

) d−→ N
(
0,Σ(zi)

)
, (25.2)

where Σ(x) is some covariance matrix that depends on unscaled latent position.

25.59 Exchangebility

Recall graphon model

Aji = Aij ∼ Bernoulli
(
ω(ξi, ξj)

)
, (25.3)

where ξ1, . . . , ξn
i.i.d∼ U[0, 1], ω : [0, 1]2 → [0, 1] symmetric.

Definition 25.59.1. A distribution on a graph G is vertex exchangeable if for any permutation of node
labels, we have the same distribution for the graph.

Exchangeability for vectors

Definition 25.59.2. The vector (x1, . . . , xn) is exchangeable if for any permutation σ : [n] 7→ [n],

(xσ(1), . . . , xσ(n))
d
= (x1, . . . , xn). (25.4)

Observation:

• IID X1, . . . , Xn are exchangeable. For simplicity, assume Xi has desity fX(x).

fx1,...,xn
(x1, . . . , xn) =

n∏
i=1

fX(xi), (25.5)

which means exchangebility is weaker, or sometime a lot weaker than i.i.d.
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• Exchangebility ⇒ identical distributed since P(Xσ(i) ∈ A) = P(Xi ∈ A) must hold ∀ σ.

• They must have the same dependence structure accross all possible subsets. E.g

Cov(Xσ(i), Xσ(j)) = EXσ(i)Xσ(j) − EXσ(i)EXσ(j)

= EXiXj − EXiEXj = Cov(Xi, Xj).

Suppose
(
Xi

)
i≥1

is an exchangeable sequence. That is for any σ : N 7→ N,

(
Xσ(i)

)
i≥1

d
=
(
Xi

)
i≥1

.

Theorem 25.59.3 (DeFinett’s Theorem). Suppose we have an exchangeable sequence
(
Xi

)
i≥1

. Then, we

can express
(
Xi

)
i≥1

as:

• For some H ∼ γ (H works like a mixture component), X1, X2 . . . |H
i.i.d∼ PH .

• Alternatively, there exists Borel measurable g and U ,
(
Ui

)
i≥1

, where U,Ui
i.i.d∼ U[0, 1] such that

(
Xi

)
i≥1

d
=
(
g(U,Ui)

)
i≥1

. (25.6)

• Alternatively,

P(X1 ∈ A1, X2 ∈ A2, . . . ) =

∫ n∏
i=1

θ(Ai)v
(
d(θ)

)
. (25.7)

MATH 586 Fall 2023
Statistics for Networks

Lecture 26: Graphon

Lecturer: Robert Lunde Scribe: Zhichen Xu

Review

Exchangeablity A vector (X1, ..., Xn) is exchangeable if for any σ : [n] 7→ [n]

(Xσ(1), ..., Xσ(n))
d
= (X1, ..., Xn)

- Intuition: future is like past

- Exchangeable ⇒ identical marginals, identical dependencies (eg cov(Xσ(i), Xσ(j)) = cov(X1, X2))

- IID special case of exchangeable vectors

Suppose (Xi)i≥1 is an exchangeable sequence, for all σ : N 7→ N

(Xσ(i))i≥1
d
= (Xi)i≥1
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Theorem De Finetti’s Theorem

The exchangeable sequence (Xi)i≥1 admits the representation:

(Xi)i≥1
d
= (g(U,Ui))i≥1

Ui
iid∼ Uniform[0, 1], U ∼ Uniform[0, 1], g is Borel measurable.

Equivalent to:

P (X1 ∈ A1, X2 ∈ A2, ...) =

∫ ∞∏
i=1

θ(Ai)v(dθ)

Note: Not all exchangeable vectors can be represented as mixture of IID random variables.

Ex: Consider the following distribution:

P (X1 = 1, X2 = 0) = P (X1 = 0, X2 = 1) =
1

2

P (X1 = 1, X2 = 1) = P (X1 = 0, X2 = 0) = 0

If can be represented,

0 = P (X1 = 1, X2 = 1) =

∫
p2µ(dp)

0 = P (X1 = 0, X2 = 0) =

∫
(1− p)2µ(dp)

Therefore, p, (1− p) both equals to 0 a.s. Contradiction occurs.

While finite exchangeable sequence don’t always admit representation as mixture of IID distributions, they
can often be approximated by such a distribution.

Def N extendability

A vector (X1, ..., Xk) is N -extendable if there exists a vector (X̂1, ..., X̂N ), N > k, such that

(X1, ..., Xk)
d
= (X̂1, ..., X̂k)

Ex: X1, ..., Xk
iid∼ N(0, 1) Then it is extendable to X1, ..., Xn

iid∼ N(0, 1)

Theorem Suppose (X1, ..., Xk) is exchangeable, n-extendable and Xi discrete, with c possible values. Then
exists a measure P ∗ that is a mixture of iid distributions such that:

∥P (X1, ..., Xk)− P ∗(X1, ..., Xk)∥TV ⩽
2ck

n

proof We start by characterizing Pn = P (X1, ..., Xn). If we condition on order statistics X(1) = x1, ..., X(n) =
xn, then each permutation of X1, ..., Xn are equal likely. Thus,

P (X1, ..., Xn) =
∑

P (X1, ..., Xn)P (X(1) = x1, ..., X(n) = xn)

=
∑

WuHun(X1, ..., Xn)

where Hun(X1, ..., Xn) is pmf associated with drawing n balls without replacement from X(1), ..., X(n).
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Now consider Pk = P (X1, ..., Xk). Then

P (X1, ..., Xk) =
∑

(X1,...,Xn)|X1=x1,...,Xk=xk

∑
WuHuk(X1, ..., Xn)

=
∑

WuHuk(X1, ..., Xk)

Now choose P ∗(X1, ..., Xk) =
∑

uWuMuk(X1, ..., Xk), where Muk corresponds to drawing n balls with
replacement from X(1), ..., X(n). Then,

∥Pk − P ∗∥ = ∥
∑

WuHuk −
∑

WuMuk∥TV

⩽
∑
u

Wu∥Huk −Muk∥TV

⩽
2ck

n
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Review

Exchangeablity A vector (X1, ..., Xn) is exchangeable if for all permutations σ : [n] 7→ [n]

(Xσ(1), ..., Xσ(n))
d
= (X1, ..., Xn)

A sequence (Xi)i≥1 is exchangeable if for all bijections σ : N 7→ N

(Xσ(i))i≥1
d
= (Xi)i≥1

Theorem Di Finetti’s Theorem

The exchangeable sequence (Xi)i≥1 admits the representation:

(Xi)i≥1
d
= (g(U,Ui))i≥1

Ui
iid∼ Uniform[0, 1], U ∼ Uniform[0, 1], g is Borel measurable.

- Finite exchangeable vectors may not have such a representation.

- However, if finite vector is part of larger exchangeable vector, it will be close to a mixture of IID random
variables.

Definition Jointly exchangeable array

The array (Aij)1⩽i,j⩽n is jointly or vertex exchangeable for any permutation σ : [n] 7→ [n] we have:

(Aσ(i)σ(j))1⩽i,j⩽n
d
= (Aij)1⩽i,j⩽n
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Similar to Di Finetti’s theorem, in order to state representation theorems, we consider an infinite exchange-
able array.

Definition Exchangeable infinite array

(Aij)i,j∈N is jointly exchangeable if for any bijection σ : N 7→ N , we have

(Aσ(i)σ(j))i,j∈N
d
= (Aij)i,j∈N

Theorem Aldous-Hoover Theorem

If (Aij)i,j∈N is jointly exchangeable, then there exists a Borel measurable f such that:

(Aij)i,j∈N
d
= (f(U,Ui, Uj , U{{i,j}})

where U,Ui, Uj , U{{i,j}} mutually independent Unif [0, 1] random variables.

For binary undirected graphs without self-loops, the representation simplifies to:

Aij = Aji = 1(U{i,j} ⩽W (Ui, Uj))

for random W .

SBM’s RDPG’s etc all can be written in this form.

None-uniqueness of representation

For a model of the form:
Aij = Aji = 1(ηij ⩽ w(ξi, ξj))

(ηij)1⩽i<j⩽n ∼ Uniform[0, 1], ξ1, ..., ξn ∼ Uniform[0, 1]

We have that if we consider φ(x) such that φ(u) ∼ Uniform[0, 1] (measure-perserving transformation) then

(Ai,j)1⩽i<j⩽n
d
= (1(ηij ⩽ w(φ(ξi), φ(ξj))))1⩽i,j⩽n

Graphons also arise when one consider limits of dense graph sequences.

What do we mean by ”limits” of graphs?

- Convergence of subgraph frequencies

- Convergence of some norm

- Convergence of subgraph probabilities, where vertices are sampled from a larger graph

- Convergence of cuts

- Convergence of spectra, etc

It turns out that, when properly defined, the first three are equivalent.

It turns out limit object is a graphon.

Subgraph frequencies

It turns out that there are several equivalent characterizations of subgraph frequency.
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For fixed F (typically V (F ) ⩽ V (E)), consider

t(F,G) =
|hom(F,G)|
|V (G)||V (F )|

where |hom(F,G)| is number of graph homomorphisms from F to G.

Equivalently,

t(F,G) = P (F ⊆ G[k])

where randomness comes from sampling v1, ..., vk vertices with replacement, G[k] is graph induced by
v1, ..., vk.

Def Graph homomorphism

A graph homomorphism f : V (F ) 7→ V (G) is a function that preserve adjacency.
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28.60 Review

28.60.1 Exchangeability

The array (Aij)1≤i,j,≤n is jointly exchangeable if for any permutation σ : [n] 7→ [n],

(Aσ(i),σ(j))
d
= (X1, ..., Xn)

The (infinite) array (Ai,j)i,j∈N is jointly exchangeable if for all bijections σ : N 7→ N

(Aσ(i),σ(j))i,j∈N
d
= (Ai,j)i,j∈N

28.60.2 Aldous-Hoover Theorem

Any jointly exchangeable infinite array admits representation

(Aij)i,j∈N
d
= (f(U,Ui, Uj , U{{i,j}})

For binary infinite arrays corresponding to undirected graphs without self-loops, the representation simplifies
to:

(Aij)i,j∈N
d
= (1(U{i,j} ⩽ ω(Ui, Uj)))i,j∈N

for random ω.
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28.60.3 Subgraph Frequency

Let

t(F,G) =
|hom(F,G)|
|V (G)||V (F )|

where |hom(F,G)| is number of graph homomorphisms from V (F ) to V (G). (Graph homomorphisms preserve
adjacency)

Equivalent to

t(F,G) = P (F ⊆ G[k])

where k = |v(F )|, v1, ..., vk drawn with replacement from 1, . . . , n.

28.61 More Notation for Subgraph Frequency

28.61.1 Injected Homomorphisms and Induced Homomorphisms

One can also consider

tinj(F,G) = P (F ⊆ G[k]′)

where v1, ..., vk drawn without replacement.

It turns out |t(F,G)− tinj(F,G)| ≤ v2(F )
2v(G) , so t and tinj share similar information.

Also, we have

tind(F,G) = P (F = G[k]′),

we have the relations tinj(F,G) =
∑

|V (F )′|=V (F ),F ′⊇F tind(F,G).

Recall the inclusion-exclusion principle

|
n⋃

i=1

Ai| =
∑

∅̸=J,J⊆1,...,n

(−1)|J|+1| ∩j∈J Aj |,

then we have

tind(F,G) =
∑

F ′⊇F,V (F ′)=V (F )

(−1)e(F
′)−e(F )tinj(F,G).

Mainly, it says tinj and tinj shares the same amount of information.

28.61.2 Convergence

One possible notion of convergence is thus

lim
n→∞

t(F,Gn) = t(F, ω) ∀ simple graphs F

If it happens, it turns out limiting object is a graphon.
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For intuition, suppose we map A ∈ {0, 1}n×n into a function ωn : [0, 1]2 → [0, 1]. To define ωn, divide [0, 1]

into intervals [0,
1

n
]︸ ︷︷ ︸

I1

, [
1

n
,
2

n
]︸ ︷︷ ︸

I2

, . . . , [
n− 1

n
, 1]︸ ︷︷ ︸

In

. I1 correspond

ωn(xi, xj)
∏

i∈V (F )

dxi︸ ︷︷ ︸
permutation of nodes

=
|hom(F,G)|

nk
, n = |V (G)|, k = |V (F )|

If we take an analysis approach to limits, this suggests studying norms on functions of the form: f : [0, 1]2 →
[0, 1]ds to node 1, I2 corresponds to node 2, etc.

For x ∈ [k−1
n , kn ], y ∈ [ j−1

n , j
n ], set ωn(x, y) = Akj .

It turns out that

t(F,G) =

∫ ∏
(i,j)
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29.62 Review

29.62.1 Graph limits

Consider a sequence of graphs (tn)n≥1, n→ ∞, under what conditions does the graph sequence ”converge”?

One notion of convergence, convergence of homomorphism densities .

Suppose limn→∞ t(F,Gn) = t(F, ω) ∀ simple graphs F .

Then it will turns out that there exists a graphon w : [0, 1]2 → [0, 1] such that t(F ) = t(F, ω).

t(F,G) = |hom(F,G)|
|V (G)||V (F )| , ”homomorphism density”

Equivalent to P (F ⊆ G[k]) where k = |v(F )|, v1, ..., vk are samples with replacement from 1, . . . , n.

Also equivalent t(F,G) =
∫ ∏

(i,j)∈E(F ) ωn(xi, xj)
∏

i∈V (F ) dxi where ωn(xi, xj) is empirical graphon.

29.63 Cut Norm

If turns out the ”right” norm to consider is the cut norm.

For a n× n matrix A, ||A||□ = 1
n2 maxs,t∈[0,n] ||

∑
i∈S,j∈T Aij ||
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It is clear that:

||A||□ ≤ ||A||1 ≤ ||A||2 ≤ ||A||∞

||A||1 = 1
n

∑
i,j |Aij |

||A||2 =
√

1
n2

∑
i,j |A2

ij |

||A||∞ = maxi,j |Ai,j |

Cut norm for functions:

||ω||□ = supS,T∈[0,1] |
∫
S×T

ω(x, y)d xd y|

Also equivalent to:

||ω||□ = sup||f ||∞≤1,||g||∞≤1 ∥
∫
S×T

ω(x, y)f(x)g(y)d xd y∥

We also have ||ω||□ ≤ ||ω||1 ≤ ||ω||2 ≤ |ω||∞

To construct a metric, using cut norm, we want to align two kernels.

Consider δ□(µ, ω) = infϕ∈s[0,1]d□(µ, ω
ϕ) where d□(u, v) = ||u− v||□ and wϕ = w(ϕ(x), ϕ(y))

29.63.1 Relationship between cut metric and subgraph frequencies

Theorem For any single graph F ,
a) |t(F, t1)− t(F, t2)| ≤ d□(t1, t2)
b) if |t(F, t1)− t(F, t2)| ≤ 4|E(F )|δ□(t1, t2), then δ(t1, t2) ≤ 22√

log2k

Theorem(function version) Let ω,ω′ ∈ W , where W is a class of function mapping [0, 1]2 to [0, 1],c =

max(1, ||ω||∞, ||w′||∞).
a) t(F, ω)− t(F, ω′) ≤ 4mCm−1d□(w,w

′), m = |E(F )|.
b) If |t(F, ω)− t(F, ω′)| ≤ 3−12 for every F on k nodes, d□(w,w

′) ≤ 22c
logck

29.64 Szemeredi Regularity lemma

Function version idea:
Graphon’s can be approximated by SBM’s.

Define stepping operator, wp(x, y) =
1

λ(si)λ(sj)

∫
si×sj

ω(x, y)dxdy, where s1,...sk are a partition of [0, 1].

For every ω ∈ ω1 and k ≤ 1, ∃exists a partition p into at most k sets with positive measure for which
||ω − ωp||□ ≤ 2√

logk
.

Consider ω̂ space of functions: ω:[0, 1]2 → [0, 1] equivalence classes for functions with d□(ω, ω
′) = 0

Theorem (ω̂, d□) is compact.
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30.65 Review

• For any simple F , t(F,Gn = P
(
F ⊆ G[k]

)
, where v1, . . . , vn sample with replacement. One natural

notion of convergence for a sequence of graphs (Gn)n≥1:

lim
n
t(F,Gn) = t(F ), ∀ simple F. (30.8)

It turns out that t(F ) = t(F,W ) for some graphon W .

• Cut Norm for functions w : [0, 1]2 → [0, 1].

∥W∥□ = sup
S,T⊆[0,1]

∫
S×T

W (x, y)dxdy. (30.9)

And we have ∥W∥□ ≤ ∥W∥1 ≤ ∥W∥2 ≤ ∥W∥∞.

• Relationships between subgraph frequences and cut norm. Define distance

δD(U,W ) = inf
φ∈S[0,1]

∥U −Wφ∥□, (30.10)

where Wφ =W
(
φ(x), φ(y)

)
and S[0, 1] denotes space of measure preserving transformation.

Lemma 30.65.1 (Counting Lemma). For any single graph F , let W , W ′ mapping [0, 1]2 → [0, 1].

|t(F,W )− t(F,W ′)| ≤ e(F )δ□(W,W
′). (30.11)

Lemma 30.65.2 (Inverse Counting Lemma). Let k be positive integer, U , W mapping [0, 1]2 → [0, 1].

Assume for every simple graph on k nodes |t(F,W )− t(F,U)| ≤ 2−k2

. Then

δD(U,W ) ≤ 50√
log k

. (30.12)

30.66 Theory of Graph Limit

For a partitions of vertices P =
⋃k

i=1 Si, define stepping operator

WP(X,Y ) =
1

λ(Si)λ(Sj)

∫
Si×Sj

W (x, y)dxdy, (30.13)

where X ∈ Si and Y ∈ Sj .

Lemma 30.66.1 (Weak Regularity Lemma). For any W ∈ W1 (W : [0, 1]2 → [−1, 1]), there exists P into
at most k sets with positive measure for which

∥W −WP∥□ ≤ ϵ (30.14)

Lemma 30.66.2. For any ϵ > 0, graphon W , partition P0, there exists a refinement P of P0 into no more
than 41/ϵ

2

parts such that

∥W −WP∥□ ≤ ϵ. (30.15)
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Theorem 30.66.3.
(
W̃0, δD

)
is compact.

Proof. It suffices to show for any sequence Wn : [0, 1]2 → [0, 1], there exists a subsequence converging to an
element in W̃0.

For every n, k construct partitions Pn,k with corresponding stepping operator Wn,k such that

1. ∥Wn −Wn,k∥□ ≤ 1
k .

2. Pn,k+1 refines Pn,k.

3. |Pn,k| = mk depends only on k.

Idea: for each n, rearrange partitions with measure-preserving transformations so that partitions are inter-
vals. For each k, pick subsequences such that

1. Each of the lengths of intervals are convergent.

2. Stepping operator defined on converging partition is converging.

Thus, for each k, we can pick subsequence nj such that

∥Wnj ,k − Uk∥□ → 0, (30.16)

where Uk is a limit for refinement level k. We thus have limit objects U1, U2, . . . . Furthermore, one can
verify that Uk+1 is a refinement of Uk.
Now, pick x, y ∼ Uniform[0, 1] and consider U1(x, y), U2(x, y).

Proposition 30.66.4.
(
Uk(x, y)

)
k≥1

is a martingale.

Def: Xn is a martingale if

E(Xn|Xn−1, . . . , X0) = Xn−1.

Martingale convergence theorem: Suppose (Xn)n≥0 is a bounded martingale sequence. Then Xn
a.s.−−→ X for

some limitting X.
Thus by martingale convergence theorem and Proposition 30.66.4, Uk(x, y)

a.s.−−→ U .

Now, by triangle inequality, the proof can be finished by picking a subsequence such that

δD(Wnj , U) ≤ δD(Wnj ,Wnj ,k) + δD(Wnj ,k, Uk) + δD(Uk, U). (30.17)

MATH 586 Fall 2023
Statistics for Networks

Lecture 31: Graph Limit

Lecturer: Robert Lunde Scribe: Tong Li

31-75



31.67 Review

• Suppose we have a sequence of graphs (Gn)n≥1, we say graph converges when

lim
n
t(F,Gn) = t(F ), ∀ simple F (31.18)

,where t(F,Gn) = P
(
F ⊆ G[k]

)
, where v1, . . . , vn sample with replacement.

• The ”right” norm to consider is Cut Norm.

∥W∥□ = sup
S,T⊆[0,1]

|
∫
S×T

W (x, y)d xd y|. (31.19)

And we have ∥W∥□ ≤ ∥W∥1 ≤ ∥W∥2 ≤ ∥W∥∞.
Define cut distance, let

δ□(U,W ) = inf
φ∈S[0,1]

∥U −Wφ∥□ (31.20)

where Wφ =W
(
φ(x), φ(y)

)
and S[0, 1] denotes space of measure preserving transformation.

• We say U ∼W if δ□(U,W ) = 0;
Consider space W̃0: the quotient space of W : [0, 1]2 → [0, 1], where two graphs are equivalent if
δ□(U,W ) = 0. (W̃0 be obtained from W0 by identifying graphons with cut distance zero).
We have the compactness of the space

(
W̃0, δD

)
:(

W̃0, δD
)
is compact.

31.68 Deviations in Homomorphism Densities

Corollary (31.68.1). For any (Gn)n≥1, s.t. t(F,Gn) → t(F ). For any simple F , there exists a graphon W
s.t. t(F ) = t(F,W ).

Proof. Since
(
W̃0, δD

)
is compact, we can have convergent subsequences with limit W . By counting lemma,

|t(F,Gn)− t(F,W )| ≤ e(F )δ□(Gn,W ).

Since t(F,Gn) is Cauchy, t(F,Gn) → t(F ).

Definition 31.68.1. W-random Graph: Let Gn(W ) be the n-node graph generated by Aji = Aij ∼
Bernoulli

(
W (ξi, ξj)

)
, where ξ1, . . . , ξn

i.i.d∼ U[0, 1].

Theorem 31.68.2 (Exponentially Small Deviations in Homomorphism Densities). For any simple graph F ,

P (|t(F,Gn(W ))− t(F,W )| > ϵ) ≤ 2 exp
−ϵ2n
4k2

(31.21)

which is saying that t(F,Gn(W ))
p−→ t(F,W )

|hom(F,Gn(W ))|
n|V (F )| =

1

nk

∑
V1,...,Vk

1(F ⊆ Gn(k)) (31.22)
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Proof can start from the bounded-difference inequality which is the exponential-deviation inequality for
functions of independent random variables, then connect the expected and limiting homomorphism density
to get the desired inequality.

Proposition 31.68.3. For each F ,

t(F,Gn(W ))
a.s.−→ t(F,W ) (31.23)

Proof. We introduce Borel-Cantelli Lemma at first: Let (En)n≥1 be sequence of events with the sum of the
probabilities is finite, that is

∑∞
n=1 P (En) < ∞, then the probability that infinitely many of them occur is

0: P (En, io) = 0, where io denotes infinitely often. We now consider the probabilities in the theorem are
summable, by Borel-Cantelli Lemma, |t(F,Gn(W ))− t(F,W )| > ϵ is finitely often with probability 1. Then
we have the convergence almost surely.

Proposition 31.68.4. For all homomorphism densities, Prop.1 tells us t(F,Gn(W )) almost surely conver-
gents to t(F,W ) (that is ∀F, P (t(F,Gn(W )) → t(f,W )) = 1 ), now we claim:

Gn(W )
a.s.−→W (31.24)

In other words,

P (∀F, (t(F,Gn(W )) → t(f,W ))) = 1 (31.25)

Proof. Consider the complementary event. Denote B as the event where not all of the homomorphism
densities coverage and Bf is the failure-to-converge event for motif f . Then P (B) ≤ P (∪fBf ) ≤

∑
f P (Bf ).

By Proposition 1, t(F,Gn(W ))
a.s.−→ t(F,W ). So P (Bf ) = 0 for each f . Thus, 0 ≤ P (B) ≤ 0, that is

P (B) = 0. Therefore, P (∀F, (t(F,Gn(W )) → t(f,W ))) = 1 [1].

31.69 Discussion

Problem with graph limit framework:

• Theory not interesting for sparse graph sequences (Consider sparse Erdős–Rényi model, t(F,Gn) → 0)

• Functions of the form W : [0, 1]2 → [0, 1] not rich enough to model heavy-tailed degree distribution.
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32.70 Review

• Suppose we have a sequence of graphs (Gn)n≥1, we say graph converges when

lim
n
t(F,Gn) = t(F ), ∀ simple F (32.26)
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,where t(F,Gn) = P
(
F ⊆ G[k]

)
, where v1, . . . , vn sample with replacement.

Counting Lemma: For any single graph F , let W , W ′ mapping [0, 1]2 → [0, 1].

|t(F,W )− t(F,W ′)| ≤ e(F )δ□(W,W
′). (32.27)

Cut Distance:

δ□(U,W ) = inf
φ∈S[0,1]

∥U −Wφ∥□ (32.28)

where Wφ = W
(
φ(x), φ(y)

)
and S[0, 1] denotes space of measure preserving transformation. U ∼ W

if δ□(U,W ) = 0;

• Consider space W̃0: the quotient space of W : [0, 1]2 → [0, 1], where two graphs are equivalent if
δ□(U,W ) = 0. (W̃0 be obtained from W0 by identifying graphons with cut distance zero).
We have the compactness of the space

(
W̃0, δD

)
:(

W̃0, δD
)
is compact.

• For any (Gn)n≥1, s.t. t(F,Gn) → t(F ). For any simple F , there exists a graphonW s.t. t(F ) = t(F,W ).

32.71 Approaches to Sparse Graph Limits

Continuing from the discussion we had at the last class, let’s consider an example:
For sparse graph sequences where P (G[2]) → 0, we have that limn→∞ t(F,Gn) = t(F, 0),∀simpleF .
So the graph limits in the last class are only for dense graph sequences; there are some modifications we
need to discuss for the sparse graph case.

Corollary (32.71.1) ((sparse) Lp graphons). Idea: embed graphs in Lp instead of L∞, normalize by edge
density.
For sparse graph/function sequences, consider the distance

δ□(W,W
′) = δ□(

W

∥W∥1
,
W ′

∥W ′∥1
) (32.29)

Comments: the intuition to do this is for a simple graph G, an upper bound on G
∥G∥1

= ∥G∥
1
p−1

1 corresponds

to a lower bound on ∥G∥1, which force G to be dense.

Theorem 32.71.1 (limits for Lp upper regular sequences). Let (Gn)n≥1 be a sequence of graphs that Lp

upper regular, then ∃ a subsequence Gnj, graphon W satisfying ∥W∥p ≤ C, s.t.

δ□(
Gnj

∥Gnj∥1
,W ) → 0 (32.30)

Theorem 32.71.2. If ρ > 0, satisfies ρn → 0 and nρn → ∞ as n→ ∞, then

δ□(ρ
−1
n Gn(W,ρn),W )

a.s.−→ 0 (32.31)
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32.72 Counting Lemma for Lp graphons

In this section, we discuss the extension of subgraph counts on the sparse case. In dense graph limits,
homomorphism densities characterize convergence under the defined cut metric, while this left convergence
cannot be maintained in sparse graph limits.

Theorem 32.72.1. Let F be a simple subgraph with m vertices, max degree ∆. Let ∆ < p < ∞, If U and
W are graphons with ∥U∥p ≤ 1, ∥W∥p ≤ 1, and δ□(U,W ) ≤ ε, then

|t(F,U)− t(F,W )| ≤ 2m(m− 1 + p−∆)
( 2ε

p−∆

) p−∆
p−∆+m−1 (32.32)

32.73 Exchangeability

Another theory of Sparse Graph Sequences is related to graphexes. They consider exchangeability for
adjacency measure.

ξ =
∑

(X,Y )∈e(G)

δ(X,Y ) (32.33)

An example of Kallenberg exchangeable graph[1].

Figure 32.14: Kallenberg exchangeable graph
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Theorem 32.73.1. Let φ : [0,∞) → [0,∞) be a measure-preserving transformation, consider the process
Y φ where

(φ(X), φ(Y )) ∈ Y φ ⇔ (X,Y ) ∈ Y (32.34)

Y is exchangeable if Y φ d
= Y .

A representation theorem for exchangeable point process suggests model:

Zij|(θk, γk)k=1,2,,... = Bernoulli(W (γi, γj)) (32.35)

where W : [0,∞)2 → [0, 1]
(θk, γk) is unit rate Poisson process.
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