
Network Cross-Validation

Aaron, Anthony

Department of Mathematics and Statistics

Washington University in St. Louis

January 17, 2024

Aaron, Anthony (WUSTL) Short title January 17, 2024 1 / 28

Overview

1 Introduction and Background

2 Network Cross-Validation for Determining the Number of Communities in
Network Data

Data Splitting
simulation

3 An Improvement: Network Cross-Validation by Edge Sampling
ECV Algorithm
Matrix Completion
Theoretical Justification
Model Selection and Parameter Tuning

Aaron, Anthony (WUSTL) Short title January 17, 2024 2 / 28

Introduction and Background

Cross Validation and Model Selection
Purpose: Evaluate model generalization.
Method:

• Split data into k folds.
• Train on k − 1 folds, test on 1 fold.
• Repeat for each fold, average results.

Types:
• k-Fold (common, k = 5 − 10)
• Leave-One-Out (for small datasets)

Advantage: Reduces performance estimation bias.

Aaron, Anthony (WUSTL) Short title January 17, 2024 3 / 28

Network Cross-Validation for Determining the Number
of Communities in Network Data

Aaron, Anthony (WUSTL) Short title January 17, 2024 4 / 28

Network Cross-Validation

A substantial amount of work has been done on the community recovery
problem
Determine the number of communities K in a network remains a
challenge
Perform Cross-Validation on graph K̂

Aaron, Anthony (WUSTL) Short title January 17, 2024 5 / 28

Block-wise Node-Pair Splitting

Fitting and Testing set Construction
In order to perform Cross-validation, we need to first divide the nodes into
(N1,N2) for training and testing purposes. Unlike the traditional method,
which only divides the node randomly into two sets (N1,N2), as long as
|N1 | = V · |N2 | the method proposed in this paper has the following advantages

Membership of all nodes can be inferred from the fitting sets.
Fitting and testing sets remained independent.

Aaron, Anthony (WUSTL) Short title January 17, 2024 6 / 28

Block-wise Node-Pair Splitting Continued

Overview
Node pairs (i , j) for i ∈ N1 and j ∈ N1 ∪ N2 form the fitting set.
Node pairs (i , j) with i , j ∈ N2 are used as the testing set.
This method ensures comprehensive relationship modeling and
independent edge formation analysis.

Figure 1: Illustration of Block-wise Node-Pair Splitting: Nodes are divided into subsets
N1 (red) and N2 (blue).

Aaron, Anthony (WUSTL) Short title January 17, 2024 7 / 28

Estimating parameters from the rectangular matrix

Estimation
Given (N1,N2), we want to learn the model parameters (ĝ, B̂), where
B̂ = [0, 1]K×K is the symmetric matrix representing the community-wise edge
probability, and ĝ = {1, 2, ...,K }n is the community membership vector, from
A(1) = (A(11) ,A(12)), which is the adjacency matrices for nodes in (N1,N2).

A =

(
A(11) A(12)

A(21) A(22)

)

Aaron, Anthony (WUSTL) Short title January 17, 2024 8 / 28

Validation using N2

Input: A set K of candidate values for K , adjacency matrix A, number of folds
V ≥ 2.

split the adjacency matrix into V × V blocks of equal size

For 1 ≤ 𝜈 ≤ V , and for each K̃ ∈ K,
• Estimate the model parameter (ĝ (𝜈) , B̂ (𝜈)) by removing the rows of A in the

subset N𝜈 . (See Previous Slide)
• Calculate the loss:

L̂(𝜈) (A, K̃) =
∑︁

i ,j∈N𝜈 ,i≠j

(Aij − P̂ (𝜈)
ij)2,

where P̂ (𝜈)
ij = B̂ (𝜈)

ĝ (𝜈)
i ĝ (𝜈)

j

.

• Output

K̂ = arg min
K̃ ∈K

V∑︁
𝜈=1

L̂(𝜈) (A, K̃).

Aaron, Anthony (WUSTL) Short title January 17, 2024 9 / 28

Recovering K̂

Number of communities
Note that the term

∑V
v=1 L̂(v) (A, K̃) is minimized when K̃ = K . If K̃ is too small,

the fitted model is insufficiently trained and underfit, whereas if K̃ is too big,
the model will overfit.

Aaron, Anthony (WUSTL) Short title January 17, 2024 10 / 28

Simulation 1: Edge sparsity and Community
Imbalance

Aaron, Anthony (WUSTL) Short title January 17, 2024 11 / 28

Simulation 2: general block structures and comparison
to recursive bipartition

Aaron, Anthony (WUSTL) Short title January 17, 2024 12 / 28

Simulation 3: degree corrected block models

Aaron, Anthony (WUSTL) Short title January 17, 2024 13 / 28

An Improvement: Network Cross-Validation by Edge
Sampling

Aaron, Anthony (WUSTL) Short title January 17, 2024 14 / 28

What’s to consider in sampling?

Quality of data in a sample is fundamental for statistical analysis. We have
seen a simple sampling in Chen and Lei (2015) and its performance in
cross-validation and Li et al. (2020) proposed an improvement.
Setting:

Nodes of network: V = {1, 2, · · · , n} =: [n].
n × n adjacency matrix: A.
Aij = Aji ∼ Ber (p). EA = M is a matrix of probabilities.
Gn,p model: assign to each graph g with n nodes and m edges.

P (G = g) = pm (1 − p) (
n
2)−m

The general network analysis task:
estimate M from the data A, under various structural assumptions.

cross-validation on networks:
how to treat the resulting partial data which is no longer a complete
network.

Aaron, Anthony (WUSTL) Short title January 17, 2024 15 / 28

General Approach
Edge cross-validation (ECV) algorithm
(1) Obtain training set by splitting node pairs: edge sampling with probability

of inclusion p instead of node sampling;
(2) obtain training data Â and testing data by matrix completion
(3) evaluate models 1, · · · ,Q

Source: https://medium.com/@ajmal.t.aziz/
Aaron, Anthony (WUSTL) Short title January 17, 2024 16 / 28

ECV Algorithm I

Algorithm 1 (ECV Algorithm):
Input: an adjacency matrix A, a loss function L, a set C of Q candidate
models, the training proportion p, and the number of replications N.
1. Select rank for matrix completion
K_hat = select_rank(method=’Algorithm_2’)

2. Main loop
for n in range(1, N+1):

(a) Choose subset of node pairs
Omega = Bin(set=V*V, probability=p)

(b) Apply matrix completion
A_hat = low_rank_matrix_completion(A, Omega, K_hat)

(c) Model fitting and loss evaluation
for q in range(1, Q+1):

fit_model_on(A_hat)
loss_q_n = evaluate_loss(A, Omega_complement)

3. Determine the best model
L_q = calculate_average_loss(loss_q_n, N)
best_model = argmin(L_q)

Aaron, Anthony (WUSTL) Short title January 17, 2024 17 / 28

ECV Algorithm II

Algorithm 2 (Rank Selection)
Rank selection is itself another parameter tuning/model selection. We need to
choose a rank K̂ so that Â preserves structural information of A. Since this is
a parameter tuning/model selection, we need to design a function
calculate_loss for the rank selection algorithm. We can use the sum of

squared errors on the held-out entries, =
∑

(i ,j) ∈Ωc

(
Aij − Âij

)2
, or, when A is

binary, the binomial deviance as the loss function to optimize.
for n in range(1, N+1):

Omega = Bin(set=V*V, probability=p)
A_hat = low_rank_matrix_completion(A, Omega, K_hat)

for k in range(1, K_max+1):
A_hat = low_rank_matrix_completion(A, Omega, rank=k)
loss_k_n = calculate_loss(A, Omega_complement)

Determine the minimum loss rank
L_k = calculate_average_loss(loss_k_n, N)
optimal_rank = argmin(L_k)

Aaron, Anthony (WUSTL) Short title January 17, 2024 18 / 28

Matrix Completion Process I

PΩ Operator: PΩ : Rn×n → Rn×n;PΩ (A)ij =
{

Aij if (i , j) ∈ Ω

0 otherwise

Optimization Problem:

min
W

F (PΩ (W),PΩ (A)), subject to rank(W) ≤ K̂

Where W is the matrix to optimize, F is the loss function, and K̂ is the
rank constraint.

Aaron, Anthony (WUSTL) Short title January 17, 2024 19 / 28

Solver - Singular Value Thresholding:

Â = SH

(
1
p

PΩ (A), K̂
)

where SH

(
PΩA, K̂

)
is rank K̂ truncated SVD of a matrix PΩA. i.e., if the

SVD of PΩA is PΩA = UDV T where D = diag (𝜎1, · · · , 𝜎n) , 𝜎1 ≥ · · ·𝜎n ≥ 0,
then SH

(
PΩA, K̂

)
= UDK̂ V T , where DK̂ = diag

(
𝜎1, · · · , 𝜎K̂ , 0, · · · , 0

)
.

SVT algorithm approximates matrix A with a lower rank matrix Â, using
rank threshold K̂ .
Rationale:

• Assumes low-rank approximation of the network matrix.
• Applicable to various network types (directed/undirected, binary/weighted).
• Stability selection incorporated for robustness.

Aaron, Anthony (WUSTL) Short title January 17, 2024 20 / 28

Theoretical Justification I

Intuitively, ECV should work well if Â reflects relevant structural properties of
the true underlying model. The following theorem formalizes this intuition. All
results will be expressed as a function of

the number of nodes n;

the sampling probability p which controls the size of the training set;

the rank K of the true matrix M;

an upper bound on the expected node degree d , defined to be any value
satisfying maxij Mij ≤ d/n, a crucial quantity for network concentration
results.

We can always trivially set d = n, but we will also consider the sparse
networks case with d = o(n).

Aaron, Anthony (WUSTL) Short title January 17, 2024 21 / 28

Theorem
Let M be a probability matrix of rank K and d as defined above. Let A be an
adjacency matrix with edges sampled independently and E(A) = M. Let Ω be
an index matrix for a set of node pairs selected independently with probability
p ≥ C1 log n/n for some absolute constant C1, with Ωij = 1 if the node pair (i , j)
are selected and 0 otherwise. If d ≥ C2 log(n) for some absolute constant C2,
then with probability at least 1 − 3n−𝛿 for some 𝛿 > 0, the completed matrix Â
defined in (2) with K̂ = K satisfies

∥Â − M ∥ ≤ C̃ max
©«
√︄

Kd2

np
,

√︄
d
p
,

√︁
log n
p

ª®¬
where C̃ = C̃ (𝛿,C1,C2) is a constant that only depends on C1,C2 and 𝛿. This
also implies

∥Â − M ∥2
F

n2
≤ C̃2

2
max

(
K 2d2

n3p
,

Kd
n2p

,
K log n
n2p2

)
.

Aaron, Anthony (WUSTL) Short title January 17, 2024 22 / 28

Theorem
Assume A is generated from a random dot product graph model satisfying 1
and 2 (referring to eigenvalue gap and Incoherent matrix assumption), with
latent space dimension K . Let K̂ be the output of Algorithm 2. If the sum of
squared errors is used as the loss and the expected degree satisfies
𝜆n/

(
n1/3 log4/3 n

)
→ ∞,

P(K̂ < K) → 0

Aaron, Anthony (WUSTL) Short title January 17, 2024 23 / 28

Model Selection: Parametric and Nonparametirc
Tuning in Graphon Estimation I

Algorithm 2 and Theorem 2 displayed before give the Model-free rank
estimators that can be specifically applied to dot product graph model. The
first part of our presentation also gives the implementation of cross validation
on Stochastic Block Models (SBM). The random dot product graph model can
include the stochastic block model as a special case, but only if the probability
matrix M of the stochastic block model is positive semi-definite. We turn to the
third type of low-rank applicable model: latent space and graphon.
Latent space model assumes the nodes correspond to n latent positions
Zi ∈ RK , and the probability matrix is some function of the latent positions, for
example, the distance model f

(
Mij

)
= 𝛼 −

Zi − Zj
, where f is a known

function, such as the logit function.
More generally, Aldous-Hoover representation we’ve talked about in class
says that the probability matrix of any exchangeable random graph can be
written as Mij = W (Ui ,Uj) for a symmetric function W : [0, 1] × [0, 1] → [0, 1],
determined up to a measure-preserving transformation. W is called a
graphon.

Aaron, Anthony (WUSTL) Short title January 17, 2024 24 / 28

Parametric: Zhang et al. (2017) proposed a neighborhood smoothing
estimation for a graphon model that depends on a tuning parameter h which
controls the degree of smoothing. The theory suggests h = 𝜏(log n/n)1/2 for
some 𝜏.
Nonparametric: The sampling is also applied to a dataset compiled by Ji &
Jin (2016). This dataset contains information (title, author, year, citations and
DOI) about all papers published between 2003 and 2012 in four top statistics
journals.

Aaron, Anthony (WUSTL) Short title January 17, 2024 25 / 28

Comparison

Aaron, Anthony (WUSTL) Short title January 17, 2024 26 / 28

References

Kehui Chen, Jing Lei (2015) Network Cross-Validation for Determining the Number of
Communities in Network Data arXiv.

Tianxi Li, Elizaveta Levina, Ji Zhu (2020) Network cross-validation by edge sampling Biometrika,
107(2): 257-276.

Yuan Zhang, Elizaveta Levina, Ji Zhu (2017). Estimating network edge probabilities by
neighbourhood smoothing. Biometrika, 104(4): 771-783.

Aaron, Anthony (WUSTL) Short title January 17, 2024 27 / 28

The End

Aaron, Anthony (WUSTL) Short title January 17, 2024 28 / 28

	Introduction and Background
	Network Cross-Validation for Determining the Number of Communities in Network Data
	Data Splitting
	simulation

	An Improvement: Network Cross-Validation by Edge Sampling
	ECV Algorithm
	Matrix Completion
	Theoretical Justification
	Model Selection and Parameter Tuning

	References

