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Chapter 1

Lie Groups: An Introduction

1.1 Basics

A Lie group is a smooth manifold G (without boundary) that is also a group, with the property that the
multiplication map m : G x G — G and inversion map i : G — G, given by m(g,h) = gh, i(g) = g~ !, are
both smooth. A group homomorphism F' : G — H between Lie groups is a Lie group homomorphism if it is
also smooth. It is a Lie group isomorphism if it is also a diffeomorphism.

Proposition 1.1.1.
(1) [LeeSM] Theorem 7.5: Every Lie group homomorphism has constant rank.
(2) [LeeSM] Corollary 7.6: A Lie group homomorphism is a Lie group isomorphism iff it is bijective.

(3) [LeeSM] Theorem 7.7 + 7.9: Let G be a connected Lie group. There exists a Slmply connected Lie group
G, called universal covering group of G, that admits a smooth covering map  : G — G that is also a
Lie group homomorphism. It is unique up to Lie group isomorphism.

Recall that an embedded submanifold is a subset with subspace topology and a smooth structure such that
the inclusion map is a smooh embedding. An immersed submanifold is a subset with a topology with
respect to which it is a topological manifold (without boundary), and a smooth structure such that the
inclusion map is a smooth immersion. Suppose G is a Lie group. A Lie subgroup of G is a subgroup of G
endowed with a topology and smooth structure making it into a Lie group and an immersed submanifold
of G. Note that an embedded subgroup is automatically a Lie subgroup since every embedded submanifold
is an immersed submanifold with subspace topology and that subspace topology makes the restrictions of
multiplication and inversion still smooth (see [LeeSM] Cor.5.30). The simplest example of an embedded
Lie subgroup is the open subgroup by [LeeSM] proposition 5.1, and it is also closed and thus a union of
connected components by [LeeSM] Lemma 7.12.

Proposition 1.1.2.
(1) [LeeSM] proposition 7.14: Suppose G is a Lie group, and W < G is any neighborhood of the identity.
(a) W generates an open subgroup of G.
(b) If W is connected, it generates a connected open subgroup of G.
(c) If G is connected, then W generates G.

(2) [LeeSM] Proposition 7.15: Let G be a Lie group and let G be its identity component. Then G is a normal
subgroup of G, and is the only connected open subgroup. Every connected component of G is diffeomorphic
to Go.
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(3) [LeeSM] Theorem 21.26 (Quotient Theorem for Lie Groups). Suppose G is a Lie group and K < G is a
closed normal subgroup. Then G/K is a Lie group, and the quotient map  : G — G/K is a surjective Lie
group homomorphism whose kernel is K.

(4) [LeeSM] Proposition 7.17 says that the image of an injective Lie group homomorphism is a Lie subgroup.
And a more general result is built from this:

(5) [LeeSM] Theorem 21.27 (First Isomorphism Theorem for Lie Groups). If F' : G — H is a Lie group
homomorphism, then the kernel of F' is a closed normal Lie subgroup of G, the image of F has a unique
smooth manifold structure making it into a Lie subgroup of H, and F descends to a Lie group isomorphism
F:G/Ker F — ImF. If F is surjective, then G/ Ker F is smoothly isomorphic to H.

(6) [LeeSM] Proposition 21.28: Every discrete subgroup of a Lie group is a closed Lie subgroup of dimension
zero.

Example 1.1.3 (Embedded Lie Subgroups). [LeeSM] Example 7.18.

(a) The circle S! is an embedded Lie subgroup of C* because it is a subgroup and an embedded submani-
fold.

(b) The set SL(n,R) of n x n real matrices with determinant equal to 1 is called the special linear group
of degree n. Because SL(n,R) is the kernel of the Lie group homomorphism det : GL(n,R) — R*, it
is a properly embedded Lie subgroup. Because the determinant function is surjective, it is a smooth
submersion by the global rank theorem, so SL(n,R) has dimension n? — 1.

(c) The subgroup SL(n,C) < GL(n,C) consisting of complex matrices of determinant 1 is called the
complex special linear group of degree n. It is the kernel of the Lie group homomorphism det :
GL(n,C) — C*. This homomorphism is surjective, so it is a smooth submersion by the global rank
theorem. Therefore, SL(n,C) = Ker(det) is a properly embedded Lie subgroup whose codimension is
equal to dim C* = 2 and whose dimension is therefore 2n? — 2.

Here is an example of a Lie subgroup that is not embedded.

Example 1.1.4 (A Dense Lie Subgroup of the Torus). [LeeSM] Example 7.19.

Let H < T? be the dense submanifold of the torus that is the image of the immersion v : R — T? defined in
[LeeSM] Example 4.20. It is easy to check that ~ is an injective Lie group homomorphism, and thus H is an
immersed Lie subgroup of T? by Proposition 1.1.2 (4). o

In general, smooth submanifolds can be closed without being embedded (as is, for example, the figure-
eight curve of [LeeSM] Example 5.19) or embedded without being closed (as is the open unit ball in R™
). However, as the next theorem shows, Lie subgroups have the remarkable property that closedness and
embeddedness are not independent. This means that every embedded Lie subgroup is properly embedded.

Theorem 1.1.5. [LeeSM] Theorem 7.21: Suppose G is a Lie group and H < G is a Lie subgroup. Then H is
closed in G if and only if it is embedded.

Compare this with the Cartan’s closed subgroup theorem, where the subgroup is not assumed to have a
submanifold structure in the first place.

Theorem 1.1.6. [LeeSM] Theorem 20.12: Suppose G is a Lie group and H < G is a subgroup that is also a
closed subset of G. Then H is an embedded Lie subgroup.

Our main goal now is to develop tools to prove this theorem.

6
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1.2 Lie Algebras

Suppose G is a Lie group. Recall that G acts smoothly and transitively on itself by left translation: Ly(h) =
gh. A vector field X on G is said to be left-invariant if it is invariant under all left translations, in the sense
that it is L -related to itself for every g € G. More explicitly, this means

d(Ly), (Xy)=X4y, forallg,¢eG

g
Since L, is a diffeomorphism, this can be abbreviated by writing (L,), X = X for every g € G.

Because (L), (aX +bY) = a(Ly), X +b(L,), Y, the set of all smooth left-invariant vector fields on G,
denoted as Lie(G) is a linear subspace of X(G). The Lie bracket [X, Y] of two left-invariant v.f. X,V is still
left-invariant due to [LeeSM] Cor.8.31, so Lie(G) is a Lie subalgebra of the Lie algebra X(G), i.e., a vector
space with skew-symmetric bilinear map that satisfies Jacobi identity [ X, [Y, Z]] + [V, [Z, X]] +[Z,[ X, Y]] =
0.

Theorem 1.2.1. Let G be a Lie group. The evaluation map ¢ : Lie(G) — T.G, given by ¢(X) = X,, is a vector
space isomorphism. Thus, Lie(G) is finite-dimensional, with dimension equal to dim G.

Proof. Tt is clear from the definition that ¢ is linear over R. It is easy to prove that it is injective: if £(X) =
X, = 0 for some X € Lie(G), then left-invariance of X implies that X, = d(L,), (X.) = 0 for every g € G,
so X =0.

To show that ¢ is surjective, let v € T.G be arbitrary, and define a (rough) vector field v™ on G by

If there is a left-invariant vector field on G whose value at the identity is v, clearly it has to be given by this
formula.

First we need to check that v" is smooth. By [LeeSM] Proposition 8.14 , it suffices to show that v" f is smooth
whenever f € C*(G). Choose a smooth curve v : (—4,) — G such that v(0) = e and 4/(0) = v. Then for all
geG@G,
(0" f) (9) = v"|, f = d(Ly), (v)f = v (f o Lg) =7'(0) (f o Ly)
d
== L

&, Uelaon®
If we define ¢ : (—6,0) x G — R by ¢(t,g9) = foLgo~(t) = f(gv(t)), the computation above shows that
(v™f) (9) = 0¢/dt(0, g). Because ¢ is a composition of group multiplication, f, and v, it is smooth. It follows
that 0p/0t(0, g) depends smoothly on g, so v f is smooth.

Next we show that v is left-invariant, which is to say that d (Ln), (UL|9) = v

follows from the definition of v™ and the fact that L0 Ly = Ly,:

L|hg for all g,h € G. This

d(Ln), (v"],) = d(Ln), 0 d (L), () = d(Ln 0 L), (0) = d (Lig), (v) = o],

Thus v" € Lie(G). Since L. (left translation by the identity) is the identity map of G, it follows that £ (v") =
o] = v, so ¢ is surjective. O

Corollary 1.2.2. Every left-invariant rough vector field on a Lie group is smooth.

Proof. Let X be a left-invariant rough vector field on a Lie group G, and let v = X.. Now v" € Lie(G) and
e (v"|,) = X, show that v = X by bijectivity of . Thus X is smooth. O

7
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Corollary 1.2.3. Every Lie group admits a left-invariant smooth global frame, and therefore every Lie group is
parallelizable.

Proof. If G is a Lie group, every basis for Lie(G) is a left-invariant smooth global frame for G. Explicitly, this
basis is {b%,--- ,bL}, given a basis {b1,--- ,b,} of T.G. O

Example 1.2.4 (Lie algebras).

(a) Euclidean space R™: If we consider R™ as a Lie group under addition, left translation by an element
b € R™ is given by the affine map L,(z) = b + x, whose differential d (L) is represented by the
identity matrix in standard coordinates. Thus a vector field X¢d/0x" is left-invariant if and only if
its coefficients X are constants. Because the Lie bracket of two constant-coefficient vector fields is
zero, the Lie algebra of R™ is abelian, and is isomorphic to R™ itself with the trivial bracket. In brief,
Lie (R™) =~ R".

(b) The circle group S!: Let @ be any angle coordinate on a proper open subset U < S*, and let d/df
denote the corresponding coordinate vector field. Because any other angle coordinate 6 differs from 6
by an additive constant in a neighborhood of each point, the transformation law for coordinate vector
fields shows that d/d = d/df on their common domain. For this reason, there is a globally defined
vector field on S* whose coordinate representation is d/df with respect to any angle coordinate. It is a
smooth vector field because its component function is constant in any such chart. We denote this global
vector field by d/d6, even though, strictly speaking, it cannot be considered as a coordinate vector field
on the entire circle at once. In terms of appropriate angle coordinates, each left translation has a local
coordinate representation of the form 6 — 6 + c. Since the differential of this map is the 1 x 1 identity
matrix, it follows that the vector field d/d# is left-invariant, and is therefore a basis for the Lie algebra
of S'. This Lie algebra is 1-dimensional and abelian, and therefore Lie (S') ~ R.

(¢) The n-torus T" = S* x --- x S1: choosing an angle function ¢ for the i th circle factor, i = 1,...,n,
yields local coordinates (¢',...,6™) for T". An analysis similar to that of the previous example shows
that the coordinate vector fields 0/00',...,0/06™ are smooth and globally defined on T" and form a
basis for Lie (T™). Since the Lie brackets of these coordinate vector fields are all zero, Lie (T") =~ R".

<

The Lie groups R”,S', and T™ are abelian, and as the discussion above shows, their Lie algebras turn out
also to be abelian.

Proposition 1.2.5. Every abelian Lie group has an abelian Lie algebra (see [LeeSM] Problem 8-25). The
converse is true provided that the group is connected ([LeeSM] Problem 20-7).

Theorem 1.2.6 (Induced Lie Algebra Homomorphisms). Let G and H be Lie groups, and let g and ) be their
Lie algebras. Suppose F' : G — H is a Lie group homomorphism. For every X € g, there is a unique vector
field in b that is F-related to X. With this vector field denoted by F, X, the map F : g — b so defined is a Lie
algebra homomorphism.

Proof. 1f there is any vector field Y € § that is F-related to X, it must satisfy Y, = dF, (X.), and thus it must
be uniquely determined by

Y = (dFe (Xe))L
To show that this Y is F'-related to X, we note that the fact that F' is a homomorphism implies
Flg9) = F(9)F (¢') = F (Lg9') = Lr)F (¢)
3FOL9 = LF(g) oF
= dF od(Ly) = d(Lp)) o dF

8



Math 560 Compact Lie Group Anthony Hong

Thus,
dF (Xg) = dF (d(Lg) (Xe)) = d (Lp(g) (dF (Xe)) = d (Lp(g) (Ye) = Yr(g)

This says precisely that X and Y are F'-related.
For each X € g, let F, X denote the unique vector field in § that is F-related to X. It then follows immediately
from the naturality of Lie brackets that Fi.[X,Y] = [F X, F,Y], so F is a Lie algebra homomorphism. [

The map F. : g — h whose existence is asserted in this theorem is called the induced Lie algebra homomor-
phism. Note that the theorem implies that for any left-invariant vector field X € g, F, X is a well-defined
smooth vector field on H, even though F' may not be a diffeomorphism.

Proposition 1.2.7 (Properties of Induced Homomorphisms).
(a) The homomorphism (Id¢), : Lie(G) — Lie(G) induced by the identity map of G is the identity of Lie(G).
(b) If F, : G —> Hand F» : H— K are Lie group homomorphisms, then

(F2 o Fl)* = (FQ)* o (Fl)* : Lle(G) i LIE(K)

(c) Isomorphic Lie groups have isomorphic Lie algebras.

If G is a Lie group and H < G is a Lie subgroup, we might hope that the Lie algebra of H would be a Lie
subalgebra of that of G. However, elements of Lie(H) are vector fields on H, not G, and so, strictly speaking,
are not elements of Lie(G). Nonetheless, the next proposition gives us a way to view Lie(H ) as a subalgebra
of Lie(Q).

Theorem 1.2.8 (The Lie Algebra of a Lie Subgroup). Suppose H < G is a Lie subgroup, and ¢ : H — G is the
inclusion map. There is a Lie subalgebra h < Lie(G) that is canonically isomorphic to Lie(H), characterized by
either of the following descriptions:
b = v (Lie(H))
={XeLie(G): X, e T.H}

1.3 Lie Derivative
Suppose M is a smooth manifold, V' is a smooth vector field on M, and 6 is the flow of V. For any smooth

vector field W on M, define a rough vector field on M, denoted by £, W and called the Lie derivative of
W with respect to V, by

d
(LyW), = 2| d0-t)g, () Wouir)
t=0
iy d(0—t)g, () (fVet(p)) W

provided the derivative exists. For small ¢ # 0, at least the difference quotient makes sense: 6, is defined in
a neighborhood of p, and 6_, is the inverse of 6, so both d (6_¢)y, (,, (Wo,(p)) and W, are elements of T}, M.

There are some technical issues regarding the manifold with boundary case (see [LeeSM] p.228). Lemma
9.36 shows that it is indeed a smooth vector field and Theorem 9.38 equates it with [V, W]. Corollary 9.39
and Proposition 9.41 and Theorem 9.42 are summarized below.

Proposition 1.3.1. Suppose M is a smooth manifold with or without boundary, and V,W, X € X(M).
(@) LyW = —LyV
() Ly[W, X] = [LvW, X]+ [W, Ly X]
© Ly X =LvLwX — LwLyX.
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() If ge C* (M), then Ly (gW) = (Vg)W + gLy W.
(e) If F: M — N is a diffeomorphism, then Fy (Ly X) = L, vFeX
() If OM # &, assume also that V is tangent to M. Let 0 be the flow of V. For any (to,p) in the domain of
0,
d
2l 06 W) = d(0-1,) ((5VW)et0<p>)

t=to

(g) V commutes with W, i.e., [V,W] =0 <= V is invariant under the flow of W <= W is invariant
under the flow of V. Invariance of X under flow n of Y simply means d (n),, (Xp,) = X, (,) for all (¢,p)
in the domain of the flow 1.

Theorem 9.46 is also copied below.

Theorem 1.3.2 (Canonical Form for Commuting Vector Fields). Let M be a smooth n-manifold, and let
(V1, ..., Vi) be a linearly independent k-tuple of smooth commuting vector fields on an open subset W < M. For
each p € W, there exists a smooth coordinate chart (U, (s')) centered at p such that V; = 0/0s’ fori = 1,... k.
If S < W is an embedded codimension- k submanifold and p is a point of S such that T,,S is complementary

to the span of (Vl | b Vil p), then the coordinates can also be chosen such that S n U is the slice defined by

Slzzskzo

1.4 Exponential Maps
For the theory below, we focus on the K = R case. For the K = C case, we need a generalization of the usual
result of the theory of differential equations to complex setup.

Recall that for V € X(M) an a point p € M, there exists a unique maximal smooth curve ~(¢) that is an
integral curve of V starting at p, i.e., 7(0) = p and +'(t) = V, 4 for all ¢.

Definition 1.4.1. A one-parameter subgroup of a Lie group G is a Lie group homomorphism ¢ : R — G, i.e.
¢ is smooth such that ¢(s +t) = ¢(s)p(t) for all s,t e R.

Theorem 1.4.2 (Characterization of One-Parameter Subgroups). Let G be a Lie group. The one-parameter
subgroups of G are precisely the maximal integral curves of left-invariant vector fields starting at the identity.
Proof. Note that [LeeSM] Theorem 9.18 shows that (¢) for X € Lie(G) starting at e is complete, i.e., defined
on R.
To show ~(t) is a one-parameter subgroup, we need to show (¢ + s) = y(t)y(s) for any ¢, s € R.

* Translation lemma says that (¢ + s) is again an integral curve of the same vector field generating ~.

* Naturality of integral curves say that smooth map F' : M — N takes integral curves of X € X (M)
to integral curves of Y € X(N) when X and Y are F-related. Thus, left-invariance gives X and X
L., -related and L.;)v(s) = 7(t)y(s) is then an integral curve of X.

By uniqueness of maximal integral curve, these two are the same.

To show the converse, let v : R — G be a one-parameter subgroup, so v(0) = e. Recall the induced Lie
algebra homomorphism ~, that sends a left-invariant vector field to a unique left-invariant vector field that
is v-related to it:

v« @ Lie(R) — Lie(G)
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The v-relatedness of v.f. % and V gives (recall F-relatedness of X and Y means dF,(X,) = Yr@p)):

d
d’Ys (dt

But the LHS is definition of 7/(s), so above shows that v is an integral curve of V starting at e. O

) — V(rs)).

As a consequence, we get one-to-one correspondences between
* One-parameter subgroups of G.
* Left invariant vector fields on G.
» Tangent vectors at e¢ € G.

So we have three different descriptions of the Lie algebra g.

Definition 1.4.3. Given a Lie group G with Lie algebra g, we define a map exp : g — G, called the exponential
map of G, as follows: for any X € g, we set
expX =(1)

where ~ is the one-parameter subgroup generated by X, or equivalently the integral curve of X starting at the
identity.

Proposition 1.4.4. Let G be a Lie group. For any X € Lie(G),y(s) = exp sX is the one-parameter subgroup of
G generated by X.

Proof. Let v : R — G be the one-parameter subgroup generated by X, which is the integral curve of X
starting at e. For any fixed s € R, it follows from the rescaling lemma that 4(¢) = ~(st) is the integral curve
of sX starting at e, so

expsX = (1) =(s)
O
Remark 1.4.5. Note that the zero vector 0 € T.G generates the zero vector field on G, whose integral curve
through e is the constant curve. So exp(0) = e.

Example 1.4.6.
(1) For G = R*, we can identify TG = R. For any = € T1G = R, the map

$p:R—G, tel®

is the one-parameter subgroup of G with ¢(0) = . It follows exp(z) = e®.

(2) For G = S!, we can identify T} S' = iR. The one-parameter subgroup corresponding to iz € T;.S' = iR
is
¢:R— St el

So the exponential map is given by exp(iz) = e®.

(3) For G = R, we identify T,G = R. The one-parameter subgroup for x € R is
¢o:R->R, t—tz.

So the exponential map is exp(z) = x.

We can also get the one-parameter subgroups and exponential maps of the Lie subgroups of a Lie group.

11
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Proposition 1.4.7. Suppose G is a Lie group and H < G is a Lie subgroup. The one-parameter subgroups
of H are precisely those one-parameter subgroups of G whose initial velocities lie in T, H, i.e., {exptX : X €
Lie(G) s.t. X, € T.H}. Thus, the exponential map of H is simply exp |1, 1.

Proposition 1.4.8 (Properties of the Exponential Map). Let G be a Lie group and let g be its Lie algebra.
(a) The exponential map is a smooth map from g to G.
(b) Forany X € gand s,t € R,exp(s + )X = expsX exptX.
(c) Forany X € g, (exp X)~! = exp(—X).
(d) Forany X e gand n € Z, (exp X)" = exp(nX).

(e) The differential (dexp)o : Tog — T.G is the identity map, under the canonical identifications of both Tyg
and T.G with g itself.

(f) The exponential map restricts to a diffeomorphism from some neighborhood of 0 in g to a neighborhood of
ein G.

(g) If H is another Lie group, b is its Lie algebra, and ® : G — H is a Lie group homomorphism, the following
diagram commutes:

g —* b
cxpl lcxp
G — H

(h) The flow 6 of a left-invariant vector field X is given by 6; = Rexpx (right multiplication by exp tX ).

Proof. See [LeeSM] Proposition 20.8. O

1.5 Classical groups

Let K be either R, which gives a real Lie group, or C, which gives a complex Lie group. We discuss the
so-called classical groups, or various subgroups of the general linear group which are frequently used in
linear algebra:

* General linear group GL(n, K), the set of all invertible n x n matrices with enties in K.
* Special linear group SL(n,K) = {A € GL(n,K) : det(A) = 1}
 Orthogonal group O(n,K) = {Q € GL(n,K) : QTQ = QQT = I}.

* Special orthogonal group SO(n,K) = {Q € O(n,K) : det(Q) = 1} and more general groups
SO(p, ¢; R).

* Symplectic group Sp(n,K) = {A:K* — K> | w(Az, Ay) = w(z,y)}. Here w(z,y) is the skew-
symmetric bilinear form 2?:1 TiYirn — YiTiyn (Which, up to a change of basis, is the unique non-
degenerate skew-symmetric bilinear form on K?" ). Equivalently, one can write w(z,y) = (Jz,vy),
where (, ) is the standard symmetric bilinear form on K" and

0o -1,
J—(In ! ) 1.1

Note that there is some ambiguity with the notation for symplectic group: the group we denoted
Sp(n, K) in some books would be written as Sp(2n, K).

12
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* Unitary group U(n) = {unitary matrices} = {U € GL(n,C) : U*U = UU* = I} (note that this is a
real Lie group, even though its elements are matrices with complex entries)

* Special unitary group SU(n) = {U € U(n) : det(U) = 1}

* Group of unitary quaternionic transformations U(n,H) = Sp(n) = Sp(n,C) n SU(2n). Another
description of this group, which explains its relation with quaternions, is given in Exercise 2.15 .

We will show that each of the classical groups listed above is a Lie group and will find their Lie algebras and
their dimensions.

We start with GL(n, K): we denote by the Lie algebra gl(n, K) the vector space M (n, K) with bracket [A4, B] =
AB — BA. We note that GL(n,K) is an open subset of gl(n, 8), so [LeeSM] Proposition 3.9 says that the
differential dvj, of the inclusion ¢ : GL(n,K) — gl(n,K) is an isomorphism between the tangent space
T;,GL(n,K) and the tangent space of the vector space gl(n, K), which is just gl(n, K). We have the following
results of which the real case is shown at [LeeSM] Proposition 8.41 and Proposition 20.2.

Proposition 1.5.1. The composition of the natural maps

Lie(GL(n,K)) 2% T GL(n, K) 22 gl(n, K)

gives a Lie algebra isomorphism between Lie(GL(n,K)) and gl(n, K).
Proposition 1.5.2. For any A € gl(n,K), let

- L

This series converges to an invertible matrix e* € GL(n,K), and the one-parameter subgroup of GL(n,K)
generated by A € gl(n,K) is y(t) = e*A. Therefore, by definition of exponential map, we see exp : A €
gl(n,K) — GL(n,K) is given by exp(A) = ya(1) = e'4 = eA. The Lie subgroup of it also has exp as the
exponential map due to Proposition 1.4.7.

1
:In+A+§A2+

??“;—A

In a similar way, we define the logarithmic map by

o k+1 k

log(l+z) = Z

So defined log is an analytic map defined in a neighborhood of 1 € gl(n, K).

How does it help us to study various matrix groups? The key idea is that Proposition 1.4.8 (f) shows that
the matrix exponential and logarithmic map diffeomorphically identify some neighborhood of the identity
in GL(n,K) with some neighborhood of 0 in the vector space gl(n, K). It turns out that it also does the same
for all of the classical groups.

Theorem 1.5.3 (Classical group). For each classical group G < GL(n,K), there exists a vector space g <
gl(n,K) such that for some some neighborhood U of 1 in GL(n,K) and some neighborhood u of 0 in gl(n,K)
the following maps are mutually inverse

(UnG) Z (ung)

exp

Before proving this theorem, note that it immediately implies the following important corollary.

Corollary 1.5.4. Each classical group is a Lie group, with tangent space at identity TG = g and dim G = dim g.
Groups U(n),SU(n), Sp(n) are real Lie groups; groups GL(n,K), SL(n,K), SO(n,K), O(n,K), Sp(2n,K) are
real Lie groups for K = R and complex Lie groups for K = C.

13
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Proof. By the theorem, for each classical group G = GL(n,K), there exists a neighborhood U of 1 € GL(n, K)
and a neighborhood « of 0 € gl(n,K) such that the exponential and logarithm maps are mutually inverse,

ie., (UnG) Log, (u n g). This implies that log : U n G — u n g < K" is a smooth chart, making G locally
a submanifold of GL(n,K) near 1 . For any g € G, consider the neighborhood ¢ - (U n G) of g, which is
diffeomorphic to U n G. Thus, the local chart around g is log oL 12 (g-U)n G — un g, where L, is left
multiplication by g. Hence, G is a submanifold of GL(n, K).

For the tangent space, consider the differential of the exponential map at 0 € g,exp, : Tog — T1G. By
Proposition 1.4.8 (e), it is the identity map. This implies dim(G) = dim(g), completing the proof. O

Proof of theorem of classical group. The proof is case by case; it can not be any other way, as “classical groups”
are defined by a list rather than by some general definition.

GL(n,K): Immediate from Proposition 1.4.8; in this case, g = gl(n,K) is the space of all matrices.

SL(n,K): Suppose X € SL(n,K) is close enough to identity. Then X = exp(z) for some z € gl(n,K).
The condition that X € SL(n,K) is equivalent to det X = 1, or detexp(z) = 1. But it is well-known that
det exp(z) = exp(tr(x)) (which is easy to see by finding a basis in which x is upper-triangular), so exp(x) €
SL(n,K) if and only if tr(z) = 0. Thus, in this case the statement also holds, with g = {z € gl(n,K) | trz = 0}.

0O(n,K),SO(n,K): The group O(n,K) is defined by XX* = I. Then X, X! commute. Writing X =
exp(z), X' = exp («') (since exponential map agrees with transposition), we see that z, z* also commute,
and thus exp(z) € O(n, K) implies exp(z) exp (z') = exp (z + z') = 1, so z + z' = 0; conversely, if x + 2* = 0,
then z, z! commute, so we can reverse the argument to get exp(z) € O(n,K). Thus, in this case the theorem
also holds, with g = {z | z + z* = 0} the space of skew-symmetric matrices.

What about SO(n,K)? In this case, we should add to the condition X X* = 1 (which gives z + z' = 0)
also the condition det X = 1, which gives tr(z) = 0. However, this last condition is unnecessary, because
z + z' = 0 implies that all diagonal entries of x are zero. So both O(n,K) and SO(n,K) correspond to the
same space of matrices g = {x | z + 2' = 0}. This might seem confusing until one realizes that SO(n, K) is
exactly the connected component of identity in O(n,K); thus, neighborhood of 1 in O(n, K) coincides with
the neighborhood of 1 in SO(n, K).

U(n),SU(n): Similar argument shows that for « in a neighborhood of identity in gl(n,C) expz € U(n) <
x + 2% = 0 (where 2* = 7' ) and expz € SU(n) < = + 2* = 0,tr(z) = 0. Note that in this case,
2 + z* does not imply that = has zeroes on the diagonal: it only implies that the diagonal entries are purely
imaginary. Thus, trz = 0 does not follow automatically from « + z* = 0, so in this case the tangent spaces
for U(n),SU(n) are different.

Sp(n,K): Similar argument shows that exp(z) € Sp(n,K) < z + J~'z'J = 0 where J is given by (1.1).
Thus, in this case the theorem also holds.

Sp(n): Same arguments as above show that exp(z) € Sp(n) <= z + J 12tJ =0,z + 2* = 0. O

Theorem 1.5.3 gives “local” information about classical Lie groups, i.e. the description of the tangent space at
identity. In many cases, it is also important to know “global” information, such as the topology of the group G.
In some low-dimensional cases, it is possible to describe the topology of G by establishing a diffeomorphism
of G with a known manifold. For example, it is easy to see SU(2) = {A € GL(2,C) | AA* = 1,det A =1} =
{( —aB g ) ca,BeClal?+ (8% = 1} Writing « = 1 + ixo, 8 = 23 + iz4,2; € R, we see that SU(2) is
diffeomorphic to $% = {2% + --- + 23 = 1} = R*. Itis shown in the exercise below that SO(3,R) ~ SU(2)/Z,
and thus is diffeomorphic to the real projective space RP2. For higher dimensional groups, the standard
method of finding their topological invariants such as fundamental groups using [2] Cor.2.12: if G acts
transitively on a manifold M, then G is a fiber bundle over M with the fiber G,,-stabilizer of point in M.
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Thus we can get information about fundamental groups of G from fundamental groups of M, G,,,. Details of
this approach for different classical groups are given in the exercises below.

Exercise 1.5.5. Define a basis in su(2) by

. 0 4 . 0 1 . i 0
20'1_<Z. O) 20'2_<_1 O) 203_<O —Z>

:SU(2) — GL(3,R)
g — matrix of Ad g in the basis io1,i02,i03

Show that the map

gives a morphism of Lie groups SU(2) — SO(3,R).

Exercise 1.5.6. Let ¢ : SU(2) — SO(3,R) be the morphism defined in the previous problem. Compute explicitly
the map of tangent spaces ¢ : su(2) — s0(3,R) and show that p, is an isomorphism. Deduce from this that
Ker ¢ is a discrete normal subgroup in SU(2), and that Im ¢ is an open subgroup in SO(3,R).

Exercise 1.5.7. Prove that the map ¢ used in two previous exercises establishes an isomorphism SU(2)/Zs —
SO(3,R) and thus, since SU(2) ~ S3,SO(3,R) ~ RP2.

Exercise 1.5.8. Using [2] Example 2.24, show that for n > 1, we have w(SU(n + 1)) = mo(SU(n)), mo(U(n +
1)) = mo(U(n)) and deduce from it that groups U(n),SU(n) are connected for all n. Similarly, show that for
n = 2, we have 1 (SU(n+ 1)) = 71 (SU(n)), 71 (U(n+1)) = 71 (U(n)) and deduce from it that for n = 2,SU(n)
is simply-connected and 7 (U(n)) = Z.

Exercise 1.5.9. Using [2] Example 2.24, show that for n > 2, we have 7y(SO(n + 1,R)) = mo(SO(n,R)) and
deduce from it that groups SO(n) are connected for all n > 2. Similarly, show that for n > 3, m1(SO(n+1,R)) =
m1(SO(n,R)) and deduce from it that for n = 3,71 (SO(n,R)) = Zs

The following tables summarize the results of Theorem 1.5.3 and computation of the fundamental groups
of classical Lie groups given in the exercises. For non-connected groups, 71 (G) stands for the fundamental
group of the connected component of identity.

G O(n,R) SO(n,R) U(n) SU(n) Sp(n)

g z+2t=0|az+2i=0]z+2"=0]2z+2*=0,trz=0 | z+J 2lJ=2+2%=0
dim G % % n? n?—1 n(2n + 1)
mo(G) Zs {1} {1} {1} {1}
m(G) | Zo(n=3) | Zs(n > 3) Z {1} {1}

Table 1.1: Compact classical groups. Here 7 is the set of connected components, 7 is the fundamental
group (for disconnected groups, 7 is the fundamental group of the connected component of identity), and
J is given by (1.1)

G GL(n,R) | SL(n,R) Sp(n, R)

g gl(n,R) tre=0 [z+J 12'J=0
dim G n? n?—1 n(2n + 1)
n(@) | 7 Y 1)

Table 1.2: Noncompact real classical groups.
For complex classical groups, the Lie algebra and dimension are given by the same formula as for real groups.

However, the topology of complex Lie groups is different and is given in the table below. We do not give a
proof of these results, referring the reader to more advanced books such as [32].
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GL(n,C) | SL(n,C) | O(n,C) | SO(n,C)

m0(G) {1} {1} Lo {1}
7T1(G) Z {1} ZQ ZQ

Table 1.3: Complex classical groups.

Note that some of the classical groups are not simply-connected. As was shown in Proposition 1.1.1 (3), in
this case the universal cover has a canonical structure of a Lie group. Of special importance is the universal
cover of SO(n,R) which is called the spin group and is denoted Spin(n); since w1 (SO(n,R)) = Z, thisis a
twofold cover, so Spin(n) is a compact Lie group.

1.6 Exercises

Exercise 1.6.1. Let G be a Lie group and H — a closed Lie subgroup.
(1) Let H be the closure of H in G. Show that H is a subgroup in G.
(2) Show that each coset Hx,x € H, is open and dense in H.

(3) Show that H = H, that is, every Lie subgroup is closed.

Exercise 1.6.2. (1) Show that every discrete normal subgroup of a connected lie group is central (hint: consider
themap G —» N : g — ghg~! where h is a fixed element in N). (2) By applying part (1) to kernel of the map
G — G, show that for any connected Lie group G, the fundamental group 71 (G) is commutative.

Exercise 1.6.3. Let f : G; — G be a morphism of connected Lie groups such that f, : TGy — T1Gs is an
isomorphism (such a morphism is sometimes called local isomorphism). Show that f is a covering map, and
Ker f is a discrete central subgroup.

Exercise 1.6.4. Define a bilinear form on su(2) by (a,b) = 4 tr (ab’). Show that this form is symmetric, positive
definite, and invariant under the adjoint action of SU(2).

Exercise 1.6.5. Using Gram-Schmidt orthogonalization process, show that GL(n,R)/O(n,R) is diffeomorphic
to the space of upper-triangular matrices with positive entries on the diagonal. Deduce from this that GL(n,R)
is homotopic (as a topological space) to O(n,R).

Exercise 1.6.6. Let L,, be the set of all Lagrangian subspaces in R?" with the standard symplectic form w defined
in Section 2.7. (A subspace V is Lagrangian if dimV = n and w(x,y) = 0 for any z,y € V.)

Show that the group Sp(n, R) acts transitively on L,, and use it to define on L,, a structure of a smooth manifold
and find its dimension.

Exercise 1.6.7. Let H = {a+bi+cj+dk | a,b, c,d € R} be the algebra of quaternions, defined by ij = k = —ji,
jk =i = —kj, ki = j = —ik,i® = j2 = k? = —1, and let H" = {(h1,...,hy) | h; € H}. In particular, the
subalgebra generated by 1,1 coincides with the field C of complex numbers.

Note that H" has a structure of both left and right module over H defined by
h(hi,...,hn) = (hh1,...,hhy), (h1,...,hp)h = (hih,... hyh)
(1) Let Endy (H™) be the algebra of endomorphisms of H" considered as right H-module:
Endyg (H") = {A:H" - H" | A(h+h') = A(h) + A (h') , A(hh) = A(h)h}

Show that Endy (H™) is naturally identified with the algebra of n x n matrices with quaternion entries.

(2) Define an H-valued form ( , ) on H" by
(h,b') = > hh;
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where a + bi + ¢j + dk = a—bi—cj—dk. (Note that uwv = vu.) Let U(n, H) be the group of “unitary quaternionic
transformations”:
U(n,H) = {A € Endy (H") | (Ah, Ah') = (h,h’)}

Show that this is indeed a group and that a matrix A is in U(n, H) iff A*A = 1, where (A*),; = Aj.
(3) Define a map C?*" ~ H" by

(21, s 220) = (21 + J2n41s - 20 + J220)

Show that it is an isomorphism of complex vector spaces (if we consider H" as a complex vector space by
z(hi,...hy) = (h12z,...,hyz)) and that this isomorphism identifies

Endy (H") = {A € Endc (C*") | A= J 'AJ}

where J is defined by (1.1). (Hint: use jz = zj for any z € C to show that h — hj is identified with z — Jz.)
(4) Show that under identification C?" ~ H" defined above, the quaternionic form (, ) is identified with

(z,2') — j{(z,2")

where (z,2') = Y%7} is the standard Hermitian form in C*" and (z,2') = Y, | (zi4n2|— z2,,,) is the
standard bilinear skew-symmetric form in C?". Deduce from this that the group U(n,H) is identified with
Sp(n) = Sp(n, C) n SU(2n).

Exercise 1.6.8. (1) Show that Sp(1) ~ SU(2) ~ S3.

(2) Using the previous exercise, show that we have a natural transitive action of Sp(n) on the sphere S*"~! and
a stabilizer of a point is isomorphic to Sp(n — 1).

(3) Deduce that w1 (Sp(n + 1)) = m1(Sp(n)), mo(Sp(n + 1)) = mo(Sp(n)).
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Chapter 2

Cartan Closed Subgroup Theorem
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