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Chapter 1

Lie Algebras: An Introduction

1.1 Definitions and Examples
Definition 1.1.1. Let F be a field. Lie Algebra is a vector space L over F together with a bilinear map
[,-] : L x L — L called bracket such that
1. [z,z] =0;
2. [z, [y, z]] + [y, [z, z]] + [# [=,y]] = O (Jacobi identity)
The dimension of the Lie algebra is the dimension of the vector space (we assume finite dimensionality).

Proposition 1.1.2. Lie bracket is skew-symmetric: [z,y] = —[y, z].
Proof. 0 =[x +y,z + y] = [z,y] + [y, z] due to bilinearity and [z, z] = 0. [ ]

Example 1.1.3.
1. T.G, or L, where G is a Lie group.
2. Abelian Lie algebra: L any F-vector space and set [z,y] = 0 for any z,y € L.

3. General linear algebra: let V be a vector space. Define L = gl(V) = {z : V — V | x a linear transformation},
where [z,y] =zoy —yox =xy — y=.

&

Definition 1.1.4. A linear map o : L — L' between Lie algebras is a homomorphism if

e([z,y]) = [o(2), e (y)]-
The homomorphism ¢ is an isomorphism if o is a bijection.
A subspace K < L is a (Lie) subalgebra if [z,y] € K for any z,y € K.
Example 1.1.5. Let V be a F'-vector space. For B,,, Cy,, and D,,, let char(F") # 2.
1. Any subalgebra of Lie algebra gl(V') is called a linear Lie algebra.

2. Type A, (Special linear Lie algebra): Suppose dim(V) = n + 1. Let sl,1(F) = sl(V) = {x €
gl(V) | tr(z) = 0}. Recall that the trace of an endomorphism is the trace of its matrix, which is
independent of choice of basis. sl,,11(F) is a Lie subalgebra of gl(V') because tr(z + y) = tr(z) + tr(y)
and tr(zy) = tr(yz).
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3. Type C,, (Symplectic Lie algebra): Suppose dim V' = 2n with basis (w1, - ,ws,). Define a nonde-
generate skew-symmetric bilinear form (2 by

Qu,v) = [~u—] [_%L %] {v

It is nondegenerate in the sense that the map Q : V — V*; Q(u)(v) = Q(u)(v) is bijective, i.e.,
U = {ueV|Qu,v) =0VYv eV} is a zero subspace of V. Set

sp(V) = sp2, (F) = {x € gl(V)[Q(2(u),v) = —Q(u, z(v))}.

It is a subalgebra because

o I, A B
If we denote S = [_In 0 C D] (where A, B,C, D €

gl(n, F')) to be symplectic is that SX = —X'S, i.e., Bt = B, C* = C, and A" = —D.

], then in matrix terms, the condition for X = [

4. Two other families: type B,, and type D,, of orthogonal Lie algebras (one for odd dimension and the
other for even dimension; see [1] p.3).

5. For an n-dimensional vector space over F', we can fix a basis to see gl(V') =~ gl,,(F).

n

We have upper triangulars:

b= b,(F) = {z € gL, (F) | z;; = 0 Vi > j},
and strictly upper triangulars:

u=u,(F)={zegl,(F)|x; =0Vi=>j},
and abelian diagonal subalgebra:

t=1t,(F) ={regl,(F) |z, =0Vi+#j}

It is trivial to check these the brackets are closed for them. Also note that b = t@u (vector space direct
sum).

&

Definition 1.1.6. Let K be a field, and let A be a vector space over K equipped with an additional binary
operation from A x A to A, denoted here by - (that is, if x and y are any two elements of A, then x - y is an
element of A that is called the product of x and y). Then A is an algebra over K if the following identities hold
for all elements x,y, z in A, and all elements (often called scalars) a and b in K:

1. Right distributivity: (z+y)-z=x-2+y- 2,
2. Left distributivity: z- (x +y) =z -2+ 2y,
3. Compatibility with scalars: (azx) - (by) = (ab)(x - y).

6
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Remark: Every Lie algebra is an algebra with z - y = [z, y].

Definition 1.1.7. We say § € gl(A) is a derivation for algebra A with bilinear operator (-,-) if §(a,b) =
(a,0(b)) + (d(a),b) for every a,b e A.

Lemma 1.1.8. Let A be an F-algebra. Then
Der(A) := {d € gl(A) | ¢ is a derivation}

is a Lie algebra.

Proof. We note that we already have a Lie algebra structure [z, y] = zy — yz for gl(A). Thus, we want to
show that the above is a Lie subalgebra. We want: [§, 7] € Der(A) V4, T € Der(A). Observe that
[6,7](a-b) = (67 — 78)(a - b)
=d(a-7(b) +7(a)-b) —7(a-6(b) +d(a)-b)
=a-o7(b) +d(a) - 7(b) + 7(a) - 6(b) + 67(a) - b
— (@ 78(b) + 7(a) - 6(b) + 8(a) - 7(b) + 76(a) - b)
= a(d7(b) — 76(b)) + (07(a) — 7(a))b
=a-[0,7](b) + [0,7](a) - b.

]
Key fact: For each x € L a Lie algebra with bracket [-,-], the map adz : L — L; (adz)y = [z,y] is a
derivation.

Proof: We check that
(adz)([y, z]) = [, [y, =]]
= —[y,[2,2]] — [2, [%,y]] (Jacobi identity)
= [ [, 2]] + [[2, 9], 2]
= [y, (ad z)(2)] + [(ad 2)(y), 2]

Key fact: The map ad : L — Der(L) < gl(L);  — adz is a Lie algebra homomorphism, i.e., ad([z,y]) =
[ad z, ad y]. This is the adjoint representation.

1.2 Ideals and Homomorphisms

A subspace I < L is an ideal if Vo € L,y € I, we have [z,y] € I. An ideal is of course a Lie subalgebra.
Example:

1. 0, zero ideal; L also an ideal.

2. The center Z(L) = {z€ L | [z,2] =0Vz € L}.

3. The derived subalgebra [L, L] = F{[z,y] | z,y € L} (the span of the set {[z,y] | z,y € L}).

4. Suppose ¢ : L — L’ is a homomorphism. Then ker(p) is an ideal.
Note:

1. Labelian < L=Z%(L) < [L,L]=0.

2. Given an ideal I < L, L/I is a Lie algebra with [z + I,y + I] = [z,y] + I, and, as usual, there is a
canonical homomorphism L — L/I, z — z + I.
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Proposition 1.2.1 (Isomorphism Theorems).

(a) (First Isomorphism Theorem) If ¢ : L — L' is a homomorphism of Lie algebras, then L/ker(p) =~ Im .
If I is any ideal of L included in ker(yp), there exists a unique homomorphism v : L/I — L' making the
following diagram commute (7 is the canonical map):

L2

A

L)1

(b) (Second Isomorphism Theorem)If I and J are ideals of L such that I < J, then J/I is an ideal of L/I and
(L/I)/(J/I) is naturally isomorphic to L/J.

(c) (Third Isomorphism theorem) If I, J are ideals of L, there is a natural isomorphism between (I + J)/J
and I/(I n J).

(d) (Fourth Isomorphism Theorem) Let I be an ideal of L. Then the canonical projection map ¢ : L —
L/I,¢o(x) = x + I induces a 1-1 correspondence ® : J — ¢(J) = J/I between ideals of L that contain I
and ideals of L/I:

T = {ideals of L that contain I} «— I’ = {ideals of L/I}
an ideal J of L that contains I — its image ¢(J) = J/Iin L/T
its inverse image ¢~ (J) in L <« an ideal J of L/I
Moreover, if we denote J/I by J*, then:
* For Ji,Jy €I, Jy € Jyifand only if Jif < J¥, and then dim(Jz/J1) = dim(J5/J5);
» For Jy,J2 €I, Jy is an ideal of Js if and only if J¥ is an ideal of J¥, and then Jy/J; = J&/J}.

For later use we mention a couple of related notions, analogous to those which arise in group theory. The
normalizer of a subalgebra (or just subspace) K of L is defined by N (K) = {z € L | [z, K] < K}. By the
Jacobi identity, Ny, (K) is a subalgebra of L; it may be described verbally as the largest subalgebra of L which
includes K as an ideal (in case K is a subalgebra to begin with). If K = N, (K), we call K self-normalizing;
some important examples of this behavior will emerge later. The centralizer of a subset X of L is C(X) =
{z € L | [xX] = 0}. Again by the Jacobi identity, C; (X) is a subalgebra of L. For example, C1(L) = Z(L).

Definition 1.2.2. A representation of L is a homomorphism ¢ : L — gl(V') for V an F-vector space.

Example 1.2.3. Consider the adjoint representation ad : L — gl(L);xz — adz. Then ker(ad) = {z € L |
adx =0} = Z(L). Thus, L/Z(L) = ad(L) < gl(L). &

Definition 1.2.4. L is called simple if L has no ideals except for 0 and itself and if [L, L] # 0. Recall that a
simple group is a group with no nontrivial normal subgroup.

Remark: L simple thus nonabelian = ideal Z(L) =0 = L =~ ad(L) < gl(L).
Example 1.2.5. Let char(F) # 2.

T h Yy

) e S T N RITENVINN)
2 glo(F) [tr(4) =0} =C (0 o)v(g _1)’<1 0>
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Note that [h, 2] = 2z, [z,y] = h, [h,y] = —2y. We write the linear transformation ad h : slo(F') — sly(F) in
matrix form with basis {z, h, y}:

(ad h)(z) = [h, 2] = 22
(ad h)(h) = [h,h] =
(ad h)(y) = [h,y] = —2y

2 0 0
0 0 O
0 0 -2

and z, h,y are eigenvectors for ad h, corresponding to the eigenvalues 2,0, —2. Since char(F') # 2, these
eigenvalues are distinct. Direct computation by bracketing will show that Z(sl3(C)) = 0 and [sl2(C), sl3(C)] =
5[2 ((C)

sl (F) is also a simple Lie algebra: suppose we a nonzero ideal I < sl5(C). Let 0 # ax + by +ch € I. Applying
ad x twice, we get —2bx € I, and applying ad y twice, we get —2ay € I. Therefore, if a or b is nonzero, I
contains either y or x (char(F) # 2), and then, clearly, I = L follows. On the other hand, if a = b = 0, then
0+ chel,sohel,and again I = L follows. &

Thus, the matrix is

1.3 Solvable and Nilpotent Lie Algebras
Definition 1.3.1. The derived series of L is

L 2[L,L] 2[LW, LW] 2
M~ = —
LO L L

L is said to be solvable if L\"™) = 0 for some m > 1.
Example 1.3.2.
1. Let L be abelian. Then L) = (. Thus, L is solvable.
2. Recall that slo(F') = [sla(F),sla(F)]. Thus, sl (F') is not solvable.

0 = = 0 10 0 00 0 01
3. u3 = 0 0 = =F 00 0f(0 O 1),{0 0 O € gly(F). The dimensional of
0 0 O 0 0 O 0 0 O 0 0 O

Ei» Eq3 E13
general u, isthusdim=1+---+n = % Note that bracketing the basis gives

[F12, Ea3] = E13
[E12, E13] =0 (1.1
[E23, E13] = 0.
Thus, [U3,u3] F{E,3}. Note that for arbitrary z, y we have [ ,y] = 21y?[E12, Eas) +w Y [Egg, Ep] =
(r'y? — 22y') E13. Then the center Z(u3) is F{E13} because z1y? — 2%y* = 0 for any y',4? € F implies

1
r' = 2% =0, ie, r = 23E;3. Then L® = [F{Ei3}, F{F13}] = [Z(u3), Z(u3)] = 0. Hence, us is
solvable for m = 2.

4. In general, u,, is solvable.
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5. b3 = C gl;(F). Note that bs = ug + C{E11, Fa3, E53}. Recall Left-multiplying a matrix

o O %
O ¥ %

A by E;; results in a matrix where the i-th row is the j-th row of A, and all other rows are zero;
right-multiplying a ¢ x m matrix A by E;; results in a matrix where the j th column is the i-th column
of A, and all other columns are zero. Thus,

Vi7j7 [Eu?Ejj] = 07

Vk#1, [Ey,En] =3 B =1
0 , otherwise

The remaining brackets of basis element are just (1.1). Now consider F1; — Ess. E11 — Fao bracketing
with diagonal basis elements gives 0. For off-diagonal basis elements, note that [Ey; — Eag, E12] = 2E15.
[Ell —EQQ, E13] = Fi3. [Ell —EQQ, E23] = —Fos3. Therefore, for any element in b, we already analyzed
the bracket of each component of it with £ — Fa9, each resulting either zero or a multiple of a distinct
basis element. Thus, no nontrivial element commutes with E1; — Es. Thus, there are no nontrivial
elements commuting with every element. Thus, Z(b3) = 0. Also, [bs, bs] = C{E12, Eos, F13} = us.
Hence, b is solvable.

6. In general, b, is solvable.
&

Goal: Char(F) = 0 and F is algebraically closed. We will show that L is solvable < L/Z(L) is a Lie
subalgebra of b,, for some n.

Proposition 1.3.3. Since an ideal is a Lie subalgebra, an ideal that is also solvable as a Lie algebra is called a
solvable ideal. We have,

1. L is solvable = all subalgebras and homomorphic images of L are solvable.
2. If I < Lis a solvable ideal and L/I is solvable, then L is solvable.

3. If I,J < L are solvable ideals, then I + J is solvable.
Proof. Routine. See [1] p.11. [ ]
Corollary 1.3.4. 3! maximal solvable ideal I < L. This maximal ideal is the radical of L, denoted as Rad(L).

Proof. L has finite dimension. Let I < L be a solvable ideal with the largest dimension possible. Let J < L
be another solvable ideal. Then proposition 1.3.3 says I +J is solvable. Since I € I +J, weseethat I = I +J
because I has the maximum dimension. Thus, J < I. [ |

Definition 1.3.5. L is semisimple if it has no non-trivial solvable ideals, i.e., Rad(L) = 0.
Example 1.3.6. sly(F) is semisimple (because sy (F') is simple and is not solvable). &

Proposition 1.3.7. L/Rad(L) is semisimple.

Proof. Let J be a solvable ideal of L/rad(L) and ¢ : L — L/rad(L) the canonical projection. Then

o Y(J)/Rad(L) Shsotm 7 solvable + Rad(L) solvable Prop2 ¢~ 1(J) solvable in L. Thus, o~ *(L) <
rad(L) = J = p(p 1(J)) € ¢(rad(L)) = 0 in L. Thus, J must be zero ideal in L/rad(L). [ |

10
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Thus we have shown that any Lie algebra L contains a canonical solvable ideal rad(L) such that L/rad(L) is
a semisimple Lie algebra. We thus have an exact sequence

0 —rad(L) — L — L/rad(L) — 0

so that, in some sense at least, every finite dimensional Lie algebra is ”built up” out of a semisimple Lie
algebra and a solvable one. Slightly more precisely, if

0—>L1—>L—>L2—>0

is an exact sequence of Lie algebras, we say that L is an extension of L, by L;. Thus the previous proposition
can be rephrased as saying that any Lie algebra is an extension of the semisimple Lie algebra L/rad(L) by
the solvable Lie algebra rad(L).

Proposition 1.3.8. A finite dimensional Lie algebra L is semisimple if and only if it does not contain any
non-gzero abelian ideals.

Proof. Clearly if L contains an abelian ideal it contains a solvable ideal, so that rad(L) # 0. Conversely, if
K is a non-zero solvable ideal in L, then the last term K (™1 in the derived series of K will be a nonzero
abelian ideal of L (obviously, a lie algebra g is abelian <= [g,g] = 0). |

Remark 1.3.9. Simplicity implies semisimplicity. If L is simple, then [L, L], which is nonzero and is an ideal,
has to be the whole of L. Thus, L cannot be solvable. Therefore, Rad(L) = 0, and L is semisimple. [

Definition 1.3.10. The lower central series (or descending central series) of L is:

L 2[LL12[L, L2
e R S N
Lo Lt L2

where ' '
Vi>2, L':=[L L.

A Lie algebra L is nilpotent if L™ = 0 for some m > 1.

Remark 1.3.11. L! = L(Y, thus it’s easy to see by induction that L(*) < L, so all nilpotent Lie algebras are
solvable. '

Example 1.3.12. Continue with example 1.3.2,

1. L abelian = L nilpotent.
(1.1)

2. ug3 2 [ug,u;g] = F{Elg} 2 [ug,F{Elg,}] 0 = ugis nilpotent.

3. For the same reason, u,, is nilpotent.

(12)

4. bz 2 [b3,b3] =u3 2 [b3,u3] ===u3 2u3 2--- = by is not nilpotent.

5. For the same reason, b, is not nilpotent.

&
Proposition 1.3.13. Let L be a Lie algebra.
(a) If L is nilpotent, then so are all subalgebras and homomorphic images of L.
(b) If L/Z(L) is nilpotent, then so is L.
(¢) If L is nilpotent and nongero, then Z (L) # 0.
Proof. See [1] p.12. |

11
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Remark 1.3.14. The condition for L to be nilpotent can be rephrased as follows:
For some m (depending onlyon L ), (adz;ad s ---ad z,,) (y) = 0 for all z;;,y € L.

In particular, this condition implies (ad )™ = 0 for all € L. Now if L is any Lie algebra, and « € L, we call
r ad-nilpotent if ad z is a nilpotent, i.e. (ad 2)* = 0 for some k > 0. Thus, we see [ )

Remark 1.3.15. If L is nilpotent, then all elements of L are ad-nilpotent. [
It is a pleasant surprise to find that the converse is also true.
Theorem 1.3.16 (Engel). If all elements of L are ad-nilpotent, then L is nilpotent.

Lemma 1.3.17. Let x € gl(V) be nilpotent (" = 0 for sme r > 0), then ad x is also nilpotent.
Proof. (adz)(y) = [x,y] = 2y — yx and
(adz)?y = [z, [z, y]] = [z, 2y — yx] = 2%y — 2zy> + yo?

By induction, we will have

m

(adz)™(y) = ) cxarya™ "
k=0

Thus, the r such that 2" = 0 gives rise to some m = 2r such that each term contains =" and thus (ad z)™ =
0. ]

Remark 1.3.18 (Converse is not true). A word of warning: It is easy for a matrix to be ad-nilpotent in
gl(n, F') without being nilpotent. (The identity matrix is an example.) It should be kept in mind two con-
trasting types of nilpotent linear Lie algebras: b(n, F') and u(n, F). o

Engel’s Theorem will be deduced from the following result, which is of interest in its own right.

Recall that a single nilpotent linear transformation always has at least one nonzero eigenvector, correspond-
ing to its unique eigenvalue 0: Az = A\ = A"z = A"z =0 = X\ =0, = 0. To show it has a nonzero
eigenvector, i.e., 30 # z s.t. Az = 0 is to show it is singular, but A" = 0 = det(4)" =0 = det(4) =0
(entries of the matrix are from field and thus integral domain without zero divisor, i.e., ab = 0 = a =
Oorb=0).

This is just the case dim L = 1 of the following theorem.

Theorem 1.3.19. Let L be a subalgebra of gl(V'), V finite dimensional. If every element of L is nilpotent and
V # 0, then 30 # w € V such that x(w) = 0Vx € L, or L.w = 0.

Proof. Induction on dim L.
dim L = 1: L = F{z}. We have just shown this above.
dim L > 1: Let K < L be a maximal proper subalgebra.

claim: dim K = dim L — 1 and K is an ideal of L.

proof: let L = L/K and consider ¢ : K — gl(L); y — ad(y). That is, for y € K, we have ¢(y)(z + K) =
[y,z] + K. Now, ¢ is a homomorphism, i.e., ¢([y,z]) = [¢(y), ¢(2)], by Jacobi identity. Thus ¢(K) is
a Lie subalgebra of gl(L). Also, dim¢(K) < dim(K) < dim(L). Furthermore, the Lemma implies that
every element of (K) is nilpotent. Thus we can apply induction hypothesis to o(K) < gl(L). Then 3K #
(z+ K) € L (ie., z ¢ K) such that ¢(K).(z + K) = 0. This implies Vy € K, ad(y)(z + K) = [y,2] + K =0
(i.e., [y, z] € K). Thus, we have z € K such that Vy € K, [y, 2] € K. Thus, K is properly contained in the
normalizer Ny, (K), which is also a subalgebra. Thus, by maximality, it has to be the case that N (K) = L.
Thatis, Vx € L, [z, K] ©« K = K is an ideal.

We then show dim K = dimL — 1 and K. If dim L/K were greater than one, then the inverse image in

12
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L of a one dimensional subalgebra of L/K (which always exists) would be a proper subalgebra properly
containing K, which is absurd; therefore, K has codimension one. This allows us to write L = K + F'{z} for
anyze L—K.//

Now we show L with all ele. nilp has some w € V s.t. L.w = 0. Consider the subspace of V killed by K,
ie., W= {veVl]ylv) =0Vy e K} < V. Induction hypothesis on K (dim K = dimL — 1 < dim L and all
elements of L thus K nilpotent) = W # 0. Letx € L and y € K and w € W. Then

(yz)(w) = (zy)(w) — [z,y] (w) =0 = YVreLandwe W, zswe W
=0 eK

That is, W is an L-stable subspace of V. In particular, for that z € L — K, we have z(W) < W. Thus, z|w is
also nilpotent. Then 30 # w € W, s.t., z(w) = 0. Given z € L = K @ F'{z}, we can write + = y + az for some
ye K,ae F. Now,

z(w) = y(w) + az(w) =0

proof of Engel’s theorem. We want to show that if every x € L is ad-nilp then L is nilp. We proceed by
induction on dimension of L.

If the dimension is 1, then ad is trivial and ad(L) would trivially be nilp. Let dim(L) > 1. Apply above
theorem to ad(L) < gl(L) to get some nonezero = € L such that [L,z] # 0, which implies z € Z(L).
Recall from example 1.2.3 that ad(L) = L/Z(L). Now, dimad(L) = dim L/Z (L) < dim(L). The induction
hypothesis gives ad(L) nilpotent. Proposition 1.3.3 (2) then implies L is nilpotent. |

Definition 1.3.20. Let V be a finite-dimensional vector space over a field F with dimV = n. Aflagin V is a
chain of subspaces:
0=VycVicVoc..-cV,=V

such that dimV; = i for each i = 0,1, ..., n. An endomorphism x € End(V) is said to stabilize or preserve the

flag if
x(V;) e V; foralli.

Corollary 1.3.21. Let L be a subalgebra of gl(V'), V finite dimensional. If every element of L is nilpotent and
V' # 0, then there exists a flag (V;) in V stable under the action of L, i.e., for all i, (V;) € V;_1 for all x € L.
In other words, there exists a basis of V relative to which the matrices of L are all in u(n, F).

Proof. Begin with any nonzero v € V killed by L, whose existence is assured by above theorem. Set V; = Fv.
Let W = V/Vj, and observe that the induced action of L on W is also by nilpotent endomorphisms. By
induction on dim V', W has a flag stabilized by L, whose inverse image in " does the trick.

The action on Winduced by z : V — Vis 2/ (a + V1) = z(a) + V4.

If the Lie algebra L stabilizes a flag, then in a basis adapted to this flag (i.e., where the basis vectors span the
successive subspaces V; in the flag), the action of any element z € L will map each basis vector to a linear
combination of basis vectors that correspond to smaller subspaces in the flag. This ensures that the matrix
representation of x in this basis will be upper triangular. Conversely, if the elements of L are represented
by upper triangular matrices in some basis, then these matrices stabilize the subspaces spanned by the first
i basis vectors. This gives a flag that is preserved by all elements of L, where each subspace is spanned by
a certain number of basis vectors, corresponding to the positions of non-zero entries in the upper triangular
matrix. |

Lemma 1.3.22. Let L be nilpotent, and let K be an ideal of L. If K # 0, then K n Z(L) # 0 (In particular,
Z(L) #0).

13
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Proof. L acts on K via the adjoint representation, so above theorem yields nonzero x € K killed by L, i.e.,
[Lz] =0,s0 € K n Z(L). |

14
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Chapter 2

Semisimple Lie Algebras

Assume char F' = 0 and F' algebraically closed.

2.1 Structure of Solvable Lie Algebras

2.1.1 Lie’s theorem

Theorem 1.3.19 asserts the existence of a common eigenvector for a Lie algebra consisting of nilpotent
endomorphisms. The next theorem is of similar nature.

Theorem 2.1.1 (Lie’s Theorem). Suppose L < gl(V) is a solvable subalgebra. dim(V) < co and V' # 0. Then
V contains a common nongero eigenvector for all x € L.

Proof. Use induction on dim L, the case dim L = 0 being trivial. When dim L = 1, the eigenvector exists for
any matrix with entries in algebraically closed field. We attempt to imitate the proof of Theorem 1.3.19. The
idea is

(1) to locate an ideal K of codimension one,

(2) to show by induction that common eigenvectors exist for K,

(3) to verify that L stabilizes a space consisting of such eigenvectors, and

(4) to find in that space an eigenvector for a single 2 € L satisfying L = K + F{z}.

Step (1) is easy. Since L is solvable, of positive dimension, L properly includes [L,L]. L/[L,L] being
abelian, any subspace is automatically an ideal. Using Fourth isomorphism theorem to take a subspace K’
of codimension one, then its inverse image K = ¢~ !(K’) is an ideal of codimension one (easy to compute)
in L, containing [L, L].

For step (2), to apply induction to K, we verify that K has a dimension lower than L and that K is solvable:
if K = 0, then L is abelian of dimension 1 and an eigenvector for a basis vector of L finishes the proof; so for
K # 0, it is solvable as a subalgebra of solvable L (using Proposition 1.3.3 (1)). Induction gives an common
eigenvector v so that y € K, y(v) = A(y)v for some linear function A : K — F'. Fix this ), and denote by W)
the subspace

{fweV|yw) = Ay)w, forally e K}; sove Wy, Wy # 0.

Step (3) consists in showing that L leaves W, invariant. Assuming for the moment that this is done, proceed
to step (4): Write L = K + F{z} for a z € L — K, and use the fact that F is algebraically closed to find
an eigenvector vy € W), of z now acting on W, (for some eigenvalue of z). Then v, is obviously a common
eigenvector for L (and A can be extended to a linear function on L such that z(vg) = A(z)vg, x € L).

15
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It remains to show that L stabilizes W,. Let w € W),z € L. To test whether or not z(w) lies in W), we must
take arbitrary y € K and examine yx(w) = zy(w) — [z, y](w) = A(y)z(w) — A([z, y])w. Thus we have to prove
that A([z, y]) = 0. For this, fix w € W,z € L. Let n > 0 be the smallest integer for which w, z(w),--- , 2™ (w)
are linearly dependent. Let W; be the subspace of V spanned by w,x(w), ...,z (w). (set Wy = 0), so
dim W,, = n,W,, = W,,;(i = 0) and = maps W,, into W,,. It is easy to check that each y € K leaves each
W; invariant. Relative to the basis w, z w, ..., 2" 1w of W,,, we claim that y € K is represented by an upper
triangular matrix whose diagonal entries equal A(y). This follows immediately from the congruence:

(x)  yz'w = A(y)z'w (mod W)

which we prove by induction on 4, the case i = 0 being obvious. Write yz'(w) = yra' " (w) = zyr'~(w) —
[z,y]2"~(w). By induction, yz'~*(w) = A(y)z*~(w) + v’ (w’ € W;_1); since x maps W;_; into W; (by
construction), (*) therefore holds for all 4.

According to our description of the way in which y € K acts on W,,, try, (y) = nA(y). In particular, this is
true for elements of K of the special form [z,y] (z as above, y in K). But z,y both stabilize W,,, so [z, y]
acts on W,, as the commutator of two endomorphisms of W,,; its trace is therefore 0. We conclude that
nA([z,y]) = 0. Since char F = 0, this forces A([z, y]) = 0, as required. |

Corollary 2.1.2. Let L be a solvable subalgebra of gl(V'), dim V = n < o0. Then L solvable <= L < b.

Proof. = : b is solvable.

<= this is the same as saying L stabilizes some flag in V. We do this by induction on dim(V) = k. Let its
basis be {vy,- - ,v;}. Let V! := V/F{vy,--- ,v;}. Note that the induced L’ < gl(V’) is solvable. Due to Lie’s
theorem, 30 # vi11 € V' s.t. Vo € L, z(vgy1) S F{vgs1}. Then pull this vy, back to V' to form another
basis for vector space of dimension x + 1. |

More generally, let L be any solvable Lie algebra, ¢ : L — gl(V) a finite dimensional representation of L.
Then ¢(L) is solvable, by Proposition 1.3.3, hence stabilizes a flag (Corollary above). For example, if ¢ is the
adjoint representation, a flag of subspaces stable under L is just a chain of ideals of L, each of codimension
one in the next. We can also translate this to upper triangular matrices. We have:

Corollary 2.1.3. A Lie algebra L is solvable <= there exists a chain of ideals of L, 0 = Lo < L, c ... C
L, =L, such that dimL; =i < L/Z(L) =~ ad(L) is solvable in b.

Corollary 2.1.4. A Lie algebra L is solvable < [L, L] is nilpotent.

Proof. <=: [L, L] is nilpotent facl 31

1.3.3 concludes.

[L, L] solvable. Since L/[L, L] is abelian and thus solvable, proposition

= : we show z € [L, L] implies that d« is nilpotent. Find a flag of ideals as in Corollary above. Relative
to a basis (z1,...,x,) of L for which (z1,...,2;) spans L;, the matrices of ad L lie in b(n, F'). Therefore
the matrices of [ad L,ad L] = ady[L, L] lie in u(n, F'), the derived algebra of b(n, F'). It follows that ad, = is
nilpotent for = € [, L]; a fortiori ad[ 1) = is nilpotent, so [L, L] is nilpotent by Engel’s Theorem. |

2.1.2 Jordan-Chevalley Decomposition
Read Steven Roman’s Advanced Linear Algebra for Jordan canonical form in a more general setting.

Let F' be an algebraically closed field. A general matrix in Jordan canonical form looks like

A 0 ... 0
0 Ay ... 0
0 0 ... A

16



Math 547 Lie Algebra and Representation Theory Anthony Hong

where each A; is a Jordan block matrix J;(\) for some t € Nand A € F:

Al 0 0
0O X1 ... 00
0O 0 X ... 0 O
JN=1 . . .. .
0O 0 0 ... A1
0O 0 0 ... 0 X\

txt

Our linear algebra says that every endomorphism « can be written into a Jordan canonical form with a certain
basis. That is, the matrix M of x is of the form M = SJS~! for some invertible matrix S and its unique

Jordan canonical form J. Note that J = D + N where D = diag(A, -, A1, + ,Ar, -+, Ar) and D is a
—_—— —_——
matrix consisting of shift matrices as blocks. The shift matrices are simply of the form J;(\) —diag(A,--- , A).

Thus, = can be written as a sum of a diagonal matrix and a nilpotent matrix which commute. We can make
this decomposition more precise.

The minimal polynomial of x € gl(V) =~ gl(n, F') is the monic polynomial p(¢) € F(¢) with minimal degree
such that p(z) = 0.

Lemma 2.1.5. Let x € gl(n, F') and F an algebraically closed field. The following are equivalent:
(1) There exists invertible g such that grg~! is a diagonal matrix, i.e., x is diagonalizable.
(2) There exists a basis {v;} for F™ consisting of eigenvectors for .

(3) The minimal polynomial has distinct roots, i.e., f(t) = [, (t — X\;) with X\; # A fori # j.
Proof. See [3] Corollary B.1.2 for F' = C. [ ]

We call « semisimple if it satisfies any of the above three conditions.

Remark 2.1.6. We remark that two commuting semisimple endomorphisms «,y € gl(V') can be simultane-
ously diagonalized; therefore, their sum or difference is again semisimple. The sum or difference of two
commuting nilpotent endomorphisms is nilpotent as well.

It is an exercise to show that their (additive) Jordan-Chevalley decomposition is indeed additive: (x + y),, =
Ty + Yn, (.ZE + y)s =Ts+ Ys-

Also, if x is semisimple and maps a subspace W of V into itself, then obviously the restriction of x to W is
semisimple. '

Proposition 2.1.7. Let V be a finite dimensional vector space over F, x € gl(V).

(a) There exist unique x4, x,, € End V satisfying the conditions: x = x, + x,,, x4 is semisimple, x,, is nilpotent,
zs and x,, commute.

(b) There exist polynomials p(t),q(t) € F(t), without constant term, i.e, p(0) = ¢(0) = 0, such that p(x) =
Zs,q(x) = x,. In particular; x, and x,, commute with any endomorphism commuting with x.

The decomposition x = x5 + x,, is called the (additive) Jordan-Chevalley decomposition of x, or just the
Jordan decomposition; x, x,, are called (respectively) the semisimple part and the nilpotent part of x.

Example 2.1.8.

01 0 0 00 0 1 0
r=(0 0 0[|=]10200]+]000O0
0 0 2 0 0 2 0 00
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1
00 0 p(t) = =t*

2= 0 0 0 2
0 0 4 q(t):t—itQ

&

Corollary 2.1.9 (Corollary of second part of the proposition). (a) If y € gl(V) such that [z,y] = 0, then
[s,y] = [¥n,y] = 0.

(b) If A c B c V are subspaces, and x maps B into A, then x, and x,, also map B into A.

Proof of the proposition. Let a1, ..., a; (with multiplicities m;, ..., my ) be the distinct eigenvalues of z, so
the characteristic polynomial is II (¢t — a;)"". If V; = Ker (z — a;. 1), then V is the direct sum of the sub-
spaces Vi,...,Vj, each stable under z. On V;, z clearly has characteristic polynomial (¢t — a;)"". Now apply
the Chinese Remainder Theorem (for the ring F'(¢) ) to locate a polynomial p(t) satisfying the congruences,
with pairwise relatively prime moduli: p(¢) = a; (mod (t — a;)™") ,p(t) = 0(mod t). (Notice that the last con-
gruence is superfluous if 0 is an eigenvalue of z, while otherwise ¢ is relatively prime to the other moduli.)
Set ¢(t) = t — p(t). Evidently each of p(¢), ¢(¢) has zero constant term, since p(¢) = 0(modt).

Set x5 = p(x),z, = q(z). Since they are polynomials in x, xs and x,, commute with each other, as well as
with all endomorphisms which commute with x. They also stabilize all subspaces of V stabilized by z, in
particular the V;. The congruence p(t) = a; (mod (t — a;)™") shows that the restriction of z, — a; 1 to V; is
zero for all 7, hence that z,; acts diagonally on V; with single eigenvalue a;. By definition, x,, = x — x;, which
makes it clear that z,, is nilpotent.

It remains only to prove the uniqueness assertion in (a). Let x = s + n be another such decomposition,
so we have x; — s = n — z,,. Because of (b), all endomorphisms in sight commute. Sums of commuting
semisimple (resp. nilpotent) endomorphisms are again semisimple (resp. nilpotent), whereas only O can be
both semisimple and nilpotent. This forces s = x5, n = x, |

Remark 2.1.10. In proving the Engel’s theorem, we have shown the lemma that
x € gl(V) nilpotent implies ad z nilpotent.
It can also be shown that
x € gl(V) semisimple implies ad « semisimple.

Since z, is semisimple, we by lemma 2.1.5 find a basis {vy, -+ ,v,} of V under which the matrix of x is
diag(A1, -+, A\,) and zse; = A\;e;. Let {Ey,;} be the standard basis of gl(V'). Then

n

= > AilEii, Eu)

i=1

i AiEii, B

i=1

a2
MeEgi — NEp = (A — N) B

(ad z5)(Ey) =

Thus, the matrix of ad z, is diagonal. '

Corollary 2.1.11. Let z € gl(V) (dimV < o0) with Jordan decomposition x = x5 + x,. Then adz = ad x5 +
ad x, is the Jordan decomposition of ad = (in gl(gl(V))).

Proof. Due to the remark above, ad z,, is nilpotent and ad x, is semisimple. x,,, x5 commute due to proposi-
tion 2.1.7 (a), i.e., [zn,xs] = 0. Thus, [ad z,,, ad 5] = ad[x,,zs] = 0 = adz,,adz; commute. Thus, the
uniqueness of proposition 2.1.7 (a) concludes. |
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2.1.3 Cartan’s Criterion

Remark 2.1.12. We collect some facts.

1
1. L is solvable “%25* [L, L] is nilpotent & y nilp, Vy € [L, L].

2. tr(zy) = tr(yx).
tI‘(AB) = (ab)ii = Clijbji = bjiaij = (ba)jj = tI‘(BA)

3. Similar matrices have same trace: tr(A4) = tr(SBS™1) = tr((S71)(SB)) = tr(B).

4. tr([z,ylz) = tr(zly, 2]).
To show this, we write [z, y]z = zyz — yxz and z[y, 2] = zyz — xzy and use tr(y(xz)) = tr((zz)y) due
to the second fact.

[
Proposition 2.1.13. If L is solvable, then tr(adzady) =0, Vx € L, Yy € [L, L].

Proof. We first observe a fact:
If x € band y € u, then zy € u: (

SO*
I

ii)(géi) (831)Thus,tr(my)=0.
0%/\000 000

Now L solvable.

= the homomorphic image ad(L) < gl(L) is solvable & [L, L] is nilpotent.
rmk.1.3.15 & Cor.1.3.21

Cor.2.1.2
basis & every ele. of [L, L] is nilp, i.e., every ele. of ad([L, L]) is nilp. and thus matrices of elements of
ad([L, L]) are strictly upper-triangular.

above fact

tr(ad z,ad y) = 0. [ |

there is a basis of L s.t. the matrices of elements of ad(L) are upper-triangular in this

Example 2.1.14. Recall the solvable Lie algebra

“0(0) = (4 (©) | 1(4) = 0} = €

o O
O =
~—__
N\
S =
=
—_
~_
R
i)
o O
N

where [h, 2] = 2z, [z,y] = h, [h,y] = —2y and

0 -2 0 0 0 0 2 0 O
adz=]0 0 1|,ady=|—-1 0 0Of,adh=]|0 0 O
0 0 O 0 2 0 0 0 -2

Also [sl3(C), sl3(C)] = slx(C). We can easily verify above proposition that tr(adzady) = 0, Vo € L, Vy €
[L, L]. &

We let F' = C for simplicity now.

Proposition 2.1.15. Let L be a subalgebra of gl(V), dimV = n < oo. If tr(xy) = 0 for every z,y € L, then L
is solvable.

. . lem.1.3.17 . . rmk.2.1.12
Proof. Note that every = € [L, L] is nilpotent —=== every ad z is nilpotent =—====> L solvable.
Thus, we show every x € [L, L] is nilpotent. Let z = x5 + x,, be the Jordan decomposition of z. We need
xs = 0. We fix a basis of V in which z; is diagonal, i.e., z; = diag(A1, -, \m), and z,, is strictly upper
triangular, i.e., a matrix with 1 or 0 just above the diagonal and all other entries zero. Since z,, is strictly
upper triangular, we see tr(dz,,) = tr(z,d) = 0 for any diagonal matrix d.
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We want to show >77" | A A; = X" |A;|? = 0 because this implies A; = 0 Vi = x5 = 0.

Let 7, = diag(\1, -+ , A ). We note that 7, € gl(V) is not necessarily in L. We compute

tr(Tox) = tr(Ts(Ts + 7)) = t0(Tows) + tr(Tozn) = O, Niki.
T i

Now, as = € [L, L], we may express z as a linear combination of commutators [y, z] with y,z € L, so we

need to show that tr(Z;[y, z]) k2 L12E tr([@s, y]z) = 0. This will hold by our hypothesis, provided we

can show that [Z;, y] € L. In other words, we must show that ad Z, maps L into L.

By Cor. 2.1.11, the Jordan decomposition of ad z is ad x5 + ad z,,. Therefore, by part (b) of [4] Lemma 16.8,
there is a polynomial p(t) € C[¢] such that p(ad z) = ad x5 = adZs. Now ad « maps L into itself, so p(ad z)
does also. ]

Theorem 2.1.16 (Cartan’s First Criterion). L is a Lie algebra such that tr(ad x ady) = 0, Va € [L, L], Vy € L.
<= L is solvable.

Proof. The < is by proposition 2.1.13.

= : Consider ad([L, L]). By assumption, tr(adzady) = 0,Ya,y € [L,L]. Proposition 2.1.15 implies
ad([L, L]) is solvable. Since ad([L,L]) = [L,L]/Z([L,L]) and Z([L, L]) is abelian, Proposition 1.3.3 (2)
shows that [L, L] is solvable. Since [L, L] = L"), we have L solvable. [ ]

Remark 2.1.17. For the more general theory, see [1] section 4.3, where Cartan’s First Criterion is named for
a result generalizing proposition 2.1.15 and above theorem is listed as a corollary. o

2.2 Killing Form

Let F be an algebraically closed field with characteristic zero.

2.2.1 Semisimplicity
Let L be a Lie algebra. Define Killing form on L by

k:LxL—>C
(z,y) — tr(ad z ad y)

* It is a symmetric bilinear form on L.

* Itis also associative: x([x,y],2) = k(z, [y, z]) by ad as a homomorphism and Rmk.2.1.12(4).
* Cartan’s First Criterion translates to: x(x,y) =0, Vz € L, Vy € [L,L] <= L solvable.

Remark 2.2.1. A simple fact from linear algebra: If W is a subspace of a (finite dimensional) vector space
V, and ¢ an endomorphism of V' mapping V" into W, then tr ¢ = tr (¢|;;,). (To see this, extend a basis of W
to a basis of V' and look at the resulting matrix of ¢.) o

Lemma 2.2.2. If I < L is an ideal and kj is the Killing form on I, then
K = K[1x1.

Proof. If z,y € I, then (adz)(ad y) is an endomorphism of L, mapping L into I, so remark above says its
trace x(z, y) coincides with the trace x;(x,y) of (adz)(ady)|, = (ad; z) (ad; y). |
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In general, a symmetric bilinear form ((x,y) is called nondegenerate if its radical rad(3) is 0, where
rad(8) := {x € L | B(z,y) = 0 for all y € L}. Alternatively, rad(8) = ker(f) where 8 : L — L*; 5(z)(y) =
B(z,y). Because the Killing form is associative, its radical is more than just a subspace: rad(k) is an ideal of
L.

Remark 2.2.3. From linear algebra (theory of bilinear form), a practical way to test nondegeneracy is as
follows: Fix a basis x4, ..., z, of L. Then x is nondegenerate if and only if the n x n matrix whose i, j entry
is  (z;, ;) has nonzero determinant. [ )

Example 2.2.4. We compute the Killing form of sl(2, F'), using the standard basis (x, h, y). The matrices of
ad z, ad h, ad y are shown in Example 2.1.14. Therefore x has matrix

k(z,z) k(z,h) k(z,y) 0 0 4
k(h,z) wk(h,h) w(h,y)[ =10 8 0
w(y,x) Ky, h) Ky, y) 4 00
with determinant det = —128, and & is nondegenerate. (This is still true so long as char F' # 2.) &

Theorem 2.2.5 (Cartan’s Second Criterion). Let L be a Lie algebra. Then L is semisimple, i.e., Rad(L) = 0, if
and only if its Killing form k is nondegenerate.

Proof. Suppose first that Rad L = 0. Let S be the radical of k. By definition, tr(adzady) = 0 for all
x € S,y € L (in particular, for y € [S, S]). According to Cartan’s 1st Criterion, S is solvable. But we remarked
before that S is an ideal of L and Rad(L) is the maximal solvable ideal, so S c RadL =0 = S =0, and
 is nondegenerate.

Conversely, let S = 0. To prove that L is semisimple, it will suffice to prove that every abelian ideal I of L
is included in S (see Proposition 1.3.8). Suppose = € I,y € L. Then consider (adxadyadzady)z for z € L:
[y, [z, [y, 2]]] € I, so [z, [y, [z, [y, 2]]]] € [I,I] = 0 and ad z adyad v ady = (ad x ady)? = 0. This means that
ad = ad y is nilpotent, hence its matrix can be written as upper-triangular and 0 = tr(adzad y) = k(z,y), SO
IcS=0.

The proof shows that we always have S c Rad L; however, the reverse inclusion need not hold.

2.2.2 Simple Ideals

Definition 2.2.6. A Lie algebra L is said to be the direct sum of ideals I, ...,1I; provided L =1, ®---® I; as
direct sum of subspaces. That is I; n I; = 0 if i # j. This condition forces [I;,I;] < I; nI; = 0if i # j (so the
algebra L can be viewed as gotten from the Lie algebras I; by defining Lie bracket componentwise).

Theorem 2.2.7. L semisimple = there exists simple ideals L;’s s.t. L = L1 @®...® Ly. Every simple ideal of
L coincides with one of the L;. Moreover, the Killing form of L; is the restriction of k to L; x L;.

Proof. As a first step, let I be an arbitrary ideal of L. Then It = {z € L | k(x,y) = 0 for all y € I} is also an
ideal, by the associativity of x. Cartan’s Criterion, applied to the Lie algebra I, shows that the ideal I n I+ of
L is solvable (hence 0). Therefore, since dim I + dim I+ = dim L, we must have L = I @ I*.

Now proceed by induction on dim L to obtain the desired decomposition into direct sum of simple ideals.
If L has no nonzero proper ideal, then L is simple already and we’re done. Otherwise let L; be a minimal
nonzero ideal; by the preceding paragraph, L = L, @ L1 . In particular, any ideal of L, is also an ideal of L,
so L, is semisimple (hence simple, by minimality). For the same reason, Li is semisimple; by induction, it
splits into a direct sum of simple ideals, which are also ideals of L. The decomposition of L follows.

Next we have to prove that these simple ideals are unique. If I is any simple ideal of L, then [I, L] is also an
ideal of I, nonzero because Z(L) = 0; this forces [I, L] = I. On the other hand, [I, L] = [I, L1]®. . .®[I, L],
so all but one summand must be 0.Say [, L;] = I. Then I < L;, and I = L; (because L, is simple).
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The last assertion of the theorem follows from Lemma 2.2.2. [ |

Corollary 2.2.8. If L is semisimple, then L = [L, L], and all ideals and homomorphic images of L are semisim-
ple. Moreover; each ideal of L is a sum of certain simple ideals of L.

2.2.3 Abstract Jordan Decomposition

We recall that ad : L — Der(L) < gl(L), where Der(L) = {d € gl(L)|6([a,b]) = [a, ()] + [0(a),d], Va,be L}.
Furthermore, ad(L) is an ideal of Der(L). This is because

(%) V4§ € Der(L), x € L, [d,ad z] = ad(dx).

proof of (*). We compute

= 0([z,y])
= [6(2),y] — ad(6(2))(y)
= [4,ad z] = ad(6(z))

Theorem 2.2.9. If L is semisimple, then ad L = Der L (i.e., every derivation of L is inner).

Proof. Since L is semisimple, the abelian ideal Z(L) is 0. Therefore, L. — ad L is an isomorphism of Lie
algebras. In particular, M = ad L itself has nondegenerate Killing form (Cartan’s 2nd Criterion). If D =
Der L, we just remarked that [D, M] < M. This implies (by Lemma 2.2.2) that x,; is the restriction to
M x M of the Killing form xp of D. In particular, if I = M+ is the subspace {§ € D|kp(5,7) = 0,VT € M}
of D orthogonal to M under kp, then the nondegeneracy of kjy = InM =0 = [M,I]c M nI=0.
If § € I, then (*) gives ad(d(z)) = 0 for all x € L, so in turn é(x) = 0, Yz € L. Because ad is 1 — 1, we have
6 = 0. Conclusion: [ = 0,Der L = M = ad L. |

Proposition 2.2.10. Let A be a finite-dimensional F-algebra. Prove that Lie algebra of derivations Der(A) <
gl(A) contains the semisimple and nilpotent parts of its elements. That is, given a decomposition

Der(A)36=_v +_ o ,
—_——  —

m'lp, S.S.

we have v,o € Der(A).
Proof. See [1] Lemma B of 4.2. [ |
We then have a decomposition for element in semisimple Lie algebra (note that our original Jordan decom-
position is for linear Lie algebra L < gl(V).)
Proposition 2.2.11 (Abstract Jordan Decomposition). Let L be a semisimple Lie algebra. For each x € L:
dln,se L
r=n-+s
ad n nilp.

ad s s.s.
[n,s] =0
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Proof. As remarked in the proof of above proposition, ad is an isomorphism in this case.

Der(L) =adL «— L

adx «— x

Decompose adz as v + 0. v,0 € Der(L) = adL = 3ln,ss.t. adn = v, ads = o due to isomorphic ad.
Thus, adz = adn + ads = ad(n +s) = x = n + s. Besides, 0 = [adn,ad s] = ad[n,s] = [n,s] =0
again due to isomorphic ad. n

We can write s = x5, n = x,, and (by abuse of language) call these the semisimple and nilpotent parts of x.
The alert one will object at this point that the notation x, x,, is ambiguous in case L happens to be a linear
Lie algebra. It will be shown that the abstract decomposition of x just obtained does in fact agree with the
usual Jordan decomposition in all such cases. For the moment we shall be content to point out that this is
true in the special case L = s[(V) (dim V' < o0): Write z = x4 + x,, in End V' (usual Jordan decomposition),
x € L. Since x, is a nilpotent endomorphism, its trace is 0 and therefore x,, € L. This forces z also to
have trace 0, so x5 € L. Moreover, adg )z is semisimple (rmk.2.1.10), so ady, = is a fortiori semisimple;
similarly ady, 2, is nilpotent (lem.1.3.17), and [ady s, adr x,] = adf, [xs2,] = 0. By the uniqueness of the
abstract Jordan decomposition in L,z = x4 + x, must be it.

2.3 Complete Reducibility of Representations

2.3.1 Modules
A (finite-dimensional) representation of Lie algebra L is a Lie algebra homomorphism
¢:L—gl(V)

where V is a finite dimensional F-vector space.

Definition 2.3.1. A vector space V with an operation L x V. — V; (z,v) — x.v is an L-module if
* (ax +by)v=azv+byv
* z.(av + bw) = az.v + br.w
* [z,ylv=2yv—yzv=u1u(yv)—y(z0)

We have the identification

{ representations

p:L—gl(V) } «— {L — modules}

p— .0 1= p(r)(v)

(== (v250))
€T — «— TV
V= TU

* A homomorphism of L-modules is a linear map ¢ : V. — W such that ¢(xv) = x ¢(v). The kernel
of such a homomorphism is then an L-submodule of V' (a vector subspace with operation closed in it).
When ¢ is an isomorphism of vector spaces, we call it an isomorphism of L-modules; in this case, the
two modules are said to afford equivalent representations of L. The standard isomorphism theorems all go
through without difficulty.

Definition 2.3.2.
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* An L-module V is called irreducible if it has precisely two L-submodules (itself and 0). We do not regard
a zero dimensional vector space as an irreducible L-module. Every one dimensional vector space on which
L acts is an irreducible L-module (because one-dimensional vector space does not have any nonzero proper
subspace.)

* V is called completely reducible if V is a direct sum of irreducible L-submodules, or equivalently (Exercise
2.3.3), if each L-submodule W of V has a complement W' (an L-submodule such that V.= W @ W’).
When W, W' are arbitrary L-modules, we can of course make their direct sum an L-module in the obvious
way, by defining x (w,w') = (z.w,x w’). These notions are all standard and also make sense when
dimV = oo.

* The terminology “irreducible” and “completely reducible” applies equally well to representations of L.
Namely, a representation ¢ : L — gl(V) is irreducible and completely reducible if the corresponding
L-module is irreducible and completely reducible respectively.

Exercise 2.3.3. Let V be an L-module. Prove that V is a direct sum of irreducible submodules if and only if
each L-submodule of V possesses a complement.

Let L be a Lie algebra. It is an L-module corresponding to the adjoint representation ad : L — gl(L). An
L-submodule is just an ideal, so it follows that the L-module arising in this way with L a simple algebra is
irreducible, and if L is semisimple, the module is completely reducible.

Suppose that S and T are irreducible Lie modules and that 6 : S — T is a non-zero module homomorphism.
Then Im 6 is a non-zero submodule of T, so imf = T. Similarly, kerd is a proper submodule of S, so
kerf = 0. It follows that 6 is an isomorphism from S to T, so there are no non-zero homomorphisms
between non-isomorphic irreducible modules.

Now we consider the homomorphism from an irreducible module to itself.

Lemma 2.3.4 (Schur’s Lemma). Let L be a Lie algebra and let S be a finite-dimensional irreducible L-module
over V. Then Amap 0 : S — S is an L-module homomorphism if and only if 0 is a scalar multiple of the identity
transformation; that is, § = A\lg for some A\ € F

Remark 2.3.5. 0 : S — S is an L-module homomorphism by definition means Yz € L, Vv € V, 8(z v) =
x (6(v)). If welet ¢ : L — gl(V') be the corresponding representation of S, then this condition means Vx € L,
Yo eV, 0(¢(x)(v) = ¢(x)(0(v)), or Yz € L, [0, p(x)] = 0. Thus, an L-module homomorphism § : S — S is
precisely an endomorphism 4 € gl(V') that commutes with every ¢(x) in Im(¢). [ )

Proof. The “if” direction should be clear. For the “only if” direction, suppose that § : S — S is an L-module
homomorphism. Then 6 € gl(V). As a matrix with entries in algebraically closed field, it has at least one
eigenvector £ with an eigenvalue X\. Now 6§ — A1y is also an L-module homomorphism. The kernel of this map
contains ¢ and is thus a nonzero submodule of S. As S is irreducible, S = ker (§ — A g); thatis, § = A\1g. N

Constructions of L-modules:
Let V and W be f.d. L-modules.

* The dual vector space

V*={f:V — F| fislinear }
is an L-module if we define for f € V*,v e Vix € L: (z.f)(v) = —f(x.v). The first two axioms are
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immediate. The third is true as

(2,91 H) () = —f([2,9].0)
=—flzyv—yzv)
= —fleyo) + f(yew)
= (z.f)(yv) = (y.f)(@.v)
= —(yz.f)(v) + (z.y.f)(v)
= ((v.y —y.x).f)(v)

* If V,W are L-modules, let V® W be the tensor product over F' of the underlying vector spaces. Recall
that if V, W have respective bases (v,..., v;,) and (wy,...,w,), then V ® W has a basis consisting
of the mn vectors v; ® w;. One recalls how to give a module structure to the tensor product of two
modules for a group G: on the generators v ® w, require g (v ® w) = g.v ® g.w. For Lie algebras the
correct definition is gotten by “differentiating” this one: z (v ® w) = z. v ® w + v ® z w. As before, the
crucial axiom to verify is the third axiom:

[z,y].(v@w) = [z,y] v@w + v ® [z,y] w
=(zyv—yzv)Qu+v® (xyw—yxw)
=(zyvR@uw+v@ryw)— (yrzrv@w+vRy.z w)

Expanding (z.y — y.z).(v ® w) yields the same result.

Remark 2.3.6. There is a canonical isomorphism 6 : V* ® V' — End(V') by 6(f, v)(w) = (f(w))(v). We can
use this som. to nuke End(V') into an L-module:

2.0(f,v) i= 0(a. f,v) + 0(f,2.0)
Note that z.0(f,v) acts on w € V by

ez, €EndV) V* L—mod V L—mod
- 0(f,0) [ (w) =60 = f v) (w)+[9(f, X )] (w)

= (z.f)(w)v + f(w)(z.v)
= —flzw)v+z.(f(w)v)
= —0(f,v)(z.w) + z.(0(f,v)(w))

Thus, the action of L on ¢ € End(V) is given by

)

Remark 2.3.7. More generally, if VV and W are two L-modules, then L acts naturally on ¢ € Hom(V, W) x~
V* ® W of linear maps by the same rule

(z.0)(w) = z.p(w) — p(z.w)

Exercise 2.3.8. Check that above action satisfies the three axioms of L-module action.

Exercise 2.3.9. If ¢ : L — gl(V) is a representation and x = s + n is the Jordan decomposition then p(z) =
©(s) + p(n) is the Jordan decomposition of ¢(x).
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2.3.2 Casimir Element of a Representation
Field F, algebraically closed, char(F) = 0.
A representation ¢ : L — gl(V) is faithful if ker o = 0

Given a faithful representation ¢ of semisimple L, we define

Bp:LxL—F
Bo(z,y) = tr(p(x)e(y)).

Remark 2.3.10.
(1) B, is a symmetric bilinear form on L.
(2) B, is associative: B, ([x,y],2) = B, (z, [y, z]) due to Remark 2.1.12 (4).
(3) Thus itsradical S, = {x € L | f,(x,y) =0, Vy € L} is an ideal of L.
(4) Baa = k is the Killing form.

(5) B, is nondegenerate, i.e., S, = 0:
Since ¢ is faithful, we see ¢ : S, — ¢(S,) is bijective, so Vz',y" € ¢(S,), we can find z,y € S, s.t.
' = p(x),y = ¢(y) and tr(e(z)e(y)) = By(x,y) = 0. Proposition 2.1.15 then says that ¢(S,) = S, is
solvable. Thus, S, as an ideal of semisimple L, is 0.

[ )
Basic setting:

Now let L be semisimple, § any nondegenerate symmetric associative bilinear form on L. If (z1,...,z,) isa
basis of L, there is a uniquely determined basis of L (y1,...,y») relative to j3, satisfying 3 (x;,y;) = ds;. (B
nondegenerate so we have isomorphism B:L— L*5 yw— B( - ,y). Then for basis x; of L, there is a unique
dual basis 6, of L* s.t. 0;(z;) = 6;;. Now take y; = 3(6;), i.e., 0; = B( - ,y;). The y,’s serve the unique basis
of L determined by x;’s wrt f s.t. B(x;,y;) = 0i5.)

Lemma 2.3.11. If z € L, we can write [z, z;] = >}, a;;x; and [z, y;] = X, bi;y;. Using the associativity of 5,
we compute:

aik = Y aiB (w5, ux) = B[z, 2], yx) = B (= [wi, 2], yx) = B (s, — [, yx]) Zbka (@i,y5) = —bri-
i

Definition 2.3.12. Let (x;) and (y;) be bases of L wrt 8 as above. The Casimir operator of a representation
¢ : L — gl(V) is the linear map

= Cw Z yz € g[(V)

i=1

Lemma 2.3.13.
(1) c, commutes with p(x) Vxe L

(2) tr(cy,) = dim L.
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Proof. (1):
[p(2), o] = D le(@), @ (i) @ ()]

= 2 [e@), 0 @l e (v:) + 2 ¢ (@) [o(2), ¢ (1)

= Zaw (z5) ¢ (y:) + th (w:) bijep (y;)

= Z (aij +bji) ¢ (z5) ¢ (i)

=0.
where for the second step we used

[z,yz] = xyz — yzae = vyz — yxz + yarz — yze = [z,y]z + y[z, z].
(2):
tr () = 2, tr (o (1) @ (3:)
= Z B (zi,y;) =n =dimL.
|

Remark 2.3.14. In case ¢ is also irreducible, Schur’s Lemma implies that ¢, is a scalar (equal to dim L/dim V/,
in view of (2)); in this case we see that ¢, is independent of the basis of L which we chose. 'Y

Example 2.3.15. L = sl(2, F),V = F?, o the identity map L — gl(V). Let (z, h, y) be the standard basis of
L. It is quickly seen that the dual basis relative to the trace form is (y, h/2, ), 0 ¢, = zy + (1/2)h? + yx =
(géz 2, ) Notice that 3/2 = dim L/dim V.. )

2.3.3 Weyl’s Theorem

Lemma 2.3.16. Let v : L — gl(V') be a representation of a semisimple Lie algebra L. Then ¢(L) < sl(V). In
particular, semisimple L acts trivially on any one-dimensional L-module.

Proof. Semisimplicity implies L = [L,L]. Then ¢(L) = ¢([L,L]) < [gl(V),gl(V)] = sl(V). When V is
one-dimensional, sl(V') = s[; (F) = {0}. ]

Theorem 2.3.17 (Weyl). Let ¢ : L — gl(V) be a (finite dimensional) representation of a semisimple Lie
algebra. Then ¢ is completely reducible.

Proof. special case: V has an L-submodule W of codimension one.

By the lemma, L acts trivially on V/W, so we may denote this module F' without misleading the reader:
0 > W -V — F — 0 is therefore exact. Using induction on dim W, we can reduce to the case where
W is an irreducible L-module, as follows. Let W’ be a proper nonzero submodule of W. This yields an
exact sequence: 0 — W/W' — V/W' — F — 0. By induction, this sequence “splits”, i.e., there exists a
one dimensional L-submodule of V/W’ (say f/IV//W’ ) complementary to W/W’. So we get another exact
sequence: 0 — W' — W — F — 0. This is like the original situation, except that dim W’ < dim W, so
induction provides a (one dimensional) submodule X complementary to W’ in W:Ww =w ® X. But
V/W' = W/W' @& W/W'. It follows that V = W @ X, since the dimensions add up to dim V' and since
WnX=0.
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further case: Now we may assume that W is irreducible. (We may also assume without loss of generality that
L acts faithfully on V.)

Let ¢ = ¢, be the Casimir element of ¢. Since ¢ commutes with ¢(L), c is actually an L-module endomorphism
of V; in particular, ¢(W) < W and Ker c is an L-submodule of V. Because L acts trivially on V/W (i.e., ¢(L)
sends V into W ), ¢ must do likewise (as a linear combination of products of elements ¢(z) ). So ¢ has trace
0 on V/W. On the other hand, ¢ acts as a scalar on the irreducible L-submodule W (Schur’s Lemma); this
scalar cannot be 0, because that would force Try (¢) = 0, contrary to lemma 2.3.13. It follows that Ker ¢ is a
one dimensional L-submodule of V which intersects W trivially. This is the desired complement to W.

fgeneral case: Let W be a nonzero submodule of V: 0 - W — V — V/W — 0. Let Hom(V, W) be the space
of linear maps V' — W, viewed as L-module (6.1). Let ¥ be the subspace of Hom (V, W) consisting of those
maps whose restriction to I is a scalar multiplication. 7" is actually an L-submodule: Say f|,;, = a. 1w ; then
forre Lwe W, (z.f)(w) =z f(w) — f(z.w) = a(z.w) — a(z.w) =0,s0z. f|, = 0.Let # be the subspace
of ¥ consisting of those f whose restriction to W is zero. The preceding calculation shows that % is also
an L-submodule and that L maps ¥ into #'. Moreover, ¥ | # has dimension one, because each f € ¥ is
determined (modulo %) by the scalar f|,,. This places us precisely in the situation0 — # — ¥ — F — 0
already treated above.

According to the first part of the proof, ¥ has a one dimensional submodule complementary to #'. Let
f:V — W span it, so after multiplying by a nonzero scalar we may assume that f|,,, = 1y. To say that L
kills f is just to say that 0 = (x_f)(v) = z_f(v) — f(xzv), i.e., that f is an L-homomorphism. Therefore Ker f
is an L-submodule of V. Since f maps V into W and acts as 1y, on W, we conclude that V = W @ Ker f, as
desired. |

2.3.4 Preservation of Jordan Decomposition

We promised to show the following result to resolve the ambiguity of usual and abstract Jordan decomposi-
tions of semisimple linear Lie algebra.

Theorem 2.3.18. Let L < gl(V') be a semisimple linear Lie algebra (V finite dimensional). Then L contains
the semisimple and nilpotent parts in gl(V') of all its elements. In particular, the abstract and usual Jordan
decompositions in L coincide.

Proof. The last assertion follows from the first, because each type of Jordan decomposition is unique.

Let z € L have ordinary Jordan decomposition = = x5 + z,, in gl(V'). Then
adz =adzs + adz,

is the Jordan decomposition of ad = inside End (gl(V')). The statement is just to show z,,, x5 € L.

Since (ad z)(L) < L, it follows from Cor.2.1.9 that (ad x,)(L) < L and (ad z,,)(L) < L, where ad = adgv.
In other words, z,,z, € normalizer Ny (L) = N, which is a Lie subalgebra of gl(V') including L as an
ideal. If we could show that N = L we’d be done, but unfortunately this is false: e.g., since L < sl(V)
(Lemma 2.3.16), the scalars lie in NV but not in L. Therefore we need to get x, x,, into a smaller subalgebra
than N, which can be shown to equal L. If W is any L-submodule of V, define

Lw ={yegl(V) |y(W) =W and tr(yly) = 0}.
For example, Ly = s[(V). Then L < Ly because W is an L-submodule and for z € L,

LB (2l

= tr(z\W y‘w - y|W Z‘w) = 0.

tr (z|y,)
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Set I’ =intersection of NV with all spaces Lyy:

'=Nn|l () Lu
L—submod
wev
Clearly, L’ is a subalgebra of N including L as an ideal (but notice that L’ excludes the scalars). Even more
is true: If x € L, then z,, x,, also lie in Ly, and therefore in L.

It remains to prove that L = L’. L’ being a finite dimensional L-module and L is an ideal of L', Weyl’s
Theorem permits us to write L' = L @ M for some L-submodule M. But [L, L] L (since L' = N ), so the
action of L on M is trivial. Let W be any irreducible L-submodule of V. If y € M, then [L, y]| = 0, so Schur’s
Lemma implies that y acts on IV as a scalar. On the other hand, tr (y|,;,) = 0 because y € Ly. Therefore y
acts on W as zero. V' can be written as a direct sum of irreducible L-submodules (by Weyl’s Theorem), so in
fact y = 0. This means M = 0,L = L. |

Corollary 2.3.19. Let L be a semisimple Lie algebra, ¢ : L — gl(V') a (finite dimensional) representation of
L. If © = s + n is the abstract Jordan decomposition of x € L, then ¢(x) = ¢(s) + ¢(n) is the usual Jordan
decomposition of ¢(x).

Proof. By Cor.2.2.8, ¢(L) is semisimple. Thus, it makes sense to talk about the abstract Jordan decomposition
of ¢(x). Then our strategy is to show ¢(x) = ¢(s) + ¢(n) is the abstract Jordan decomposition of ¢(x). Then
Theorem 2.3.18 concludes.

We show ad(1,) ¢(s) is semisimple and ad ) ¢(n) is nilpotent.

ad s is semisimple, so it is diagonalizable and its eigenvectors ey, - - - , e, are linearly independent and form
a basis for L. Then ¢(ey), -+, ¢(e,) are eigenvectors for ad, () ¢(s) and are linearly independent, spanning
the algebra ¢(L):

(adg(r) B(s)) (d(ei)) = [0(s), dlei)] = o([s,e:]) = Nid(e;)
Thus, adg(1) ¢#(s) is diagonalizable, i.e., semisimple.

ad n is nilpotent, so (adn)™ = 0 for some m > 0. Then, forall y € L,

(adg(r) ¢(n))"o(y) = [¢(n), [6(n),. .., [6(n), 6(y)]. . ]]
[,

o(ln [n,. s [n,y] - 10
¢((adn) y) =0

As ¢ : L — ¢(L) is surjective, i.e., every element in ¢(L) is of the form ¢(y), this shows that (ady ) ¢(n))™ €
gl(#(L)) is 0. Thus, adyry ¢(n) is nilpotent.

Moreover, adg(r) ¢(s) and adgy ¢(n) commute:
[adg(r) #(s), adyry @(n)] = adgr)[¢(s), #(n)] = adgr) 0([s,n]) = 0

By uniqueness of abstract Jordan decomposition 2.2.11, we see ¢(s) + ¢(n) is the abstract Jordan decompo-
sition of ¢(x). [ |

2.4 Representation of s((2, F')

In this section, L denotes s[(2, F') with standard basis (z, h, y).

o1, o o], [t o0
=00 ol’Y" |1 o’" T |o —1|
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Let V be an arbitrary L-module. We have the corresponding representation

¢: L—gl(V)

xH(¢I:V—>V >
vV T

By Cor.2.3.19, h semisimple = ¢, is semisimple, i.e., the endomorphism ¢, : v — x.v acts diagonally on V.
We can then write V' as a direct sum of eigenspaces V), := {v € V|x v = Av} of ¢. The expression V) still
makes sense if A is not an eigenvalue of ¢, (then V, = 0). When V), # 0 for a A € F', we call A\ a weight of
in V and we call V), a weight space. We have

V=0 V.

AEF

Note that the linear Lie algebras L < gl(V') are naturally L-modules with obvious actions on V. In that case,
a weight space is the same as an eigenspace.

Example 2.4.1. L denotes sl(2, F') with standard basis (z, h,y). We compute the weight spaces for h. Let
v € V), then
h(zxwv)=[hzlv+axhv=2zv+Azv=AN+2)zv

and
h(yv)=[hylv+yhv=—=2yv+Iyv=_(AN—2)yv
Thus, zve Vy,o and yv e V) _o. &

Remark 2.4.2. Since there are finite number of weight spaces, we see I\ s.t. V # 0 and V.o = 0. Then,
pickveVyandwehavez veVy,o =0 = zv=0.

For such ), any nonzero vector in V), will be called a maximal vector of weight \. o

2.4.1 Module V,

We construct a family of irreducible representations of s[(2, F'). Consider the vector space F[X,Y] of poly-
nomials in two variables X,Y with complex coefficients. For each integer d > 0, let V; be the subspace
of homogeneous polynomials in X and Y of degree d. So 1} is the 1-dimensional vector space of constant
polynomials, and for d > 1, the space V, has as a basis the monomials X%, X?1Y,..., XY "1 Y9 This
basis shows that V; has dimension d + 1 as a F-vector space.

We now make V; into an s((2, F)-module by specifying a Lie algebra homomorphism ¢ : sl(2, F') — gl (Vy).
Since sl(2, F') is linearly spanned by the matrices z, y, h, the map ¢ will be determined once we have specified
p(x), ¢(y), p(h).
We let
=X—
p(x) PG

that is, p(z) is the linear map which first differentiates a polynomial with respect to Y and then multiplies it
with X. This preserves the degrees of polynomials and so maps V; into V;;. Similarly, we let

o(y) Y&7
Finally, we let
(h) R Xi Yi
PA= Ao T oy

Notice that
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so h acts diagonally on V; with respect to our chosen basis. For any v = >} ., _;capX 2y e V,, we see that
@(h)(v) = Y4 p_qCaa(a — b)XY?. To let v be an eigenvector, we need a — b = o’ — ¥ for all pairs. But
a+b=d+b =dforces a = a’,b = b'. Thus, any candidate v € V; for an eigenvector of ¢(h) must be a
multiple of a basis of V;. The eigenspaces of ¢(h) are all one-dimensional.

Note also
(I’) (Xayb) _ bXa+1Yb71
(y) (XaYb) X~ lberl
Proposition 2.4.3. With these definitions, ¢ is a representation of sl(2, F).
Proof. See [4] Theorem 8.1. [ |

It can be useful to know the matrices of (z), ¢(y), ¢(h) on V; wrt. the basis X%, X4=1Y,... Y% of V. They
are

01 0 0 0 0 0 0 d 0 0 0

0 0 2 0 d 0 0 0 0 d-—2 ... 0 0

e 0 d-1 0 0 , : : .. : :

000 ...d Do T 0 0 ... —d+2 0

00 0 ... 0 0 0 ... 10 0 0 0 —d
where the diagonal entries of the last are the numbers d — 2k, where x = 0,1, ...,d.

Another way to represent the action of z,y, h on Vj is to draw a diagram like
—d+2

O/\O/\ /\O/\O/‘\()f\
\/ ~~— \_/ —— \_/ \/

& Xyd-1 X2y X4y X4

where loops represent the action of h, arrows to the right represent the action of z, and arrows to the left
represent the action of y.

The diagram above show that sl(2, F')-submodule of V;; generated by any particular basis element X*Y?
contains all the basis elements and so is all of V. In general, if S is any non-zero sl(2, F')-submodule of V.
Then h s € S for all s € U. We saw h acts diagonalizably on Vj, it also acts diagonalizably on S, so there is
an eigenvector of h which lies in S. We have seen that all eigenspaces of 4 on V; are one-dimensional, and
each eigenspace is spanned by some monomial X*Y?, so the submodule S must contain some monomial,
and by the observation on diagram remarked just now, S contains a basis for V,;. Hence S = V,;. We thus
showed the following.

Proposition 2.4.4. V; is an irreducible sl(2, F')-module.
Exercise 2.4.5. ( [4] ex.8.2) Find explicit isomorphisms between
(D the trivial representation of s((2, C) and Vq;
(i) the natural representation of s{(2,C) and Vi;
(iii) the adjoint representation of s[(2,C) and V5.
Exercise 2.4.6. ( [4] ex.8.3) Show that the subalgebra of sl(3, C) consisting of matrices of the form

O o+ *
O o+ *
o oo
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is isomorphic to sl(2,C). We may therefore regard sl(3,C) as a module for sl(2,C), with the action given by
x -y = [x,y] for x € s5l(2,C) and y € s((3,C). Show that as an sl(2, C)-module

5[(3,@) ~2VopViaVie V.

2.4.2 Classification of Irreducible s((2, F')-Modules
Let L = sl(2, F'). We recall some representations of L.

* We have seen in Lemma 2.3.16 that a 1-dim representation of semisimple Lie algebra is trivial. Thus,
a representation ¢ : L — gl(V') with dim V' = 1 has image Im(¢) = 0.

* We have also seen in example 2.3.15 the 2-dim representation of L by the inclusion map ¢ : L — L <
gl(F?) = gl(2, F).

* Since dim L = dimsl(2, F) = 3, we see ad : L — gl(L) is a 3-dim representation of L.
* For general dimension, we have seen V; is an irreducible representation of L with dimension d + 1.

In fact, it can be shown that every irreducible s[(2, F)-module is isomorphic to V; with some d (see [4]
Theorem 8.5).

Let V be any irreducible L-module. We choose a maximal vector vy € V), (recall that the ) is such that V # 0
and Vi = 0). We set v_1 = 0, v; = (%) y’vo for i > 0. Then one can compute that

Lemma 2.4.7.
(@) hv;,=(\—2i)y;
b)) yv; = (i + vy,
(c) zvi=(A—1i+1)v;_q fori=0.

Proof. See [1] Lemma 7.2. [ |

(a) shows that all nonzero v; are linearly independent. But dimV < o0. Let m be the smallest integer for
which v, # 0,v,,41 = 0; evidently v,,,; = 0 for all ¢ > 0. Taken together, formulas (a)-(c) show that
the subspace of V' with basis (v, vy, ..., v, ) is an L-submodule, different from 0. Because V is irreducible,
this subspace must be all of V. Moreover, relative to the ordered basis (vg, v1,...,v,), the matrices of the
endomorphisms ¢, ¢, ¢1, representing x, y, h can be written down explicitly; notice that h yields a diagonal
matrix, while z and y yield (respectively) upper and lower triangular nilpotent matrices (see what we did
for V; for example.)

A closer look at formula (c) reveals a striking fact: for i = m + 1, the left side is 0, whereas the right side
is (A — m)v,,. Since v,, # 0, we conclude that A = m. In other words, the weight of a maximal vector is
a nonnegative integer (one less than dim V). We call it the highest weight of V. Moreover, each weight 1
occurs with multiplicity one (i.e., dimV,, = 1if V}, # 0), by formula (a); in particular, since V' determines \
uniquely (A = dim V' — 1), the maximal vector vy is the only possible one in V' (apart from nonzero scalar
multiples). To summarize :

Theorem 2.4.8. Let V be an irreducible module for L = s((2, F).

(a) Relative to h,V is the direct sum of weight spaces V,,jt = m,m —2, ..., —(m — 2), —m, where m + 1 =
dimV and dimV,, = 1 for each p.

(b) V has (up to nongero scalar multiples) a unique maximal vector, whose weight (called the highest weight
of V) is m.
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(c) The action of L on V is given explicitly by the above formulas, if the basis is chosen in the prescribed
fashion. In particular, there exists at most one irreducible L-module (up to isomorphism) of each possible
dimension m + 1, m > 0

Corollary 2.4.9. Let V be any (finite dimensional) L-module, L = s((2, F). Then the eigenvalues of h on V are
all integers, and each occurs along with its negative (an equal number of times). Moreover, in any decomposition
of V into direct sum of irreducible submodules, the number of summands is precisely dim V + dim V;

Proof. If V' = 0, there is nothing to prove. Otherwise use Weyl’s Theorem to write V' as direct sum of
irreducible submodules. The latter are described by the theorem, so the first assertion of the corollary is
obvious. For the second, just observe that each irreducible L-module has a unique occurrence of either the
weight O or else the weight 1 (but not both). |

2.5 Root Space Decomposition

L: f.d s.s Lie alg over F with F' = F and char(F) = 0. We will study the structure of such L in this section.
Further abusing the notation for s, n as in the abstract Jordan decomposition, in a semisimple Lie algebra L,
we will say an ad-nilpotent element nilpotent and an ad-s.s. element semisimple.

2.5.1 Maximal Toral Subalgebras and Roots

Definition 2.5.1. A Lie subalgebra H < L is toral if all its elements are semisimple.

Lemma 2.5.2. Toral subalgebras exist. There exists some element x € L such that x is semisimple. Then F{x}
toral.

Lemma 2.5.3. A toral subalgebra of L is abelian.

Proof. Let H < L be a toral subalg. Let z € H, we must show [z,y] = 0, Vy € H; i.e.,, adgy 2 = 0. Since
ady x is semistmple, it suffices to show all its e.values (eigenvalues) are all 0: Let y € H be an e.vector
(eigenvector) of ady x, so [z,y] = (ady z) (y) = ay for some a € F. We have [y, z] = —ay = (adpy y) (z) =
—ay = (adgy)” (x) = 0. Since adyy is semsimple, so there exists a basis {z1,...,z,} consisting of e-vec
ofadyy. Let x =}, c;x; with ¢; € F.

(adp y) (x) = D cidiws, Ay # 0
= 0= (adiy)* (x) = Y eiXlz;

=i\ =0, Vi

= =0, Visth #0
Thus, —ay = (adg y) () = >, cihiz; = 0= a = 0. [ ]

Let H be a maximum toral subalgebra, i.e., a toral subalgebra not properly contained in any other. Then,
the matrices {ady h : h € H} are simutinuasly diagonalizable. Thus, L decomposes:

L= @ La,where L, = {z € L|[h,z] = a(h)z,Yh e H}.

aeH*
where H* is the dual space of H. Notes:
(1) Lo =CL(H).
(2) H < Lj by the lemma.
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(3) If 0 # ae H* s.t. L, # 0, then « is a root of L relative to H. Let ® € H* be the set of roots.

Definition 2.5.4. The root space decomposition of L is

L=C(H)® @D La
acd
Proposition 2.5.5. Forall o, 3 € H*,
(D [La, Lg] & Layp.
2) Ifx e L,,a # 0, then ad x is nilpotent.
(3) Ifa,Be H*, and o + B # 0, then L, is orthogonal to Lg, relative to the Killing form x of L.

Proof. (1) follows from the Jacobi identity: = € L,,y € Lg, h € H imply that ad h([z,y]) = [[h, z],y] +
[z, [h, y]] = ah)[z,y] + B(h)[2,y] = (o + B)(h)[z,y].
(2): 3k >0s.t. Loyg =0, VB e ® and

B=0= (adz)f =0

(3): Find h € H for which (a + 8)(h) # 0. Then if x € L,y € Lg, associativity of the form allows us to write

H([h,l‘],y) = —Ii([.]?, h]vy) = —R(JU, [hvy])’ or O&(h)ﬁ:(l‘,y) = —ﬂ(h)m(x,y), or (a + ﬁ)(h)'%(x’y) = 0. This
forces k(x,y) = 0. ]

Corollary 2.5.6. The restriction of the Killing form to Ly = C,(H) is nondegenerate.

Proof. We know from Theorem 2.2.5 that x is nondegenerate. Let z € Lo and suppose x(z,Lg) = 0.
Proposition (3) = k(z,Ly) =0, Ya € ®,s0 k(z,L) =0= 2z =0. ]

Definition 2.5.7. A Cartan subalgebra (CSA) of a Lie algebra L is a nilpotent subalgebra H of L that equals
to the normalizer of it in L, i.e., N, (H) = H.

Remark 2.5.8. If L is semisimple, then maximal toral subalgebra H is a CSA of L. (HW). Furthermore, CSA
= maximal toral. '

2.5.2 Centralizer of H

We shall need a fact from linear algebra, whose proof is trivial:

Lemma 2.5.9. If x,n are commuting endomorphisms of a finite dimensional vector space, with n nilpotent,
then xn is nilpotent; in particular, tr(zn) = 0.

Remark 2.5.10. If H is a toral subalgebra with H = C,(H), then H is maximal: suppose H = C(H) < H'
with H' another toral subalgebra, then Lemma 2.5.3 implies that H’ is abelian, so every element in H’
commutes with every element in H ¢ H'. In particular, H' < C(H). Thus, H has to be maximal. '

Proposition 2.5.11. Let H be a maximal toral subalgebra of L. Then H = C,(H).

Proof. Let C' = C(H).
(1) We show that given abstract decomposition of x € C' by x = s + n, we have s,n € C:

Then the Jordan decomposition of adz isad s + adn. r € C = [z, H] = 0= (adz)(H) = 0= (adn)(H) =
0, (ads)(H) =0=n,seC

(2) If z € C semisimple, then z € H.
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x s.s. = H + F{a} is abelian and thus toral as sum of commuting semisimple elements is again semisimple
by remark 2.1.6. By maximality of H, we see x € H.

(3) The restriction of x to H is nondegenerate.

That is, if k(h, H) = 0 for some h € H then we must show that h = 0. If 2 € C is nilpotent, then the fact that
[z, H] = 0 and the fact that ad « is nilpotent together imply (by the above lemma) that tr(ad z ad y) = 0 for
ally e H, or

(#): k(z,H)=0

We then claim that x(h,H) = 0 = £(h,C) = 0. Indeed, for z = s + n € C, we have x(h,s + n) =
t(h,s) + k(h,n). The second part is zero because (2) = n € C and (x); the first part being zero because of
(1) and the given condition x(h, H) = 0.

Now, Corollary 2.5.6 implies h = 0.
(4) C is nilpotent.

If z € C is semisimple, then « € H by (2), and adcx(= 0) is certainly nilpotent, so semisimple elements are
nilpotent in C. On the other hand, if x € C' is nilpotent, then ad¢ «x is nilpotent. Now let = € C be arbitrary,
T = x4 + z,. Since both z,, x,, lie in C by (1), ad¢ x is the sum of commuting nilpotents and is therefore
itself nilpotent by remark 2.1.6. By Engel’s Theorem, C' is nilpotent.

(5) Hn[C,C]=0.
Since & is associative and [H, C| = 0, k(H, [C,C]) = 0. Now use (3).
(6) C is abelian.

Otherwise [C, C] # 0. C being nilpotent, by (4), Z(C)n [C,C] # 0 (Lemma 1.3.22). Let z # 0 lie in this
intersection. By (2) and (5), z cannot be semisimple. Its nilpotent part n is therefore nonzero and lies in C,
by (1), hence also lies in Z(C') by Corollary 2.1.9. But then our lemma implies that x(n, C') = 0, contrary to
Corollary 2.5.6.

(7)C=H.

Otherwise C contains a nonzero nilpotent element, z, by (1), (2). According to the lemma and (6), x(z,y) =
tr(adz ad y) = 0 for all y € C, contradicting Corollary 2.5.6.

Corollary 2.5.12. The restriction of k to H is nondegenerate.
The corollary allows us to identify H with H* canonically:

H - H*
hw— k(h, -)

This is an isomorphism by Riesz representation theorem (see [2] Theorem 11.5), so for each ¢ € H* corre-
sponds the (unique) element ¢4 € H satisfying ¢(h) = & (¢4, h) for all h € H. In particular, & corresponds to
the subset {t,;a € ®} of H.

2.5.3 Orthogonality Properties

In this subsection we shall obtain more precise information about the root space decomposition, using the
Killing form. We already saw in Proposition 2.5.5 that x (L., Lg) = 0 if o, 8 € H*, oo + § # 0; in particular,
k(H,L,) = 0 for all a € ¥, so that (Proposition 2.5.11) the restriction of x to H is nondegenerate.

Proposition 2.5.13.
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(a) ® spans H*.

) If a € ®, then —a € .

(0 Let v e ®,x € Lo,y € L_y. Then [x,y] = k(z,y)t,.

(d) If « € O, then [L,, L_.] is one dimensional, with basis t,.
(&) a(te) =k (ta ta) # 0, for a € ®.

@ If a € ® and z,, is any nonzero element of L, then there exists y,, € L_, such that x4, Yo, ha = [T, Yo
span a three dimensional simple subalgebra of L isomorphic to sI(2, F) via xa — (33) 90— (98), ha —

(6%)-

2t
(g) ha =

K (tasta) ha = =h-a-

Proof. (a) If ® fails to span H*, then there exists nonzero h € H such that «(h) = 0 for all « € ® (this is
by duality: let V = {t,;a € ®} be the corresponding subspace of H, then we can write H = V @ V* wrt.
the symmetric bilinear form «. Then that 4 is in V. [4] Lemma 10.11 explains this more clearly.) But this
means that [, L,] = 0 for all « € ®. Besides, H abelian, so [k, L] is also 0. Thus, [h, L] = 0,orh e Z(L) =0
(by for example prop.1.3.8), which is absurd.

(b) Let o € ®. If —a ¢ ® (ie., L_, = 0), then for all 3 € H*, including —«, we have (L., Lg) = 0 by
Proposition 2.5.5. Therefore « (L., L) = 0, contradicting the nondegeneracy of «.

(c)Letawe @,z € L,,ye L_,. Let h e H be arbitrary. The associativity of « implies:

w(h, [z, y]) = K([h, 2], y) = a(h)r(z,y) = K (ta, h) K2, y) = K (5(2,Y)ta, h) = & (b, 6(2,Y)ta) . (2.1)
This says that H is orthogonal to [z, y] — k(z, y)ta, forcing [z, y] = &(z, y)ts.

(d) Part (c) shows that ¢,, spans [L,, L_,], provided [Ly, L_o] # 0. Let 0 # x € L. If s (z,L_,) = 0, then
k(x, L) = 0 (cf. proof of (b)), which is absurd since « is nondegenerate. Therefore we can find 0 # y € L_,,
for which x(z,y) # 0. By (), [z,y] # 0.

(e) Suppose a (ty) = 0, so that [ty,z] =0 = [ta,y] forallz € L,,y € L_,. As in (d), we can find such z,y
satisfying x(z,y) # 0. Modifying one or the other by a scalar, we may as well assume that «(x,y) = 1. Then
[z,y] = ta, by (c). It follows that the subspace S of L spanned by x,y,t, is a three dimensional solvable
algebra (for reasons similar to u3 in example 1.3.2), S ~ ad; S < gl(L). In particular, ady, s is nilpotent for
all s € [S,S] (Corollary 2.1.4), so adt, is both semisimple and nilpotent, i.e., ad ¢, = 0. This says that
to € Z(L) = 0 (by for example prop.1.3.8), contrary to choice of .

(f) Given 0 # z, € Ly, find y, € L_, such that s (74, ) = ﬁ This is possible in view of (e) and
the fact that k (z, L_o) # 0. Set hy = 2to/k (ta,ta). Then [24,Ya] = ha, by (c). Moreover, [hq,Zo] =
% [ta, Ta] = 25‘&‘)) To = 24, and similarly, [ha, Ya] = —2Ya- SO Za, Yo, he Span a three dimensional

subalgebra of L with the same multiplication table as sl(2, F').

(8) hq is defined in (f). Recall that ¢, is defined by « (tn, h) = a(h)(h € H). This shows that t, = —t_, and
thus hy, = —h_q,.

Definition 2.5.14. For pair of roots a,, —a, we denote the three dimensional simple subalgebra of L spanned by
Tas Yas ha = [onm ya] = Ii(t%jflta) asin (f) b_y

Sa = F{xouyaaha}-
Remark 2.5.15. Several small facts will be used.
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(1) By above proposition and facts 2.5.5, we see h,, spans [La, L] S Loy (—a) = Lo = H.

(2) Note that « (hy) = 2: just observe [hq, ] = 22, from the multiplication table of S, = sl(2, F). Then
ha € H, o € Ly give [ha, 2] = a(ho)Za-

)

2.5.4 Integerality Properties

We are now in a position to apply the representation theory of sl(2, F'). Let « € ®. We may regard L as an

Sa-module via restriction of the adjoint representation. That is, for a € S, and y € L we define the action as
a-y=(ada)y = [a,y]

Note that the S,-submodules of L are precisely the vector subspaces M of L such that [s,m] € M for all
s € Sq and m € M. Of course, it is enough to check this when s is one of the standard basis elements
T, Yo, he. We shall also need the following lemma.

Lemma 2.5.16. If M is an S,-submodule of L, then the eigenvalues of h,, acting on M are integers.

Proof. By Weyl’s Theorem, M as a module by semisimple Lie algebra S, may be decomposed into a direct
sum of irreducible S,-modules; for irreducible sl(2, F')-modules, the result follows from corollary 2.4.9. W

Example 2.5.17.
(1) (cf. Exercise 2.4.6.) It is an exercise to show that the set H = {<§ % 5)} consisting of all diagonal
47 HW3). Then we write

93]

matrices in sl(n, F) is the maximal toral subalgebra of sl(n, F') (see Math

L=sl3=H®® L,

aed

Note that
[Eiis Er] = 0icEri — 6 E

= (0ix — 6i1) B
= (ex —a1) (Bii) Ex
where ¢; : H — F s.t. ¢; (diag (h1, ho, h3)) = h;. Then

Lep—o, = {zesly | [ha] = (er — &) (W, Vhe Hy = F{Ey}.

b= (D))o @ b

(k,1), k£l

and
£
O = {e1 —e9,61 —€3,60 —€3,63 —€2,63 —€1,62 —€1} S H

(2) LetU = H+ S,. Let K = kera € H. By the rank-nullity formula, dim K = dim H — 1. (We know
that dimIma = 1 as a (h,) = 2 # 0 due to fact 2.5.15 (2).) Note that S, acts trivially on K = ker(«): for
k € ker(«), we have

To€Lq keK

0

ad(zq)(k) = [za, k] = —[k, xa]

ad(ya) (k) = [Ya, k] = —[k, ya] a(k)s 0
ad(he)(k) =0bc. hy € H, ke K < H, and H is abelian.

—a(k)s
keK

Ya€EL_o

Thus every element of S, acts trivially on K. It follows that U = K @ S,, is a decomposition of U into S,-
modules. By Exercise 2.4.5(iii), the adjoint representation of .S, is isomorphic to V5, so U is isomorphic to the
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direct sum of dim H — 1 copies of the trivial representation, V,, and one copy of the adjoint representation,
Va.

@) Ifsedorpf=0,let

M = C—D Lﬂ+ca
where the sum is over all ¢ € F such that 8 + ca € ®. It follows from proposition 2.5.5 (1) that M is an
Sq-submodule of L. This module is said to be the a-root string through g. &

Recall every irreducible S,-module is
Vd)=F{y'teF{y" 'z}® - @ F {2}
and Theorem 2.4.8 writes that as
Vi(d) =V(d)-g®V(d)-a+2® - V(d)a

where each V' (d); is an h-eigenspace, and dim V' (d); = 1

Note:
V(d)o #0 < dis even;
V(d); # 0 < disodd.

Let L be a semisimple Lie algebra and L = H ® P
o € ®©, we realized L as an S,-module.

wca Lo be the root space decomposition of L. For a root

Proposition 2.5.18.
Soc = F{h(x} ® La @L—a

L, and L_,, are 1-dimensional and the only multiples of a root o which are roots are +a.

Proof. Consider the following subspace of L,

M=H® @ Le:

caed, ce F'*

It is an S,-submodule by Proposition 2.5.5 (i).

(i) The weights of M: eigenvalues of ad (h,,). They are 0 and 2¢ = ca (hq,)-

For the latter, we first recall h, € H from fact 2.5.15 (1). Then for x € L.y, ca € ®, ¢ € F*, we have
ad(ho)x = [ha,x] = calhy)r => ca(hy) is an eigenvalue for the action of h, on M. To see ca (hy) = 2¢,
use fact 2.5.15 (2).

(ii) These weights are all integers by lemma 2.5.16. Thus, all ¢ occurring here must be integral multiples of
1/2.

(iii) We have shown this in Example 2.5.17 (2) that S, acts trivially on K = ker(a) and that dim K =
dim H — 1. From fact 2.5.15 (1) we have F{h,} = Ly < H, which is one-dimensional. F'{h,} n K = 0 bc.
a(he) =2 # 0. Thus,

Mo = {x € Mlha -z =0} ~L H = K@ F{ha}.
Also, relative to h,, K = ker(«) is the direct sum of dim H — 1 copies of K, by Theorem 2.4.8 (a).
v) S, is itself an irreducible S, -submodule of M.

Taken together, K and S,, exhaust the occurrences of the weight 0 for h, and by Weyl’s theorem we write

M:K®S@®W
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where W is a complementary S,-submodule. Since H = K @ F{h,} € K ® F{ha} ® F{zo} ® F{ya} =
K @ Sa, we see W only takes elements in (D, ,cq ccpx Lea- W as an S,-submodule can be decomposed
into irreducible submodules, which can be further written as weight spaces of h, wrt. those irreducible
submodules. However, these weights 2¢ € Z cannot be even, because by Theorem 2.4.8 (a) there will be
weight spaces corresponding to zero weight, forcing some c to be zero, which is absurd as ¢ € F*.
— the only even weights occurring in M are 0, +2; in particular, 2¢ # 4 = ¢ # 2, s0 2a ¢ P.
= ca = ja ¢ O (otherwise 23 € @ for 8 = 1a), so 2c = 24 = 1 is not a weight of h, in M.
= W is zero and

M=K®Sy=K®F{ha}®La®L_.a.

L, and L_, are 1-dimensional and the only multiples of a root « which are roots are +a. |

Proposition 2.5.19. Suppose that o, 8 € ® and  # ta.
(D) B (ha) € Z. This is called Cartan integer-.

(ii) There are integers r,q = 0 such that if k € Z, then 8 + ka € ® if and only if —r < k < ¢q. Moreover,
r—q=0(ha)-

(iii) If a + € @, then [z, 3] is a non-zero scalar multiple of x4 .

(iv) B—8(hy)aed.
Proof. Let M := @, Lg+ka be the root string of a through 3. To prove (i), we note that 5 (h,) is the
eigenvalue of h, acting on Lg, and so it lies in Z.

We know from the previous proposition that dim Lg ko = 1 whenever 8 + ka is a root, so the eigenspaces of
ad h, on M are all 1-dimensional and, since (8 + ka)h, = 5 (ha) + 2k, the eigenvalues of ad h,, on M are
either all even or all odd. It now follows from corollary 2.4.9 that M is an irreducible S,-module. Suppose
that M =~ V. On V;, the element h,, acts diagonally with eigenvalues

{d,d—2,...,—d}
whereas on M, h,, acts diagonally with eigenvalues
{B (ha) + 2k : B+ ka € D}.

Equating these sets shows that if we define r and ¢ by d = 5 (ha) + 2¢ and —d = S (h,) — 2r, then (ii) will
hold.

Suppose v € Lg, so v belongs to the h,-eigenspace where h,, acts as 5 (h,). If (adz,)zg = 0, then zg is a
highest-weight vector in the irreducible representation M =~ V;, with highest weight 3 (h,). f a + S is a
root, then h, acts on the associated root space as (a + )hq = 8 (hq) + 2. Therefore x4 is not in the highest
weight space of the irreducible representation M, and so (ad x,) g # 0. This proves (iii).

Finally, (iv) follows from part (ii) as
B—PB(ha)a=08—(r—qa

and —r < —r +¢<gq. [ ]

2.5.5 Rationality Properties
Proposition 2.5.20. Let o, 5 € ®

he
) to = ————; 2t toa,ta);
D) ta Ks(xa,ya)’ a“( o (x);
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(i0) K (ho,hp) € Z;
4
K (ha, he)

(V) k(ta,tg) € Q.

(iii) K (to,te) = e

Proof. (i) is from proposition 2.5.13 (c) and (g).

(ii): Since h,,hge H,foranyz e L, c H® G_)’ve‘i’

ad(ha) ad(hp)z = [ha, [hg, z]] = y(ha)y(hs).

Thus,
K (ha hig) = tr (ad (ha) ad (hg)) = Y. 7 (ha) 7y (hs) € Z by Prop.2.5.19 (i)
yed

(iii) follows immediately from (i) and (ii).

(iv) From (i) we have t, = $hak(ta,ta), SO

Bltasts) = r <;ha/f(ta,ta), ;hﬁm(tﬁ,tﬁ)>
which is clearly € Q using (ii) and (iii). [ |

We can translate the Killing form on H to obtain a non-degenerate symmetric bilinear form on H*, denoted
(=, —). This form may be defined by

(67 90) =K (t(%tap) 5

where ¢y and ¢, are the elements of H corresponding to ¢ and ¢ under the isomorphism H = H* induced
by «. In particular, if « and 3 are roots, then

(avﬂ) = K’(tomtﬁ) € Q

Exercise 2.5.21. Show that

Solution.

B he) = 1 (t5.h0) = 5 (15, ey ) = 70

Lot a, )
¢

We know from Proposition 2.5.13 (a) that the roots of L span H*, so H* has a vector space basis consisting
of roots, say {a;, as, ..., as}. We can now prove that something stronger is true as follows.

Lemma 2.5.22. If 8 is a root, then 3 is a linear combination of the «; with coefficients in Q.

Proof. Certainly we may write § = Zle c;o; with coefficients ¢; € F. For each j with 1 < j < ¢, we have

L
6;043 = Z 0117043
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We can write these equations in matrix form as

(8, 1) (a1,00) ... (g, 1) c1

(ﬂvlal) (al;al) (Oée,.Oée) Cy

The matrix is the matrix of the non-degenerate bilinear form (—, —) with respect to the chosen basis of roots,
and so it is invertible (see [2] Theorem 11.3). Moreover, we have seen that its entries are rational numbers,
so it has an inverse with entries in Q. Since also (5, ;) € Q, the coefficients ¢; are rational. |

By this lemma, the R-subspace of H* spanned by the roots ay, .. ., oy contains all the roots of ® and so does
not depend on our particular choice of basis. Let E denote this subspace.
Proposition 2.5.23. The form (—, —) is a real-valued inner product on E, so E is a Euclidean space.

Proof. Since (—, —) is a symmetric bilinear form, we only need to check that the restriction of (—, —) to
is positive definite. Let § € E correspond to tyg € H. Using the root space decomposition and the fact that

(ad te) eg = 8 (tg) eg, we get

(0.0) = K (ta,te) = Y B(te)? = D) K(ta.te)® = > (B,0)%

pBed Bed Bed

As (3,0) is real, the right-hand side is real and non-negative. Moreovey, if (6,6) = 0, then 3 (t9) = 0 for all
roots 3, so by (proof of) proposition 2.5.13 (a), § = 0. |

We summarize the results from proposition 2.5.13 (a), (b), proposition 2.5.18, and proposition 2.5.19 (i),
(iv) in view of exercise 2.5.21.
Theorem 2.5.24. L, H, ®, E as above. Then:

(a) ® spans E, and 0 does not belong to .

(b) If o € ® then —« € @, but no other scalar multiple of « is a root.

(©) Ifa,Be®, then 3 — ?ﬁ“ae@
o)

(@ Ifa,Bed, then € Z.

)

In the language of Chapter 111, the theorem asserts that ® is a root system in the real euclidean space E.
We have therefore set up a correspondence (L, H) — (®,E). Pairs ( ¢, E) will be completely classified in
Chapter III. Later (Chapters IV and V) it will be seen that the correspondence here is actually 1 — 1, and that
the apparent dependence of ® on the choice of H is not essential.

41



Math 547 Lie Algebra and Representation Theory Anthony Hong

42



Math 547 Lie Algebra and Representation Theory Anthony Hong

Chapter 3

Root Systems

In this chapter, we are concerned with a fixed Euclidean space E, i.e., a finite dimensional vector space over
R endowed with a positive definite symmetric bilinear form («, 3).

3.1 Definitions

Notation:

- Any 0 # « € FE defines a hyperplance
Ho:={BeE|(f,a) =0} = Riz}*

- 0, € End(F) is called a reflection across H, if o, fixes H, pointwise, and o, (a) = —a. One can verify the
explicit formula,
. 2B«)
O—a(/B)_B (Oé,a)a

2(8,2)

(o, )

- Since the number
first variable.

appears frequently, we denote it by {3, o). Notice that {3, «) is linearly only in the

Definition 3.1.1. A subset R of a real inner-product space E is a root system if it satisfies the following axioms.
(R1) R s finite, it spans E, and it does not contain 0.

(R2) If & € R, then the only scalar multiples of o in R are +a.

(R3) If a € R, then the reflection o, permutes the elements of R.

(R4) If o, B € R, then {B,a) € Z.

The elements of R are called roots.

Example 3.1.2. (1) The roots ® for semisimple Lie algebra L over algebraically closed char-0 F' form a root
system for the real span F = R® of .

(2) [4] Exercise 11.1: Consider R‘*!, with the Euclidean inner product. Let ¢; be the vector in R‘*! with
i-th entry 1 and all other entries zero. Define

Ri={t(ei—g):1<si<j<i+1}

and let F = Span R = {3 aye; : D, «; = 0}. Show that R is a root system in E. &
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Notations: Let R be a root system for inner-product space FE.
(1) dim(F) is the rank of R.

_ 2(B,a)
2) (B,a) = ) e’Z.
(3) We also let projection of 5 along « be denoted by proj,, 5 = Eﬁ’ Z; o= %<B, aa.

@D YveE, (v,v)=|v|>%

(5) Weyl group of R is the group of invertible linear transformations of E generated by the reflections o,
fora € R, i.e., W(R) := {0, | @ € R).

(6) The root system R is called decomposable if there is a proper decomposition R = R; u R» such that
Vag € Ry,Yas € Rs : (a1, ) = 0. Otherwise it is called indecomposable or irreducible.

Lemma 3.1.3 (Finiteness Lemma). Suppose that R is a root system in the real inner-product space E. Let
a, B € Rwith 8 # t«. Then

{a, BYB, ) € {0,1,2,3}.

Proof. Thanks to (R4), the product in question is an integer: We must establish the bounds. For any non-zero
v,w € E, the angle 0 between v and w is such that (v, w)? = (v, v)(w, w) cos? §. This gives

{a, B)(B,a) = 4cos® 0 < 4

Suppose we have cos? = 1. Then @ is an integer multiple of 7 and so « and 3 are linearly dependent,
contrary to our assumption. [ ]

We now use this lemma to show that there are only a few possibilities for the integers {«, 3). Take two roots
a, f in a root system R with o # +/. We may choose the labelling so that (3, 3) > («, «) and hence

(B.0)] _ 2(e,B)
(@a) = (5.5)

By the Finiteness Lemma, the possibilities are:

KB, | = 2 — KB,

181> _ (8,8) _ B
<O‘7ﬁ> <B,Oé> ¢ HaHQ (OZ,OL) O‘vﬂ
0 0 | w/2 | undetermined
1 1| #/3 11
-1 1231
1 2| /42
-1 2 | 3n/4 | 2
1 3| 7/63
-1 3 | 57/6 | 3

Table 3.1: Angles between « and 3
Given roots « and 3, we would like to know when their sum and difference lie in R. Our table gives some
information about this question.
Proposition 3.1.4. Let o, 8 # t«a € R. Assume (53, 8) = (o, a).
(@) (a,8) >0 < 0O(«, ) obtuse <= a+pL€R
b) (a,8) <0 < 0(,B8) acute <= a— € R.

2(a, )
(8,8)

Proof. (a,8) >0 < {(a,f) = > 0.
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The table shows that if 6 is acute, then {a, 8) = 1 > 0, and if 0 is obtuse, then {(«, 8) = -1 < 0.

By (R3), we know that o5(c) = o« — {ev, §)$ lies in R, which is either 1 (when 6 is obstuse) or —1 (when § is
acute). [ |

3.2 Examples

Call ¢ = dim F the rank of the root system R. When ¢ < 2, we can describe R by simply drawing a picture.

We shall immitate the pictures from here and here, the latter using Fulton-Harris style (see Fig.3.3 for
example).

3.2.1 Root Systems of Rank 1

If we choose any non-zero vector « € R, then R = {«, —«} is a root system. Since any other non-zero vector
is a multiple of o, property (R2) forbids us to add more vectors to our root system. Therefore in rank 1 there
is only one possible root system - it is called A;.

———
—Q [0

Figure 3.1: The root system A;.

3.2.2 Root Systems of Rank 2

In rank 2 there is more freedom, because we can use any angle 6 given in Table 3.1.

. T . . .
When the angle between the two roots is § = 5 the system is called A; x A;, because it is a direct sum of

two rank 1 root systems A;.

—pB
Figure 3.2: The root system A; x A;.

T 2T .. . .
When 6§ = —, —, we place « on the positive z-axis and 3 by the %’T rotation of a (note that they have same

length by the last column of the table). Then Proposition 3.1.4 says that there is also a root a + 8, which is
drawn by parallelogram rule. Now, all of their negatives live in R too, completing the remaining three roots
in the drawing. This root system is called A,.

m 3T . . . .
When 6 = YOV the root system consists of 8 vectors. They correspond to the vertices and to the midpoints

of the edges of a regular square. The ratio of lengths of these roots is 1/2. This root system is called B,.
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\V
LN

Figure 3.3: The root system As.

B+ 2a

>< .

-8 —2a

Figure 3.4: The root system Bs.

T 5T . .
When 6 = —| 5 the root system consists of 12 vectors. They correspond to the vertices of two regular

hexagons that have different sizes and are rotated away from each other by an angle n/6. The ratio of
lengths of these vectors is v/3. This is called Gs.

>< )

Figure 3.5: The root system Gs.

It is not hard to see, that there are no other root systems of rank 2, because in two dimensions the angle 6

46



Math 547 Lie Algebra and Representation Theory Anthony Hong

determines the root system completely, i.e., once the angle is chosen, the ratio of lengths of two consecutive
roots is determined (except for the case 6 = 7/2 ), hence the root system itself.
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