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Chapter 1

Lie Groups: An Introduction

1.1 Basics

A Lie group is a smooth manifold G (without boundary) that is also a group, with the property that the
multiplication map m : G ˆ G Ñ G and inversion map i : G Ñ G, given by mpg, hq “ gh, ipgq “ g´1, are
both smooth. A group homomorphism F : G Ñ H between Lie groups is a Lie group homomorphism if it is
also smooth. It is a Lie group isomorphism if it is also a diffeomorphism.

Proposition 1.1.1.

(1) [LeeSM] Theorem 7.5: Every Lie group homomorphism has constant rank.

(2) [LeeSM] Corollary 7.6: A Lie group homomorphism is a Lie group isomorphism iff it is bijective.

(3) [LeeSM] Theorem 7.7 + 7.9: Let G be a connected Lie group. There exists a simply connected Lie group
rG, called universal covering group of G, that admits a smooth covering map π : rG Ñ G that is also a
Lie group homomorphism. It is unique up to Lie group isomorphism.

Recall that an embedded submanifold is a subset with subspace topology and a smooth structure such that
the inclusion map is a smooh embedding. An immersed submanifold is a subset with a topology with
respect to which it is a topological manifold (without boundary), and a smooth structure such that the
inclusion map is a smooth immersion. Suppose G is a Lie group. A Lie subgroup of G is a subgroup of G
endowed with a topology and smooth structure making it into a Lie group and an immersed submanifold
of G. Note that an embedded subgroup is automatically a Lie subgroup since every embedded submanifold
is an immersed submanifold with subspace topology and that subspace topology makes the restrictions of
multiplication and inversion still smooth (see [LeeSM] Cor.5.30). The simplest example of an embedded
Lie subgroup is the open subgroup by [LeeSM] proposition 5.1, and it is also closed and thus a union of
connected components by [LeeSM] Lemma 7.12.

Proposition 1.1.2.

(1) [LeeSM] proposition 7.14: Suppose G is a Lie group, and W Ď G is any neighborhood of the identity.

(a) W generates an open subgroup of G.

(b) If W is connected, it generates a connected open subgroup of G.

(c) If G is connected, then W generates G.

(2) [LeeSM] Proposition 7.15: Let G be a Lie group and let G0 be its identity component. Then G0 is a normal
subgroup of G, and is the only connected open subgroup. Every connected component of G is diffeomorphic
to G0.
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(3) [LeeSM] Theorem 21.26 (Quotient Theorem for Lie Groups). Suppose G is a Lie group and K Ď G is a
closed normal subgroup. Then G{K is a Lie group, and the quotient map π : G Ñ G{K is a surjective Lie
group homomorphism whose kernel is K.

(4) [LeeSM] Proposition 7.17 says that the image of an injective Lie group homomorphism is a Lie subgroup.
And a more general result is built from this:

(5) [LeeSM] Theorem 21.27 (First Isomorphism Theorem for Lie Groups). If F : G Ñ H is a Lie group
homomorphism, then the kernel of F is a closed normal Lie subgroup of G, the image of F has a unique
smooth manifold structure making it into a Lie subgroup of H, and F descends to a Lie group isomorphism
rF : G{KerF Ñ ImF . If F is surjective, then G{KerF is smoothly isomorphic to H.

(6) [LeeSM] Proposition 21.28: Every discrete subgroup of a Lie group is a closed Lie subgroup of dimension
zero.

Example 1.1.3 (Embedded Lie Subgroups). [LeeSM] Example 7.18.

(a) The circle S1 is an embedded Lie subgroup of C˚ because it is a subgroup and an embedded submani-
fold.

(b) The set SLpn,Rq of n ˆ n real matrices with determinant equal to 1 is called the special linear group
of degree n. Because SLpn,Rq is the kernel of the Lie group homomorphism det : GLpn,Rq Ñ R˚, it
is a properly embedded Lie subgroup. Because the determinant function is surjective, it is a smooth
submersion by the global rank theorem, so SLpn,Rq has dimension n2 ´ 1.

(c) The subgroup SLpn,Cq Ď GLpn,Cq consisting of complex matrices of determinant 1 is called the
complex special linear group of degree n. It is the kernel of the Lie group homomorphism det :
GLpn,Cq Ñ C˚. This homomorphism is surjective, so it is a smooth submersion by the global rank
theorem. Therefore, SLpn,Cq “ Kerpdetq is a properly embedded Lie subgroup whose codimension is
equal to dimC˚ “ 2 and whose dimension is therefore 2n2 ´ 2.

˛

Here is an example of a Lie subgroup that is not embedded.

Example 1.1.4 (A Dense Lie Subgroup of the Torus). [LeeSM] Example 7.19.
Let H Ď T2 be the dense submanifold of the torus that is the image of the immersion γ : R Ñ T2 defined in
[LeeSM] Example 4.20. It is easy to check that γ is an injective Lie group homomorphism, and thus H is an
immersed Lie subgroup of T2 by Proposition 1.1.2 (4). ˛

In general, smooth submanifolds can be closed without being embedded (as is, for example, the figure-
eight curve of [LeeSM] Example 5.19) or embedded without being closed (as is the open unit ball in Rn

). However, as the next theorem shows, Lie subgroups have the remarkable property that closedness and
embeddedness are not independent. This means that every embedded Lie subgroup is properly embedded.

Theorem 1.1.5. [LeeSM] Theorem 7.21: Suppose G is a Lie group and H Ď G is a Lie subgroup. Then H is
closed in G if and only if it is embedded.

Compare this with the Cartan’s closed subgroup theorem, where the subgroup is not assumed to have a
submanifold structure in the first place.

Theorem 1.1.6. [LeeSM] Theorem 20.12: Suppose G is a Lie group and H Ď G is a subgroup that is also a
closed subset of G. Then H is an embedded Lie subgroup.

Our main goal now is to develop tools to prove this theorem.
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1.2 Lie Algebras

Suppose G is a Lie group. Recall that G acts smoothly and transitively on itself by left translation: Lgphq “

gh. A vector field X on G is said to be left-invariant if it is invariant under all left translations, in the sense
that it is Lg-related to itself for every g P G. More explicitly, this means

d pLgqg1 pXg1 q “ Xgg1 , for all g, g1 P G

Since Lg is a diffeomorphism, this can be abbreviated by writing pLgq
˚
X “ X for every g P G.

Because pLgq
˚

paX ` bY q “ a pLgq
˚
X ` b pLgq

˚
Y , the set of all smooth left-invariant vector fields on G,

denoted as LiepGq is a linear subspace of XpGq. The Lie bracket rX,Y s of two left-invariant v.f. X,Y is still
left-invariant due to [LeeSM] Cor.8.31, so LiepGq is a Lie subalgebra of the Lie algebra XpGq, i.e., a vector
space with skew-symmetric bilinear map that satisfies Jacobi identity rX, rY, Zss ` rY, rZ,Xss ` rZ, rX,Y ss “

0.

Theorem 1.2.1. Let G be a Lie group. The evaluation map ε : LiepGq Ñ TeG, given by εpXq “ Xe, is a vector
space isomorphism. Thus, LiepGq is finite-dimensional, with dimension equal to dimG.

Proof. It is clear from the definition that ε is linear over R. It is easy to prove that it is injective: if εpXq “

Xe “ 0 for some X P LiepGq, then left-invariance of X implies that Xg “ d pLgqe pXeq “ 0 for every g P G,
so X “ 0.

To show that ε is surjective, let v P TeG be arbitrary, and define a (rough) vector field vL on G by

vL
ˇ

ˇ

g
“ d pLgqe pvq

If there is a left-invariant vector field on G whose value at the identity is v, clearly it has to be given by this
formula.

First we need to check that vL is smooth. By [LeeSM] Proposition 8.14 , it suffices to show that vLf is smooth
whenever f P C8pGq. Choose a smooth curve γ : p´δ, δq Ñ G such that γp0q “ e and γ1p0q “ v. Then for all
g P G,

`

vLf
˘

pgq “ vL
ˇ

ˇ

g
f “ d pLgqe pvqf “ v pf ˝ Lgq “ γ1p0q pf ˝ Lgq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pf ˝ Lg ˝ γq ptq

If we define φ : p´δ, δq ˆ G Ñ R by φpt, gq “ f ˝ Lg ˝ γptq “ fpgγptqq, the computation above shows that
`

vLf
˘

pgq “ Bφ{Btp0, gq. Because φ is a composition of group multiplication, f , and γ, it is smooth. It follows
that Bφ{Btp0, gq depends smoothly on g, so vLf is smooth.

Next we show that vL is left-invariant, which is to say that d pLhqg

´

vL
ˇ

ˇ

g

¯

“ vL
ˇ

ˇ

hg
for all g, h P G. This

follows from the definition of vL and the fact that Lh˝ Lg “ Lhg:

d pLhqg

´

vL
ˇ

ˇ

g

¯

“ d pLhqg ˝ d pLgqe pvq “ d pLh ˝ Lgqe pvq “ d pLhgqe pvq “ vL
ˇ

ˇ

hg

Thus vL P LiepGq. Since Le (left translation by the identity) is the identity map of G, it follows that ε
`

vL
˘

“

vL
ˇ

ˇ

e
“ v, so ε is surjective.

Corollary 1.2.2. Every left-invariant rough vector field on a Lie group is smooth.

Proof. Let X be a left-invariant rough vector field on a Lie group G, and let v “ Xe. Now vL P LiepGq and
ε
`

vL
ˇ

ˇ

e

˘

“ Xe show that vL “ X by bijectivity of ε. Thus X is smooth.
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Corollary 1.2.3. Every Lie group admits a left-invariant smooth global frame, and therefore every Lie group is
parallelizable.

Proof. If G is a Lie group, every basis for LiepGq is a left-invariant smooth global frame for G. Explicitly, this
basis is tbL1 , ¨ ¨ ¨ , bLnu, given a basis tb1, ¨ ¨ ¨ , bnu of TeG.

Example 1.2.4 (Lie algebras).

(a) Euclidean space Rn: If we consider Rn as a Lie group under addition, left translation by an element
b P Rn is given by the affine map Lbpxq “ b ` x, whose differential d pLbq is represented by the
identity matrix in standard coordinates. Thus a vector field XiB{Bxi is left-invariant if and only if
its coefficients Xi are constants. Because the Lie bracket of two constant-coefficient vector fields is
zero, the Lie algebra of Rn is abelian, and is isomorphic to Rn itself with the trivial bracket. In brief,
Lie pRnq – Rn.

(b) The circle group S1: Let θ be any angle coordinate on a proper open subset U Ď S1, and let d{dθ
denote the corresponding coordinate vector field. Because any other angle coordinate θ̃ differs from θ
by an additive constant in a neighborhood of each point, the transformation law for coordinate vector
fields shows that d{dθ “ d{drθ on their common domain. For this reason, there is a globally defined
vector field on S1 whose coordinate representation is d{dθ with respect to any angle coordinate. It is a
smooth vector field because its component function is constant in any such chart. We denote this global
vector field by d{dθ, even though, strictly speaking, it cannot be considered as a coordinate vector field
on the entire circle at once. In terms of appropriate angle coordinates, each left translation has a local
coordinate representation of the form θ ÞÑ θ ` c. Since the differential of this map is the 1 ˆ 1 identity
matrix, it follows that the vector field d{dθ is left-invariant, and is therefore a basis for the Lie algebra
of S1. This Lie algebra is 1-dimensional and abelian, and therefore Lie

`

S1
˘

– R.

(c) The n-torus Tn “ S1 ˆ ¨ ¨ ¨ ˆ S1: choosing an angle function θi for the i th circle factor, i “ 1, . . . , n,
yields local coordinates

`

θ1, . . . , θn
˘

for Tn. An analysis similar to that of the previous example shows
that the coordinate vector fields B{Bθ1, . . . , B{Bθn are smooth and globally defined on Tn and form a
basis for Lie pTnq. Since the Lie brackets of these coordinate vector fields are all zero, Lie pTnq – Rn.

˛

The Lie groups Rn,S1, and Tn are abelian, and as the discussion above shows, their Lie algebras turn out
also to be abelian.

Proposition 1.2.5. Every abelian Lie group has an abelian Lie algebra (see [LeeSM] Problem 8-25). The
converse is true provided that the group is connected ([LeeSM] Problem 20-7).

Theorem 1.2.6 (Induced Lie Algebra Homomorphisms). Let G and H be Lie groups, and let g and h be their
Lie algebras. Suppose F : G Ñ H is a Lie group homomorphism. For every X P g, there is a unique vector
field in h that is F -related to X. With this vector field denoted by F˚X, the map F˚ : g Ñ h so defined is a Lie
algebra homomorphism.

Proof. If there is any vector field Y P h that is F -related to X, it must satisfy Ye “ dFe pXeq, and thus it must
be uniquely determined by

Y “ pdFe pXeqq
L

To show that this Y is F -related to X, we note that the fact that F is a homomorphism implies

F
`

gg1
˘

“ F pgqF
`

g1
˘

ñ F
`

Lgg
1
˘

“ LF pgqF
`

g1
˘

ñ F ˝ Lg “ LF pgq ˝ F

ñ dF ˝ d pLgq “ d
`

LF pgq

˘

˝ dF
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Thus,
dF pXgq “ dF pd pLgq pXeqq “ d

`

LF pgq

˘

pdF pXeqq “ d
`

LF pgq

˘

pYeq “ YF pgq

This says precisely that X and Y are F -related.

For each X P g, let F˚X denote the unique vector field in h that is F -related to X. It then follows immediately
from the naturality of Lie brackets that F˚rX,Y s “ rF˚X,F˚Y s, so F˚ is a Lie algebra homomorphism.

The map F˚ : g Ñ h whose existence is asserted in this theorem is called the induced Lie algebra homomor-
phism. Note that the theorem implies that for any left-invariant vector field X P g, F˚X is a well-defined
smooth vector field on H, even though F may not be a diffeomorphism.

Proposition 1.2.7 (Properties of Induced Homomorphisms).

(a) The homomorphism pIdGq˚ : LiepGq Ñ LiepGq induced by the identity map of G is the identity of LiepGq.

(b) If F1 : G Ñ H and F2 : H Ñ K are Lie group homomorphisms, then

pF2 ˝ F1q˚ “ pF2q˚ ˝ pF1q˚ : LiepGq Ñ LiepKq

(c) Isomorphic Lie groups have isomorphic Lie algebras.

If G is a Lie group and H Ď G is a Lie subgroup, we might hope that the Lie algebra of H would be a Lie
subalgebra of that of G. However, elements of LiepHq are vector fields on H, not G, and so, strictly speaking,
are not elements of LiepGq. Nonetheless, the next proposition gives us a way to view LiepHq as a subalgebra
of LiepGq.

Theorem 1.2.8 (The Lie Algebra of a Lie Subgroup). Suppose H Ď G is a Lie subgroup, and ι : H ãÑ G is the
inclusion map. There is a Lie subalgebra h Ď LiepGq that is canonically isomorphic to LiepHq, characterized by
either of the following descriptions:

h “ ι˚pLiepHqq

“ tX P LiepGq : Xe P TeHu

1.3 Lie Derivative

Suppose M is a smooth manifold, V is a smooth vector field on M , and θ is the flow of V . For any smooth
vector field W on M , define a rough vector field on M , denoted by LV W and called the Lie derivative of
W with respect to V , by

pLV W qp “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

d pθ´tqθtppq

`

Wθtppq

˘

“ lim
tÑ0

d pθ´tqθtppq

`

Wθtppq

˘

´ Wp

t

provided the derivative exists. For small t ‰ 0, at least the difference quotient makes sense: θt is defined in
a neighborhood of p, and θ´t is the inverse of θt, so both d pθ´tqθtppq

`

Wθtppq

˘

and Wp are elements of TpM .
There are some technical issues regarding the manifold with boundary case (see [LeeSM] p.228). Lemma
9.36 shows that it is indeed a smooth vector field and Theorem 9.38 equates it with rV,W s. Corollary 9.39
and Proposition 9.41 and Theorem 9.42 are summarized below.

Proposition 1.3.1. Suppose M is a smooth manifold with or without boundary, and V,W,X P XpMq.

(a) LV W “ ´LWV

(b) LV rW,Xs “ rLV W,Xs ` rW,LV Xs

(c) LrV,W sX “ LV LWX ´ LWLV X.

9
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(d) If g P C8pMq, then LV pgW q “ pV gqW ` gLV W .

(e) If F : M Ñ N is a diffeomorphism, then F˚ pLV Xq “ LF˚V F˚X

(f) If BM ‰ ∅, assume also that V is tangent to BM . Let θ be the flow of V . For any pt0, pq in the domain of
θ,

d

dt

ˇ

ˇ

ˇ

ˇ

t“t0

d pθ´tqθtppq

`

Wθtppq

˘

“ d pθ´t0q

´

pLV W qθt0 ppq

¯

(g) V commutes with W , i.e., rV,W s ” 0 ðñ V is invariant under the flow of W ðñ W is invariant
under the flow of V . Invariance of X under flow η of Y simply means d pηtqp pXpq “ Xθtppq for all pt, pq

in the domain of the flow η.

Theorem 9.46 is also copied below.

Theorem 1.3.2 (Canonical Form for Commuting Vector Fields). Let M be a smooth n-manifold, and let
pV1, . . . , Vkq be a linearly independent k-tuple of smooth commuting vector fields on an open subset W Ď M . For
each p P W , there exists a smooth coordinate chart

`

U,
`

si
˘˘

centered at p such that Vi “ B{Bsi for i “ 1, . . . , k.
If S Ď W is an embedded codimension- k submanifold and p is a point of S such that TpS is complementary

to the span of
´

V1|p , . . . , Vk|p

¯

, then the coordinates can also be chosen such that S X U is the slice defined by

s1 “ ¨ ¨ ¨ “ sk “ 0.

1.4 Exponential Maps

For the theory below, we focus on the K “ R case. For the K “ C case, we need a generalization of the usual
result of the theory of differential equations to complex setup.

Recall that for V P XpMq an a point p P M , there exists a unique maximal smooth curve γptq that is an
integral curve of V starting at p, i.e., γp0q “ p and γ1ptq “ Vγptq for all t.

Definition 1.4.1. A one-parameter subgroup of a Lie group G is a Lie group homomorphism ϕ : R Ñ G, i.e.
ϕ is smooth such that ϕps ` tq “ ϕpsqϕptq for all s, t P R.

Theorem 1.4.2 (Characterization of One-Parameter Subgroups). Let G be a Lie group. The one-parameter
subgroups of G are precisely the maximal integral curves of left-invariant vector fields starting at the identity.

Proof. Note that [LeeSM] Theorem 9.18 shows that γptq for X P LiepGq starting at e is complete, i.e., defined
on R.

To show γptq is a one-parameter subgroup, we need to show γpt ` sq “ γptqγpsq for any t, s P R.

• Translation lemma says that γpt ` sq is again an integral curve of the same vector field generating γ.

• Naturality of integral curves say that smooth map F : M Ñ N takes integral curves of X P XpMq

to integral curves of Y P XpNq when X and Y are F -related. Thus, left-invariance gives X and X
Lγptq-related and Lγptqγpsq “ γptqγpsq is then an integral curve of X.

By uniqueness of maximal integral curve, these two are the same.

To show the converse, let γ : R Ñ G be a one-parameter subgroup, so γp0q “ e. Recall the induced Lie
algebra homomorphism γ˚ that sends a left-invariant vector field to a unique left-invariant vector field that
is γ-related to it:

γ˚ : LiepRq ÝÑ LiepGq

d

dt
ÞÝÑ V “ γ˚

ˆ

d

dt

˙

:“

„

dγ0

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙ȷL
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The γ-relatedness of v.f. d
dt and V gives (recall F -relatedness of X and Y means dFppXpq “ YF ppq):

dγs

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“s

˙

“ V pγpsqq.

But the LHS is definition of γ1psq, so above shows that γ is an integral curve of V starting at e.

As a consequence, we get one-to-one correspondences between

• One-parameter subgroups of G.

• Left invariant vector fields on G.

• Tangent vectors at e P G.

So we have three different descriptions of the Lie algebra g.

Definition 1.4.3. Given a Lie group G with Lie algebra g, we define a map exp : g Ñ G, called the exponential
map of G, as follows: for any X P g, we set

expX “ γp1q

where γ is the one-parameter subgroup generated by X, or equivalently the integral curve of X starting at the
identity.

Proposition 1.4.4. Let G be a Lie group. For any X P LiepGq, γpsq “ exp sX is the one-parameter subgroup of
G generated by X.

Proof. Let γ : R Ñ G be the one-parameter subgroup generated by X, which is the integral curve of X
starting at e. For any fixed s P R, it follows from the rescaling lemma that γ̃ptq “ γpstq is the integral curve
of sX starting at e, so

exp sX “ γ̃p1q “ γpsq

Remark 1.4.5. Note that the zero vector 0 P TeG generates the zero vector field on G, whose integral curve
through e is the constant curve. So expp0q “ e.

Example 1.4.6.

(1) For G “ R˚, we can identify T1G “ R. For any x P T1G “ R, the map

ϕ : R Ñ G, t ÞÑ etx

is the one-parameter subgroup of G with 9ϕp0q “ x. It follows exppxq “ ex.

(2) For G “ S1, we can identify T1S
1 “ iR. The one-parameter subgroup corresponding to ix P T1S

1 “ iR
is

ϕ : R Ñ S1, t ÞÑ eitx.

So the exponential map is given by exppixq “ eix.

(3) For G “ R, we identify T0G “ R. The one-parameter subgroup for x P R is

ϕ : R Ñ R, t ÞÑ tx.

So the exponential map is exppxq “ x.

˛

We can also get the one-parameter subgroups and exponential maps of the Lie subgroups of a Lie group.

11
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Proposition 1.4.7. Suppose G is a Lie group and H Ď G is a Lie subgroup. The one-parameter subgroups
of H are precisely those one-parameter subgroups of G whose initial velocities lie in TeH, i.e., texp tX : X P

LiepGq s.t. Xe P TeHu. Thus, the exponential map of H is simply exp |TeH .

Proposition 1.4.8 (Properties of the Exponential Map). Let G be a Lie group and let g be its Lie algebra.

(a) The exponential map is a smooth map from g to G.

(b) For any X P g and s, t P R, expps ` tqX “ exp sX exp tX.

(c) For any X P g, pexpXq´1 “ expp´Xq.

(d) For any X P g and n P Z, pexpXqn “ exppnXq.

(e) The differential pd expq0 : T0g Ñ TeG is the identity map, under the canonical identifications of both T0g
and TeG with g itself.

(f) The exponential map restricts to a diffeomorphism from some neighborhood of 0 in g to a neighborhood of
e in G.

(g) If H is another Lie group, h is its Lie algebra, and Φ : G Ñ H is a Lie group homomorphism, the following
diagram commutes:

g h

G H

exp

Φ˚

exp

Φ

(h) The flow θ of a left-invariant vector field X is given by θt “ Rexp tX (right multiplication by exp tX ).

Proof. See [LeeSM] Proposition 20.8.

1.5 Classical groups

Let K be either R, which gives a real Lie group, or C, which gives a complex Lie group. We discuss the
so-called classical groups, or various subgroups of the general linear group which are frequently used in
linear algebra:

• General linear group GLpn,Kq, the set of all invertible n ˆ n matrices with enties in K.

• Special linear group SLpn,Kq “ tA P GLpn,Kq : detpAq “ 1u

• Orthogonal group Opn,Kq “ tQ P GLpn,Kq : QTQ “ QQT “ Iu.

• Special orthogonal group SOpn,Kq “ tQ P Opn,Kq : detpQq “ 1u and more general groups
SOpp, q;Rq.

• Symplectic group Sppn,Kq “
␣

A : K2n Ñ K2n | ωpAx,Ayq “ ωpx, yq
(

. Here ωpx, yq is the skew-
symmetric bilinear form

řn
i“1 xiyi`n ´ yixi`n (which, up to a change of basis, is the unique non-

degenerate skew-symmetric bilinear form on K2n ). Equivalently, one can write ωpx, yq “ pJx, yq,
where p , q is the standard symmetric bilinear form on K2n and

J “

ˆ

0 ´In
In 0

˙

. (1.1)

Note that there is some ambiguity with the notation for symplectic group: the group we denoted
Sppn,Kq in some books would be written as Spp2n,Kq.

12
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• Unitary group Upnq “ tunitary matricesu “ tU P GLpn,Cq : U˚U “ UU˚ “ Iu (note that this is a
real Lie group, even though its elements are matrices with complex entries)

• Special unitary group SUpnq “ tU P Upnq : detpUq “ 1u

• Group of unitary quaternionic transformations Upn,Hq – Sppnq “ Sppn,Cq X SUp2nq. Another
description of this group, which explains its relation with quaternions, is given in Exercise 2.15 .

We will show that each of the classical groups listed above is a Lie group and will find their Lie algebras and
their dimensions.

We start with GLpn,Kq: we denote by the Lie algebra glpn,Kq the vector space Mpn,Kq with bracket rA,Bs “

AB ´ BA. We note that GLpn,Kq is an open subset of glpn,Kq, so [LeeSM] Proposition 3.9 says that the
differential dιIn of the inclusion ι : GLpn,Kq Ñ glpn,Kq is an isomorphism between the tangent space
TInGLpn,Kq and the tangent space of the vector space glpn,Kq, which is just glpn,Kq. We have the following
results of which the real case is shown at [LeeSM] Proposition 8.41 and Proposition 20.2.

Proposition 1.5.1. The composition of the natural maps

LiepGLpn,Kqq
eval

ÝÝÑ TInGLpn,Kq
dιIn

ÝÝÝÑ glpn,Kq

gives a Lie algebra isomorphism between LiepGLpn,Kqq and glpn,Kq.

Proposition 1.5.2. For any A P glpn,Kq, let

eA “

8
ÿ

k“0

1

k!
Ak “ In ` A `

1

2
A2 ` ¨ ¨ ¨

This series converges to an invertible matrix eA P GLpn,Kq, and the one-parameter subgroup of GLpn,Kq

generated by A P glpn,Kq is γptq “ etA. Therefore, by definition of exponential map, we see exp : A P

glpn,Kq Ñ GLpn,Kq is given by exppAq “ γAp1q “ e1A “ eA. The Lie subgroup of it also has exp as the
exponential map due to Proposition 1.4.7.

In a similar way, we define the logarithmic map by

logp1 ` xq “

8
ÿ

k“1

p´1qk`1xk

k

So defined log is an analytic map defined in a neighborhood of 1 P glpn,Kq.

How does it help us to study various matrix groups? The key idea is that Proposition 1.4.8 (f) shows that
the matrix exponential and logarithmic map diffeomorphically identify some neighborhood of the identity
in GLpn,Kq with some neighborhood of 0 in the vector space glpn,Kq. It turns out that it also does the same
for all of the classical groups.

Theorem 1.5.3 (Classical group). For each classical group G Ă GLpn,Kq, there exists a vector space g Ă

glpn,Kq such that for some some neighborhood U of 1 in GLpn,Kq and some neighborhood u of 0 in glpn,Kq

the following maps are mutually inverse

pU X Gq
log
Õ
exp

pu X gq

Before proving this theorem, note that it immediately implies the following important corollary.

Corollary 1.5.4. Each classical group is a Lie group, with tangent space at identity T1G “ g and dimG “ dim g.
Groups Upnq,SUpnq,Sppnq are real Lie groups; groups GLpn,Kq,SLpn,Kq, SOpn,Kq,Opn,Kq,Spp2n,Kq are
real Lie groups for K “ R and complex Lie groups for K “ C.
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Proof. By the theorem, for each classical group G Ă GLpn,Kq, there exists a neighborhood U of 1 P GLpn,Kq

and a neighborhood u of 0 P glpn,Kq such that the exponential and logarithm maps are mutually inverse,

i.e., pU X Gq
log

ÝÝÑ pu X gq. This implies that log : U X G Ñ u X g Ď Kn is a smooth chart, making G locally
a submanifold of GLpn,Kq near 1 . For any g P G, consider the neighborhood g ¨ pU X Gq of g, which is
diffeomorphic to U X G. Thus, the local chart around g is log ˝L´1

g : pg ¨ Uq X G Ñ u X g, where Lg is left
multiplication by g. Hence, G is a submanifold of GLpn,Kq.

For the tangent space, consider the differential of the exponential map at 0 P g, exp˚ : T0g Ñ T1G. By
Proposition 1.4.8 (e), it is the identity map. This implies dimpGq “ dimpgq, completing the proof.

Proof of theorem of classical group. The proof is case by case; it can not be any other way, as “classical groups”
are defined by a list rather than by some general definition.

GLpn,Kq: Immediate from Proposition 1.4.8; in this case, g “ glpn,Kq is the space of all matrices.

SLpn,Kq: Suppose X P SLpn,Kq is close enough to identity. Then X “ exppxq for some x P glpn,Kq.
The condition that X P SLpn,Kq is equivalent to detX “ 1, or det exppxq “ 1. But it is well-known that
det exppxq “ expptrpxqq (which is easy to see by finding a basis in which x is upper-triangular), so exppxq P

SLpn,Kq if and only if trpxq “ 0. Thus, in this case the statement also holds, with g “ tx P glpn,Kq | trx “ 0u.

Opn,Kq,SOpn,Kq: The group Opn,Kq is defined by XXt “ I. Then X,Xt commute. Writing X “

exppxq, Xt “ exp pxtq (since exponential map agrees with transposition), we see that x, xt also commute,
and thus exppxq P Opn,Kq implies exppxq exp pxtq “ exp px ` xtq “ 1, so x`xt “ 0; conversely, if x`xt “ 0,
then x, xt commute, so we can reverse the argument to get exppxq P Opn,Kq. Thus, in this case the theorem
also holds, with g “ tx | x ` xt “ 0u the space of skew-symmetric matrices.

What about SOpn,Kq? In this case, we should add to the condition XXt “ 1 (which gives x ` xt “ 0 )
also the condition detX “ 1, which gives trpxq “ 0. However, this last condition is unnecessary, because
x ` xt “ 0 implies that all diagonal entries of x are zero. So both Opn,Kq and SOpn,Kq correspond to the
same space of matrices g “ tx | x ` xt “ 0u. This might seem confusing until one realizes that SOpn,Kq is
exactly the connected component of identity in Opn,Kq; thus, neighborhood of 1 in Opn,Kq coincides with
the neighborhood of 1 in SOpn,Kq.

Upnq,SUpnq: Similar argument shows that for x in a neighborhood of identity in glpn,Cq expx P Upnq ðñ

x ` x˚ “ 0 (where x˚ “ x̄t ) and expx P SUpnq ðñ x ` x˚ “ 0, trpxq “ 0. Note that in this case,
x ` x˚ does not imply that x has zeroes on the diagonal: it only implies that the diagonal entries are purely
imaginary. Thus, trx “ 0 does not follow automatically from x ` x˚ “ 0, so in this case the tangent spaces
for Upnq,SUpnq are different.

Sppn,Kq: Similar argument shows that exppxq P Sppn,Kq ðñ x ` J´1xtJ “ 0 where J is given by (1.1).
Thus, in this case the theorem also holds.

Sppnq: Same arguments as above show that exppxq P Sppnq ðñ x ` J´1xtJ “ 0, x ` x˚ “ 0.

Theorem 1.5.3 gives “local” information about classical Lie groups, i.e. the description of the tangent space at
identity. In many cases, it is also important to know “global” information, such as the topology of the group G.
In some low-dimensional cases, it is possible to describe the topology of G by establishing a diffeomorphism
of G with a known manifold. For example, it is easy to see SUp2q “

␣

A P GLp2,Cq | AĀt “ 1,detA “ 1
(

“
"ˆ

α β
´β̄ ᾱ

˙

: α, β P C, |α|2 ` |β|2 “ 1

*

Writing α “ x1 ` ix2, β “ x3 ` ix4, xi P R, we see that SUp2q is

diffeomorphic to S3 “
␣

x2
1 ` ¨ ¨ ¨ ` x2

4 “ 1
(

Ă R4. It is shown in the exercise below that SOp3,Rq » SUp2q{Z2

and thus is diffeomorphic to the real projective space RP3. For higher dimensional groups, the standard
method of finding their topological invariants such as fundamental groups using [2] Cor.2.12: if G acts
transitively on a manifold M , then G is a fiber bundle over M with the fiber Gm-stabilizer of point in M .

14
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Thus we can get information about fundamental groups of G from fundamental groups of M,Gm. Details of
this approach for different classical groups are given in the exercises below.

Exercise 1.5.5. Define a basis in sup2q by

iσ1 “

ˆ

0 i
i 0

˙

iσ2 “

ˆ

0 1
´1 0

˙

iσ3 “

ˆ

i 0
0 ´i

˙

Show that the map
φ : SUp2q Ñ GLp3,Rq

g ÞÑ matrix of Ad g in the basis iσ1, iσ2, iσ3

gives a morphism of Lie groups SUp2q Ñ SOp3,Rq.

Exercise 1.5.6. Let φ : SUp2q Ñ SOp3,Rq be the morphism defined in the previous problem. Compute explicitly
the map of tangent spaces φ˚ : sup2q Ñ sop3,Rq and show that φ˚ is an isomorphism. Deduce from this that
Kerφ is a discrete normal subgroup in SUp2q, and that Imφ is an open subgroup in SOp3,Rq.

Exercise 1.5.7. Prove that the map φ used in two previous exercises establishes an isomorphism SUp2q{Z2 Ñ

SOp3,Rq and thus, since SUp2q » S3,SOp3,Rq » RP3.

Exercise 1.5.8. Using [2] Example 2.24, show that for n ě 1, we have π0pSUpn ` 1qq “ π0pSUpnqq, π0pUpn `

1qq “ π0pUpnqq and deduce from it that groups Upnq,SUpnq are connected for all n. Similarly, show that for
n ě 2, we have π1pSUpn`1qq “ π1pSUpnqq, π1pUpn`1qq “ π1pUpnqq and deduce from it that for n ě 2,SUpnq

is simply-connected and π1pUpnqq “ Z.

Exercise 1.5.9. Using [2] Example 2.24, show that for n ě 2, we have π0pSOpn ` 1,Rqq “ π0pSOpn,Rqq and
deduce from it that groups SOpnq are connected for all n ě 2. Similarly, show that for n ě 3, π1pSOpn`1,Rqq “

π1pSOpn,Rqq and deduce from it that for n ě 3, π1pSOpn,Rqq “ Z2

The following tables summarize the results of Theorem 1.5.3 and computation of the fundamental groups
of classical Lie groups given in the exercises. For non-connected groups, π1pGq stands for the fundamental
group of the connected component of identity.

G Opn,Rq SOpn,Rq Upnq SUpnq Sppnq

g x ` xt “ 0 x ` xt “ 0 x ` x˚ “ 0 x ` x˚ “ 0, trx “ 0 x ` J´1xtJ “ x ` x˚ “ 0

dimG npn´1q

2
npn´1q

2 n2 n2 ´ 1 np2n ` 1q

π0pGq Z2 t1u t1u t1u t1u

π1pGq Z2pn ě 3q Z2pn ě 3q Z t1u t1u

Table 1.1: Compact classical groups. Here π0 is the set of connected components, π1 is the fundamental
group (for disconnected groups, π1 is the fundamental group of the connected component of identity), and
J is given by (1.1)

G GLpn,Rq SLpn,Rq Sppn,Rq

g glpn,Rq trx “ 0 x ` J´1xtJ “ 0
dimG n2 n2 ´ 1 np2n ` 1q

π0pGq Z2 t1u t1u

π1pGq Z2pn ě 3q Z2pn ě 3q Z

Table 1.2: Noncompact real classical groups.

For complex classical groups, the Lie algebra and dimension are given by the same formula as for real groups.
However, the topology of complex Lie groups is different and is given in the table below. We do not give a
proof of these results, referring the reader to more advanced books such as r32s.
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G GLpn,Cq SLpn,Cq Opn,Cq SOpn,Cq

π0pGq t1u t1u Z2 t1u

π1pGq Z t1u Z2 Z2

Table 1.3: Complex classical groups.

Note that some of the classical groups are not simply-connected. As was shown in Proposition 1.1.1 (3), in
this case the universal cover has a canonical structure of a Lie group. Of special importance is the universal
cover of SOpn,Rq which is called the spin group and is denoted Spinpnq; since π1pSOpn,Rqq “ Z2, this is a
twofold cover, so Spinpnq is a compact Lie group.

1.6 Exercises

Exercise 1.6.1. Let G be a Lie group and H´ a closed Lie subgroup.
(1) Let H̄ be the closure of H in G. Show that H̄ is a subgroup in G.
(2) Show that each coset Hx, x P H̄, is open and dense in H̄.
(3) Show that H̄ “ H, that is, every Lie subgroup is closed.

Exercise 1.6.2. (1) Show that every discrete normal subgroup of a connected lie group is central (hint: consider
the map G Ñ N : g ÞÑ ghg´1 where h is a fixed element in N). (2) By applying part (1) to kernel of the map
rG Ñ G, show that for any connected Lie group G, the fundamental group π1pGq is commutative.

Exercise 1.6.3. Let f : G1 Ñ G2 be a morphism of connected Lie groups such that f˚ : T1G1 Ñ T1G2 is an
isomorphism (such a morphism is sometimes called local isomorphism). Show that f is a covering map, and
Ker f is a discrete central subgroup.

Exercise 1.6.4. Define a bilinear form on sup2q by pa, bq “ 1
2 tr

`

ab̄t
˘

. Show that this form is symmetric, positive
definite, and invariant under the adjoint action of SUp2q.

Exercise 1.6.5. Using Gram-Schmidt orthogonalization process, show that GLpn,Rq{Opn,Rq is diffeomorphic
to the space of upper-triangular matrices with positive entries on the diagonal. Deduce from this that GLpn,Rq

is homotopic (as a topological space) to Opn,Rq.

Exercise 1.6.6. Let Ln be the set of all Lagrangian subspaces in R2n with the standard symplectic form ω defined
in Section 2.7. (A subspace V is Lagrangian if dimV “ n and ωpx, yq “ 0 for any x, y P V .)

Show that the group Sppn,Rq acts transitively on Ln and use it to define on Ln a structure of a smooth manifold
and find its dimension.

Exercise 1.6.7. Let H “ ta`bi`cj`dk | a, b, c, d P Ru be the algebra of quaternions, defined by ij “ k “ ´ji,
jk “ i “ ´kj, ki “ j “ ´ik, i2 “ j2 “ k2 “ ´1, and let Hn “ tph1, . . . , hnq | hi P Hu. In particular, the
subalgebra generated by 1, i coincides with the field C of complex numbers.

Note that Hn has a structure of both left and right module over H defined by

h ph1, . . . , hnq “ phh1, . . . , hhnq , ph1, . . . , hnqh “ ph1h, . . . , hnhq

(1) Let EndH pHnq be the algebra of endomorphisms of Hn considered as right H-module:

EndH pHnq “
␣

A : Hn Ñ Hn | A
`

h ` h1
˘

“ Aphq ` A
`

h1
˘

, Aphhq “ Aphqh
(

Show that EndH pHnq is naturally identified with the algebra of n ˆ n matrices with quaternion entries.

(2) Define an H-valued form p , q on Hn by
`

h,h1
˘

“
ÿ

i

hih
1
i

16
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where a ` bi ` cj ` dk “ a´bi´cj´dk. (Note that uv “ vu.) Let Upn,Hq be the group of “unitary quaternionic
transformations”:

Upn,Hq “
␣

A P EndH pHnq |
`

Ah, Ah1
˘

“
`

h,h1
˘(

Show that this is indeed a group and that a matrix A is in Upn,Hq iff A˚A “ 1, where pA˚qij “ Aji.

(3) Define a map C2n » Hn by

pz1, . . . , z2nq ÞÑ pz1 ` jzn`1, . . . , zn ` jz2nq

Show that it is an isomorphism of complex vector spaces (if we consider Hn as a complex vector space by
z ph1, . . . hnq “ ph1z, . . . , hnzq) and that this isomorphism identifies

EndH pHnq “
␣

A P EndC
`

C2n
˘

| Ā “ J´1AJ
(

where J is defined by (1.1). (Hint: use jz “ z̄j for any z P C to show that h ÞÑ hj is identified with z ÞÑ Jz.)

(4) Show that under identification C2n » Hn defined above, the quaternionic form (, ) is identified with
`

z, z1
˘

´ j
@

z, z1
D

where pz, z1q “
ř

ziz
1
i is the standard Hermitian form in C2n and xz, z1y “

řn
i“1 pzi`nz

1
i´ ziz

1
i`n

˘

is the
standard bilinear skew-symmetric form in C2n. Deduce from this that the groupUpn,Hq is identified with
Sppnq “ Sppn,Cq X SUp2nq.

Exercise 1.6.8. (1) Show that Spp1q » SUp2q » S3.
(2) Using the previous exercise, show that we have a natural transitive action of Sppnq on the sphere S4n´1 and
a stabilizer of a point is isomorphic to Sppn ´ 1q.
(3) Deduce that π1pSppn ` 1qq “ π1pSppnqq, π0pSppn ` 1qq “ π0pSppnqq.
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Chapter 2

Cartan Closed Subgroup Theorem
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