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Chapter 1

Lie Algebras: An Introduction

1.1 Definitions and Examples

Definition 1.1.1. Let F be a field. Lie Algebra is a vector space L over F together with a bilinear map
r¨, ¨s : Lˆ L Ñ L called bracket such that

1. rx, xs “ 0;

2. rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0 (Jacobi identity)

The dimension of the Lie algebra is the dimension of the vector space (we assume finite dimensionality).

Proposition 1.1.2. Lie bracket is skew-symmetric: rx, ys “ ´ry, xs.

Proof. 0 “ rx` y, x` ys “ rx, ys ` ry, xs due to bilinearity and rx, xs “ 0. ■

Example 1.1.3.

1. TeG, or L, where G is a Lie group.

2. Abelian Lie algebra: L any F -vector space and set rx, ys “ 0 for any x, y P L.

3. General linear algebra: let V be a vector space. Define L “ glpV q “ tx : V Ñ V | x a linear transformationu,
where rx, ys “ x ˝ y ´ y ˝ x “ xy ´ yx.

♣

Definition 1.1.4. A linear map φ : L Ñ L1 between Lie algebras is a homomorphism if

φprx, ysq “ rφpxq, φpyqs.

The homomorphism φ is an isomorphism if φ is a bijection.

A subspace K Ď L is a (Lie) subalgebra if rx, ys P K for any x, y P K.

Example 1.1.5. Let V be a F -vector space. For Bn, Cn, and Dn, let charpF q ‰ 2.

1. Any subalgebra of Lie algebra glpV q is called a linear Lie algebra.

2. Type An (Special linear Lie algebra): Suppose dimpV q “ n ` 1. Let sln`1pF q “ slpV q “ tx P

glpV q | trpxq “ 0u. Recall that the trace of an endomorphism is the trace of its matrix, which is
independent of choice of basis. sln`1pF q is a Lie subalgebra of glpV q because trpx` yq “ trpxq ` trpyq

and trpxyq “ trpyxq.
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3. Type Cn (Symplectic Lie algebra): Suppose dimV “ 2n with basis pw1, ¨ ¨ ¨ , w2nq. Define a nonde-
generate skew-symmetric bilinear form Ω by

Ωpu, vq “ r´u´s

„

O In
´In O

ȷ

»

–

|

v
|

fi

fl

It is nondegenerate in the sense that the map rΩ : V Ñ V ˚; Ωpuqpvq “ Ωpuqpvq is bijective, i.e.,
U “ tu P V |Ωpu, vq “ 0 @v P V u is a zero subspace of V . Set

sppV q “ sp2npF q “ tx P glpV q|Ωpxpuq, vq “ ´Ωpu, xpvqqu.

It is a subalgebra because

Ωprx, yspuq, vq “ Ωpxpypuqq ´ ypxpuqq, vq

“ Ωpxpypuqq, vq ´ Ωpypxpuqq, vq

“ ´Ωpypuq, xpvqq ` Ωpxpuq, ypvqq

“ Ωpu, ypxpvqqq ´ Ωpu, xpypvqqq

“ Ωpu, ry, xspvqq

“ ´Ωpu, rx, yspvqq

If we denote S “

„

O In
´In O

ȷ

, then in matrix terms, the condition forX “

„

A B
C D

ȷ

(where A,B,C,D P

glpn, F q) to be symplectic is that SX “ ´XtS, i.e., Bt “ B, Ct “ C, and At “ ´D.

4. Two other families: type Bn and type Dn of orthogonal Lie algebras (one for odd dimension and the
other for even dimension; see [1] p.3).

5. For an n-dimensional vector space over F , we can fix a basis to see glpV q – glnpF q.

We have upper triangulars:

b “ bnpF q “ tx P glnpF q | xij “ 0 @i ą ju,

and strictly upper triangulars:

u “ unpF q “ tx P glnpF q | xij “ 0 @i ě ju,

and abelian diagonal subalgebra:

t “ tnpF q “ tx P glnpF q | xij “ 0 @i ‰ ju.

It is trivial to check these the brackets are closed for them. Also note that b “ t‘ u (vector space direct
sum).

♣

Definition 1.1.6. Let K be a field, and let A be a vector space over K equipped with an additional binary
operation from A ˆ A to A, denoted here by ¨ (that is, if x and y are any two elements of A, then x ¨ y is an
element of A that is called the product of x and y). Then A is an algebra over K if the following identities hold
for all elements x, y, z in A, and all elements (often called scalars) a and b in K:

1. Right distributivity: px` yq ¨ z “ x ¨ z ` y ¨ z,

2. Left distributivity: z ¨ px` yq “ z ¨ x` z ¨ y,

3. Compatibility with scalars: paxq ¨ pbyq “ pabqpx ¨ yq.

6
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Remark: Every Lie algebra is an algebra with x ¨ y “ rx, ys.

Definition 1.1.7. We say δ P glpAq is a derivation for algebra A with bilinear operator p¨, ¨q if δpa, bq “

pa, δpbqq ` pδpaq, bq for every a, b P A.

Lemma 1.1.8. Let A be an F -algebra. Then

DerpAq :“ tδ P glpAq | δ is a derivationu

is a Lie algebra.

Proof. We note that we already have a Lie algebra structure rx, ys “ xy ´ yx for glpAq. Thus, we want to
show that the above is a Lie subalgebra. We want: rδ, τ s P DerpAq @δ, τ P DerpAq. Observe that

rδ, τ spa ¨ bq “ pδτ ´ τδqpa ¨ bq

“ δpa ¨ τpbq ` τpaq ¨ bq ´ τpa ¨ δpbq ` δpaq ¨ bq

“ a ¨ δτpbq ` δpaq ¨ τpbq ` τpaq ¨ δpbq ` δτpaq ¨ b

´

´

a ¨ τδpbq ` τpaq ¨ δpbq ` δpaq ¨ τpbq ` τδpaq ¨ b
¯

“ apδτpbq ´ τδpbqq ` pδτpaq ´ τδpaqqb

“ a ¨ rδ, τ spbq ` rδ, τ spaq ¨ b.

■

Key fact: For each x P L a Lie algebra with bracket r¨, ¨s, the map adx : L Ñ L; padxqy “ rx, ys is a
derivation.

Proof : We check that
padxqpry, zsq “ rx, ry, zss

“ ´ry, rz, xss ´ rz, rx, yss pJacobi identityq

“ ry, rx, zss ` rrx, ys, zs

“ ry, padxqpzqs ` rpadxqpyq, zs.

Key fact: The map ad : L Ñ DerpLq Ď glpLq; x ÞÑ adx is a Lie algebra homomorphism, i.e., adprx, ysq “

radx, ad ys. This is the adjoint representation.

1.2 Ideals and Homomorphisms

A subspace I Ď L is an ideal if @x P L, y P I, we have rx, ys P I. An ideal is of course a Lie subalgebra.

Example:

1. 0, zero ideal; L also an ideal.

2. The center ZpLq “ tz P L | rz, xs “ 0@x P Lu.

3. The derived subalgebra rL,Ls “ F trx, ys | x, y P Lu (the span of the set trx, ys | x, y P Lu).

4. Suppose φ : L Ñ L1 is a homomorphism. Then kerpφq is an ideal.

Note:

1. L abelian ðñ L “ ZpLq ðñ rL,Ls “ 0.

2. Given an ideal I Ď L, L{I is a Lie algebra with rx ` I, y ` Is “ rx, ys ` I, and, as usual, there is a
canonical homomorphism L Ñ L{I, x ÞÑ x` I.
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Proposition 1.2.1 (Isomorphism Theorems).

(a) (First Isomorphism Theorem) If φ : L Ñ L1 is a homomorphism of Lie algebras, then L{ kerpφq – Imφ.
If I is any ideal of L included in kerpφq, there exists a unique homomorphism ψ : L{I Ñ L1 making the
following diagram commute (π is the canonical map):

L L1

L{I

φ

π
ψ

(b) (Second Isomorphism Theorem)If I and J are ideals of L such that I Ď J , then J{I is an ideal of L{I and
pL{Iq{pJ{Iq is naturally isomorphic to L{J .

(c) (Third Isomorphism theorem) If I, J are ideals of L, there is a natural isomorphism between pI ` Jq{J
and I{pI X Jq.

(d) (Fourth Isomorphism Theorem) Let I be an ideal of L. Then the canonical projection map φ : L Ñ

L{I, φpxq “ x ` I induces a 1-1 correspondence Φ : J ÞÑ φpJq “ J{I between ideals of L that contain I
and ideals of L{I:

I “ tideals of L that contain Iu ÐÑ I 1 “ tideals of L{Iu

an ideal J of L that contains I ÝÑ its image φpJq “ J{I in L{I

its inverse image φ´1pJ q in L ÐÝ an ideal J of L{I

Moreover, if we denote J{I by J˚, then:

• For J1, J2 P I, J1 Ď J2 if and only if J˚
1 Ď J˚

2 , and then dimpJ2{J1q “ dimpJ˚
2 {J˚

1 q;

• For J1, J2 P I, J1 is an ideal of J2 if and only if J˚
1 is an ideal of J˚

2 , and then J2{J1 – J˚
2 {J˚

1 .

For later use we mention a couple of related notions, analogous to those which arise in group theory. The
normalizer of a subalgebra (or just subspace) K of L is defined by NLpKq “ tx P L | rx,Ks Ă Ku. By the
Jacobi identity, NLpKq is a subalgebra of L; it may be described verbally as the largest subalgebra of L which
includes K as an ideal (in case K is a subalgebra to begin with). If K “ NLpKq, we call K self-normalizing;
some important examples of this behavior will emerge later. The centralizer of a subset X of L is CLpXq “

tx P L | rxXs “ 0u. Again by the Jacobi identity, CLpXq is a subalgebra of L. For example, CLpLq “ ZpLq.

Definition 1.2.2. A representation of L is a homomorphism φ : L Ñ glpV q for V an F -vector space.

Example 1.2.3. Consider the adjoint representation ad : L Ñ glpLq;x ÞÑ adx. Then kerpadq “ tx P L |

adx “ 0u “ ZpLq. Thus, L{ZpLq – adpLq Ď glpLq. ♣

Definition 1.2.4. L is called simple if L has no ideals except for 0 and itself and if rL,Ls ‰ 0. Recall that a
simple group is a group with no nontrivial normal subgroup.

Remark: L simple thus nonabelian ùñ ideal ZpLq “ 0 ùñ L – adpLq Ď glpLq.

Example 1.2.5. Let charpF q ‰ 2.

sl2pF q “ tA P gl2pF q | trpAq “ 0u “ C

$

’

’

’

&

’

’

’

%

x
hkkkikkkj

ˆ

0 1
0 0

˙

,

h
hkkkkikkkkj

ˆ

1 0
0 ´1

˙

,

y
hkkkikkkj

ˆ

0 0
1 0

˙

,

/

/

/

.

/

/

/

-

.
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Note that rh, xs “ 2x, rx, ys “ h, rh, ys “ ´2y. We write the linear transformation adh : sl2pF q Ñ sl2pF q in
matrix form with basis tx, h, yu:

padhqpxq “ rh, xs “ 2x

padhqphq “ rh, hs “ 0

padhqpyq “ rh, ys “ ´2y

Thus, the matrix is
»

–

2 0 0
0 0 0
0 0 ´2

fi

fl

and x, h, y are eigenvectors for adh, corresponding to the eigenvalues 2, 0,´2. Since charpF q ‰ 2, these
eigenvalues are distinct. Direct computation by bracketing will show that Zpsl2pCqq “ 0 and rsl2pCq, sl2pCqs “

sl2pCq.

sl2pF q is also a simple Lie algebra: suppose we a nonzero ideal I Ď sl2pCq. Let 0 ‰ ax`by`ch P I. Applying
adx twice, we get ´2bx P I, and applying ad y twice, we get ´2ay P I. Therefore, if a or b is nonzero, I
contains either y or x (charpF q ‰ 2), and then, clearly, I “ L follows. On the other hand, if a “ b “ 0, then
0 ‰ ch P I, so h P I, and again I “ L follows. ♣

1.3 Solvable and Nilpotent Lie Algebras

Definition 1.3.1. The derived series of L is

L
loomoon

Lp0q

Ě rL,Ls
loomoon

Lp1q

Ě rLp1q, Lp1qs
looooomooooon

Lp2q

Ě ¨ ¨ ¨ .

L is said to be solvable if Lpmq “ 0 for some m ě 1.

Example 1.3.2.

1. Let L be abelian. Then Lp1q “ 0. Thus, L is solvable.

2. Recall that sl2pF q “ rsl2pF q, sl2pF qs. Thus, sl2pF q is not solvable.

3. u3 “

$

&

%

¨

˝

0 ˚ ˚

0 0 ˚

0 0 0

˛

‚

,

.

-

“ F

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˝

0 1 0
0 0 0
0 0 0

˛

‚

looooomooooon

E12

,

¨

˝

0 0 0
0 0 1
0 0 0

˛

‚

looooomooooon

E23

,

¨

˝

0 0 1
0 0 0
0 0 0

˛

‚

looooomooooon

E13

,

/

/

/

/

/

.

/

/

/

/

/

-

Ď gl3pF q. The dimensional of

general un is thus dim “ 1 ` ¨ ¨ ¨ ` n “
npn`1q

2 . Note that bracketing the basis gives

rE12, E23s “ E13

rE12, E13s “ 0

rE23, E13s “ 0.

(1.1)

Thus, ru3, u3s “ F tE13u. Note that for arbitrary x, y we have rx, ys “ x1y2rE12, E23s`x2y1rE23, E12s “

px1y2 ´ x2y1qE13. Then the center Zpu3q is F tE13u because x1y2 ´ x2y1 “ 0 for any y1, y2 P F implies
x1 “ x2 “ 0, i.e., x “ x3E13. Then Lp2q “ rF tE13u, F tE13us “ rZpu3q, Zpu3qs “ 0. Hence, u3 is
solvable for m “ 2.

4. In general, un is solvable.

9
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5. b3 “

$

&

%

¨

˝

˚ ˚ ˚

0 ˚ ˚

0 0 ˚

˛

‚

,

.

-

Ď gl3pF q. Note that b3 “ u3 ` CtE11, E22, E33u. Recall Left-multiplying a matrix

A by Eij results in a matrix where the i-th row is the j-th row of A, and all other rows are zero;
right-multiplying a q ˆm matrix A by Eij results in a matrix where the j th column is the i-th column
of A, and all other columns are zero. Thus,

@i, j, rEii, Ejjs “ 0,

@k ‰ l, rEii, Ekls “

$

’

&

’

%

Ekl , k “ i

´Ekl , l “ i

0 , otherwise

(1.2)

The remaining brackets of basis element are just (1.1). Now consider E11 ´E22. E11 ´E22 bracketing
with diagonal basis elements gives 0. For off-diagonal basis elements, note that rE11´E22, E12s “ 2E12.
rE11´E22, E13s “ E13. rE11´E22, E23s “ ´E23. Therefore, for any element in b3, we already analyzed
the bracket of each component of it with E11 ´E22, each resulting either zero or a multiple of a distinct
basis element. Thus, no nontrivial element commutes with E11 ´ E22. Thus, there are no nontrivial
elements commuting with every element. Thus, Zpb3q “ 0. Also, rb3, b3s “ CtE12, E23, E13u “ u3.
Hence, b3 is solvable.

6. In general, bn is solvable.

♣

Goal: CharpF q “ 0 and F is algebraically closed. We will show that L is solvable ðñ L{ZpLq is a Lie
subalgebra of bn for some n.

Proposition 1.3.3. Since an ideal is a Lie subalgebra, an ideal that is also solvable as a Lie algebra is called a
solvable ideal. We have,

1. L is solvable ùñ all subalgebras and homomorphic images of L are solvable.

2. If I Ď L is a solvable ideal and L{I is solvable, then L is solvable.

3. If I, J Ď L are solvable ideals, then I ` J is solvable.

Proof. Routine. See [1] p.11. ■

Corollary 1.3.4. D! maximal solvable ideal I Ď L. This maximal ideal is the radical of L, denoted as RadpLq.

Proof. L has finite dimension. Let I Ď L be a solvable ideal with the largest dimension possible. Let J Ď L
be another solvable ideal. Then proposition 1.3.3 says I`J is solvable. Since I Ď I`J , we see that I “ I`J
because I has the maximum dimension. Thus, J Ď I. ■

Definition 1.3.5. L is semisimple if it has no non-trivial solvable ideals, i.e., RadpLq “ 0.

Example 1.3.6. sl2pF q is semisimple (because sl2pF q is simple and is not solvable). ♣

Proposition 1.3.7. L{RadpLq is semisimple.

Proof. Let J be a solvable ideal of L{ radpLq and φ : L Ñ L{ radpLq the canonical projection. Then

φ´1pJq{RadpLq
4th iso thm

ùùùùùùùù J solvable + RadpLq solvable
prop.1.3.3

ùñ φ´1pJq solvable in L. Thus, φ´1pLq Ď

radpLq ùñ J “ φpφ´1pJqq Ď φpradpLqq “ 0 in L. Thus, J must be zero ideal in L{ radpLq. ■

10
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Thus we have shown that any Lie algebra L contains a canonical solvable ideal radpLq such that L{ radpLq is
a semisimple Lie algebra. We thus have an exact sequence

0 ÝÑ radpLq ÝÑ L ÝÑ L{ radpLq ÝÑ 0

so that, in some sense at least, every finite dimensional Lie algebra is ”built up” out of a semisimple Lie
algebra and a solvable one. Slightly more precisely, if

0 ÝÑ L1 ÝÑ L ÝÑ L2 ÝÑ 0

is an exact sequence of Lie algebras, we say that L is an extension of L2 by L1. Thus the previous proposition
can be rephrased as saying that any Lie algebra is an extension of the semisimple Lie algebra L{ radpLq by
the solvable Lie algebra radpLq.

Proposition 1.3.8. A finite dimensional Lie algebra L is semisimple if and only if it does not contain any
non-zero abelian ideals.

Proof. Clearly if L contains an abelian ideal it contains a solvable ideal, so that radpLq ‰ 0. Conversely, if
K is a non-zero solvable ideal in L, then the last term Kpm´1q in the derived series of K will be a nonzero
abelian ideal of L (obviously, a lie algebra g is abelian ðñ rg, gs “ 0). ■

Remark 1.3.9. Simplicity implies semisimplicity. If L is simple, then rL,Ls, which is nonzero and is an ideal,
has to be the whole of L. Thus, L cannot be solvable. Therefore, RadpLq “ 0, and L is semisimple. ♠

Definition 1.3.10. The lower central series (or descending central series) of L is:

L
loomoon

L0

Ě rL,L0s
loomoon

L1

Ě rL,L1s
loomoon

L2

Ě ¨ ¨ ¨ .

where
@i ě 2, Li :“ rL,Li´1s.

A Lie algebra L is nilpotent if Lm “ 0 for some m ě 1.

Remark 1.3.11. L1 “ Lp1q, thus it’s easy to see by induction that Lpiq Ď Li, so all nilpotent Lie algebras are
solvable. ♠

Example 1.3.12. Continue with example 1.3.2,

1. L abelian ùñ L nilpotent.

2. u3 Ě ru3, u3s “ F tE13u Ě ru3, F tE13us
p1.1q

ùùùù 0 ùñ u3 is nilpotent.

3. For the same reason, un is nilpotent.

4. b3 Ě rb3, b3s “ u3 Ě rb3, u3s
p1.2q

ùùùù u3 Ě u3 Ě ¨ ¨ ¨ ùñ b3 is not nilpotent.

5. For the same reason, bn is not nilpotent.

♣

Proposition 1.3.13. Let L be a Lie algebra.

(a) If L is nilpotent, then so are all subalgebras and homomorphic images of L.

(b) If L{ZpLq is nilpotent, then so is L.

(c) If L is nilpotent and nonzero, then ZpLq ‰ 0.

Proof. See [1] p.12. ■

11
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Remark 1.3.14. The condition for L to be nilpotent can be rephrased as follows:

For some m (depending only on L ), padx1 adx2 ¨ ¨ ¨ adxmq pyq “ 0 for all xi, y P L.

In particular, this condition implies padxqm “ 0 for all x P L. Now if L is any Lie algebra, and x P L, we call
x ad-nilpotent if adx is a nilpotent, i.e. padxqk “ 0 for some k ą 0. Thus, we see ♠

Remark 1.3.15. If L is nilpotent, then all elements of L are ad-nilpotent. ♠

It is a pleasant surprise to find that the converse is also true.

Theorem 1.3.16 (Engel). If all elements of L are ad-nilpotent, then L is nilpotent.

Lemma 1.3.17. Let x P glpV q be nilpotent (xr “ 0 for sme r ą 0), then adx is also nilpotent.

Proof. padxqpyq “ rx, ys “ xy ´ yx and

padxq2y “ rx, rx, yss “ rx, xy ´ yxs “ x2y ´ 2xyx` yx2

By induction, we will have

padxqmpyq “

m
ÿ

k“0

ckx
kyxm´k

Thus, the r such that xr “ 0 gives rise to some m “ 2r such that each term contains xr and thus padxqm “

0. ■

Remark 1.3.18 (Converse is not true). A word of warning: It is easy for a matrix to be ad-nilpotent in
glpn, F q without being nilpotent. (The identity matrix is an example.) It should be kept in mind two con-
trasting types of nilpotent linear Lie algebras: bpn, F q and upn, F q. ♠

Engel’s Theorem will be deduced from the following result, which is of interest in its own right.

Recall that a single nilpotent linear transformation always has at least one nonzero eigenvector, correspond-
ing to its unique eigenvalue 0: Ax “ λx ùñ Arx “ λrx “ 0 ùñ λr “ 0, λ “ 0. To show it has a nonzero
eigenvector, i.e., D0 ‰ x s.t. Ax “ 0 is to show it is singular, but Ar “ 0 ùñ detpAqr “ 0 ùñ detpAq “ 0
(entries of the matrix are from field and thus integral domain without zero divisor, i.e., ab “ 0 ùñ a “

0 or b “ 0).

This is just the case dimL “ 1 of the following theorem.

Theorem 1.3.19. Let L be a subalgebra of glpV q, V finite dimensional. If every element of L is nilpotent and
V ‰ 0, then D0 ‰ w P V such that xpwq “ 0 @x P L, or L¨w “ 0.

Proof. Induction on dimL.

dimL “ 1: L “ F txu. We have just shown this above.

dimL ą 1: Let K Ď L be a maximal proper subalgebra.

claim: dimK “ dimL´ 1 and K is an ideal of L.
proof : let L “ L{K and consider φ : K Ñ glpLq; y ÞÑ adpyq. That is, for y P K, we have φpyqpx ` Kq “

ry, xs ` K. Now, φ is a homomorphism, i.e., φpry, zsq “ rφpyq, φpzqs, by Jacobi identity. Thus φpKq is
a Lie subalgebra of glpLq. Also, dimφpKq ď dimpKq ă dimpLq. Furthermore, the Lemma implies that
every element of φpKq is nilpotent. Thus we can apply induction hypothesis to φpKq Ď glpLq. Then DK ‰

pz ` Kq P L (i.e., z R K) such that φpKq¨pz ` Kq “ 0. This implies @y P K, adpyqpz ` Kq “ ry, zs ` K “ 0
(i.e., ry, zs P K). Thus, we have z P K such that @y P K, ry, zs P K. Thus, K is properly contained in the
normalizer NLpKq, which is also a subalgebra. Thus, by maximality, it has to be the case that NLpKq “ L.
That is, @x P L, rx,Ks Ă K ùñ K is an ideal.
We then show dimK “ dimL ´ 1 and K. If dimL{K were greater than one, then the inverse image in

12
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L of a one dimensional subalgebra of L{K (which always exists) would be a proper subalgebra properly
containing K, which is absurd; therefore, K has codimension one. This allows us to write L “ K `F tzu for
any z P L´K.//

Now we show L with all ele. nilp has some w P V s.t. L¨w “ 0. Consider the subspace of V killed by K,
i.e., W “ tv P V |ypvq “ 0 @y P Ku Ď V . Induction hypothesis on K (dimK “ dimL ´ 1 ă dimL and all
elements of L thus K nilpotent) ùñ W ‰ 0. Let x P L and y P K and w P W . Then

pyxqpwq “ pxyqpwq
looomooon

“0

´ rx, ys
loomoon

PK

pwq “ 0 ùñ @x P L and w P W, xw P W

That is, W is an L-stable subspace of V . In particular, for that z P L ´ K, we have zpW q Ď W . Thus, z|W is
also nilpotent. Then D0 ‰ w P W , s.t., zpwq “ 0. Given x P L “ K ‘F tzu, we can write x “ y ` az for some
y P K, a P F . Now,

xpwq “ ypwq ` azpwq “ 0

■

proof of Engel’s theorem. We want to show that if every x P L is ad-nilp then L is nilp. We proceed by
induction on dimension of L.

If the dimension is 1, then ad is trivial and adpLq would trivially be nilp. Let dimpLq ą 1. Apply above
theorem to adpLq Ď glpLq to get some nonezero x P L such that rL, xs ‰ 0, which implies x P ZpLq.
Recall from example 1.2.3 that adpLq “ L{ZpLq. Now, dimadpLq “ dimL{ZpLq ă dimpLq. The induction
hypothesis gives adpLq nilpotent. Proposition 1.3.3 (2) then implies L is nilpotent. ■

Definition 1.3.20. Let V be a finite-dimensional vector space over a field F with dimV “ n. A flag in V is a
chain of subspaces:

0 “ V0 Ă V1 Ă V2 Ă ¨ ¨ ¨ Ă Vn “ V

such that dimVi “ i for each i “ 0, 1, . . . , n. An endomorphism x P EndpV q is said to stabilize or preserve the
flag if

xpViq Ď Vi for all i.

Corollary 1.3.21. Let L be a subalgebra of glpV q, V finite dimensional. If every element of L is nilpotent and
V ‰ 0, then there exists a flag pViq in V stable under the action of L, i.e., for all i, xpViq Ď Vi´1 for all x P L.
In other words, there exists a basis of V relative to which the matrices of L are all in upn, F q.

Proof. Begin with any nonzero v P V killed by L, whose existence is assured by above theorem. Set V1 “ Fv.
Let W “ V {V1, and observe that the induced action of L on W is also by nilpotent endomorphisms. By
induction on dimV , W has a flag stabilized by L, whose inverse image in V does the trick.

The action on W induced by x : V Ñ V is x1 pa` V1q “ xpaq ` V1.

If the Lie algebra L stabilizes a flag, then in a basis adapted to this flag (i.e., where the basis vectors span the
successive subspaces Vi in the flag), the action of any element x P L will map each basis vector to a linear
combination of basis vectors that correspond to smaller subspaces in the flag. This ensures that the matrix
representation of x in this basis will be upper triangular. Conversely, if the elements of L are represented
by upper triangular matrices in some basis, then these matrices stabilize the subspaces spanned by the first
i basis vectors. This gives a flag that is preserved by all elements of L, where each subspace is spanned by
a certain number of basis vectors, corresponding to the positions of non-zero entries in the upper triangular
matrix. ■

Lemma 1.3.22. Let L be nilpotent, and let K be an ideal of L. If K ‰ 0, then K X ZpLq ‰ 0 (In particular,
ZpLq ‰ 0).

13
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Proof. L acts on K via the adjoint representation, so above theorem yields nonzero x P K killed by L, i.e.,
rLxs “ 0, so x P K X ZpLq. ■

14
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Chapter 2

Semisimple Lie Algebras

Assume charF “ 0 and F algebraically closed.

2.1 Structure of Solvable Lie Algebras

2.1.1 Lie’s theorem

Theorem 1.3.19 asserts the existence of a common eigenvector for a Lie algebra consisting of nilpotent
endomorphisms. The next theorem is of similar nature.

Theorem 2.1.1 (Lie’s Theorem). Suppose L Ď glpV q is a solvable subalgebra. dimpV q ă 8 and V ‰ 0. Then
V contains a common nonzero eigenvector for all x P L.

Proof. Use induction on dimL, the case dimL “ 0 being trivial. When dimL “ 1, the eigenvector exists for
any matrix with entries in algebraically closed field. We attempt to imitate the proof of Theorem 1.3.19. The
idea is
(1) to locate an ideal K of codimension one,
(2) to show by induction that common eigenvectors exist for K,
(3) to verify that L stabilizes a space consisting of such eigenvectors, and
(4) to find in that space an eigenvector for a single z P L satisfying L “ K ` F tzu.

Step (1) is easy. Since L is solvable, of positive dimension, L properly includes rL,Ls. L{rL,Ls being
abelian, any subspace is automatically an ideal. Using Fourth isomorphism theorem to take a subspace K 1

of codimension one, then its inverse image K “ φ´1pK 1q is an ideal of codimension one (easy to compute)
in L, containing rL,Ls.

For step (2), to apply induction to K, we verify that K has a dimension lower than L and that K is solvable:
if K “ 0, then L is abelian of dimension 1 and an eigenvector for a basis vector of L finishes the proof; so for
K ‰ 0, it is solvable as a subalgebra of solvable L (using Proposition 1.3.3 (1)). Induction gives an common
eigenvector v so that y P K, ypvq “ λpyqv for some linear function λ : K Ñ F . Fix this λ, and denote by Wλ

the subspace
tw P V | ypwq “ λpyqw, for all y P Ku; so v P Wλ, Wλ ‰ 0.

Step (3) consists in showing that L leaves Wλ invariant. Assuming for the moment that this is done, proceed
to step (4): Write L “ K ` F tzu for a z P L ´ K, and use the fact that F is algebraically closed to find
an eigenvector v0 P Wλ of z now acting on Wλ (for some eigenvalue of z). Then v0 is obviously a common
eigenvector for L (and λ can be extended to a linear function on L such that xpv0q “ λpxqv0, x P Lq.

15
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It remains to show that L stabilizes Wλ. Let w P Wλ, x P L. To test whether or not xpwq lies in Wλ, we must
take arbitrary y P K and examine yxpwq “ xypwq´rx, yspwq “ λpyqxpwq´λprx, ysqw. Thus we have to prove
that λprx, ysq “ 0. For this, fix w P Wλ, x P L. Let n ą 0 be the smallest integer for which w, xpwq, ¨ ¨ ¨ , xnpwq

are linearly dependent. Let Wi be the subspace of V spanned by w, xpwq, . . . , xi´1pwq. (set W0 “ 0), so
dimWn “ n,Wn “ Wn`ipi ě 0q and x maps Wn into Wn. It is easy to check that each y P K leaves each
Wi invariant. Relative to the basis w, x.w, . . . , xn´1

. w of Wn, we claim that y P K is represented by an upper
triangular matrix whose diagonal entries equal λpyq. This follows immediately from the congruence:

p˚q yxi.w ” λpyqxi.w pmodWiq

which we prove by induction on i, the case i “ 0 being obvious. Write yxipwq “ yxxi´1pwq “ xyxi´1pwq ´

rx, ysxi´1pwq. By induction, yxi´1pwq “ λpyqxi´1pwq ` w1 pw1 P Wi´1q; since x maps Wi´1 into Wi (by
construction), p˚q therefore holds for all i.

According to our description of the way in which y P K acts on Wn, trWnpyq “ nλpyq. In particular, this is
true for elements of K of the special form rx, ys (x as above, y in K). But x, y both stabilize Wn, so rx, ys

acts on Wn as the commutator of two endomorphisms of Wn; its trace is therefore 0. We conclude that
nλprx, ysq “ 0. Since char F “ 0, this forces λprx, ysq “ 0, as required. ■

Corollary 2.1.2. Let L be a solvable subalgebra of glpV q, dimV “ n ă 8. Then L solvable ðñ L Ď b.

Proof. ùñ : b is solvable.

ðù: this is the same as saying L stabilizes some flag in V . We do this by induction on dimpV q “ k. Let its
basis be tv1, ¨ ¨ ¨ , vku. Let V 1 :“ V {F tv1, ¨ ¨ ¨ , vku. Note that the induced L1 Ď glpV 1q is solvable. Due to Lie’s
theorem, D0 ‰ vk`1 P V 1 s.t. @x P L1, xpvk`1q Ď F tvk`1u. Then pull this vk`1 back to V to form another
basis for vector space of dimension κ` 1. ■

More generally, let L be any solvable Lie algebra, ϕ : L Ñ glpV q a finite dimensional representation of L.
Then ϕpLq is solvable, by Proposition 1.3.3, hence stabilizes a flag (Corollary above). For example, if ϕ is the
adjoint representation, a flag of subspaces stable under L is just a chain of ideals of L, each of codimension
one in the next. We can also translate this to upper triangular matrices. We have:

Corollary 2.1.3. A Lie algebra L is solvable ðñ there exists a chain of ideals of L, 0 “ L0 Ă L1 Ă . . . Ă

Ln “ L, such that dimLi “ i ðñ L{ZpLq – adpLq is solvable in b.

Corollary 2.1.4. A Lie algebra L is solvable ðñ rL,Ls is nilpotent.

Proof. ðù: rL,Ls is nilpotent
Fact1.3.11

ùñ rL,Ls solvable. Since L{rL,Ls is abelian and thus solvable, proposition
1.3.3 concludes.

ùñ : we show x P rL,Ls implies that dLx is nilpotent. Find a flag of ideals as in Corollary above. Relative
to a basis px1, . . . , xnq of L for which px1, . . . , xiq spans Li, the matrices of ad L lie in bpn, F q. Therefore
the matrices of radL, adLs “ adLrL,Ls lie in upn, F q, the derived algebra of bpn, F q. It follows that adL x is
nilpotent for x P rL,Ls; a fortiori adrLLs x is nilpotent, so rL,Ls is nilpotent by Engel’s Theorem. ■

2.1.2 Jordan-Chevalley Decomposition

Read Steven Roman’s Advanced Linear Algebra for Jordan canonical form in a more general setting.

Let F be an algebraically closed field. A general matrix in Jordan canonical form looks like
¨

˚

˚

˚

˝

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ar

˛

‹

‹

‹

‚
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where each Ai is a Jordan block matrix Jtpλq for some t P N and λ P F :

Jtpλq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ

˛

‹

‹

‹

‹

‹

‹

‹

‚

tˆt

Our linear algebra says that every endomorphism x can be written into a Jordan canonical form with a certain
basis. That is, the matrix M of x is of the form M “ SJS´1 for some invertible matrix S and its unique
Jordan canonical form J . Note that J “ D ` N where D “ diagpλ1, ¨ ¨ ¨ , λ1

loooomoooon

, ¨ ¨ ¨ , λr, ¨ ¨ ¨ , λr
loooomoooon

q and D is a

matrix consisting of shift matrices as blocks. The shift matrices are simply of the form Jtpλq ´diagpλ, ¨ ¨ ¨ , λq.
Thus, x can be written as a sum of a diagonal matrix and a nilpotent matrix which commute. We can make
this decomposition more precise.

The minimal polynomial of x P glpV q – glpn, F q is the monic polynomial pptq P F ptq with minimal degree
such that ppxq “ 0.

Lemma 2.1.5. Let x P glpn, F q and F an algebraically closed field. The following are equivalent:

(1) There exists invertible g such that gxg´1 is a diagonal matrix, i.e., x is diagonalizable.

(2) There exists a basis tviu for Fn consisting of eigenvectors for x.

(3) The minimal polynomial has distinct roots, i.e., fptq “
ś

i pt´ λiq with λi ‰ λj for i ‰ j.

Proof. See [3] Corollary B.1.2 for F “ C. ■

We call x semisimple if it satisfies any of the above three conditions.

Remark 2.1.6. We remark that two commuting semisimple endomorphisms x, y P glpV q can be simultane-
ously diagonalized; therefore, their sum or difference is again semisimple. The sum or difference of two
commuting nilpotent endomorphisms is nilpotent as well.

It is an exercise to show that their (additive) Jordan-Chevalley decomposition is indeed additive: px` yqn “

xn ` yn, px` yqs “ xs ` ys.

Also, if x is semisimple and maps a subspace W of V into itself, then obviously the restriction of x to W is
semisimple. ♠

Proposition 2.1.7. Let V be a finite dimensional vector space over F , x P glpV q.

(a) There exist unique xs, xn P End V satisfying the conditions: x “ xs `xn, xs is semisimple, xn is nilpotent,
xs and xn commute.

(b) There exist polynomials pptq, qptq P F ptq, without constant term, i.e, pp0q “ qp0q “ 0, such that ppxq “

xs, qpxq “ xn. In particular, xs and xn commute with any endomorphism commuting with x.

The decomposition x “ xs ` xn is called the (additive) Jordan-Chevalley decomposition of x, or just the
Jordan decomposition; xs, xn are called (respectively) the semisimple part and the nilpotent part of x.

Example 2.1.8.

x “

»

–

0 1 0
0 0 0
0 0 2

fi

fl “

»

–

0 0 0
0 0 0
0 0 2

fi

fl `

»

–

0 1 0
0 0 0
0 0 0

fi

fl

17
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x2 “

»

–

0 0 0
0 0 0
0 0 4

fi

fl

pptq “
1

2
t2

qptq “ t´
1

2
t2

♣

Corollary 2.1.9 (Corollary of second part of the proposition). (a) If y P glpV q such that rx, ys “ 0, then
rxs, ys “ rxn, ys “ 0.

(b) If A Ă B Ă V are subspaces, and x maps B into A, then xs and xn also map B into A.

Proof of the proposition. Let a1, . . . , ak (with multiplicities m1, . . . ,mk ) be the distinct eigenvalues of x, so
the characteristic polynomial is Π pt´ aiq

mi . If Vi “ Ker px´ ai.1q
mi , then V is the direct sum of the sub-

spaces V1, . . . , Vk, each stable under x. On Vi, x clearly has characteristic polynomial pt´ aiq
mi . Now apply

the Chinese Remainder Theorem (for the ring F ptq ) to locate a polynomial pptq satisfying the congruences,
with pairwise relatively prime moduli: pptq ” ai pmod pt´ aiq

miq , pptq ” 0pmod tq. (Notice that the last con-
gruence is superfluous if 0 is an eigenvalue of x, while otherwise t is relatively prime to the other moduli.)
Set qptq “ t´ pptq. Evidently each of pptq, qptq has zero constant term, since pptq ” 0pmodtq.

Set xs “ ppxq, xn “ qpxq. Since they are polynomials in x, xs and xn commute with each other, as well as
with all endomorphisms which commute with x. They also stabilize all subspaces of V stabilized by x, in
particular the Vi. The congruence pptq ” ai pmod pt´ aiq

miq shows that the restriction of xs ´ ai.1 to Vi is
zero for all i, hence that xs acts diagonally on Vi with single eigenvalue ai. By definition, xn “ x´xs, which
makes it clear that xn is nilpotent.

It remains only to prove the uniqueness assertion in (a). Let x “ s ` n be another such decomposition,
so we have xs ´ s “ n ´ xn. Because of (b), all endomorphisms in sight commute. Sums of commuting
semisimple (resp. nilpotent) endomorphisms are again semisimple (resp. nilpotent), whereas only 0 can be
both semisimple and nilpotent. This forces s “ xs, n “ xn ■

Remark 2.1.10. In proving the Engel’s theorem, we have shown the lemma that

x P glpV q nilpotent implies adx nilpotent.

It can also be shown that

x P glpV q semisimple implies adx semisimple.

Since xs is semisimple, we by lemma 2.1.5 find a basis tv1, ¨ ¨ ¨ , vnu of V under which the matrix of xs is
diagpλ1, ¨ ¨ ¨ , λnq and xsei “ λiei. Let tEklu be the standard basis of glpV q. Then

padxsqpEklq “

«

n
ÿ

i“1

λiEii, Ekl

ff

“

n
ÿ

i“1

λirEii, Ekls

(1.2)
ùùùù λkEkl ´ λlEkl “ pλk ´ λlqEkl.

Thus, the matrix of adxs is diagonal. ♠

Corollary 2.1.11. Let x P glpV q (dimV ă 8) with Jordan decomposition x “ xs ` xn. Then adx “ adxs `

adxn is the Jordan decomposition of adx (in glpglpV qq).

Proof. Due to the remark above, adxn is nilpotent and adxs is semisimple. xn, xs commute due to proposi-
tion 2.1.7 (a), i.e., rxn, xss “ 0. Thus, radxn, adxss “ adrxn, xss “ 0 ùñ adxn, adxs commute. Thus, the
uniqueness of proposition 2.1.7 (a) concludes. ■
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2.1.3 Cartan’s Criterion

Remark 2.1.12. We collect some facts.

1. L is solvable
Cor.2.1.4
ðñ rL,Ls is nilpotent

Engel
ðñ ad y nilp, @y P rL,Ls.

2. trpxyq “ trpyxq.
trpABq “ pabqii “ aijbji “ bjiaij “ pbaqjj “ trpBAq

3. Similar matrices have same trace: trpAq “ trpSBS´1q “ trppS´1qpSBqq “ trpBq.

4. trprx, yszq “ trpxry, zsq.
To show this, we write rx, ysz “ xyz ´ yxz and xry, zs “ xyz ´ xzy and use trpypxzqq “ trppxzqyq due
to the second fact.

♠

Proposition 2.1.13. If L is solvable, then trpadx ad yq “ 0, @x P L, @y P rL,Ls.

Proof. We first observe a fact:
If x P b and y P u, then xy P u:

´

˚ ˚ ˚
0 ˚ ˚
0 0 ˚

¯´

0 ˚ ˚
0 0 ˚
0 0 0

¯

“

´

0 ˚ ˚
0 0 ˚
0 0 0

¯

Thus, trpxyq “ 0.

Now L solvable.
ùñ the homomorphic image adpLq Ď glpLq is solvable & rL,Ls is nilpotent.

rmk.1.3.15 & Cor.1.3.21
ùùùùùùùùùùùùùñ

Cor.2.1.2
there is a basis of L s.t. the matrices of elements of adpLq are upper-triangular in this

basis & every ele. of rL,Ls is nilp, i.e., every ele. of adprL,Lsq is nilp. and thus matrices of elements of
adprL,Lsq are strictly upper-triangular.

above fact
ùùùùùùñ trpadx, ad yq “ 0. ■

Example 2.1.14. Recall the solvable Lie algebra

sl2pCq “ tA P gl2pCq | trpAq “ 0u “ C

$

’

’

’

&

’

’

’

%

x
hkkkikkkj

ˆ

0 1
0 0

˙

,

h
hkkkkikkkkj

ˆ

1 0
0 ´1

˙

,

y
hkkkikkkj

ˆ

0 0
1 0

˙

,

/

/

/

.

/

/

/

-

.

where rh, xs “ 2x, rx, ys “ h, rh, ys “ ´2y and

adx “

»

–

0 ´2 0
0 0 1
0 0 0

fi

fl , ad y “

»

–

0 0 0
´1 0 0
0 2 0

fi

fl , adh “

»

–

2 0 0
0 0 0
0 0 ´2

fi

fl .

Also rsl2pCq, sl2pCqs “ sl2pCq. We can easily verify above proposition that trpadx ad yq “ 0, @x P L, @y P

rL,Ls. ♣

We let F “ C for simplicity now.

Proposition 2.1.15. Let L be a subalgebra of glpV q, dimV “ n ă 8. If trpxyq “ 0 for every x, y P L, then L
is solvable.

Proof. Note that every x P rL,Ls is nilpotent
lem.1.3.17

ùùùùùùñ every adx is nilpotent
rmk.2.1.12

ùùùùùùñ L solvable.

Thus, we show every x P rL,Ls is nilpotent. Let x “ xs ` xn be the Jordan decomposition of x. We need
xs “ 0. We fix a basis of V in which xs is diagonal, i.e., xs “ diagpλ1, ¨ ¨ ¨ , λmq, and xn is strictly upper
triangular, i.e., a matrix with 1 or 0 just above the diagonal and all other entries zero. Since xn is strictly
upper triangular, we see trpdxnq “ trpxndq “ 0 for any diagonal matrix d.
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We want to show
řm
i“1 λiλi “

řm
i“1 |λi|

2 “ 0 because this implies λi “ 0 @i ùñ xs “ 0.

Let xs “ diagpλ1, ¨ ¨ ¨ , λmq. We note that xs P glpV q is not necessarily in L. We compute

trpxsxq “ trpxspxs ` xnqq “ trpxsxsq ` trpxsxnq
looomooon

“0

“

m
ÿ

i“1

λiλ̄i.

Now, as x P rL,Ls, we may express x as a linear combination of commutators ry, zs with y, z P L, so we

need to show that trpxsry, zsq
rmk.2.1.12(4)

ùùùùùùùùù trprxs, yszq “ 0. This will hold by our hypothesis, provided we
can show that rxs, ys P L. In other words, we must show that adxs maps L into L.

By Cor. 2.1.11, the Jordan decomposition of adx is adxs ` adxn. Therefore, by part (b) of [4] Lemma 16.8,
there is a polynomial pptq P Crts such that ppadxq “ adxs “ adxs. Now ad x maps L into itself, so ppadxq

does also. ■

Theorem 2.1.16 (Cartan’s First Criterion). L is a Lie algebra such that trpadx ad yq “ 0, @x P rL,Ls, @y P L.
ðñ L is solvable.

Proof. The ðù is by proposition 2.1.13.

ùñ : Consider adprL,Lsq. By assumption, trpadx ad yq “ 0,@x, y P rL,Ls. Proposition 2.1.15 implies
adprL,Lsq is solvable. Since adprL,Lsq – rL,Ls{ZprL,Lsq and ZprL,Lsq is abelian, Proposition 1.3.3 (2)
shows that rL,Ls is solvable. Since rL,Ls “ Lp1q, we have L solvable. ■

Remark 2.1.17. For the more general theory, see [1] section 4.3, where Cartan’s First Criterion is named for
a result generalizing proposition 2.1.15 and above theorem is listed as a corollary. ♠

2.2 Killing Form

Let F be an algebraically closed field with characteristic zero.

2.2.1 Semisimplicity

Let L be a Lie algebra. Define Killing form on L by

κ : Lˆ L Ñ C
px, yq ÞÑ trpadx ad yq

• It is a symmetric bilinear form on L.

• It is also associative: κprx, ys, zq “ κpx, ry, zsq by ad as a homomorphism and Rmk.2.1.12(4).

• Cartan’s First Criterion translates to: κpx, yq “ 0, @x P L, @y P rL,Ls ðñ L solvable.

Remark 2.2.1. A simple fact from linear algebra: If W is a subspace of a (finite dimensional) vector space
V , and ϕ an endomorphism of V mapping V into W , then trϕ “ tr pϕ|W q. (To see this, extend a basis of W
to a basis of V and look at the resulting matrix of ϕ.) ♠

Lemma 2.2.2. If I Ď L is an ideal and κI is the Killing form on I, then

κI “ κ|IˆI .

Proof. If x, y P I, then padxqpad yq is an endomorphism of L, mapping L into I, so remark above says its
trace κpx, yq coincides with the trace κIpx, yq of padxqpad yq|I “ padI xq padI yq. ■
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In general, a symmetric bilinear form βpx, yq is called nondegenerate if its radical radpβq is 0, where
radpβq :“ tx P L | βpx, yq “ 0 for all y P Lu. Alternatively, radpβq “ kerprβq where rβ : L Ñ L˚; rβpxqpyq “

βpx, yq. Because the Killing form is associative, its radical is more than just a subspace: radpkq is an ideal of
L.

Remark 2.2.3. From linear algebra (theory of bilinear form), a practical way to test nondegeneracy is as
follows: Fix a basis x1, . . . , xn of L. Then κ is nondegenerate if and only if the nˆ n matrix whose i, j entry
is κ pxi, xjq has nonzero determinant. ♠

Example 2.2.4. We compute the Killing form of slp2, F q, using the standard basis px, h, yq. The matrices of
adx, adh, ad y are shown in Example 2.1.14. Therefore κ has matrix

»

–

κpx, xq κpx, hq κpx, yq

κph, xq κph, hq κph, yq

κpy, xq κpy, hq κpy, yq

fi

fl “

»

–

0 0 4
0 8 0
4 0 0

fi

fl

with determinant det “ ´128, and κ is nondegenerate. (This is still true so long as char F ‰ 2.) ♣

Theorem 2.2.5 (Cartan’s Second Criterion). Let L be a Lie algebra. Then L is semisimple, i.e., RadpLq “ 0, if
and only if its Killing form κ is nondegenerate.

Proof. Suppose first that Rad L “ 0. Let S be the radical of κ. By definition, trpadx ad yq “ 0 for all
x P S, y P L (in particular, for y P rS, Ssq. According to Cartan’s 1st Criterion, S is solvable. But we remarked
before that S is an ideal of L and RadpLq is the maximal solvable ideal, so S Ă RadL “ 0 ùñ S “ 0, and
κ is nondegenerate.

Conversely, let S “ 0. To prove that L is semisimple, it will suffice to prove that every abelian ideal I of L
is included in S (see Proposition 1.3.8). Suppose x P I, y P L. Then consider padx ad y adx ad yqz for z P L:
ry, rx, ry, zsss P I, so rx, ry, rx, ry, zssss P rI, Is “ 0 and adx ad y adx ad y “ padx ad yq2 “ 0. This means that
adx ad y is nilpotent, hence its matrix can be written as upper-triangular and 0 “ trpadx ad yq “ κpx, yq, so
I Ă S “ 0. ■

The proof shows that we always have S Ă RadL; however, the reverse inclusion need not hold.

2.2.2 Simple Ideals

Definition 2.2.6. A Lie algebra L is said to be the direct sum of ideals I1, . . . , It provided L “ I1 ‘ ¨ ¨ ¨ ‘ It as
direct sum of subspaces. That is Ii X Ij “ 0 if i ‰ j. This condition forces rIi, Ijs Ă Ii X Ij “ 0 if i ‰ j (so the
algebra L can be viewed as gotten from the Lie algebras Ii by defining Lie bracket componentwise).

Theorem 2.2.7. L semisimple ùñ there exists simple ideals Li’s s.t. L “ L1 ‘ . . .‘ Lt. Every simple ideal of
L coincides with one of the Li. Moreover, the Killing form of Li is the restriction of κ to Li ˆ Li.

Proof. As a first step, let I be an arbitrary ideal of L. Then IK “ tx P L | κpx, yq “ 0 for all y P Iu is also an
ideal, by the associativity of κ. Cartan’s Criterion, applied to the Lie algebra I, shows that the ideal I X IK of
L is solvable (hence 0). Therefore, since dim I ` dim IK “ dimL, we must have L “ I ‘ IK.

Now proceed by induction on dimL to obtain the desired decomposition into direct sum of simple ideals.
If L has no nonzero proper ideal, then L is simple already and we’re done. Otherwise let L1 be a minimal
nonzero ideal; by the preceding paragraph, L “ L1 ‘ LK

1 . In particular, any ideal of L1 is also an ideal of L,
so L1 is semisimple (hence simple, by minimality). For the same reason, LK

1 is semisimple; by induction, it
splits into a direct sum of simple ideals, which are also ideals of L. The decomposition of L follows.

Next we have to prove that these simple ideals are unique. If I is any simple ideal of L, then rI, Ls is also an
ideal of I, nonzero because ZpLq “ 0; this forces rI, Ls “ I. On the other hand, rI, Ls “ rI, L1s‘ . . .‘rI, Lts,
so all but one summand must be 0.Say rI, Lis “ I. Then I Ă Li, and I “ Li (because Li is simple).
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The last assertion of the theorem follows from Lemma 2.2.2. ■

Corollary 2.2.8. If L is semisimple, then L “ rL,Ls, and all ideals and homomorphic images of L are semisim-
ple. Moreover, each ideal of L is a sum of certain simple ideals of L.

2.2.3 Abstract Jordan Decomposition

We recall that ad : L Ñ DerpLq Ď glpLq, where DerpLq “ tδ P glpLq|δpra, bsq “ ra, δpbqs ` rδpaq, bs, @a, b P Lu.
Furthermore, adpLq is an ideal of DerpLq. This is because

p˚q @δ P DerpLq, x P L, rδ, adxs “ adpδxq.

proof of (*). We compute

rδ, adxspyq “ pδ adpxqqpyq ´ padxδqpyq

“ δprx, ysq ´ rx, δpyqs

“ rδpxq, ys ´ adpδpxqqpyq

ùñ rδ, adxs “ adpδpxqq

■

Theorem 2.2.9. If L is semisimple, then ad L “ Der L (i.e., every derivation of L is inner).

Proof. Since L is semisimple, the abelian ideal ZpLq is 0. Therefore, L Ñ adL is an isomorphism of Lie
algebras. In particular, M “ adL itself has nondegenerate Killing form (Cartan’s 2nd Criterion). If D “

DerL, we just remarked that rD,M s Ă M . This implies (by Lemma 2.2.2) that κM is the restriction to
M ˆ M of the Killing form κD of D. In particular, if I “ MK is the subspace tδ P D|κDpδ, τq “ 0,@τ P Mu

of D orthogonal to M under κD, then the nondegeneracy of κM ùñ I XM “ 0 ùñ rM, Is Ď M X I “ 0.
If δ P I, then (*) gives adpδpxqq “ 0 for all x P L, so in turn δpxq “ 0, @x P L. Because ad is 1 ´ 1, we have
δ “ 0. Conclusion: I “ 0, Der L “ M “ adL. ■

Proposition 2.2.10. Let A be a finite-dimensional F -algebra. Prove that Lie algebra of derivations DerpAq Ď

glpAq contains the semisimple and nilpotent parts of its elements. That is, given a decomposition

DerpAq Q δ “ ν
loomoon

nilp.

` σ
loomoon

s.s.

,

we have ν, σ P DerpAq.

Proof. See [1] Lemma B of 4.2. ■

We then have a decomposition for element in semisimple Lie algebra (note that our original Jordan decom-
position is for linear Lie algebra L Ď glpV q.)

Proposition 2.2.11 (Abstract Jordan Decomposition). Let L be a semisimple Lie algebra. For each x P L:

D!n, s P L

x “ n` s

adn nilp.
ad s s.s.
rn, ss “ 0
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Proof. As remarked in the proof of above proposition, ad is an isomorphism in this case.

DerpLq “ adL ÐÑ L

adx ÐÝ x

Decompose adx as ν ` σ. ν, σ P DerpLq “ adL ùñ D!n, s s.t. adn “ ν, ad s “ σ due to isomorphic ad.
Thus, adx “ adn ` ad s “ adpn ` sq ùñ x “ n ` s. Besides, 0 “ radn, ad ss “ adrn, ss ùñ rn, ss “ 0
again due to isomorphic ad. ■

We can write s “ xs, n “ xn, and (by abuse of language) call these the semisimple and nilpotent parts of x.
The alert one will object at this point that the notation xs, xn is ambiguous in case L happens to be a linear
Lie algebra. It will be shown that the abstract decomposition of x just obtained does in fact agree with the
usual Jordan decomposition in all such cases. For the moment we shall be content to point out that this is
true in the special case L “ slpV q (dimV ă 8): Write x “ xs ` xn in End V (usual Jordan decomposition),
x P L. Since xn is a nilpotent endomorphism, its trace is 0 and therefore xn P L. This forces xs also to
have trace 0, so xs P L. Moreover, adglpV q xs is semisimple (rmk.2.1.10), so adL xs is a fortiori semisimple;
similarly adL xn is nilpotent (lem.1.3.17), and radL xs, adL xns “ adL rxsxns “ 0. By the uniqueness of the
abstract Jordan decomposition in L, x “ xs ` xn must be it.

2.3 Complete Reducibility of Representations

2.3.1 Modules

A (finite-dimensional) representation of Lie algebra L is a Lie algebra homomorphism

φ : L Ñ glpV q

where V is a finite dimensional F -vector space.

Definition 2.3.1. A vector space V with an operation Lˆ V Ñ V ; px, vq ÞÑ x¨v is an L-module if

• pax` byq¨v “ ax¨v ` by¨v

• x¨pav ` bwq “ ax¨v ` bx¨w

• rx, ys¨v “ x.y.v ´ y.x.v “ x¨py¨vq ´ y¨px¨vq

We have the identification
"

representations
φ : L Ñ glpV q

*

ÐÑ tL´ modulesu

φ ÝÑ x¨v :“ φpxqpvq
ˆ

x ÞÑ

ˆ

V Ñ V
v ÞÑ x¨v

˙˙

ÐÝ x¨v

Definition 2.3.2.

• A homomorphism of L-modules is a linear map ϕ : V Ñ W such that ϕpx.vq “ x.ϕpvq. The kernel
of such a homomorphism is then an L-submodule of V (a vector subspace with operation closed in it).
When ϕ is an isomorphism of vector spaces, we call it an isomorphism of L-modules; in this case, the
two modules are said to afford equivalent representations of L. The standard isomorphism theorems all go
through without difficulty.
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• An L-module V is called irreducible if it has precisely two L-submodules (itself and 0). We do not regard
a zero dimensional vector space as an irreducible L-module. Every one dimensional vector space on which
L acts is an irreducible L-module (because one-dimensional vector space does not have any nonzero proper
subspace.)

• V is called completely reducible if V is a direct sum of irreducible L-submodules, or equivalently (Exercise
2.3.3), if each L-submodule W of V has a complement W 1 (an L-submodule such that V “ W ‘ W 1).
When W,W 1 are arbitrary L-modules, we can of course make their direct sum an L-module in the obvious
way, by defining x. pw,w1q “ px.w, x.w

1q. These notions are all standard and also make sense when
dimV “ 8.

• The terminology “irreducible” and “completely reducible” applies equally well to representations of L.
Namely, a representation ϕ : L Ñ glpV q is irreducible and completely reducible if the corresponding
L-module is irreducible and completely reducible respectively.

Exercise 2.3.3. Let V be an L-module. Prove that V is a direct sum of irreducible submodules if and only if
each L-submodule of V possesses a complement.

Let L be a Lie algebra. It is an L-module corresponding to the adjoint representation ad : L Ñ glpLq. An
L-submodule is just an ideal, so it follows that the L-module arising in this way with L a simple algebra is
irreducible, and if L is semisimple, the module is completely reducible.

Suppose that S and T are irreducible Lie modules and that θ : S Ñ T is a non-zero module homomorphism.
Then Im θ is a non-zero submodule of T , so im θ “ T . Similarly, ker θ is a proper submodule of S, so
ker θ “ 0. It follows that θ is an isomorphism from S to T , so there are no non-zero homomorphisms
between non-isomorphic irreducible modules.

Now we consider the homomorphism from an irreducible module to itself.

Lemma 2.3.4 (Schur’s Lemma). Let L be a Lie algebra and let S be a finite-dimensional irreducible L-module
over V . Then A map θ : S Ñ S is an L-module homomorphism if and only if θ is a scalar multiple of the identity
transformation; that is, θ “ λ1S for some λ P F

Remark 2.3.5. θ : S Ñ S is an L-module homomorphism by definition means @x P L, @v P V , θpx.vq “

x.pθpvqq. If we let ϕ : L Ñ glpV q be the corresponding representation of S, then this condition means @x P L,
@v P V , θpϕpxqpvqq “ ϕpxqpθpvqq, or @x P L, rθ, ϕpxqs “ 0. Thus, an L-module homomorphism θ : S Ñ S is
precisely an endomorphism θ P glpV q that commutes with every ϕpxq in Impϕq. ♠

Proof. The “if” direction should be clear. For the “only if” direction, suppose that θ : S Ñ S is an L-module
homomorphism. Then θ P glpV q. As a matrix with entries in algebraically closed field, it has at least one
eigenvector ξ with an eigenvalue λ. Now θ´λ1S is also an L-module homomorphism. The kernel of this map
contains ξ and is thus a nonzero submodule of S. As S is irreducible, S “ ker pθ ´ λ1Sq; that is, θ “ λ1S . ■

Constructions of L-modules:

Let V and W be f.d. L-modules.

• The dual vector space

V ˚ “ tf : V Ñ F | f is linear u

is an L-module if we define for f P V ˚, v P V, x P L : px.fqpvq “ ´fpx.vq. The first two axioms are
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immediate. The third is true as

prx, ys¨fqpvq “ ´fprx, ys¨vq

“ ´fpx¨y¨v ´ y¨x¨vq

“ ´fpx¨y¨vq ` fpy¨x¨vq

“ px¨fqpy¨vq ´ py¨fqpx¨vq

“ ´py¨x¨fqpvq ` px¨y¨fqpvq

“ ppx¨y ´ y¨xq¨fqpvq

• If V,W are L-modules, let V bW be the tensor product over F of the underlying vector spaces. Recall
that if V,W have respective bases pv1, . . . , vmq and pw1, . . . , wnq, then V b W has a basis consisting
of the mn vectors vi b wj . One recalls how to give a module structure to the tensor product of two
modules for a group G: on the generators v b w, require g.pv b wq “ g.v b g.w. For Lie algebras the
correct definition is gotten by “differentiating” this one: x.pv bwq “ x.v bw ` v b x.w. As before, the
crucial axiom to verify is the third axiom:

rx, ys¨pv b wq “ rx, ys.v b w ` v b rx, ys.w

“ px.y.v ´ y.x.vq b w ` v b px.y.w ´ y.x.wq

“ px.y.v b w ` v b x.y.wq ´ py.x.v b w ` v b y.x.wq

Expanding px.y ´ y.xq¨pv b wq yields the same result.

Remark 2.3.6. There is a canonical isomorphism θ : V ˚ b V Ñ EndpV q by θpf, vqpwq “ pfpwqqpvq. We can
use this som. to nuke EndpV q into an L-module:

x¨θpf, vq :“ θpx¨f, vq ` θpf, x¨vq

Note that x¨θpf, vq acts on w P V by
»

—

–

PL
hkkikkj

x ¨

PEndpV q
hkkikkj

θpf, vq

fi

ffi

fl

pwq “

»

—

–

θp

V ˚ L´mod
hkkikkj

x.f , vq

fi

ffi

fl

pwq `

»

–θpf,

V L´mod
hkkikkj

x.v q

fi

fl pwq

“ px.fqpwqv ` fpwqpx.vq

“ ´fpx.wqv ` x.pfpwqvq

“ ´θpf, vqpx.wq ` x.pθpf, vqpwqq

Thus, the action of L on φ P EndpV q is given by

px¨φqpwq “ x¨φpwq ´ φpx¨wq

♠

Remark 2.3.7. More generally, if V and W are two L-modules, then L acts naturally on φ P HompV,W q –

V ˚ bW of linear maps by the same rule

px¨φqpwq “ x¨φpwq ´ φpx¨wq

♠

Exercise 2.3.8. Check that above action satisfies the three axioms of L-module action.

Exercise 2.3.9. If φ : L Ñ glpV q is a representation and x “ s ` n is the Jordan decomposition then φpxq “

φpsq ` φpnq is the Jordan decomposition of φpxq.
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2.3.2 Casimir Element of a Representation

Field F , algebraically closed, charpF q “ 0.

A representation φ : L Ñ glpV q is faithful if kerφ “ 0

Given a faithful representation φ of semisimple L, we define

βφ : Lˆ L Ñ F

βφpx, yq “ trpφpxqφpyqq.

Remark 2.3.10.

(1) βφ is a symmetric bilinear form on L.

(2) βφ is associative: βφprx, ys, zq “ βφpx, ry, zsq due to Remark 2.1.12 (4).

(3) Thus its radical Sφ “ tx P L | βφpx, yq “ 0, @y P Lu is an ideal of L.

(4) βad “ k is the Killing form.

(5) βφ is nondegenerate, i.e., Sφ “ 0:
Since φ is faithful, we see φ : Sφ Ñ φpSφq is bijective, so @x1, y1 P φpSφq, we can find x, y P Sφ s.t.
x1 “ φpxq, y1 “ φpyq and trpφpxqφpyqq “ βφpx, yq “ 0. Proposition 2.1.15 then says that φpSφq – Sφ is
solvable. Thus, Sφ, as an ideal of semisimple L, is 0.

♠

Basic setting:

Now let L be semisimple, β any nondegenerate symmetric associative bilinear form on L. If px1, . . . , xnq is a
basis of L, there is a uniquely determined basis of L py1, . . . , ynq relative to β, satisfying β pxi, yjq “ δij . (β
nondegenerate so we have isomorphism rβ : L Ñ L˚; y ÞÑ βp ¨ , yq. Then for basis xi of L, there is a unique
dual basis θj of L˚ s.t. θjpxiq “ δij . Now take yj “ rβpθjq, i.e., θj “ βp ¨ , yjq. The yj ’s serve the unique basis
of L determined by xi’s wrt β s.t. βpxi, yjq “ δij .)

Lemma 2.3.11. If x P L, we can write rx, xis “
ř

j aijxj and rx, yis “
ř

j bijyj . Using the associativity of β,
we compute:

aik “
ÿ

j

aijβ pxj , ykq “ β prx, xis , ykq “ β p´ rxi, xs , ykq “ β pxi,´ rx, yksq “ ´
ÿ

j

bkjβ pxi, yjq “ ´bki.

Definition 2.3.12. Let pxiq and pyiq be bases of L wrt β as above. The Casimir operator of a representation
φ : L Ñ glpV q is the linear map

cφ “ cφpβq :“
n
ÿ

i“1

φ pxiqφ pyiq P glpV q

Lemma 2.3.13.

(1) cφ commutes with φpxq @x P L

(2) tr pcφq “ dimL.
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Proof. (1):
rφpxq, cφs “

ÿ

i

rφpxq, φ pxiqφ pyiqs

“
ÿ

i

rφpxq, φ pxiqsφ pyiq `
ÿ

i

φ pxiq rφpxq, φ pyiqs

“
ÿ

ij

aijφ pxjqφ pyiq `
ÿ

i

φ pxiq bijφ pyjq

“
ÿ

ij

paij ` bjiqφ pxjqφ pyiq

“ 0.

where for the second step we used

rx, yzs “ xyz ´ yzx “ xyz ´ yxz ` yxz ´ yzx “ rx, ysz ` yrx, zs.

(2):
tr pcφq “

ÿ

i

tr pφ pxiqφ pyiqq

“

n
ÿ

i“1

β pxi, yiq “ n “ dimL.

■

Remark 2.3.14. In case φ is also irreducible, Schur’s Lemma implies that cφ is a scalar (equal to dimL{dimV ,
in view of (2)); in this case we see that cφ is independent of the basis of L which we chose. ♠

Example 2.3.15. L “ slp2, F q, V “ F 2, φ the identity map L Ñ glpV q. Let px, h, yq be the standard basis of
L. It is quickly seen that the dual basis relative to the trace form is py, h{2, xq, so cφ “ xy ` p1{2qh2 ` yx “
´

3{2 0
0 3{2

¯

. Notice that 3{2 “ dimL{dimV . ♣

2.3.3 Weyl’s Theorem

Lemma 2.3.16. Let φ : L Ñ glpV q be a representation of a semisimple Lie algebra L. Then φpLq Ď slpV q. In
particular, semisimple L acts trivially on any one-dimensional L-module.

Proof. Semisimplicity implies L “ rL,Ls. Then φpLq “ φprL,Lsq Ď rglpV q, glpV qs “ slpV q. When V is
one-dimensional, slpV q – sl1pF q “ t0u. ■

Theorem 2.3.17 (Weyl). Let ϕ : L Ñ glpV q be a (finite dimensional) representation of a semisimple Lie
algebra. Then ϕ is completely reducible.

Proof. special case: V has an L-submodule W of codimension one.

By the lemma, L acts trivially on V {W , so we may denote this module F without misleading the reader:
0 Ñ W Ñ V Ñ F Ñ 0 is therefore exact. Using induction on dimW , we can reduce to the case where
W is an irreducible L-module, as follows. Let W 1 be a proper nonzero submodule of W . This yields an
exact sequence: 0 Ñ W {W 1 Ñ V {W 1 Ñ F Ñ 0. By induction, this sequence “splits”, i.e., there exists a
one dimensional L-submodule of V {W 1 (say ĂW {W 1 ) complementary to W {W 1. So we get another exact
sequence: 0 Ñ W 1 Ñ ĂW Ñ F Ñ 0. This is like the original situation, except that dimW 1 ă dimW , so
induction provides a (one dimensional) submodule X complementary to W 1 in ĂW : ĂW “ W 1 ‘ X. But
V {W 1 “ W {W 1 ‘ ĂW {W 1. It follows that V “ W ‘ X, since the dimensions add up to dimV and since
W XX “ 0.
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further case: Now we may assume that W is irreducible. (We may also assume without loss of generality that
L acts faithfully on V .)

Let c “ cϕ be the Casimir element of ϕ. Since c commutes with ϕpLq, c is actually an L-module endomorphism
of V ; in particular, cpW q Ă W and Ker c is an L-submodule of V . Because L acts trivially on V {W (i.e., ϕpLq

sends V into W ), c must do likewise (as a linear combination of products of elements ϕpxq ). So c has trace
0 on V {W . On the other hand, c acts as a scalar on the irreducible L-submodule W (Schur’s Lemma); this
scalar cannot be 0, because that would force TrV pcq “ 0, contrary to lemma 2.3.13. It follows that Ker c is a
one dimensional L-submodule of V which intersects W trivially. This is the desired complement to W .

fgeneral case: Let W be a nonzero submodule of V : 0 Ñ W Ñ V Ñ V {W Ñ 0. Let HompV,W q be the space
of linear maps V Ñ W , viewed as L-module (6.1). Let V be the subspace of Hom pV,W q consisting of those
maps whose restriction to W is a scalar multiplication. V is actually an L-submodule: Say f |W “ a.1W ; then
for x P L,w P W , px.fqpwq “ x.fpwq ´ fpx.wq “ apx.wq ´ apx.wq “ 0, so x. f |w “ 0. Let W be the subspace
of V consisting of those f whose restriction to W is zero. The preceding calculation shows that W is also
an L-submodule and that L maps V into W . Moreover, V | W has dimension one, because each f P V is
determined (modulo W ) by the scalar f |W . This places us precisely in the situation 0 Ñ W Ñ V Ñ F Ñ 0
already treated above.

According to the first part of the proof, V has a one dimensional submodule complementary to W . Let
f : V Ñ W span it, so after multiplying by a nonzero scalar we may assume that f |W “ 1W . To say that L
kills f is just to say that 0 “ px.fqpvq “ x.fpvq ´ fpx.vq, i.e., that f is an L-homomorphism. Therefore Ker f
is an L-submodule of V . Since f maps V into W and acts as 1W on W , we conclude that V “ W ‘Ker f , as
desired. ■

2.3.4 Preservation of Jordan Decomposition

We promised to show the following result to resolve the ambiguity of usual and abstract Jordan decomposi-
tions of semisimple linear Lie algebra.

Theorem 2.3.18. Let L Ă glpV q be a semisimple linear Lie algebra (V finite dimensional). Then L contains
the semisimple and nilpotent parts in glpV q of all its elements. In particular, the abstract and usual Jordan
decompositions in L coincide.

Proof. The last assertion follows from the first, because each type of Jordan decomposition is unique.

Let x P L have ordinary Jordan decomposition x “ xs ` xn in glpV q. Then

adx “ adxs ` adxn

is the Jordan decomposition of adx inside End pglpV qq. The statement is just to show xn, xs P L.

Since padxqpLq Ă L, it follows from Cor.2.1.9 that padxsqpLq Ă L and padxnqpLq Ă L, where ad “ adglpV q.
In other words, xs, xn P normalizer NglpV qpLq “ N , which is a Lie subalgebra of glpV q including L as an
ideal. If we could show that N “ L we’d be done, but unfortunately this is false: e.g., since L Ă slpV q

(Lemma 2.3.16), the scalars lie in N but not in L. Therefore we need to get xs, xn into a smaller subalgebra
than N , which can be shown to equal L. If W is any L-submodule of V , define

LW “ ty P glpV q | ypW q Ă W and tr py|W q “ 0u .

For example, LV “ slpV q. Then L Ď LW because W is an L-submodule and for x P L,

tr px|W q
L“rL,Ls

ùùùùùùù tr p ry, zs|W q

“ tr pz|W y|W ´ y|W z|W q “ 0.
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Set L1 “intersection of N with all spaces LW :

L1 “ N X

¨

˚

˝

č

L´submod
WĎV

Lw

˛

‹

‚

Clearly, L1 is a subalgebra of N including L as an ideal (but notice that L1 excludes the scalars). Even more
is true: If x P L, then xs, xn also lie in LW , and therefore in L1.

It remains to prove that L “ L1. L1 being a finite dimensional L-module and L is an ideal of L1, Weyl’s
Theorem permits us to write L1 “ L‘M for some L-submodule M . But rL,L1s Ă L (since L1 Ă N ), so the
action of L on M is trivial. Let W be any irreducible L-submodule of V . If y P M , then rL, ys “ 0, so Schur’s
Lemma implies that y acts on W as a scalar. On the other hand, tr py|W q “ 0 because y P LW . Therefore y
acts on W as zero. V can be written as a direct sum of irreducible L-submodules (by Weyl’s Theorem), so in
fact y “ 0. This means M “ 0, L “ L1. ■

Corollary 2.3.19. Let L be a semisimple Lie algebra, ϕ : L Ñ glpV q a (finite dimensional) representation of
L. If x “ s ` n is the abstract Jordan decomposition of x P L, then ϕpxq “ ϕpsq ` ϕpnq is the usual Jordan
decomposition of ϕpxq.

Proof. By Cor.2.2.8, ϕpLq is semisimple. Thus, it makes sense to talk about the abstract Jordan decomposition
of ϕpxq. Then our strategy is to show ϕpxq “ ϕpsq ` ϕpnq is the abstract Jordan decomposition of ϕpxq. Then
Theorem 2.3.18 concludes.

We show adϕpLq ϕpsq is semisimple and adϕpLq ϕpnq is nilpotent.

ad s is semisimple, so it is diagonalizable and its eigenvectors e1, ¨ ¨ ¨ , en are linearly independent and form
a basis for L. Then ϕpe1q, ¨ ¨ ¨ , ϕpenq are eigenvectors for adϕpLq ϕpsq and are linearly independent, spanning
the algebra ϕpLq:

`

adϕpLq ϕpsq
˘

pϕpeiqq “ rϕpsq, ϕpeiqs “ ϕprs, eisq “ λiϕpeiq

Thus, adϕpLq ϕpsq is diagonalizable, i.e., semisimple.

adn is nilpotent, so padnqm “ 0 for some m ą 0. Then, for all y P L,

padϕpLq ϕpnqqmϕpyq “ rϕpnq, rϕpnq, . . . , rϕpnq, ϕpyqs . . .ss

“ ϕprn, rn, . . . , rn, ys . . .ssq

“ ϕ ppadnqmyq “ 0

As ϕ : L Ñ ϕpLq is surjective, i.e., every element in ϕpLq is of the form ϕpyq, this shows that padϕpLq ϕpnqqm P

glpϕpLqq is 0. Thus, adϕpLq ϕpnq is nilpotent.

Moreover, adϕpLq ϕpsq and adϕpLq ϕpnq commute:

radϕpLq ϕpsq, adϕpLq ϕpnqs “ adϕpLqrϕpsq, ϕpnqs “ adϕpLq θprs, nsq “ 0

By uniqueness of abstract Jordan decomposition 2.2.11, we see ϕpsq ` ϕpnq is the abstract Jordan decompo-
sition of ϕpxq. ■

2.4 Representation of slp2, F q

In this section, L denotes slp2, F q with standard basis px, h, yq.

x “

„

0 1
0 0

ȷ

, y “

„

0 0
1 0

ȷ

, h “

„

1 0
0 ´1

ȷ

,
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Let V be an arbitrary L-module. We have the corresponding representation

ϕ : L Ñ glpV q

x ÞÑ

ˆ

ϕx : V Ñ V
v ÞÑ x¨v

˙

By Cor.2.3.19, h semisimple ñ ϕh is semisimple, i.e., the endomorphism ϕh : v ÞÑ x¨v acts diagonally on V .
We can then write V as a direct sum of eigenspaces Vλ :“ tv P V |x.v “ λvu of ϕh. The expression Vλ still
makes sense if λ is not an eigenvalue of ϕh (then Vλ “ 0). When Vλ ‰ 0 for a λ P F , we call λ a weight of h
in V and we call Vλ a weight space. We have

V “
à

λPF

Vλ.

Note that the linear Lie algebras L Ď glpV q are naturally L-modules with obvious actions on V . In that case,
a weight space is the same as an eigenspace.

Example 2.4.1. L denotes slp2, F q with standard basis px, h, yq. We compute the weight spaces for h. Let
v P Vλ, then

h.px.vq “ rh, xs.v ` x.h.v “ 2x.v ` λx.v “ pλ` 2qx.v

and
h.py.vq “ rh, ys.v ` y.h.v “ ´2y.v ` λy.v “ pλ´ 2qy.v

Thus, x.v P Vλ`2 and y.v P Vλ´2. ♣

Remark 2.4.2. Since there are finite number of weight spaces, we see Dλ s.t. Vλ ‰ 0 and Vλ`2 “ 0. Then,
pick v P Vλ and we have x.v P Vλ`2 “ 0 ùñ x.v “ 0.

For such λ, any nonzero vector in Vλ will be called a maximal vector of weight λ. ♠

2.4.1 Module Vd

We construct a family of irreducible representations of slp2, F q. Consider the vector space F rX,Y s of poly-
nomials in two variables X,Y with complex coefficients. For each integer d ě 0, let Vd be the subspace
of homogeneous polynomials in X and Y of degree d. So V0 is the 1-dimensional vector space of constant
polynomials, and for d ě 1, the space Vd has as a basis the monomials Xd, Xd´1Y, . . . ,XY d´1, Y d. This
basis shows that Vd has dimension d` 1 as a F -vector space.

We now make Vd into an slp2, F q-module by specifying a Lie algebra homomorphism φ : slp2, F q Ñ gl pVdq.
Since slp2, F q is linearly spanned by the matrices x, y, h, the map φwill be determined once we have specified
φpxq, φpyq, φphq.

We let
φpxq :“ X

B

BY

that is, φpxq is the linear map which first differentiates a polynomial with respect to Y and then multiplies it
with X. This preserves the degrees of polynomials and so maps Vd into Vd. Similarly, we let

φpyq :“ Y
B

BX

Finally, we let

φphq :“ X
B

BX
´ Y

B

BY

Notice that
φphq

`

XaY b
˘

“ pa´ bqXaY b
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so h acts diagonally on Vd with respect to our chosen basis. For any v “
ř

a`b“d cabX
aY b P Vd, we see that

φphqpvq “
ř

a`b“d cadpa ´ bqXaY b. To let v be an eigenvector, we need a ´ b “ a1 ´ b1 for all pairs. But
a ` b “ a1 ` b1 “ d forces a “ a1, b “ b1. Thus, any candidate v P Vd for an eigenvector of φphq must be a
multiple of a basis of Vd. The eigenspaces of φphq are all one-dimensional.

Note also
φpxq

`

XaY b
˘

“ bXa`1Y b´1

φpyq
`

XaY b
˘

“ aXa´1Y b`1

Proposition 2.4.3. With these definitions, φ is a representation of slp2, F q.

Proof. See [4] Theorem 8.1. ■

It can be useful to know the matrices of φpxq, φpyq, φphq on Vd wrt. the basis Xd, Xd´1Y, . . . , Y d of Vd. They
are

¨

˚

˚

˚

˚

˚

˝

0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . d
0 0 0 . . . 0

˛

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˝

0 0 . . . 0 0
d 0 . . . 0 0
0 d´ 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

˛

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˝

d 0 . . . 0 0
0 d´ 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ´d` 2 0
0 0 . . . 0 ´d

˛

‹

‹

‹

‹

‹

‚

where the diagonal entries of the last are the numbers d´ 2k, where κ “ 0, 1, . . . , d.

Another way to represent the action of x, y, h on Vd is to draw a diagram like

‚

´d
d

##

0

^^ ‚

´d`2
d´1

$$

1

cc ¨ ¨ ¨

3

##

2

cc ‚

d´4

d´2

dd

2

%%
‚

d´2

d´1

ee

1

##
‚

d
0

��

d

cc

Y d XY d´1 ¨ ¨ ¨ Xd´2Y Xd´1Y Xd

where loops represent the action of h, arrows to the right represent the action of x, and arrows to the left
represent the action of y.

The diagram above show that slp2, F q-submodule of Vd generated by any particular basis element XaY b

contains all the basis elements and so is all of Vd. In general, if S is any non-zero slp2, F q-submodule of Vd.
Then h.s P S for all s P U . We saw h acts diagonalizably on Vd, it also acts diagonalizably on S, so there is
an eigenvector of h which lies in S. We have seen that all eigenspaces of h on Vd are one-dimensional, and
each eigenspace is spanned by some monomial XaY b, so the submodule S must contain some monomial,
and by the observation on diagram remarked just now, S contains a basis for Vd. Hence S “ Vd. We thus
showed the following.

Proposition 2.4.4. Vd is an irreducible slp2, F q-module.

Exercise 2.4.5. ( [4] ex.8.2) Find explicit isomorphisms between

(i) the trivial representation of slp2,Cq and V0;

(ii) the natural representation of slp2,Cq and V1;

(iii) the adjoint representation of slp2,Cq and V2.

Exercise 2.4.6. ( [4] ex.8.3) Show that the subalgebra of slp3,Cq consisting of matrices of the form
¨

˝

‹ ‹ 0
‹ ‹ 0
0 0 0

˛

‚
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is isomorphic to slp2,Cq. We may therefore regard slp3,Cq as a module for slp2,Cq, with the action given by
x ¨ y “ rx, ys for x P slp2,Cq and y P slp3,Cq. Show that as an slp2,Cq-module

slp3,Cq – V2 ‘ V1 ‘ V1 ‘ V0.

2.4.2 Classification of Irreducible slp2, F q-Modules

Let L “ slp2, F q. We recall some representations of L.

• We have seen in Lemma 2.3.16 that a 1-dim representation of semisimple Lie algebra is trivial. Thus,
a representation ϕ : L Ñ glpV q with dimV “ 1 has image Impϕq “ 0.

• We have also seen in example 2.3.15 the 2-dim representation of L by the inclusion map ϕ : L Ñ L Ď

glpF 2q – glp2, F q.

• Since dimL “ dim slp2, F q “ 3, we see ad : L Ñ glpLq is a 3-dim representation of L.

• For general dimension, we have seen Vd is an irreducible representation of L with dimension d` 1.

In fact, it can be shown that every irreducible slp2, F q-module is isomorphic to Vd with some d (see [4]
Theorem 8.5).

Let V be any irreducible L-module. We choose a maximal vector v0 P Vλ (recall that the λ is such that Vλ ‰ 0
and Vλ`2 “ 0). We set v´1 “ 0, vi “

`

1
i!

˘

yi¨v0 for i ě 0. Then one can compute that

Lemma 2.4.7.

(a) h.vi “ pλ´ 2iqvi

(b) y.vi “ pi` 1qvi`1,

(c) x.vi “ pλ´ i` 1qvi´1 for i ě 0.

Proof. See [1] Lemma 7.2. ■

(a) shows that all nonzero vi are linearly independent. But dimV ă 8. Let m be the smallest integer for
which vm ‰ 0, vm`1 “ 0; evidently vm`i “ 0 for all i ą 0. Taken together, formulas (a)-(c) show that
the subspace of V with basis pv0, v1, . . . , vmq is an L-submodule, different from 0. Because V is irreducible,
this subspace must be all of V . Moreover, relative to the ordered basis pv0, v1, . . . , vmq, the matrices of the
endomorphisms ϕx, ϕy, ϕh representing x, y, h can be written down explicitly; notice that h yields a diagonal
matrix, while x and y yield (respectively) upper and lower triangular nilpotent matrices (see what we did
for Vd for example.)

A closer look at formula (c) reveals a striking fact: for i “ m ` 1, the left side is 0, whereas the right side
is pλ ´ mqvm. Since vm ‰ 0, we conclude that λ “ m. In other words, the weight of a maximal vector is
a nonnegative integer (one less than dimV ). We call it the highest weight of V . Moreover, each weight µ
occurs with multiplicity one (i.e., dimVµ “ 1 if Vµ ‰ 0), by formula (a); in particular, since V determines λ
uniquely pλ “ dimV ´ 1q, the maximal vector v0 is the only possible one in V (apart from nonzero scalar
multiples). To summarize :

Theorem 2.4.8. Let V be an irreducible module for L “ slp2, F q.

(a) Relative to h, V is the direct sum of weight spaces Vµ, µ “ m,m ´ 2, . . . ,´pm ´ 2q,´m, where m ` 1 “

dimV and dimVµ “ 1 for each µ.

(b) V has (up to nonzero scalar multiples) a unique maximal vector, whose weight (called the highest weight
of V ) is m.
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(c) The action of L on V is given explicitly by the above formulas, if the basis is chosen in the prescribed
fashion. In particular, there exists at most one irreducible L-module (up to isomorphism) of each possible
dimension m` 1, m ě 0

Corollary 2.4.9. Let V be any (finite dimensional) L-module, L “ slp2, Fq. Then the eigenvalues of h on V are
all integers, and each occurs along with its negative (an equal number of times). Moreover, in any decomposition
of V into direct sum of irreducible submodules, the number of summands is precisely dimV0 ` dimV1

Proof. If V “ 0, there is nothing to prove. Otherwise use Weyl’s Theorem to write V as direct sum of
irreducible submodules. The latter are described by the theorem, so the first assertion of the corollary is
obvious. For the second, just observe that each irreducible L-module has a unique occurrence of either the
weight 0 or else the weight 1 (but not both). ■

2.5 Root Space Decomposition

L: f.d s.s Lie alg over F with F “ F̄ and charpF q “ 0. We will study the structure of such L in this section.
Further abusing the notation for s, n as in the abstract Jordan decomposition, in a semisimple Lie algebra L,
we will say an ad-nilpotent element nilpotent and an ad-s.s. element semisimple.

2.5.1 Maximal Toral Subalgebras and Roots

Definition 2.5.1. A Lie subalgebra H Ď L is toral if all its elements are semisimple.

Lemma 2.5.2. Toral subalgebras exist. There exists some element x P L such that x is semisimple. Then F txu

toral.

Lemma 2.5.3. A toral subalgebra of L is abelian.

Proof. Let H Ď L be a toral subalg. Let x P H, we must show rx, ys “ 0, @y P H; i.e., adH x “ 0. Since
adH x is semistmple, it suffices to show all its e.values (eigenvalues) are all 0: Let y P H be an e.vector
(eigenvector) of adH x, so rx, ys “ padH xq pyq “ αy for some α P F . We have ry, xs “ ´αy ñ padH yq pxq “

´αy ùñ padH yq
2

pxq “ 0. Since adHy is semsimple, so there exists a basis tx1, . . . , xnu consisting of e-vec
of adH y. Let x “

ř

i cixi with ci P F .

padH yq pxq “
ÿ

i

ciλixi, λi ‰ 0

ñ 0 “ padH yq
2

pxq “
ÿ

i

ciλ
2
ixi

ñ ciλ
2
i “ 0, @i

ñ ci “ 0, @i s.t λi ‰ 0

Thus, ´αy “ padH yq pxq “
ř

i ciλixi “ 0 ñ α “ 0. ■

Let H be a maximum toral subalgebra, i.e., a toral subalgebra not properly contained in any other. Then,
the matrices tadH h : h P Hu are simutinuasly diagonalizable. Thus, L decomposes:

L “
à

αPH˚

Lα, where Lα “ tx P L|rh, xs “ αphqx,@h P Hu .

where H˚ is the dual space of H. Notes:

(1) L0 “ CLpHq.

(2) H Ď L0 by the lemma.
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(3) If 0 ‰ α P H˚ s.t. Lα ‰ 0, then α is a root of L relative to H. Let Φ Ď H˚ be the set of roots.

Definition 2.5.4. The root space decomposition of L is

L “ CLpHq ‘
à

αPΦ

Lα

Proposition 2.5.5. For all α, β P H˚,

(1) rLα, Lβs Ă Lα`β .

(2) If x P Lα, α ‰ 0, then ad x is nilpotent.

(3) If α, β P H˚, and α ` β ‰ 0, then Lα is orthogonal to Lβ , relative to the Killing form κ of L.

Proof. (1) follows from the Jacobi identity: x P Lα, y P Lβ , h P H imply that ad hprx, ysq “ rrh, xs, ys `

rx, rh, yss “ αphqrx, ys ` βphqrx, ys “ pα ` βqphqrx, ys.

(2): Dk ą 0 s.t. Lα`β “ 0, @β P Φ and
β “ 0 ñ padxqk “ 0

(3): Find h P H for which pα` βqphq ‰ 0. Then if x P Lα, y P Lβ , associativity of the form allows us to write
κprh, xs, yq “ ´κprx, hs, yq “ ´κpx, rh, ysq, or αphqκpx, yq “ ´βphqκpx, yq, or pα ` βqphqκpx, yq “ 0. This
forces κpx, yq “ 0. ■

Corollary 2.5.6. The restriction of the Killing form to L0 “ CLpHq is nondegenerate.

Proof. We know from Theorem 2.2.5 that κ is nondegenerate. Let z P L0 and suppose κ pz, L0q “ 0.
Proposition (3) ñ κ pz, Lαq “ 0, @α P Φ, so kpz, Lq “ 0 ñ z “ 0. ■

Definition 2.5.7. A Cartan subalgebra (CSA) of a Lie algebra L is a nilpotent subalgebra H of L that equals
to the normalizer of it in L, i.e., NLpHq “ H.

Remark 2.5.8. If L is semisimple, then maximal toral subalgebra H is a CSA of L. (HW). Furthermore, CSA
ñ maximal toral. ♠

2.5.2 Centralizer of H

We shall need a fact from linear algebra, whose proof is trivial:

Lemma 2.5.9. If x, n are commuting endomorphisms of a finite dimensional vector space, with n nilpotent,
then xn is nilpotent; in particular, trpxnq “ 0.

Remark 2.5.10. If H is a toral subalgebra with H “ CLpHq, then H is maximal: suppose H “ CLpHq Ĺ H 1

with H 1 another toral subalgebra, then Lemma 2.5.3 implies that H 1 is abelian, so every element in H 1

commutes with every element in H Ĺ H 1. In particular, H 1 Ď CLpHq. Thus, H has to be maximal. ♠

Proposition 2.5.11. Let H be a maximal toral subalgebra of L. Then H “ CLpHq.

Proof. Let C “ CLpHq.

(1) We show that given abstract decomposition of x P C by x “ s` n, we have s, n P C:

Then the Jordan decomposition of adx is ad s ` adn. x P C ñ rx,Hs “ 0 ñ padxqpHq “ 0 ñ padnqpHq “

0, pad sqpHq “ 0 ñ n, s P C

(2) If x P C semisimple, then x P H.
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x s.s. ñ H ` F txu is abelian and thus toral as sum of commuting semisimple elements is again semisimple
by remark 2.1.6. By maximality of H, we see x P H.

(3) The restriction of κ to H is nondegenerate.

That is, if κph,Hq “ 0 for some h P H then we must show that h “ 0. If x P C is nilpotent, then the fact that
rx,Hs “ 0 and the fact that ad x is nilpotent together imply (by the above lemma) that trpadx ad yq “ 0 for
all y P H, or

p˚q : κpx,Hq “ 0

We then claim that κph,Hq “ 0 ùñ κph,Cq “ 0. Indeed, for x “ s ` n P C, we have κph, s ` nq “

κph, sq ` κph, nq. The second part is zero because (2) ñ n P C and p˚q; the first part being zero because of
(1) and the given condition κph,Hq “ 0.

Now, Corollary 2.5.6 implies h “ 0.

(4) C is nilpotent.

If x P C is semisimple, then x P H by (2), and adCxp“ 0q is certainly nilpotent, so semisimple elements are
nilpotent in C. On the other hand, if x P C is nilpotent, then adC x is nilpotent. Now let x P C be arbitrary,
x “ xs ` xn. Since both xs, xn lie in C by (1), adC x is the sum of commuting nilpotents and is therefore
itself nilpotent by remark 2.1.6. By Engel’s Theorem, C is nilpotent.

(5) H X rC,Cs “ 0.

Since κ is associative and rH,Cs “ 0, κpH, rC,Csq “ 0. Now use (3).

(6) C is abelian.

Otherwise rC,Cs ‰ 0. C being nilpotent, by (4), ZpCqX rC,Cs ‰ 0 (Lemma 1.3.22). Let z ‰ 0 lie in this
intersection. By (2) and (5), z cannot be semisimple. Its nilpotent part n is therefore nonzero and lies in C,
by (1), hence also lies in ZpCq by Corollary 2.1.9. But then our lemma implies that κpn,Cq “ 0, contrary to
Corollary 2.5.6.

(7) C “ H.

Otherwise C contains a nonzero nilpotent element, x, by (1), (2). According to the lemma and (6), κpx, yq “

trpadx ad yq “ 0 for all y P C, contradicting Corollary 2.5.6.

■

Corollary 2.5.12. The restriction of κ to H is nondegenerate.

The corollary allows us to identify H with H˚ canonically:

H Ñ H˚

h ÞÑ κph, ¨ q

This is an isomorphism by Riesz representation theorem (see [2] Theorem 11.5), so for each ϕ P H˚ corre-
sponds the (unique) element tϕ P H satisfying ϕphq “ κ ptϕ, hq for all h P H. In particular, Φ corresponds to
the subset ttα;α P Φu of H.

2.5.3 Orthogonality Properties

In this subsection we shall obtain more precise information about the root space decomposition, using the
Killing form. We already saw in Proposition 2.5.5 that κ pLα, Lβq “ 0 if α, β P H˚, α ` β ‰ 0; in particular,
κ pH,Lαq “ 0 for all α P Φ, so that (Proposition 2.5.11) the restriction of κ to H is nondegenerate.

Proposition 2.5.13.
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(a) Φ spans H˚.

(b) If α P Φ, then ´α P Φ.

(c) Let α P Φ, x P Lα, y P L´α. Then rx, ys “ κpx, yqtα.

(d) If α P Φ, then rLα, L´αs is one dimensional, with basis tα.

(e) α ptαq “ κ ptα, tαq ‰ 0, for α P Φ.

(f) If α P Φ and xα is any nonzero element of Lα, then there exists yα P L´α such that xα, yα, hα “ rxα, yαs

span a three dimensional simple subalgebra of L isomorphic to slp2, F q via xα ÞÑ p 0 1
0 0 q , yα ÞÑ p 0 0

1 0 q , hα ÞÑ
`

1 0
0 ´1

˘

.

(g) hα “
2tα

κ ptα, tαq
; hα “ ´h´α.

Proof. (a) If Φ fails to span H˚, then there exists nonzero h P H such that αphq “ 0 for all α P Φ (this is
by duality: let V “ ttα;α P Φu be the corresponding subspace of H, then we can write H “ V ‘ V K wrt.
the symmetric bilinear form κ. Then that h is in V K. [4] Lemma 10.11 explains this more clearly.) But this
means that rh, Lαs “ 0 for all α P Φ. Besides, H abelian, so rh, L0s is also 0. Thus, rh, Ls “ 0, or h P ZpLq “ 0
(by for example prop.1.3.8), which is absurd.

(b) Let α P Φ. If ´α R Φ (i.e., L´α “ 0), then for all β P H˚, including ´α, we have κ pLα, Lβq “ 0 by
Proposition 2.5.5. Therefore κ pLα, Lq “ 0, contradicting the nondegeneracy of κ.

(c) Let α P Φ, x P Lα, y P L´α. Let h P H be arbitrary. The associativity of κ implies:

κph, rx, ysq “ κprh, xs, yq “ αphqκpx, yq “ κ ptα, hqκpx, yq “ κ pκpx, yqtα, hq “ κ ph, κpx, yqtαq . (2.1)

This says that H is orthogonal to rx, ys ´ κpx, yqtα, forcing rx, ys “ κpx, yqtα.

(d) Part (c) shows that tα spans rLα, L´αs, provided rLα, L´αs ‰ 0. Let 0 ‰ x P Lα. If κ px, L´αq “ 0, then
κpx, Lq “ 0 (cf. proof of (b)), which is absurd since κ is nondegenerate. Therefore we can find 0 ‰ y P L´α

for which κpx, yq ‰ 0. By (c), rx, ys ‰ 0.

(e) Suppose α ptαq “ 0, so that rtα, xs “ 0 “ rtα, ys for all x P Lα, y P L´α. As in (d), we can find such x, y
satisfying κpx, yq ‰ 0. Modifying one or the other by a scalar, we may as well assume that κpx, yq “ 1. Then
rx, ys “ tα, by (c). It follows that the subspace S of L spanned by x, y, tα is a three dimensional solvable
algebra (for reasons similar to u3 in example 1.3.2), S – adL S Ă glpLq. In particular, adL s is nilpotent for
all s P rS, Ss (Corollary 2.1.4), so adLtα is both semisimple and nilpotent, i.e., adL tα “ 0. This says that
tα P ZpLq “ 0 (by for example prop.1.3.8), contrary to choice of tα.

(f) Given 0 ‰ xα P Lα, find yα P L´α such that κ pxα, yαq “ 2
κptα,tαq

. This is possible in view of (e) and
the fact that κ pxα, L´αq ‰ 0. Set hα “ 2tα{κ ptα, tαq. Then rxα, yαs “ hα, by (c). Moreover, rhα, xαs “

2
αptαq

rtα, xαs “
2αptαq

αptαq
xα “ 2xα, and similarly, rhα, yαs “ ´2yα. So xα, yα, hα span a three dimensional

subalgebra of L with the same multiplication table as slp2, F q.

(g) hα is defined in (f). Recall that tα is defined by κ ptα, hq “ αphqph P Hq. This shows that tα “ ´t´α and
thus hα “ ´h´α.

■

Definition 2.5.14. For pair of roots α,´α, we denote the three dimensional simple subalgebra of L spanned by
xα, yα, hα “ rxα, yαs “ 2tα

κptα,tαq
as in (f) by

Sα “ F txα, yα, hαu.

Remark 2.5.15. Several small facts will be used.
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(1) By above proposition and facts 2.5.5, we see hα spans rLα, L´αs Ď Lα`p´αq “ L0 “ H.

(2) Note that α phαq “ 2: just observe rhα, xαs “ 2xα from the multiplication table of Sα – slp2, F q. Then
hα P H, xα P Lα give rhα, xαs “ αphαqxα.

♠

2.5.4 Integerality Properties

We are now in a position to apply the representation theory of slp2, F q. Let α P Φ. We may regard L as an
Sα-module via restriction of the adjoint representation. That is, for a P Sα and y P L we define the action as

a ¨ y “ pad aqy “ ra, ys

Note that the Sα-submodules of L are precisely the vector subspaces M of L such that rs,ms P M for all
s P Sα and m P M . Of course, it is enough to check this when s is one of the standard basis elements
xα, yα, hα. We shall also need the following lemma.

Lemma 2.5.16. If M is an Sα-submodule of L, then the eigenvalues of hα acting on M are integers.

Proof. By Weyl’s Theorem, M as a module by semisimple Lie algebra Sα may be decomposed into a direct
sum of irreducible Sα-modules; for irreducible slp2, F q-modules, the result follows from corollary 2.4.9. ■

Example 2.5.17.
(1) (cf. Exercise 2.4.6.) It is an exercise to show that the set H “

!´

˚ 0 0
0 ˚ 0
0 0 ˚

¯)

consisting of all diagonal

matrices in slpn, F q is the maximal toral subalgebra of slpn, F q (see Math547 HW3). Then we write

L “ sl3 “ H ‘
à

αPΦ

Lα

Note that
rEii, Ekls “ δikEkl ´ δilEkl

“ pδik ´ δilqEkl

“ pεk ´ εlq pEiiqEkl

where εi : H Ñ F s.t. εi pdiag ph1, h2, h3qq “ hi. Then

Lεk´εl “ tx P sl3 | rh, xs “ pεk ´ εlq phqx, @h P Hu “ F tEklu .

L “ sl3 “

!´

˚ 0 0
0 ˚ 0
0 0 ˚

¯)

‘
à

pk,lq,k‰l

Lεk´εl .

and
Φ “ tε1 ´ ε2, ε1 ´ ε3, ε2 ´ ε3, ε3 ´ ε2, ε3 ´ ε1, ε2 ´ ε1u Ď H˚

(2) Let U “ H ` Sα. Let K “ kerα Ď H. By the rank-nullity formula, dimK “ dimH ´ 1. (We know
that dim Imα “ 1 as α phαq “ 2 ‰ 0 due to fact 2.5.15 (2).) Note that Sα acts trivially on K “ kerpαq: for
k P kerpαq, we have

adpxαqpkq “ rxα, ks “ ´rk, xαs
xαPLα

ùùùùùù ´αpkqs
kPK

ùùùù 0

adpyαqpkq “ ryα, ks “ ´rk, yαs
yαPL´α

ùùùùùùù αpkqs
kPK

ùùùù 0

adphαqpkq “ 0 bc. hα P H, k P K Ď H, and H is abelian.

Thus every element of Sα acts trivially on K. It follows that U “ K ‘ Sα is a decomposition of U into Sα-
modules. By Exercise 2.4.5(iii), the adjoint representation of Sα is isomorphic to V2, so U is isomorphic to the
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direct sum of dimH ´ 1 copies of the trivial representation, V0, and one copy of the adjoint representation,
V2.

(3) If β P Φ or β “ 0, let
M :“

à

c

Lβ`cα

where the sum is over all c P F such that β ` cα P Φ. It follows from proposition 2.5.5 (1) that M is an
Sα-submodule of L. This module is said to be the α-root string through β. ♣

Recall every irreducible Sα-module is

V pdq – F
␣

yd
(

‘ F
␣

yd´1x
(

‘ ¨ ¨ ¨ ‘ F
␣

xd
(

and Theorem 2.4.8 writes that as

V pdq “ V pdq´d ‘ V pdq´d`2 ‘ ¨ ¨ ¨V pdqd

where each V pdqi is an h-eigenspace, and dimV pdqi “ 1

Note:
V pdq0 ‰ 0 ðñ d is even;
V pdq1 ‰ 0 ðñ d is odd.

Let L be a semisimple Lie algebra and L “ H ‘
À

αPΦ Lα be the root space decomposition of L. For a root
α P Φ, we realized L as an Sα-module.

Proposition 2.5.18.
Sα “ F thαu ‘ Lα ‘ L´α

Lα and L´α are 1-dimensional and the only multiples of a root α which are roots are ˘α.

Proof. Consider the following subspace of L,

M “ H ‘
à

cαPΦ, cPF˚

Lcα.

It is an Sα-submodule by Proposition 2.5.5 (i).

(i) The weights of M : eigenvalues of ad phαq. They are 0 and 2c “ cα phαq.
For the latter, we first recall hα P H from fact 2.5.15 (1). Then for x P Lcα, cα P Φ, c P F˚, we have
adphαqx “ rhα, xs “ cαphαqx ùñ cαphαq is an eigenvalue for the action of hα on M . To see cα phαq “ 2c,
use fact 2.5.15 (2).

(ii) These weights are all integers by lemma 2.5.16. Thus, all c occurring here must be integral multiples of
1{2.

(iii) We have shown this in Example 2.5.17 (2) that Sα acts trivially on K “ kerpαq and that dimK “

dimH ´ 1. From fact 2.5.15 (1) we have F thαu “ L0 Ď H, which is one-dimensional. F thαu X K “ 0 bc.
αphαq “ 2 ‰ 0. Thus,

M0 “ tx P M |hα ¨ x “ 0u
piq

ùùù H “ K ‘ F thαu.

Also, relative to hα, K “ kerpαq is the direct sum of dimH ´ 1 copies of K0 by Theorem 2.4.8 (a).

(v) Sα is itself an irreducible Sα-submodule of M .

Taken together, K and Sα exhaust the occurrences of the weight 0 for hα and by Weyl’s theorem we write

M “ K ‘ Sα ‘W

38



Math 547 Lie Algebra and Representation Theory Anthony Hong

where W is a complementary Sα-submodule. Since H “ K ‘ F thαu Ď K ‘ F thαu ‘ F txαu ‘ F tyαu “

K ‘ Sα, we see W only takes elements in
À

cαPΦ,cPF˚ Lcα. W as an Sα-submodule can be decomposed
into irreducible submodules, which can be further written as weight spaces of hα wrt. those irreducible
submodules. However, these weights 2c P Z cannot be even, because by Theorem 2.4.8 (a) there will be
weight spaces corresponding to zero weight, forcing some c to be zero, which is absurd as c P F˚.
ùñ the only even weights occurring in M are 0,˘2; in particular, 2c ‰ 4 ùñ c ‰ 2, so 2α R Φ.
ùñ cα “ 1

2α R Φ (otherwise 2β P Φ for β “ 1
2α), so 2c “ 2 1

2 “ 1 is not a weight of hα in M .
ùñ W is zero and

M “ K ‘ Sα “ K ‘ F thαu ‘ Lα ‘ L´α.

Lα and L´α are 1-dimensional and the only multiples of a root α which are roots are ˘α. ■

Proposition 2.5.19. Suppose that α, β P Φ and β ‰ ˘α.

(i) β phαq P Z. This is called Cartan integer.

(ii) There are integers r, q ě 0 such that if k P Z, then β ` kα P Φ if and only if ´r ď k ď q. Moreover,
r ´ q “ β phαq.

(iii) If α ` β P Φ, then rxα, xβs is a non-zero scalar multiple of xα`β .

(iv) β ´ β phαqα P Φ.

Proof. Let M :“
À

k Lβ`kα be the root string of α through β. To prove (i), we note that β phαq is the
eigenvalue of hα acting on Lβ , and so it lies in Z.

We know from the previous proposition that dimLβ`kα “ 1 whenever β` kα is a root, so the eigenspaces of
ad hα on M are all 1-dimensional and, since pβ ` kαqhα “ β phαq ` 2k, the eigenvalues of ad hα on M are
either all even or all odd. It now follows from corollary 2.4.9 that M is an irreducible Sα-module. Suppose
that M – Vd. On Vd, the element hα acts diagonally with eigenvalues

td, d´ 2, . . . ,´du

whereas on M,hα acts diagonally with eigenvalues

tβ phαq ` 2k : β ` kα P Φu .

Equating these sets shows that if we define r and q by d “ β phαq ` 2q and ´d “ β phαq ´ 2r, then (ii) will
hold.

Suppose v P Lβ , so v belongs to the hα-eigenspace where hα acts as β phαq. If padxαqxβ “ 0, then xβ is a
highest-weight vector in the irreducible representation M – Vd, with highest weight β phαq. If α ` β is a
root, then hα acts on the associated root space as pα` βqhα “ β phαq ` 2. Therefore xβ is not in the highest
weight space of the irreducible representation M , and so padxαqxβ ‰ 0. This proves (iii).

Finally, (iv) follows from part (ii) as

β ´ β phαqα “ β ´ pr ´ qqα

and ´r ď ´r ` q ď q. ■

2.5.5 Rationality Properties

Proposition 2.5.20. Let α, β P Φ

(i) tα “
hα

κpxα, yαq
; 2tακptα, tαq;
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(ii) κ phα, hβq P Z;

(iii) κ ptα, tαq “
4

κ phα, hαq
P Q;

(iv) κ ptα, tβq P Q.

Proof. (i) is from proposition 2.5.13 (c) and (g).

(ii): Since hα, hβ P H, for any x P Lγ Ă H ‘
À

γPΦ Lγ ,

adphαq adphβqx “ rhα, rhβ , xss “ γphαqγphβqx.

Thus,
κ phα, hβq “ tr pad phαq ad phβqq “

ÿ

γPΦ

γ phαq γ phβq P Z by Prop.2.5.19 (i)

(iii) follows immediately from (i) and (ii).

(iv) From (i) we have tα “ 1
2hακptα, tαq, so

κptα, tβq “ κ

ˆ

1

2
hακptα, tαq,

1

2
hβκptβ , tβq

˙

which is clearly P Q using (ii) and (iii). ■

We can translate the Killing form on H to obtain a non-degenerate symmetric bilinear form on H˚, denoted
p´,´q. This form may be defined by

pθ, φq “ κ ptθ, tφq ,

where tθ and tφ are the elements of H corresponding to θ and φ under the isomorphism H ” H˚ induced
by κ. In particular, if α and β are roots, then

pα, βq “ κ ptα, tβq P Q.

Exercise 2.5.21. Show that

β phαq “
2pβ, αq

pα, αq
.

Solution.

β phαq “ κ ptβ , hαq “ κ

ˆ

tβ ,
2tα

ptα, tαq

˙

“
2pβ, αq

pα, αq
.

♦

We know from Proposition 2.5.13 (a) that the roots of L span H˚, so H˚ has a vector space basis consisting
of roots, say tα1, α2, . . . , αℓu. We can now prove that something stronger is true as follows.

Lemma 2.5.22. If β is a root, then β is a linear combination of the αi with coefficients in Q.

Proof. Certainly we may write β “
řℓ
i“1 ciαi with coefficients ci P F . For each j with 1 ď j ď ℓ, we have

pβ, αjq “

ℓ
ÿ

i“1

pαi, αjq ci.
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We can write these equations in matrix form as
¨

˚

˝

pβ, α1q

...
pβ, αℓq

˛

‹

‚

“

¨

˚

˝

pα1, α1q . . . pαℓ, α1q

...
. . .

...
pα1, αℓq . . . pαℓ, αℓq

˛

‹

‚

¨

˚

˝

c1
...
cℓ

˛

‹

‚

.

The matrix is the matrix of the non-degenerate bilinear form p´,´q with respect to the chosen basis of roots,
and so it is invertible (see [2] Theorem 11.3). Moreover, we have seen that its entries are rational numbers,
so it has an inverse with entries in Q. Since also pβ, αjq P Q, the coefficients ci are rational. ■

By this lemma, the R-subspace of H˚ spanned by the roots α1, . . . , αℓ contains all the roots of Φ and so does
not depend on our particular choice of basis. Let E denote this subspace.

Proposition 2.5.23. The form p´,´q is a real-valued inner product on E, so E is a Euclidean space.

Proof. Since p´,´q is a symmetric bilinear form, we only need to check that the restriction of p´,´q to E
is positive definite. Let θ P E correspond to tθ P H. Using the root space decomposition and the fact that
pad tθq eβ “ β ptθq eβ , we get

pθ, θq “ κ ptθ, tθq “
ÿ

βPΦ

β ptθq
2

“
ÿ

βPΦ

κ ptβ , tθq
2

“
ÿ

βPΦ

pβ, θq2.

As pβ, θq is real, the right-hand side is real and non-negative. Moreover, if pθ, θq “ 0, then β ptθq “ 0 for all
roots β, so by (proof of) proposition 2.5.13 (a), θ “ 0. ■

We summarize the results from proposition 2.5.13 (a), (b), proposition 2.5.18, and proposition 2.5.19 (i),
(iv) in view of exercise 2.5.21.

Theorem 2.5.24. L,H,Φ, E as above. Then:

(a) Φ spans E, and 0 does not belong to Φ.

(b) If α P Φ then ´α P Φ, but no other scalar multiple of α is a root.

(c) If α, β P Φ, then β ´
2pβ,αq

pα,αq
α P Φ.

(d) If α, β P Φ, then 2pβ,αq

pα,αq
P Z.

In the language of Chapter III, the theorem asserts that Φ is a root system in the real euclidean space E.
We have therefore set up a correspondence pL,Hq ÞÑ pΦ,Eq. Pairs ( Φ,Eq will be completely classified in
Chapter III. Later (Chapters IV and V) it will be seen that the correspondence here is actually 1 ´ 1, and that
the apparent dependence of Φ on the choice of H is not essential.
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Chapter 3

Root Systems

In this chapter, we are concerned with a fixed Euclidean space E, i.e., a finite dimensional vector space over
R endowed with a positive definite symmetric bilinear form pα, βq.

3.1 Definitions

Notation:

- Any 0 ‰ α P E defines a hyperplance

Hα :“ tβ P E | pβ, αq “ 0u “ RtxuK

- σα P EndpEq is called a reflection across Hα if σα fixes Hα pointwise, and σαpαq “ ´α. One can verify the
explicit formula,

σαpβq “ β ´
2pβ, αq

pα, αq
α

- Since the number 2pβ,αq

pα,αq
appears frequently, we denote it by xβ, αy. Notice that xβ, αy is linearly only in the

first variable.

Definition 3.1.1. A subset R of a real inner-product space E is a root system if it satisfies the following axioms.

(R1) R is finite, it spans E, and it does not contain 0.

(R2) If α P R, then the only scalar multiples of α in R are ˘α.

(R3) If α P R, then the reflection σα permutes the elements of R.

(R4) If α, β P R, then xβ, αy P Z.

The elements of R are called roots.

Example 3.1.2. (1) The roots Φ for semisimple Lie algebra L over algebraically closed char-0 F form a root
system for the real span E “ RΦ of Φ.

(2) [4] Exercise 11.1: Consider Rℓ`1, with the Euclidean inner product. Let εi be the vector in Rℓ`1 with
i-th entry 1 and all other entries zero. Define

R :“ t˘ pεi ´ εjq : 1 ď i ă j ď ℓ` 1u

and let E “ SpanR “ t
ř

αiεi :
ř

αi “ 0u. Show that R is a root system in E. ♣
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Notations: Let R be a root system for inner-product space E.
(1) dimpEq is the rank of R.

(2) xβ, αy “
2pβ, αq

pα, αq
P Z.

(3) We also let projection of β along α be denoted by projα β “
pβ, αq

pα, αq
α “

1

2
xβ, αyα.

(4) @v P E, pv, vq “ }v}2.
(5) Weyl group of R is the group of invertible linear transformations of E generated by the reflections σα
for α P R, i.e., W pRq :“ xσα | α P Ry.
(6) The root system R is called decomposable if there is a proper decomposition R “ R1 Y R2 such that
@α1 P R1,@α2 P R2 : pα1, α2q “ 0. Otherwise it is called indecomposable or irreducible.

Lemma 3.1.3 (Finiteness Lemma). Suppose that R is a root system in the real inner-product space E. Let
α, β P R with β ‰ ˘α. Then

xα, βyxβ, αy P t0, 1, 2, 3u.

Proof. Thanks to (R4), the product in question is an integer: We must establish the bounds. For any non-zero
v, w P E, the angle θ between v and w is such that pv, wq2 “ pv, vqpw,wq cos2 θ. This gives

xα, βyxβ, αy “ 4 cos2 θ ď 4

Suppose we have cos2 θ “ 1. Then θ is an integer multiple of π and so α and β are linearly dependent,
contrary to our assumption. ■

We now use this lemma to show that there are only a few possibilities for the integers xα, βy. Take two roots
α, β in a root system R with α ‰ ˘β. We may choose the labelling so that pβ, βq ě pα, αq and hence

|xβ, αy| “
2|pβ, αq|

pα, αq
ě

2|pα, βq|

pβ, βq
“ |xα, βy|.

By the Finiteness Lemma, the possibilities are:

xα, βy xβ, αy θ
}β}2

}α}2
“

pβ, βq

pα, αq
“

xβ, αy

xα, βy

0 0 π{2 undetermined
1 1 π{3 1

-1 -1 2π{3 1
1 2 π{4 2

-1 -2 3π{4 2
1 3 π{6 3

-1 -3 5π{6 3

Table 3.1: Angles between α and β

Given roots α and β, we would like to know when their sum and difference lie in R. Our table gives some
information about this question.

Proposition 3.1.4. Let α, β ‰ ˘α P R. Assume pβ, βq ě pα, αq.

(a) pα, βq ą 0 ðñ θpα, βq obtuse ðñ α ` β P R

(b) pα, βq ă 0 ðñ θpα, βq acute ðñ α ´ β P R.

Proof. pα, βq ą 0 ðñ xα, βy “
2pα, βq

pβ, βq
ą 0.
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The table shows that if θ is acute, then xα, βy “ 1 ą 0, and if θ is obtuse, then xα, βy “ ´1 ă 0.

By (R3), we know that σβpαq “ α´ xα, βyβ lies in R, which is either 1 (when θ is obstuse) or ´1 (when θ is
acute). ■

3.2 Examples

Call ℓ “ dimE the rank of the root system R. When ℓ ď 2, we can describe R by simply drawing a picture.

We shall immitate the pictures from here and here, the latter using Fulton-Harris style (see Fig.3.3 for
example).

3.2.1 Root Systems of Rank 1

If we choose any non-zero vector α P R, then R “ tα,´αu is a root system. Since any other non-zero vector
is a multiple of α, property (R2) forbids us to add more vectors to our root system. Therefore in rank 1 there
is only one possible root system - it is called A1.

α´α

Figure 3.1: The root system A1.

3.2.2 Root Systems of Rank 2

In rank 2 there is more freedom, because we can use any angle θ given in Table 3.1.

When the angle between the two roots is θ “
π

2
, the system is called A1 ˆ A1, because it is a direct sum of

two rank 1 root systems A1.

α´α

β

´β

Figure 3.2: The root system A1 ˆA1.

When θ “
π

3
,
2π

3
, we place α on the positive x-axis and β by the 2π

3 rotation of α (note that they have same

length by the last column of the table). Then Proposition 3.1.4 says that there is also a root α ` β, which is
drawn by parallelogram rule. Now, all of their negatives live in R too, completing the remaining three roots
in the drawing. This root system is called A2.

When θ “
π

4
,
3π

4
, the root system consists of 8 vectors. They correspond to the vertices and to the midpoints

of the edges of a regular square. The ratio of lengths of these roots is
?
2. This root system is called B2.
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α´α

α ` β

´pα ` βq

β

´β

Figure 3.3: The root system A2.

α´α

α ` β

´α ´ β

β ` 2αβ

´β´β ´ 2α

Figure 3.4: The root system B2.

When θ “
π

6
,
5π

6
, the root system consists of 12 vectors. They correspond to the vertices of two regular

hexagons that have different sizes and are rotated away from each other by an angle π{6. The ratio of
lengths of these vectors is

?
3. This is called G2.

α

β

Figure 3.5: The root system G2.

It is not hard to see, that there are no other root systems of rank 2, because in two dimensions the angle θ
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determines the root system completely, i.e., once the angle is chosen, the ratio of lengths of two consecutive
roots is determined (except for the case θ “ π{2 ), hence the root system itself.
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