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Chapter 1

Smooth Manifolds

1.1 Tensor Algebra

1.1.1 Tensors and Their Products

We generalize from linear functionals to multilinear ones. If V1, . . . , Vk and W are vector spaces, a map
F : V1 × · · · × Vk →W is said to be multilinear if it is linear as a function of each variable separately, when
all the others are held fixed:

F (v1, . . . , avi + a′v′i, . . . , vk) = aF (v1, . . . , vi, . . . , vk) + a′F (v1, . . . , v
′
i, . . . , vk) .

Given a finite-dimensional vector space V , a covariant k-tensor on V is a multilinear map

F : V × · · · × V︸ ︷︷ ︸
k copies

→ R.

Similarly, a contravariant k-tensor on V is a multilinear map

F : V ∗ × · · · × V ∗︸ ︷︷ ︸
k copies

→ R.

We often need to consider tensors of mixed types as well. A mixed tensor of type (k, l), also called a
k-contravariant, l-covariant tensor, is a multilinear map

F : V ∗ × · · · × V ∗︸ ︷︷ ︸
k copies

×V × · · · × V︸ ︷︷ ︸
l copies

→ R.

Actually, in many cases it is necessary to consider real-valued multilinear functions whose arguments consist
of k covectors and l vectors, but not necessarily in the order implied by the definition above; such an object
is still called a tensor of type (k, l). For any given tensor, we will make it clear which arguments are vectors
and which are covectors. The spaces of tensors on V of various types are denoted by

T k (V ∗) = { covariant k-tensors on V };
T k(V ) = { contravariant k-tensors on V };

T (k,l)(V ) = T kl (V ) = { mixed (k, l)-tensors on V }.
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The rank of a tensor is the number of arguments (vectors and/or covectors) it takes. By convention, a
0-tensor is just a real number.

There is a natural product, called the tensor product, linking the various tensor spaces over V : if F ∈
T (k,l)(V ) and G ∈ T (p,q)(V ), the tensor F ⊗G ∈ T (k+p,l+q)(V ) is defined by

F ⊗G
(
ω1, . . . , ωk+p, v1, . . . , vl+q

)
= F

(
ω1, . . . , ωk, v1, . . . , vl

)
G
(
ωk+1, . . . , ωk+p, vl+1, . . . , vl+q

)
The tensor product is associative, so we can unambiguously form tensor products of three or more tensors
on V . If (bi) is a basis for V and

(
βj
)

is the associated dual basis, then a basis for T (k,l)(V ) is given by the
set of all tensors of the form

bi1 ⊗ · · · ⊗ bik ⊗ βj1 ⊗ · · · ⊗ βjl ,

as the indices ip, jq range from 1 to n. These tensors act on basis elements by

bi1 ⊗ · · · ⊗ bik ⊗ βj1 ⊗ · · · ⊗ βjl (βs1 , . . . , βsk , br1 , . . . , brl) = δs1i1 · · · δ
sk
ik
δj1r1 · · · δ

jl
rl
.

It follows that T (k,l)(V ) has dimension nk+l, where n = dimV . Every tensor F ∈ T (k,l)(V ) can be written in
terms of this basis (using the summation convention) as

F = F i1...jkj1...jl
bi1 ⊗ · · · ⊗ bik ⊗ βj1 ⊗ · · · ⊗ βjl (1.1)

where
F i1...ikj1...jl

= F
(
βi1 , . . . , βik , bj1 , . . . , bjl

)
.

If the arguments of a mixed tensor F occur in a nonstandard order, then the horizontal as well as vertical
positions of the indices are significant and reflect which arguments are vectors and which are covectors. For
example, if A is a (1, 2)-tensor whose first argument is a vector, second is a covector, and third is a vector, its
basis expression would be written

A = Ai
j
kβ

i ⊗ bj ⊗ βk,

where
Ai

j
k = A

(
bi, β

j , bk
)

There are obvious identifications among some of these tensor spaces:

T (0,0)(V ) = T 0(V ) = T 0 (V ∗) = R,

T (1,0)(V ) = T 1(V ) = V,

T (0,1)(V ) = T 1 (V ∗) = V ∗,

T (k,0)(V ) = T k(V ),

T (0,k)(V ) = T k (V ∗) .

Due to [6] prop.12.10, we also write

T (k,l)(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k copies

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
l copies

,

defined as F (V ×k × V ∗×l)/R, where F is the free vector space on basis V ×k × V ∗×l, or the set of all
finite formal linear combinations of (k, l)-tuples, and R is the subspace of F spanned by all elements of the

8
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following forms

(v1, · · · , avi, · · · , vk, ω1, · · · , ωl)− a(v1, · · · , vi, · · · , vk, ω1, · · · , ωl)
(v1, · · · , vk, ω1, · · · , aωi · · · , ωl)− a(v1, · · · , vk, ω1, · · · , ωi · · · , ωl)

(v1, · · · , vi + v′i, · · · , vk, ω1, · · · , ωl)− (v1, · · · , vi, · · · , vk, ω1, · · · , ωl)− (v1, · · · , v′i, · · · , vk, ω1, · · · , ωl)
(v1, · · · , vk, ω1, · · · , ωi + ω′

i · · · , ωl)− (v1, · · · , vk,ω1, · · · , ωi · · · , ωl)− (v1, · · · , vk, ω1, · · · , ω′
i · · · , ωl)

Let Π : F (V ×k × V ∗×l)→ T (k,l) = F (V ×k × V ∗×l)/R be the natural projection. The equivalence class of an
element (v1, · · · , vk, ω1, · · · , ωl) in T (k,l)(V ) is denoted by

v1 ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωl = Π(v1, · · · , vk, ω1, · · · , ωl) = (v1, · · · , vk, ω1, · · · , ωl) +R.

and is called (abstract) tensor product of v1, · · · , vk, ω1, · · · , ωl. We note that (v1, · · · , vk, ω1, · · · , ωl)

It folllws from the definition that abstract tensor product satisfy

v1 ⊗ · · · ⊗ avi ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωl = a(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωl)
v1 ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ aωi · · · ⊗ ωl = a(v1 ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωi · · · ⊗ ωl)

v1 ⊗ · · · ⊗ (vi + v′i)⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωl = v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωl
+ v1 ⊗ · · · ⊗ v′i ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωl

v1 ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ (ωi + ω′
i) · · · ⊗ ωl = v1 ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωi · · · ⊗ ωl

+ v1 ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ω′
i · · · ⊗ ωl

Note that the definition implies that every element of T (k,l)(V ) can be expressed as a linear combination of
elements of the form v1⊗· · ·⊗vk⊗ω1⊗· · ·⊗ωl; but it is not true in general that every element of the tensor
product space is of the form v1 ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ωl.

Proposition 1.1.1 (Characteristic Property of the Tensor Product Space). Let V1, · · · , Vk be finite-dimensional
real vector spaces. If A : V1× · · · ×Vk → X is any multilinear map into a vector space X, then there is a unique
linear map Ã : V1 ⊗ · · · ⊗ Vk → X such that the following diagram commutes:

V1 × · · · × Vk X

V1 ⊗ · · · ⊗ Vk

A

h
Ã

where h is the composition h = Π ◦ i of the maps Π : F → F/R and i : V1 × · · · × Vk ↪→ F . Explicitly,

h(v1, · · · , vk) = v1 ⊗ · · · ⊗ vk

Proof. See [6] Proposition 12.7. ■

Proposition 1.1.2. Above characterization of tensor product is unique up to isomorphism.

Proof. See Rotman’s An Introduction to Homological Algebra (e2) Proposition 2.44. ■

Proposition 1.1.3 (Abstract vs. Concrete Tensor Products). If V1, · · · , Vk are finite-dimensional vector spaces,
there is a canonical isomorphism

V ∗
1 ⊗ · · · ⊗ V ∗

k
∼= L(V1, · · · , Vk;R)

under which the abstract tensor product defined by

v1 ⊗ · · · ⊗ vk = Π(v1, · · · , vk) = (v1, · · · , vk) +R

9
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corresponds to the tensor product of covectors defined by

ω1 ⊗ · · · ⊗ ωk(v1, · · · , vk) = ω1(v1) · · ·ωk(vk).

The isomorphism Φ̃ : V ∗
1 ⊗ · · · ⊗ V ∗

k → L(V1, · · · , Vk;R) is the map induced by Φ : V ∗
1 × · · · × V ∗

k →
L(V1, · · · , Vk;R) defined by Φ(ω1, · · · , ωk)(v1, · · · , vk) = ω1(v1) · · ·ωk(vk) through the universal property
1.1.1.

Proof. See [6] Proposition 12.10. ■

Proposition 1.1.4 (Second Dual Space). There is a canonical isomorphism between V ∗∗ := (V ∗)∗ and V ,
namely, the isomorphism sending v to its evaluation map v̄, defined by

v̄ : V ∗ → R
ω 7→ ω(v)

Proof. See [6] Proposition 11.8. ■

We introduce an extremely important identification

T (1,1)(V ) ∼= End(V ),

where End(V ) denotes the pace of linear maps from V to itself (also called the endomorphisms of V ). This
is a special case of the following proposition.

Proposition 1.1.5. Let V be a finite-dimensional vector space. There is a natural (basis-independent) isomor-
phism between T (k+1,l)(V ) and the space of multilinear maps

V ∗ × · · · × V ∗︸ ︷︷ ︸
k copies

×V × · · · × V︸ ︷︷ ︸
l copies

→ V .

Lemma 1.1.6. Let dimVj = nj and dimW = n then

dimL (V1, · · · , Vk;W ) =

n∑
i=1

k∏
j=1

nj = nn1n2 · · ·nk

Proof. That’s because

L (V1, · · · , Vk;W ) ∼= L (V1, · · · , Vk;Rn) ∼=
n⊕
i=1

L (V1, · · · , Vk;R)

and the fact that
⊕n

i=1Xi has dimension
∑

dimXi and

dimL (V1, · · · , Vk;R) = dimV1 · · · · dimVk = n1 · · ·nk

■

Lemma 1.1.7. Let V be a vector space and v ̸= 0 be a vector in it. There exists a linear mapping f : V → R
such that f(v) ̸= 0.

Proof. Suppose V = span(x1, · · · , xn). Let M = span(v) as in [3] Theorem 1.10.20. Then there is a subspace
H = span(xi1 , · · · , xik) such that V = M ⊕ H. Now define f(v) = 1 and f(xi1) = · · · = f(xik) = 0 and
extend them linearly to be defined on other vectors in V . ■

10
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First proof of the proposition.
(1) Case k = 0, l = 1:

Proposition 1.1.3 gives T (1,1)(V ) = V ⊗ V ∗ ∼= L (V ∗, V ;R). We then define the mapping

Φ : End(V )→ L (V ∗, V ;R)

A 7→ ΦA :=

(
V ∗ × V → R
(ω, v) 7→ ω(Av)

)
Since there is a canonical isomorphism between V and V ∗∗ by Proposition 1.1.4, we let the isomorphism be
denoted by τ : V ∗∗ → V . We then define the inverse of Φ as below.

Ψ : L (V ∗, V ;R)→ End(V )

f 7→ Ψf :=

(
V → V
v 7→ τ(f(·, v))

)
where we note that f(·, v) is a map from V ∗ to R and thus belongs to V ∗∗.

We show that Φ(Ψf) = f and Ψ(ΦA) = A:

• Φ(Ψf) = f . That is, we need to show Φ(Ψf)(ω, v) = f(ω, v). We compute that

Φ(Ψf)(ω, v) = ω((Ψf)(v)) = ω(τ(f(·, v))︸ ︷︷ ︸
ξ

)

= ξ(ω) = [f(·, v)](ω) = f(ω, v)

where we note that τ : V ∗∗ → V and the evaluation ·̄ : V → V ∗∗ are inverse of each other.

• Ψ(ΦA) = A. That is, we need to show that Ψ(ΦA)(v) = A(v). We compute that

Ψ(ΦA)(v) = τ((ΦA)(·, v))
= τ(·(Av))

Note that ·(Av) sends every ω to ω(Av) and therefore equals to Av. Thus,

Ψ(ΦA)(v) = τ(Av)

= Av

where we again notice that τ and · are inverses of each other.

(2) General case:

We similarly consider

Φ : L(V ∗, · · · , V ∗︸ ︷︷ ︸
k copies

, V, · · · , V︸ ︷︷ ︸
l copies

;V )→ L(V ∗, · · · , V ∗︸ ︷︷ ︸
k+1 copies

, V, · · · , V︸ ︷︷ ︸
l copies

;R)

A 7→ ΦA :=

(
V ∗ × · · · × V ∗ × V × · · · × V → R

(ω1, · · · , ωk+1, v1, · · · , vl) 7→ ωk+1 (A (ω1, · · · , ωk, v1, · · · , vl))

)
and

Ψ : L(V ∗, · · · , V ∗︸ ︷︷ ︸
k+1 copies

, V, · · · , V︸ ︷︷ ︸
l copies

;R)→ L(V ∗, · · · , V ∗︸ ︷︷ ︸
k copies

, V, · · · , V︸ ︷︷ ︸
l copies

;V )

f 7→ Ψf :=

(
V ∗ × · · · × V ∗ × V × · · · × V → V

(ω1, · · · , ωk, v1, · · · , vl) 7→ τ(f (ω1, · · · , ωk, · , v1, · · · , vl))

)
■

11
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Second proof of the proposition.
(1) Case k = 0, l = 1:

Proposition 1.1.3 gives T (1,1)(V ) = V ⊗ V ∗ ∼= L (V ∗, V ;R). We then define the mapping

Φ : End(V )→ L (V ∗, V ;R)

A 7→ ΦA :=

(
V ∗ × V → R
(ω, v) 7→ ω(Av)

)

It is easy to see that the map Φ is well-defined and linear. Let dimV = n. Notice that dimV = dimV ∗ = n.
Then by lemma 1.1.6 we see dimT (1,1)(V ) = dimL (V ∗, V ;R) = n2 and dimEnd(V ) = dimL(V, V ) = n2.
Thus, it suffices to show that Φ is injective: for A,B ∈ End(V ) we want to show that ΦA = ΦB ⇒ A = B.
ΦA = ΦB implies that for any fixed v ∈ V , the following is true:

∀ω ∈ V ∗, ΦA(ω, v) = ΦB(ω, v)

ω(Av) = ω(Bv)

ω(Av −Bv) = 0

Now, ∀ω ∈ V ∗, ω(Av−Bv) = 0 implies that Av−Bv cannot be a nonzero vector, because for if it is a nonzero
vector, then lemma 1.1.7 implies that we can find some ω ∈ V ∗ such that ω sends it elsewhere. Therefore,
for any fixed v, Av −Bv = (A−B)v = 0 =⇒ A−B, which sends every vector to zero, is a zero mapping.
Thus, A = B.

(2) General case: consider the mapping

Φ : L(V ∗, · · · , V ∗︸ ︷︷ ︸
k copies

, V, · · · , V︸ ︷︷ ︸
l copies

;V )→ L(V ∗, · · · , V ∗︸ ︷︷ ︸
k+1 copies

, V, · · · , V︸ ︷︷ ︸
l copies

;R)

A 7→ ΦA :=

(
V ∗ × · · · × V ∗ × V × · · · × V → R

(ω1, · · · , ωk+1, v1, · · · , vl) 7→ ωk+1 (A (ω1, · · · , ωk, v1, · · · , vl))

)
We similarly only need to show injectivity: suppose

ωk+1
(
A
(
ω1, · · · , ωk, v1, · · · , vl

))
= ωk+1

(
B
(
ω1, · · · , ωk, v1, · · · , vl

))
Then by the same argument, ∀ω1, · · · , ωk, v1, · · · , vl,

A
(
ω1, · · · , ωk, v1, · · · , vl

)
= B

(
ω1, · · · , ωk, v1, · · · , vl

)
(A−B)

(
ω1, · · · , ωk, v1, · · · , vl

)
= 0

A−B is then a zero mapping in L(V ∗, · · · , V ∗︸ ︷︷ ︸
k copies

, V, · · · , V︸ ︷︷ ︸
l copies

;V ), so A = B. ■

Third proof of the proposition. We cite [9] to give another argument:

[9] Theorem 2.11: There is a natural isomorphism between L (V1, V2;W ) and L (V1,L (V2,W )).

[9] Theorem 4.1:

(i) V 2
0 = V ⊗ V ∼= L (V ∗, V )

(ii) V 1
1 = V ⊗ V ∗ ∼= V ∗ ⊗ V ∼= L(V, V ) ∼= L (V ∗, V ∗)

(iii) V 0
2 = V ∗ ⊗ V ∗ ∼= L (V, V ∗)

12
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[9] Theorem 2.12: There is a natural isomorphism between L(V1, V2, · · · , Vp;W ) and L(Vi,L(V1, · · · , V̂i, · · · , Vp;W )).

For the special case k = 0, l = 1, let V1 = V ∗, V2 = V,W = R in [9] Theorem 2.11 to get

L (V ∗, V ;R) ∼= L (V ∗,L(V,R)) = L (V ∗, V ∗)
[9] 4.1∼= L(V, V ) = End(V )

For the general case, observe the following corollary:

L(V1, · · · , Vp;W )
[9] 2.12∼= L(Vi,L(V1, · · · , V̂i, · · · , Vp;W ))

[9] 2.12∼= L(Vi,L(Vj ,L(V1, · · · , V̂i, · · · , V̂j · · · , Vp;W )))

use backwards [9] 2.12∼= L(Vi, Vj ;L(V1, · · · , V̂i, · · · , V̂j , · · · , Vp;W )).

Then
T (k+1,l)(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸

k+1 copies

×V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
l copies

[6] 12.10∼= L(V ∗, · · · , V ∗︸ ︷︷ ︸
k+1 copies

, V, · · · , V︸ ︷︷ ︸
l copies

;R)

[9] 2.12∼= L( V ∗︸︷︷︸
i-th

,L(V ∗, · · · , V ∗︸ ︷︷ ︸
k copies

, V, · · · , V︸ ︷︷ ︸
l copies

;R))

cor∼= · · ·
cor∼= L(V ∗, · · · , V ∗︸ ︷︷ ︸

k copies

;L(V ∗, V, · · · , V︸ ︷︷ ︸
l copies

;R))

∼= L(V ∗, · · · , V ∗︸ ︷︷ ︸
k copies

, V, · · · , V︸ ︷︷ ︸
l copies

;L (V ∗,R)︸ ︷︷ ︸
=V ∗∗∼=V

)

∼= L(V ∗, · · · , V ∗︸ ︷︷ ︸
k copies

, V, · · · , V︸ ︷︷ ︸
l copies

;V )

■

1.1.2 Contractions

We can use the result of proposition 1.1.5 to define a natural operation called trace or contraction, which
lowers the rank of a tensor by 2. In one special case, it is easy to describe: the operator tr : T (1,1)(V )→ R is
just the trace of f when it is regarded as an endomorphism of V , or in other words the sum of the diagonal
entries of any matrix representation of F .

Recall the following results from basic linear algebra.

Definition 1.1.8. If T is any linear transformation which maps vector space V of dimension n to vector space
W of dimension m, there is always an m× n matrix A with the property that

Tx = Ax, ∀x ∈ V

Let (E1, · · · , En) be a basis for V and (ε1, ·, εm) be a basis for W , then the matrix of linear transformation
A is

A =

 | |
T (E1) · · · T (En)
| |


Proposition 1.1.9. The sum of the eigenvalues λi of the matrix A ∈Mn(R) is equal to its trace, i.e.,

∑n
i=1 λi =

trA. Besides,
∏n
i=1 λi = detA.

13
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Proposition 1.1.10. Let B and C be any two bases of the vector space V , and let τ ∈ L(V, V ) = End(V ) be a
linear endomorphism. Then the eigenvalues and eigenvectors are invariant under change of basis:

[τ ]B[v]B = λ[v]B ⇒ [τ ]C [v]C = λ[v]C

Proof. Recall the following change of basis formula (see [10] Corollary 2.17 for (2) below for instance):

(1) [v]C =MB,C [v]B;

(2) [τ ]C =MB,C [τ ]BM−1
B,C .

Then the assertion directly follows from the computation:

[τ ]C [v]C =MB,C [τ ]BM−1
B,CMB,C [v]B

=MB,C [τ ]B[v]B

=MB,Cλ[v]B

= λMBB,C [v]B
= λ[v]C

■

In fact, this invariance can also be seen from the fact that an eigenvalue λ of a linear endomorphism τ ∈
L(V, V ) = End(V ) is defined by τx = λx for some non-zero vector x and the definition does not involve
basis. Now the above proposition combined with the formula of the sum of eigenvalues gives the invariance
of trace of a linear endomorphism under change of basis.

Corollary 1.1.11. The trace of a linear endomorphism is well-defined.

Proposition 1.1.12. Let f ∈ T (1,1)(V ). Then under the definition of trace given at the beginning, tr(f) :=
tr(Ψf) =

∑
f ii , where f ij = f(εi, Ej) with respect to the basis (E1, · · · , En) of V and dual basis (ε1, · · · , εn) of

V ∗.

Proof. The linear operator here is

Ψf : V → V

v 7→ τ(f(·, v))

where Ψ is defined in the second proof of the proposition 1.1.5. We will show that the matrix [Ψf ](Ek) of Ψf
under basis (Ek) is the following, from which we can obtain that the sum of the diagonal elements is

∑
f ii ,

proving the statement.

[Ψf ](Ek) =

f
1
1 · · · f1n
...

. . .
...

fn1 · · · fnn


By definition 1.1.8, we want to show that

∀1 ≤ k ≤ n : (Ψf)(Ek) =
∑
i

f ikEi. (1.2)

To figure out how Ψf acts on Ek, we need to know what vector ξ has its evaluation map ξ̄ equal to f(·, v).
Observe that

v̄ : V ∗ → R
ω 7→ ω(v) = ωiεi(vjEj) = ωivi

14
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and that

f(·, v) : V ∗ → R

ω 7→ f(ω, v)
(1.1)
==== f ijEi ⊗ εj(ω, v)

= f ijEi(ω)ε
j(v) = f ijωiv

j = ωi(f
i
jv
j)

Comparing the above two equations to see ξi =
∑
j f

i
jv
j and thus ξ =

∑
i

(∑
j f

i
jv
j
)
Ei. Then, if we let

v = Ek, we will get
ξ =

∑
i

(
∑
j

f ijδkj)Ei =
∑
i

f ikEi

which is just (1.2). ■

More generally, we can contract a given tensor on any pair of indices as long as one is contravariant, say
λ-th (1 ≤ λ ≤ k + 1), and one is covariant, say µ-th (1 ≤ µ ≤ l + 1), and it can be denoted as Cλµ , adopted
from [9] p.42:

Definition 1.1.13. Consider the mapping f : V ×(k+1) × V (l+1) → T (k,l)(V ) defined by

(v1, · · · , vk+1, ω1, · · · , ωl+1) 7→ ⟨ωµ, vλ⟩ v1 ⊗ · · · ⊗ v̂λ ⊗ · · · ⊗ vk+1 ⊗ ω1 ⊗ · · · ⊗ ω̂µ ⊗ · · · ⊗ ωl+1

The contraction, Cλµ , is then the unique linear mapping f̂ : T (k+1,l+1)(V )→ T (k,l)(V ) with the property

v1 ⊗ · · · ⊗ vk+1 ⊗ ω1 ⊗ · · · ⊗ ωl+1 7→ ⟨ωµ, vλ⟩ v1 ⊗ · · · ⊗ v̂λ ⊗ · · · ⊗ vk+1 ⊗ ω1 ⊗ · · · ⊗ ω̂µ ⊗ · · · ⊗ ωl+1

induced by f through the universal property 1.1.1.

As an example C2
1 : V 2

1 → V is given by v⊗w⊗σ 7→ ⟨σ,w⟩v, and, in particular, ei⊗ej⊗εk 7→
〈
εk, ej

〉
ei = δkj ei.

Hence
Aijk ei ⊗ ej ⊗ ε

k 7→ Aijk δ
k
j ei = Aikk ei.

In fact, definition 1.1.13 is equivalent to the following definition.

Definition 1.1.14. The contraction Cλµ can also be defined by

T (k+1,l+1)(V )→ T (k,l)(V ) ∼= L(V ∗ × · · · × V ∗︸ ︷︷ ︸
k copies

×V × · · · × V︸ ︷︷ ︸
l copies

;R)

f 7→
(

V ∗ × · · · × V ∗ × V × · · · × V → R
(ω1, · · · , ωk, v1, · · · , vl) 7→

∑n
j=1 f (ω

1, · · · , ωλ−1, εj , ωλ+1, · · · , ωk, v1, · · · , vµ−1, Ej , vµ+1, vl)

)

We also have the following useful result.

Proposition 1.1.15. For vector space V of dimension n, if F ∈ T (k+1.l+1)(V ) has components F i1···ik+1

j1···jl+1
, then

CλµF has components F i1···iλ−1miλ+1···ik+1

j1···jµ−1mjµ+1···jl+1
(summation on m). Namely,

(
CλµF

)i1···ik
j1···jl

=

n∑
m=1

F
i1···iλ−1miλ+1···ik+1

j1···jµ−1mjµ+1···jl+1
(1.3)

1.1.3 Tensor Bundles and Tensor Fields

On a smooth manifold M with or without boundary, the bundle of (k, l)-tensors on M is defined as

T (k,l)TM =
∐
p∈M

T (k,l) (TpM) .
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As special cases, the bundle of covariant l-tensors is denoted by T kT ∗M = T (0,l)TM , and the bundle of
contravariant k-tensors is denoted by T kTM = T (k,0)TM . There are natural identifications

T (0,0)TM = T 0T ∗M = T 0TM =M × R,

T (0,1)TM = T 1T ∗M = T ∗M,

T (1,0)TM = T 1TM = TM,

T (0,k)TM = T kT ∗M,

T (k,0)TM = T kTM.

Exercise 1.1.16. Show that each tensor bundle is a smooth vector bundle over M , with a local trivialization
over every open subset that admits a smooth local frame for TM .

A tensor field on M is a section of some tensor bundle over M . A section of T 1T ∗M = T (0,1)TM (a
covariant 1-tensor field) is also called a covector field. As we do with vector fields, we write the value of a
tensor field F at p ∈ M as Fp or F |p. Because covariant tensor fields are the most common and important
tensor fields we work with, we use the following shorthand notation for the space of all smooth covariant
k-tensor fields:

T k(M) = Γ
(
T kT ∗M

)
.

The space of smooth 0-tensor fields is just C∞(M). Let (Ei) = (E1, . . . , En) be any smooth local frame for
TM over an open subset U ⊆ M . Associated with such a frame is the dual coframe, which we typically
denote by

(
ε1, . . . , εn

)
; these are smooth covector fields satisfying εi (Ej) = δij . For example, given a coor-

dinate frame
(
∂/∂x1, . . . , ∂/∂xn

)
over some open subset U ⊆M , the dual coframe is

(
dx1, . . . , dxn

)
, where

dxi is the differential of the coordinate function xi.

smooth local frame (Ei) and its dual coframe
(
εi
)
, the tensor fields Ei1 ⊗ · · · ⊗ Eik ⊗ εj1 ⊗ · · · ⊗ εjl form

a smooth local frame for T (k,l) (T ∗M). In particular, in local coordinates
(
xi
)
, a (k, l)-tensor field F has a

coordinate expression of the form

F = F i1...ikj1...jl
∂i1 ⊗ · · · ⊗ ∂ik ⊗ dxj1 ⊗ · · · ⊗ dxjl ,

where each coefficient F i1...ikj1...jl
is a smooth real-valued function on U .

Exercise 1.1.17. Suppose F :M → T (k,l)TM is a rough (k, l)-tensor field. Show that F is smooth on an open
set U ⊆M if and only if whenever ω1, . . . , ωk are smooth covector fields and X1, . . . , Xl are smooth vector fields
defined on U , the real-valued function F

(
ω1, . . . , ωk, X1, . . . , Xl

)
, defined on U by

F
(
ω1, . . . , ωk, X1, . . . , Xl

)
(p) = Fp

(
ω1
∣∣
p
, . . . , ωk

∣∣
p
, X1|p , . . . , Xl|p

)
,

is smooth.

An important property of tensor fields is that they are multilinear over the space of smooth functions. Sup-
pose F ∈ Γ

(
T (k,l)TM

)
is a smooth tensor field. Given smooth covector fields ω1, . . . , ωk ∈ T 1(M) and

smooth vector fields X1, . . . , Xl ∈ X(M), above exercise shows that the function F
(
ω1, . . . , ωk, X1, . . . , Xl

)
is smooth, and thus F induces a map

F : T 1(M)× · · · × T 1(M)︸ ︷︷ ︸
k factors

×X(M)× · · · × X(M)︸ ︷︷ ︸
l factors

→ C∞(M).

It is easy to check that this map is multilinear over C∞(M), that is, for all functions u, v ∈ C∞(M) and
smooth vector or covector fields α, β,

F(. . . , uα+ vβ, . . .) = uF̃ (. . . , α, . . .) + vF̃ (. . . , β, . . .).
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Even more important is the converse: as the next lemma shows, every such map that is multilinear over
C∞(M) defines a tensor field. (This lemma is stated and proved in [6] for covariant tensor fields, but the
same argument works in the case of mixed tensors.)

Lemma 1.1.18 (Tensor Characterization Lemma). [6] Lemma 12.24.
A map

F : T 1(M)× · · · × T 1(M)︸ ︷︷ ︸
k factors

×X(M)× · · · × X(M)︸ ︷︷ ︸
l factors

→ C∞(M)

is induced by a smooth (k, l)-tensor field as above if and only if it is multilinear over C∞(M). Similarly, a map

F : T 1(M)× · · · × T 1(M)︸ ︷︷ ︸
k factors

×X(M)× · · · × X(M)︸ ︷︷ ︸
l factors

→ X(M)

is induced by a smooth (k + 1, l)-tensor field as in Proposition 1.1.5 if and only if is multilinear over C∞(M),
where T k(M) = Γ

(
T kT ∗M

)
.

Suppose F : M → N is a smooth map, then for a covariant k-tensor field on N , we define a rough k-tensor
field F ∗A on M , called pullback of A by F , by

(F ∗A)p = dF ∗
p (AF (p)).

Proposition 1.1.19 ( [6] Proposition 12.25). Suppose F :M → N and G : P →M are smooth maps, A and
B are covariant tensor fields on N , and f is a real-valued function on N .

(a) F ∗(fB) = (f ◦ F )F ∗B.

(b) F ∗(A⊗B) = F ∗A⊗ F ∗B.

(c) F ∗(A+B) = F ∗A+ F ∗B.

(d) F ∗B is a (continuous) tensor field, and is smooth if B is smooth.

(e) (F ◦G)∗B = G∗ (F ∗B).

(f) (IdN )
∗
B = B.

(g) If p ∈ M and (yi) are smooth coordinates for N on a neighborhood of F (p), then F ∗B has the following
expression in a neighborhood of p:

F ∗ (Bi1...ik dyi1 ⊗ · · · ⊗ dyik
)

=(Bi1...ik ◦ F ) d
(
yi1 ◦ F

)
⊗ · · · ⊗ d

(
yik ◦ F

)
Remark 1.1.20. To remember the last formula, one can use (a) and the fact that exterior differentiation
commutes with pullback F ∗ dω = d(F ∗ω). ♠

1.2 Vector Fields

1.2.1 Lie Bracket

Suppose M and N are smooth manifolds with or without boundary, and F : M → N is a smooth map.
We obtain a smooth map dF : TM → TN , called the global differential of F , whose restriction to each
tangent space TpM is the linear map dFp defined above. In general, the global differential does not take
vector fields to vector fields. In the special case that X ∈ X(M) and Y ∈ X(N) are vector fields such that
dF (Xp) = YF (p) for all p ∈M , we say that the vector fields X and Y are F -related.
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Lemma 1.2.1. ( [6] Prop.8.19 & Cor.8.21) Let F : M → N be a diffeomorphism between smooth manifolds
with or without boundary. For every X ∈ X(M), there is a unique vector field F∗X ∈ X(N), called the
pushforward of X, that is F -related to X. For every f ∈ C∞(N), it satisfies

((F∗X) f) ◦ F = X(f ◦ F ). (1.4)

Suppose X ∈ X(M). Given a real-valued function f ∈ C∞(M), applying X to f yields a new function
Xf ∈ C∞(M) by Xf(p) = Xpf . The defining equation for tangent vectors translates into the following
product rule for vector fields:

X(fg) = fXg + gXf. (1.5)

A map X : C∞(M)→ C∞(M) is called a derivation of C∞(M) (as opposed to a derivation at a point) if it
is linear over R and satisfies (1.5) for all f, g ∈ C∞(M).

Lemma 1.2.2. ( [6] Prop.8.15) Let M be a smooth manifold with or without boundary. A map D : C∞(M)→
C∞(M) is a derivation if and only if it is of the form Df = Xf for some X ∈ X(M).

Given smooth vector fields X,Y ∈ X(M), define a map [X,Y ] : C∞(M)→ C∞(M) by

[X,Y ]f = X(Y f)− Y (Xf).

The value of the vector field [X,Y ] at a point p ∈ M can be shown to be a deriavtion at p given by the
formula [X,Y ]pf = Xp(Y f)− Yp(Xf). Thus, by Lemma 1.2.2 it defines a smooth vector field, called the Lie
bracket of X and Y .

Proposition 1.2.3 (Coordinate Formula for the Lie Bracket). Let X,Y be smooth vector fields on a smooth
manifold M with or without boundary, and let X = Xi∂/∂xi and Y = Y j∂/∂xj be the coordinate expressions
for X and Y in terms of some smooth local coordinates (xi) for M . Then [X,Y ] has the following coordinate
expression:

[X,Y ] =

(
Xi ∂Y

j

∂xi
− Y i ∂X

j

∂xi

)
∂

∂xj
(1.6)

or more concisely,

[X,Y ] =
(
X(Y j)− Y (Xj)

) ∂

∂xj
(1.7)

Proposition 1.2.4 (Properties of Lie Brackets). ( [6] Prop.8.28) Let M be a smooth manifold with or without
boundary and X,Y, Z ∈ X(M).

(a) BILINEARITY: [X,Y ] is bilinear over R as a function of X and Y .

(b) ANTISYMMETRY: [X,Y ] = −[Y,X].

(c) JACOBI IDENTITY: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

(d) For f, g ∈ C∞(M), [fX, gY ] = fg[X,Y ] + (fXg)Y − (gY f)X.

Proposition 1.2.5 (Naturality of Lie Brackets). ( [6] Prop.8.30 & Cor.8.31) Let F : M → N be a smooth
map between manifolds with or without boundary, and let X1, X2 ∈ X(M) and Y1, Y2 ∈ X(N) be vector fields
such that Xi is F -related to Yi for i = 1, 2. Then [X1, X2] is F -related to [Y1, Y2]. In particular, if F is a
diffeomorphism, then F∗ [X1, X2] = [F∗X1, F∗X2].

Now suppose M̃ is a smooth manifold with or without boundary and M ⊆ M̃ is an immersed or embedded
submanifold with or without boundary. The bundle TM̃

∣∣∣
M

, obtained by restricting TM̃ to M , is called the

ambient tangent bundle. It is a smooth bundle over M whose rank is equal to the dimension of M̃ . The
tangent bundle TM is naturally viewed as a smooth subbundle of TM̃

∣∣∣
M

, and smooth vector fields on M

18
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can also be viewed as smooth sections of TM̃
∣∣∣
M

. A vector field X ∈ X(M̃) always restricts to a smooth

section of TM̃
∣∣∣
M

, and it restricts to a smooth section of TM if and only if it is tangent to M , meaning that

Xp ∈ TpM ⊆ TpM̃ for each p ∈M .

Corollary 1.2.6 (Brackets of Vector Fields Tangent to Submanifolds). ( [6] Cor.8.32) Let M̃ be a smooth
manifold and let M be an immersed submanifold with or without boundary in M̃ . If Y1 and Y2 are smooth
vector fields on M̃ that are tangent to M , then [Y1, Y2] is also tangent to M .

Exercise 1.2.7. Let M̃ be a smooth manifold with or without boundary and let M ⊆ M̃ be an embedded
submanifold with or without boundary. Show that a vector field X ∈ X(M̃) is tangent to M if and only if
(Xf)|M = 0 whenever f ∈ C∞(M̃) is a function that vanishes on M .

1.2.2 Integral Curves and Flows

A curve in a smooth manifold M (with or without boundary) is a continuous map γ : I → M , where I ⊆ R
is some interval. If γ is smooth, then for each t0 ∈ I we obtain a vector γ′ (t0) = dγt0

(
d/ dt|t0

)
, called the

velocity of γ at time t0. It acts on functions by

γ′ (t0) f = (f ◦ γ)′ (t0) .

In any smooth local coordinates, the coordinate expression for γ′ (t0) is exactly the same as it would be in
Rn: the components of γ′ (t0) are the ordinary t-derivatives of the components of γ.

If X ∈ X(M), then a smooth curve γ : I →M is called an integral curve of X if its velocity at each point is
equal to the value of X there: γ′(t) = Xγ(t) for each t ∈ I.

The fundamental fact about vector fields (at least in the case of manifolds without boundary) is that there
exists a unique maximal integral curve starting at each point, varying smoothly as the point varies. These
integral curves are all encoded into a global object called a flow, which we now define.

Given a smooth manifold M (without boundary), a flow domain for M is an open subset D ⊆ R×M with
the property that for each p ∈M , the set

D(p) = {t ∈ R : (t, p) ∈ D}

is an open interval containing 0. Given a flow domain D and a map θ : D →M , for each t ∈ R we let

Mt = {p ∈M : (t, p) ∈ D},

and we define maps
θt :Mt →M

and
θ(p) : D(p) →M

by θt(p) = θ(p)(t) = θ(t, p). A flow on M is a continuous map θ : D → M , where D ⊆ R ×M is a flow
domain, that satisfies

θ0 = IdM ,

θt ◦ θs(p) = θt+s(p) wherever both sides are defined.

If θ is a smooth flow, we obtain a smooth vector field X ∈ X(M) defined by Xp =
(
θ(p)

)′
(0), called the

infinitesimal generator of θ.

Theorem 1.2.8 (Fundamental Theorem on Flows). ( [6] Thm.9.12) LetX be a smooth vector field on a smooth
manifold M (without boundary). There is a unique smooth maximal flow θ : D → M whose infinitesimal
generator is X. This flow has the following properties:
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(a) For each p ∈M , the curve θ(p) : D(p) →M is the unique maximal integral curve of X starting at p.

(b) If s ∈ D(p), then D(θ(s,p)) is the interval D(p) − s =
{
t− s : t ∈ D(p)

}
.

(c) For each t ∈ R, the set Mt is open in M , and θt :Mt →M−t is a diffeomorphism with inverse θ−t.

Although the fundamental theorem guarantees only that each point lies on an integral curve that exists for
a short time, the next lemma can often be used to prove that a particular integral curve exists for all time.

Lemma 1.2.9 (Escape Lemma). Suppose M is a smooth manifold and X ∈ X(M). If γ : I →M is a maximal
integral curve of X whose domain I has a finite least upper bound b, then for every t0 ∈ I, γ ([t0, b)) is not
contained in any compact subset of M .

Proposition 1.2.10 (Canonical Form for a Vector Field). ( [6] Thm.9.22) Let X be a smooth vector field on a
smooth manifold M , and suppose p ∈M is a point where Xp ̸= 0. There exist smooth coordinates

(
xi
)

on some
neighborhood of p in which X has the coordinate representation ∂/∂x1.

Suppose M is a smooth manifold, V is a smooth vector field of M , and θ is the flow of V . For any smooth
vector field W on M , define a vector field LVW (which is smooth by [6, Lemma 9.36]) and call it Lie
derivative of W with respect to V :

(LVW )p :=
d
dt

∣∣∣∣
t=0

d(θ−t)θt(p)(Wθt(p)) = lim
t→0

d(θ−t)θt(p)(Wθt(p))−Wp

t
,

provided the derivative exists. For a smooth k-tensor field A on M , we define a k-tensor field LVA (which is
smooth by [6, Lemma 12.30]) and call it Lie derivative of A with respect to V :

(LVA)p :=
d
dt

∣∣∣∣
t=0

(θ∗tA)p = lim
t→0

(θ∗tA)p −Ap
t

,

provided the derivative exists. Because the expression being differentiated lies in vector space T k
(
T ∗
pM

)
for

all t, (LVA)p makes sense as an element of T k
(
T ∗
pM

)
. We say A is invariant under θ if for each t, θ∗tA = A.

We give a way to reconclie the two definitions using [6, Problem 12-10]:

Definition 1.2.11. For diffeomorphism F : M → N and nonnegative integers k, l, we define pushforward
isomorphism

F∗ : Γ
(
T (k,l)TM

)
→ Γ

(
T (k,l)TN

)
and pushback isomorphism

F ∗ : Γ
(
T (k,l)TN

)
→ Γ

(
T (k,l)TM

)
via the following steps: supposing F (p) = q,

(1) When k = 0, l = 0, we define F∗f = f ◦ F−1 for f ∈ C∞(M); F ∗g = g ◦ F for g ∈ C∞(N).

(2) When k = 0, l = 1, we define (F∗α)q = αp◦( dFp)−1 = αp◦ d(F−1)q for α ∈ Γ(T ∗M); (F ∗β)p = βq◦ dFp
for β ∈ Γ(T ∗N).

(3) When k = 1, l = 0, we define (F∗X)q = ( dFp)Xp for X ∈ Γ(TM); (F ∗Y )p = ( dFp)−1Yq = d(F−1)qYq
for Y ∈ Γ(TN).

(4) When k, l ≥ 1, we define, using case (2) and (3), for A ∈ Γ
(
T (k,l)TM

)
and B ∈ Γ

(
T (k,l)TN

)
,

(F∗A)q(β
1(p), . . . , βk(p), Y1(p), . . . , Yl(p)) = Ap

(
F ∗β1(p), · · · , F ∗βk(p), F ∗Y1(p), · · · , F ∗Yl(p)

)
(F ∗B)p(α1(q), . . . , αk(q), X1(q), . . . , Xl(q)) = Bq (F∗α1(q), · · · , F∗αk(q), F∗X1(q), · · · , F∗Xl(q))
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By these notations (specifically case (3)) and the fact that inverse of the diffeomorphism θt is θ−t, we can
also write the Lie derivative of W with respect to V as

(LVW )p =
d
dt

∣∣∣∣
t=0

(θ∗tW )p .

The pushforward and pushback isomorphisms enjoy the following properties (some don’t require F to be a
diffeomorphism, as we have seen in Proposition 1.1.19):

(a) F∗ = (F ∗)
−1.

(b) F ∗(A⊗B) = F ∗A⊗ F ∗B.

(c) (F ◦G)∗ = F∗ ◦G∗.

(d) (F ◦G)∗ = G∗ ◦ F ∗.

(e) (IdM )
∗
= (IdM )∗ = Id : Γ

(
T (k,l)TM

)
→ Γ

(
T (k,l)TM

)
.

(f) F ∗ (A (X1, . . . , Xk)) = F ∗A
(
F−1
∗ (X1) , . . . , F

−1
∗ (Xk)

)
for A ∈ T k(N) and X1, . . . , Xk ∈ X(N).

Proposition 1.2.12 ( [6] Prop.12.32-36). Let M be a smooth manifold and let V ∈ X(M). Suppose f is a
smooth real-valued function (regarded as a 0-tensor field) on M , and A,B are smooth covariant tensor fields on
M .

(a) LV f = V f .

(b) LV (fA) = (LV f)A+ fLVA.

(c) LV (A⊗B) = (LVA)⊗B +A⊗ LVB.

(d) If X1, . . . , Xk are smooth vector fields and A is a smooth k-tensor field,

LV (A (X1, . . . , Xk)) = (LVA) (X1, . . . , Xk) +A (LVX1, . . . , Xk)

+ · · ·+A (X1, . . . ,LVXk) .

(LVA) (X1, . . . , Xk) =V (A (X1, . . . , Xk))−A ([V,X1] , X2, . . . , Xk)

− · · · −A (X1, . . . , Xk−1, [V,Xk]) .

(f) If f ∈ C∞(M), then LV (df) = d (LV f).

(g) For any smooth covariant tensor field A and any (t0, p) in the domain of θ,

d
dt

∣∣∣∣
t=t0

(θ∗tA)p =
(
θ∗t0 (LVA)

)
p

Thus, A is invariant under θ ⇐⇒ LVA = 0.

Proposition 1.2.13. ( [6] Thmeorem 9.38) Suppose M is a smooth manifold and X,Y ∈ X(M). The Lie
derivative of Y with respect to X is equal to the Lie bracket [X,Y ].

One of the most important applications of the Lie derivative is as an obstruction to invariance under a flow.
If θ is a smooth flow, we say that a vector field Y is invariant under θ if (θt)∗ Y = Y wherever the left-hand
side is defined.

Proposition 1.2.14. ( [6] Thmeorem 9.42) Let M be a smooth manifold and X ∈ X(M). A smooth vector field
is invariant under the flow of X if and only if its Lie derivative with respect to X is identically zero.

A k-tuple of vector fields X1, . . . , Xk is said to commute if [Xi, Xj ] = 0 for each i and j.
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1.3 Smooth Covering Maps

A covering map is a surjective continuous map π : M̃ → M between connected and locally path-connected
topological spaces, for which each point of M has connected neighborhood U that is evenly covered, mean-
ing that each connected component of π−1(U) is mapped homeomorphically onto U by π. It is called a
smooth covering map if M̃ and M are smooth manifolds with or without boundary and each component of
π−1(U) is mapped diffeomorphically onto U . For every evenly covered open set U ⊆ M , the components of
π−1(U) are called the sheets of the covering over U .

Here are the main properties of covering maps that we need.

Proposition 1.3.1 (Elementary Properties of Smooth Covering Maps).

(a) Every smooth covering map is a local diffeomorphism, a smooth submersion, an open map, and a quotient
map.

(b) An injective smooth covering map is a diffeomorphism.

(c) A topological covering map is a smooth covering map if and only if it is a local diffeomorphism.

Proof. See [6] Prop. 4.33. ■

Proposition 1.3.2. A covering map is a proper map if and only if it is finite-sheeted.

Exercise 1.3.3. Prove the preceding proposition.

If π : M̃ → M is a covering map and F : B → M is a continuous map from a topological space B into M ,
then a lift of F is a continuous map F̃ : B → M̃ such that π ◦ F̃ = F .

Proposition 1.3.4 (Lifts of Smooth Maps are Smooth). If π : M̃ → M is a smooth covering map, B is a
smooth manifold with or without boundary, and F : B →M is a smooth map, then every lift of F is smooth.

Proof. Since π is a smooth submersion, every lift F̃ : B → M̃ can be written locally as F̃ = σ ◦ F , where σ is
a smooth local section of π (see [6] Thm. 4.26). ■

Proposition 1.3.5 (Lifting Properties of Covering Maps). Suppose π : M̃ →M is a covering map.

(a) UNIQUE LIFTING PROPERTY ( [5] Thm. 11.12): If B is a connected topological space and F : B →M is
a continuous map, then any two lifts of F that agree at one point are identical.

(b) PATH LIFTING PROPERTY ( [5] Cor. 11.14): Suppose f : [0, 1] → M is a continuous path. For every
p̃ ∈ π−1(f(0)), there exists a unique lift f̃ : [0, 1]→ M̃ of f such that f̃(0) = p̃.

(c) MONODROMY THEOREM ( [5] Thm. 11.15): Suppose f, g : [0, 1] → M are path-homotopic paths
and f̃ , g̃ : [0, 1] → M̃ are their lifts starting at the same point. Then f̃ and g̃ are path-homotopic and
f̃(1) = g̃(1).

Theorem 1.3.6 (Injectivity Theorem). ( [5] Thm. 11.16) If π : M̃ →M is a covering map, then for each point
x̃ ∈ M̃ , the induced fundamental group homomorphism π∗ : π1(M̃, x̃)→ π1(M,π(x̃)) is injective.

Theorem 1.3.7 (Lifting Criterion). ( [5] Thm. 11.18) Suppose π : M̃ →M is a covering map, B is a connected
and locally path-connected topological space, and F : B → M is a continuous map. Given b ∈ B and x̃ ∈ M̃
such that π(x̃) = F (b), the map F has a lift to M̃ if and only if F∗ (π1(B, b)) ⊆ π∗

(
π1(M̃, x̃)

)
.
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Corollary 1.3.8 (Lifting Maps from Simply Connected Spaces). ( [5] Cor. 11.19) Suppose π : M̃ → M
and F : B → M satisfy the hypotheses of Theorem A.56, and in addition B is simply connected. Then every
continuous map F : B → M has a lift to M̃ . Given any b ∈ B, the lift can be chosen to take b to any point in
the fiber over F (b).

Corollary 1.3.9 (Covering Map Homeomorphism Criterion). A covering map π : M̃ → M is a homeomor-
phism if and only if the induced homomorphism π∗ : π1(M̃, x̃) → π1(M,π(x̃)) is surjective for some (hence
every) x̃ ∈ M̃ . A smooth covering map is a diffeomorphism if and only if the induced homomorphism is surjec-
tive.

Proof. By Theorem 1.3.7, the hypothesis implies that the identity map Id: M → M has a lift Ĩd : M → M̃ ,
which in this case is a continuous inverse for π. If π is a smooth covering map, then the lift is also smooth. ■

Corollary 1.3.10 (Coverings of Simply Connected Spaces). ( [5] Cor. 11.33) If M is a simply connected
manifold with or without boundary, then every covering of M is a homeomorphism, and if M is smooth, every
smooth covering is a diffeomorphism.

Proposition 1.3.11 (Existence of a Universal Covering Manifold). ( [6] Cor. 4.43) If M is a connected smooth
manifold, then there exist a simply connected smooth manifold M̃ , called the universal covering manifold of M ,
and a smooth covering map π : M̃ →M . It is unique in the sense that if M̃ ′ is any other simply connected smooth
manifold that admits a smooth covering map π′ : M̃ ′ → M , then there exists a diffeomorphism Φ : M̃ → M̃ ′

such that π′ ◦ Φ = π.

Proposition 1.3.12. ( [5] Cor. 11.31)With π : M̃ → M as in the previous proposition, each fiber of π has the
same cardinality as the fundamental group of M .

Exercise 1.3.13. Suppose π : M̃ →M is a covering map. Show that M̃ is compact if and only if M is compact
and π is a finite-sheeted covering.

1.4 Vector Spaces T k(V ∗),Σk(V ∗),Λk(V ∗)

Let V be a f.d. vector space. The vector spaces of all covariant k-tensor, contravariant l-tensor, (k, l)-
mixed type tensor are

T k(V ∗) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k factors

, T l(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
l factors

, T (k,l)(V ) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k factors

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
l factors

It (Ei) is a basis for V and
(
εj
)

is the dual basis for V ∗, then their bases are{
εi1 ⊗ · · · ⊗ εik : 1 ≤ i1, . . . , ik ≤ n

}
for T k (V ∗) ;

{Ei1 ⊗ · · · ⊗ Eik : 1 ≤ i1, . . . , ik ≤ n} for T k(V );{
Ei1 ⊗ · · · ⊗ Eik ⊗ εj1 ⊗ · · · ⊗ εjl : 1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n

}
for T (k,l)(V ).

Therefore, dimT k (V ∗) = dimT k(V ) = nk and dimT (k,l)(V ) = nk+l.

Subspace Σk(V ∗)

A covariant k-tensor α on V is said to be symmetric if its value is unchanged by interchanging any pair of
arguments:

α (v1, . . . , vi, . . . , vj , . . . , vk) = α (v1, . . . , vj , . . . , vi, . . . , vk)
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whenever 1 ≤ i < j ≤ k. These symmetric covariant k-tensors form linear subspace Σk (V ∗) in T k (V ∗).
Given a k-tensor α and a permutation σ ∈ Sk, we define a new k-tensor σα by

σα (v1, . . . , vk) = α
(
vσ(1), . . . , vσ(k)

)
Note that τ (σα) = τσα. We define a projection Sym : T k (V ∗)→ Σk (V ∗) called symmetrization by

Symα =
1

k!

∑
σ∈Sk

σα

[6] Proposition 12.14 shows that Symα is indeed symmetric and a form α is symmetric if and only if
Symα = α. If α ∈ Σk (V ∗) and β ∈ Σl (V ∗), we define their symmetric product to be the (k + l) tensor αβ
(denoted by juxtaposition) given by

αβ = Sym(α⊗ β)

Example 1.4.1. By [6] p.315 Proposition 12.15, if α and β are covectors, then

αβ =
1

2
(α⊗ β + β ⊗ α). (1.8)

♣

A basis of Σk(V ∗) is given by{
Sym

(
εi1 ⊗ · · · ⊗ εik

)
, 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n

}
so that

dim
(
Σk(V ∗)

)
=

(
n+ k − 1

k

)
For an attempt to write the basis in form {α⊗ · · · ⊗ α}, see this post.

Subspace Λk(V ∗)

A covariant k-tensor α on V is said to be alternating (or antisymmetric or skew-symmetric) if

α (v1, . . . , vi, . . . , vj , . . . , vk) = −α (v1, . . . , vj , . . . , vi, . . . , vk)

Alternating covariant k-tensors are also variously called exterior forms, multicovectors, or k-covectors.
The subspace of all alternating covariant k-tensors on V is denoted by Λk (V ∗) ⊆ T k (V ∗).

Recall that for any permutation σ ∈ Sk, the sign of σ, denoted by sgnσ, is equal to +1 if σ is even (i.e., can
be written as a composition of an even number of transpositions), and −1 if σ is odd.

Proposition 1.4.2. Let α be a covariant k-tensor on a finite-dimensional vector space V . The following are
equivalent:

(a) α is alternating.

(b) For any vectors v1, . . . , vk and any permutation σ ∈ Sk,

α
(
vσ(1), . . . , vσ(k)

)
= (sgnσ)α (v1, . . . , vk)

(c) α (v1, . . . , vk) = 0 whenever the k-tuple (v1, . . . , vk) is linearly dependent.

(d) α gives the value zero whenever two of its arguments are equal:

α (v1, . . . , w, . . . , w, . . . , vk) = 0
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Proof. See [6] Exercise 12.17 and Lemma 14.1. ■

Example 1.4.3. Every 0-tensor (which is just a real number) is both symmetric and alternating, because
there are no arguments to interchange. Similarly, every 1-tensor is both symmetric and alternating. An
alternating 2-tensor on V is a skew-symmetric bilinear form. It is interesting to note that every covariant
2-tensor β can be expressed as a sum of an alternating tensor and a symmetric one, because

β(v, w) =
1

2
(β(v, w)− β(w, v)) + 1

2
(β(v, w) + β(w, v)) = α(v, w) + σ(v, w)

where α(v, w) = 1
2 (β(v, w)−β(w, v)) is an alternating tensor, and σ(v, w) = 1

2 (β(v, w)+β(w, v)) is symmetric.
This is not true for tensors of higher rank, as [6] Problem 12-7 shows. ♣

We define alteration, an analogue of symmetrization as the projection Alt : T k (V ∗)→ Λk (V ∗), as follows:

Altα =
1

k!

∑
σ∈Sk

(sgnσ) (σα)

More explicitly, this means

(Altα) (v1, . . . , vk) =
1

k!

∑
σ∈Sk

(sgnσ)α
(
vσ(1), . . . , vσ(k)

)

Example 1.4.4. If α is any 1-tensor, then Altα = α. If β is a 2 -tensor, then

(Altβ)(v, w) =
1

2
(β(v, w)− β(w, v))

♣

Similar to the properties of symmetrization operator, we have Altα is alternating; and that Altα = α ⇐⇒ α
is alternating.

To describe the basis of Λk(V ∗), we introduce some notations. For multi-index I = (i1, · · · , ik), we let

Iσ =
(
iσ(1), . . . , iσ(k)

)
.

Note that Iστ = (Iσ)τ for σ, τ ∈ Sk.

For a multi-index I = (i1, . . . , ik) with non-decreasing components i1 ≤ · · · ≤ ik, define a covariant k-tensor
εI = εi1...ik by

εI (v1, . . . , vk) = det

 εi1 (v1) . . . εi1 (vk)
...

. . .
...

εik (v1) . . . εikk (vk)

 = det

 vi11 . . . vi1k
...

. . .
...

vik1 . . . vikk

 .

In other words, if V denotes the n×k matrix whose columns are the components of the vectors v1, . . . , vk with
respect to the basis (Ei) dual to

(
εi
)
, then εI (v1, . . . , vk) is the determinant of the k×k submatrix consisting

of rows i1, . . . , ik of V. Because the determinant changes sign whenever two columns are interchanged,
it is clear that εI is an alternating k-tensor. We call εI an elementary alternating tensor or elementary
k-covector.

We adopt the following notation ∑
I

′αIε
I =

∑
{I:i1<···<ik}

αIε
I .
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Proposition 1.4.5. Let V be an n-dimensional vector space. If
(
εi
)

is any basis for V ∗, then for each positive
integer k ≤ n, the collection of k-covectors

E =
{
εI : I is an increasing multi-index of length k

}
is a basis for Λk (V ∗). Therefore,

dimΛk (V ∗) =

(
n

k

)
=

n!

k!(n− k)!

If k > n, then dimΛk (V ∗) = 0.

In particular, for an n-dimensional vector space V , this proposition implies that Λn (V ∗) is 1-dimensional
and is spanned by ε1...n. By definition, this elementary n covector acts on vectors (v1, . . . , vn) by taking
the determinant of their component matrix V =

(
vij
)
. For example, on Rn with the standard basis, ε1...n is

precisely the determinant function.

Proposition 1.4.6. Suppose V is an n-dimensional vector space and ω ∈ Λn (V ∗). If T : V → V is any linear
map and v1, . . . , vn are arbitrary vectors in V , then

ω (Tv1, . . . , T vn) = (detT )ω (v1, . . . , vn)

Given ω ∈ Λk (V ∗) and η ∈ Λl (V ∗), we define their wedge product or exterior product to be the following
(k + l)-covector:

ω ∧ η :=
(k + l)!

k!l!
ω ⊼ η :=

(k + l)!

k!l!
Alt(ω ⊗ η)

Proposition 1.4.7 (Properties of Wedge Product; [6] Lemma 14.10 and Proposition 14.11). Suppose ω, ω′, η, η′,
and ξ are multicovectors on a finite-dimensional vector space V .

(a) For any multi-indices I and J of lengths k and l, we have εI ∧ εJ = εIJ where IJ is the concatenation.

(a) BILINEARITY: For a, a′ ∈ R,

(aω + a′ω′) ∧ η = a(ω ∧ η) + a′ (ω′ ∧ η)
η ∧ (aω + a′ω′) = a(η ∧ ω) + a′ (η ∧ ω′)

(b) ASSOCIATIVITY:
ω ∧ (η ∧ ξ) = (ω ∧ η) ∧ ξ

(c) ANTICOMMUTATIVITY: For ω ∈ Λk (V ∗) and η ∈ Λl (V ∗),

ω ∧ η = (−1)klη ∧ ω

(d) If
(
εi
)

is any basis for V ∗ and I = (i1, . . . , ik) is any multi-index, then

εi1 ∧ · · · ∧ εik = εI

(e) For any covectors ω1, . . . , ωk and vectors v1, . . . , vk,

ω1 ∧ · · · ∧ ωk (v1, . . . , vk) = det
(
ωj (vi)

)
There is an important operation that relates vectors with alternating tensors. Let V be a finite-dimensional
vector space. For each v ∈ V , we define a linear map iv : Λk (V ∗) → Λk−1 (V ∗), called interior multiplica-
tion by v, as follows:

ivω (w1, . . . , wk−1) = ω (v, w1, . . . , wk−1)
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In other words, ivω is obtained from ω by inserting v into the first slot. By convention, we interpret ivω to
be zero when ω is a 0-covector (i.e., a number). Another common notation is

v⌟ω = ivω

This is often read “v into ω.”

Proposition 1.4.8 ( [6] Lemma 14.13.). Let V be a finite-dimensional vector space and v ∈ V .

(a) iv ◦ iv = 0.

(b) If ω ∈ Λk (V ∗) and η ∈ Λl (V ∗),

iv(ω ∧ η) = (ivω) ∧ η + (−1)kω ∧ (ivη)

(c) More generally, if ω1, · · · , ωk are k covectors, we have

v⌟(ω1 ∧ · · · ∧ ωk) =
k∑
i=1

(−1)i−1ωi(v)ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωk.

We make a brief summary.

spaces projection product of k form & l form
symmetric k-tensor Σk(V ∗) symmetrization Sym symmetric product αβ = Sym(α⊗ β)
alternating k-tensor Λk(V ∗) alternation Alt wedge product α ∧ β = (k+l)!

k!l! Alt(α⊗ β)

1.5 Differential Forms

We record the following notations

T kT ∗M =
∐
p∈M

T k(T ∗
pM), ΛkT ∗M =

∐
p∈M

Λk(T ∗
pM), ΣkT ∗M =

∐
p∈M

Σk(T ∗
pM).

They are the bundle of all k-tensors on M , the bundle of all alternating k-tensors on M , and the bundle of all
symmetric k-tensors on M . A section of each of these three is called a k-tensor field, a differential k-form,
and a symmetric k-tensor field. We denote that vector space of all smooth k-forms by

Ωk(M) = Γ(ΛkT ∗M).

In a smooth coordinate (U, (xi)), we have basis { ∂
∂xi |p} for TpM and basis {dxi|p} for T ∗

pM . A 0-form is just
a continuous real-valued function, and a 1-form is a covector field.

If F :M → N is a smooth map and ω is a differential form on N , the pullback F ∗ω is a differential form on
M , defined iin the same wat as for any covariant tensor field:

(F ∗ω)p (v1, . . . , vk) = ωF (p) ( dFp (v1) , . . . , dFp (vk))

Similar to Proposition 1.1.19, we have

Lemma 1.5.1 (Pullback; [6] Lemma 14.16). Suppose F :M → N is smooth.

(a) F ∗ : Ωk(N)→ Ωk(M) is linear over R.

(b) F ∗(ω ∧ η) = (F ∗ω) ∧ (F ∗η).
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(c) In any smooth chart (yi) in N ,

F ∗

(∑
I

′ωI dyi1 ∧ · · · ∧ dyik
)

=
∑
I

′ (ωI ◦ F ) d
(
yi1 ◦ F

)
∧ · · · ∧ d

(
yik ◦ F

)
.

Proposition 1.5.2 (Pullback Formula for Top-Degree Forms; [6] Proposition 14.20). Let F : M → N be a
smooth map between n-manifolds with or without boundary. If

(
xi
)

and
(
yj
)

are smooth coordinates on open
subsets U ⊆ M and V ⊆ N , respectively, and u is a continuous real-valued function on V , then the following
holds on U ∩ F−1(V ):

F ∗ (u dy1 ∧ · · · ∧ dyn
)
= (u ◦ F )(detDF ) dx1 ∧ · · · ∧ dxn,

where DF represents the Jacobian matrix of F in these coordinates.

Corollary 1.5.3. If
(
U,
(
xi
))

and
(
Ũ ,
(
x̃j
))

are overlapping smooth coordinate charts on M , then the following

identity holds on U ∩ Ũ :

dx̃1 ∧ · · · ∧ dx̃n = det

(
∂x̃j

∂xi

)
dx1 ∧ · · · ∧ dxn

Theorem 1.5.4 (Exterior Differentiation). Suppose M is a smooth manifold with or without boundary. There
are unique operators d : Ωk(M)→ Ωk+1(M) for all k, called exterior differentiation, satisfying the following
four properties:

(i) d is linear over R.

(ii) If ω ∈ Ωk(M) and η ∈ Ωl(M), then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

(iii) d ◦ d ≡ 0.

(iv) For f ∈ Ω0(M) = C∞(M), df is the differential of f , given by df(X) = Xf .

In any smooth coordinate chart, d is given by

d

(∑
J

′ωJ dxJ
)

=
∑
J

′ dωJ ∧ dxJ (1.9)

where dωJ =
∑
i
∂ωJ

∂xi dxi is the differential of the function ωJ .

For example, suppose (U,φ) is a local chart for smooth manifold M and f is a smooth function on M . Then

df =
∑
i

∂f

∂xi
dxi

is interpreted as follow:

dfp =
∑
i

∂f̂

∂xi
(p̂) dxi|p =

∑
i

∂(f ◦ φ−1)

∂xi
(φ(p)) dxi|p.

Proposition 1.5.5 (Naturality of the Exterior Derivative). If F :M → N is a smooth map, then for each k the
pullback map F ∗ : Ωk(N)→ Ωk(M) commutes with d: for all ω ∈ Ωk(N),

F ∗( dω) = d (F ∗ω)
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Proposition 1.5.6 (Exterior Derivative of a 1-Form). For any smooth 1-form ω and smooth vector fields X
and Y ,

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

Proposition 1.5.7 (Invariant Formula for the Exterior Derivative). Let M be a smooth manifold with or
without boundary, and ω ∈ Ωk(M). For any smooth vector fields X1, . . . , Xk+1 on M ,

dω (X1, . . . , Xk+1)

=
∑

1≤i≤k+1

(−1)i−1Xi

(
ω
(
X1, . . . , X̂i, . . . , Xk+1

))
+

∑
1≤i<j≤k+1

(−1)i+jω
(
[Xi, Xj ] , X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1

)
,

where the hats indicate omitted arguments.

Remark 1.5.8. As noted on page 372 of [LeeSM], we can use the formula above to define dω and derive all
the properties of exterior differentiation too. ♠

Proposition 1.5.9 (Some formulas for Lie Derivative and Differential Forms). Let M be a smooth manifold,
V ∈ X(M), and ω, η ∈ Ω∗(M) =

⊕
k Ω

k(M). Then

LV (ω ∧ η) = (LV ω) ∧ η + ω ∧ (LV η)
LV ω = iV ( dω) + d(iV ω) (Cartan’s magic formula)
LV ( dω) = d(LV ω).

1.6 Orientation on Manifolds

For every finite dimensional vector space V , two ordered bases (Ei), (Ẽj) are consistently oriented if the
transition matrix Bji such that Ei = Bji Ẽj has positive determinant. This is an equivalence relation among
the collection of all ordered bases of V . Since transition matrix is invertible, the determinant is either positive
or negative, so there are exactly two equivalence classes [E1, · · · , En] and −[E1, · · · , En]. A choice of one of
them gives an orientation for V . A vector space with a choice of orientation is said to be oriented. When
n = 0 we define orientation as a choice of a number.

Proposition 1.6.1. Let V be a vector space of dimension n. Each nonzero element ω ∈ Λn (V ∗) determines
an orientation Oω of V as follows: if n ≥ 1, then Oω is the set of ordered bases (E1, . . . , En) such that
ω (E1, . . . , En) > 0; while if n = 0, then Oω is +1 if ω > 0, and -1 if ω < 0. Two nonzero n-covectors determine
the same orientation if and only if each is a positive multiple of the other.

If V is an oriented n-dimensional vector space and ω is an n-covector that determines the orientation of V
as described in this proposition, we say that ω is a (positively) oriented n-covector.

For any n-dimensional vector space V , the space Λn (V ∗) is 1-dimensional. The proposition shows that
choosing an orientation for V is equivalent to choosing one of the two components of Λn (V ∗) \{0}. This
formulation also works for 0-dimensional vector spaces, and explains why we have defined an orientation of
a 0 -dimensional space in the way we did.

Now suppose M is a manifold. We define a pointwise orientation on M to be a choice of orientation of
each tangent space.

Let M be a smooth n-manifold with or without boundary, endowed with a pointwise orientation. If (Ei) is

a local frame for TM , we say that (Ei) is (positively) oriented if
(
E1|p , . . . , En|p

)
is a positively oriented

basis for TpM at each point p ∈ U . A negatively oriented frame is defined analogously.
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A pointwise orientation is said to be continuous if every point of M is in the domain of some oriented local
frame. An orientation of M is a continuous pointwise orientation. We say that M is orientable if there
exists an orientation for it, and nonorientable if not. An oriented manifold is an ordered pair (M,O),
where M is an orientable smooth manifold and O is a choice of orientation for M ; an oriented manifold
with boundary is defined similarly. For each p ∈ M , the orientation of TpM determined by O is denoted by
Op.

If M is zero-dimensional, this definition just means that an orientation of M is a choice of ±1 attached to
each of its points. The continuity condition is vacuous in this case, and the notion of oriented frames is not
useful. Clearly, every 0-manifold is orientable.

Proposition 1.6.2 (The Orientation Determined by an n-Form; [6] Proposition 15.5). Let M be a smooth
n-manifold with or without boundary. Any nonvanishing n-form ω on M determines a unique orientation of M
for which ω is positively oriented at each point. Conversely, if M is given an orientation, then there is a smooth
nonvanishing n-form on M that is positively oriented at each point.

Remark 1.6.3. Because of this proposition, if M is a smooth n-manifold with or without boundary, any
nonvanishing n-form on M is called an orientation form. If M is oriented and ω is an orientation form
determining the given orientation, we also say that ω is (positively) oriented. It is easy to check that if
ω and ω̃ are two positively oriented smooth forms on M , then ω̃ = fω for some strictly positive smooth
realvalued function f . If M is a 0-manifold, a nonvanishing 0 -form (i.e., real-valued function) assigns the
orientation +1 to points where it is positive and -1 to points where it is negative. ♠

A smooth coordinate chart on an oriented smooth manifold with or without boundary is said to be (pos-
itively) oriented if the coordinate frame

(
∂/∂xi

)
is positively oriented, and negatively oriented if the

coordinate frame is negatively oriented. A smooth atlas {(Uα, φα)} is said to be consistently oriented if for
each α, β, the transition map φβ ◦ φ−1

α has positive Jacobian determinant everywhere on φα (Uα ∩ Uβ).

Proposition 1.6.4 (The Orientation Determined by a Coordinate Atlas; [6] Proposition 15.6.). Let M be a
smooth positive-dimensional manifold with or without boundary. Given any consistently oriented smooth atlas
for M , there is a unique orientation for M with the property that each chart in the given atlas is positively
oriented. Conversely, if M is oriented and either ∂M = ∅ or dimM > 1, then the collection of all oriented
smooth charts is a consistently oriented atlas for M .

We have seen

A consistently oriented C∞ atlas

⇕ [LeeSM] 15.6.

A continuous pointwise orientation

⇕ [LeeSM] 15.5.

An orientation form, i.e., a nonvanishing top-degree form

Proposition 1.6.5. Let M be a connected, orientable, smooth manifold with or without boundary. Then M has
exactly two orientations. If two orientations of M agree at one point, then they are equal.

Let M and N be oriented smooth manifolds with or without boundary, and suppose F : M → N is a
local diffeomorphism. If M and N are positive-dimensional, we say that F is orientation-preserving
if for each p ∈ M , the isomorphism dFp takes oriented bases of TpM to oriented bases of TF (p)N , and
orientation-reversing if it takes oriented bases of TpM to negatively oriented bases of TF (p)N . If M and N
are 0-manifolds, then F is orientation-preserving if for every p ∈ M , the points p and F (p) have the same
orientation; and it is orientation-reversing if they have the opposite orientation.

Exercise 1.6.6. Suppose M and N are oriented positive-dimensional smooth manifolds with or without bound-
ary, and F :M → N is a local diffeomorphism. Show that the following are equivalent.

(a) F is orientation-preserving.
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(b) With respect to any oriented smooth charts for M and N , the Jacobian matrix of F has positive determi-
nant.

(c) For any positively oriented orientation form ω for N , the form F ∗ω is positively oriented for M .

Exercise 1.6.7. Show that a composition of orientation-preserving maps is orientation-preserving.

Suppose M and N are smooth manifolds with or without boundary. Suppose F : M → N be a local
diffeomorphism and N is given with orientation O. Then we can naturally define an orientation F ∗O,
called pullback orientation induced by F , making F orientation-preserving: for each p ∈ M , choose the
orientation of TpM such that dFp : TpM → TF (p)N preserves orientation. Another orientation arising
naturally from constructed manifolds is the product orientation: it’s the unique orientation on the product
of orientatable manifolds M1 × · · · ×Mk with the property that if for each i = 1, . . . , k, ωi is an orientation
form for the given orientation onMi, then π∗

1ω1∧· · ·∧π∗
kωk is an orientation form for the product orientation.

Example 1.6.8. Every parallelizable smooth manifold is orientable via declaring the oritentation (the equiv-
alence class) containing (Ei|p) as the positive one, given the global smooth frame (Ei) on M . This pointwise
assignment is continuous as each p ∈ M is in a positively oriented frame containing it. Examples for such
manifolds include Euclidean space Rn, the n-torus Tn, the spheres S1,S3, and S7, Lie groups and products
of them. ♣

1.6.1 Orientation on Submanifolds

Proposition 1.6.9 (Orientations of Codimension-0 Submanifolds). SupposeM is an oriented smooth manifold
with or without boundary, and D ⊆M is a smooth codimension-0 submanifold with or without boundary. Then
the orientation ofM restricts to an orientation ofD. If ω is an orientation form forM , then ι∗Dω is an orientation
form for D.

Suppose M is a smooth manifold with or without boundary, and S ⊆M is a smooth submanifold (immersed
or embedded, with or without boundary). Recall that a vector field along S is a section of the ambient
tangent bundle TM |S , i.e., a continuous map N : S → TM with the property that Np ∈ TpM for each
p ∈ S. For example, any vector field on M restricts to a vector field along S, but in general, not every vector
field along S is of this form (see [6, Problem 10-9]).

Proposition 1.6.10 (Orientation induced by nowhere tangent vector field on submanifold). Suppose M is
an oriented smooth n-manifold with or without boundary, S is an immersed hypersurface (i.e., codimension-1
submanifold) with or without boundary in M , and N is a vector field along S that is nowhere tangent to S.
Then S has a unique orientation such that for each p ∈ S, (E1, . . . , En−1) is an oriented basis for TpS if and
only if (Np, E1, . . . , En−1) is an oriented basis for TpM . If ω is an orientation form for M , then ι∗S (N⌟ω) is an
orientation form for S with respect to this orientation, where ιS : S ↪→M is inclusion.

Remark 1.6.11. The reason for us to put Np in (Np, E1, . . . , En−1) in the first place is that we want to use
the notation N⌟ω in the above proposition. If we remove the last sentence, the position of Np in the tuple
does not matter. ♠

Proof. Let ω be an orientation form for M . Then σ = ι∗S(N⌟ω) is an (n − 1)-form on S. (Recall that the
pullback ι∗S is really just restriction to vectors tangent to S.) It will follow that σ is an orientation form for
S if we can show that it never vanishes. Given any basis (E1, . . . , En−1) for TpS, the fact that N is nowhere
tangent to S implies that (Np, E1, . . . , En−1) is a basis for TpM . The fact that ω is nonvanishing implies that

σp (E1, . . . , En−1) = ωp (Np, E1, . . . , En−1) ̸= 0

Since σp (E1, . . . , En−1) > 0 if and only if ωp (Np, E1, . . . , En−1) > 0, the orientation determined by σ is the
one defined in the statement of the proposition. ■
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Example 1.6.12. The sphere Sn is a hypersurface in Rn+1, to which the vector field N = xi∂/∂xi is nowhere
tangent, so this vector field induces an orientation on Sn. This shows that all spheres are orientable. We
define the standard orientation of Sn to be the orientation determined by N . Unless otherwise specified, we
always use this orientation. (The standard orientation on S0 is the one that assigns the orientation +1 to the
point +1 ∈ S0 and −1 to −1 ∈ S0.) ♣

Not every hypersurface admits a nowhere tangent vector field. (See [6, Problem 15-6].) However, the
following proposition gives a sufficient condition that holds in many cases.

Proposition 1.6.13. Let M be an oriented smooth manifold, and suppose S ⊆ M is a regular level set of a
smooth function f :M → R. Then S is orientable.

Proof. Choose any Riemannian metric on M , and let N = grad f |S . S = f−1(c) being a regular level set, so
TpS = ker dfp by [6, Theorem 5.38]. By definition of gradient, dfp (Np) = g (Np, Np) = ∥Np∥2 > 0 (note
that grad f(p) = 0 ⇐⇒ dfp = 0 while for any p ∈ S, dfp is surjective and thus nonzero). But any tangent
vector X ∈ TpS must satisfy dfp(X) = 0 (since f is constant on S). So Np /∈ ker dfp = TpS, i.e., Np /∈ TpS
– it’s transverse to S. N := grad f |S is a nowhere tangent vector field along S. The result then follows from
Proposition 1.6.10. ■

An important case of the oritentation of a submanifold is the orientation of the boundary of a smooth
manifold. This will be used for Stokes’s theorem later.

Theorem 1.6.14. For an oriented smooth n-manifold M with boundary S = ∂M ̸= ∅ and n ≥ 1, [6, Theorem
5.11] shows that S with subspace topology has a smooth structure making it an embedded hypersurface (i.e.,
codim = 1) in M . [6, Problem 8-4] claims that there is a smooth outward-pointing vector field along S, and
Proposition 2.2.6 claims that after giving a metric for M , this outward-pointing vector field can be chosen to
be the normal vector field along S. Proposition 1.6.10 says the outward-pointing vector field determines an
orientation on S = ∂M . In fact, [6, Proposition 15.24] shows that all outward-pointing vector fields along it
determine the same orientation, called the induced orientation or the Stokes orientation on ∂M .

Example 1.6.15. This Theorem gives a simpler proof that Sn is orientable, because it is the boundary of the
closed unit ball. The orientation thus induced on Sn is the standard one. ♣

Example 1.6.16. Let us determine the induced orientation on ∂Hn when Hn itself has the standard ori-
entation inherited from Rn. We can identify ∂Hn with Rn−1 under the correspondence

(
x1, . . . , xn−1, 0

)
↔(

x1, . . . , xn−1
)
. Since the vector field −∂/∂xn is outward-pointing along ∂Hn, the standard coordinate frame

for Rn−1 is positively oriented for ∂Hn if and only if
[
−∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1

]
is the standard orienta-

tion for Rn. This orientation satisfies[
−∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1

]
= −

[
∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1

]
= (−1)n

[
∂/∂x1, . . . , ∂/∂xn−1, ∂/∂xn

]
Thus, the induced orientation on ∂Hn is equal to the standard orientation on Rn−1 when n is even, but it is
opposite to the standard orientation when n is odd. In particular, the standard coordinates on ∂Hn ≈ Rn−1

are positively oriented if and only if n is even. ♣

1.7 Integration on Manifolds

A domain of integration in Rn is a bounded subset whose boundary has measure zero. Open and closed
rectangles are examples of domains of integration. Finite union of domains of integration is also a domain
of integration. Obviously, a domain of integration should be a domain on which we can integrate:

Proposition 1.7.1. If D ⊆ Rn is a domain of integration, then every bounded continuous real-valued function
on D is integrable over D.
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If D is compact, then the assumption of boundedness in the above proposition is redundant.

In general, the integration of a real-valued function f over a manifold M is not coordinate-free. We need to
multiply f by some additional number to account for the effect of the change of coordinate:

Theorem 1.7.2 (Change of Variables). Suppose D and E are open domains of integration in Rn, and G : D̄ →
Ē is smooth map that restricts to a diffeomorphism from D to E. For every continuous function f : Ē → R,∫

E

f dV =

∫
D

(f ◦G)|detDG| dV

I. Integration of an n-form on a domain of integration D ⊆ Rn

Let us start with a domain of integration D ⊆ Rn and a continuous n-form ω = f dx1 ∧ · · · ∧ dxn over D
where f : D → R is a continuous function. Note that Rn has Heine-Borel property, i.e., every closed and
bounded subset of Rn is compact. Thus, D is compact and then f is integrable over D. We then define
integral of ω over D as ∫

D

ω =

∫
D

f dV.

This can be written more suggestively as∫
D

f dx1 ∧ · · · ∧ dxn =

∫
D

f dx1 · · · dxn

In simple terms, to compute the integral of a form such as fdx1 ∧ · · · ∧ dxn, just “erase the wedges”!

Somewhat more generally, let U be an open subset of Rn or Hn, and suppose ω is a compactly supported
n-form on U . We define ∫

U

ω =

∫
D

ω,

where D ⊆ Rn or Hn is any domain of integration (such as a rectangle) containing suppω, and ω is extended
to be zero on the complement of its support. Of course, this definition does not depend on what domain D
is chosen.

Like the definition of the integral of a 1-form over an interval, our definition of the integral of an n-form
might look like a trick of notation. The next proposition shows why it is natural.

Proposition 1.7.3. Suppose D and E are open domains of integration in Rn or Hn, and G : D̄ → Ē is a
smooth map that restricts to an orientation-preserving or orientation-reversing diffeomorphism from D to E. If
ω is an n-form on Ē, then

∫
D

G∗ω =


∫
E

ω if G is orientation-preserving

−
∫
E

ω if G is orientation-reversing

Proof. Let us use
(
y1, . . . , yn

)
to denote standard coordinates on E, and

(
x1, . . . , xn

)
to denote those on D.

Suppose first that G is orientation-preserving. With ω = f dy1 ∧ · · · ∧ dyn, the change of variables formula
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(Theorem 1.7.2) together with pullback formula for top-degree form (Proposition 1.5.2) yields∫
E

ω
definition of integration
===============

∫
E

f dV

change of variables
============

∫
D

(f ◦G)|detDG| dV

G orientation-preserving; see [LeeSM] Exercise 15.13(b)
=================================

∫
D

(f ◦G)(detDG) dV

definition of integration
===============

∫
D

(f ◦G)(detDG) dx1 ∧ · · · ∧ dxn

Proposition 1.5.2
===========

∫
D

G∗ω.

If G is orientation-reversing, the same computation holds except that a negative sign. ■

II. Integration of an n-form on an open set U ⊆ Rn

We would like to extend this theorem to compactly supported n-forms defined on open subsets. However,
since we cannot guarantee that arbitrary open subsets or arbitrary compact subsets are domains of integra-
tion, we need the following lemma.

Lemma 1.7.4. Suppose U is an open subset of Rn or Hn, and K is a compact subset of U . Then there is an
open domain of integration D such that K ⊆ D ⊆ D̄ ⊆ U .

Proposition 1.7.5. Suppose U, V are open subsets of Rn or Hn, and G : U → V is an orientation-preserving or
orientation-reversing diffeomorphism. If ω is a compactly supported n-form on V , then∫

V

ω = ±
∫
U

G∗ω

with the positive sign if G is orientation-preserving, and the negative sign otherwise.

Proof. Let E be an open domain of integration such that supp ω = K ⊆ E ⊆ Ē ⊆ V . Since diffeomor-
phisms take interiors to interiors, boundaries to boundaries, and sets of measure zero to sets of measure zero
(see Munkres’s Analysis on Manifolds [13] Theorem 18.1-18.2), D = G−1(E) ⊆ U is an open domain of
integration containing supp G∗ω. † The result then follows from Proposition 1.7.3. ■

1.7.1 Integration on Oriented Manifolds

III. Integration of an n-form on an oriented smooth n-manifold M

Now let M be an oriented smooth n-manifold with or without boundary, and let ω be an n-form on M .

Case 1 (Single chart): If ω is compactly supported in the domain of a single smooth chart (U,φ) that is either
positively or negatively oriented. We define the integral of ω over M to be∫

M

ω = ±
∫
φ(U)

(
φ−1

)∗
ω

with the positive sign for a positively oriented chart, and the negative sign otherwise. Since
(
φ−1

)∗
ω is a

compactly supported n-form on the open subset φ(U) ⊆ Rn or Hn, its integral is defined as discussed above.

†In fact, if ω = f dx1 ∧ · · · ∧ dxn, then {f ◦ G = 0} ⊇ G−1{f ̸= 0} =⇒ [{f ◦ G = 0}]c ⊆ [G−1{f ̸= 0}]c =⇒ supp G∗ω =

{f ◦G ̸= 0} = [{f ◦G = 0}]c ⊆ [G−1{f ̸= 0}]c G homeo
======= G−1{f ̸= 0} = G−1K ⊆ G−1(E) = D.
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Proposition 1.7.6 ( [6] Proposition 16.4). With ω as above,
∫
M
ω does not depend on the choice of smooth

chart whose domain contains supp ω.

Case 2 (Multiple charts): If ω is not just compactly supported in a single chart but nonzero over many charts
or even the entire manifold M , we need to use partition of unity to define the integral. Suppose M is an
oriented smooth n-manifold with or without boundary, and ω is a compactly supported n-form on M . Let
{Ui} be a finite open cover of supp ω by domains of positively or negatively oriented smooth charts, and let
{ψi} be a subordinate smooth partition of unity. Define the integral of ω over M to be∫

M

ω =
∑
i

∫
M

ψiω

Since for each i, the n-form ψiω is compactly supported in Ui, each of the terms in this sum is well defined
according to Case 1. To show that the integral is well defined, we need only examine the dependence on the
open cover and the partition of unity.

Proposition 1.7.7. The definition of integration above does not depend on the choice of open cover or partition
of unity.

Case 2’: As usual, we have a special definition in the zero-dimensional case. The integral of a compactly
supported 0-form (i.e., a real-valued function) f over an oriented 0-manifold M is defined to be the sum∫

M

f =
∑
p∈M
±f(p)

where we take the positive sign at points where the orientation is positive and the negative sign at points
where it is negative. The assumption that f is compactly supported implies that there are only finitely many
nonzero terms in this sum.

Case 3 (Oriented Submanifolds): If S ⊆ M is an oriented immersed k-dimensional submanifold (with or
without boundary), and ω is a k-form on M whose restriction to S is compactly supported, we interpret

∫
S
ω

to mean
∫
S
ι∗Sω, where ιS : S ↪→M is inclusion.

Case 3’: In particular, if M is a compact, oriented, smooth n-manifold with boundary S = ∂M an embedded
hypersurface with Stokes orientation, and ω is an (n−1)-form on M , † we can interpret

∫
∂M

ω as the integral
of ι∗∂Mω over ∂M .

Remark 1.7.8. It is worth remarking that it is possible to extend the definition of the integral to some
noncompactly supported forms, and such integrals are important in many applications. However, in such
cases the resulting multiple integrals are improper, so one must pay close attention to convergence issues. ♠

Proposition 1.7.9 (Properties of Integrals of Forms). Suppose M and N are nonempty oriented smooth n-
manifolds with or without boundary, and ω, η are compactly supported n-forms on M .

(a) LINEARITY: If a, b ∈ R, then ∫
M

aω + bη = a

∫
M

ω + b

∫
M

η.

(b) ORIENTATION REVERSAL: If −M denotes M with the opposite orientation, then∫
−M

ω = −
∫
M

ω

Alternatively, this is also recorded as ∫
M,⟲

ω = −
∫
M,⟳

ω

†ω is compactly supported in M because supp ω is a closed subset of a compact space and is thus compact. Besides, ω is compactly
supported within S as S is closed ( [6] Proposition 1.38) and thus compact as well. supp ι∗Sω as a closed subset of compact space S is
thus also compact.
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(c) POSITIVITY: If ω is a positively oriented orientation form, then
∫
M
ω > 0.

(d) DIFFEOMORPHISM INVARIANCE: If F : N → M is an orientation-preserving or orientation-reversing
diffeomorphism, then ∫

M

ω =


∫
N

F ∗ω if F is orientation-preserving

−
∫
N

F ∗ω if F is orientation-reversing

Although the definition of the integral of a form based on partitions of unity is very convenient for theoretical
purposes, it is useless for doing actual computations. It is generally quite difficult to write down a smooth
partition of unity explicitly, and even when one can be written down, one would have to be exceptionally
lucky to be able to compute the resulting integrals (think of trying to integrate e−1/x).

For computational purposes, it is much more convenient to “chop up” the manifold into a finite number of
pieces (including just a single piece;as we shall see in Example 1.7.12) whose boundaries are sets of measure
zero, and compute the integral on each piece separately by means of local parametrizations. One way to do
this is described below.

Proposition 1.7.10 (Integration Over Parametrizations). Let M be an oriented smooth n-manifold with or
without boundary, and let ω be a compactly supported n-form on M . Suppose D1, . . . , Dk are open domains of
integration in Rn, and for i = 1, . . . , k, we are given smooth maps Fi : D̄i →M satisfying

(i) Fi restricts to an orientation-preserving diffeomorphism from Di onto an open subset Wi ⊆M ;

(ii) Wi ∩Wj = ∅ when i ̸= j;

(iii) suppω ⊆ W̄1 ∪ · · · ∪ W̄k.

Then ∫
M

ω =

k∑
i=1

∫
Di

F ∗
i ω

Remark 1.7.11. The conditions above can be loosened; see [6] p.410. ♠

Example 1.7.12. Let us use this technique to compute the integral of a 2-form over S2, oriented as the
boundary of B3

. It is an embedded submanifold of R3 (as a regular level set of the distance function; see [6]
Example 5.15) and is thus immersed. Embedded submanifold has subspace topology, so the sphere as a
compact subset of R3 is compact with respect to its subspace topology. A form ω defined on R3 has its
restriction ι∗S2ω compactly supported on S. For example, consider 2-form ω on R3:

ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy.

Note that the support is all of S2, which cannot be covered up by a single chart. Proposition 1.7.10 is thus
needed here. The the open rectangle D = (0, π) × (0, 2π) will work as the open domain of integration
(open, bounded, and has a null-set-boundary), and the spherical coordinate parametrization F (φ, θ) =
(sinφ cos θ, sinφ sin θ, cosφ) will work as the smooth map F : D̄ → R3. The restriction F |D : D ↠ S2\ a
closed half-meridian =:W is an orientation-preserving diffeomorphism due to [6] Example 15.28. Note that
W = S2 = supp ι∗S2ω. The conditions in the Proposition 1.7.10 are now all satisfied. Then∫

S2
ω :=

∫
R3

ι∗S2ω =

∫
D

(ιS2 ◦ F )∗ω =

∫
D

F ∗ω,

where we still use F to denote the map ιS2 ◦ F . Then apply Lemma 1.5.1(c) and notice that

F ∗ dx = d(x ◦ F ) = cosφ cos θ dφ− sinφ sin θ dθ

F ∗ dy = d(y ◦ F ) = cosφ sin θ dφ+ sinφ cos θ dθ

F ∗ dz = d(z ◦ F ) = − sinφ dφ

36



Differential Geometry Anthony Hong

We compute: ∫
S2
ω =

∫
D

(
− sin3 φ cos2 θ dθ ∧ dφ+ sin3 φ sin2 θ dφ ∧ dθ

+cos2 φ sinφ cos2 θ dφ ∧ dθ − cos2 φ sinφ sin2 θ dθ ∧ dφ
)

=

∫
D

sinφ dφ ∧ dθ =
∫ 2π

0

∫ π

0

sinφ dφ dθ = 4π

♣

Theorem 1.7.13 (Stokes’s Theorem). Let M be an oriented smooth n-manifold with boundary, and let ω be a
compactly supported smooth (n− 1)-form on M. Then∫

M

dω =

∫
∂M

ω

Remark 1.7.14. The statement of this theorem is concise and elegant, but it requires a bit of interpretation.
First, as usual, ∂M is understood to have the induced (Stokes) orientation, and the ω on the right-hand side
is to be interpreted as ι∗∂Mω. If ∂M = ∅, then the right-hand side is to be interpreted as zero. When M is
1-dimensional, the right-hand integral is really just a finite sum. ♠

Proof. See [6] Theorem 16.11. ■

Corollary 1.7.15 (Integrals of Exact Forms). If M is a compact oriented smooth manifold without boundary,
then the integral of every exact form over M is zero:∫

M

dω = 0 if ∂M = ∅

Corollary 1.7.16 (Integrals of Closed Forms over Boundaries). Suppose M is a compact oriented smooth
manifold with boundary. If ω is a closed form on M , then the integral of ω over ∂M is zero:∫

∂M

ω = 0 if dω = 0 on M.

1.7.2 Integration on Nonorientable Manifolds

On an oriented n-manifold with or without boundary, n-forms are the natural objects to integrate. But in
order to integrate on a nonorientable manifold, we need closely related objects called densities.

If V is an n-dimensional real vector space, a density on V is a function

µ : V × · · · × V︸ ︷︷ ︸
n copies

→ R

satisfying the following formula for every linear map T : V → V :

µ (Tv1, . . . , T vn) = |detT |µ (v1, . . . , vn) . (1.10)

A density µ is said to be positive if µ (v1, . . . , vn) > 0 whenever (v1, . . . , vn) is a basis of V ; it is clear from
(1.10) that if this is true for some basis, then it is true for every one. Every nonzero alternating n-tensor µ
determines a positive density |µ| by the formula

|µ| (v1, . . . , vn) = |µ (v1, . . . , vn)| .
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The setD(V ) of all densities on V is a 1-dimensional vector space, spanned by |µ| for any nonzero alternating
n-tensor µ. When M is a smooth manifold with or without boundary, the set

DM =
∐
p∈M
D (TpM)

is called the density bundle of M . DM is a smooth rank-1 vector bundle by [6, Proposition 16.36], with∣∣ dx1 ∧ · · · ∧ dxn
∣∣ as a smooth local frame over any smooth coordinate chart. A density on M is a (smooth)

section µ of DM ; in any local coordinates, it can thus be written as

µ = u
∣∣ dx1 ∧ · · · ∧ dxn

∣∣
for some locally defined smooth function u. Under smooth maps, densities pull back in the same way as
differential forms: Suppose F : M → N is a smooth map between n-manifolds with or without boundary,
and µ is a density on N . The pullback of µ is the density F ∗µ on M defined by

(F ∗µ)p (v1, . . . , vn) = µF (p) ( dFp (v1) , . . . , dFp (vn))

In coordinates, [6, Proposition 16.40] says that µ satisfies

F ∗ (u ∣∣ dy1 ∧ · · · ∧ dyn
∣∣) = (u ◦ F )|detDF |

∣∣ dx1 ∧ · · · ∧ dxn
∣∣

where DF represents the matrix of partial derivatives of F in these coordinates.

Now we turn to integration.

I. Integration of µ on domain of integration D ⊆ Rn

If D ⊆ Rn is a domain of integration and µ is a density on D̄, we can write µ = f
∣∣ dx1 ∧ · · · ∧ dxn

∣∣ for some
uniquely determined continuous function f : D̄ → R. We define the integral of µ over D by∫

D

f
∣∣ dx1 ∧ · · · ∧ dxn

∣∣ = ∫
D

f dx1 · · · dxn (1.11)

II. Integration of µ on an open subset U ⊆ Rn

If U is an open subset of Rn or Hn and µ is compactly supported in U , we define∫
U

µ =

∫
D

µ

whereD is any domain of integration containing the support of µ. The key fact is that this is diffeomorphism-
invariant by [6, Proposition 16.41].

III. Integration of µ on smooth n-manifold M

Now let M be a smooth n-manifold (with or without boundary). If µ is a density on M whose support is
contained in the domain of a single smooth chart (U,φ), the integral of µ over M is defined as∫

M

µ =

∫
φ(U)

(
φ−1

)∗
µ

This is extended to arbitrary densities µ by setting∫
M

µ =
∑
i

∫
M

ψiµ

where {ψi} is a smooth partition of unity subordinate to an open cover of M by smooth charts. The fact that
this is independent of the choices of coordinates or partition of unity follows just as in the case of forms. The
following proposition is proved in the same way as Proposition 1.7.9.
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Proposition 1.7.17 (Properties of Integrals of Densities). Suppose M and N are smooth n-manifolds with or
without boundary, and µ, η are compactly supported densities on M .

(a) LINEARITY: If a, b ∈ R, then ∫
M

aµ+ bη = a

∫
M

µ+ b

∫
M

η

(b) POSITIVITY: If µ is a positive density, then
∫
M
µ > 0.

(c) DIFFEOMORPHISM INVARIANCE: If F : N →M is a diffeomorphism, then
∫
M
µ =

∫
N
F ∗µ

Just as for forms, integrals of densities are usually computed by cutting the manifold into pieces and
parametrizing each piece, just as in Proposition 1.7.10.

1.7.3 Integration on Lie Groups

We know that parallelizable smooth manifolds are all orientable and Lie groups are parallelizable because
we can translate basis vectors on TeG to every other tangent spaces via d(Lg)e, ∀g ∈ G. The vector field
g 7→ d(Lg)ev is denoted by vL. See [6] Corollary 8.39 for more detail. We call an orientation on G
left-invariant if the diffeomorphisms Lg ’s are all orientation-preserving. We call a vector field X on G
left-invariant if (Lg)∗X = X for every g, while a covariant tensor field A on G is left-invariant if L∗

gA = A
for all g ∈ G, i.e.,

∀g, g′ ∈ G, Ag′(u1, · · · , uk) = Agg′( d(Lg)g′(u1), · · · , d(Lg)g′(uk)).

When defining left-invariance for the vector fields, we used pushforward. (Lg)∗X = X means that the
vectors Xg′ pushed by the isomorphisms d(Lg)g′ ’s still belong to that vector field X, i.e., d(Lg)g′(Xg′) =
XLg(g′). We didn’t use pullback because we did not introduce the notion of pullback for vector fields yet. See
[6] p.326 Problem 12-10 for a broader definition of pullback and pushforward mapping where F : M → N
is a diffeomorphism.

Proposition 1.7.18. Every Lie group G has precisely two left-invariant orientations, corresponding to the two
orientations of its Lie algebra TeG.

Proof. TeG is a vector space and it has two orientations O+
e ,O−

e , each consisting of the vector bases equiva-
lent to each other, i.e., determinant of change of basis matrix is > 0. Isomorphisms d(Lg)e send orientation
to orientation, i.e., two bases of the same orientation are sent to two bases of the same orientation. Define
pointwise orientations on G by g 7→ d(Lg)e(O+

e ) and g 7→ d(Lg)e(O−
e ). Each point p ∈ G is in the smooth

oriented global frame {vLi } where {vi} is a basis of the Lie algebra, so the two pointwise orientations are
continuous. They are left-invariant by construction. ■

Proposition 1.7.19. Let G be a compact Lie group endowed with a left-invariant orientation. Then G has a
unique positively oriented left-invariant n-form ωG with the property that

∫
G
ωG = 1.

Proof. If dimG = 0, we just let ωG be the constant function 1/k, where k is the cardinality of G. Otherwise,
let E1 = vL1 , . . . , En = vLn be a left-invariant global frame on G (where {vi} is a basis for the Lie algebra
TeG). By replacing E1 with −E1 if necessary, we may assume that this frame is positively oriented. Let
ε1, . . . , εn be the dual coframe. Left invariance of Ej implies that(

L∗
gε
i
)
(Ej) = εi (Lg∗Ej) = εi (Ej) = δij

which shows that L∗
gε
i = εi, so εi is left-invariant. Let ωG = ε1∧· · ·∧εn. Then by [LeeSM] Lemma 14.16(b),

L∗
g (ωG) = L∗

gε
1 ∧ · · · ∧ L∗

gε
n = ε1 ∧ · · · ∧ εn = ωG
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so ωG is left-invariant as well. Because ωG (E1, . . . , En) = 1 > 0, ωG is an orientation form for the given
orientation. Clearly, any positive constant multiple of ωG is also a left-invariant orientation form. Conversely,
if ω̃G is any other left-invariant orientation form, we can write ω̃G|e = cωG|e for some positive number
c. Note that the left-invariance of a tensor field A gives L∗

gA = A =⇒ Agg′( d(Lg)g′) = Ag′ =⇒
Ae(d(Lg−1)g) = Ag, so we have

ω̃G|g = L∗
g−1ω̃G

∣∣
e
= cL∗

g−1ωG
∣∣
e
= cωG|g

which proves that ω̃G is a positive constant multiple of ωG. Since G is compact and oriented and ωG is an
orientation form for the given orientation, Proposition 1.7.9 (c) implies that

∫
G
ωG is a positive real number.

We then define ω̃G =
(∫
G
ωG
)−1

ωG. Clearly, ω̃G is the unique positively oriented left-invariant orientation
form with integral 1. ■

Remark 1.7.20. The orientation form whose existence is asserted in this proposition is called the Haar
volume form on G. Similarly, the map f 7→

∫
G
fωG is called the Haar integral. Observe that the proof

above did not use the fact that G was compact until the last paragraph; thus every Lie group has a left-
invariant orientation form that is uniquely defined up to a constant multiple. It is only in the compact case,
however, that we can use the volume normalization to single out a unique one. ♠

1.7.4 Integration on Riemannian Manifolds*

After we talk about Riemannian manifold, we can define integration using Riemannian volume form (for
the orientable case) and Riemannian density (for the nonorientable case); see subsections 2.3.3, 2.3.4, and
2.3.5.

1.8 Homology and Cohomology

This section is a brief review of the concepts and results of homology and cohomology.

1.8.1 Singular Homology and Relative Homology

Let X be a topological space. Let An := {ϕ : ∆n → X | ϕ continuous} denote the set of all singular n-
simplices in X, and define the singular chain group Sn(X) := F (An), the free abelian group generated by
An. The boundary operator ∂ : Sn(X)→ Sn−1(X) is defined via face operators ∂i as

∂ =

n∑
i=0

(−1)i∂i,

extended linearly using the universal property of free abelian groups. From a continuous map f : X → Y
we can define the pushforward operator f# over basis An of X and that of Y . universal property again
induces a chain map f# : Sn(X)→ Sn(Y ) satisfying f# ◦∂ = ∂ ◦f#, which in turn induces a homomorphism
f∗ : Hn(X)→ Hn(Y ) on homology groups.

Proposition 1.8.1 (Homotopical Invariance of Homology). Suppose we have two chain maps f, g : C∗ → D∗.
A chain homotopy is a homomorphism Φ : C∗ → D∗ of degree −1 such that ∂ ◦ Φ+ Φ ◦ ∂ = f − g.

(a) If there is a chain homotopy Φ between f and g, then the induced homomorphisms f∗, g∗ of the chain
maps f , g are equal.

(b) Let f, g : X
C0

−−→ Y and f#, g# : S∗(X) → S∗(Y ). If f and g are homotopic, then there is a chain
homotopy Φ between f∗ and g∗.

(c) As a corollary of (b), the topological spaces of the same homotopy type have the same homology groups.
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Given a short exact sequence of chain complexes

0→ C∗
f−→ D∗

g−→ E∗ → 0,

a diagram chasing yields the connecting homomorphism ∆ : Hn(E)→ Hn−1(C). This gives a long exact
sequence in homology called Zig-Zag LES:

· · · → Hn(C)
f∗−→ Hn(D)

g∗−→ Hn(E)
∆−→ Hn−1(C)→ · · · .

For space of the form X = Uo ∪ V o, we have the following SES

0→ Sn(U ∩ V )
f=(i,−j)−−−−−−→ Sn(U)⊕ Sn(V )

g=k+l−−−−→ Sn(U + V )→ 0

where i, j, k, l are inclusions of the respective groups. Sn(U + V ) refers to the free abelian group generated
by the set of all singular simplices that are either in U or in V . Note that U and V have their interiors forming
a covering U of X. In general, for any covering U , the locality principle states that the honology groups
HU
n (X) of the associated chain complex SU

n (X) is isomorphic to the ordinary homology groups Hn(X).

From Zig-Zag LES and the locality principle we have the Mayer–Vietoris Sequence:

· · · → Hn(U ∩ V )
f∗−→ Hn(U)⊕Hn(V )

g∗−→ Hn(X)
∆−→ Hn−1(U ∩ V )→ · · ·

where f∗(α) = (i∗α,−j∗α) and g∗(α, β) = k∗α+ l∗β.

For a pair (X,A), the relative chain group is Sn(X,A) := Sn(X)/Sn(A), and the boundary operator descends
from Sn(X). This gives rise to a natural long exact sequence:

· · · → Hn(A)
i∗−→ Hn(X)

π∗−→ Hn(X,A)
∆−→ Hn−1(A)→ · · ·

A useful result is the Excision theorem, which states that if U ⊂ A ⊂ X, and the closure of U is contained
in the interior of A, then the inclusion (X \ U,A \ U) ↪→ (X,A) induces an isomorphism

Hn(X \ U,A \ U) ∼= Hn(X,A).

Some examples of homology groups include:

• Hn(pt) = Z if n = 0, and 0 otherwise.

• H0(X) ∼= Zr, where r is the number of path components of X.

• Hn(Sn) = Z, H0(Sn) = Z, and H0(S0) = Z⊕ Z.

1.8.2 Homology with Coefficients and Cohomology

Let Comp denote the category of chain complexes and chain maps, and let Ab be the category of abelian
groups and homomorphisms. Fix an abelian group G ∈ Ab and consider the chain complex C∗ = S∗(X,A):

· · · −→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 −→ · · ·

We have two ways to generate new structures:

• The tensor functor − ⊗ G : Ab → Ab is right exact, and extends to a functor Comp → Comp.
Applying this to a chain complex C∗ ∈ Comp, we obtain a new chain complex C∗ ⊗G:

· · · −→ Cn+1 ⊗G
∂n+1⊗id−−−−−→ Cn ⊗G

∂n⊗id−−−−→ Cn−1 ⊗G −→ · · ·

and define its homology to be the homology with coefficients:

Hn(X,A;G) := Hn(S∗(X,A)⊗G).
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• The contravariant Hom functor Hom(−, G) : Abop → Ab is left exact, and extends to a contravariant
functor Compop → Comp, producing a cochain complex Hom(C∗, G):

· · · ←− Hom(Cn+1, G)
δn←− Hom(Cn, G)

δn−1

←−−− Hom(Cn−1, G)←− · · ·

where δn = ∂#n+1 is the pullback (precomposition) of ∂, i.e., δn(f) = f ◦ ∂n+1. We define the coho-
mology groups

Hn(X,A;G) := Hn(Hom(S∗(X,A), G)) =
Ker δn

Im δn−1

There is a series of analogous results for homology with coefficients and cohomology as in homology with
coefficient Z.

Theorem 1.8.2 (Universal Coefficient Theorem for Homology). There is a short exact sequence:

0→ Hn(X,A)⊗G→ Hn(X,A;G)→ Tor(Hn−1(X,A), G)→ 0.

Theorem 1.8.3 (Universal Coefficient Theorem for Cohomology). There is a short exact sequence:

0→ Ext(Hn−1(X,A), G)→ Hn(X,A;G)→ Hom(Hn(X,A), G)→ 0.

Theorem 1.8.4 (Künneth Formula). Let X and Y be topological spaces. Then there is a short exact sequence:

0→
⊕
p+q=n

Hp(X)⊗Hq(Y )→ Hn(X × Y )→
⊕

p+q=n−1

Tor(Hp(X), Hq(Y ))→ 0.

1.8.3 Computational Tools: Simplicial, Cellular, and Smooth Homology

Let H∆
n (X) denote the simplicial homology group of a simplicial complex X, defined using the chain

complex C∆
n (X) := the free group of all standard n-simplices ∆n in X. The boundary operator is the same

as in singular homology.

Theorem 1.8.5 (Equivalence between Singular and Simplicial Homology). There is a canonical homomor-
phism H∆

n (X,A) → Hn(X,A) induced by the chain map ∆n(X,A) → Cn(X,A) sending each n-simplex of X
to its characteristic map σ : ∆n → X. The possibility A = ∅ is not excluded, in which case the relative groups
reduce to absolute groups. In fact, the homomorphisms constitue isomorphisms

H∆
n (X,A) ∼= Hn(X,A)

for all n and all ∆-complex pairs (X,A).

Proof. See [18, Theorem 2.27]. ■

Let H∞
n (M) denote the smooth singular homology group of a smooth manifold M , defined using the chain

complex C∞
n (M) of smooth n-simplicies ϕ : ∆n C∞

−−→ M in M . Smoothness is interpreted in the sense that
it has a smooth extension to a neighborhood of each point. The boundary operator is the same as in the
singular homology and note that the boundary of a smooth simplex is a smooth chain. The inclusion map
ι : C∞

n (M) ↪→ Cn(M) is a chain map, i.e., commutes with the boundary operator, and so induces a map on
homology: ι∗ : H∞

n (M)→ Hn(M) by ι∗[c] = [ι(c)].

Theorem 1.8.6 (Equivalence between Singular and Smooth Singular Homology). For any smooth manifold
M , the map ι∗ induced by inclusion gives an isomorphism

H∞
n (M) ∼= Hn(M).
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Proof. The proof is involved; see [6, Theorem 18.7].

The basic idea of the proof is to construct, with the help of the Whitney approximation theorem, two oper-
ators: first, a smoothing operator s : Cn(M) → C∞

n (M) such that s ◦ ∂ = ∂ ◦ s and s ◦ ι is the identity on
C∞
p (M); and second, a homotopy operator that shows that ι ◦ s induces the identity map on Hn(M). The

key to the proof is a systematic construction of a homotopy from each continuous simplex to a smooth one,
in a way that respects the restriction to each boundary face of ∆n. ■

Let HCW
n (X) denote the cellular homology group of a (finite) CW complex X, defined using the chain

complex CCW
n (X) := Hn(X

n, Xn−1), where Xn denotes the n-skeleton of X. The boundary maps dn :
CCW
n (X) → CCW

n−1(X) are defined via the connecting homomorphisms in the Zig-Zag LES of the triple
(Xn, Xn−1, Xn−2):

· · · → Hn(X
n−1, Xn−2)→ Hn(X

n, Xn−2)→ Hn(X
n, Xn−1)

dn−→ Hn−1(X
n−1, Xn−2)→ · · ·

Theorem 1.8.7 (Equivalence between Singular and Cellular Homology). Cellular homology groups are iso-
morphic to singular homology groups:

HCW
n (X) ∼= Hn(X).

Proof. See [18, Theorem 2.35] or [17, Theorem 2.21]. ■

1.8.4 Computational Tools: Products and Dualities

When the coefficient group is also a ring, the cohomology of a space may be given a natural ring structure
that homology groups do not have. Moreover, there are some operations only for the cohomology, which
lead to the Poincaré duality.

• Natural pairing ⟨ · , · ⟩ : Sn(X,A;G)⊗ Sn(X,A)→ G induced by the bilinear mapping ⟨ϕ, c⟩ = ϕ(c).

• Kronecker index ⟨ · , · ⟩ : Hn(X,A;G) ⊗ Hn(X,A) → G induced by the bilinear mapping ⟨[ϕ], [c]⟩ =
⟨ϕ, c⟩.

• Cup product is a mapping

⌣: Hp(X;R)⊗Hq(X;R)→ Hp+q(X;R)

defined at the cochain level as follows: for α ∈ Cp(X;R), β ∈ Cq(X;R), and σ : ∆p+q → X,

(α ⌣ β)(σ) := α(σ|[v0, . . . , vp]) · β(σ|[vp, . . . , vp+q]),

where σ|[v0, . . . , vp] and σ|[vp, . . . , vp+q] are the front and back faces of σ, respectively. It satisfies the
following properties:

– Coboundary rule: δ(α ⌣ β) = δα ⌣ β + (−1)pα ⌣ δβ.

– Graded commutativity: α ⌣ β = (−1)pqβ ⌣ α.

– Naturality: f∗(α ⌣ β) = f∗(α)⌣ f∗(β).

• Cap product is a mapping

⌢: Hp(X;R)⊗Hq(X;R)→ Hq−p(X;R)

defined at the chain-cochain level by: for α ∈ Cp(X;R), σ ∈ Cq(X;R), with q ≥ p,

α ⌢ σ := α(σ|[v0, . . . , vp]) · σ|[vp, . . . , vq] ∈ Cq−p(X;R),

where σ|[v0, . . . , vp] and σ|[vp, . . . , vq] are the front and back faces of the singular simplex σ, respec-
tively. It satisfies the following properties:
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– Boundary rule: ∂(α ⌢ σ) = (−1)p(δα ⌢ σ − α ⌢ ∂σ).

– Naturality: f∗(f∗(α)⌢ x) = α ⌢ f∗(x).

– Compatibility with cup product: (α ⌣ β)⌢ σ = α ⌢ (β ⌢ σ).

• Dualities:

– Poincaré Duality Theorem [17, Theorem 6.18]: For a compact connected orientable n-manifold
M endowed with orientation s :M → F and associated fundamental class z, the homomorphism

D : Hk(M ;G)→ Hn−k(M ;G)

via the cap product D(x) = x ⌢ z is an isomorphism for all k.

– Poincaré–Lefschetz Duality [17, Theorem 6.25]: For a compact orientable n-manifold M with
boundary ∂M and fundamental class z ∈ Hn(M,∂M), the duality maps

D : Hk(M,∂M) ∼= Hn−k(M), D′ : Hk(M) ∼= Hn−k(M,∂M)

given by the cap products with z are both isomorphisms for all k.

1.8.5 Homotopy and Homology

We give a short comparison between homotopy and homology groups.

Concept Homotopy Theory Homology Theory
Fundamental groups πn(X), nonabelian for n = 1 Hn(X), always abelian

Product formula πn(X × Y ) ∼= πn(X)⊕ πn(Y ) Künneth formula + Eilenberg-Zilber theorem
Subdivision formula van Kampen theorem Mayer–Vietoris sequence

Theorem 1.8.8 (Hurewicz Theorem). For any path-connected space X and strictly positive integer n there
exists a group homomorphism

h∗ : πn(X)→ Hn(X),

called the Hurewicz homomorphism, from the n-th homotopy group to the n-th homology group (with integer
coefficients). It is given in the following way: choose a canonical generator un ∈ Hn (S

n), then a homotopy class
of maps f ∈ πn(X) is taken to f∗ (un) ∈ Hn(X).

1. For n ≥ 2, if X is (n − 1)-connected (that is: πi(X) = 0 for all i < n ), then H̃i(X) = 0 for all i < n,
and the Hurewicz map h∗ : πn(X) → Hn(X) is an isomorphism (see [18, Theorem 4.32]). This implies,
in particular, that the homological connectivity equals the homotopical connectivity when the latter is
at least 1. In addition, the Hurewicz map h∗ : πn+1(X) → Hn+1(X) is an epimorphism in this case
(see [18, p.390 Exercise 23]).

2. For n = 1, the Hurewicz homomorphism induces an isomorphism h̃∗ : π1(X)/ [π1(X), π1(X)] → H1(X),
between the abelianization of the first homotopy group (the fundamental group) and the first homology
group (see [17, Proposition 4.21]).

1.9 De Rham Cohomology

Imagine a point-particle of mass m moves within an open set U ⊆ R3 under a force field F⃗ (x, y, z). Let
x⃗(t) =position of the particle through time. Define the work of a path γ : [a, b] → R3 with γ(a) = p,
γ(b) = q as the line integral

Wγ :=

∫
γ

F⃗ · dx⃗ :=

∫ b

a

F⃗ (γ(t)) · γ′(t) dt.
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A conservative vector field F is a vector field on U ⊆ Rn whose line integerals around all piecewise-C∞

closed paths γ are zero.
⇐⇒ its line integrals are path-independent, i.e., its line integerals around piecewise-C∞ paths γ with
γ(a) = p, γ(b) = q are all equal.
[6, Problem 11-15]⇐⇒ ∃ a function V ∈ C∞(U), called potential for F , such that F = −∇V ( ⇐⇒ ∃V ∈ C∞(U)
s.t. F = ∇V .)

Exercise 1.9.1. Let F be a conservative vector field on an open set U ⊆ Rn. Prove that for a piecewise-C∞ path
γ starting from p ending at q, it has work Wγ = V (p)− V (q).

Solution. Now, if F is conservative, and if we consider 1-form ωx(v) = F (x) · v, then

ωx(v) = −∇V (x) · v = −
∑
i

∂V

∂xi
vi = − dV (v)

=⇒ Wγ =

∫ b

a

ωγ(t)(γ
′(t)) dt

[6, Prop.11.38]
==========

∫
γ

ω = −
∫
γ

dV

=⇒ −Wγ = V (q)− V (p) by [6, Thm.11.39].

♦

Completely analogously, we have the following concepts and results for the covector fields on smooth mani-
folds:

A conservative covector field ω is a C∞ covector field on smooth manifold M such that the line integrals
around all piecewise-C∞ closed paths γ are zero. An exact covector field ω is a C∞ covector field on smooth
manifold M such that there exists a function f ∈ C∞(M) such that ω = df . Note that
a smooth covector field ω is conservative
[6, Prop.11.40]⇐⇒ the line integrals of ω are path-independent
[6, Thm.11.42]⇐⇒ ω is exact.

A differential form ω is exact if ω = dα for some α; it is closed if dω = 0. Since d ◦ d = 0 we see exact
forms are closed, but not vice versa as the following example shows.

Example 1.9.2. Let M = R2\{0}. Define a covector field ω ∈ X∗(M) by

ω =
x dy − y dx
x2 + y2

.

1. The covector field ω is not conservative and thus not exact: it suffices to show that the line integral
along one closed path γ is not zero: Consider curve segment γ : [0, 2π] → M defined by γ(t) =
(cos t, sin t) (if we identify R2 \ {0} with C∗ this γ(t) is just t 7→ eit). We compute that∫

γ

ω
line integral defn.
===========

∫
[0,2π]

γ∗ω

Lemma 1.5.1
=========

∫
[0,2π]

[(
x

x2 + y2

)
◦ γ d(y ◦ γ)−

(
y

x2 + y2

)
◦ γ d(x ◦ γ)

]
=

∫
[0,2π]

[
cos t

1
d(sin t)− sin t

1
d(cos t)

]
=

∫
[0,2π]

[
cos2 t dt+ sin2 dt

]
=

∫
[0,2π]

dt = 2π.
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2. The covector field ω is closed: we compute that

dω =

(
∂ω2

∂x1
− ∂ω1

∂x2

)
dx1 ∧ dx2

(1.9)
====

[
∂

∂x

(
− y

x2 + y2

)
− ∂

∂y

(
x

x2 + y2

)]
dx ∧ dy if we let x1 = x, x2 = y

=

[
− 0− y(2x)
(x2 + y2)2

− x(2y)

(x2 + y2)2

]
dx ∧ dy

=
2xy − 2xy

(x2 + y2)2
dx ∧ dy = 0.

3. However, ω is locally exact: if we restrict M = R2 \ {0} to U = {(x, y)|x > 0}, then x is never 0 and
ω is now exact on U . Consider the angle function θ(x, y) = tan−1 y

x on U . We show dθ = ω: consider
another local coordinate system x = r cos θ and y = r sin θ and compute that

ω =
x

x2 + y2
dy − y

x2 + y2
dx

=
r cos θ

r2
d(r sin θ)− r sin θ

r2
d(r cos θ)

=
cos θ

r
(sin θ dr + cos θr dθ)− sin θ

r
(cos θ dr − sin θr dθ)

=
1

r
(sin θ cos θ dr − sin θ cos θ dr) +

r cos2 θ + r sin2 θ

r
dθ

= dθ.

In contrast, there is no continuous angle (argument) function θ (called a branch of argument function)
on C∗ ∼= R \ {0}. There is the principal branch of argument Arg : C\(−∞, 0]→ C.

♣

1.9.1 De Rham Cohomology

We now define de Rham cohomology groups to measure the failure of closed forms to be exact.

Definitions

We reserve n for the dimension of the manifold M and use p for the degree of the differential form.

Definition 1.9.3 (The de Rham Cohomology).
Codifferential of the cochain complex: the linear map d : Ωp(M)→ Ωp+1(M).
Cochain complex: 0→ Ω0(M)→ · · · → Ωp−1(M)

d−→ Ωp(M)
d−→ Ωp+1(M)→ · · · → Ωn(M)→ 0.

Cocycle group: Zp(M) = Ker( d : Ωp(M)→ Ωp+1(M)) = {ω ∈ Ωp(M)| dω = 0} = {closed p-forms on M}.
Coboundary group: Bp(M) = Im( d : Ωp−1(M)→ Ωp(M)) = { dω|ω ∈ Ωp−1(M)} = {exact p-forms on M}.
De Rham cohomology group: Hp

dR(M) = Hp
deRham(M) = Zp(M)/Bp(M).

Pullback operator and induced homomorphism: from F : M
C∞

−−→ N we have pullback F ∗ : Ωp(N) →
Ωp(M). It is a cochain map, i.e., d ◦ F ∗ = F ∗ ◦ d, so it induces a homomorphism, still denoted by F ∗,
Hp

dR(N) → Hp
dR(N) (exactly because cocycles are sent to cocycles and coboundaries are sent to coboundaries.)

Hp
dR(−) is then a contravariant functor: (G ◦ F )∗ = F ∗ ◦G∗; (idM )∗ = idHp

dR(M).

Remark 1.9.4.

(a) d ◦ d = 0 ⇐⇒ every exact form is closed ⇐⇒ Bp(M) ⊆ Zp(M).
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(b) Note that Ωp(M) and thus Hp
dR(M) are zero when p < 0 and p > n

=⇒ B0(M) = 0 and Zn(M) = Ωn(M)

=⇒ when p = 0: H0
dR(M) = Z0(M) = {f ∈ Ω0(M)| df = 0} if M conn.

======== {constant functions} =
R{idM} ∼= R; when p = n: Hn

dR(M) = Ωn(M)/Bn(M).

(c) For 0 ≤ p ≤ n, Hp
dR(M) = 0 ⇐⇒ Zp(M) = Bp(M) ⇐⇒ all closed p-forms are exact.

♠

Some other basic results analogous to those in section 1.8 are in order.

Proposition 1.9.5.

(a) If F : M → N is a diffeomorphism between manifolds with or without boundaries then F ∗ : Hp
dR(N) →

Hp
dR(N) is an isomorphism.

(b) If M =
⊔
jMj splits into components, then

∐
j ι

∗
j : Hp

dR(M) →
⊕

j H
p
dR(Mj) collected from homomor-

phisms ι∗j induced by inclusions ιj :Mj →M is an isomorphism.

(c) If M is 0-dimensional but not necessarily connected, then H0
dR(M) is a direct sum of 1-dimensional vector

spaces by Proposition 1.9.5 (b) and Remark 1.9.4 (b). All otherHp
dR(M)’s are zero as p ≥ 1 > 0 = dimM .

(d) Analogous to Proposition 1.8.1, we have:

(i) If F,G : M → N are smooth maps between manifolds with or without boundaries and there exists
a chain homotopy h : Ω∗(N) → Ω∗(M) between cochain maps F ∗, G∗ : Ω∗(N) → Ω∗(M), i.e.,
a linear map of degree −1 such that d ◦ h + h ◦ d = G∗ − F ∗, then the induced homomorphisms
F ∗, G∗ : Hp

dR(N)→ Hp
dR(M) are equal.

(ii) If F,G :M → N are smooth maps between manifolds with or without boundaries and F is homotopic
to G (thus smoothly homotopic by [6, Theorem 9.28]), then there is a chain homotopy Φ between
cochain maps F ∗ and G∗.

(iii) As a corollary, one can use Whitney approximation theorem ( [6, Theorem 9.27]) to show that two
smooth manifolds of the same homotopy type have isomorphic de Rham cohomology. Here, for the

homotopy equivalence F : M
C0

−−→ N we cannot use F ∗ as an isomorphism because F is not even
smooth to define F ∗. We use Whitney approximation theorem to get some smooth approximation
F̃ :M

C∞

−−→ N so that F̃ ∗ serves as the isomorphism.

Computations

Since we know the cohomology groups of a single point (a zero-manifold) and that contractible spaces are
of the same homotopy type as a single point, we have the following corollary.

Corollary 1.9.6. If M is a contractible smooth manifold with or without boundary, then Hp
dR(M) = 0 for

p ≥ 1.

Using the straight-line homotopy one can show a star-shaped set is contractible, so we have proved the
Poincaré lemma:

Corollary 1.9.7 (Poincaré Lemma). If U is a star-shaped open subset of Rn or Hn, then Hp
dR(U) = 0 for p ≥ 1.

Corollary 1.9.8 (Local Exactness of Closed Forms). Let M be a smooth manifold with or without boundary.
Each point of M has a neighborhood on which every closed form is exact.

Proof. Every point of M has a neighborhood diffeomorphic to an open ball in Rn or an open half-ball in Hn,
each of which is star-shaped. The result follows from the Poincaré lemma and the diffeomorphism invariance
of de Rham cohomology. ■
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Corollary 1.9.9 (Cohomology of Euclidean Spaces and Half-Spaces). For any integers n ≥ 0 and p ≥
1, Hp

dR (Rn) = 0 and Hp
dR (Hn) = 0.

Proof. Both Rn and Hn are star-shaped. ■

Another analogous result is the Mayer-Vietoris sequence. Since inclusions will be involved, some subtleties
regarding them should be adressed first.

Suppose S is an immersed submanifold of smooth manifold M . Let ιS be the inclusion map. There are two
types of vanishing we need to distinguish from each other. Let ω ∈ Γ(T kT ∗M). Then

(1) ω vanishes along S: ω vanishes at points of S, i.e., ωp = 0, ∀p ∈ S.

(2) The restriction of ω on S vanishes, or the pullback of ω to S vanishes: ωp|TpS = 0, ∀p ∈ S.
Equivalently, (ι∗ω)p = 0, ∀p ∈ S.

Clearly, (1) is a stronger condition, as the example below illustrates. However, [6, Proposition 3.9] states
that when S = U is an open submanifold of M , then dιp : TpU → TpM is an isomorphism. Thus, in this
case types (1) and (2) are the same.

Example 1.9.10 ( [6] Example 11.29). Let ω = dy on R2, and let S be the x-axis, considered as an embed-
ded submanifold of R2. As a covector field on R2, ω is nonzero everywhere, because one of its component
functions is always 1. However, the restriction ι∗ω is identically zero, because y vanishes identically on S:

ι∗ω = ι∗ dy = d(y ◦ ι) = 0.

♣

Theorem 1.9.11 (Mayer-Vietoris Sequence for de Rham Cohomology). Let M be a smooth manifold with
or without boundary, and let U, V be open subsets of M whose union is M . For each p, there is a linear map
∆ : Hp

dR(U ∩ V )→ Hp+1
dR (M) making the following a LES:

· · · → Hp
dR(M)

k∗⊕l∗−−−−→ Hp
dR(U)⊕Hp

dR(V )
i∗−j∗−−−−→ Hp

dR(U ∩ V )
∆−→ Hp+1

dR (M)→ · · ·

Example 1.9.12 (de Rham Cohomology Groups of Spheres). Using Mayer-Vietoris sequence one can show
that for n ≥ 1,

Hp
dR(S

n) =

{
R, p = 0 or n
0, 0 < p < n.

♣

Exercise 1.9.13. Show that η ∈ Ωn (Sn) is exact if and only if
∫
Sn η = 0.

Solution. η ∈ Ωn(Sn) and η exact, so η = dα and
∫
Sn η =

∫
Sn dα Stokes

=====
∫
∅ α = 0 as spheres are closed

manifolds.

Conversely, Hn
dR(Sn) = R{[ω]} for an orientation form ω ∈ Ωn(Sn). Thus, [η] = c[ω] for some c ∈ R, i.e.,

η = cω + dα. Then 0
given
=====

∫
Sn η

Stokes
===== c

∫
Sn ω =⇒ c = 0 =⇒ [η] = 0 in Hn

dR(Sn), i.e., η is exact. ♦

Corollary 1.9.14 (Cohomology of Punctured Euclidean Space). Suppose n ≥ 2 and x ∈ Rn, and let M =
Rn\{x}. The only nontrivial de Rham groups ofM areH0

dR(M) andHn−1
dR (M), both of which are 1-dimensional.

A closed (n − 1)-form η on M is exact if and only if
∫
S
η = 0 for some (and hence every) (n − 1)-dimensional

sphere S ⊆M centered at x.
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Proof. Let S ⊆ M be any (n − 1)-dimensional sphere centered at x. Because inclusion ι : S ↪→ M is a
homotopy equivalence, ι∗ : Hp

dR(M) → Hp
dR(S) is an isomorphism for each p, so the assertion about the

dimension of Hp
dR(M) follows from Example 1.9.12. If η is a closed (n − 1)-form on M , it follows that η

is exact if and only if ι∗η is exact on S, which in turn is true if and only if
∫
S
η =

∫
S
ι∗η = 0 by Exercise

1.9.13. ■

Exercise 1.9.15. Check that the statement and proof of Corollary 1.9.14 remain true if Rn\{x} is replaced by
Rn\B̄ for some closed ball B̄ ⊆ Rn.

Two Features of de Rham Cohomology

1. A distinct feature of de Rham cohomology is the use of integration as a linear map.

Theorem 1.9.16 (A Hurewicz-type Result). Let M be a connected smooth manifold. Consider the mapping

Φ : H1
dR(M) −→ Hom(π1(M, q),R)

[ω] 7−→
(
π1(M, q)→ R
[γ] 7→

∫
γ̃
ω

)
where γ̃ is any piecewise-C∞ curve in [γ]. Then [6, Theorem 17.17 + Problem 18-2] claim that the linear
mapping Φ is bijective. A corollary is that if M is a simply connected smooth manifold, then by [6, Corollary
16.27], H1

dR(M) = 0 and thus Hom(π1(M, q),R) = 0. [6, Corollary 17.18 + Exercise 17.19] generalize this
fact: if π1(M, q) is finite or torsion, then H1

dR(M) = 0 and thus Hom(π1(M, q),R) = 0.

2. Another distinct feature of the de Rham cohomology (and in general all cohomology theories) is the
products of cohomology groups.

For forms ω ∈ Zk(M) and η ∈ Zl(M), one has

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη = 0

i.e. ω ∧ η ∈ Zk+l(M). Moreover, for any ξ1 ∈ Ωk−1(M) and ξ2 ∈ Ωl−1(M),

(ω + dξ1) ∧ (η + dξ2) = ω ∧ η + d
[
(−1)kω ∧ ξ2 + (−1)k−1ξ1 ∧ η + (−1)k−1ξ1 ∧ dξ2

]
In other words, [ω ∧ η] is independent of the choice of ω and η in [ω] and [η]. So we can define the cup
product between [ω] ∈ Hk

dR(M) and [η] ∈ H l
dR(M) as

[ω]⌣ [η] := [ω ∧ η] ∈ Hk+l
dR (M).

De Rham cohomology is built from the complex Ω∗(M) of differential forms, but there is no corresponding
de Rham homology built from a chain complex that “pairs naturally” with Ω∗(M). Thus there is no intrinsic
cap product for de Rham cohomology. To get around this one may use currents to think about the cap
product.

1.9.2 Compactly Supported de Rham Cohomology

We follow this lecture note.

From Exercise 1.11.24 (or [6, Problem 18-8]), we see that if a smooth manifold is compact (or homotopic
equivalent to a compact manifold), then the de Rham cohomology groups are “simpler”: They are finite-
dimensional, and nice formulae like Künneth formula hold. When M is orientable, a very useful tool to
study cohomology classes, especially the top-degree classes, is “integration on manifolds.” Unfortunately, if
M is non-compact, the integration of a top-degree form is not a nicely defined unless the differential form is
compactly supported. Recall that for ω ∈M , the support of ω is defined to be

supp(ω) = {p ∈M | ωp ̸= 0}
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As usual, we say ω is compactly supported if supp(ω) is compact in M . It’s natural to let

Ωkc (M) =
{
ω ∈ Ωk(M) | ω is compactly supported

}
be the set of all compactly supported smooth p-forms. Obviously,

(1) if ω1, ω2 are compactly supported p-forms, so is c1ω1 + c2ω2;

(2) if ω is compactly supported, so is dω.

So Ωkc (M)’s are vector spaces, and the exterior derivative makes these vector spaces a cochain complex.
As in the ordinary de Rham theory, we denote p-th compactly supported cocycle group, p-th compactly
supported coboundary group, and p-th compactly supported de Rham cohomology group as

Zpc (M) = {ω ∈ Ωpc(M) | dω = 0}
Bpc (M) =

{
ω ∈ Ωpc(M) | ω = dη for some η ∈ Ωp−1

c (M)
}

Hp
c (M) = Zpc (M)/Bpc (M).

Remark 1.9.17. If M is compact, then for all p, Ωpc(M) = Ωp(M) and Hp
c (M) = Hp

dR(M). ♠

H∗
c (M) v.s. H∗

dR(M)

In what follows we indicate the main differences between the compact supported de Rham cohomology
groups and the ordinary de Rham cohomology groups.

(1) By definition we have Zkc (M) = Zk(M) ∩ Ωkc (M). However, in general,

Bkc (M) ̸= Bk(M) ∩ Ωc(M). (Can you find an example?)

(2) For k = 0, by definition

H0
c (M) = Z0

c (M) = {f ∈ C∞(M) | df = 0 and supp(f) is compact} .

But df = 0 if and only if f is locally constant, i.e. f is constant on each connected component. On the
other hand, a locally constant compactly supported function has to be zero on any non-compact connected
component. So we conclude

H0
c (M) ≃ Rmc

where mc is the number of compact connected components of M . In particular,

H0
c (pt) = R and H0

c (Rn) = 0, ∀n ≥ 1

where pt is a singleton. Since Rn is homotopy equivalent to {pt}, we conclude

Hk
c (M)’s are no longer homotopy invariants.

(3) Now let φ :M → N be a smooth map. Then by definition,

supp (φ∗ω) ⊂ φ−1(supp(ω)).

So if ω ∈ Ωkc (N), in general we may have φ∗ω /∈ Ωkc (M). In particular, In general we cannot pullback
compactly-supported cohomology classes on N to compactly-supported cohomology classes on M ! In the
ordinary theory, we used the pullback to prove the homotopy invariance and to construct the M-V sequence.
It turns out that in the “compactly-supported theory,” we can use proper maps to cover the first and pushfor-
ward the inclusions to cover the second purpose. For the latter, see Exercise 1.11.25.
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Pullback of proper maps: If φ : M → N is proper, i.e., preimages of compact sets are compact, then the
pullback φ∗ω of a compactly supported differential form ω ∈ Ωkc (N) is still compactly supported. So the map

φ∗ : Hk
c (N)→ Hk

c (M)

is still well-defined. In this case one can prove the following result.

Theorem 1.9.18. If φ0, φ1 :M → N are proper smooth maps that are properly homotopic †, then the induced
maps

φ∗
1 = φ∗

2 : Hk
c (N)→ Hk

c (M)

Note that any homeomorphism is proper. So in particular the compactly supported de Rham cohomology
groups are still topological invariants:

Corollary 1.9.19. If M is homeomorphic to N , then Hk
c (M) = Hk

c (N).

Example 1.9.20 (Hk
c (Rm) for k < m). Suppose m ≥ 1. We have seen H0

c (Rm) = 0. Now we prove
Hk
c (Rm) = 0 for 1 ≤ k < m. We identify Rn with Sm − {N}, where N is the north pole. Then we get an

“inclusion” map ι : Rm → Sm, and the words “compactly supported in Rm” is equivalent to “supported in a
subset of Sm that is away from N .”

Case 1: 1 = k < m. Take any ω ∈ Z1
c (Rm). Then ι∗ω ∈ Z1(Sm) which is supported in Sm − U for some

neighborhood U of p. Since H1(Sm) = 0, the closed 1-form ι∗ω is exact, i.e. there exists η ∈ Ω0(Sm) =
C∞(Sm) so that ι∗ω = dη. Moreover, the fact dη = ι∗ω = 0 on U implies that η equals some constant c on
U . It follows that if we take η̃ = η − c, then η̃ ∈ Ω0

c (Sm − {N}) = Ω0
c (Rm) and dη̃ = ω.

Case 2: 1 < k < m Again we take ω ∈ Zkc (Rm) and consider ι∗ω ∈ Zk(Sm), which is supported in some
Sm−U . Since Hk

dR(Sm) = 0, one can find η ∈ Ωk−1(Sm) such that ι∗ω = dη. By shrinking the neighborhood
U of p, we can assume that U is contractible. Then the fact dη = ι∗ω = 0 in U implies that η is exact in U ,
i.e. one can find a µ ∈ Ωk−2(U) such that η = dµ. Now one pick a bump function ρ on Sm which vanishes on
Sm − U and equals 1 near p. Then η̃ = η − d(ρµ) ∈ Ωk−1(Sm) and η̃ = 0 near p, i.e. it defines a compactly
supported (k − 1)-form on Rm. By construction, dη̃ = dη = ω. ♣

Top-degree de Rham Cohomology of Manifolds

In this part we would like to calculate Hn
c (M) and Hn

dR(M) for smooth n-manifold M .

We start with an example.

Example 1.9.21 (H1
c (R)). Let’s try to compute H1

c (R). To do so we consider the integration map∫
R
: Z1

c (R) = Ω1
c(R)→ R, ω 7→

∫
R
ω

This map is clearly linear and surjective. Moreover, it vanishes on B1
c (R) by the fundamental theorem of

calculus, so it induces a surjective linear map ∫
R
: H1

c (R)→ R

Moreover, if
∫
R f(t)dt = 0, where f ∈ C∞

c (R), then the function g(t) =
∫ t
−∞ f(τ)dτ is smooth and compactly

supported and dg = f(t)dt. In other words, f(t)dt ∈ B1
c (R), i.e. [f(t)dt] = 0 in H1

c (R). So
∫
R is an

isomorphism between H1
c (R) and R, i.e.

H1
c (R) ≃ R.

Compare this with the fact that H1(R) = 0. ♣
†i.e. there exists a homotopy Φ : M × [0, 1] → N connecting φ0 and φ1 that is a proper map.
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Essentially the same method works in higher dimension. Let M be any n-dimensional connected oriented
manifold, and ω ∈ Ωnc (M) a compactly supported top-degree form. Then ω is closed, and we have defined
the integral

∫
M
ω. So we get a map ∫

M

: Ωnc (M)→ R, ω 7→
∫
M

ω.

Now suppose ω ∈ Bnc (M), i.e. ω = dη for some η ∈ Ωm−1
c (M). Since the manifold M is locally compact

Hausdorff, we can take a compact set K in M such that supp(η) ⊆ Int(K). Thus, η is zero on ∂K. By the
Stokes’s formula, ∫

M

ω =

∫
M

dη =

∫
K

dη =

∫
∂K

η = 0 (1.12)∫
M

then induces a linear map, called the integration map:

I :

∫
M

: Hn
c (M)→ R, [ω] 7→

∫
M

ω

Proposition 1.9.22. Suppose M is a connected oriented smooth n-manifold. Then the map
∫
M

: Hn
c (M)→ R

described above is surjective.

Proof. Fix a volume form ω on M . For any c, one can find a smooth function f that is compactly supported
in a coordinate chart U , such that

∫
fω = c. ■

Corollary 1.9.23. Suppose M is a connected oriented smooth n-manifold. Then there is an exact sequence:

Ωn−1
c (M)

d−→ Ωnc (M)

∫
M−−→ R→ 0

The integration map is an isomorphism:

I :

∫
M

: Hn
c (M)

∼=−→ R.

Proof. We have shown
∫
M

is surjective. Now one inclusion of Im(d) = Ker
(∫
M

)
is covered by equation

(1.12) and the other is due to the compactly-supported Poincaré lemma. The isomorphism follows from the
first isomorphism theorem. ■

We state without proof the following theorem of the computations of the compactly-supported de Rham
cohomology groups of manifolds.

Theorem 1.9.24.

(a) [6, Theorem 17.30] (Top Cohomology, Orientable Compact Support Case): If M is a connected oriented
smooth n-manifold, then the integration map I : Hn

c (M) → R is an isomorphism, so Hn
c (M) is 1-

dimensional.

(b) [6, Theorem 17.31] (Top Cohomology, Orientable Compact Case): If M is a compact connected orientable
smooth n-manifold, then Hn

dR(M) is 1-dimensional, and is spanned by the cohomology class of any smooth
orientation form.

(c) [6, Theorem 17.32] (Top Cohomology, Orientable Noncompact Case): If M is a noncompact connected
orientable smooth n-manifold, then Hn

dR(M) = 0.

(d) [6, Theorem 17.34] (Top Cohomology, Nonorientable Case). If M is a connected nonorientable smooth
n-manifold, then Hn

c (M) = 0 and Hn
dR(M) = 0.
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1.9.3 Degree Theory

Theorem 1.9.25 (Degree of a Smooth Map). Suppose M and N are compact, connected, oriented, smooth
manifolds of dimension n, and F : M → N is a smooth map. There exists a unique integer k, called the degree
of F , that satisfies both of the following conditions.

(a) For every smooth n-form ω on N , ∫
M

F ∗ω = k

∫
N

ω

(b) If q ∈ N is a regular value of F , then
k =

∑
x∈F−1(q)

sgn(x),

where sgn(x) = +1 if dFx is orientation-preserving, and sgn(x) = −1 if it is orientation-reversing.

Proof. By Theorem 1.9.24 (b), two smooth n-forms on either M or N are cohomologous if and only if they
have the same integral. Let θ be any smooth n-form on N such that

∫
N
θ = 1, and let k =

∫
M
F ∗θ. If

ω ∈ Ωn(N) is arbitrary, then ω is cohomologous to aθ, where a =
∫
N
ω, and therefore F ∗ω is cohomologous

to aF ∗θ. It follows that ∫
M

F ∗ω = a

∫
M

F ∗θ = ak = k

∫
N

ω.

Thus k satisfies (a), and is clearly the only number that does so.

Next we show that k also has the characterization given in part (b), from which it follows that it is an
integer. Let q ∈ N be an arbitrary regular value of F . Because F−1(q) is a properly embedded 0-dimensional
submanifold of M , it is finite. Suppose first that F−1(q) is not empty-say, F−1(q) = {x1, . . . , xm}. By
the inverse function theorem, for each i there is a neighborhood Ui of xi such that F is a diffeomorphism
from Ui to a neighborhood Wi of q, and by shrinking the Ui’s if necessary, we may assume that they are
pairwise disjoint. Then K = M\ (U1 ∪ · · · ∪ Um) is closed in M and thus compact, so F (K) is closed in N
and disjoint from q. Let W be the connected component of W1 ∩ · · · ∩Wm ∩ (N\F (K)) containing q, and
let Vi = F−1(W ) ∩ Ui. It follows that W is a connected neighborhood of q whose preimage under F is
the disjoint union V1 ⨿ · · · ⨿ Vm, and F restricts to a diffeomorphism from each Vi to W . Since each Vi is
connected, the restriction of F to Vi must be either orientation-preserving or orientation-reversing.

Let ω be a smooth n-form on N that is compactly supported in W and satisfies
∫
N
ω =

∫
W
ω = 1. It

follows from part (a) that
∫
M
F ∗ω = k. Since F ∗ω is compactly supported in F−1(W ), we have

∫
M
F ∗ω =∑m

i=1

∫
Vi
F ∗ω. From Proposition 1.7.9 (d) we conclude that for each i,

∫
Vi
F ∗ω = ±

∫
W
ω = ±1, with the

positive sign if F is orientation-preserving on Vi and the negative sign otherwise. This proves (b) when
F−1(q) ̸= ∅.

On the other hand, suppose F−1(q) = ∅. Then q has a neighborhood W contained in N\F (M) (because
F (M) is compact and thus closed). If ω is any smooth n-form on N that is compactly supported in W , then∫
M
F ∗ω = 0, so k = 0. This proves (b). ■

Much of the power of degree theory arises from the fact that the two different characterizations of the degree
can be played off against each other. For example, it is often easy to compute the degree of a particular map
simply by counting the points in the preimage of a regular value, with appropriate signs. On the other hand,
the characterization in terms of differential forms makes it easy to prove many important properties, such as
the ones given in the next proposition.

Proposition 1.9.26 (Properties of the Degree). Suppose M,N , and P are compact, connected, oriented,
smooth n-manifolds.

(a) If F :M → N and G : N → P are both smooth maps, then deg(G ◦ F ) = (degG)(degF ).
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(b) If F : M → N is a diffeomorphism, then degF = +1 if F is orientation-preserving and −1 if it is
orientation-reversing.

(c) If two smooth maps F0, F1 :M → N are homotopic, then they have the same degree.

This proposition allows us to define the degree of a continuous map F : M → N between compact, con-
nected, oriented, smooth n-manifolds, by letting degF be the degree of any smooth map that is homotopic to
F . The Whitney approximation theorem guarantees that there is such a map, and the preceding proposition
guarantees that the degree is the same for every map homotopic to F .

Theorem 1.9.27. Suppose N is a compact, connected, oriented, smooth n-manifold, and X is a compact,
oriented, smooth (n + 1)-manifold with connected boundary. If f : ∂X → N is a continuous map that has a
continuous extension F : X → N to X, then deg f = 0.

Proof. By the Whitney approximation theorem, there is a smooth map F̃ : X → N that is homotopic to F .
Replacing F by F̃ and f by F̃ |∂X , we may assume that both f and F are smooth (because the statement
deg f = 0 we want to show is a homotopic invariant and F ∼ F̃ , f = F |∂X ∼ F̃ |∂X .)

Let ω be any smooth n-form on N . Then dω = 0 because it is an (n + 1)-form on an n-manifold. From
Stokes’s theorem, we obtain∫

∂X

f∗ω =

∫
∂X

F ∗ω =

∫
X

d (F ∗ω) =

∫
X

F ∗ dω = 0

It follows from Theorem 1.9.25 that f has degree zero. ■

Application of Degree Theory

Application of the degree theory includes Brouwer fixed-point theorem, Hairy-ball theorem, and separation
theorems, which can also be obtained using ordinary homology theory (see [17] for example). An application
distinct from the homology theory is the linking number: given any two non-intersecting smooth curve
γi : S

1 → R3(i = 1, 2), we can define the linking number Link (γ1, γ2) to be

Link (γ1, γ2) := deg (Γγ1,γ2) ,

where Γγ1,γ2 is the Gauss map

Γγ1,γ2 : T2 → S2,
(
eis, eit

)
7→

γ1
(
eis
)
− γ2

(
eit
)

|γ1 (eis)− γ2 (eit)|

Geometrically, the linking number represents the number of times that each curve winds around the other,
which may be positive or negative since we count the orientation of the two curves. For higher general-
izations, see [19] From Calculus to Cohomology Definition 11.12 (linking number of two disjoint compact
oriented connected smooth submanifolds of Rn+1). It has the property that the linking number is zero if the
two submanifolds can be separated by a hyperplane.

Extension of Degree Theory to Proper Maps

Exercise 1.9.28 ( [6] Problem 17-11). This problem shows that some parts of degree theory can be extended to
proper maps between noncompact manifolds. Suppose M and N are noncompact, connected, oriented, smooth
n-manifolds.

(a) Suppose F : M → N is a proper smooth map. Prove that there is a unique integer k called the degree of
F such that for each smooth, compactly supported n-form ω on N ,∫

M

F ∗ω = k

∫
N

ω

54



Differential Geometry Anthony Hong

and for each regular value q of F ,

k =
∑

x∈F−1(q)

sgn ( dFx)

where sgn (dFx) is defined in Theorem 1.9.25.

(b) By considering the maps F,G : C→ C given by F (z) = z and G(z) = z2, show that the degree of a proper
map is not a homotopy invariant.

Exercise 1.9.29 ( [6] Problem 17-12). Suppose M and N are compact, connected, oriented, smooth n-
manifolds, and F : M → N is a smooth map. Prove that if

∫
M
F ∗η ̸= 0 for some η ∈ Ωn(N), then F is

surjective. Give an example to show that F can be surjective even if
∫
M
F ∗η = 0 for every η ∈ Ωn(N).

Exercise 1.9.30 ( [6] Problem 17-13). Let T2 = S1× S1 be the 2-torus. Consider the two maps f, g : T2 → T2

given by f(w, z) = (w, z) and g(w, z) = (z, w̄). Show that f and g have the same degree, but are not homotopic.
[Suggestion: consider the induced homomorphisms on the first cohomology group or the fundamental group.]

1.9.4 De Rham Theorem

Suppose M is a smooth manifold, ω is a closed p-form on M , and σ is a smooth p-simplex in M . We define
the integral of ω over σ to be ∫

σ

ω =

∫
∆p

σ∗ω

This makes sense because ∆p is a smooth p-submanifold with corners embedded in Rp (see [6, p.415]), and
it inherits the orientation of Rp. (Or we could just consider ∆p as a domain of integration in Rp.) Observe
that when p = 1, this is the same as the line integral of ω over the smooth curve segment σ : [0, 1]→M .

If c =
∑k
i=1 ciσi is a smooth p-chain, the integral of ω over c is defined as

∫
c

ω =

k∑
i=1

ci

∫
σi

ω

We need an analogue of Proposition 1.7.10 for manifolds with corners.

Lemma 1.9.31. The statement of Proposition 1.7.10 is true if M is replaced by the boundary of an oriented
smooth (n+ 1)-manifold with corners.

Theorem 1.9.32 (Stokes’s Theorem for Chains). If c is a smooth p-chain in a smooth manifold M , and ω is a
smooth (p− 1)-form on M , then ∫

∂c

ω =

∫
c

dω

Proof. It suffices to prove the theorem when c is just a smooth simplex σ. Since ∆p is a manifold with
corners, Stokes’s theorem says that∫

σ

dω =

∫
∆p

σ∗ dω =

∫
∆p

dσ∗ω =

∫
∂∆p

σ∗ω

The maps {Fi,p : 0 = 1, . . . , p} are parametrizations of the boundary faces of ∆p satisfying the conditions
of Lemma 1.9.31, except possibly that they might not be orientation-preserving. To check the orientations,
note that Fi,p is the restriction to ∆p ∩ ∂Hp of the affine diffeomorphism sending the simplex [e0, . . . , ep] to
[e0, . . . , êi, . . . , ep, ei]. This is easily seen to be orientation-preserving if and only if (e0, . . . , êi, . . . , ep, ei) is an
even permutation of (e0, . . . , ep), which is the case if and only if p− i is even. Since the standard coordinates
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on ∂Hp are positively oriented if and only if p is even, the upshot is that Fi,p is orientation-preserving for
∂∆p if and only if i is even. Thus, by Lemma 1.9.31,∫

∂∆p

σ∗ω =

p∑
i=0

(−1)i
∫
∆p−1

F ∗
i,pσ

∗ω =

p∑
i=0

(−1)i
∫
∆p−1

(σ ◦ Fi,p)∗ ω =

p∑
i=0

(−1)i
∫
σ◦Fi,p

ω.

By definition of the singular boundary operator, this is equal to
∫
∂σ
ω. ■

Using this theorem, we define a natural linear map I : Hp
dR(M) → Hp(M ;R), called the de Rham homo-

morphism, as follows. For any [ω] ∈ Hp
dR(M) and [c] ∈ Hp(M) ∼= H∞

p (M), we define

I[ω][c] =
∫
c̃

ω

where c̃ is any smooth p-cycle representing the homology class [c]. This is well defined, because if c̃, c̃′ are
smooth cycles representing the same homology class, then Theorem 1.8.6 guarantees that c̃ − c̃′ = ∂b̃ for
some smooth (p+ 1)-chain b̃, which implies∫

c̃

ω −
∫
c̃′
ω =

∫
∂b̃

ω =

∫
b̃

dω = 0

while if ω = dη is exact, then ∫
c̃

ω =

∫
c̃

dη =

∫
∂c̃

η = 0

(Note that ∂c̃ = 0 because c̃ represents a homology class, and dω = 0 because ω represents a cohomology
class.) Clearly, I[ω] [c+ c′] = I[ω][c]+I[ω] [c′], and the resulting homomorphism I[ω] : Hp(M)→ R depends
linearly on ω. Thus, I[ω] is a well-defined element of Hom(Hp(M),R) ∼= Hp(M ;R).

Proposition 1.9.33 (Naturality of the de Rham Homomorphism). Let M be a smooth manifold and p ≥ 0 an
integer. Let

I : Hp
dR(M)→ Hp(M ;R)

denote the de Rham homomorphism.

(a) If F :M → N is a smooth map, then the following diagram commutes:

Hp
dR(N) Hp

dR(M)

Hp(N ;R) Hp(M ;R)

F∗

I I

F∗

(b) If M is a smooth manifold and U, V ⊂ M are open subsets such that U ∪ V = M , then the following
diagram commutes:

Hp−1
dR (U ∩ V ) Hp

dR(M)

Hp−1(U ∩ V ;R) Hp(M ;R)

δ

I I

∂∗

where δ and ∂∗ are the connecting homomorphisms of the Mayer–Vietoris long exact sequences for de Rham
and singular cohomology, respectively.

Theorem 1.9.34. For every smooth manifold M and integer p ≥ 0, the de Rham homomorphism

I : Hp
dR(M)→ Hp(M ;R)

is an isomorphism.
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Sketch of Proof; see [6] Theorem 18.14 for details. We say that a smooth manifold M is a de Rham manifold
if the de Rham homomorphism

I : Hp
dR(M)→ Hp(M ;R)

is an isomorphism for all p. It suffices to show that every smooth manifold is de Rham. Since I commutes
with pullbacks under smooth maps (Proposition 1.9.33), any manifold diffeomorphic to a de Rham manifold
is also de Rham.

If M is any smooth manifold, let us call an open cover {Ui} of M a de Rham cover if each subset Ui is a de
Rham manifold, and every finite intersection Ui1 ∩ · · · ∩Uik is de Rham. A de Rham cover that is also a basis
for the topology of M is called a de Rham basis for M .

Step 1: If {Mj} is any countable collection of de Rham manifolds, then their disjoint union is de Rham. Both
de Rham and singular cohomology commute with disjoint unions. That is,

Hp(
∐
j

Mj) ∼=
∏
j

Hp(Mj), Hp
dR(
∐
j

Mj) ∼=
∏
j

Hp
dR(Mj),

and the de Rham homomorphisms commute with these identifications, so I is an isomorphism on the disjoint
union.

Step 2: Every convex open subset of Rn is de Rham. For such U , Hp
dR(U) = 0 for p > 0 by the Poincaré

lemma. On the other hand, since U is contractible, Hp(U ;R) = 0 for p > 0 and both H0
dR(U) ∼= R ∼=

H0(U ;R), so I is an isomorphism.

Step 3: If M has a finite de Rham cover, then M is de Rham. This is the key inductive step. Suppose
M = U1∪· · ·∪Uk with each Ui and all finite intersections de Rham. One inducts on k using the Mayer–Vietoris
sequence and naturality of I, and applies the five lemma to show that I : Hp

dR(M) → Hp(M ;R) is an
isomorphism.

Step 4: If M has a de Rham basis, then M is de Rham. Let {Uα} be a de Rham basis and f : M → R an
exhaustion function. Define compact sets

Am := {x ∈M : m ≤ f(x) ≤ m+ 1}, A′
m := {x ∈M : m− 1

2 < f(x) < m+ 3
2}.

Cover each compact Am by finitely many basis elements, and let Bm be the union of these. Then Bm is de
Rham by Step 3. Define U :=

⋃
m odd Bm, V :=

⋃
m even Bm, and apply Step 3 again.

Step 5: Every open subset of Rn is de Rham. Any such open set has a basis of convex open subsets (e.g.
Euclidean balls), each de Rham by Step 2. So the open set has a de Rham basis, hence is de Rham by Step 4.

Step 6: Every smooth manifold is de Rham. Any smooth manifold has an atlas of coordinate charts Uα ∼= Rn.
By Step 5 and the stability of intersections of basis sets under finite intersection, this atlas gives a de Rham
basis. Apply Step 4 to conclude. ■

1.10 Fiber Bundles and Vector Bundles

We will use [4], [8], and [12] for this section.

1.10.1 Fiber Bundles

The surface of the cylinder can be seen as a disjoint union of a family of line segments continuously
parametrized by points of a circle. The Möbius band can be presented in similar way. The two dimensional
torus embedded in the three dimensional space can presented as a union of a family of circles (meridians)
parametrized by points of another circle (a parallel). The tangent bundle TM of a smooth manifold M is a
union of vector spaces TpM .
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The examples considered above share two important properties: (a) any two fibers are homeomorphic; (b)
despite the fact that the whole space cannot be presented as a Cartesian product of a fiber with the base
(the parameter space), if we restrict our consideration to some small region of the base the part of the fiber
space over this region is such a Cartesian product. The two properties above are the basis of the following
definition.

Definition 1.10.1 (Fiber bundle). A fiber bundle π : E →M consists of

(i) three topological spaces:
E, called the total space of the bundle,
M , called the base space of the bundle, and
F , called the standard fiber or model fiber of the bundle;

(ii) a surjective continuous map π : E →M , called the projection;

(iii) and a local trivialization condition: for each x ∈ M , there exist a neighborhood U of x in M and a
homeomorphism φ : π−1(U)→ U ×F , called the local trivialization of E over U , such that π = pr1 ◦φ.

A C∞ fiber bundle is a fiber bundle in the category of smooth manifold: E,M,F are smooth manifolds, continu-
ous mappings above are replaced with smooth mappings, and homeomorphism is replaced with diffeomorphism.

The projection π is sometimes also called a (C∞) fibration of E. F → E
π→ M is also used to denote a fiber

bundle.

A trivial fiber bundle is a fiber bundle that admits a local trivialization over the entire space, i.e., a global
trivialization. In this sense, one can also call locally trivial fiber bundle for a general fiber bundle.

A section of a bundle is a continuous map σ :M → E such that π ◦ σ(x) = x for each x ∈M .

Remark 1.10.2. Note that if E → M is a fiber bundle with model fiber F then π−1(U) =
∐
x∈U Ex where

Ex = π−1(x) is called a fiber (over x). The condition π = pr1 ◦φ requires that for any ξ ∈ Ex = {ξ ∈
E|π(ξ) = x}, φ|Ex

(ξ) = (x, y) for some y ∈ F . Thus, φ|Ex
: Ex → {x} × F . It is easy to see it has an inverse

by restricting the inverse of φ to {x} × F . Thus, each fiber Ex is homeomorphic to the model fiber F . ♠

The above definition of bundle is not sufficiently restrictive. A bundle will be required to carry additional
structure involving a group G of homeomorphisms of F called the group of the bundle. Before imposing
the additional requirements, consideration of a collection of examples, new and old, will show the need for
these.

Example 1.10.3 (The product bundle). The first example is the product bundle or product space E =
M × F . In this case, the projection is given by π(x, y) = x. Taking U = X and φ = id, the last condition
is fulfilled. The sections of E → M are just the graphs of any continuous maps M → F . The fibers
are, of course, all homeomorphic, however there is a natural unique homeomorphism Ex → F given by
pr2 : (x, y) → y. As will be seen, this is equivalent to the statement that the group G of the bundle consists
of the identity alone. In this case, the bundle is called the trivial bundle. ♣

Example 1.10.4 (The Möbius band). The second example is the Möbius band. The base space E is a circle
M = S1 obtained from a line segment L by identifying its ends. The fiber F is a line segment as well.
The bundle M is obtained from the product L × Y by matching the two ends with a twist. The projection
L×F → L carries over under this matching into a projection π : E →M . There are numerous crosssections;
any curve as indicated with end points that match provides a section. It is clear that any two cross-sections
must agree on at least one point. There is no natural unique homeomorphism of Ex with F . However there
are two such which differ by the map g of F on itself obtained by reflecting in its midpoint. In this case the
group G is the cyclic group of order 2 generated by g. ♣

Example 1.10.5 (Klein bottle and the twisted torus). Check [12] Example 1.4 & 1.5. Here, G = Z2 as
well. ♣
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Example 1.10.6 (Covering spaces). A covering space E of a space X is another example of a bundle. The
projection π : E → X is the covering map. The usual definition of a covering space is the definition of
bundle modified by requiring that each Ex is a discrete subspace of E so that π−1(U) =

∐
ξ∈Ex

Vξ, and
that π|Vξ

: Vξ → U is a homeomorphism for every ξ ∈ Ex. If X is path-connected, motion of a point x
along a curve γ in X from x1 to x2 can be covered by a continuous motion of Ex in E from Ex1 to Ex2 .
Choosing a base point x0 each Ex can be put in 1-1 correspondence with F = Ex0

using a curve in X. This
correspondence depends only on the homotopy class of the curve. Considering the action on F of closed
curves from x0 to x0, the fundamental group π1(X) appears as a group of permutations on F . Any two
correspondences of Ex with F differ by a permutation corresponding to an element of π1(X). Thus, for
covering spaces, the group of the bundle is a factor group of the fundamental group of the base space. ♣

Example 1.10.7 (The tangent bundle of a manifold). This is the familiar one. Here, G = GL(V ) where
V ∼= TpM . ♣

These examples show that a bundle carries, as part of its structure, a group G of transformations of the
fiber F . In the last exmaple, the group G has a topology. It is necessary to weave G and its topology into
the definition of the bundle. This will be achieved through the intermediate notion of a fiber bundle with
coordinate systems (briefly: “coordinate bundle”). The coordinate systems are eliminated by a notion of
equivalence of coordinate bundles, and a passage to equivalence classes.

Definition 1.10.8 (Transformation groups). A topological group G is a set which has a group structure and a
topology such that maps g 7→ g−1 and (g1, g2) 7→ g1g2 are continuous. If G is a topological group, and F is a
topological space, we say that G is a topological transformation group of F relative to a map η : G×F → F
if

(i) η is continuous,

(ii) η(e, y) = y where e is the identity of G, and

(iii) η (g1g2, y) = η (g1, η (g2, y)) for all g1, g2 in G and y in F .

As we shall rarely consider more than one such η, we shall abbreviate η(g, y) by g · y. For any fixed g, the map
y → g · y is a homeomorphism of F onto itself; for it has the continuous inverse y → g−1 · y. In this way η
provides a homomorphism of G into the group of homeomorphisms of F :

η : G −→Homeo(F )

g 7−→
(
F → F

y 7→ g · y

)

We shall say that G is effective if ∀y, g · y = y implies g = e. That is, η(g) = idF =⇒ g = e. That is, η
is injective. Then G is isomorphic to a subgroup of the group of homeomorphisms of F . In this case one might
identify G with that group of homeomorphisms, however we shall frequently allow the same G to operate on
several spaces.

Before we talk about the coordinate bundle, we need to introduce the concept of transition map. Suppose
for there are two open sets Uα, Uβ in which x ∈M lie. Let φα, φβ be their associated homeomorphisms. We
can regard them as

φα : π−1(Uα ∩ Uβ)→ (Uα ∩ Uβ)× F
φβ : π−1(Uα ∩ Uβ)→ (Uα ∩ Uβ)× F

Now consider the map fαβ,x := φα|Ex
◦ (φβ |Ex

)
−1

: F → F (in fact, the restrictions of φα and φβ to Ex are
maps from Ex to {x} × F ∼= F ; see remark 1.10.2.) Note that fαβ,x is a homeomorphism of F . We have the
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transition map fαβ defined as

fαβ : Uα ∩ Uβ → Homeo(F )

x 7→ fαβ,x

The map has two properties: (1) (fαβ(x))
−1 = fβα(x) in the group Homeo(F ); (2) ∀x ∈ Uα ∩ Uβ ∩ Uγ ,

fαγ(x) = fαβ(x)fβγ(x) in group Homeo(F ).

Also note that if we denote · as the action of Homeo(F ) on F , then ∀ξ ∈ Ex, x ∈ Uα ∩ Uβ ,

fαβ(π(ξ)) · φβ(ξ) = fαβ(x) · φβ(ξ) = φα|Ex ◦ (φβ |Ex)
−1(φβ(ξ)) = φα(ξ).

Definition 1.10.9 (Coordinate bundle with structure group). A coordinate bundle with structure group
G is a fiber bundle F → E

π→ M with an effective topological transformation group G acting on F by η
and a family U = {Uα, φα}α∈A of coordinate charts, consisting of open sets covering M and their associated
homeomorphisms, such that

• any two charts (Uα, φα) and (Uβ , φβ) are G-compatibility: either Uα ∩ Uβ = ∅ or there exists a contin-
uous map g from Uα ∩ Uβ to G such that fα,β(x) = ηg(x) ∈ Homeo(F ) for all x ∈ Uα ∩ Uβ . In this case
we shall identify fα,β with g, and consider fα,β as a continuous map from Uα ∩ Uβ to G; this yields the
identity fα,β(x) · y = η (fα,β(x), y), ∀x ∈ Uα ∩ Uβ , y ∈ F .

A fiber bundle chart is admissible as a bundle chart on the bundle E with structure group G if and only if it is
G-compatible with every element of the given G-bundle atlas.

We revisit the definition of fiber bundle now.

Definition 1.10.10. Two coordinate bundles (F → E
π→ M,G) and (F ′ → E′ π′

→ M ′, G′) are said to be
equivalent in the strict sense if they have the same total space, base space, projection, fiber, and group, and
their coordinate functions {(Uα, φα)}α∈A, {(Uβ , φβ)}β∈B satisfy the conditions that for any x ∈ Uα ∩ Uβ ,

fαβ(x) = φα|Ex ◦ (φβ |Ex)
−1

is equal to some ηg(x) ∈ Homeo(F ) for a continuous map g : Uα ∩ Uβ → G.

Remark 1.10.11. As one can see from the resemblance between G-compatibility within a bundle atlas and
this definition, we see this definition can be stated briefly by saying that the union of the two atlases is still
an atlas for the bundle.

That this is a proper equivalence relation follows quickly. Reflexivity is immediate. Symmetry follows from
the continuity of g → g−1. Transitivity depends on the simultaneous continuity of (g1, g2)→ g1g2. ♠

Definition 1.10.12 (fiber bundles as equivalence classes). With above notion of equivalence, a fiber bundle
is defined to be an equivalence class of coordinate bundles.

One may regard a fiber bundle as a “maximal” coordinate bundle having all possible coordinate functions of an
equivalence class. As our indexing sets are unrestricted, this involves the usual logical difficulty connected with
the use of the word “all.”

Remark 1.10.13 (Category of smooth manifold). We will stick with the category of smooth manifolds now.
The fiber bundle F → E

π→ M is required to be a C∞ fiber bundle, the transformation group G is required
to be a Lie group, and the group Homeo(F ) becomes the group Diff(F ). Continuous maps become smooth
maps. Homeomorphisms become diffeomorphisms. We will use p, q to refer to typical elements in M and
reserve x, y for elements in F . ♠

We have a smooth analogue of the remark 1.10.2; for its proof, see [4] Proposition 1.5.
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Proposition 1.10.14. The projection map π : E → M of a C∞ fiber bundle is a submersion, that is, for each
point ξ in E, the induced tangent map dπξ : Eξ → Mπ(ξ) is surjective; furthermore, for each p ∈ M , the fiber
Ep = π−1(p) in E over p is an embedded submanifold diffeomorphic to the standard fiber F of the bundle.

Example 1.10.15 (Subbundles). Let M and N be manifolds; call (M,N) a manifold pair if N is a subman-
ifold of M . Suppose that (F1, F2) , (E1, E2), and (M1,M2) are manifold pairs such that Fi −→ Ei

πi−→Mi is a
fiber bundle, i = 1, 2. Call E2 a subbundle of E1 if the following condition is satisfied for each bundle chart
(U,φ) on E2 over an open set U in M2: given p ∈ U , there exists an open neighborhood V of p in M1 and a
bundle chart (V, ψ) on E1 over V such that

ψ|π−1
1 (U∩V ) = φ|π−1

2 (U∩V ).

Not all bundle charts on E1 restrict to bundle charts on E2 if F1 ̸= F2, for there are diffeomorphisms of F1

which do not map F2 to F2.

As an example of a subbundle, F → π−1X
π−→ X is a subbundle of F → E

π−→M for each submanifold X of
M ; if E is a trivial bundle over a neighborhood of X, then π−1X is also a trivial bundle. ♣

Example 1.10.16 (The pullback of a bundle). Suppose that h : N →M is a C∞ map, and let F → E
π−→M

be a fiber bundle. The product N × E is a fiber bundle over N with fiber E. The map h now determines a
subbundle of N × E, which in most cases is far more interesting than the original bundle N × E. Set

h∗E := {(p, ξ) ∈ N × E | h(p) = π(ξ)} ⊆ N × E.

Project h∗E onto N by the map pr1|h∗E , which will also be denoted by pr1. Similarly, denote the restriction
of pr2 to h∗E by pr2. The fiber of h∗E at p ∈ N is (h∗E)p = {p} × Eh(p), which is diffeomorphic to Eh(p)
under pr2; thus the standard fiber of h∗E is F .

Assume that (U,ψ) is a local trivialization of E over an open set U in M ; the subset (h ◦ pr1)
−1

(U) =
pr−1

1 (h−1(U)) of h∗E is a trivial bundle over the open set h−1(U) in N , with pr1 as the projection map; in
fact, a bundle chart on h∗E over h−1(U) is (h−1(U), ψ ◦pr2). The bundle h∗E is called the pullback of E by
the map h. ♣

Exercise 1.10.17. Prove that h∗E over N is a subbundle of N × E over N . If the structure group of E is a Lie
group G, show that the structure group of h∗E is a Lie subgroup of G. Since h∗E is a submanifold of N ×E, its
tangent bundle is a submanifold of T (N × E); prove that T (h∗E) = {(u, v) ∈ TN × TE | h∗u = π∗v}.

Example 1.10.18 (Composite bundles). ♣

Example 1.10.19 (The universal line bundle over a projective space). See [4] Example 1.12 (e). ♣

Example 1.10.20 (Milnor’s exotic spheres). See [4] Example 1.12 (j) ♣

1.10.2 Vector Bundles

1.11 Problems

Exercise 1.11.1 ( [6] 1-7). Let N denote the north pole (0, . . . , 0, 1) ∈ Sn ⊆ Rn+1, and let S denote the south
pole (0, . . . , 0,−1). Define the stereographic projection σ : Sn\{N} → Rn by

σ
(
x1, . . . , xn+1

)
=

(
x1, . . . , xn

)
1− xn+1

Let σ̃(x) = −σ(−x) for x ∈ Sn\{S}.

(a) For any x ∈ Sn\{N}, show that σ(x) = u, where (u, 0) is the point where the line through N and x
intersects the linear subspace where xn+1 = 0. Similarly, show that σ̃(x) is the point where the line
through S and x intersects the same subspace. (For this reason, σ̃ is called stereographic projection
from the south pole.)

61



Differential Geometry Anthony Hong

(b) Show that σ is bijective, and

σ−1
(
u1, . . . , un

)
=

(
2u1, . . . , 2un, |u|2 − 1

)
|u|2 + 1

(c) Compute the transition map σ̃ ◦σ−1 and verify that the atlas consisting of the two charts (Sn\{N}, σ) and
(Sn\{S}, σ̃) defines a smooth structure on Sn. (The coordinates defined by σ or σ̃ are called stereographic
coordinates.)

(d ) Show that this smooth structure is the same as the one defined in [6, Example 1.31].

Solution. (a) Quick solution: Let O be the origin and π(x) =
(
x1, . . . , xn, 0

)
the projection to the hyperplane

H =
{
x ∈ Rn+1 | xn+1 = 0

}
. The triangle N,O, (u, 0) is similar to the triangle x, π(x), (u, 0). Hence, (u, 0) =

π(x)/
(
1− xn+1

)
. The line passing through N and −x is the mirror image of the line passing through S and

x, which yields σ̃(x) = −σ(−x).

Slow solution: The line passing through N = (0, · · · , 0, 1) and x =
(
x1, · · · , xn, xn+1

)
can be written as

N + t(x−N), t ∈ R

or
N + t(x−N) = (0, · · · , 0, 1) + t

((
x1, · · · , xn, xn+1

)
− (0, · · · , 0, 1)

)
=
(
tx1, · · · , txn, t

(
xn+1 − 1

)
+ 1
)
, t ∈ R

let t
(
xn+1 − 1

)
+ 1 = 0 to get its intersection with the hyperplane xn+1 = 0 and we have

t
(
xn+1 − 1

)
+ 1 = 0⇒ t =

1

1− xn+1
, xn+1 ̸= 1⇔ t =

1

1− xn+1
, x ∈ Sn\{N}

Plugging t into the original line to get

(u, 0) =
(
tx1, · · · , txn, t

(
xn+1 − 1

)
+ 1
)∣∣
t= 1

1−xn+1
=

(
x1

1− xn+1
, · · · , xn

1− xn+1
, 0

)
= (σ(x), 0)

which shows that σ(x) = u.

For the other part, let u′ be similarly defined: (u′, 0) is the point where the line through S and x interests
the linear subspace xn+1 = 0 The line passing through S = (0, · · · , 0,−1) and x =

(
x1, · · · , xn, xn+1

)
can be

written as
S + t(x− S), t ∈ R

or
S + t(x− S) = (0, · · · , 0,−1) + t

((
x1, · · · , xn, xn+1

)
− (0, · · · , 0,−1)

)
=
(
tx1, · · · , txn, t

(
xn+1 + 1

)
− 1
)
, t ∈ R

Let t
(
xn+1 + 1

)
− 1 = 0 to get its intersection with the hyperplane xn+1 = 0 and we have

t
(
xn+1 + 1

)
− 1 = 0⇒ t =

1

xn+1 + 1
, xn+1 ̸= −1⇔ t =

1

xn+1 + 1
, x ∈ Sn\{S}

Notice that

σ̃(x) = −σ(−x) = −
(
−x1, · · · ,−xn

)
1 + xn+1

=

(
x1, · · · , xn

)
1 + xn+1

.

Thus plugging t into the original line and get

(u′, 0) =
(
tx1, · · · , txn, t

(
xn+1 + 1

)
− 1
)∣∣
t= 1

xn+1+1

=

(
x1

xn+1 + 1
, · · · , xn

xn+1 + 1
, 0

)
= (σ̃(x), 0)
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which shows that σ̃(x) = u′.

(b) Quick solution: Note that

|σ(x)|2 =

(
x1
)2

+ · · ·+ (xn)
2

(1− xn+1)
2 =

1−
(
xn+1

)2
(1− xn+1)

2 =
1 + xn+1

1− xn+1
=⇒ xn+1 =

|σ(x)|2 − 1

|σ(x)|2 + 1
= 1− 2

|σ(x)|2 + 1
.

This shows that the left inverse of σ is

τ
(
u1, . . . , un

)
:=

(
2u1, . . . , 2un, |u|2 − 1

)
|u|2 + 1

Since the tangent space to Sn at N is a translate of H, any line from H to N intersects Sn at a second point,
which shows that σ is surjective; consequently, τ is its right inverse as well.

Slow solution: get the equation of the line passing through (u, 0), x,N and solve parameter t, get left and
right inverse, and compute their compositions.

(c) We have

(σ̃ ◦ τ)
(
u1, . . . , un

)
= −σ

[(
−2u1, . . . ,−2un, 1− |u|2

)
1 + |u|2

]
=

(
2u1, . . . , 2un

)
1− (1− |u|2) / (1 + |u|2)

=

(
u1, . . . , un

)
|u|2

.

This transition map is smooth and involutive (so that its inverse is itself), so the atlas defines a smooth
structure on Sn.

(d) Let the atlas defined in [6, Example 1.31] be

A =
{(
U+
n−1, φ

+
n+1

)
,
(
U−
n+1, φ

−
n+1

)
,
(
U±
i , φ

±
i

)}
i∈{1,··· ,n}

and let the atlas defined in this exercise be

B = {((Sn\{N}, σ) , (Sn\{S}, σ̃))} .

We want to use [6, Proposition 1.17 (b)] to show that the two atlases determine the same smooth structure
by proving that each of the chart in the A is compatible with both charts in B, because this implies that their
union is an atlas (A and B are already smooth atlases). We check the smooth compatibilities:

We see that U+
i =

{(
x1, · · · , xn+1

)
∈ Rn+1 : xi > 0

}
and U−

i =
{(
x1, · · · , xn+1

)
∈ Rn+1 : xi < 0

}
,

φ±
i : U±

i ∩ Sn → Bn; φ±
i

(
x1, · · · , xn+1

)
=
(
x1, · · · , x̂2, · · ·xn+1

)
Then, for

(
U+
n−1, φ

+
n+1

)
,
(
U−
n+1, φ

−
n+1

)
,

φ±
n+1 ◦ σ−1

(
u1, · · · , un

)
= φ+

n+1

((
2u1, · · · , 2un, ∥u∥2n − 1

)
∥u∥2n + 1

)
=

(
2u1, · · · , 2un

)
∥u∥2n + 1

.

Similarly,

φ±
n+1 ◦ σ̃−1

(
u1, · · · , un

)
= φ+

n+1

((
2u1, · · · , 2un, 1− ∥u∥2n

)
∥u∥2n + 1

)
=

(
2u1, · · · , 2un

)
∥u∥2n + 1

The two maps are both smooth by the same reasoning we have shown in part (c). The inverses of them
(noticing that it is the n+1-th coordinate that is truncated under φ±

n+1) are

σ ◦
(
φ±
n+1

)−1
(
x1, · · · , xn, x̂n+1

)
= σ

(
x1, · · · , xn,±

√
1− ∥x∥2n

)
=

(
x1, · · · , xn

)
1∓

√
1− ∥x∥2n
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and

σ̃ ◦
(
φ±
n+1

)−1
(
x1, · · · , xn, x̂n+1

)
= σ̃

(
x1, · · · , xn,±

√
1− ∥x∥2n

)
=

(
x1, · · · , xn

)
1±

√
1− ∥x∥2n

.

σ ◦
(
φ−
n+1

)−1
has a positive denominator and is thus smooth and σ ◦

(
φ+
n+1

)−1
is smooth because the denom-

inator is zero iff the
(
x1, · · · , xn, x̂n+1

)
=
(
0, · · · , 0, x̂n+1

)
while σ : Sn\{N = (0, · · · , 0, 1)} → Rn excludes

that possibility. Argument for σ̃ is similar, where exclusion of the south pole from domain of σ̃ is working.
Lastly, we want to prove that

(
U±
i , φ

±
i

)
for i ∈ {1, · · · , n} are all compatible with ( (Sn\{N}, σ) (argument

for ( Sn\{S}, σ̃ )) is similar). Notice that these 2n charts do not contain S and N . We have the smooth
transition maps

φ±
i ◦ σ

−1
(
u1, · · · , un

)
=

(
2u1, · · · , 2ul, · · · , 2un, ∥u∥2n − 1

)
∥u∥2n + 1

and its inverse

σ ◦
(
φ±
i

)−1 (
x1, · · · , x2, · · ·xn+1

)
=

(
x1, · · · ,

√
1− ∥x∥2n, · · · , xn+1

)
1− xn+1

.

The inverse is smooth also by avoiding the singularity in the denominator (2n charts do no contain S and N
where the (n + 1)-th coordinate is 1). ♦

Exercise 1.11.2 ( [6] 1-8). By identifying R2 with C, we can think of the unit circle S1 as a subset of the
complex plane. An angle function on a subset U ⊆ S1 is a continuous function θ : U → R such that eiθ(z) = z
for all z ∈ U . Show that there exists an angle function θ on an open subset U ⊆ S1 if and only if U ̸= S1. For
any such angle function, show that (U, θ) is a smooth coordinate chart for S1 with its standard smooth structure.

Solution. No Global Angle Function:
Poor Man’s solution: If θ existed, then θ

(
S1
)
⊂ R would be compact and connected, i.e., θ

(
S1
)
= [a, b].

The restriction θ : S1 → [a, b] is continuous and surjective by definition, making its left inverse a two-sided
inverse. The existence of a continuous inverse (alternatively, the fact that θ is continuous and bijective with
a compact domain and Hausdorff codomain) makes θ a homeomorphism. But S1 ̸= [a, b] because only the
latter has cut-points.

Fancy solution: Let π : R→ S1 be given by π(t) = exp(it). Recall that H1

(
S1,Z

)
= Z and H1(R,Z) = 0. If a

global angle function θ : S1 → R existed, then

π∗ ◦ θ∗ = idZ =⇒ θ∗ : Z→ 0 is injective,

a clear contradiction.

Yes Local Angle Function: Let U ⊊ S1 be open and θ : U → R defined by θ(z) = arg(z) with a branch cut
along the ray {λp | λ ≥ 0} for some point p ∈ S1\U .

Smooth Structure: We observe that arg is the only possible choice of angle function (up to an element of
2πZ for each connected component of U , which is irrelevant for our purposes). It is an injective continuous
open map (open arcs form a base for the topology of U). If we restrict its codomain to its image (which is
necessarily an open subset of R), then it is also surjective, making it a homeomorphism with an open subset
of R. It remains to check that the chart (U, arg) is compatible with any of the standard charts on S1, say,
(U+

x , φ
+
x ). We have

φ+
x

(
arg−1(t)

)
= φ+

x

(
eit
)
= sin(t)

which is smooth with a smooth inverse on (−π/2, π/2). ♦

Exercise 1.11.3 ( [6] 1-11). Let M = Bn, the closed unit ball in Rn. Show that M is a topological manifold
with boundary in which each point in Sn−1 is a boundary point and each point in Bn is an interior point. Show
how to give it a smooth structure such that every smooth interior chart is a smooth chart for the standard smooth
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structure on Bn. [Hint: consider the map π ◦ σ−1 : Rn → Rn, where σ : Sn \ {N} → Rn is the stereographic
projection (Problem 1.11.1) and π is a projection from Rn+1 to Rn that omits some coordinate other than the
last.]

Solution. SinceM ⊂ Rn, it is second countable and Hausdorff. In order to come up with the atlas, we observe
that the inverse stereographic projection Rn → Sn\{N} maps the ball Bn to the southern hemisphere and
its boundary to the equator. Hence, we can restrict the codomain to the lower half-space. We compose with
a chart dropping any but the last coordinate to get a map Bn → Hn. Concretely, let

φ±
i

(
u1, . . . , un

)
=

(
2u1, . . . , 2̂ui, . . . , 2un, |u|2 − 1

)
|u|2 + 1

± ui > 0

where the hat denotes omission. Its inverse is given by

(
φ±
i

)−1 (
x1, . . . , xn

)
=

(
x1, . . . ,±

√
1− |x|2, xi, . . . , xn−1

)
1− xn

These are trivially compatible with the interior chart (Bn, id). The transition functions are

φ∓
i ◦

(
φ±
j

)−1
=


(
x1, . . . , x̂i, . . . ,±

√
1− |x|2, xj , . . . , xn

)
i < j(

x1, . . . , xn
)

i = j(
x1, . . . ,±

√
1− |x|2, xj , . . . , x̂i−1, . . . , xn

)
i > j

which are smooth because their domains exclude |x| = 1. ♦

Exercise 1.11.4 ( [6] 2-3). For each of the following maps between spheres, compute sufficiently many coordi-
nate representations to prove that it is smooth.

(a) pn : S1 → S1 is the nth power map for n ∈ Z, given in complex notation by pn(z) = zn.

(b) α : Sn → Sn is the antipodal map α(x) = −x.

(c) F : S3 → S2 is given by F (w, z) = (zw̄ + wz̄, iwz̄ − izw̄, zz̄ − ww̄), where we think of S3 as the subset{
(w, z) : |w|2 + |z|2 = 1

}
of C2.

Solution. (a) For sufficiently small angular charts around z and zn, the map in coordinates is θ 7→ nθ+2πm,
where m ∈ Z is a constant depending on the choice of charts.

(b) Using standard charts (U±
i , φ

±
i ), the map in coordinates is u 7→ −u.

(c) The map F expressed with real numbers is F (a, b, c, d) =
(
2(ac+ bd), 2(bc− ad), a2 + b2 −

(
c2 + d2

))
.

For example, using the standard charts
(
U−
4 , φ

−
4

)
on S3 and

(
U−
3 , φ

−
3

)
containing the points (0, 0, 0,−1) and

(0, 0,−1), respectively, we have((
φ−
3

)
◦ F ◦

(
φ−
4

)−1
)
(x, y, z) = (2(xz + yw), 2(yz − xw)) w = −

√
1− (x2 + y2 + z2).

We should restrict the domain to

V =

{
(x, y, z) ∈ R3

∣∣∣∣ (x2 + y2 + z2 < 1
)
∧
(
x2 + y2 <

1

2

)}
so that F (V ) ⊂ U−

3 . † The calculations are similar for the remaining charts. In all three parts, we have
smooth maps Rn+1 → Rm+1 which restrict to maps of spheres Sn → Sm. These restrictions are always
smooth because we can compose with inclusion to get a smooth map Sn ↪→ Rn+1 → Rm+1 and restrict the
codomain to Sm via [6, Corollary 5.30]. ♦

†The complement of set V in the unit 3-ball is a napkin ring; see this YouTube video.
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Exercise 1.11.5 ( [6] 3-1). Suppose M and N are smooth manifolds with or without boundary, and F :M →
N is a smooth map. Show that dFp : TpM → TF (p)N is the zero map for each p ∈ M if and only if F is
constant on each component of M .

Solution. Because manifolds are locally connected, we know that F is constant on each connected compo-
nent iff F is locally constant. It therefore suffices to work in coordinates and prove that a smooth map
F̂ : Rm → Rn is constant iff its Jacobian is identically zero. If F̂ is constant, then its Jacobian clearly van-
ishes. If F̂ is nonconstant, then pick points p and q such that F̂ (p) ̸= F̂ (q). Let v := q − p, L(t) := p + tv,
and f := F̂ ◦ L. Since f(0) ̸= f(1), the mean value theorem guarantees us a time t ∈ (0, 1) such that
f ′(t) = (DF̂ ◦ L)(t)v ̸= 0, which implies DF̂ ̸≡ 0. ♦

Exercise 1.11.6 ( [6] 3-2). Prove the [6, Proposition 3.14] below.

Proposition 1.11.7 (The Tangent Space to a Product Manifold). Let M1, . . . ,Mk be smooth manifolds, and
for each j, let πj :M1 × · · · ×Mk →Mj be the projection onto the Mj factor. For any point p = (p1, . . . , pk) ∈
M1 × · · · ×Mk, the map

α : Tp (M1 × · · · ×Mk)→ Tp1M1 ⊕ · · · ⊕ TpkMk

defined by
α(v) =

(
d (π1)p (v), . . . , d (πk)p (v)

)
is an isomorphism. The same is true if one of the spaces Mi is a smooth manifold with boundary.

Proof. We will take k = 2 to simplify notation. Let ιM : M ↪→ M × N be the map sending x to (x, p2)
and ιN : N ↪→ M × N be the map sending y to (p1, y). Note that they are sections of bundles πM and
πN , respectively. Note that πM ◦ ιN and πN ◦ ιM are constant (so their differentials are zero); πM ◦ ιM and
πN ◦ ιN are identity maps (so their differentials are identities). We claim that β(u,w) := dιM (u) + dιN (w) is
the inverse of α (checking one side is enough since these are vector spaces of the same dimension):

(α ◦ β)(u,w) = α (dιM (u) + dιN (w))

= (d (πM ◦ ιM ) (u) + d (πM ◦ ιN ) (w), d (πN ◦ ιM ) (u) + d (πN ◦ ιN ) (w))

= (u,w).

What we are saying in terms of coordinates is that, for a smooth curve γ = (γM , γN ) : R → Rm × Rn, the
data of γ′(0) and (γ′M (0), γ′N (0)) are equivalent. ■

Exercise 1.11.8 ( [6] 3-3). Prove that if M and N are smooth manifolds, then T (M ×N) is diffeomorphic to
TM × TN .

Solution. By [6, Proposition 3.14], we have an identification between TpMn⊕TqNm and T(p,q) (Mn ×Nm).
The diffeomorphism between them is given by the map

F : T (M ×N)→ TM × TN
((p, q), u⊕ v) 7→ ((p, u), (q, v))

F is bijective with inverse F−1 : ((p, u), (q, v)) 7→ ((p, q), u ⊕ v). Given any point (p, q) ∈ M × N , we have
a smooth chart (U1 × U2, φ1× φ2) for M × N . Then by [6, Proposition 3.18], we have a smooth chart
(π−1 (U1 × U2) , φ̃) where

φ̃ : π−1 (U1 × U2)→ R2(m+n)

φ̃

 vi
∂

∂xi

∣∣∣∣
(p,q)

⊕ wj ∂

∂yj

∣∣∣∣∣
(p,q)

 = (φ1(p), φ2(q), v, w)
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where π : T (M ×N) =
∐
T(p,q)(M ×N) ≈

∐
TpM ⊕ TqN →M ×N is the natural projection. The smooth

chart of the image point ((p, u), (q, v)) for the manifold TM ×TN is given by (π−1
M (U1)×π−1

N (U2) , φ̄) where

φ̄ : π−1
M (U1)× π−1

N (U2)→ R2(m+n)

φ̄

(
vi

∂

∂xi

∣∣∣∣
p

, wj
∂

∂yj

∣∣∣∣
q

)
= (φ1(p), v, φ2(q), w)

where πM : TM →M and πN : TN → N are natural projections and we again omit including the points as
index. In fact in both φ̃ and φ̄, the indexes are implied by the subscripts along with the coordinate vectors. In
the above maps u and w are both coordinates of the derivations

(
u1, · · · , un

)
,
(
w1, · · · , wm

)
. Both of these

charts are standard charts constructed form product and bundle in different order. The remaining is to show
that the coordinate representations of F and F−1 are smooth:

F̂ (x, y, v, w) = φ̄ ◦ F ◦ φ̃−1(x, y, v, w)

= φ̄

F
 vi

∂

∂xi

∣∣∣∣
(φ−1

1 (x),φ−1
2 (y))

⊕ wj ∂

∂yj

∣∣∣∣∣
(φ−1

1 (x),φ−1
2 (y))


= φ̄

 vi
∂

∂xi

∣∣∣∣
φ−1

1 (x),wj

∂

∂yj

∣∣∣∣∣
φ−1

2 (x)


=
(
φ1

(
φ−1
1 (x)

)
, v, φ2

(
φ−1
2 (x)

)
, w
)

= (x, v, y, w)

and similarly
F̂−1(x, v, y, w) = φ̃ ◦ F ◦ φ̄−1(x, v, y, w) = (x, y, v, w)

Both of them are just switching the coordinates or a multiplication of the matrix
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


and are thus linear and smooth. Therefore F is a diffeomorphism. ♦

Exercise 1.11.9 ( [6] 3-4). Show that TS1 is diffeomorphic to S1 × R.

Solution. Let (U, θU ) and (V, θV ) be two angle charts covering S1. The transition function θU ◦ θ−1
V is of

the form θ 7→ θ + C, where C is a locally constant function. The derivative of this function is the identity,
so ∂/∂θU and ∂/∂θV glue together into a smooth vector field ∂/∂θ on S1 which is nowhere-vanishing. We
claim that the map F : S1 × R → TS1 given by F (p, r) :=

(
p, r ∂∂θ

)
is a diffeomorphism. Because ∂/∂θ is

nowhere-vanishing, F is bijective. We also need to check that F is a local diffeomorphism, but this is trivial.
See [6, Corollary 10.20] for the generalization of this idea. ♦

Exercise 1.11.10. Prove that S2 × R is parallelizable. Explain why this does not contradict the combined
observations that S2 is not parallelizable and T

(
S2 × R

)
is diffeomorphic to TS2 × TR.

Solution. Let S2 ⊂ R3 be the unit sphere. The map (p, r) 7→ erp is a diffeomorphism from S2 × R to R3\{0}.
The latter is an open subset of R3 and therefore has a trivial tangent bundle. There is no contradiction
because a vector field on S2 × R can be nonzero in the R direction and zero in the S2 direction. In fact, the
vector bundle TS2 is even worse than nontrivial: it has a nonzero Euler class, so it does not admit a single
nowhere-vanishing global section, let alone a global frame (this is the hairy ball theorem, hehe). The vector
fields ∂/∂x, ∂/∂y, ∂/∂z, which parallelize R3\{0}, each vanish at some point when restricted to S2. ♦
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Exercise 1.11.11 ( [6] 4-12). Using the covering map ε2 : R2 → T2 (see [6, Example 4.35]), show that
the immersion X : R2 → R3 defined in [6, Example 4.2(d)] descends to a smooth embedding of T2 into R3.
Specifically, show that X passes to the quotient to define a smooth map X̃ : T2 → R3, and then show that X̃ is
a smooth embedding whose image is the given surface of revolution.

Exercise 1.11.12 ( [6] 5-1). Consider the map Φ : R4 → R2 defined by

Φ(x, y, s, t) =
(
x2 + y, x2 + y2 + s2 + t2 + y

)
.

Show that (0, 1) is a regular value of Φ, and that the level set Φ−1(0, 1) is diffeomorphic to S2.

Solution. The Jacobian of Φ is

DΦ =

(
2x 1 0 0
2x 2y + 1 2s 2t

)
Suppose x2 + y = 0 and x2 + y2 + s2 + t2 + y = y2 + s2 + t2 = 1. If s ̸= 0 or t ̸= 0, then DΦ is
surjective. If s = t = 0, then y = −1 and x = ±1, which makes the first two columns linearly independent.
Now, let M = Φ−1(0, 1). By the regular level set theorem, M ⊂ R4 is an embedded submanifold. The
smooth map φ :M → S2 given by φ(x, y, s, t) =

(
x, s/
√
1 + x2, t/

√
1 + x2

)
has smooth inverse φ−1(a, b, c) =(

a,−a2, b
√
1 + a2, c

√
1 + a2

)
. Hence, it is a diffeomorphism. ♦

Exercise 1.11.13 ( [6] 7-1). Show that for any Lie group G, the multiplication map m : G × G → G is a
smooth submersion. [Hint: use local sections.]

Solution. 1. Let (g, h) ∈ G × G. The smooth map σh(k) :=
(
m
(
k, h−1

)
, h
)
=
(
kh−1, h

)
is a section of m,

and σh(gh) = (g, h). By the local section theorem, m is a submersion.
2. The map m has constant rank because it intertwines the G-actions g · (h, k) := (gh, k) and g · h := gh. It
is surjective and therefore a submersion.
3. Let ι : G ↪→ G × G be the inclusion ι(g) := (g, e). Since m ◦ ι = idG is a submersion, m must be a
submersion.
4. Using techniques from Problems 1.11.14 and 1.11.15, we can directly compute the derivative dm(g,h)(X,Y ) =
dRh(X)+ dLg(Y ). For any Z ∈ TghG, we have dm(g,h) (dRh−1(Z), 0) = Z.

As my calculus professor would say, we have four proofs, so it must be true! ♦

Exercise 1.11.14 ( [6] 7-2). Let G be a Lie group.

(a) Let m : G × G → G denote the multiplication map. Using Proposition 1.11.7 to identify T(e,e)(G × G)
with TeG⊕ TeG, show that the differential dm(e,e) : TeG⊕ TeG→ TeG is given by

dm(e,e)(X,Y ) = X + Y

[Hint: compute dm(e,e)(X, 0) and dm(e,e)(0, Y ) separately.]

(b) Let i : G→ G denote the inversion map. Show that die : TeG→ TeG is given by die(X) = −X.

Solution. (a) Let X,Y ∈ TeG. Let ℓ : G → G × G be the section of m given by ℓ(g) := (g, e). Since
dℓ(X) = (X, 0), we have

dm(X, 0) = ( dm ◦ dℓ)(X) = d(m ◦ ℓ)(X) = d (idG) (X) = X

A symmetric argument shows that dm(0, Y ) = Y .

(b) Let ι : G → G × G be given by ι(g) := (g, i(g)) =
(
g, g−1

)
. Since dι(X) = (X, di(X)), and m ◦ ι is

constant, we have

0 = d(m ◦ ι)(X) = dm(dι(X)) = dm(X, di(X)) = X + di(X).

♦
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Exercise 1.11.15 ( [6] 7-3). Our definition of Lie groups includes the requirement that both the multiplication
map and the inversion map are smooth. Show that smoothness of the inversion map is redundant: if G is a
smooth manifold with a group structure such that the multiplication map m : G × G → G is smooth, then G
is a Lie group. [Hint: show that the map F : G × G → G × G defined by F (g, h) = (g, gh) is a bijective local
diffeomorphism.]

Solution. We observe that F has a set-theoretic two-sided inverse given by F−1(g, h) =
(
g, g−1h

)
. It suffices

to show that F−1 is smooth, since i(g) = π2
(
F−1(g, e)

)
, where π2 is projection onto the second factor. Since

dFe,e(X,Y ) = (X,X + Y ) is invertible, F is a diffeomorphism on a neighborhood U ∋ (e, e). Let Lg and Rg
denote left and right multiplication by g, respectively. They are diffeomorphisms for all g ∈ G with inverses
Lg−1 and Rg−1 . Note that V := (Lg ×Rh) (U) is a neighborhood of (g, h), and

F |V = (Lg × (Lg ◦Rh)) ◦ F |U ◦
(
Lg−1 ×Rh−1

)
,

which is a diffeomorphism. Since F is a local diffeomorphism, its inverse is smooth. ♦

Exercise 1.11.16 ( [6] 7-13). For each n ≥ 1, prove that U(n) is a properly embedded n2-dimensional Lie
subgroup of GL(n,C).

Exercise 1.11.17 ( [6] 10-2). Let E be a vector bundle over a topological space M . Show that the projection
map π : E →M is a homotopy equivalence.

Exercise 1.11.18 ( [6] 10-10). Suppose M is a compact smooth manifold and E → M is a smooth vector
bundle of rank k. Use transversality to prove that E admits a smooth section σ with the following property:
if k > dimM , then σ is nowhere vanishing; while if k ≤ dimM , then the set of points where σ vanishes is a
smooth compact codimension- k submanifold of M . Use this to show that M admits a smooth vector field with
only finitely many singular points.

Exercise 1.11.19 ( [6] 8-16). For each of the following pairs of vector fields X,Y defined on R3, compute the
Lie bracket [X,Y ].

(a) X = y ∂
∂z − 2xy2 ∂

∂y ; Y = ∂
∂y .

(b) X = x ∂
∂y − y

∂
∂x ; Y = y ∂

∂z − z
∂
∂y .

(c) X = x ∂
∂y − y

∂
∂x ; Y = x ∂

∂y + y ∂
∂x .

Solution. We can compute Lie brackets using the definition, [6, Proposition 8.26], or [6, Proposition 8.28].
We will illustrate one approach for each of the parts:

(a) Given an arbitrary function f ,

X(Y f)− Y (Xf) =

(
y
∂

∂z
− 2xy2

∂

∂y

)
∂f

∂y
− ∂

∂y

(
y
∂f

∂z
− 2xy2

∂f

∂y

)
= y

∂2f

∂z∂y
− 2xy2

∂2f

∂y2
− ∂f

∂z
− y ∂

2f

∂y∂z
+ 4xy

∂f

∂y
+ 2xy2

∂2f

∂y2

=

(
4xy

∂

∂y
− ∂

∂z

)
f

=⇒ [X,Y ] = 4xy
∂

∂y
− ∂

∂z

(b)

[X,Y ] =
(
XY 1 − Y X1

) ∂

∂x
+
(
XY 2 − Y X2

) ∂
∂y

+
(
XY 3 − Y X3

) ∂
∂z

= x
∂

∂z
− z ∂

∂x
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(c)

[X,Y ] = 2

[
x
∂

∂y
, y

∂

∂x

]
= 2

(
x
∂

∂x
− y ∂

∂y

)
.

♦

Exercise 1.11.20 ( [6] 9-3). Compute the flow of each of the following vector fields on R2:

(a) V = y ∂
∂x + ∂

∂y .

(b) W = x ∂
∂x + 2y ∂

∂y .

(c) X = x ∂
∂x − y

∂
∂y .

(d) Y = x ∂
∂y + y ∂

∂x .

Solution. (a) Ft(x, y) =
(
x+ yt+ t2/2, y + t

)
.

(b) Ft(x, y) =
(
xet, ye2t

)
.

(c) Ft(x, y) = (xet, ye−t).
(d) Ft(x, y) = ((x+ y)et + (x− y)e−t, (y + x)et + (y − x)e−t) /2. ♦

Exercise 1.11.21 ( [6] 9-5). Suppose M is a smooth, compact manifold that admits a nowhere vanishing
smooth vector field. Show that there exists a smooth map F :M →M that is homotopic to the identity and has
no fixed points.

Solution. Let X be a nowhere-vanishing vector field on M . It is complete because M is compact. Thus, we
have a smooth family of diffeomorphisms {Gt :M →M}t∈R with G0 = id. Every member is homotopic to
the identity by sending t→ 0. Every point p ∈M is a regular point, so there are neighborhoods p ∈ Vp ⊂ Up
and times ϵp > 0 such that X has the canonical form ∂/∂x1 on Up, and no point of Vp is fixed by Gt for all
0 < t ≤ ϵp. Reduce {Vp}p∈M to a finite subcover, and let ϵ = minp ϵp > 0. Then Gϵ has no fixed points and is
the required map. ♦

Exercise 1.11.22 ( [6] 11-5). For any smooth manifold M , show that T ∗M is a trivial vector bundle if and
only if TM is trivial.

Exercise 1.11.23 ( [6] 11-7). In the following problems, M and N are smooth manifolds, F : M → N is a
smooth map, and ω ∈ X∗(N). Compute F ∗ω in each case.
(a) M = N = R2, F (s, t) = (st, et), ω = xdy − ydx
(b) M = R2 and N = R3, F (θ, φ) = ((cosφ+ 2) cos θ, (cosφ+ 2) sin θ, sinφ), ω = z2dx
(c) M =

{
(s, t) ∈ R2 : s2 + t2 < 1

}
and N = R3\{0}, F (s, t) =

(
s, t,
√
1− s2 − t2

)
, ω =

(
1− x2 − y2

)
dz

Solution. (a)
F ∗ω = ((−y) ◦ F )d(x ◦ F ) + (x ◦ F )d(y ◦ F )

= −etd(st) + std
(
et
)

= −et
(
∂(st)

∂s
ds+

∂(st)

∂t
dt

)
+ st

(
∂ (et)

∂s
ds+

∂ (et)

∂t
dt

)
= −et(tds+ sdt) + st

(
etdt

)
= set(t− 1)dt− ettds
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(b)
F ∗ω =

((
z2
)
◦ F
)
d(x ◦ F ) + (0 ◦ F )d(y ◦ F ) + (0 ◦ F )d(z ◦ F )

=
(
sin2 φ

)
d((cosφ+ 2) cos θ)

= sin2 φ

(
∂((cosφ+ 2) cos θ)

∂φ
dφ+

∂((cosφ+ 2) cos θ)

∂θ
dθ

)
= sin2 φ(− sinφ cos θdφ− (cosφ+ 2) sin θdθ)

= − sin3 φ cos θdφ− (cosφ+ 2) sin θ sin2 φdθ

(c)
F ∗ω = (0 ◦ F )d(x ◦ F ) + (0 ◦ F )d(y ◦ F ) +

((
1− x2 − y2

)
◦ F
)
d(z ◦ F )

=
(
1− s2 − t2

)
d
(√

1− s2 − t2
)

=
(
1− s2 − t2

)∂
((

1− s2 − t2
) 1

2

)
∂s

ds+
∂
((

1− s2 − t2
) 1

2

)
∂t

dt


=
(
1− s2 − t2

)(1

2

(
1− s2 − t2

)− 1
2 (−2s)ds+ 1

2

(
1− s2 − t2

)− 1
2 (−2t)dt

)
= −s

√
1− s2 − t2ds− t

√
1− s2 − t2dt

♦

Exercise 1.11.24. Reading: see lecture note Definition 2.3, Theorem 2.4, and Theorem 2.6. It can be shown
that there are many smooth manifolds (at least those with “good covers”) with finite-dimensional de Rham
cohomology groups. In particular, the compact ones all have finite-dimensional de Rham cohomology groups.
Furthermore, we have a Künneth-type formula: if M and N are smooth manifolds with finite good covers, then
for any 0 ≤ k ≤ dimM + dimN , one has

Hk
dR(M ×N) ≃

k⊕
i=0

Hi
dR(M)⊗Hk−i

dR (N)

Exercise 1.11.25. For any smooth manifold M , let Hp
c (M) denote the p th compactly supported de Rham

cohomology group of M .

(a) Given an open subset U ⊆ M , let ι : U ↪→ M denote the inclusion map, and define a linear map ι♯ :
Ωpc(U)→ Ωpc(M) by extending each compactly supported form to be zero onM\U . Show that d◦ι♯ = ι♯◦d,
and so ι♯ induces a linear map on compactly supported cohomology, denoted by ι∗ : Hp

c (U)→ Hp
c (M).

(b) Mayer-Vietoris with Compact Supports: Suppose M is a smooth manifold and U, V ⊆M are open subsets
whose union is M . Prove that for each nonnegative integer p, there is a linear map δ∗ : Hp

c (M) →
Hp+1
c (U ∩ V ) such that the following sequence is exact:

· · · δ∗−→ Hp
c (U ∩ V )

i∗⊕(−j∗)−−−−−−→ Hp
c (U)⊕Hp

c (V )
k∗+l∗−−−−→ Hp

c (M)
δ∗−→ Hp+1

c (U ∩ V )
i∗⊕(−j∗)−−−−−−→ · · · ,

where i, j, k, l are the inclusion maps.

(c) Let Hp
c (M)∗ denote the algebraic dual space to Hp

c (M), that is, the vector space of all linear maps from
Hp
c (M) to R. Show that the following sequence is also exact:

· · · (δ∗)
∗

−−−→ Hp
c (M)∗

(k∗)
∗⊕(l∗)

∗

−−−−−−−→ Hp
c (U)∗⊕Hp

c (V )∗
(i∗)

∗−(j∗)
∗

−−−−−−−→ Hp
c (U∩V )∗

(δ∗)
∗

−−−→ Hp−1
c (M)∗

(k∗)
∗⊕(l∗)

∗

−−−−−−−→ · · · .
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Exercise 1.11.26 (Poincaré Duality). Let M be an oriented smooth n manifold. Define a map PD : Ωp(M)→
Ωn−pc (M)∗ by

PD(ω)(η) =

∫
M

ω ∧ η

(a) Show that PD descends to a linear map (still denoted by the same symbol) PD : Hp
dR(M) → Hn−p

c (M)∗.
(b) Show that PD is an isomorphism for each p. [Hint: imitate the proof of the de Rham theorem 1.9.34, with
“de Rham manifold” replaced by “PD manifold.” You will need Lemma ?? and Problem 1.11.25. In order to use
Lemma ??, you’ll need to prove the following fact: Every bounded convex open subset of Rn is diffeomorphic to
Rn. To prove this, let U be such a subset, and without loss of generality assume 0 ∈ U . First show that there
exists a smooth nonnegative function f ∈ C∞(U) such that f(0) = 0 and f(x) ≥ 1/d(x) away from a small
neighborhood of 0, where d(x) is the distance from x to ∂U . Next, show that g(x) = 1 +

∫ 1

0
t−1f(tx)dt is a

smooth positive exhaustion function on U that is nondecreasing along each ray starting at 0. Finally, show that
the map F : U → Rn given by F (x) = g(x)x is a bijective local diffeomorphism. Also, you may use the fact that
the conclusion of the five lemma is still true even if the appropriate diagram commutes only up to sign.]

Exercise 1.11.27 (Euler Characteristic). Let M be a smooth n-manifold all of whose de Rham groups are
finitedimensional. The Euler characteristic of M is the number

χ(M) =

n∑
p=0

(−1)p dimHp
dR(M)

Show that χ(M) is a homotopy invariant of M , and χ(M) = 0 when M is compact, orientable, and odd-
dimensional.
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Chapter 2

Riemannian Manifolds

Given a vector space V (which we always assume to be real), an inner product on V is a map V × V → R,
typically written (v, w) 7→ ⟨v, w⟩, that satisfies the following properties for all v, w, x ∈ V and a, b ∈ R:

(i) SYMMETRY: ⟨v, w⟩ = ⟨w, v⟩.

(ii) BILINEARITY: ⟨av + bw, x⟩ = a⟨v, x⟩+ b⟨w, x⟩ = ⟨x, av + bw⟩.

(iii) POSITIVE DEFINITENESS: ⟨v, v⟩ ≥ 0, with equality if and only if v = 0.

A vector space endowed with a specific inner product is called an inner product space.

An inner product on V allows us to make sense of geometric quantities such as lengths of vectors and angles
between vectors. First, we define the length or norm of a vector v ∈ V as

|v| = ⟨v, v⟩1/2.

Polarization identity

⟨v, w⟩ = 1

4
(⟨v + w, v + w⟩ − ⟨v − w, v − w⟩).

shows that an inner product is completely determined by knowledge of the lengths of all vectors. The angle
between two nonzero vectors v, w ∈ V is defined as the unique θ ∈ [0, π] satisfying

cos θ =
⟨v, w⟩
|v||w|

Two vectors v, w ∈ V are said to be orthogonal if ⟨v, w⟩ = 0, which means that either their angle is π/2 or
one of the vectors is zero. If S ⊆ V is a linear subspace, the set S⊥ ⊆ V , consisting of all vectors in V that
are orthogonal to every vector in S, is also a linear subspace, called the orthogonal complement of S.

Vectors v1, . . . , vk are called orthonormal if they are of length 1 and pairwise orthogonal, or equivalently if
⟨vi, vj⟩ = δij (where δij is the Kronecker delta symbol). The following well-known proposition shows that
every finite-dimensional inner product space has an orthonormal basis.

Proposition 2.0.1 (Gram-Schmidt Algorithm). Let V be an n-dimensional inner product space, and suppose
(v1, . . . , vn) is any ordered basis for V . Then there is an orthonormal ordered basis (b1, . . . , bn) satisfying the
following conditions:

span (b1, . . . , bk) = span (v1, . . . , vk) for each k = 1, . . . , n

Proof. See [7, Proposition 2.3]. ■
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Let M be a smooth manifold with or without boundary. A Riemannian metric on M is a smooth covariant
2-tensor field g ∈ T 2(M) whose value gp at each p ∈ M is an inner product on TpM ; thus g is a symmetric
2-tensor field that is positive definite in the sense that gp(v, v) ≥ 0 for each p ∈ M and each v ∈ TpM ,
with equality if and only if v = 0. A Riemannian manifold is a pair (M, g), where M is a smooth manifold
and g is a specific choice of Riemannian metric on M . If M is understood to be endowed with a specific
Riemannian metric, we sometimes say “M is a Riemannian manifold.” The next proposition shows that
Riemannian metrics exist in great abundance.

Proposition 2.0.2. Every smooth manifold with or without boundary admits a Riemannian metric.

Proof. See [6, Proposition 13.3]. ■

Let g be a Riemannian metric on a smooth manifold M with or without boundary. Because gp is an inner
product on TpM for each p ∈M , we often use the following angle-bracket notation for v, w ∈ TpM :

⟨v, w⟩g = gp(v, w).

Using this inner product, we can define lengths of tangent vectors, angles between nonzero tangent vectors,
and orthogonality of tangent vectors as described above. The length of a vector v ∈ TpM is denoted by
|v|g = ⟨v, v⟩1/2g . If the metric is understood, we sometimes omit it from the notation, and write ⟨v, w⟩ and |v|
in place of ⟨v, w⟩g and |v|g, respectively.

The starting point for Riemannian geometry is the following fundamental example.

Example 2.0.3 (The Euclidean Metric). The Euclidean metric is the Riemannian metric ḡ on Rn whose
value at each x ∈ Rn is just the usual dot product on TxRn under the natural identification TxRn ∼= Rn. This
means that for v, w ∈ TxRn written in standard coordinates

(
x1, . . . , xn

)
as v =

∑
i v
i∂i
∣∣
x
, w =

∑
j w

j∂j

∣∣∣
x
,

we have

⟨v, w⟩ḡ =
n∑
i=1

viwi.

When working with Rn as a Riemannian manifold, we always assume we are using the Euclidean metric
unless otherwise specified. ♣

Suppose (M, g) is a Riemannian manifold with or without boundary. If
(
x1, . . . , xn

)
are any smooth local

coordinates on an open subset U ⊆M , then g can be written locally in U as

g = gij dxi ⊗ dxj

for some collection of n2 smooth functions gij for i, j = 1, . . . , n. The component functions of this tensor field

constitute a matrix-valued function (gij), characterized by gij(p) =
〈
∂i|p , ∂j |p

〉
, where ∂i = ∂/∂xi is the i

th coordinate vector field; this matrix is symmetric in i and j and depends smoothly on p ∈ U . If v = vi∂i
∣∣
p

is a vector in TpM such that gij(p)vj = 0, it follows that ⟨v, v⟩ = gij(p)v
ivj = 0, which implies v = 0; thus

the matrix (gij(p)) is always nonsingular. The notation for g can be shortened by expressing it in terms of
the symmetric product: using the symmetry of gij , we compute

g = gij dxi ⊗ dxj

=
1

2

(
gij dxi ⊗ dxj + gji dxi ⊗ dxj

)
(gij = gji)

=
1

2

(
gij dxi ⊗ dxj + gij dxj ⊗ dxi

)
(
∑
i

∑
j

=
∑
j

∑
i

)

= gij dxi dxj (due to eq. (1.8))
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For example, the Euclidean metric on Rn (Example 2.0.3) can be expressed in standard coordinates in several
ways:

ḡ =
∑
i

dxi dxi =
∑
i

(
dxi
)2

= δij dxi dxj

The matrix of ḡ in these coordinates is thus ḡij = δij . More generally, if (E1, . . . , En) is any smooth local
frame for TM on an open subset U ⊆M and

(
ε1, . . . , εn

)
is its dual coframe, we can write g locally in U as

g = gijε
iεj , (2.1)

where gij(p) =
〈
Ei|p , Ej |p

〉
, and the matrix-valued function (gij) is symmetric and smooth as before.

A Riemannian metric g acts on smooth vector fields X,Y ∈ X(M) to yield a real-valued function ⟨X,Y ⟩.
In terms of any smooth local frame, this function is expressed locally by ⟨X,Y ⟩ = gijX

iY j and therefore
is smooth. Similarly, we obtain a nonnegative real-valued function |X| = ⟨X,X⟩1/2, which is continuous
everywhere and smooth on the open subset where X ̸= 0.

A local frame (Ei) for M on an open set U is said to be an orthonormal frame if the vectors E1|p , . . . , En|p
are an orthonormal basis for TpM at each p ∈ U . Equivalently, (Ei) is an orthonormal frame if and only if

⟨Ei, Ej⟩ = δij

in which case g has the local expression

g =
(
ε1
)2

+ · · ·+ (εn)
2

where
(
εi
)2

denotes the symmetric product εiεi = εi ⊗ εi.

Proposition 2.0.4 (Existence of Orthonormal Frames). Let (M, g) be a Riemannian n-manifold with or with-
out boundary. If (Xj) is any smooth local frame for TM over an open subset U ⊆M , then there is a smooth or-

thonormal frame (Ej) over U such that span
(
E1|p , . . . , Ek|p

)
= span

(
X1|p , . . . , Xk|p

)
for each k = 1, . . . , n

and each p ∈ U . In particular, for every p ∈ M , there is a smooth orthonormal frame (Ej) defined on some
neighborhood of p.

Proof. See [7] Proposition 2.8. ■

Warning: A common mistake made by beginners is to assume that one can find coordinates near p such that
the coordinate frame (∂i) is orthonormal. Above proposition does not show this. In fact, as we will see in
Chapter 7, this is possible only when the metric is flat, that is, locally isometric to the Euclidean metric.

For a Riemannian manifold (M, g) with or without boundary, we define the unit tangent bundle to be the
subset UTM ⊆ TM consisting of unit vectors:

UTM = {(p, v) ∈ TM : |v|g = 1} .

Proposition 2.0.5 (Properties of the Unit Tangent Bundle). If (M, g) is a Riemannian manifold with or
without boundary, its unit tangent bundle UTM is a smooth, properly embedded codimension-1 submanifold
with boundary in TM , with ∂(UTM) = π−1(∂M)( where π : UTM → M is the canonical projection). The
unit tangent bundle is connected if and only if M is connected (when dimM > 1), and compact if and only if M
is compact.

Exercise 2.0.6. Use local orthonormal frames to prove the preceding proposition.
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2.1 Pullback Metrics and Isometries

If two vector spaces V and W are both equipped with inner products, denoted by ⟨·, ·⟩V and ⟨·, ·⟩W , respec-
tively, then a map F : V → W is called a linear isometry if it is a vector space isomorphism that preserves
inner products: ⟨F (v), F (v′)⟩W = ⟨v, v′⟩V . If V and W are inner product spaces of dimension n, then given
any choices of orthonormal bases (v1, . . . , vn) for V and (w1, . . . , wn) for W , the linear map F : V → W
determined by F (vi) = wi is easily seen to be a linear isometry. Thus all inner product spaces of the same
finite dimension are linearly isometric to each other.

Suppose (M, g) and (M̃, g̃) are Riemannian manifolds with or without boundary. An isometry from (M, g)

to (M̃, g̃) is a diffeomorphism φ : M → M̃ such that φ∗g̃ = g. We say (M, g) and (M̃, g̃) are isometric if
there exists an isometry between them.

Proposition 2.1.1. When ∂M = ∅, φ : (M, g) → (M̃, g̃) is an isometry if and only if φ is a smooth bijection
and each differential dφp : TpM → Tφ(p)M̃ is a linear isometry.

Proof. “⇒”: Notice that

(φ∗g̃)p (v, v
′) = g̃φ(p) (dφp(v), dφp(v

′)) = ⟨dφp(v), dφp(v′)⟩g̃ (2.2)

and
gp(v, v

′) = ⟨v, v′⟩g
Since φ is an isometry, the RHS of above two equations are equal. So do their LHS. This shows that dφp :

(TpM, ⟨·, ·⟩g)→
(
Tφ(p)M̃, ⟨·, ·⟩g̃

)
is a linear isometry. φ as a diffeomorphism is smooth and bijective.

“⇐”:

Suppose φ is smooth (this condition first ensures dφp can be defined) and bijective and dφp : (TpM, ⟨·, ·⟩g)→(
Tφ(p)M̃, ⟨·, ·⟩g̃

)
is a linear isometry. We first show that φ is a diffeomorphism: by [6] Theorem 4.14 (c), it

suffices to show it has constant rank. But this is resulte dfrom φ being a smooth immersion. That’s because
isometry implies injectivity by the positivedefiniteness of the norm: for linear map A : V →W , let v ∈ V s.t.
Av = 0; then 0 = ∥0∥W = ∥Av∥W = ∥v∥V ⇒ v = 0; thus A−1(0) = {0} ⇒ dφp is injective. The remaining is
to pass ⟨v, w⟩g = ⟨dφp(v), dφp(w)⟩g̃ to φ∗g̃ = g, but this argument is the same as the “⇒” direction because
the metrics are pointwise defined. ■

A composition of isometries and the inverse of an isometry are again isometries, so being isometric is an
equivalence relation on the class of Riemannian manifolds with or without boundary. Our subject, Rie-
mannian geometry, is concerned primarily with properties of Riemannian manifolds that are preserved by
isometries.

If (M, g) and (M̃, g̃) are Riemannian manifolds, a map φ : M → M̃ is a local isometry if each point p ∈ M
has a neighborhood U such that φ|U is an isometry onto an open subset of M̃ . That is, φ is said to be a
local isometry if ∀p ∈ M , there is a neighborhood U of p such that ϕ : U → φ(U), defined as the restriction
of φ|U : U → M̃ onto codomain φ(U), is diffeomorphism from (open) Riemannian submanifold (U, ι∗Ug) to

(open) Riemannian submanifold
(
φ(U), ι∗φ(U)g̃

)
with ϕ∗

(
ι∗φ(U)g̃

)
= ι∗Ug. We need to first explain how ι∗g̃

gives a Riemannian metric on M (called pullback metric). In fact,

Lemma 2.1.2. Suppose (M̃, g̃) is a Riemannian manifold with or without boundary, M is a smooth manifold
with or without boundary, and F : M → M̃ is a smooth map. The smooth 2-tensor field g = F ∗g̃ is a
Riemannian metric on M if and only if F is an immersion.

Proof. We have gp(v, w) = g̃F (p)(dFp(v), dFp(w)). Thus, symmetry and bilinearity of gp follows from that of
g̃F (p), and positive definiteness is true iff dFp(v) = 0 implies v = 0, i.e., dFp is injective. ■
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A Riemannian submanifold (M, g) is then a manifold M ⊆ M̃ equipped with the metric g = ι∗g̃ induced
by the pullback of the inclusion ι :M → M̃ :

gp(v, w) = g̃p ( dιp(v), dιp(w)) .

Because we usually identify TpM with its image in TpM̃ under dιp, and think of dιp as an inclusion map,
what this really amounts to is gp(v, w) = g̃p(v, w) for v, w ∈ TpM . In other words, the induced metric g is
just the restriction of g̃ to vectors tangent to M .

We go back to prove an exercise ( [7] Exercise 2.7) on local isometry.

Exercise 2.1.3. Prove that if (M̃, g̃) and (M, g) with ∂M = ∅ are Riemannian manifolds of the same dimension,
a smooth map φ :M → M̃ is a local isometry if and only if φ∗g̃ = g.

Proof. “⇐”:

φ∗g̃ = g
proof of (2.2)
========⇒ each dφp is a linear isometry =⇒ dφp is injective =⇒ φ is a smooth immersion

[6]4.8(b),∂M=∅,dimM=dim M̃=n
======================⇒ φ is a local diffeomorphism defn.

====⇒ ∀p ∈ M,∃ nbd U of p s.t. ϕ : U → φ(U)

is a diffeomorphism. The left is to check ϕ∗
(
ι∗φ(U)g̃

)
= ι∗Ug. The following commutative diagram is helpful.

We see that ιφ(U) ◦ ϕ = φ|U = φ ◦ ιU .

U φ(U)

M M̃

ιU

ϕ

φ|U ιφ(U)

ϕ

Note that ϕ∗
(
ι∗φ(U)g̃

)
=
(
ιφ(U) ◦ ϕ

)∗
g̃ = (φ|U )

∗
g̃. Noticing that φ|U = φ ◦ ιU and that [6] Proposition 3.9

tells us dιp : TpU → TpM is an isomorphism, we for v, w ∈ TpU have[
(φ|U )

∗
g̃
]
p
(v, w)

= g̃φ◦ιU (p)

(
d (φ ◦ (lU ))p (v), d (φ ◦ (lU ))p (w)

)
= g̃φ(p)

(
dφιU (p) ◦ d (ιU )p (v), dφιU (p) ◦ d (ιU )p (w)

)
= g̃φ(p)

(
dφp

(
d (lU )p (v)

)
, dφp

(
d (ιU )p (w)

))
= (φ∗g̃)p

(
d (ιU )p (v), d (ιU )p (w)

)
given
= gp

(
d (lU )p (v), d (ιU )p (w)

)
= (ι∗Ug)p (v, w)

(2.3)

Thus (φ|U )
∗
g̃ = ι∗Ug on TpU .

“⇒”:

Now φ is a local isometry. ∀p ∈ M , there exists a neighborhood U of p s.t. ϕ : U → φ(U) is a diffeomor-

phism from (open) Riemannian submanifold (U, ι∗Ug) to (open) Riemannian submanifold
(
φ(U), ι∗φ(U)g̃

)
with (φ|U )

∗
(
l∗φ(U)g̃

)
= (φ|U )

∗
g̃ = ι∗Ug. Since d (ιU )p : TpU → TpM is an isomorphism (see [6] Proposition
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3.9), we for v̂, ŵ ∈ TpM have v =
[

d (ιU )p

]−1

(v̂), w =
[

d (ιU )p

]−1

(ŵ) ∈ TpU and

gp(v̂, ŵ) = gp

(
d (ιU )p (v), d (ιU )p (w)

)
= (ι∗Ug)p (v, w)

given
=

[
(φ|U )

∗
g̃
]
p
(v, w)

(2.2)
==== (φ∗g̃)p

(
d (ιU )p (v), d (ιU )p (w)

)
= (φ∗g̃)p (v̂, ŵ)

This shows g = φ∗g̃. ■

Remark 2.1.4. We enforced ∂M = ∅ to use [6] Proposition 4.8 (b), which is used in the proof of [6]
Theorem 4.14 (c). Also note that we don’t need ∂M̃ = ∅ due to [6] 4.9. ♠

2.2 Methods for Constructing Riemannian Metrics

2.2.1 Riemannian Submanifold

As we have seen, every submanifold M of a Riemannian manifold (M̃, g̃) inherits a Riemannian metric
g = ι∗g̃.

Example 2.2.1 (Spheres). For each positive integer n, the unit n-sphere Sn ⊆ Rn+1 is an embedded n-

dimensional submanifold. The Riemannian metric induced on Sn by the Euclidean metric is denoted by
◦
g

and known as the round metric or standard metric on Sn. ♣

The next proposition describes one of the most important tools for studying Riemannian submanifolds. If
(M̃, g̃) is an m-dimensional smooth Riemannian manifold and M ⊆ M̃ is an n-dimensional submanifold
(both with or without boundary), a local frame (E1, . . . , Em) for M̃ on an open subset Ũ ⊆ M̃ is said to be
adapted to M if the first n vector fields (E1, . . . , En) are tangent to M . (see remark below.)

Figure 2.1: Adapted local frame
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Remark 2.2.2. From [6] p.116, we can see that TpM can be seen as a subspace of TpM̃ . Thus, n =

dimTpM ≤ dimTpM̃ = m. When we say (E1, . . . , En) are tangent to M we mean for each p ∈ Ũ ∩M , we
have (Ei)p ∈ TpM (notice that (Ei)p is defined in TpM̃ but not necessarily in TpM ⊆ TpM̃ .) ♠

Proposition 2.2.3 (Existence of Adapted Orthonormal Frames). Let (M̃, g̃) be a Riemannian manifold (with-
out boundary), and let M ⊆ M̃ be an embedded smooth submanifold with or without boundary. Given p ∈ M ,
there exist a neighborhood Ũ of p in M̃ and a smooth orthonormal frame for M̃ on Ũ that is adapted to M .

Exercise 2.2.4. Prove the preceding proposition. [Hint: Apply the Gram-Schmidt algorithm to a coordinate
frame in slice coordinates (see [7] Proposition A.22).]

Suppose (M̃, g̃) is a Riemannian manifold (without boundary) and M ⊆ M̃ is a smooth submanifold with or
without boundary in M̃ . Given p ∈ M , a vector ν ∈ TpM̃ is said to be normal to M if ⟨ν, w⟩ = 0 for every
w ∈ TpM . The space of all vectors normal to M at p is a subspace of TpM̃ , called the normal space at p and
denoted by NpM = (TpM)

⊥. At each p ∈ M , the ambient tangent space TpM̃ splits as an orthogonal direct

sum TpM̃ = TpM ⊕ NpM . A section N of the ambient tangent bundle TM̃
∣∣∣
M

is called a normal vector

field along M if Np ∈ NpM for each p ∈M . The set

NM =
∐
p∈M

NpM

is called the normal bundle of M . Fig. 2.2 illustrates an example where vector v ∈ TpM̃ is normal to TpM
for M̃ ⊆ R3.

Figure 2.2: Tangent space of Riemannian submanifold

Proposition 2.2.5 (The Normal Bundle). If M̃ is a Riemannian m-manifold (without boundary) and M ⊆ M̃
is an immersed or embedded n-dimensional submanifold with or without boundary, then NM is a smooth rank-
(m− n) vector subbundle of the ambient tangent bundle TM̃

∣∣∣
M

. There are smooth bundle homomorphisms

π⊤ : TM̃
∣∣∣
M
→ TM, π⊥ : TM̃

∣∣∣
M
→ NM

called the tangential and normal projections, that for each p ∈M restrict to orthogonal projections from TpM̃
to TpM and NpM , respectively.
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Proof. See [7] Proposition 2.16. ■

In case M̃ is a manifold with boundary, the preceding constructions do not always work, because there is not
a fully general construction of slice coordinates in that case. However, there is a satisfactory result in case
the submanifold is the boundary itself, using boundary coordinates in place of slice coordinates.

Suppose (M, g) is a Riemannian manifold with boundary. We will always consider ∂M to be a Riemannian
submanifold with the induced metric.

Proposition 2.2.6 (Existence of Outward-Pointing Normal). If (M, g) is a smooth Riemannian manifold with
boundary, the normal bundle to ∂M is a smooth rank-1 vector bundle over ∂M , and there is a unique smooth
outward-pointing unit normal vector field along all of ∂M .

Exercise 2.2.7. See [6] Proposition 15.33.

Corollary 2.2.8. If (M, g) is an oriented Riemannian manifold with boundary and g̃ is the induced Riemannian
metric on ∂M , then the volume form of g̃ is

ωg̃ = ι∗∂M (N⌟ωg) ,

where N is the outward unit normal vector field along ∂M .

Computations on a submanifold M ⊆ M̃ are usually carried out most conveniently in terms of a smooth
local parametrization: this is a smooth map X : U → M̃ , where U is an open subset of Rn (or Rn+ in case
M has a boundary), such that X(U) is an open subset of M , and such that X, regarded as a map from U
into M , is a diffeomorphism onto its image. Note that we can think of X either as a map into M or as
a map into M̃ ; both maps are typically denoted by the same symbol X. If we put V = X(U) ⊆ M and
φ = X−1 : V → U , then (V, φ) is a smooth coordinate chart on M . Note that coordinate chart need not to
be smooth to define an atlas for a smooth manifold, but there X,φ are smooth (diffeomorphisms).

Suppose (M, g) is a Riemannian submanifold of (M̃, g̃) and X : U → M̃ is a smooth local parametrization of
M . The coordinate representation of g in these coordinates is given by the following 2-tensor field on U :(

φ−1
)∗
g = X∗g = X∗ι∗g̃ = (ι ◦X)∗g̃.

Since ι ◦ X is just the map X itself, regarded as a map into M̃ , this is really just X∗g̃. The simplicity
of the formula for the pullback of a tensor field makes this expression exceedingly easy to compute, once
a coordinate expression for g̃ is known. For example, if M is an immersed n-dimensional Riemannian
submanifold of Rm and X : U → Rm is a smooth local parametrization of M , the induced metric on U is just

g = X∗ḡ
Prop.1.1.19
========

m∑
i=1

(
dXi

)2
=

m∑
i=1

 n∑
j=1

∂Xi

∂uj
duj

2

=

m∑
i=1

n∑
j,k=1

∂Xi

∂uj
∂Xi

∂uk
duj duk. (2.4)

where (ui) stands for the coordinates of Rn ⊇ U .

Example 2.2.9 (Metrics in Graph Coordinates). If U ⊆ Rn is an open set and f : U → R is a smooth function,
then the graph of f is the subset Γ(f) = {(x, f(x)) : x ∈ U} ⊆ Rn+1, which is an embedded submanifold
of dimension n. It has a global parametrization X : U → Rn+1 called a graph parametrization, given by
X(u) = (u, f(u)); the corresponding coordinates

(
u1, . . . , un

)
on M are called graph coordinates. In graph

coordinates, by (2.4), the induced metric of Γ(f) is

X∗ḡ =

n∑
i=1


= dui︷ ︸︸ ︷

n∑
j=1

∂ui

∂uj︸︷︷︸
=δij

duj


2

+


= df︷ ︸︸ ︷

n∑
j=1

∂f(u)

∂uj
duj


2

=
(

du1
)2

+ · · ·+ ( dun)2 + df2.
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Applying this to the upper hemisphere of S2 with the parametrization X : B2 → R3 given by

X(u, v) =
(
u, v,

√
1− u2 − v2

)
,

we see that the round metric on S2 can be written locally as

◦
g = X∗ḡ = du2 + dv2 +

(
u du+ v dv√
1− u2 − v2

)2

=

(
1− v2

)
du2 +

(
1− u2

)
dv2 + 2uv du dv

1− u2 − v2
.

♣

Example 2.2.10 (Surfaces of Revolution). Let H be the half-plane {(r, z) : r > 0}, and suppose C ⊆ H is an
embedded 1-dimensional submanifold. The surface of revolution determined by C is the subset SC ⊆ R3

given by
SC =

{
(x, y, z) :

(√
x2 + y2, z

)
∈ C

}
.

Figure 2.3: A surface of revolution

The set C is called its generating curve (see Fig. 2.3). Every smooth local parametrization γ(t) = (a(t), b(t))
for C yields a smooth local parametrization for SC of the form

X(t, θ) = (a(t) cos θ, a(t) sin θ, b(t)),

provided that (t, θ) is restricted to a sufficiently small open set in the plane. The t-coordinate curves t 7→
X (t, θ0) are called meridians, and the θ-coordinate curves θ 7→ X (t0, θ) are called latitude circles. The
induced metric on SC is

X∗ḡ =d(a(t) cos θ)2 + d(a(t) sin θ)2 + d(b(t))2

=(a′(t) cos θ dt− a(t) sin θ dθ)2

+ (a′(t) sin θ dt+ a(t) cos θ dθ)2 + (b′(t) dt)2

=
(
a′(t)2 + b′(t)2

)
dt2 + a(t)2 dθ2.

In particular, if γ is a unit-speed curve (meaning that |γ′(t)|2 = a′(t)2 + b′(t)2 ≡ 1 ), this reduces to
dt2 + a(t)2 dθ2. Here are some examples of surfaces of revolution and their induced metrics.
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• If C is the semicircle r2 + z2 = 1, parametrized by γ(φ) = (sinφ, cosφ) for 0 < φ < π, then SC is
the unit sphere (minus the north and south poles). The map X(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ)
constructed above is called the spherical coordinate parametrization, and the induced metric is
dφ2 + sin2 φ dθ2. (This example is the source of the terminology for meridians and latitude circles.)

• If C is the circle (r − 2)2 + z2 = 1, parametrized by γ(t) = (2 + cos t, sin t), we obtain a torus of
revolution, whose induced metric is dt2 + (2 + cos t)2 dθ2.

• If C is a vertical line parametrized by γ(t) = (1, t), then SC is the unit cylinder x2 + y2 = 1, and
the induced metric is dt2 + dθ2. Note that this means that the parametrization X : R2 → R3 is an
isometric immersion.

♣

Example 2.2.11 (The n-Torus as a Riemannian Submanifold). The n-torus is the manifold Tn = S1×· · ·×S1,
regarded as the subset of R2n defined by (x1)2 + (x2)2 + · · ·+ (x2n−1)2 + (x2n)2 = 1. The smooth covering
map X : Rn → Tn, defined by X(u1, · · · , un) = (cosu1, sinu1, · · · , cosun, sinun), restricts to a smooth local
parametrization on any sufficiently small open subset of Rn, and the induced metric is equal to the Euclidean
metric in

(
ui
)

coordinates, and therefore the induced metric on Tn is flat. ♣

2.2.2 Riemannian Products

Next we consider products. If (M1, g1) and (M2, g2) are Riemannian manifolds, the product manifold M1 ×
M2 has a natural Riemannian metric g = g1 ⊕ g2, called the product metric, defined by

g(p1,p2) ((v1, v2) , (w1, w2)) = g1|p1 (v1, w1) + g2|p2 (v2, w2) ,

where (v1, v2) and (w1, w2) are elements of Tp1M1⊕Tp2M2, which is naturally identified with T(p1,p2) (M1 ×M2).
Smooth local coordinates

(
x1, . . . , xn

)
for M1 and

(
xn+1, . . . , xn+m

)
for M2 give coordinates

(
x1, . . . , xn+m

)
for M1 ×M2. In terms of these coordinates, the product metric has the local expression g = gij dxi dxj ,
where (gij) is the block diagonal matrix

(gij) =

(
(g1)ab 0

0 (g2)cd

)
here the indices a, b run from 1 to n, and c, d run from n+ 1 to n+m. Product metrics on products of three
or more Riemannian manifolds are defined similarly.

Exercise 2.2.12. Show that the induced metric on Tn described in Example 2.2.11 is equal to the product metric
obtained from the usual induced metric on S1 ⊆ R2.

Here is an important generalization of product metrics. Suppose (M1, g1) and (M2, g2) are two Riemannian
manifolds, and f : M1 → R+is a strictly positive smooth function. The warped product M1 ×f M2 is the
product manifold M1 ×M2 endowed with the Riemannian metric g = g1 ⊕ f2g2, defined by

g(p1,p2) ((v1, v2) , (w1, w2)) = g1|p1 (v1, w1) + f (p1)
2
g2

∣∣∣
p2

(v2, w2) ,

where (v1, v2) , (w1, w2) ∈ Tp1M1 ⊕ Tp2M2 as before. (Despite the similarity with the notation for product
metrics, g1 ⊕ f2g2 is generally not a product metric unless f is constant.) A wide variety of metrics can be
constructed in this way; here are just a few examples.

Example 2.2.13 (Warped Products).

(a) With f ≡ 1, the warped product M1 × fM2 is just the space M1 ×M2 with the product metric.

(b) Every surface of revolution can be expressed as a warped product, as follows. Let H be the half-plane
{(r, z) : r > 0}, let C ⊆ H be an embedded smooth 1-dimensional submanifold, and let SC ⊆ R3
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denote the corresponding surface of revolution as in Example 2.2.10. Endow C with the Riemannian
metric induced from the Euclidean metric on H, and let S1 be endowed with its standard metric. Let
f : C → R be the distance to the z-axis: f(r, z) = r. Then [7] Problem 2-3 shows that SC is isometric
to the warped product C × fS1.

(c) If we let ρ denote the standard coordinate function on R+ ⊆ R, then the map Φ(ρ, ω) = ρω gives an
isometry from the warped product R+ ×ρ Sn−1 to Rn\{0} with its Euclidean metric (see [7] Problem
2-4).

♣

2.2.3 Riemannian Submersions

Unlike submanifolds and products, the quotient of Riemannian manifolds only inherit Riemannian metrics
under very special circumstances. Suppose M̃ and M are smooth manifolds, π : M̃ → M is a smooth
submersion, and g̃ is a Riemannian metric on M̃ . By the submersion level set theorem (see [6] Cor.5.13),
each level set M̃y = π−1(y) is regular (as π is a smooth submersion) and a properly embedded smooth
submanifold of M̃ , and π is a defining map for M̃y (see [6] p.107). Then by [6] Proposition 5.38, TxM̃y =

Ker
(

dπx : TxM̃ → Tπ(x)M
)

for any x ∈ M̃y. Therefore, at each point x ∈ M̃ , we define two subspaces of

the tangent space TxM̃ as follows: the vertical tangent space at x is

Vx = Ker dπx = Tx

(
M̃π(x)

)
(that is, the tangent space to the fiber containing x), and the horizontal tangent space at x is its orthogonal
complement:

Hx = (Vx)
⊥
:=
{
v ∈ TxM̃ | ∀w ∈ Tx

(
M̃π(x)

)
, ⟨v, w⟩g = 0

}
Then the tangent space TxM̃ decomposes as an orthogonal direct sum TxM̃ =Hx⊕Vx. Note that the vertical
space is well defined for every submersion, because it does not refer to the metric; but the horizontal space
depends on the metric.

A vector field on M̃ is said to be a horizontal vector field if its value at each point lies in the horizontal
space at that point; a vertical vector field is defined similarly. Given a vector field X on M , a vector field X̃
on M̃ is called a horizontal lift of X if X̃ is horizontal and π-related to X. (The latter property means that
dπx

(
X̃x

)
= Xπ(x) for each x ∈ M̃ .) In other words, the following diagram is commutative (X̃ is so-called

”lift”):

M̃ TM̃ =
∐
x∈M̃ TxM̃

M TM =
∐
x∈M TxM

X̃

π dπ

X

The next proposition is the principal tool for doing computations on Riemannian submersions.

Proposition 2.2.14 (Properties of Horizontal Vector Fields). Let M̃ and M be smooth manifolds, let π : M̃ →
M be a smooth submersion, and let g̃ be a Riemannian metric on M̃ .

(a) Every smooth vector field W on M̃ can be expressed uniquely in the form W = WH +WV , where WH is
horizontal, WV is vertical, and both WH and WV are smooth.

(b) Every smooth vector field on M has a unique smooth horizontal lift to M̃ .

(c) For every x ∈ M̃ and v ∈ Hx, there is a vector field X ∈ X(M) whose horizontal lift X̃ satisfies X̃x = v.
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Proof. [7] Proposition 2.25. ■

The fact that every horizontal vector at a point of M̃ can be extended to a horizontal lift on all of M̃ (part
(c) of the preceding proposition) is highly useful for computations. It is important to be aware, though, that
not every horizontal vector field on M̃ is a horizontal lift, as the next exercise shows.

Exercise 2.2.15. Let π : R2 → R be the projection map π(x, y) = x, and let W be the smooth vector field y∂x
on R2. Show that W is horizontal, but there is no vector field on R whose horizontal lift is equal to W .

Now we can identify some quotients of Riemannian manifolds that inherit metrics of their own. Let us begin
by describing what such a metric should look like.

Suppose (M̃, g̃) and (M, g) are Riemannian manifolds, and π : M̃ → M is a smooth submersion. Then π is
said to be a Riemannian submersion if for each x ∈ M̃ , the differential dπx restricts to a linear isometry
from Hx onto Tπ(x)M . In other words, g̃x(v, w) = gπ(x) ( dπx(v), dπx(w)) whenever v, w ∈ Hx.

Remark 2.2.16. Note that dπx : TxM̃ = Vx⊕Hx = Ker ( dπx)⊕(Vx)⊥ → Tπ(x)M is a C∞ submersion and is
thus onto. Thus, ∀v′ ∈ Tπ(x)M,∃v = vVx + vHx s.t v′ = dπx(v) = dπx (vVx) + dπx (vHx) = 0+ dπx (vHx) =
dπx (vHx). This shows that dπx|Hx

: Hx → Tπ(x)M is also onto. Therefore, in the above definition, the only
requirement is linear isometry. ♠

Example 2.2.17 (Riemannian Submersions).

(a) The projection π : Rn+k → Rn onto the first n coordinates is a Riemannian submersion if Rn+k and Rn
are both endowed with their Euclidean metrics.

(b) If M and N are Riemannian manifolds and M × N is endowed with the product metric, then both
projections πM :M ×N →M and πN :M ×N → N are Riemannian submersions.

(c) If M ×f N is a warped product manifold, then the projection πM : M ×f N → M is a Riemannian
submersion, but πN typically is not.

♣

Exercise 2.2.18. Verify above example.

Solution. We do (a) and (b), leaving (c) as a fact.

(a): For
π : Rn+k → Rn

(x1, · · · , xn, xn+1, · · · , xn+k) 7→ (x1, · · · , xn)

we have components πi (x1, · · · , xn, xn+1, · · · , xn+k) = xi for 1 ≤ i ≤ n and Jacobian

Jπ(x) =


1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0


n×(n+k)

Then

dπx

(
n+k∑
i

vi
∂

∂xi

)
=

Jπ(x)
 v1

...
vn+k


 ·


∂
∂x1

...
∂
∂xn

 =

 v1

...
vn

 ·


∂
∂x1

...
∂
∂xn

 =

n∑
i

vi
∂

∂xi
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Since

Vx = Ker ( dπx) =

{
n+k∑
i

vi
∂

∂xi

∣∣∣∣∣ v1 = · · · = vn = 0

}
and

Hx = (Vx)
⊥
=

{
n+k∑
i

vi
∂

∂xi

∣∣∣∣∣ vn+1 = · · · = vn+k = 0

}
,

we see ∀v, w ∈ Hx,

g̃(v, w) = ḡ(v, w) =
∑n+k |vi − wi|2 =

∑n |vi − wi|2 +
∑k |vn+i − wn+i|2

=
∑n |vi − wi|2 = ḡ ( dπx(v), dπx(w)) = g ( dπx(v), dπx(w))

The map π is thus a Riemannian submersion.

(b): Let (M, gM ) and (N, gN ) be Riemannian manifolds. Equip the product manifold M×N with the product
metric gM×N := gM ⊕ gN , defined at each point (p, q) ∈M ×N by:

gM×N ((X1, Y1), (X2, Y2)) = gM (X1, X2) + gN (Y1, Y2),

for all (X1, Y1), (X2, Y2) ∈ T(p,q)(M ×N) ∼= TpM ⊕ TqN .

We consider the projection:
πM :M ×N →M, (p, q) 7→ p.

We claim that πM is a Riemannian submersion. First, note that πM is a smooth submersion since its differ-
ential at each point (p, q) is:

dπM : TpM ⊕ TqN → TpM, (X,Y ) 7→ X,

which is clearly surjective. The vertical space at (p, q) is:

V(p,q) := ker( dπM ) = {(0, Y ) | Y ∈ TqN}.

The horizontal space is the orthogonal complement of V(p,q) with respect to the product metric:

H(p,q) := V ⊥
(p,q) = {(X, 0) | X ∈ TpM}.

We now verify that the differential dπM restricts to a linear isometry from H(p,q) to TpM : For any v = (X, 0)
and w = (Y, 0) in H(p,q), we have:

gM×N (v, w) = gM×N ((X, 0), (Y, 0)) = gM (X,Y ),

and
gM ( dπM (v), dπM (w)) = gM (X,Y ).

Therefore, the restriction dπM |H(p,q)
: H(p,q) → TpM is a linear isometry. Hence, πM is a Riemannian

submersion. ♦

Given a Riemannian manifold (M̃, g̃) and a surjective submersion π : M̃ →M , it is almost never the case that
there is a metric onM that makes π into a Riemannian submersion. It is not hard to see why: for this to be the

case, whenever p1, p2 ∈ M̃ are two points in the same fiber π−1(y), the linear maps
(

dπpi |Hpi

)−1

: TyM →
Hpi both have to pull g̃ back to the same inner product on TyM .

There is, however, an important special case in which there is such a metric. Suppose π : M̃ → M is a
smooth surjective submersion, and G is a group acting on M̃ . (See [7] Appendix C for a review of the basic
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definitions and terminology regarding group actions on manifolds.) We say that the action is vertical if every
element φ ∈ G takes each fiber to itself, meaning that π(φ · p) = π(p) for all p ∈ M̃ . The action is transitive
on fibers if for each p, q ∈ M̃ such that π(p) = π(q), there exists φ ∈ G such that φ · p = q.

If in addition M̃ is endowed with a Riemannian metric, the action is said to be an isometric action or an
action by isometries, and the metric is said to be invariant under G, if the map x 7→ φ · x is an isometry
for each φ ∈ G. In that case, provided the action is effective (so that different elements of G define different
isometries of M̃), we can identify G with a subgroup of Iso(M̃, g). Since an isometry is, in particular, a
diffeomorphism, every isometric action is an action by diffeomorphisms.

Theorem 2.2.19. Let (M̃, g̃) be a Riemannian manifold, let π : M̃ → M be a surjective smooth submersion,
and let G be a group acting on M̃ . If the action is isometric, vertical, and transitive on fibers, then there is a
unique Riemannian metric on M such that π is a Riemannian submersion.

Proof. Problem 2.5.6. ■

The next corollary describes one important situation to which the preceding theorem applies.

Corollary 2.2.20. Suppose (M̃, g̃) is a Riemannian manifold, and G is a Lie group acting smoothly, freely,
properly, and isometrically on M̃ . Then the orbit space M = M̃/G has a unique smooth manifold structure and
Riemannian metric such that π is a Riemannian submersion.

Proof. Under the given hypotheses, the quotient manifold theorem (see [6] Theorem 21.10) shows that M
has a unique smooth manifold structure such that the quotient map π : M̃ → M is a smooth submersion. It
follows easily from the definitions in that case that the given action of G on M̃ is vertical and transitive on
fibers. Since the action is also isometric, Theorem 2.2.19 shows that M inherits a unique Riemannian metric
making π into a Riemannian submersion. ■

Here is an important example of a Riemannian metric defined in this way. A larger class of such metrics is
described in Problem 2.5.7.

Example 2.2.21 (The Fubini-Study Metric). Let n be a positive integer, and consider the complex projective
space CPn defined in [7] Example C.19. That example shows that the map π : Cn+1\{0} → CPn sending
each point in Cn+1\{0} to its span is a surjective smooth submersion. Identifying Cn+1 with R2n+2 endowed

with its Euclidean metric, we can view the unit sphere S2n+1 with its round metric
◦
g as an embedded

Riemannian submanifold of Cn+1\{0}. Let p : S2n+1 → CPn denote the restriction of the map π. Then p is
smooth, and it is surjective, because every 1-dimensional complex subspace contains elements of unit norm.
We need to show that it is a submersion. Let z0 ∈ S2n+1 and set ζ0 = p (z0) ∈ CPn. Since π is a smooth
submersion, it has a smooth local section σ : U → Cn+1 defined on a neighborhood U of ζ0 and satisfying
σ (ζ0) = z0 (Theorem A.17). Let v : Cn+1\{0} → S2n+1 be the radial projection onto the sphere:

ν(z) =
z

|z|
.

Since dividing an element of Cn+1 by a nonzero scalar does not change its span, it follows that p ◦ ν = π.
Therefore, if we set σ̃ = ν ◦ σ, we have p ◦ σ̃ = p ◦ ν ◦ σ = π ◦ σ = IdU , so σ̃ is a local section of p. By the
local secrtion theorem (see [6] Theorem 4.26), this shows that p is a submersion. Define an action of S1 on
S2n+1 by complex multiplication:

λ ·
(
z1, . . . , zn+1

)
=
(
λz1, . . . , λzn+1

)
for λ ∈ S1 (viewed as a complex number of norm 1) and z =

(
z1, . . . , zn+1

)
∈ S2n+1. This is easily seen to

be isometric, vertical, and transitive on fibers of p. By Theorem 2.2.19, therefore, there is a unique metric on
CPn such that the map p : S2n+1 → CPn is a Riemannian submersion. This metric is called the Fubini-Study
metric. ♣
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2.2.4 Riemannian Coverings

Another important special case of Riemannian submersions occurs in the context of covering maps. Suppose
(M̃, g̃) and (M, g) are Riemannian manifolds. A smooth covering map π : M → M is called a Riemannian
covering if it is a local isometry.

Proposition 2.2.22. Suppose π : M̃ →M is a smooth normal covering map, and g̃ is any metric on M̃ that is
invariant under all covering automorphisms. Then there is a unique metric g on M such that π is a Riemannian
covering.

Proof. “invariant under Γ = Autπ(M̃),” is defined in last subsection; for normal covering map and beyond,
see [5] p.293, 309-314 and [6] Chapter 21; for proof of the proposition, see [7] Proposition 2.31. ■

Proposition 2.2.23. Suppose (M̃, g̃) is a Riemannian manifold, and Γ is a discrete Lie group acting smoothly,
freely, properly, and isometrically on M̃ . Then M̃/Γ has a unique Riemannian metric such that the quotient
map π : M̃ → M̃/Γ is a normal Riemannian covering.

Proof. This is an immediate consequence of [6] Theorem 21.13 and above proposition. ■

Corollary 2.2.24. Suppose (M, g) and (M̃, g̃) are connected Riemannian manifolds, π : M̃ → M is a normal
Riemannian covering map, and Γ = Autπ(M̃). Then M is isometric to M̃/Γ.

Proof. Proof by [6] Proposition 21.12 & [6] Theorem 21.13 & [6] Theorem 4.31. ■

Example 2.2.25. The two-element group Γ = {±1} acts smoothly, freely, properly, and isometrically on Sn
by multiplication. [7] Example C.24 shows that the quotient space is diffeomorphic to the real projective
space RPn and the quotient map q : Sn → RPn is a smooth normal covering map. Because the action
is isometric, Proposition 2.2.23 shows that there is a unique metric on RPn such that q is a Riemannian
covering. ♣

Example 2.2.26 (The Open Möbius Band). The open Möbius band is the quotient space M = R2/Z, where
Z acts on R2 by n · (x, y) = (x+ n, (−1)ny). This action is smooth, free, proper, and isometric, and therefore
M inherits a flat Riemannian metric such that the quotient map is a Riemannian covering. (See Problem
2.5.8) ♣

Exercise 2.2.27. Let Tn ⊆ R2n be the n-torus with its induced metric. Show that the map X : Rn → Tn of
Example 2.2.11 is a Riemannian covering.

2.3 Basic Constructions on Riemannian Manifolds

2.3.1 Raising and Lowering Indices

Given a Riemannian metric g on a smooth manifold M with or without boundary, we define a bundle
homomorphism ĝ : TM → T ∗M as follows. For each p ∈ M and each v ∈ TpM , we let ĝ(v) ∈ T ∗

pM be the
covector defined by

ĝ(v)(w) = gp(v, w) for all w ∈ TpM.

To see that this is a smooth bundle homomorphism, it is easiest to consider its action on smooth vector fields:

ĝ(X)(Y ) = g(X,Y ) for X,Y ∈ X(M).

Because ĝ(X)(Y ) is linear over C∞(M) as a function of Y , it follows from the tensor characterization lemma
1.1.18 that ĝ(X) is a smooth covector field; and because ĝ(X) is linear over C∞(M) as a function of X,
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this defines ĝ as a smooth bundle homomorphism by the bundle homomorphism characterization lemma
( [6] Lemma 10.29). As usual, we use the same symbol for both the pointwise bundle homomorphism
ĝ : TM → T ∗M and the linear map on sections ĝ : X(M)→ X∗(M).

Note that ĝ is injective at each point, because ĝ(v) = 0 for some v ∈ TpM implies

0 = ĝ(v)(v) = ⟨v, v⟩g,

which in turn implies v = 0. For dimensional reasons, therefore, ĝ is bijective, so it is a bundle isomorphism
(see [6] Proposition 10.26).

Given a smooth local frame (Ei) and its dual coframe
(
εi
)
, let g = gijε

iεj be the local expression for g (see
(2.1)). If X = XiEi is a smooth vector field, the covector field ĝ(X) has the coordinate expression

ĝ(X) =
(
gijX

i
)
εj , (2.5)

as ĝ(X)(Y ) = gijε
i ⊗ εj(X,Y ) = gijX

iεj(Y ) =⇒ ĝ(X) =
(
gijX

i
)
εj .

Exercise 2.3.1. Write down the matrix of ĝ and conclude that the matrix of ĝ in any local frame is the same as
the matrix of g itself.

Solution. For each p, ĝ as a linear transformation from vector space TpM to vector space T ∗
pM . Its matrix is

computed using Definition 1.1.8. Since

ĝ (Ek) = (gij(Ek)
i)εj =

∑
j

gkjε
j .

and the basis of TpM is (Ek) and the basis of T ∗
pM is (εj), the matrix of ĝ is

A =

 | |
ĝ (E1) · · · ĝ (En)
| |

 =

g11 · · · gn1
...

. . .
...

g1n · · · gnn


We note that this is the transpose of the matrix of g. However, since the matrix of g is symmetric, we proved
the statement. ♦

Given a vector field X, it is standard practice to denote the components of the covector field ĝ(X) by

Xj = gijX
i,

so that
ĝ(X) = Xjε

j ,

and we say that ĝ(X) is obtained from X by lowering an index. With this in mind, the covector field ĝ(X)
is denoted by X♭ and called X flat, borrowing from the musical notation for lowering a tone. That is, we
also use ♭ to denote ĝ, which is a smooth bundle isomorphism, as we remarked above.

The matrix of the inverse map ĝ−1 : T ∗
pM → TpM is the inverse of (gij). (Because (gij) is the matrix of the

isomorphism ĝ, it is invertible at each point.) We let
(
gij
)

denote the matrix-valued function whose value at
p ∈M is the inverse of the matrix (gij(p)), so that

gijgjk = gkjg
ji = δik. (2.6)

Because gij is a symmetric matrix, so is gij . Thus for a covector field ω ∈ X∗(M), the vector field ĝ−1(ω) has
the coordinate representation

ĝ−1(ω) = ωiEi (2.7)
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where
ωi = gijωj . (2.8)

If ω is a covector field, the vector field ĝ−1(ω) is called (what else?) ω sharp and denoted by ω♯, and we say
that it is obtained from ω by raising an index. Likewise, as the inverse of ĝ, the map ĝ−1 = ♯ : Γ(T ∗M) →
Γ(TM);T ∗M → TM is a smooth bundle isomorphism.

The two inverse isomorphisms ♭ and ♯ are known as the musical isomorphisms.

Definition 2.3.2. The flat and sharp operators can be applied to tensors of any rank, in any index position, to
convert tensors from covariant to contravariant or vice versa. Formally, this operation is defined as follows: if F
is any (k, l)-tensor and i ∈ {1, . . . , k+ l} is any covariant index position for F (meaning that the i th argument
is a vector, not a covector), we can form a new tensor F ♯ of type (k + 1, l − 1) by setting

F ♯ (α1, . . . , αk+l) = F
(
α1, . . . , αi−1, α

♯
i , αi+1, . . . , αk+l

)
whenever α1, . . . , αk+l are vectors or covectors as appropriate. In any local frame, the components of F ♯ are
obtained by multiplying the components of F by gpq and contracting one of the indices of gpq with the i th index
of F . Similarly, if i is a contravariant index position, we can define a (k − 1, l + 1)-tensor F ♭ by

F ♭ (α1, . . . , αk+l) = F
(
α1, . . . , αi−1, α

♭
i , αi+1, . . . , αk+l

)
.

In components, it is computed by multiplying by gpq and contracting.

Example 2.3.3. For example, if A is a mixed 3-tensor given in terms of a local frame by

A = Ai
j
kε
i ⊗ Ej ⊗ εk,

we can lower its middle index to obtain a covariant 3-tensor A♭ with components

Aijk = gjlAi
l
k.

♣

To avoid overly cumbersome notation, we use the symbols F ♯ and F ♭ without explicitly specifying which
index position the sharp or flat operator is to be applied to; when there is more than one choice, we will
always stipulate in words what is meant.

Another important application of the flat and sharp operators is to extend the trace operator introduced to
covariant tensors. If F is any covariant k-tensor field on a Riemannian manifold with k ≥ 2, we can raise
one of its indices (say the last one for definiteness) and obtain a (1, k − 1)-tensor h♯. The trace of F ♯ is thus
a well-defined covariant (k − 2)-tensor field. We define the trace of F with respect to g as

trg F = tr
(
F ♯
)
.

Sometimes we may wish to raise an index other than the last, or to take the trace on a pair of indices other
than the last covariant and contravariant ones. In each such case, we will say in words what is meant.

The most important case is that of a covariant 2-tensor field. We will see that the additional information g
allows us to do some identifications beyond T (1,1)(V ) = V ⊗ V ∗ ∼= L(V ∗, V ;R) ∼= End(V ). If L : X(M) →
X(M) is a smooth tensor field of type (1, 1), then the map L̂ : X(M)× X(M)→ C∞(M) given by

L̂(X,Y ) = g(L(X), Y ), (2.9)

for each X,Y ∈ X(M) is a smooth tensor field of type (0, 2) on M . Conversely, if F : X(M) × X(M) →
C∞(M) is a smooth tensor field of type (0, 2) on M , then there exists a unique smooth tensor field F̆ :
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(M) → (M) of type (1, 1) such that F (X,Y ) = g(F̆ (X), Y ) for each X,Y ∈ X(M). Indeed, for each
X ∈ X(M) we define ωX : X(M)→ C∞(M) by ωX(Y ) = F (X,Y ). Then let F̆ : X(M)→ X(M) be the map

F̆ (X) = ω♯X := ♯(ωX) = ĝ−1(ωX). (2.10)

Notice that
g(F̆ (X), Y ) = g(ω♯X , Y ) = ĝ(ω♯X)(Y ) = ωX(Y ) = F (X,Y )

Therefore the mapping
Γ(T (1,1)(M))→ Γ(T (0,2)(M))

F 7→ F̂

F̆ ←[ F

(2.11)

defines an isomorphism between the tensor fields of type (0, 2) on M and the tensor fields of type (1, 1) on
M . In particular we shall use the trace of the endomorphism field F̆ to define that of the (0, 2)-tensor field
F :

trg(F ) := tr(F̆ ) ∈ C∞(M) (2.12)

The trace of a linear endomorphism A : V → V on a finite-dimensional vector space is invariant under the
choice of change of basis, so for an orthonormal basis of V , any vector is written as v =

∑
i⟨v, ei⟩ei and thus

tr(A) = sum of diagonal elements of
[

| |
A(e1) ··· A(en)

| |

]
=
∑n
i ⟨A(ei), ei⟩. Thus, for a local orthonormal frame

(E1, · · · , En) on (M, g), we can write

trg(F ) := tr(F̆ ) =

n∑
i=1

g(F̆ (Ei), Ei) =

n∑
i=1

F (Ei, Ei) = Fii (2.13)

In general, for any local frame (E1, · · · , En) on (M, g),

trg(F ) := tr(F̆ ) =

n∑
i=1

(F̆ (Ei))i︸ ︷︷ ︸
i-th coeff of vector

=

n∑
i=1

(ω♯Ei
)i

(2.7),(2.8)
========

n∑
i=1

gij (ωEi)j︸ ︷︷ ︸
=ωEi

(Ej)=F (Ei,Ej)=Fij

= gijFij . (2.14)

When g = (δij), (2.14) recovers (2.13). Note that coefficients like Fij and Fii are always understood under
a certain choice of basis.

2.3.2 Inner Products of Tensors

A Riemannian metric yields, by definition, an inner product on tangent vectors at each point. Because of the
musical isomorphisms between vectors and covectors, it is easy to carry the inner product over to covectors
as well.

Suppose g is a Riemannian metric on M , and x ∈M . We can define an inner product on the cotangent space
T ∗
xM by

⟨ω, η⟩g =
〈
ω♯, η♯

〉
g
. (2.15)

(Just as with inner products of vectors, we might sometimes omit g from the notation when the metric is
understood.) To see how to compute this, we just use the basis formula (2.8) for the sharp operator, together
with the relation gklgki = glkg

ki = δil , to obtain

⟨ω, η⟩ =
〈
gkiωiEk, g

ljηjEl
〉

= ⟨Ek, El⟩
(
gkiωi

) (
gljηj

)
= gkl

(
gkiωi

) (
gljηj

)
= δilg

ljωiηj

= gijωiηj .

(2.16)
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In other words, the inner product on covectors is represented by the inverse matrix
(
gij
)
. Using our conven-

tion (2.8), this can also be written
⟨ω, η⟩ = ωiη

i = ωjηj .

Exercise 2.3.4. Let (M, g) be a Riemannian manifold with or without boundary, let (Ei) be a local frame for
M , and let

(
εi
)

be its dual coframe. Show that the following are equivalent:

(a) (Ei) is orthonormal.

(b)
(
εi
)

is orthonormal.

(c)
(
εi
)♯

= Ei for each i.

This construction can be extended to tensor bundles of any rank, as the following proposition shows. First
a bit of terminology: if E → M is a smooth vector bundle, a smooth fiber metric on E is an inner product
on each fiber Ep that varies smoothly, in the sense that for any (local) smooth sections σ, τ of E, the inner
product ⟨σ, τ⟩ is a smooth function.

Proposition 2.3.5 (Inner Products of Tensors). Let (M, g) be an n-dimensional Riemannian manifold with or
without boundary. There is a unique smooth fiber metric on each tensor bundle T (k,l)TM with the property that
if α1, . . . , αk+l, β1, . . . , βk+l are vector or covector fields as appropriate, then

⟨α1 ⊗ · · · ⊗ αk+l, β1 ⊗ · · · ⊗ βk+l⟩ = ⟨α1, β1⟩ · · · · · ⟨αk+l, βk+l⟩ . (2.17)

With this inner product, if (E1, . . . , En) is a local orthonormal frame for TM and
(
ε1, . . . , εn

)
is the correspond-

ing dual coframe, then the collection of tensor fields Ei1 ⊗· · ·⊗Eik ⊗ εj1 ⊗· · ·⊗ εjl as all the indices range from
1 to n forms a local orthonormal frame for T (k,l)TM . In terms of any (not necessarily orthonormal) frame, this
fiber metric satisfies

⟨F,G⟩ = gi1r1 · · · gikrkgj1s1 · · · gjlslF
i1...ik
j1...jl

Gr1...rks1...sl
. (2.18)

If F and G are both covariant, this can be written

⟨F,G⟩ = Fj1...jlG
j1...jl , where Gj1...jl = gj1s1 . . . gjlslGs1...sl (2.19)

represents the components of G with all of its indices raised (see Definition 2.3.2).

Proof. Problem 2.5.11. ■

2.3.3 Integration of Riemannian Volume Form

Let (M, g) be a Riemannian manifold and for p ∈ M , let (U,φ = (xi)) be a coordinate chart. {∂xi} is then
a smooth local frame defined on U . Apply Gram-Schmidt orthogonalization process we can obtain a smooth
orthonormal frame {Ei} defined on U . If (M, g) in endowed with an orientation, by replacing Ei with −Ei if
ncessary, we can find an oriented orthonormal frame in U . Thus, every point has a neighborhood on which
we can find an oriented orthonormal frame.

Proposition 2.3.6 (Riemannian Volume Form). Suppose (M, g) is an oriented Riemannian n-manifold with or
without boundary, and n ≥ 1. There is a unique smooth orientation form ωg ∈ Ωn(M), called the Riemannian
volume form, that satisfies

ωg (E1, . . . , En) = 1 (2.20)

for every local oriented orthonormal frame (Ei) for M .
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Proof. Suppose first that such a form ωg exists. If (E1, . . . , En) is any local oriented orthonormal frame on
an open subset U ⊆ M and

(
ε1, . . . , εn

)
is the dual coframe, we can write ωg = fε1 ∧ · · · ∧ εn on U . The

condition (2.20) then reduces to f = 1, so

ωg = ε1 ∧ · · · ∧ εn (2.21)

This proves that such a form is uniquely determined.

To prove existence, we would like to define ωg in a neighborhood of each point by (2.21), so we need to

check that this definition is independent of the choice of oriented orthonormal frame. If
(
Ẽ1, . . . , Ẽn

)
is

another oriented orthonormal frame, with dual coframe
(
ε̃1, . . . , ε̃n

)
, let

ω̃g = ε̃1 ∧ · · · ∧ ε̃n.

We can write
Ẽi = AjiEj

for some matrix
(
Aji

)
of smooth functions. The fact that both frames are orthonormal means that

(
Aji (p)

)
∈

O(n) for each p, so det
(
Aji

)
= ±1, and the fact that the two frames are consistently oriented forces the

positive sign. We compute

ωg

(
Ẽ1, . . . , Ẽn

)
= det

(
εj
(
Ẽi

))
= det

(
Aji

)
= 1 = ω̃g

(
Ẽ1, . . . , Ẽn

)
.

Thus ωg = ω̃g, so defining ωg in a neighborhood of each point by (2.21) with respect to some smooth oriented
orthonormal frame yields a global n-form. The resulting form is clearly smooth and satisfies (2.20) for every
oriented orthonormal frame. ■

Lemma 2.3.7. Suppose (M, g) and (M̃, g̃) are positive-dimensional oriented Riemannian manifolds with or
without boundary, and F :M → M̃ is an orientation-preserving local isometry. Show that F ∗ωg̃ = ωg.

Proof. Let (Ei) be a local oriented orthonormal frame on M . Then (Ẽi) = (F∗Ei) gives a basis for each TqM̃ ,
q ∈ F (U) (dFp is an isomorphism for each p ∈ U) and local isometry condition keeps the orthonormality
of (Ẽi) on F (U). It is also oriented with respect to the given orientation of M̃ , so (Ẽi) on F (U) is a local
oriented orthonormal frame on M̃ . Now,

1 = ωg̃(Ẽ1, · · · , Ẽn) = ωg̃(F∗E1, · · · , F∗En) = F ∗ωg̃(E1, · · · , En),

which by uniquness of the Riemannian volume form implies that F ∗ωg̃ = ωg. ■

Although the expression for the Riemannian volume form with respect to an oriented orthonormal frame is
particularly simple, it is also useful to have an expression for it in coordinates.

Proposition 2.3.8. Let (M, g) be an oriented Riemannian n-manifold with or without boundary, n ≥ 1. In any
oriented smooth coordinates (xi), the Riemannian volume form has the local coordinate expression

ωg =
√

det (gij) dx1 ∧ · · · ∧ dxn

where gij are the components of g in these coordinates.

Proof. Let
(
U,
(
xi
))

be an oriented smooth chart, and let p ∈M . In these coordinates, ωg = f dx1∧· · ·∧ dxn

for some positive coefficient function f . To compute f , let (Ei) be any smooth oriented orthonormal frame
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defined on a neighborhood of p, and let
(
εi
)

be the dual coframe. If we write the coordinate frame in terms
of the orthonormal frame as

∂

∂xi
= AjiEj

then we can compute

f = ωg

(
∂

∂x1
, . . . ,

∂

∂xn

)
= ε1 ∧ · · · ∧ εn

(
∂

∂x1
, . . . ,

∂

∂xn

)
= det

(
εj
(

∂

∂xi

))
= det

(
Aji

)
.

On the other hand, observe that

gij =

〈
∂

∂xi
,
∂

∂xj

〉
g

=
〈
AkiEk, A

l
jEl
〉
g
= AkiA

l
j ⟨Ek, El⟩g =

∑
k

AkiA
k
j

This last expression is the (i, j)-entry of the matrix product ATA, where A =
(
Aji

)
. Thus,

det (gij) = det
(
ATA

)
= detAT detA = (detA)2

from which it follows that f = detA = ±
√
det (gij), where we also note that (gij) is positive-definite and

has positive determinant. Since both frames
(
∂/∂xi

)
and (Ej) are oriented, the sign must be positive. ■

Suppose (M, g) is an oriented Riemannian manifold with or without boundary, and let ωg denote its Rie-
mannian volume form. If f is a compactly supported continuous real-valued function on M , then fωg is a
compactly supported n-form, so we can define the integral of f over M to be

∫
M
fωg. If M itself is compact,

we define the volume of M by Vol(M) =
∫
M
ωg.

Because of these definitions, the Riemannian volume form is often denoted by dVg (or dAg or dsg in the
2-dimensional or 1-dimensional case, respectively). Then the integral of f over M is written

∫
M
f dVg, and

the volume of M as
∫
M

dVg. Be warned, however, that this notation is not meant to imply that the volume
form is the exterior derivative of an (n−1)-form; in fact, as we will see when we study de Rham cohomology,
this is never the case on a compact manifold.

Proposition 2.3.9. Let (M, g) be a nonempty oriented Riemannian manifold with or without boundary, and
suppose f is a compactly supported continuous real-valued function on M . Then

(a) If f ≥ 0, then
∫
M
f dVg ≥ 0, with equality if and only if f ≡ 0.

(b)
∣∣∫
M
f dVg

∣∣ ≤ ∫
M
|f | dVg.

Proof. See [7, Proposition 16.8-9]. For part (a), evoking Proposition 1.7.9 (c) should suffice. ■

2.3.4 Integration of Riemannian Density

Proposition 2.3.10 (The Riemannian Density). If (M, g) is any Riemannian manifold, then there is a unique
smooth positive density µ on M , called the Riemannian density, with the property that

µ (E1, . . . , En) = 1 (2.22)

for every local orthonormal frame (Ei).

Proof. Uniqueness is immediate, because any two densities that agree on a basis must be equal. Given any
point p ∈ M , let U be a connected smooth coordinate neighborhood of p. Since U is diffeomorphic to
an open subset of Euclidean space, it is orientable. Any choice of orientation of U uniquely determines a
Riemannian volume form ωg on U , with the property that ωg (E1, . . . , En) = 1 for any oriented orthonormal
frame. If we put µg = |ωg|, it follows easily that µg is a smooth positive density on U satisfying (2.22). If
U and V are two overlapping smooth coordinate neighborhoods, the two definitions of µg agree where they
overlap by uniqueness, so this defines µg globally. ■
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As analogues of Lemma 2.3.7 and Proposition 2.3.8, we have the following results.

Exercise 2.3.11. Suppose (M, g) and (M̃, g̃) are Riemannian manifolds with or without boundary, and F :

M → M̃ is a local isometry. Show that F ∗µg̃ = µg.

Solution. The proof is similar to that of Lemma 2.3.7: use the local isometry to transfer a local orthonormal
frame (Ei) on M to a local orthonormal frame (Ẽi) on M̃ , and then compute to verify the defining property
of the Riemannian density (2.22) to evoke uniqueness of the Riemannian density. ♦

Exercise 2.3.12. Let (M, g) be a Riemannian manifold with or without boundary, and let (xi) be any smooth
coordinates on M . Show that the Riemannian density µg has the local coordinate expression

µg =
√

det(gij)| dx1 ∧ · · · ∧ dxn|.

Solution. Let µg = u| dx1∧· · ·∧ dxn|. Pick a local orthonormal frame (Ei) onM and write ∂xi
= AjiEj . Then

u = µg(∂x1
, · · · , ∂xn

) = |det(A)|. Since gij = (ATA)ij , we have det(gij) = (det(A))2, det(A) = ±
√

det(gij),
and u = |det(A)| =

√
det(gij). Thus, µg =

√
det(gij)| dx1 ∧ · · · ∧ dxn|. ♦

Exercise 2.3.13. Let (M, g) be an oriented Riemannian manifold with or without boundary and let ωg be its
Riemannian volume form.

(a) Show that the Riemannian density of M is given by µg = |ωg|.

(b) For any compactly supported continuous function f :M → R, show that∫
M

fµg =

∫
M

fωg

Solution. Use Exercise 2.3.12 and notice that the definition of integration of density traces back to equation
(1.11). ♦

Similar to Proposition 2.3.9, by evoking Proposition 1.7.17 (b), we obtain

Proposition 2.3.14. Let (M, g) be a Riemannian manifold with or without boundary with its Riemannian
density µg. Let f be a compactly supported continuous real-valued function on M . If f ≥ 0, then

∫
M
f µg ≥ 0,

with equality if and only if f ≡ 0.

Because of Exercise 2.3.13 (b), it is customary to denote the Riemannian density simply by dVg, and to
specify when necessary whether the notation refers to a density or a form. If f : M → R is a compactly
supported continuous function, the integral of f over M is defined to be

∫
M
f dVg. Exercise 2.3.13 shows

that when M is oriented, it does not matter whether we interpret dVg as the Riemannian volume form or
the Riemannian density. (If the orientation of M is changed, then both the integral and dVg change signs,
so the result is the same.) When M is not orientable, however, we have no choice but to interpret it as a
density.

2.3.5 Riemannian Measure

Let (M, g) be a Riemannian manifold. If M is oriented, dVg is interpreted as the Riemannian volume form;
otherwise it is just the Riemannian density. Now, Propositions 2.3.9 and 2.3.14 reveal that the mapping

Λg : Cc(M) −→ R

f 7→
∫
M

f dVg
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is a positive linear functional. It turns out that this “integration” we defined indeed matches up with an
integral with respect to a measure. This is the content of the Riesz-Markov-Kakutani (RMK) representation
theorem. We recall some concepts in measure theory following Folland’s [2].

A topological space X is called locally compact if every point in X has a compact neighborhood. X is called
a Hausdorff if every pair of distinct points in X have disjoint neighborhoods. A useful consequence is that
compact sets are closed in Hausdorff spaces. A topological space X is called σ-compact if it can be written as
a countable union of compact subsets. A measure µ is called σ-finite if space X can be written as a countable
union of finite-measure sets.

Let X be a locally compact Hausdorff (LCH) space. A Borel measure is any measure µ defined on the
σ-algebra B generated by the topology of X, called Borel σ-algebra. A Borel-measurable set E, i.e., E ∈ B,
is called a Borel set.

Let µ be a Borel measure on the LCH X and E a Borel subset of X. The measure µ is called outer regular
on E if

µ(E) = inf{µ(U) : U ⊃ E,U open}

and inner regular on E if
µ(E) = sup{µ(K) : K ⊂ E,K compact}

If µ is outer and inner regular on all Borel sets, µ is called regular. It turns out that regularity is a bit too
much to ask for when X is not σ-compact, so we adopt the following definition. A Radon measure on X
is a Borel measure that is finite on all compact sets, outer regular on all Borel sets, and inner regular on all
open sets.

Proposition 2.3.15. A Radon measure is inner regular on all of its σ-finite sets.

Corollary 2.3.16.

1. If a Radon measure is σ-finite then it is regular.

2. If X is σ-compact, every Radon measure on X is regular.

The proof of the proposition (see section 7.2 of [2]) involves using the inner and outer regularity properties
of the Radon measure to approximate the measure of σ-finite sets of finite measure, and for sets of infinite
measure to apply that technique to a sequence of sets, each of which has finite measure. From this, the
corollary follows directly from the definitions of σ-finiteness and σ-compactness.

Note that some authors define a Radon measure µ on the Borel σ-algebra of any Hausdorff space to be any
Borel measure that is inner regular on open sets and locally finite, meaning that for every point x ∈ X there
is an open neighborhood of x with finite measure. For Hausdorff spaces, this implies that µ(C) < ∞ for
every compact set C; and for locally compact Hausdorff spaces, the two conditions are equivalent.

One further bit of notation: If U is open in X and f ∈ Cc(X), we shall write

f ≺ U

to mean that 0 ≤ f ≤ 1 and supp(f) ⊂ U . (This is slightly stronger than the condition 0 ≤ f ≤ χU , which
implies only that supp(f) ⊂ Ū .)

Theorem 2.3.17 (Riesz-Markov-Kakutani Representation Theorem). Let X be a locally compact Hausdorff
(LCH) space, and let Λ be a positive linear functional on Cc(X). Then there exists a unique Radon measure µ
on σ-algebra E of X that represents Λ in following sense:

Λf =

∫
X

f dµ for every f ∈ Cc(X).

Moreover, µ satisfies the following properties:
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(a) µ(U) = sup {I(f) : f ∈ Cc(X), f ≺ U} for all open U ⊂ X.

(b) µ(K) = inf {I(f) : f ∈ Cc(X), f ≥ χK} for all compact K ⊂ X.

(d) µ is such that the measure space (X, E , µ) is complete: if E ∈ E , A ⊂ E, and µ(E) = 0, then A ∈ E .

Proof. The proof is very involved. See section 7.2 of [2], Theorem 2.14 of Rudin’s Real and Complex Analysis,
or Martikainen’s class note. There is also a nice REU paper blending with elements in functional analysis to
prove it. ■

For any topological manifold M , it is by definition Hausdorff and locally compact by [6, Proposition 1.12].
Furthermore, it is also σ-compact.

Proposition 2.3.18. Every topological manifold M is σ-compact.

Proof. By [6, Lemma 1.10], it has a countable basis of precompact coordinate balls. Therefore, there is a
countable set of precompact coordinate balls which cover X, and the set of closure of these balls is the set
of countably many compact subspaces which cover X. Thus, X is σ-compact. ■

Now, for Riemannian manifold (M, g), we can use RMK representation theorem to induce a Radon measure
that we will denote by µg (recall dVg denotes the Riemannian density/volume form). We call µg the Rie-
mannian measure. Above proposition combines with Corollary 2.3.16 (b) to make this µg a regular Borel
measure on M . One use standard machinery developed in real analysis to define integrable functions.

A function F : M → Ṙ := R ∪ {+∞} is called a lower semicontinuous function if pn → p implies
lim inf F (pn) ≥ F (p). For a lower semicontinuous function F ≥ 0 on M , let us define

Λ̄g(F ) = sup {Λg(f) | f ∈ C0(M) satisfies f ≤ F}

and for any function f ≥ 0 on M , let us define

Λ̄g(f) = inf
{
Λ̄g(F ) | F ≥ f is lower semicontinuous

}
.

A function f on M is said to be integrable if there exists a sequence {fn} ⊂ C0(M) such that Λ̄g (|f − fn|)→
0. Then {Λg (fn)} is a convergent sequence, and its limit does not depend on the choice of {fn}. We denote
the limit by

∫
M
f dµg and we call it the integral of f . In particular, any f ∈ C0(M) is integrable and its

integral is just the above defined Λg(f). A subset K ⊂M is said to be integrable if its characteristic function
χK : M → R is integrable. In this case,

∫
M
χK dµg [also denoted by

∫
K

dµg or Vol(K, g)] is called the
n-dimensional volume of K. Any compact (or more generally, precompact) subset K of M is integrable
with Vol(K, g) < +∞. The following approximation theorem for Radon measure is useful.

Theorem 2.3.19. Let X be a LCH space. If µ is a Radon measure on X,Cc(X) is dense in Lp(µ) for 1 ≤ p <∞

Proof. See [2, Proposition 7.9]. ■

For any 1 ≤ p <∞ we define the Lp norm on Cc(M) via

∥f∥Lp :=

(∫
M

|f |p dµg

)1/p

and define Lp(M, g) to be the completion of Cc(M) under the Lp norm. Similarly one can define L∞(M, g).
It is not hard to extend to the theory to complex-valued functions. In the special case p = 2, one can define
an inner product structure on L2(M, g) by

⟨f1, f2⟩L2 :=

∫
M

f1f̄2 dµg
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which make L2(M, g) into a Hilbert space.

We will come back to the analysis on Riemannian manifolds in Chapter 8. Before that we need to introduce
several basic aspects of Riemannian manifolds, namely connection, geodesic, and curvature. Nevertheless,
there are some differential operators we can study.

2.3.6 Some Differential Operators on Riemannian Manifolds

Let (M, g) be an n-dimensional Riemannian manifold. We define some some canonical linear differential
operators in this subsection. The references we use here are [1], [16], and this note.

I. The Gradient Operator

We use the sharp operator to extend the classical gradient operator to Riemannian manifolds. Let f :M → R
be a smooth function, the gradient of f is the vector field grad f = ( df)♯ = ĝ−1( df) obtained from df by
raising an index. Unwinding the definitions, we see that grad f is characterized by the following equation

df(X) = ⟨grad f,X⟩ for all X ∈ X(M). (2.23)

That’s because g(grad f,X) = ĝ (grad f) (X) = ĝ
(
ĝ−1( df)

)
(X) = df(X). The gradient has the local

expression

grad f
(2.7)
====

(
gij( df)i

)
Ej

( df)i=( df)(Ei)
[6]14.24
= Eif

==================
(
gijEif

)
Ej . (2.24)

Thus if (Ei) is an orthonormal frame (then (gij) = I =⇒ (gij) = I−1 = I), then grad f is the vector field
whose components are the same as the components of df ; but in other frames, this will not be the case.

If h is another smooth function on M , then

(grad f)(h) = dh(grad f) = ⟨grad g, grad f⟩ (2.15)
===== ⟨ dh, df⟩.

which under a local frame writes as

(grad f)(h) = gij( dh)i( df)j

by (2.16). If we choose the frame to be the coordinate frame, then

(grad f)(h) = gij
∂h

∂xi

∂f

∂xj
=⇒ (grad f)

g symmetric
======== gij

∂f

∂xi

∂

∂xj
.

The gradient operator grad : C∞(M)→ X(M) is linear and satisfies product rule: ∀f1, f2 ∈ C∞(M),

grad (f1 + f2) = grad (f1) + grad (f2)

grad (f1f2) = f2 (grad (f1)) + f1 (grad (f2))
(2.25)

If Φ : (M, g)→ (M̃, g̃) is an isometry, then

Φ∗

(
gradg

(
Φ∗(f̃)

))
= gradg̃(f̃) (2.26)

for any f̃ ∈ C∞(M̃). Indeed, Φ is a diffeomorphism, so Definition 1.2.11 of isomorphisms Φ∗, Φ∗ ensure
that any Y ∈ X(M̃) is some Φ∗(X) and give the following computation:

g̃
(
Φ∗

(
gradg

(
Φ∗(f̃)

))
,Φ∗(X)

)
◦ Φ−1 = Φ∗g̃

(
gradg

(
Φ∗(f̃)

)
, X
)
= g

(
gradg

(
Φ∗(f̃)

)
, X
)
◦ Φ−1

=X
(
Φ∗(f̃)

)
︸ ︷︷ ︸
=f̃◦Φ:M→R︸ ︷︷ ︸
M→R

◦Φ−1 = ([Φ∗(X)]︸ ︷︷ ︸
=Y ∈X(M̃)

(f̃)

︸ ︷︷ ︸
M̃→R

◦ Φ) ◦ Φ−1 = [Φ∗(X)] (f̃) = g̃
(
gradg̃(f̃),Φ∗(X)

)
,
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Moreover, note that (2.26) implies

g
(
gradg

(
Φ∗
(
f̃1

))
, gradg

(
Φ∗
(
f̃2

)))
= g̃

(
gradg̃

(
f̃1

)
, gradg̃

(
f̃2

))
◦ Φ (2.27)

for any f̃1, f̃2 ∈ C∞(M̃). Indeed, taking into account the definitions of the gradient of Φ∗
(
f̃2

)
(resp. f̃2 )

and of Φ∗, one gets

g
(
gradg

(
Φ∗
(
f̃1

))
, gradg

(
Φ∗
(
f̃2

)))
=
[
gradg

(
Φ∗
(
f̃1

))](
Φ∗
(
f̃2

))
=
[
Φ∗

(
gradg

(
Φ∗
(
f̃1

)))](
f̃2

)
◦ Φ =

[
gradg̃

(
f̃1

)](
f̃2

)
◦ Φ = g̃

(
gradg̃

(
f̃1

)
, gradg̃

(
f̃2

))
◦ Φ

as claimed.

The next proposition shows that the gradient has the same geometric interpretation on a Riemannian mani-
fold as it does in Euclidean space. If f is a smooth real-valued function on a smooth manifold M , recall that
a point p ∈ M is called a regular point of f if dfp ̸= 0, and a critical point of f otherwise; and a level set
f−1(c) is called a regular level set if every point of f−1(c) is a regular point of f . [7] Corollary A.26 shows
that each regular level set is an embedded smooth hypersurface in M .

Proposition 2.3.20. Suppose (M, g) is a Riemannian manifold, f ∈ C∞(M), and R ⊆M is the set of regular
points of f . For each c ∈ R, the set Mc = f−1(c) ∩ R, if nonempty, is an embedded smooth hypersurface in M ,
and grad f is everywhere normal to Mc.

Proof. Problem 2.5.9. ■

II. The Divergence Operator

Suppose (M, g) is an oriented Riemannian n-manifold with or without boundary, and dVg is its volume form.
IfX is a smooth vector field onM , thenX⌟ dVg is an (n−1)-form. The exterior derivative of this (n−1)-form
is a smooth n-form, so it can be expressed as a smooth function multiplied by dVg. That function is called
the divergence of X, and denoted by divX; thus it is characterized by the following formula:

d (X⌟ dVg) = (divX) dVg. (2.28)

Even if M is nonorientable, in a neighborhood of each point we can choose an orientation and define the
divergence by (2.28), and then note that reversing the orientation changes the sign of dVg on both sides of
the equation, so divX is well defined, independently of the choice of orientation. In this way, we can define
the divergence operator on any Riemannian manifold with or without boundary, by requiring that it satisfy
(2.28) for any choice of orientation in a neighborhood of each point.

The next theorem is a fundamental result about vector fields on Riemannian manifolds. In the special case
of a compact regular domain in R3, it is often referred to as Gauss’s theorem.

Theorem 2.3.21 (The Divergence Theorem). Let (M, g) be an Riemannian manifold with boundary S = ∂M
(both M and S can be nonorientable; unlike the case in Theorem 1.6.14). [6, Theorem 5.11] is still valid in this
case, so S with subspace topology has a smooth structure making it an embedded hypersurface in M inheriting
a metric g̃ = ι∗Sg. Then, for any compactly supported smooth vector field X on M ,∫

M

(divX) dVg =
∫
∂M

⟨X,N⟩g dVg̃

where N is the outward-pointing unit normal vector field along ∂M given by Proposition 2.2.6 (which does not
require the ambient Riemannian manifold M to be oriented).

Proof. One need to first prove the orientable case [6, Theorem 16.32] and then use the orientation covering
π̂ : M̂ →M ot show the nonorientable case [6, Theorem 16.48]. ■
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The term “divergence” is used because of the following geometric interpretation. A smooth flow θ on M
is said to be volume-preserving if for every compact regular domain D, we have Vol (θt(D)) = Vol(D)
whenever the domain of θt contains D. It is called volume-increasing, volume-decreasing, volume-
nonincreasing, or volume-nondecreasing if for every such D, Vol (θt(D)) is strictly increasing, strictly
decreasing, nonincreasing, or nondecreasing, respectively, as a function of t. Note that the properties of
flow domains ensure that if D is contained in the domain of θt for some t, then the same is true for all times
between 0 and t.

The next proposition shows that the divergence of a vector field can be interpreted as a measure of the
tendency of its flow to “spread out,” or diverge (see Fig. 2.4).

Figure 2.4: Geometric interpretation of divergence.

Proposition 2.3.22 (Geometric Interpretation of the Divergence). Let M be an oriented Riemannian mani-
fold, let X ∈ X(M), and let θ be the flow of X. Then θ is

(a) volume-preserving if and only if divX = 0 everywhere on M .

(b) volume-nondecreasing if and only if divX ≥ 0 everywhere on M .

(c) volume-nonincreasing if and only if divX ≤ 0 everywhere on M .

(d) volume-increasing if and only if divX > 0 on a dense subset of M .

(e) volume-decreasing if and only if divX < 0 on a dense subset of M .

Proof. See [6, Proposition 16.33]. Note that this theorem cannot be easily generalized to the nonorientable
case. We need dVg to be a differential form to use Cartan’s magic formula, even though some results
employed in the proof have analogues in the nonorientable case. ■

In any smooth local coordinates
(
xi
)
, we can express the divergence operator as

div

(
Xi ∂

∂xi

)
=

1√
det g

∂

∂xi

(
Xi
√
det g

)
(2.29)
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where det g = det (gkl) is the determinant of the component matrix of g in these coordinates. Indeed,

d(X⌟ dVg) = d
(
X⌟
(√

det(g) dx1 ∧ · · · ∧ dxn
))

Prop.1.4.8
======= d

√det(g)

n∑
i=1

(−1)i−1 dxi(X)︸ ︷︷ ︸
=Xi

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn


(1.9)
====

n∑
i=1

(−1)i−1 d
(
Xi
√

det(g)
)

︸ ︷︷ ︸
=
∑

j
∂

∂xj

(
Xj
√

det(g)
)

dxj

∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑
i=1

(−1)i−1
n∑
j=1

∂

∂xj

(
Xj
√

det(g)
)

dxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

For one-forms, α ∧ β = −β ∧ α and α ∧ α = 0, so above can be written as

n∑
i=1

(−1)i−1 ∂

∂xi

(
Xi
√
det(g)

)
dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

By α ∧ β = −β ∧ α again, we have

d(X⌟ dVg) =
n∑
i=1

(−1)i−1 ∂

∂xi

(
Xi
√
det(g)

)
(−1)i−1 dx1 ∧ · · · · · · ∧ dxn

=

n∑
i=1

∂

∂xi

(
Xi
√
det(g)

)
dx1 ∧ · · · ∧ dxn

=

n∑
i=1

1√
det(g)

∂

∂xi

(
Xi
√
det(g)

)√
det(g) dx1 ∧ · · · ∧ dxn

=

n∑
i=1

1√
det g

∂

∂xi

(
Xi
√
det g

)
dVg

implying (2.29).

Like the gradient operator, the divergence operator div : X(M)→ C∞(M) also satisfies linearity and product
rule: if f ∈ C∞(M), X,Y ∈ X(M), then

div(X + Y ) = div(X) + div(Y )

div(fX) = f divX + ⟨grad f,X⟩g
(2.30)

Exercise 2.3.23. Use Equation (2.32) to show above two properties of the divergence operator.

Assuming some knowledge about covariant deriavtives in later chapters, we can show

div(X) = tr(∇X) (2.31)

and

div(X) =

n∑
i=1

(
∂Xi

∂xi
+

n∑
k=1

XkΓiik

)
(2.32)
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Ideed, for any local chart (U, (xi)), we first observe that (5.9) implies

(∗) :
n∑
i=1

Γiij =

n∑
i=1

(
1

2

n∑
l=1

gil(∂igjl + ∂jgil − ∂lgij)

)

=
1

2

∑
i,l

gil∂jgil +
1

2

∑
i,l

gil∂igjl −
1

2

∑
i,l

gil∂lgij


=

1

2

∑
i,l

gil∂jgil +
1

2

∑
i,l

gil∂igjl −
1

2

∑
i,l

gli∂iglj


gij ,g

ij symmetric
============

1

2

∑
i,l

gil∂jgil

Then,

div(X) =
1√

det (gij)

n∑
k=1

∂

∂xk

(√
det (gij)X

k

)

=
1√

det (gij)

n∑
k=1

(
∂
√
det (gij)

∂xk
Xk +

∂Xk

∂xk

√
det (gij)

)

=
1√

det (gij)

n∑
k=1

(
1

2
√
det (gij)

∂ det (gij)

∂xk
Xk +

∂Xk

∂xk

√
det (gij)

)

=

n∑
k=1

(
1

2 det (gij)

∂ det (gij)

∂xk
Xk +

∂Xk

∂xk

)

=

n∑
k=1

1

2
Xk

n∑
m,l=1

gml
∂gml
∂xk

+
∂Xk

∂xk


=

n∑
k=1

(
∂Xk

∂xk
+

n∑
i=1

XkΓiik

)
by (∗)

where we used Jacobi’s formula for derivative of determinant:

∂

∂xk
det (gij) = det (gij) · tr

(
(gij)

−1 ∂ (gij)

∂xk

)
= det (gij) · tr

 (
gij
) ∂ (gij)
∂xk︸ ︷︷ ︸

matrix multiplication


= det (gij)

∑
l,m=1

(gij)ml

(
∂gij
∂xk

)
lm

g symmetric
======== det(gij)

∑
l,m=1

gml
∂gml
∂xk

.

Now,

tr(∇X)
Prop.1.1.12
========

n∑
i=1

Xi
;j

(4.9)
====

n∑
i=1

(
∂Xi

∂xi
+

n∑
k=1

XkΓiik

)
= div(X).

On a local orthonormal frame of a Riemannian manifold (M, g), the trace of the linear endomorphism
∇X : X(M)→ X(M); Y 7→ ∇YX can be computed in the same way as (2.14). Thus

div(X) = tr(∇X) =

n∑
i=1

⟨∇EiX,Ei⟩g. (2.33)
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If Φ : (M, g)→ (M̃, g̃) is an isometry, then

Φ∗ (divg̃(Φ∗(X))) = divg(X) (2.34)

for anyX ∈ X(M). Indeed, let (E1, . . . , En) be a local orthonormal frame on (M, g). Then (Φ∗ (E1) , . . . ,Φ∗ (En))

is a local orthonormal frame on (M̃, g̃). By Proposition 5.2.8,

Φ∗(divg̃(Φ∗(X))) = divg̃(Φ∗(X)) ◦ Φ

=

n∑
i=1

g̃
(
∇̃Φ∗EiΦ∗(X),Φ∗Ei

)
◦ Φ

=

n∑
i=1

g̃
(
Φ∗(Φ

−1)∗∇̃Φ∗Ei
Φ∗(X),Φ∗Ei

)
◦ Φ

=

n∑
n=1

Φ∗g̃
(
(Φ−1)∗∇̃Φ∗Ei

Φ∗(X), Ei

)
=

n∑
n=1

Φ∗g̃
(
(Φ∗∇̃)EiX,Ei

)
by (4.21)

=

n∑
n=1

g (∇EiX,Ei) = divg(X).

III. The Hessian Operators

Let f be a smooth function on M . Then ∇f ∈ Γ
(
T (0,1)TM

)
= Ω1(M) is just the 1-form df , because both

tensors have the same action on vectors: ∇f(X) = ∇Xf = Xf = df(X). The 2-tensor Hf := ∇2f =
∇( df) is called the covariant Hessian of f . Proposition 4.3.7 shows that its action on smooth vector fields
X,Y can be computed by the following formula:

Hf (Y,X) = ∇2f(Y,X) = ∇2
X,Y f = ∇X (∇Y f)−∇(∇XY )f = X(Y f)− (∇XY ) f. (2.35)

In any local coordinates, it is

Hf = ∇2f = f;ij dxi ⊗ dxj , with f;ij = ∂j∂if − Γkji∂kf. (2.36)

If M is equipped with a Riemannian metric g and∇ is the Levi-Civita connection, then (∇XY )f−(∇YX)f =
[X,Y ]f = X(Y f)− Y (Xf). Equation (2.35) then implies the symmetry of covariant Hessian operator:

Hf (Y,X) = Hf (X,Y ). (2.37)

With the additional information g, we also define the Hesse tensor field hf : X(M) → X(M) by hf =
∇(grad f):

hf (X) = ∇X(grad f) (2.38)

It defines a smooth (1, 1)-tensor field on M . Note that qquation (2.9) shows Hf = ĥf . Indeed,

ĥf (X,Y ) = g(hf (X), Y ) = ⟨∇X(grad f), Y ⟩
g’s metric property
============ ∇X⟨grad f, Y ⟩ − ⟨grad f,∇XY ⟩
= ∇X(Y f)− (∇XY )(f)

= X(Y f)− (∇XY )(f)

= Hf (X,Y )

(2.39)

By the isomorphism (2.11), we can also write Hf = ĥf as hf = H̆f .
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IV. The Laplace-Beltrami Operator

One of the most fundamental objects associated to a Riemannian manifold (M, g) is its Laplace-Beltrami
operator, a second-order elliptic self-adjoint partial differential operator which acts on C∞(M). It is defined
as

∆ : C∞(M)→ C∞(M)

f 7→ −div(grad(f))

From equations (2.33), (2.39), and (2.14), one gets

∆f = −div(grad(f)) = − tr(∇(grad f))
= − tr(hf ) = − tr(H̆f ) = − trg(Hf )

= −
n∑

i,j=1

gijHf (Ei, Ej)

= −
n∑

i,j=1

gij (Ei(Ejf)− (∇Ei
Ej)(f))

(2.40)

under a local frame (E1, · · · , En) on (M, g). If (Ei) = (∂i) for a local chart, then one can go through the
same process as in the proof of (2.31) to continue writing above equation to get

∆f = − 1√
det(g)

∂

∂xi

(
gij
√
det(g)

∂f

∂xj

)
. (2.41)

A quicker way is to use (2.29) and (2.24):

− div(grad f) = −div

(
gij

∂f

∂xi
∂

∂xj

)
= − 1√

det(g)

∂

∂xj

(
gij

∂f

∂xi

√
det(g)

)
For f1, f2 ∈ C∞(M), one has

div (f2 (grad (f1))) = −f2 (∆f1) + g (grad (f2) , grad (f1))

∆ (f1f2) = f2 (∆f1)− 2g (grad (f1) , grad (f2)) + f1 (∆f2)
(2.42)

To derive (2.42) (1), one simply substitutes f = f2 and X = grad (f1) in (2.30) (2) and one takes into
account the definition of ∆. On the other hand, the definition of ∆, (2.25), (2.30) (1), and (2.42) (1) imply
that

∆(f1f2) = −div (grad (f1f2))

= −div (f2 (grad f1))− div (f1 (grad (f2)))

= f2 (∆f1)− g (grad (f2) , grad (f1)) + f1 (∆f2)− g (grad (f1) , grad (f2))
= f2 (∆f1)− 2g (grad (f1) , grad (f2)) + f1 (∆f2)

i.e. (2.42) (2) is valid.

Let (M, g) be a Riemannian manifold with or without boundary. A function u ∈ C∞(M) is said to be
harmonic if ∆u = 0.

Theorem 2.3.24 (Green’s identities). Suppose (M, g) is compact. Let N , g̃ be as in Theorem 2.3.21. Then,∫
M

u∆v dVg =
∫
M

⟨gradu, grad v⟩g dVg −
∫
∂M

uNv dVg̃∫
M

(u∆v − v∆u) dVg =
∫
∂M

(vNu− uNv) dVg̃
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Proof. Exercise. ■

Exercise 2.3.25.

(a) Show that if M is compact and connected and ∂M = ∅, the only harmonic functions on M are the
constants.

(b) Show that if M is compact and connected, ∂M ̸= ∅, and u, v are harmonic functions on M whose
restrictions to ∂M agree, then u ≡ v.

If Φ : (M, g)→ (M̃, g̃) is an isometry, then

∆g ◦ Φ∗ = Φ∗ ◦∆g̃ (2.43)

Indeed, using the definition of ∆, (2.34) and (2.26), one gets

∆g

(
Φ∗(f̃)

)
= −divg

(
gradg Φ

∗(f̃)
)
= −Φ∗

(
divg̃

(
Φ∗

(
gradg Φ

∗(f̃)
)))

= −Φ∗
(
divg̃

(
gradg̃(f̃)

))
= Φ∗

(
∆g̃ f̃

)
for any f̃ ∈ C∞(M̃).

In fact, one can show for a Riemannian manifold (M, g) that the only diffeomorphisms Φ : M → M which
commute with the Laplace-Beltrami operator ∆ are the isometries (see Helgason [1962], p. 387).

V. The Hodge-de Rham Operators

Let (M, g) be an oriented n-dimensional Riemannian manifold. Since dVg is a top-degree form serving as
the basis of Ωn(M), every n-form in Ωn(M) can be written as f dVg for some smooth function f on M . Thus,
multiplication by the Riemannian volume form defines a smooth bundle isomorphism ∗ : C∞(M)→ Ωn(M):

∗f := f dVg.

For example, the divergence operator can be written as div(X) = ∗−1( d(X⌟ dVg)). We will generalize this
to a smooth bundle homomorphism over all forms, called Hodge star operator. First, the Riemannian metric
g induces a fiber metric ⟨·|·⟩ on Λk (T ∗M). We give two equivalent definitions:

Definition 2.3.26 (Fiber metric on n-forms).

Definition 1: If
ω = α1 ∧ · · · ∧ αk

η = β1 ∧ · · · ∧ βk,

then
⟨ω|η⟩ = det

(〈
αi, βj

〉)
= det

(〈
♯αi, ♯βj

〉)
and extend linearly (via universal property). This is well-defined and gives a symmetric bilinear map that is
positive-definite if we specify an ordering. See [16] p.404-408.

Definition 2: If {ei} is an orthonormal basis of TpM , let
{
εi
}

denote the dual basis, defined by εi (ej) = δij .
Then declare that

{εI := εi1 ∧ · · · ∧ εik , 1 ≤ i1 < i2 < · · · < ik ≤ n},

is an orthonormal basis of Λk
(
T ∗
pM

)
and show that it satisfies ⟨ω|η⟩ = det

(〈
αi, βj

〉)
and is independent of the

choice of frame. See [7] Problem 2-16.
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We already have a fiber metric ⟨·, ·⟩ for all tensor fields. We wish to compare it with the fiber metric ⟨·|·⟩ just
defined on forms. If α =

∑
αIe

I and β =
∑
βIe

I are k-forms considered as covariant tensor fields, then by
(2.19) we have

⟨α, β⟩ =
∑
I

αi1...ikβ
i1...ik =

∑
I

αIβ
I where βI have raised indices.

Now let e1, . . . , en be an orthonormal basis for V ∗. Then in this basis,

⟨α, β⟩ =
∑
I

αIβ
I =

∑
I

αIβI

and we have
⟨α|β⟩ =

∑
I,J

′ 〈αIeI |βJeJ〉 =∑
I,J

′αIβJ
〈
eI |eJ

〉
=
∑
I

′αIβI =
1

k!

∑
I

αIβI =
1

k!
⟨α, β⟩.

We conclude that
⟨α|β⟩ = 1

k!
⟨α, β⟩,

so the two inner products differ by a factor of k!.

Exercise 2.3.27. Let (M, g) be an oriented Riemannian n-manifold. Show that the Riemannian volume form
dVg is the unique positively oriented n-form that has unit norm with respect to the fiber metric ⟨·|·⟩.

We are now ready to define the Hodge star operator.

Proposition 2.3.28 (Hodge Star Operator). Let (M, g) be an oriented Riemannian manifold and dVg be its
Riemannian volume form. For each k = 0, . . . , n, there is a unique smooth bundle homomorphism ∗ : ΛkT ∗M →
Λn−kT ∗M , called the Hodge star operator, satisfying

ω ∧ ∗η = ⟨ω|η⟩ dVg

for all smooth k-forms ω, η. For k = 0, we interpret the inner product as ordinary multiplication, which recovers
the original case that ∗f = f dVg.

Proof. We prove uniqueness first:

suppose there is some ∗ : ΛkT ∗M → Λn−kT ∗M such that ω∧∗η = ⟨ω|η⟩ dVg. In a local oriented orthonormal
frame (E1, · · · , En), we consider in particular ω = η = εI = εi1 ∧ · · ·∧ εik and suppose ∗ω =

∑
J

′aJε
J . If we

denote the complementary indices of I = (i1, · · · , ik) in (1, · · · , n) as I− = (i−1 , · · · , i
−
n−k), which is ordered

as increasing indices and is thus unique for each I, then the rule that α ∧ β = −β ∧ α for one-forms implies

εI ∧

(∑
J

′aJε
M

)
= ⟨εI |εI⟩ε1 ∧ · · · ∧ εn

εI ∧ aI−εI
−
= ε1 ∧ · · · ∧ εn

aI− · (−1)τ(i1,··· ,ik,i
−
1 ,··· ,i

−
n−k)ε1 ∧ · · · ∧ εn = ε1 ∧ · · · ∧ εn

aI− · (−1)τ(i1,··· ,ik,i
−
1 ,··· ,i

−
n−k) = 1

where τ is the number of inversions for the permutation (i1, · · · , ik, i−1 , · · · , i
−
n−k). (−1)τ is ±1, so aI− must

have the same sign as it, i.e., (−1)τ . Thus,

∗(εI) = (−1)τ(i1,··· ,ik,i
−
1 ,··· ,i

−
n−k)εI

−
.

Specification of the assignment of ∗ on the whole orthonormal basis uniquely determines ∗.
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The next is the existence of ∗:

We simply define ∗ locally as
∗(εI) = (−1)τ(i1,··· ,ik,i

−
1 ,··· ,i

−
n−k)εI

−

for any local oriented orthonormal coframe (εi) and extend it linearly over the whole space ΛkT ∗M via
the universal property of the tensor product. To show it is independent of the choice of coframe, proceed
similarly as in Proposition 2.3.6.

Notice that the basis for Λ0T ∗M is the constant function 1 on M , and its complementary indices are simply
1, · · · , n. Thus, ∗1 = ε1 ∧ · · · ∧ εn = dVg. By linearity, ∗f = f · ∗1 = f dVg, recovering the base case. ■

Proposition 2.3.29 (General Formula of Hodge Star Operator). Let (M, g) be an oriented Riemannian n-
manifold. Let (Ei) be a local orthonormal frame and (εi) be its coframe. Then

∗
(
εi1 ∧ · · · ∧ εik

)
=
√
det(g)

 ∑
(j1,··· ,jk)∈S{i1,··· ,ik}

(−1)τ(j1...jk,ik+1...in)gi1jk · · · gikjk
 εik+1 ∧· · ·∧εin (2.44)

where (ik+1, · · · , in) are the complementary indices of (i1, · · · , ik) and τ is the number of inversions of the per-
mutation (j1, · · · , jk, ik+1, · · · , in). Here, S{i1, · · · , ik}means the set of all self-bijections of the set {i1, · · · , ik}.

Proof. See [16, Theorem 9.26]. ■

For example, when n = 5, for the basis (∂i), ( dxi), we have

∗( dx1 ∧ dx3) =
√

det(g)
∑

(j1,j2)∈S{1,3}

(−1)τ(j1 2 4 5)g1j1g3j2 dx2 ∧ dx4 ∧ dx5

=
√
det(g)

(
(−1)τ(1 3 2 4 5)g11g33 + (−1)τ(3 1 2 4 5)g13g31

)
dx2 ∧ dx4 ∧ dx5

=
√
det(g)

(
−g11g33 + g13g31

)
dx2 ∧ dx4 ∧ dx5.

For R3 with Euclidean metric, we have
∗ dx = dy ∧ dz

∗ dy = dz ∧ dx

∗ dz = dx ∧ dy

Proposition 2.3.30. The Hodge star operator satisfies the following properties:

(a) The Hodge star is an isometry from ΛkT ∗M to Λn−kT ∗M with respect to the fiber metric ⟨·|·⟩.

(b) ∗1 = dVg, and ∗ dVg = 1.

(c) For any ω ∈ ΛkT ∗M , ∗2ω = (−1)k(n−k)ω.

(d) For α, β ∈ ΛkT ∗M , ⟨α|β⟩ = ⟨∗α| ∗ β⟩ = ∗(α ∧ ∗β) = ∗(β ∧ ∗α).

Proof. We showed (b) in Proposition 2.3.28 because ∗ is an isomorphism for k = 0 case. For the proof of (c),
see [16] Proposition 9.25 (3). We show (a): since ω ∧ η = (−1)klη ∧ ω for k-form ω and l-form η, we see

⟨∗α| ∗ β⟩ dVg = (∗α) ∧ (∗(∗β))

= (∗α) ∧
(
(−1)k(n−k)β

)
= (−1)k(n−k) ∗ α ∧ β
= (−1)k(n−k)(−1)k(n−k)β ∧ ∗α
= ⟨β|α⟩ dVg = ⟨α|β⟩ dVg.
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(d): the first equality is just (a). For the second notice that ∗(α ∧ ∗β) = ∗(⟨α|β⟩ dVg) = ⟨α|β⟩ ∗ dVg = ⟨α|β⟩
by (b). The third equality is similar. ■

Let (M, g) be an oriented Riemannian n-manifold. For 1 ≤ k ≤ n, we define the codifferential operater

δ = d∗ : Ωk(M)→ Ωk−1(M)

ω 7→ (−1)n(k+1)+1 ∗ d ∗ ω

and extend this definition to 0-forms by defining δω = 0 for ω ∈ Ω0(M). Here, from right to left, ∗ :
Ωk(M)→ Ωn−k(M), d : Ωn−k(M)→ Ωn−k+1(M), and ∗ : Ωn−k+1(M)→ Ωk−1(M). Recall that d is called
the exterior differential operator. By Proposition 2.3.30 (c) and the fact that d ◦ d = 0, the square of the
codifferential operator also vanishes:

δ ◦ δ = 0. (2.45)

Also, d : Ωk−1(M) → Ωk(M) and δ : Ωk(M) → Ωk−1(M) are adjoint with respect to the fiber metric ⟨·|·⟩.
That is, for all ω ∈ Ωk(M) and η ∈ Ωk−1(M),

⟨δω|η⟩ = ⟨ω| dη⟩ (2.46)

Indeed, Proposition 2.3.30 (c) implies ∗δ = (−1)n(k+1)+1(−1)(n−k+1)(k−1) d∗ = (−1)k(2n−k+2) d∗ =⇒
d∗ = (−1)k(k−2n−2) ∗ δ. Then Theorem 1.5.4 (ii) gives

0 = d

k+(n−(k−1))=n+1 form︷ ︸︸ ︷
(ω ∧ ∗η) = dω ∧ ∗η + (−1)kω ∧ d(∗η)

= dω ∧ ∗η + (−1)k(−1)(k−1)(k−1−2n−2)ω ∧ ∗δη
= dω ∧ ∗η − ω ∧ ∗δη by analyzing the parity

ω ∧ ∗δη = dω ∧ ∗η
⟨ω|δη⟩ dVg = ⟨ dω|η⟩ dVg by definition of ∗

Exercise 2.3.31 ( [6] 16-22). Let (M, g) be an oriented compact Riemannian n-manifold. Show that the
formula

(ω, η) =

∫
M

⟨ω|η⟩g dVg

defines an inner product on Ωk(M) for each k.

We also have a generalization of the zero-th order Laplace-Beltrami operator ∆.

Definition 2.3.32 (Hodge-de Rham operator). Let (M, g) be an oriented compact Riemannian n-manifold.
For each 0 ≤ k ≤ n, the Hodge-de Rham operator or Laplace-Beltrami operator on k-forms ∆ : Ωk(M)→
Ωk(M) is the linear map defined by

∆ω = dδω + δ dω

Exercise 2.3.33 ( [6] 17-3). When k = 0, by definition, δf = 0, so ∆f = δ df = (−1)n+1 ∗ d ∗ ( df). Show
that this coincides with ∆f defined by (2.40).

Solution. There is in fact a generalization of the divergence operator over Ωk(M) by

divω =
∑
i=1

ιEi(∇Eiω), (2.47)

107



Differential Geometry Anthony Hong

and one can show that δ = − div (see Proposition 5.4 of this note for example). For the one-form df we
have

div( df) =
∑
i=1

ιEi(∇Ei df) =
∑
i=1

∇Ei df(Ei)

(4.6)
====

∑
i=1

(Ei (Eif)− (∇Ei
Ei) (f))

On the other hands,

div(grad f) =
∑
i=1

g (∇Ei grad f,Ei)

=
∑
i=1

Ei (g (grad f,Ei))︸ ︷︷ ︸
= df(Ei)=Ei(f)

− g (grad f,∇Ei
Ei)︸ ︷︷ ︸

= df(∇Ei
Ei)=(∇Ei

Ei)(f)

=
∑
i=1

(Ei (Eif)− (∇EiEi) (f)) .

Thus, div( df) = div(grad f) and ∆f = δ df = −div(grad f), recovering the original definition of the
zero-th order Laplace-Beltrami operator. ♦

Exercise 2.3.34. Read Section 4.1 of the note for the definition of divergence operator over all (k, l)-tensor
fields. Proposition 4.1 of the note shows that for a vector field X,

divX = div(X♭).

This fact generalizes the equality div( df) = div(grad f) we showed above.

Proposition 2.3.35 ( [1] Proposition 2.10). The operator ∆ : Ωk(M)→ Ωk(M), for each 0 ≤ k ≤ n, has the
following properties:

(i) ∆ is self-adjoint, i.e., ⟨∆ω|η⟩ = ⟨ω|∆η⟩;

(ii) ∆ is positive, i.e. ⟨∆ω|ω⟩ ≥ 0 for all ω ∈ Ωk(M);

(iii) ∆ω = 0 if and only if dω = 0 and δω = 0;

(iv) d∆ = ∆ d, δ∆ = ∆δ, ∆∗ = ∗∆.

2.4 Generalizations of Riemannian Metrics

There are other common ways of measuring “lengths” of tangent vectors on smooth manifolds. Let’s digress
briefly to mention three that play important roles in other branches of mathematics: pseudo-Riemannian
metrics, sub-Riemannian metrics, and Finsler metrics. Each is defined by relaxing one of the requirements in
the definition of Riemannian metric: a pseudo-Riemannian metric is obtained by relaxing the requirement
that the metric be positive; a sub-Riemannian metric by relaxing the requirement that it be defined on the
whole tangent space; and a Finsler metric by relaxing the requirement that it be quadratic on each tangent
space.

Pseudo-Riemannian Metrics

A pseudo-Riemannian metric (occasionally also called a semi-Riemannian metric) on a smooth manifold
M is a symmetric 2-tensor field g that is nondegenerate at each point p ∈M . This means that the only vector
orthogonal to everything is the zero vector. More formally, g(X,Y ) = 0 for all Y ∈ TpM if and only if X = 0.
If g = gijφ

iφj in terms of a local coframe, nondegeneracy just means that the matrix gij is invertible. If g is
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Riemannian, nondegeneracy follows immediately from positive-definiteness, so every Riemannian metric is
also a pseudo-Riemannian metric; but in general pseudo-Riemannian metrics need not be positive.

Given a pseudo-Riemannian metric g and a point p ∈ M , by a simple extension of the Gram-Schmidt algo-
rithm one can construct a basis (E1, . . . , En) for TpM in which g has the expression

g = −
(
φ1
)2 − · · · − (φr)

2
+
(
φr+1

)2
+ · · ·+ (φn)

2 (2.48)

for some integer 0 ≤ r ≤ n. This integer r, called the index of g, is equal to the maximum dimension of any
subspace of TpM on which g is negative definite. Therefore the index is independent of the choice of basis,
a fact known classically as Sylvester’s law of inertia.

By far the most important pseudo-Riemannian metrics (other than the Riemannian ones) are the Lorentz
metrics, which are pseudo-Riemannian metrics of index 1. The most important example of a Lorentz metric
is the Minkowski metric; this is the Lorentz metric m on Rn+1 that is written in terms of coordinates(
ξ1, . . . , ξn, τ

)
as

m =
(

dξ1
)2

+ · · ·+ ( dξn)2 − ( dτ)2. (2.49)

In the special case of R4, the Minkowski metric is the fundamental invariant of Einstein’s special theory of
relativity, which can be expressed succinctly by saying that in the absence of gravity, the laws of physics
have the same form in any coordinate system in which the Minkowski metric has the expression (2.49). The
differing physical characteristics of “space” (the ξ directions) and “time” (the τ direction) arise from the fact
that they are subspaces on which g is positive definite and negative definite, respectively. The general theory
of relativity includes gravitational effects by allowing the Lorentz metric to vary from point to point.

Many aspects of the theory of Riemannian metrics apply equally well to pseudo-Riemannian metrics. Al-
though we do not treat pseudo-Riemannian geometry directly in this book, we will attempt to point out as
we go along which aspects of the theory apply to pseudo-Riemannian metrics. As a rule of thumb, proofs that
depend only on the invertibility of the metric tensor, such as existence and uniqueness of the Riemannian
connection and geodesics, work fine in the pseudo-Riemannian setting, while proofs that use positivity in an
essential way, such as those involving distance-minimizing properties of geodesics, do not.

For an introduction to the mathematical aspects of pseudo-Riemannian metrics, see the excellent book
[O’N83] (Barrett O’Neill, Semi-Riemannian Geometry with Applications to General Relativity); a more physical
treatment can be found in [HE73] (Stephen W. Hawking and George F. R. Ellis, The Large-Scale Structure of
Space-Time.)

Sub-Riemannian Metrics

A sub-Riemannian metric (aka. singular Riemannian metric or Carnot-Carathéodory metric) on a man-
ifold M is a fiber metric on a smooth distribution S ⊂ TM (i.e., a k-plane field or sub-bundle of TM). Since
lengths make sense only for vectors in S, the only curves whose lengths can be measured are those whose
tangent vectors lie everywhere in S. Therefore one usually imposes some condition on S that guarantees that
any two nearby points can be connected by such a curve. This is, in a sense, the opposite of the Frobenius
integrability condition, which would restrict every such curve to lie in a single leaf of a foliation.

Sub-Riemannian metrics arise naturally in the study of the abstract models of real submanifolds of complex
space Cn, called CR manifolds. (Here CR stands for “Cauchy-Riemann.”) CR manifolds are real manifolds
endowed with a distribution S ⊂ TM whose fibers carry the structure of complex vector spaces (with
an additional integrability condition that need not concern us here). In the model case of a submanifold
M ⊂ Cn, S is the set of vectors tangent to M that remain tangent after multiplication by i =

√
−1 in

the ambient complex coordinates. If S is sufficiently far from being integrable, choosing a fiber metric
on S results in a sub-Riemannian metric whose geometric properties closely reflect the complex-analytic
properties of M as a subset of Cn.
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Another motivation for studying sub-Riemannian metrics arises from control theory. In this subject, one is
given a manifold with a vector field depending on parameters called controls, with the goal being to vary
the controls so as to obtain a solution curve with desired properties, often one that minimizes some function
such as arc length. If the vector field is everywhere tangent to a distribution S on the manifold (for example,
in the case of a robot arm whose motion is restricted by the orientations of its hinges), then the function can
often be modeled as a sub-Riemannian metric and optimal solutions modeled as sub-Riemannian geodesics.

A useful introduction to the geometry of sub-Riemannian metrics is provided in the article [Str86] (Robert
s. Strichartz, Sub-Riemannian Geometry.)

Finsler Metrics

A Finsler metric on a manifold M is a continuous function F : TM → R, smooth on the complement of the
zero section, that defines a norm on each tangent space TpM . This means that F (X) > 0 forX ̸= 0, F (cX) =
|c|F (X) for c ∈ R, and F (X+Y ) ≤ F (X)+F (Y ). Again, the norm function associated with any Riemannian
metric is a special case.

The inventor of Riemannian geometry himself, G. F. B. Riemann, clearly envisaged an important role in
n-dimensional geometry for what we now call Finsler metrics; he restricted his investigations to the “Rie-
mannian” case purely for simplicity (see Spivak, volume 2). However, only very recently have Finsler metrics
begun to be studied seriously from a geometric point of view.

The recent upsurge of interest in Finsler metrics has been motivated largely by the fact that two different
Finsler metrics appear very naturally in the theory of several complex variables: at least for bounded strictly
convex domains in Cn, the Kobayashi metric and the Carathéodory metric are intrinsically defined, biholo-
morphically invariant Finsler metrics. Combining differential-geometric and complex-analytic methods has
led to striking new insights into both the function theory and the geometry of such domains.

2.5 Problems

Exercise 2.5.1 ( [7] 1-4). A topological space is said to be σ-compact if it can be expressed as a union of
countably many compact subspaces. Show that a locally Euclidean Hausdorff space is a topological manifold if
and only if it is σ-compact.

Exercise 2.5.2 ( [7] 2-1). Show that every Riemannian 1-manifold is flat.

Exercise 2.5.3 ( [6] 13-1). If (M, g) is a Riemannian n-manifold with or without boundary, let UM ⊆ TM be
the subset UM = {(x, v) ∈ TM : |v|g = 1}, called the unit tangent bundle of M . Show that UM is a smooth
fiber bundle over M with model fiber Sn−1.

Solution. Since 1 is a regular value of the map φ(p, v) := |v|2g, we know that UM = φ−1(1) is an embedded
submanifold, and we can restrict π : TM → M to obtain π|UM : UM → M . It is impossible in general
to choose coordinates around each point which make g look like the Euclidean metric dxi ⊗ dxi. However,
we do have an orthonormal local frame σ1, . . . , σn : U → π−1(U), which induces a local trivialization
U×Rn ∼= π−1(U) of TM via

(
p, c1, . . . , cn

)
7→
(
p, ciσi(p)

)
. But then π−1(U)∩UM = π−1

∣∣
UM

(U) ∼= U×Sn−1,
proving that UM is a fiber bundle with model fiber Sn−1. ♦

Exercise 2.5.4 ( [7] 2-2). Suppose V and W are finite-dimensional real inner product spaces of the same
dimension, and F : V → W is any map (not assumed to be linear or even continuous) that preserves the origin
and all distances: F (0) = 0 and |F (x) − F (y)| = |x − y| for all x, y ∈ V . Prove that F is a linear isometry.
[Hint:First show that F preserves inner products, and then show that it is linear.]

Exercise 2.5.5 ( [7] 2-5). Prove parts (b) and (c) of Proposition 2.2.14 (properties of horizontal vector fields).
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Exercise 2.5.6 ( [7] 2-6). Prove Theorem 2.2.19 (if π : M̃ →M is a surjective smooth submersion, and a group
acts on M̃ isometrically, vertically, and transitively on fibers, then M inherits a unique Riemannian metric such
that π is a Riemannian submersion).

Exercise 2.5.7 ( [7] 2-7). For 0 < k < n, the set Gk (Rn) of k-dimensional linear subspaces of Rn is called a
Grassmann manifold or Grassmannian. The group GL(n,R) acts transitively on Gk (Rn) in an obvious way,
and Gk (Rn) has a unique smooth manifold structure making this action smooth (see [6] Example 21.21).

(a) Let Vk (Rn) denote the set of orthonormal ordered k-tuples of vectors in Rn. By arranging the vectors in
k columns, we can view Vk (Rn) as a subset of the vector space M(n × k,R) of all n × k real matrices.
Prove that Vk (Rn) is a smooth submanifold of M(n× k,R) of dimension k(2n− k− 1)/2, called a Stiefel
manifold. [Hint: Consider the mapΦ : M(n× k,R)→ M(k × k,R) given by Φ(A) = ATA.]

(b) Show that the map π : Vk (Rn)→ Gk (Rn) that sends a k-tuple to its span is a surjective smooth submer-
sion.

(c) Give Vk (Rn) the Riemannian metric induced from the Euclidean metric on M(n × k,R). Show that the
right action of O(k) on Vk (Rn) by matrix multiplication on the right is isometric, vertical, and transitive
on fibers of π, and thus there is a unique metric on Gk (Rn) such that π is a Riemannian submersion.
[Hint: It might help to note that the Euclidean inner product on M(n × k,R) can be written in the form
⟨A,B⟩ = tr

(
ATB

)
.]

Exercise 2.5.8 ( [7] 2-8). Prove that the action of Z on R2 defined in Example 2.2.26 is smooth, free, proper,
and isometric, and therefore the open Möbius band inherits a flat Riemannian metric such that the quotient map
is a Riemannian covering.

Exercise 2.5.9 ( [7] 2-9). Prove Proposition 2.3.20 (the gradient is orthogonal to regular level sets).

Exercise 2.5.10 ( [7] 2-10). Suppose (M, g) is a Riemannian manifold, f ∈ C∞(M), and X ∈ X(M) is a
nowhere-vanishing vector field. Prove that X = grad f if and only if Xf ≡ ∥X∥2g and X is orthogonal to the
level sets of f at all regular points of f .

Exercise 2.5.11 ( [7] 2-11). Prove Proposition 2.17 (inner products on tensor bundles).

Exercise 2.5.12 ( [6] 16-19). Consider Rn as a Riemannian manifold with the Euclidean metric and the
standard orientation.

(a) Calculate ∗ dxi for i = 1, . . . , n.

(b) Calculate ∗( dxi ∧ dxj) in the case n = 4.

Exercise 2.5.13 ( [6] 16-20). Let M be an oriented Riemannian 4-manifold. A 2-form ω on M is said to be
self-dual if ∗ω = ω, and anti-self-dual if ∗ω = −ω.

(a) Show that every 2-form ω on M can be written uniquely as a sum of a self-dual form and an anti-self-dual
form.

(b) On M = R4 with the Euclidean metric, determine the self-dual and anti-self-dual forms in standard
coordinates.

Exercise 2.5.14 ( [6] 16-21). Let (M, g) be an oriented Riemannian manifold and X ∈ X(M). Show that

X⌟ dVg = ∗X♭

divX = ∗ d ∗X♭

and, when dimM = 3, we can define curl : X(M)→ X(M) by curl(X) = β−1 d(X♭) where β : TM → Λ2T ∗M
is such that by β(X) = X⌟ dVg. See [6] p.426 for more details. Show that

curlX =
(
∗ dX♭

)♯
111



Differential Geometry Anthony Hong

112



Differential Geometry Anthony Hong

Chapter 3

Model Riemannian Manifolds

We will study the model Riemannian manifolds, Euclidean spaces, spheres, hyperbolic spaces, which are
highly-symmetric spaces, i.e., spaces with a large isometry group. After that, we explore some more general
classes of Riemannian manifolds with symmetry–the invariant metrics on Lie groups, homogeneous spaces,
and symmetric spaces. We will, for reference convenience, also study characteristics like curvature and
geodesics on these spaces, which will only be introduced in later chapters.

3.1 Symmetries of Riemannian Manifolds

Let (M, g) be a Riemannian manifold. Recall that Iso(M, g) denotes the set of all isometries from M to itself,
which is a group under composition. We say that (M, g) is a homogeneous Riemannian manifold if Iso(M, g)
acts transitively on M , which is to say that for each pair of points p, q ∈M , there is an isometry φ :M →M
such that φ(p) = q.

The isometry group does more than just act on M itself. For every φ ∈ Iso(M, g), the global differential dφ
maps TM to itself and restricts to a linear isometry dφp : TpM → Tφ(p)M for each p ∈M .

Given a point p ∈ M , let Isop(M, g) denote the isotropy subgroup at p, that is, the subgroup of Iso (M, g)
consisting of isometries that fix p. For each φ ∈ Iso p(M, g), the linear map dφp takes TpM to itself, and the
map Ip : Isop(M, g)→ GL (TpM) given by Ip(φ) = dφp is a representation of Isop(M, g), called the isotropy
representation. We say that M is isotropic at p if the isotropy representation of Isop(M, g) acts transitively
on the set of unit vectors in TpM . If M is isotropic at every point, we say simply that M is isotropic.

There is an even stronger kind of symmetry than isotropy. Let O(M) denote the set of all orthonormal bases
for all tangent spaces of M (and recall as in [6] we assume a basis is ordered):

O(M) =
∐
p∈M
{ orthonormal bases for TpM}

There is an induced action of Iso(M, g) on O(M), defined by using the differential of an isometry φ to push
an orthonormal basis at p forward to an orthonormal basis at φ(p):

φ · (b1, . . . , bn) = ( dφp (b1) , . . . , dφp (bn)).

We say that (M, g) is frame-homogeneous if this induced action is transitive on O(M), or in other words,
if for all p, q ∈ M and choices of orthonormal bases at p and q, there is an isometry taking p to q and the
chosen basis at p to the one at q. (Warning: Some authors use the term isotropic to refer to the property we
have called frame-homogeneous.)
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A homogeneous Riemannian manifold looks geometrically the same at every point, while an isotropic one
looks the same in every direction. We have the following proposition/examples.

Proposition 3.1.1. Let (M, g) be a Riemannian manifold.

(a) If M is isotropic at a point p ∈M and homogeneous, then it is isotropic.

(b) If M is frame-homogeneous, then it is homogeneous and isotropic.

(c) If M is isotropic, then it is homogeneous.

(d) M can be isotropic at one point without being isotropic.

(e) M can be homogeneous without being isotropic anywhere.

(f) M can be isotropic and homogeneous without being frame-homogeneous.

Proof. (a): Suppose it is isotropic at p and homogeneous. Then for any q ∈ M , there is an isometry φ :
M → M such that φ(p) = q. Let u1, u2 ∈ TqM be unit vectors. We want to show that there is an isometry
ψ : M → M such that dψq(u1) = u2. We find ϕ such that dϕp sends v1 := dφ−1

p (u1) to v2 := dφ−1
p (u2),

which are unit vectors as ϕ is an isometry. Then let ψ = φ ◦ ϕ ◦ φ−1.

(b): Homogeneity is automatic. To show M is isotropic, let p ∈ M and u1, u2 ∈ TpM be unit vectors.
Complete ui to orthonormal bases of TpM and then use frame-homogeneity.

(c): Problem 6.6.7.

(d): Problem 3.7.20: A counterexample is the paraboloid z = x2 + y2 in R3 with the induced metric.

(e): Problem 3.7.8, Problem 3.7.9: A counterexample is the Berger metrics on S3.

(f): Problem 7.9.4: A counterexample is the Fubini-Study metrics on complex projective spaces CPn. ■

A deep theorem of Sumner B. Myers and Norman E. Steenrod [14] shows that if M has finitely many
components, then Iso(M, g) has a topology and smooth structure making it into a finite-dimensional Lie
group acting smoothly on M . We will neither prove nor use the Myers-Steenrod theorem, but if you are
interested, a good source for the proof is [15].

3.2 Euclidean Spaces

The simplest and most important model Riemannian manifold is of course n-dimensional Euclidean space,
which is just Rn with the Euclidean metric ḡ = δijdx

idxj = (dxi)2.

Somewhat more generally, if V is any n-dimensional real vector space endowed with an inner product, we
can set g(v, w) = ⟨v, w⟩ for any p ∈ V and any v, w ∈ TpV ∼= V . Choosing an orthonormal basis (b1, . . . , bn)
for V defines a basis isomorphism from Rn to V that sends

(
x1, . . . , xn

)
to xibi; this is easily seen to be

an isometry of (V, g) with (Rn, ḡ), so all n-dimensional inner product spaces are isometric to each other as
Riemannian manifolds.

It is easy to construct isometries of the Riemannian manifold (Rn, ḡ): for example, every orthogonal linear
transformation A : Rn → Rn preserves the Euclidean metric, as does every translation x 7→ b+ x. It follows
that every affine transformation x 7→ b+Ax with A orthogonal is an isometry.

It turns out that the set of all such isometries can be realized as a Lie group acting smoothly on Rn. Regard
Rn as a Lie group under addition, and let θ : O(n) × Rn → Rn be the natural action of O(n) on Rn.
Define the Euclidean group E(n) to be the semidirect product Rn ⋊θ O(n) determined by this action: this
is the Lie group whose underlying manifold is the product space Rn × O(n), with multiplication given by
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(b, A) (b′, A′) = (b+Ab′, AA′). It has a faithful representation given by the map ρ : E(n) → GL(n + 1,R)
defined in block form by

ρ(b, A) =

(
A b
0 1

)
where b is considered an n× 1 column matrix. The Euclidean group acts on Rn via

(b, A) · x = b+Ax (3.1)

Note that E(n) = Rn ⋊θ O(n) as a semidirect product of Lie groups is a Lie group (see [6, p.168]) and that
(3.1) indeed defines a group action: (b′, A′) ·((b, A) ·x) = b+A′b+A′Ax = ((b′, A′)(b, A)) ·x, with id = (0, I).

Each Euclidean space is frame-homogeneous:

Exercise 3.2.1. Show that (3.1) defines a smooth isometric action of E(n) on (Rn, ḡ), and the induced action
on the orthogonal frame bundle O(Rn) is transitive.

3.3 Spheres

Our second class of model Riemannian manifolds comes in a family, with one for each positive real number.
GivenR > 0, let Sn(R) denote the sphere of radiusR centered at the origin in Rn+1, endowed with the metric
◦
gR (called the round metric of radius R) induced from the Euclidean metric on Rn+1, i.e.,

◦
gR= ι∗Sn(R)ḡ.

When R = 1, it is the round metric on Sn(1) = Sn, and we use the notation
◦
g=

◦
g1.

One of the first things one notices about the spheres is that like Euclidean spaces, they are highly symmetric.
We can immediately write down a large group of isometries of Sn(R) by observing that the linear action of
the orthogonal group O(n+1) on Rn+1 preserves Sn(R) and the Euclidean metric, so its restriction to Sn(R)
acts isometrically on the sphere. Problem 3.7.17 will show that this is the full isometry group.

Proposition 3.3.1. The group O(n + 1) acts transitively on O(Sn(R)), and thus each round sphere is frame-
homogeneous.

Proof. See [7, Proposition 3.2]. ■

Another important feature of the round metrics–one that is much less evident than their symmetry–is that
they bear a certain close relationship to the Euclidean metrics, which we now describe. Two metrics g1 and
g2 on a manifold M are said to be conformally related (or pointwise conformal or just conformal) to
each other if there is a positive function f ∈ C∞(M) such that g2 = fg1. Given two Riemannian manifolds
(M, g) and (M̃, g̃), a diffeomorphism φ : M → M̃ is called a conformal diffeomorphism (or a conformal
transformation) if it pulls g̃ back to a metric that is conformal to g:

φ∗g̃ = fg for some positive f ∈ C∞(M)

Problem 3.7.3 shows that conformal diffeomorphisms are the same as angle-preserving diffeomorphisms.
Two Riemannian manifolds are said to be conformally equivalent if there is a conformal diffeomorphism
between them.

A Riemannian manifold (M, g) is said to be locally conformally flat if every point of M has a neighborhood
that is conformally equivalent to an open set in (Rn, ḡ).

Exercise 3.3.2. (a) Show that for every smooth manifold M , conformality is an equivalence relation on the set
of all Riemannian metrics on M .

(b) Show that conformal equivalence is an equivalence relation on the class of all Riemannian manifolds.

(c) Suppose g1 and g2 = fg1 are conformally related metrics on an oriented n-manifold. Show that their volume
forms are related by dVg2 = fn/2 dVg1 .
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A conformal equivalence between Rn and Sn(R) minus a point is provided by stereographic projection
from the north pole. This is the map σ : Sn(R)\{N} → Rn that sends a point P ∈ Sn(R)\{N}, written
P =

(
ξ1, . . . , ξn, τ

)
, to u =

(
u1, . . . , un

)
∈ Rn, where U =

(
u1, . . . , un, 0

)
is the point where the line through

N and P intersects the hyperplane {(ξ, τ) : τ = 0} in Rn+1. Thus U is characterized by the fact that
(U − N) = λ(P − N) for some nonzero scalar λ. Writing N = (0, R), U = (u, 0), and P = (ξ, τ) ∈ Rn+1 =
Rn × R, we obtain the system of equations

ui = λξi

−R = λ(τ −R)
(3.2)

Solving the second equation for λ and plugging it into the first equation, we get the following formula for
stereographic projection from the north pole of the sphere of radius R:

σ(ξ, τ) = u =
Rξ

R− τ
(3.3)

It follows from this formula that σ is defined and smooth on all of Sn(R)\{N}. The easiest way to see that
it is a diffeomorphism is to compute its inverse. Solving the two equations of (3.2) for τ and ξi gives

ξi =
ui

λ
, τ = R

λ− 1

λ
(3.4)

The point P = σ−1(u) is characterized by these equations and the fact that P is on the sphere. Thus,
substituting (3.4) into |ξ|2 + τ2 = R2 gives

|u|2

λ2
+R2 (λ− 1)2

λ2
= R2

from which we conclude

λ =
|u|2 +R2

2R2

Inserting this back into (3.4) gives the formula

σ−1(u) = (ξ, τ) =

(
2R2u

|u|2 +R2
, R
|u|2 −R2

|u|2 +R2

)
(3.5)

which by construction maps Rn back to Sn(R)\{N} and shows that σ is a diffeomorphism.

Proposition 3.3.3. Stereographic projection is a conformal diffeomorphism between Sn(R)\{N} and Rn.

Proof. Rigorously we have

σ−1 : (Rn, ḡ) −→ (M = Sn(R) \N,
=ι∗ḡ︷ ︸︸ ︷
ι∗M ι

∗
Sn ḡ)

where ι : M → Rn+1 is the composition ιSn ◦ ιM . In light of the context of equation (2.4), σ−1 is a smooth
parametrization of M . In this case, the manifold we parametrize is an immersed Riemannian submanifold
of the Euclidean space Rn+1, so the equation (2.4) works perfectly. Due to (3.5), we compute:

(
σ−1

)∗ ◦
gR=

(
σ−1

)∗
ḡ =

n+1∑
j=1

(
d(uj ◦ σ−1)

)2
=

n∑
j=1

(
d
(

2R2uj

|u|2 +R2

))2

+

(
d
(
R
|u|2 −R2

|u|2 +R2

))2

.

If we expand each of these terms individually, we get

d
(

2R2uj

|u|2 +R2

)
= −

∑
i ̸=j

2R2 · 2uiuj
(|u|2 +R2)2

duj +
(|u|2 +R2)2R2 − (2R2uj)(2uj)

(|u|2 +R2)2
duj =

2R2 duj

|u|2 +R2
−

4R2uj
∑
i u

i dui

(|u|2 +R2)
2 ;

d
(
R
|u|2 −R2

|u|2 +R2

)
=

2R
∑
i u

i dui

|u|2 +R2
−

2R
(
|u|2 −R2

)∑
i u

i dui

(|u|2 +R2)
2 =

4R3
∑
i u

i dui

(|u|2 +R2)
2 .
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Therefore,

(
σ−1

)∗ ◦
gR=

4R4
∑
j

(
duj
)2

(|u|2 +R2)
2 −

16R4
(∑

i u
i dui

)2
(|u|2 +R2)

3 +
16R4|u|2

(∑
i u

i dui
)2

(|u|2 +R2)
4 +

16R6
(∑

i u
i dui

)2
(|u|2 +R2)

4

=
4R4

∑
j( duj)2

(|u|2 +R2)
2

In other words, (
σ−1

)∗ ◦
gR= fḡ, where f(u) =

4R4

(|u|2 +R2)
2 (3.6)

Here, ḡ now represents the Euclidean metric on Rn, and so σ is a conformal diffeomorphism. ■

Corollary 3.3.4. Each sphere with a round metric is locally conformally flat.

Proof. Stereographic projection gives a conformal equivalence between a neighborhood of any point except
the north pole and Euclidean space; applying a suitable rotation and then stereographic projection (or stere-
ographic projection from the south pole), we get such an equivalence for a neighborhood of the north pole
as well. ■

3.4 Hyperbolic Spaces

Our third class of model Riemannian manifolds is perhaps less familiar than the other two. For each n ≥ 1
and each R > 0 we will define a frame-homogeneous Riemannian manifold Hn(R), called hyperbolic space
of radius R. There are four equivalent models of the hyperbolic spaces, each of which is useful in certain
contexts. In the next theorem, we introduce all of them and show that they are isometric.

Theorem 3.4.1 (Models of Hyperbolic Space). Let n be an integer greater than 1. For each fixed R > 0, the
following Riemannian manifolds are all mutually isometric.

(a) (HYPERBLOID MODEL) Hn(R) is the submanifold of Minkowski space Rn,1 defined in standard coordi-
nates

(
ξ1, . . . , ξn, τ

)
as the “upper sheet” {τ > 0} of the two-sheeted hyperboloid

(
ξ1
)2
+ · · ·+(ξn)

2−τ2 =
−R2, with the induced metric

ğ1R = ι∗q̄,

where ι : Hn(R)→ Rn,1 is inclusion, and q̄ = q̄(n,1) is the Minkowski metric:

q̄ =
(

dξ1
)2

+ · · ·+ ( dξn)2 − ( dτ)2

(b) (BELTRAMI-KLEIN MODEL) Kn(R) is the ball of radius R centered at the origin in Rn, with the metric
given in coordinates (w1, . . . , wn) by

ğ2R = R2

(
dw1

)2
+ · · ·+ ( dwn)2

R2 − |w|2
+R2

(
w1 dw1 + · · ·+ wn dwn

)2
(R2 − |w|2)2

(c) (POINCARÉ BALL MODEL) Bn(R) is the ball of radius R centered at the origin in Rn, with the metric
given in coordinates

(
u1, . . . , un

)
by

ğ3R = 4R4

(
du1
)2

+ · · ·+ ( dun)2

(R2 − |u|2)2
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(d) (POINCARÉ HALF-SPACE MODEL) Un(R) is the upper half-space in Rn defined in coordinates
(
x1, . . . , xn−1, y

)
by Un(R) = {(x, y) : y > 0}, endowed with the metric

ğ4R = R2

(
dx1
)2

+ · · ·+
(

dxn−1
)2

+ dy2

y2

Proof. Figure 3.1 below illustrates the four models of hyperbolic space.

Figure 3.1: The four hyperbolic models.

The three isometries are central projection c : Hn(R) → Kn(R), hyperbolic stereographic projection
π : Hn(R) → Bn(R), and generalized Cayley transform κ : Un(R) → Bn(R). For the explicit formulas of
these isometries, see [7] Theorem 3.7. ■

We often use the generic notation Hn(R) to refer to any one of the Riemannian manifolds of Theorem 3.4.1,
and ğR to refer to the corresponding metric; the special case R = 1 is denoted by (Hn, ğ) and is called simply
hyperbolic space, or in the 2-dimensional case, the hyperbolic plane.

Because all of the models for a given value of R are isometric to each other, when analyzing them geometri-
cally we can use whichever model is most convenient for the application we have in mind. The next corollary
is an example in which the Poincaré ball and half-space models serve best.

Corollary 3.4.2. Each hyperbolic space is locally conformally flat.

Proof. In either the Poincaré ball model or the half-space model, the identity map gives a global conformal
equivalence with an open subset of Euclidean space. ■

The examples presented so far might give the impression that most Riemannian manifolds are locally con-
formally flat. This is far from the truth, but we do not yet have the tools to prove it. See [7, Problem 8-25]
for some explicit examples of Riemannian manifolds that are not locally conformally flat.

The symmetries of Hn(R) are most easily seen in the hyperboloid model. Let O(n, 1) denote the group of
linear maps from Rn,1 to itself that preserve the Minkowski metric, called the (n+ 1)-dimensional Lorentz
group. Note that each element of O(n, 1) preserves the hyperboloid

{
τ2 − |ξ|2 = R2

}
, which has two com-

ponents determined by τ > 0 and τ < 0. We let O+(n, 1) denote the subgroup of O(n, 1) consisting of
maps that take the τ > 0 component of the hyperboloid to itself. (This is called the orthochronous Lorentz
group, because physically it represents coordinate changes that preserve the forward time direction.) Then
O+(n, 1) preserves Hn(R), and because it preserves q̄ it acts isometrically on Hn(R). (Problem 5.5.1 will
show that this is the full isometry group.) Recall that O(Hn(R)) denotes the set of all orthonormal bases for
all tangent spaces of Hn(R).
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Proposition 3.4.3 ( [7] Proposition 3.9). The group O+(n, 1) acts transitively on O(Hn(R)), and therefore
Hn(R) is frame-homogeneous.

3.5 Invariant Metrics on Lie Groups

Let G be a Lie group. A Riemannian metric g on G is said to be left-invariant if it is left-invariant as a tensor
field, i.e., invariant under all left translations:

∀φ ∈ G, L∗
φg = g

Similarly, g is right-invariant if it is invariant under all right translations, and bi-invariant if it is both left-
and right-invariant. The next lemma shows that left-invariant metrics are easy to come by.

Lemma 3.5.1. Let G be a Lie group and let g be its Lie algebra of left-invariant vector fields.

(a) A Riemannian metric g on G is left-invariant if and only if for all X,Y ∈ g, the function g(X,Y ) is
constant on G.

(b) The restriction map g 7→ ge ∈ Σ2 (T ∗
eG) together with the natural identification TeG ∼= g gives a bijection

between left-invariant Riemannian metrics on G and inner products on g.

Proof. (a): For a fixed p ∈ G, every q ∈ G can be written as q = φp for some φ ∈ G (just letting φ = qp−1).
Thus, g(X,Y ) is constant on G iff ∀φ ∈ G, gp(Xp, Yp) = gφp(Xφp, Yφp), which, by left-invariance of X and
Y , is equal to gLφ(p)( d(Lφ)p(Xp), d(Lφ)p(Yp)) = (L∗

φg)p(Xp, Yp).

(b): We give the inverse of the map g 7→ ge ∈ Σ2 (T ∗
eG). Given ge ∈ Σ2 (T ∗

eG) we define g by letting

∀u, v ∈ TpG, gp(u, v) = ge( d(Lp−1)p(u), d(Lp−1)p(v)). (3.7)

For each p ∈ G, gp defined in this way is certainly an inner product. It is not hard to show g is smooth.
In light of part (a), to show g is left-invariant, it suffices to show p 7→ gp(Xp, Yp) is a constant for any
pair of left-invariant vector fields on G: d

(
Lp−1

)
p
Xp = XLp−1 (p) = Xe and similarly for Ye imply that

gp(Xp, Yp) = ge(Xe, Ye) for any p ∈ G. That is, g(X,Y ) is constant on G. ■

Thus all we need to do to construct a left-invariant metric is choose any inner product on g, and define
a metric on G by applying that inner product to leftinvariant vector fields. Right-invariant metrics can be
constructed in a similar way using right-invariant vector fields. Since a Lie group acts transitively on itself
by either left or right translation, every left-invariant or right-invariant metric is homogeneous.

Much more interesting are the bi-invariant metrics, because, as you will be able to prove later (Problems
7.9.1 and 7.9.2), their curvatures are intimately related to the structure of the Lie algebra of the group. But
bi-invariant metrics are generally much rarer than left-invariant or right-invariant ones; in fact, some Lie
groups have no bi-invariant metrics at all (see [7, Problems 3-12 and 3-13]). Fortunately, there is a complete
answer to the question of which Lie groups admit bi-invariant metrics, which we present in this section.

We begin with a proposition that shows how to determine whether a given left-invariant metric is bi-
invariant, based on properties of the adjoint representation of the group. Recall that this is the representation
Ad : G → GL(g) given by Ad(φ) = (Cφ)∗ : g → g, † where Cφ : G → G is the automorphism defined by
conjugation: Cφ(ψ) = φψφ−1.

Proposition 3.5.2. Let G be a Lie group and g its Lie algebra. Suppose g is a left-invariant Riemannian metric
on G, and let ⟨·, ·⟩ denote the corresponding inner product on g as in Lemma 3.5.1. Then g is bi-invariant if and
only if ⟨·, ·⟩ is invariant under the action of Ad(G) ⊆ GL(g), in the sense that ⟨Ad(φ)X,Ad(φ)Y ⟩ = ⟨X,Y ⟩ for
all X,Y ∈ g and φ ∈ G.

†Here, F∗ is called the induced Lie algebra homomorphism from the Lie group homomorphism F : G → H as in [6] Theorem
8.44, but it is in fact the same as dFe if we identify g ∼= TeG and h ∼= TeH. If dFe sends u to v, then F∗ sends uL to vL.
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Proof. We begin the proof with some preliminary computations. Suppose g is left-invariant and ⟨·, ·⟩ is
the associated inner product on g. Let φ ∈ G be arbitrary, and note that Cφ is the composition of left
multiplication by φ followed by right multiplication by φ−1. Thus for every X ∈ g, left-invariance implies(
Rφ−1

)
∗X =

(
Rφ−1

)
∗ (Lφ)∗X = (Cφ)∗X = Ad(φ)X. Therefore, for all ψ ∈ G and X,Y ∈ g, we have((
Rφ−1

)∗
g
)
ψ
(Xψ, Yψ) = gψφ−1

(((
Rφ−1

)
∗X
)
ψφ−1

,
((
Rφ−1

)
∗ Y
)
ψφ−1

)
= gψφ−1

(
(Ad(φ)X)ψφ−1 , (Ad(φ)Y )ψφ−1

)
= ⟨Ad(φ)X,Ad(φ)Y ⟩

Now assume that ⟨·, ·⟩ is invariant under Ad(G). Then the expression on the last line above is equal to
⟨X,Y ⟩ = gψ (Xψ, Yψ), which shows that

(
Rφ−1

)∗
g = g. Since this is true for all φ ∈ G, it follows that g is

bi-invariant.

Conversely, assuming that g is bi-invariant, we have
(
Rφ−1

)∗
g = g for each φ ∈ G, so the above computation

yields

⟨X,Y ⟩ = gψ (Xψ, Yψ) =
((
Rφ−1

)∗
g
)
ψ
(Xψ, Yψ) = ⟨Ad(φ)X,Ad(φ)Y ⟩

which shows that ⟨·, ·⟩ is Ad(G)-invariant. ■

In order to apply the preceding proposition, we need a lemma about finding invariant inner products on
vector spaces. Recall that for every finite-dimensional real vector space V,GL(V ) denotes the Lie group of
all invertible linear maps from V to itself. If H is a subgroup of GL(V ), an inner product ⟨·, ·⟩ on V is said to
be H-invariant if ⟨hx, hy⟩ = ⟨x, y⟩ for all x, y ∈ V and h ∈ H.

Lemma 3.5.3. Suppose V is a finite-dimensional real vector space and H is a subgroup of GL(V ). There exists
an H-invariant inner product on V if and only if H has compact closure in GL(V ).

Proof. Assume first that there exists an H-invariant inner product ⟨·, ·⟩ on V . This implies that H is contained
in the orthogonal subgroup O(V ) ⊆ GL(V ) defined as

O(V ) = {A ∈ GL(V ) | ⟨Ax,Ay⟩ = ⟨x, y⟩}.

Choosing an orthonormal basis of V yields a Lie group isomorphism between O(V ) and O(n) ⊆ GL(n,R)
(where n = dimV ), so O(V ) is compact; and the closure of H is a closed subset of this compact group, and
thus is itself compact.

Conversely, suppose H has compact closure in GL(V ), and let K denote the closure. A simple limiting
argument shows that K is itself a subgroup, and thus it is a Lie group by the closed subgroup theorem.
Let ⟨·, ·⟩0 be an arbitrary inner product on V , and let µ be a right-invariant density on K (for example, the
Riemannian density of some right-invariant metric on K; see subsection 2.3.4). * For fixed x, y ∈ V , define
a smooth function fx,y : K → R by fx,y(k) = ⟨kx, ky⟩0. Then define a new inner product ⟨·, ·⟩ on V by

⟨x, y⟩ =
∫
K

fx,yµ

Here, compactness of K ensures that the integral is well-defined. It follows directly from the definition that
⟨·, ·⟩ is symmetric and bilinear over R. For each nonzero x ∈ V , we have fx,x > 0 everywhere on K, so
⟨x, x⟩ > 0, showing that ⟨·, ·⟩ is indeed an inner product.

*I don’t see why we cannot just use Riemannian volume form but Riemannian density here. Whichever we use, we should note that
left (right)-invariant metrics produce left (right)-invariant Riemannian volume forms/Riemannian densities; see Lemma 3.7.7. To use
Riemannian volume form, we need to first give K a right-invariant orientation in the same way as Proposition 1.7.18 and then define
a right-invariant metric in the same way as (3.7). Perhaps Jack Lee doesn’t bother putting too much in his errata to explain the right
other-half.
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To see that it is invariant under K, let k0 ∈ K be arbitrary. Then for all x, y ∈ V and k ∈ K, we have

fk0x,k0y(k) = ⟨kk0x, kk0y⟩0 = fx,y ◦Rk0(k),

where Rk0 : K → K is right translation by k0. Because µ is right-invariant, it follows from diffeomorphism
invariance of the integral that

⟨k0x, k0y⟩ =
∫
K

fk0x,k0yµ =

∫
K

(fx,y ◦Rk0)µ

right-invariance
==========

∫
K

(fx,y ◦Rk0)R∗
k0µ

Prop.1.1.19(a)
==========

∫
K

R∗
k0 (fx,yµ)

Prop.1.7.9(d)
=========

∫
K

fx,yµ = ⟨x, y⟩

Thus ⟨·, ·⟩ is K-invariant, and it is also H-invariant because H ⊆ K. ■

Theorem 3.5.4 (Existence of Bi-invariant Metrics). Let G be a Lie group and g its Lie algebra. Then G admits
a bi-invariant metric if and only if Ad(G) has compact closure in GL(g).

Proof. Proposition 3.5.2 shows that there is a bi-invariant metric on G if and only if there is an Ad(G)-
invariant inner product on g, and Lemma 3.5.3 in turn shows that the latter is true if and only if Ad(G) has
compact closure in GL(g). ■

The most important application of the preceding theorem is to compact groups.

Corollary 3.5.5 (Compact Lie Groups). Every compact Lie group admits a bi-invariant Riemannian metric.

Proof. If G is compact, then Ad(G) is a compact subgroup of GL(g) because Ad : G→ GL(g) is continuous.
Now, a continuous mapping from a compact space to a Hausdorff space is a closed map, so the closure of
Ad(G) just itself. The previous theorem thus applies. ■

Another important application is to prove that certain Lie groups do not admit bi-invariant metrics. One
way to do this is to note that if Ad(G) has compact closure in GL(g), then every orbit of Ad(G) must be a
bounded subset of g with respect to any choice of norm, because it is contained in the image of the compact
set Ad(G) under a continuous map of the form φ 7→ φ (X0) from GL(g) to g. Thus if one can find an element
X0 ∈ g and a subset S ⊆ G such that the elements of the form Ad(φ)X are unbounded in g for φ ∈ S, then
there is no bi-invariant metric.

Here are some examples.

Example 3.5.6 (Invariant Metrics on Lie Groups).

(a) Every left-invariant metric on an abelian Lie group is bi-invariant, because the adjoint representation
is trivial. Thus the Euclidean metric on Rn and the flat metric on Tn of Example 2.2.11 are both
bi-invariant.

(b) If a metric g on a Lie group G is left-invariant, then the induced metric on every Lie subgroup H ⊆ G
is easily seen to be left-invariant. Similarly, if g is bi-invariant, then the induced metric on H is bi-
invariant.

(c) The Lie group SL(2,R) (the group of 2× 2 real matrices of determinant 1) admits many left-invariant
metrics (as does every positive-dimensional Lie group), but no bi-invariant ones. To see this, recall
that the Lie algebra of SL(2,R) is isomorphic to the algebra sl(2,R) of trace-free 2 × 2 matrices, and
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the adjoint representation is given by Ad(A)X = AXA−1. If we let X0 =

(
0 1
0 0

)
∈ sl(2,R) and

Ac =

(
c 0
0 1/c

)
∈ SL(2,R) for c > 0, then Ad (Ac)X0 =

(
0 c2

0 0

)
, which is unbounded as c→∞.

Thus the orbit of X0 is not contained in any compact subset, which implies that there is no bi-invariant
metric on SL(2,R). A similar argument shows that SL(n,R) admits no bi-invariant metric for any
n ≥ 2. In view of (b) above, this shows also that GL(n,R) admits no bi-invariant metric for n ≥ 2. (Of
course, GL(1,R) does admit bi-invariant metrics because it is abelian.)

(d) With S3 regarded as a submanifold of C2, the map

(w, z) 7→
(

w z
−z̄ w̄

)
(3.8)

gives a diffeomorphism from S3 to SU(2). Under the inverse of this map, the round metric on S3 pulls
back to a bi-invariant metric on SU(2), as Problem 3.7.8 shows.

(e) Let o(n) denote the Lie algebra of O(n), identified with the algebra of skewsymmetric n× n matrices,
and define a bilinear form on o(n) by

⟨A,B⟩ = tr
(
ATB

)
This is an Ad-invariant inner product, and thus determines a bi-invariant Riemannian metric on O(n)
(see Problem 3.7.10).

(f) Let Un be the upper half-space as defined in Theorem 3.4.1. We can regard Un as a Lie group by
identifying each point (x, y) =

(
x1, . . . , xn−1, y

)
∈ Un with an invertible n× n matrix as follows:

(x, y) ←→
(
In−1 0
xT y

)
where In−1 is the (n− 1)× (n− 1) identity matrix. Then the hyperbolic metric ğ4R is left-invariant on
Un but not right-invariant (see Problem 3.7.11).

(g) For n ≥ 1, the (2n+1)-dimensional Heisenberg group is the Lie subgroup Hn ⊆ GL(n+2,R) defined
by

Hn =


 1 xT z

0 1 y
0 0 1

 : x, y ∈ Rn, z ∈ R


where x and y are treated as column matrices. These are the simplest examples of nilpotent Lie
groups, meaning that the series of subgroups G ⊇ [G,G] ⊇ [G, [G,G]] ⊇ · · · eventually reaches the
trivial subgroup (where for any subgroups G1, G2 ⊆ G, the notation [G1, G2] means the subgroup of G
generated by all elements of the form x1x2x

−1
1 x−1

2 for xi ∈ Gi ). There are many leftinvariant metrics
on Hn, but no bi-invariant ones, as Problem 3.7.12 shows.

(h) Our last example is a group that plays an important role in the classification of 3-manifolds. Let Sol
denote the following 3-dimensional Lie subgroup of GL(3,R):

Sol =


 ez 0 x

0 e−z y
0 0 1

 : x, y, z ∈ R


This group is the simplest non-nilpotent example of a solvable Lie group, meaning that the series
of subgroups G ⊇ [G,G] ⊇ [[G,G], [G,G]] ⊇ · · · eventually reaches the trivial subgroup. Like the
Heisenberg groups, Sol admits left-invariant metrics but not bi-invariant ones (Problem 3.7.13).

♣
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3.6 Other Homogeneous Riemannian Manifolds

There are many homogeneous Riemannian manifolds besides the frame-homogeneous ones and the Lie
groups with invariant metrics. To identify other examples, it is natural to ask the following question: If M
is a smooth manifold endowed with a smooth, transitive action by a Lie group G (called a homogeneous
G-space or just a homogeneous space), is there a Riemannian metric on M that is invariant under the
group action?

The next theorem gives a necessary and sufficient condition for existence of an invariant Riemannian metric
that is usually easy to check.

Theorem 3.6.1 (Existence of Invariant Metrics on Homogeneous Spaces). Suppose G is a Lie group and
M is a homogeneous G-space. Let p0 be a point in M , and let Ip0 : Gp0 → GL (Tp0M) denote the isotropy
representation at p0. There exists a G-invariant Riemannian metric on M if and only if Ip0 (Gp0) has compact
closure in GL(Tp0M).

Proof. See [7, Theorem 3.17]. ■

The next corollary, which follows immediately from Theorem 3.6.1, addresses the most commonly encoun-
tered case. (Other necessary and sufficient conditions for the existence of invariant metrics are given in
Walter Poor’s Differential Geometric Structures 6.58-6.59.)

Corollary 3.6.2. If a Lie group G acts smoothly and transitively on a smooth manifold M with compact isotropy
groups, then there exists a G-invariant Riemannian metric on M .

3.6.1 Locally Homogeneous Riemannian Manifolds

A Riemannian manifold (M, g) is said to be locally homogeneous if for every pair of points p, q ∈ M there
is a Riemannian isometry from a neighborhood of p to a neighborhood of q that takes p to q. Similarly, we
say that (M, g) is locally frame-homogeneous if for every p, q ∈ M and every pair of orthonormal bases
(vi) for TpM and (wi) for TqM , there is an isometry from a neighborhood of p to a neighborhood of q that
takes p to q, and whose differential takes vi to wi for each i.

Every homogeneous Riemannian manifold is locally homogeneous, and every frame-homogeneous one is lo-
cally frame-homogeneous. Every proper open subset of a homogeneous or frame-homogeneous Riemannian
manifold is locally homogeneous or locally frame-homogeneous, respectively. More interesting examples
arise in the following way.

Proposition 3.6.3 ( [7] Proposition 3.20). Suppose (M̃, g̃) is a homogeneous Riemannian manifold, (M, g) is
a Riemannian manifold, and π : M̃ → M is a Riemannian covering. Then (M, g) is locally homogeneous. If
(M̃, g̃) is frame-homogeneous, then (M, g) is locally frame-homogeneous.

Locally homogeneous Riemannian metrics play an important role in classification theorems for manifolds,
especially in low dimensions. The most fundamental case is that of compact 2-manifolds, for which we have
the following important theorem.

Theorem 3.6.4 (Uniformization of Compact Surfaces). Every compact, connected, smooth 2-manifold admits
a locally frame-homogeneous Riemannian metric, and a Riemannian covering by the Euclidean plane, hyperbolic
plane, or round unit sphere.

Proof. See [7, Theorem 3.22]. The proof relies on the topological classification of compact surfaces (see, for
example, [5, Thms. 6.15 and 10.22]). ■

Locally homogeneous metrics also play a key role in the classification of compact 3-manifolds. In 1982,
William Thurston made a conjecture about the classification of such manifolds, now known as the Thurston
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geometrization conjecture. The conjecture says that every compact, orientable 3-manifold can be expressed
as a connected sum of compact manifolds, each of which either admits a Riemannian covering by a homo-
geneous Riemannian manifold or can be cut along embedded tori so that each piece admits a finite-volume
locally homogeneous Riemannian metric. An important ingredient in the analysis leading up to the conjec-
ture was his classification of all simply connected homogeneous Riemannian 3-manifolds that admit finite-
volume Riemannian quotients. Thurston showed that there are exactly eight such manifolds (see [Thu97]
or [Sco83] for a proof):

• R3 with the Euclidean metric

• S3 with a round metric

• H3 with a hyperbolic metric

• S2 × R with a product of a round metric and the Euclidean metric

• H2 × R with a product of a hyperbolic metric and the Euclidean metric

• The Heisenberg group H1 of Example 3.5.6 (g) with a left-invariant metric

• The group Sol of Example 3.5.6 (h) with a left-invariant metric

• The universal covering group of SL(2,R) with a left-invariant metric

The Thurston geometrization conjecture was proved in 2003 by Grigori Perelman. The proof is described in
several books [BBBMP, KL08, MF10, MT14].

3.6.2 Symmetric Spaces

We end this section with a brief introduction to another class of Riemannian manifolds with abundant sym-
metry, called symmetric spaces. They turn out to be intermediate between frame-homogeneous and homo-
geneous Riemannian manifolds (see Problem 6.6.8).

Here is the definition. If (M, g) is a Riemannian manifold and p ∈M , a point reflection at p is an isometry
φ : M → M that fixes p and satisfies dφp = -Id: TpM → TpM . A Riemannian manifold (M, g) is called a
(Riemannian) symmetric space if it is connected and for each p ∈ M there exists a point reflection at p.
More generally, (M, g) is called a (Riemannian) locally symmetric space if each p ∈M has a neighborhood
U on which there exists an isometry φ : U → U that is a point reflection at p. Clearly every Riemannian
symmetric space is locally symmetric.

The next lemma can be used to facilitate the verification that a given Riemannian manifold is symmetric.

Lemma 3.6.5. If (M, g) is a connected homogeneous Riemannian manifold that possesses a point reflection at
one point, then it is symmetric.

Proof. Suppose (M, g) satisfies the hypothesis, and let φ : M → M be a point reflection at p ∈ M . Given
any other point q ∈ M , by homogeneity there is an isometry ψ : M → M satisfying ψ(p) = q. Then
φ̃ = ψ ◦ φ ◦ ψ−1 is an isometry that fixes q. Because dψp is linear, it commutes with multiplication by −1, so

dφ̃q = dψp ◦
(
− IdTpM

)
◦ d
(
ψ−1

)
q
=
(
− IdTqM

)
◦ dψp ◦ d

(
ψ−1

)
q
= − IdTqM

Thus φ̃ is a point reflection at q. ■

Example 3.6.6 (Riemannian Symmetric Spaces).

(a) Suppose (M, g) is any connected frame-homogeneous Riemannian manifold. Then for each p ∈ M ,
we can choose an orthonormal basis (bi) for TpM , and frame homogeneity guarantees that there is an
isometry φ : M → M that fixes p and sends (bi) to (−bi), which implies that dφp = −Id. Thus every
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frame-homogeneous Riemannian manifold is a symmetric space. In particular, all Euclidean spaces,
spheres, and hyperbolic spaces are symmetric.

(b) Suppose G is a connected Lie group with a bi-invariant Riemannian metric g. If we define Φ : G → G
by Φ(x) = x−1, then it is straightforward to check that dΦe(v) = −v for every v ∈ TeG, from which
it follows that dΦ∗

e (ge) = ge. To see that Φ is an isometry, let p ∈ G be arbitrary. The identity q−1 =(
p−1q

)−1
p−1 for all q ∈ G implies that Φ = Rp−1 ◦Φ◦Lp−1 , and therefore it follows from bi-invariance

of g that
(Φ∗g)p = dΦ∗

pgp−1 = d
(
Lp−1

)∗
p
◦ dΦ∗

e ◦ d
(
Rp−1

)∗
e
gp−1 = gp

Therefore Φ is an isometry of g and hence a point reflection at e. Lemma 3.6.5 then implies that (G, g)
is a symmetric space.

(c) The complex projective spaces (Example 2.2.21) and the Grassmann manifolds (Problem 2.5.7) are all
Riemannian symmetric spaces (see Problems 3.7.15 and 3.7.16).

(d) Every product of Riemannian symmetric spaces is easily seen to be a symmetric space when endowed
with the product metric. A symmetric space is said to be irreducible if it is not isometric to a product
of positive-dimensional symmetric spaces.

♣

3.7 Problems

Exercise 3.7.1 ( [7] 3-2). Prove that the metric on RPn described in Example 2.2.25 is frame-homogeneous.

Exercise 3.7.2 ( [7] 3-5).

(a) Prove that
(
Sn(R),

◦
gR

)
is isometric to

(
Sn, R2

◦
g
)

for each R > 0.

(b) Prove that (Hn(R), ğR) is isometric to
(
Hn, R2ğ

)
for each R > 0.

(c) We could also have defined a family of metrics on Rn by ḡR = R2ḡ. Why did we not bother?

Exercise 3.7.3 ( [7] 3-6). Show that two Riemannian metrics g1 and g2 are conformal if and only if they define
the same angles but not necessarily the same lengths, and that a diffeomorphism is a conformal equivalence if
and only if it preserves angles. [Hint: Let (Ei) be a local orthonormal frame for g1, and consider the g2-angle
between Ei and (cos θ)Ei + (sin θ)Ej]

Exercise 3.7.4 ( [7] 3-7). Let U2 denote the upper half-plane model of the hyperbolic plane (of radius 1), with
the metric ğ =

(
dx2 + dy2

)
/y2. Let SL(2,R) denote the group of 2 × 2 real matrices of determinant 1. Regard

U2 as a subset of the complex plane with coordinate z = x+ iy, and let

A · z = az + b

cz + d
, A =

(
a b
c d

)
∈ SL(2,R).

Show that this defines a smooth, transitive, orientation-preserving, and isometric action of SL(2,R) on (U2, ğ).
Is the induced action transitive on O(U2)?

Exercise 3.7.5 ( [7] 3-8). Let B2 denote the Poincaré disk model of the hyperbolic plane (of radius 1), with the
metric ğ =

(
du2 + dv2

)
/
(
1− u2 − v2

)2, and let G ⊆ GL(2,C) be the subgroup defined by

G =

{(
α

β

β

α

)
: α, β ∈ C, |α|2 − |β|2 > 0

}
.

Regarding B2 as a subset of the complex plane with coordinate w = u+ iv, let G act on B2 by(
α β
β̄ ᾱ

)
· w =

αw + β

β̄w + ᾱ
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Show that this defines a smooth, transitive, orientation-preserving, and isometric action of G on (B2, ğ). [Hint:
One way to proceed is to define an action of G on the upper half-plane by A · z = κ−1 ◦A ◦ κ(z), where κ is the
Cayley transform defined by

κ(z) = w = iR
z − iR
z + iR

in the case R = 1, and use the result of Problem 3.7.4.]

Exercise 3.7.6 ( [7] 3-9). Suppose G is a compact connected Lie group with a left-invariant metric g and a
left-invariant orientation. Show that the Riemannian volume form dVg is bi-invariant. [Hint: Show that dVg is
equal to the Riemannian volume form for a bi-invariant metric.]

Lemma 3.7.7. Let G be a Lie group and let g be a left (right)-invariant Riemannian metric on G. If it is
oriented, let dVg be the Riemannian volume form on G; otherwise, let µg be the Riemannian density on G. Then
dVg or µg is left (right)-invariant.

Proof. Left (right)-invariance of the metric means exactly that left (right) translations are isometries. Now
use Lemma 2.3.7 (for dVg) or Exercise 2.3.11 (for µg). ■

Exercise 3.7.8 ( [7] 3-10). Consider the basis

X =

(
0 1
−1 0

)
, Y =

(
0 i
i 0

)
, Z =

(
i 0
0 −i

)
for the Lie algebra su(2). For each positive real number a, define a leftinvariant metric ga on the group SU(2)
by declaring X,Y, aZ to be an orthonormal frame.

(a) Show that ga is bi-invariant if and only if a = 1.

(b) Show that the map defined by (3.8) is an isometry between
(
S3,

◦
g
)

and (SU(2), g1).

[Remark: SU(2) with any of these metrics is called a Berger sphere, named after Marcel Berger.]

Exercise 3.7.9 ( [7] 8-16). For each a > 0, let ga be the Berger metric on SU(2). Compute the sectional
curvatures with respect to ga of the planes spanned by (X,Y ), (Y, Z), and (Z,X). Prove that if a ̸= 1, then
(SU(2), ga) is homogeneous but not isotropic anywhere.

Exercise 3.7.10 ( [7] 3-11). Prove that the formula ⟨A,B⟩ = tr
(
ATB

)
defines a bi-invariant Riemannian

metric on O(n).

Exercise 3.7.11 ( [7] 3-12). Regard the upper half-space Un as a Lie group as described in Example 3.4.1 (f).

(a) Show that for each R > 0, the hyperbolic metric ğ4R on Un is leftinvariant.

(b) Show that Un does not admit any bi-invariant metrics.

Exercise 3.7.12 ( [7] 3-13). Write down an explicit formula for an arbitrary left-invariant metric on the
Heisenberg group Hn of Example 3.5.6 (g) in terms of global coordinates

(
x1, . . . , xn, y1, . . . , yn, z

)
, and show

that the group has no bi-invariant metrics.

Exercise 3.7.13 ( [7] 3-14). Repeat Problem 3.7.12 for the group Sol of Example 3.5.6 (h).

Exercise 3.7.14 ( [7] 3-18). Let Γ ⊆ E(2) be the subgroup defined by (3.20). Prove that Γ acts freely and
properly on R2 and the orbit space is homeomorphic to the Klein bottle, and conclude that the Klein bottle has a
flat metric and a Riemannian covering by the Euclidean plane.

Exercise 3.7.15 ( [7] 3-19). Show that the Fubini-Study metric on CPn is homogeneous, isotropic, and sym-
metric.
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Exercise 3.7.16 ( [7] 3-20). Show that the metric on the Grassmannian Gk (Rn) defined in [7, Problem 2-7]
is homogeneous, isotropic, and symmetric.

Exercise 3.7.17 ( [7] 5-11). Recall the groups E(n),O(n + 1), and O+(n, 1) defined previously, which act

isometrically on the model Riemannian manifolds (Rn, ḡ) ,
(
Sn(R),

◦
gR

)
, and (Hn(R), ğR), respectively.

(a) Show that
Iso (Rn, ḡ) = E(n),

Iso
(
Sn(R),

◦
gR

)
= O(n+ 1),

Iso
(
Hn(R),

y
gR

)
= O+(n, 1).

(b) Show that in each case, for each point p in Rn,Sn(R), or Hn(R), the isotropy group at p is a subgroup
isomorphic to O(n).

(c) Strengthen the result above by showing that if (M, g) is one of the Riemannian manifolds (Rn, ḡ) ,
(
Sn(R),

◦
gR

)
,

or (Hn(R), ğR) , U is a connected open subset of M , and φ : U → M is a local isometry, then φ is the
restriction to U of an element of Iso(M, g).

Exercise 3.7.18 ( [7] 6-2). Let n be a positive integer and R a positive real number.

(a) Prove that the Riemannian distance between any two points p, q in Sn(R) with the round metric is given
by

dgR(p, q) = R arccos
⟨p, q⟩
R2

,

where ⟨·, ·⟩ is the Euclidean inner product on Rn+1.

(b) Prove that the metric space (Sn(R), dgR) has diameter πR.

Exercise 3.7.19 ( [7] 6-3). Let n be a positive integer and R a positive real number. Prove that the Riemannian
distance between any two points in the Poincaré ball model (Bn(R), ğR) of hyperbolic space of radius R is given
by

dğR(p, q) = R arccosh

(
1 +

2R2|p− q|2

(R2 − |p|2) (R2 − |q|2)

)
,

where | · | represents the Euclidean norm in Rn. [Hint: First use the result of Problem 3.7.2 to show that it
suffices to consider the case R = 1. Then use a rotation to reduce to the case n = 2, and use the group action of
Problem 3.7.5 to show that it suffices to consider the case in which p is the origin.]

Exercise 3.7.20 ( [7] 8-5). Let S ⊆ R3 be the paraboloid given by z = x2 + y2, with the induced metric. Prove
that S is isotropic at only one point.

127



Differential Geometry Anthony Hong

128



Differential Geometry Anthony Hong

Chapter 4

Connections

4.1 The Problem of Differentiating Vector Fields

See [7] for more details. In essense, we cannot define the acceleration of a curve γ : I → M for an abstract
manifold as in the case M ⊆ Rn (the definition of velocity though is still valid: γ′(t0) = dγt0

(
d
dt

∣∣
t0

)
)

because to define γ′′(t) by differentiating γ′(t) with respect to t, we have to take a limit of a difference
quotient involving the vectors γ′(t+ h) and γ′(t) who, however, live in different vector spaces Tγ(t+h)M and
Tγ(t)M .

4.2 Connections

Definition 4.2.1. Let π : E → M be a smooth vector bundle over a smooth manifold M with or without
boundary, and let Γ(E) denote the space of smooth sections of E. A connection in E is a map

∇ : X(M)× Γ(E)→ Γ(E),

written (X,Y ) 7→ ∇XY , satisfying the following properties:

(i) ∇XY is linear over C∞(M) in X : for f1, f2 ∈ C∞(M) and X1, X2 ∈ X(M),

∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y

(ii) ∇XY is linear over R in Y : for a1, a2 ∈ R and Y1, Y2 ∈ Γ(E),

∇X (a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2

(iii) ∇ satisfies the following product rule: for f ∈ C∞(M),

∇X(fY ) = f∇XY + (Xf)Y.

The symbols ∇ reads as “del” or “nabla,” and ∇XY is called the covariant derivative of Y in the direction X.

There is a variety of types of connections that are useful in different circumstances. The type of connection
we have defined here is sometimes called a Koszul connection to distinguish it from other types. Since we
have no need to consider other types of connections in this book, we refer to Koszul connections simply as
connections.

Although a connection is defined by its action on global sections, it follows from the definitions that it is
actually a local operator, as the next lemma shows.
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Lemma 4.2.2 (Locality). Suppose ∇ is a connection in a smooth vector bundle E → M . For every X ∈
X(M), Y ∈ Γ(E), and p ∈ M , the covariant derivative ∇XY |p depends only on the values of X and Y in an
arbitrarily small neighborhood of p. More precisely, if X = X̃ on a neighborhood of p, then ∇XY |p = ∇X̃Y

∣∣
p
;

if Y = Ỹ on a neighborhood of p, then ∇XY |p = ∇X Ỹ |p. (The proof is similar to that of [6] Proposition 3.8)

Proof. First consider Y . Replacing Y by Y − Ỹ shows that it suffices to prove ∇XY |p = 0 if Y vanishes on a
neighborhood of p.

Thus suppose Y is a smooth section of E that is identically zero on a neighborhood U of p. Choose a bump
function φ ∈ C∞(M) (see [6] p.42) with support in U such that φ(p) = 1. The hypothesis that Y vanishes on
U implies that φY ≡ 0 on all ofM , so for everyX ∈ X(M), we have∇X(φY ) = ∇X(0·φY ) = 0∇X(φY ) = 0.
Thus the product rule gives

0 = ∇X(φY ) =

=0︷ ︸︸ ︷
(Xφ)Y +φ (∇XY )⇒ 0 = φ(∇XY )

Now Y ≡ 0 on the support of φ, so the first term on the right is identically zero. Evaluating above equation
at p shows that ∇XY |p = 0. The argument for X is similar: use property (i) of connection to get

0
φ bump spt in U w/ φ(p)=1
================== ∇φXY = φ∇XY.

Then evaluate both sides at p. ■

Proposition 4.2.3 (Restriction of a Connection). Suppose∇ is a connection in a smooth vector bundle E →M .
For every open subset U ⊆ M , there is a unique connection ∇U on the restricted bundle E|U that satisfies the
following relation for every X ∈ X(M) and Y ∈ Γ(E) :

∇U(X|U)
(Y |U ) = (∇XY )|U . (4.1)

Remark 4.2.4. We recall from [6] p.255 Example 10.8 to see that E|U is a smooth vector bundle. Also recall
X|U is a smooth vector field on U . See [6] p.185 proposition 8.23. Lastly, notice the comments given after
local and global section on [6]p.255. Y,∇X(Y ) ∈ Γ(E) naturally restricts to a global smooh section on U .
From the first two notions, we see that the LHS of (4.1) is well-defined. By the last notion, the RHS of (4.1)
is also clear. ♠

Proof. [7] p.90 proposition 4.3. ■

In the situation of this proposition, we typically just refer to the restricted connection as ∇ instead of ∇U ;
the proposition guarantees that there is no ambiguity in doing so.

Lemma 4.2.2 tells us that we can compute the value of ∇XY at p knowing only the values of X and Y in a
neighborhood of p. In fact, as the next proposition shows, we need only know the value of X at p itself.

Proposition 4.2.5. Under the hypotheses of Lemma 4.2.2, ∇XY |p depends only on the values of Y in a neigh-
borhood of p and the value of X at p. (Since the claim about Y was proved in Lemma 4.2.2, this is to prove
Xp = X̃p ⇒ ∇XY |p = ∇X̃Y

∣∣
p
. Equivalently, (X − X̃)p = 0p ∈ TpM ⇒ ∇X−X̃Y

∣∣∣
p
= zero section ζ.)

Proof. The claim about Y was proved in Lemma 4.2.2. To prove the claim about X, it suffices by linearity
to assume that Xp = 0 and show that ∇XY |p = 0. Choose a coordinate neighborhood U of p, and write
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X = Xi∂i in coordinates on U , with Xi(p) = 0. Thanks to Proposition 4.2.3, it suffices to work with the
restricted connection on U , which we also denote by ∇. For every Y ∈ Γ (E|U ), we have

∇XY |p = ∇Xi∂iY |p = Xi(p)∇∂iY
∣∣
p
= 0.

■

Remark 4.2.6. Thanks to Propositions 4.2.3 and 4.2.5, we can make sense of the expression ∇vY when v
is some element of TpM and Y is a smooth local section of E defined only on some neighborhood of p. To
evaluate it, let X be a vector field on a neighborhood of p whose value at p is v, and set ∇vY = ∇XY |p.
Proposition 4.2.5 shows that the result does not depend on the extension chosen. Henceforth, we will
interpret covariant derivatives of local sections of bundles in this way without further comment. ♠

4.2.1 Connections in the Tangent Bundle

For Riemannian or pseudo-Riemannian geometry, our primary concern is with connections in the tangent
bundle, so for the rest of the chapter we focus primarily on that case. A connection in the tangent bundle
is often called simply a connection on M . (The terms affine connection and linear connection are also
sometimes used in this context, but there is little agreement on the precise definitions of these terms, so we
avoid them.)

Suppose M is a smooth manifold with or without boundary. By the definition we just gave, a connection in
TM is a map

∇ : X(M)× X(M)→ X(M)

satisfying properties (i)-(iii) above. Although the definition of a connection resembles the characterization
of (1, 2)-tensor fields given by the tensor characterization lemma (Lemma B.6), a connection in TM is not
a tensor field because it is not linear over C∞(M) in its second argument, but instead satisfies the product
rule.

For computations, we need to examine how a connection appears in terms of a local frame. Let (Ei) be a
smooth local frame for TM on an open subset U ⊆ M . For every choice of the indices i and j, we can
express the vector field ∇Ei

Ēj in terms of this same frame:

∇EiEj =

n∑
k=1

ΓkijEk (4.2)

As i, j, and k range from 1 to n = dimM , this defines n3 smooth functions Γkij : U → R, called the
connection coefficients of ∇ with respect to the given frame. The following proposition shows that the
connection is completely determined in U by its connection coefficients.

Proposition 4.2.7. Let M be a smooth manifold with or without boundary, and let ∇ be a connection in
TM . Suppose (Ei) is a smooth local frame over an open subset U ⊆ M , and let

{
Γkij
}

be the connection
coefficients of ∇ with respect to this frame. For smooth vector fields X,Y ∈ X(U), written in terms of the frame
as X = XiEi, Y = Y jEj , one has

∇XY =
(
X
(
Y k
)
+XiY jΓkij

)
Ek. (4.3)

Proof. Just use the defining properties of a connection and compute:

∇XY = ∇X
(
Y jEj

)
(iii)
==== Y j∇XEj +X

(
Y j
)
Ej (Y j : U → R are component functions)

(i)
=== XiY j∇EiEj +X

(
Y j
)
Ej (X = XiEi)

= X
(
Y j
)
Ej +XiY jΓkijEk
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Renaming the dummy index in the first term yields (4.3). ■

Once the connection coefficients (and thus the connection) have been determined in some local frame, they
can be determined in any other local frame on the same open set by the result of the following proposition.

Proposition 4.2.8 (Transformation Law for Connection Coefficients). Let M be a smooth manifold with or
without boundary, and let ∇ be a connection in TM . Suppose we are given two smooth local frames (Ei) and(
Ẽj

)
for TM on an open subset U ⊆M , related by Ẽi = AjiEj for some matrix of functions

(
Aji

)
. Let Γkij and

Γ̃kij denote the connection coefficients of ∇ with respect to these two frames. Then

Γ̃kij =
(
A−1

)k
p
AqiA

r
jΓ

p
qr +

(
A−1

)k
p
AqiEq

(
Apj
)
.

Proof. We note that Ẽ1

...
Ẽn

 =

A
1
1 · · · An1

...
. . .

...
A1
n · · · Ann


E1

...
En


Hence, Ep = (A−1)kpẼk. By (4.3), we see that

∇Ẽi
Ẽj =

[
Ẽi(Ẽ

p
j ) + Ẽqi Ẽ

r
jΓ

p
qr

]
Ep

=
[
(AqiEq) (A

p
j ) +AqiA

r
jΓ

p
qr

]
((A−1)kpẼk)

=
(
A−1

)k
p
AqiA

r
jΓ

p
qr +

(
A−1

)k
p
AqiEq

(
Apj
)

■

4.2.2 Existence of Connections

So far, we have studied properties of connections but have not produced any, so you might be wondering
whether they are plentiful or rare. In fact, they are quite plentiful, as we will show shortly. Let us begin with
the simplest example.

Example 4.2.9 (The Euclidean Connection). In TRn, define the Euclidean connection ∇̄ by the following
formula ( [7] (4.3)).

∇̄XY = X
(
Y 1
) ∂

∂x1
+ · · ·+X (Y n)

∂

∂xn

It is easy to check that this satisfies the required properties for a connection, and that its connection coeffi-
cients in the standard coordinate frame are all zero: It is easy to verify (i)-(iii). Computation of connection
coefficients is also straightforward:

∇̄ ∂

∂xi

∂

∂xj
=

n∑
k=1

∂

∂xi
(δjk)

∂

∂xk
=

∂

∂xi
(1)

∂

∂xj
= 0

∂

∂xj
= 0

♣

Here is a way to construct a large class of examples.

Example 4.2.10 (The Tangential Connection on a Submanifold of Rn). Let M ⊆ Rn be an embedded
submanifold. Define a connection ∇⊤ on TM , called the tangential connection, by setting

∇⊤
XY = π⊤

(
∇̄X̃ Ỹ

∣∣∣
M

)
,
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where π⊤ is the orthogonal projection onto TM , ∇̄ is the Euclidean connection on Rn (Example 4.2.9), and
X̃ and Ỹ are smooth extensions of X and Y to an open set in Rn. (Such extensions exist by the result of [7]
Exercise A.23.) Since the value of ∇̄X̃ Ỹ at a point p ∈ M depends only on X̃p = Xp, this just boils down
to defining

(
∇⊤
XY
)
p

to be equal to the tangential directional derivative ∇⊤
Xp
Y we intuitively defined in [7]

(4.4). To show it is indeed a connection, see [7] Example 4.9. ♣

In fact, there are many connections on Rn, or indeed on every smooth manifold that admits a global frame
(for example, every manifold covered by a single smooth coordinate chart). The following lemma shows
how to construct all of them explicitly.

Lemma 4.2.11. Suppose M is a smooth n-manifold with or without boundary, and M admits a global frame
(Ei). Formula (4.3) gives a one-to-one correspondence between connections in TM and choices of n3 smooth
real-valued functions

{
Γkij
}

on M .

Proof. Every connection determines functions
{
Γkij
}

by (4.2), and we have shown that those functions satisfy
(4.3). On the other hand, given

{
Γkij
}

, we can define ∇XY by (4.3); it is easy to see that the resulting
expression is smooth if X and Y are smooth, linear over R in Y , and linear over C∞(M) in X. To prove that
it is a connection, only the product rule requires checking; this is a straightforward computation: we check
that

∇XY :=
(
X
(
Y k
)
+XiY jΓkij

)
Ek

satisfies the product rule (iii). For f ∈ C∞(M),

∇X(fY ) =
(
X
(
fY k

)
+XifY jΓkij

)
Ek

[6] (8.5)
=======

(
fX

(
Y k
)
+ Y kXf + fXiY jΓkij

)
Ek

= f
(
X
(
Y k
)
+XiY jΓkij

)
Ek +

(
Y kXf

)
Ek

= f∇XY + (Xf)Y kEk

= f∇XY + (Xf)Y.

■

Proposition 4.2.12. The tangent bundle of every smooth manifold with or without boundary admits a connec-
tion.

Proof. Let M be a smooth manifold with or without boundary, and cover M with coordinate charts {Uα};
the preceding lemma guarantees the existence of a connection ∇α on each Uα. Choose a partition of unity
{φα} subordinate to {Uα}. We would like to patch the various ∇α ’s together by the formula

∇XY =
∑
α

φα∇αXY.

Because the set of supports of the φα ’s is locally finite, the sum on the right-hand side has only finitely many
nonzero terms in a neighborhood of each point, so it defines a smooth vector field on M . It is immediate
from this definition that ∇XY is linear over R in Y and linear over C∞(M) in X. We have to be a bit careful
with the product rule, though, since a linear combination of connections is not necessarily a connection.
(You can check, for example, that if ∇0 and ∇1 are connections, then neither 2∇0 nor ∇0 +∇1 satisfies the
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product rule.) By direct computation,

∇X(fY ) =
∑
α

φα∇αX(fY )

=
∑
α

φα ((Xf)Y + f∇αXY )

= (Xf)Y
∑
α

φα + f
∑
α

φα∇αXY

= (Xf)Y + f∇XY.

■

Although a connection is not a tensor field, the next proposition shows that the difference between two
connections is.

Proposition 4.2.13 (The Difference Tensor). Let M be a smooth manifold with or without boundary. For any
two connections ∇0 and ∇1 in TM , define a map D : X(M)× X(M)→ X(M) by

D(X,Y ) = ∇1
XY −∇0

XY.

Then D is bilinear over C∞(M), and thus defines a (1,2)-tensor field called the difference tensor between ∇0

and ∇1.

Proof. It is immediate from the definition that D is linear over C∞(M) in its first argument, because both
∇0 and ∇1 are. To show that it is linear over C∞(M) in the second argument, expand D(X, fY ) using the
product rule, and note that the two terms in which f is differentiated cancel each other. The last sentence of
the proposition is a consequence of Lemma 1.1.18:

D : ︸︷︷︸
0 factor

×X(M)× X(M)︸ ︷︷ ︸
2 factors

→ X(M)

is bilinear and then defines a (1,2)-tensor field. ■

Now that we know there is always one connection in TM , we can use the result of the preceding proposition
to say exactly how many there are.

Theorem 4.2.14. Let M be a smooth manifold with or without boundary, and let ∇0 be any connection in TM.
Then the set A(TM) of all connections in TM is equal to the following affine space:

A(TM) =
{
∇0 +D : D ∈ Γ

(
T (1,2)TM

)}
,

where D ∈ Γ
(
T (1,2)TM

)
is interpreted as a map from X(M) × X(M) to X(M) as in Proposition 1.1.5, and

∇0 +D : X(M)× X(M)→ X(M) is defined by(
∇0 +D

)
X
Y = ∇0

XY +D(X,Y ).

Proof. [7] Problem 4-4. ■
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4.3 Covariant Derivatives of Tensor Fields

We first defined a connection in E, the total space of a vector bundle π : E →M :

∇ : X(M)× Γ(E)→ Γ(E)

and then in particular a connection in E = TM , where Γ(TM) = X(M) :

∇ : X(M)× X(M)→ X(M)

We show in this section that every connection in TM automatically induces connections in all tensor bundles
over M ,

∇ : X(M)× Γ
(
T (k,l)(TM)

)
→ Γ

(
T (k,l)(TM)

)
and thus gives a way to compute covariant derivatives of tensor fields of any type.

Proposition 4.3.1. Let M be a smooth manifold with or without boundary, and let ∇ be a connection in TM .
Then ∇ uniquely determines a connection in each tensor bundle T (k,l)TM , also denoted by ∇, such that the
following four conditions are satisfied.

(i) In T (1,0)TM = TM,∇ agrees with the given connection.

(ii) In T (0,0)TM =M × R,∇ is given by ordinary differentiation of functions:

∇Xf = Xf

(For the identification T (0,0)TM = M × R, see [6] p.317: for any vector space V , [6] p. 312 notes that
T 0V = R by convention. Now

T 0T ∗M =
∐
p∈M

T 0
(
T ∗
pM

)
=
∐
p∈M

R =M × R

Similarly, T 0TM = M × R. Thus, T (0,0)TM , either interpreted as T 0T ∗M or T 0TM , equals to M × R.
And the space of smooth sections Γ

(
T (0,0)TM

)
= Γ(M × R) = C∞(M) is just the space of smooth

functions.)

(iii) ∇ obeys the following product rule with respect to tensor products:

∇X(F ⊗G) = (∇XF )⊗G+ F ⊗ (∇XG) .

(iv) ∇ commutes with all contractions: if ”tr” denotes a trace on any pair of indices, one covariant and one
contravariant, then

∇X(trF ) = tr (∇XF )

This connection also satisfies the following additional properties:

(a) ∇ obeys the following product rule with respect to the natural pairing between a covector field ω and a
vector field Y :

∇X⟨ω, Y ⟩ = ⟨∇Xω, Y ⟩+ ⟨ω,∇XY ⟩ .

(Note: ⟨ω, Y ⟩p := ⟨ωp, Yp⟩ = ωp (Yp). So ⟨ω, Y ⟩ ∈ C∞(M). See [6] p.274)
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(b) (b) For all F ∈ Γ
(
T (k,l)TM

)
, smooth 1-forms ω1, . . . , ωk, and smooth vector fields Y1, . . . , Yl,

(∇XF )
(
ω1, . . . , ωk, Y1, . . . , Yl

)
= X

(
F
(
ω1, . . . , ωk, Y1, . . . , Yl

))
−

k∑
i=1

F
(
ω1, . . . ,∇Xωi, . . . , ωk, Y1, . . . , Yl

)
−

l∑
j=1

F
(
ω1, . . . , ωk, Y1, . . . ,∇XYj , . . . , Yl

)
.

(4.4)

Proof. First we show that every family of connections on all tensor bundles satisfying (i)-(iv) also satisfies
(a) and (b). Suppose we are given such a family of connections, all denoted by∇. Recall for ω ∈ X∗(M), Y ∈
X(M), ω ⊗ Y denotes the tensor fields defined by (ω ⊗ Y )p := ωp ⊗ Yp (see [6] p.317), and ⟨ω, Y ⟩ is also
pointwise defined: ⟨ω, Y ⟩p := ⟨ωp, Yp⟩ = ωp (Yp). Also note that

ωp ⊗ Yp ∈ T ∗
pM ⊗ TpM = T (1,1)T ∗

pM
∼= End

(
T ∗
pM

)
so that ω ⊗ Y ∈ Γ

(
T (1,1)T ∗M

)
. Then the trace of ωp ⊗ Yp ∈ T (1,1)T ∗

pM is the sum of the diagonal elements
of the matrix representation of ωp⊗Yp identified as a linear endomorphism. Plugging k = l = 0 into formula
(1.3) gives

tr (ωp ⊗ Yp) =
∑

1≤m≤n

(ωp ⊗ Yp)mm
[6] 12.22

======= (ωp)m (Yp)
m
.

On the other hand, if Yp = (Yp)
i
Ei, ωp = (ωp)j ε

j then εj (Ei) = δji gives that

ωp (Yp) = (ωp)j ε
j
[
(Yp)

i
Ei

]
= (ωp)j (Yp)

j
= (ωp)m (Yp)

m

Thus tr (ωp ⊗ Yp) = ωp (Yp) and ⟨ω, Y ⟩ = tr(ω ⊗ Y ). Therefore, (i)-(iv) imply

∇Xω(Y ) = ∇X⟨ω, Y ⟩ = ∇X(tr(ω ⊗ Y )) = tr (∇X(ω ⊗ Y ))

= tr ((∇Xω)⊗ Y + ω ⊗ (∇XY )) (by (iv))

= tr ((∇Xω)⊗ Y ) + tr (ω ⊗ (∇XY )) (linearity of tr)

= ⟨∇Xω, Y ⟩+ ⟨ω,∇XY ⟩
(
∇Xω is a 1-form, ∈ Γ(T (0,1)TM) while ∇XY is a vector field, ∈ Γ(T (1,0)TM)

)
(4.5)

Then (b) is proved by induction using a similar computation applied to

F
(
ω1, . . . , ωk, Y1, . . . , Yl

)
= tr ◦ · · · ◦ tr︸ ︷︷ ︸

k+l

(
F ⊗ ω1 ⊗ · · · ⊗ ωk ⊗ Y1 ⊗ · · · ⊗ Yl

)
,

where each trace operator acts on an upper index of F and the lower index of the corresponding 1-form,
or a lower index of F and the upper index of the corresponding vector field. In fact, (4.4) can be easily
generalized from the case k = l = 1:

∇XF (ω, Y ) = ∇X(tr ◦ tr(F ⊗ ω ⊗ Y ))

= tr ◦ tr (∇X(F ⊗ (ω ⊗ Y )))

= tr ◦ tr((∇XF )⊗ (ω ⊗ Y ) + F ⊗ (∇X(ω ⊗ Y )))

= tr ◦ tr((∇XF )⊗ (ω ⊗ Y ) + F ⊗ ((∇Xω ⊗ Y + ω ⊗∇XY )))

= tr ◦ tr((∇XF )⊗ ω ⊗ Y + F ⊗∇Xω ⊗ Y + F ⊗ ω ⊗∇XY )

= (∇XF )(ω, Y ) + F (∇Xω, Y ) + F (ω,∇XY )

=⇒ (∇XF )(ω, Y ) = ∇XF (ω, Y )− F (∇Xω, Y )− F (ω,∇XY )
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Next we address uniqueness. Assume again that ∇ represents a family of connections satisfying (i)-(iv), and
hence also (a) and (b). Observe that (ii) and (a) imply that the covariant derivative of every 1-form ω can
be computed by

(∇Xω) (Y ) = X(ω(Y ))− ω (∇XY ) . (4.6)

(this is just the same as (4.5) since a one-form is also a covector field.)

It follows that the connection on 1-forms is uniquely determined by the original connection in TM , which
is ∇XY . Similarly, (b) gives a formula determining the covariant derivative of every tensor field F in terms
of covariant derivatives of vector fields and 1-forms, so the connection in every tensor bundle is uniquely
determined.

Now to prove existence, we first define covariant derivatives of 1-forms by (4.6), and then we use (4.4) to
define ∇ on all other tensor bundles. The first thing that needs to be checked is that the resulting expression
is multilinear over C∞(M) in each ωi and Yj , and therefore defines a smooth tensor field. This is done
by inserting fωi in place of ωi, or fYj in place of Yj , and expanding the right-hand side, noting that the
two terms in which f is differentiated cancel each other out. Once we know that ∇XF is a smooth tensor
field, we need to check that it satisfies the defining properties of a connection. Linearity over C∞(M) in X
and linearity over R in F are both evident from (4.4) and (4.6), and the product rule in F follows easily
from the fact that differentiation of functions by X satisfies the product rule. It is then a straightforward
computational exercise to show that the resulting connection satisfies conditions (i)-(iii). To prove (iv), first
observe that every (k, l)-tensor field can be written locally as a sum of tensor fields of the form Z1 ⊗ · · ·⊗
Zk ⊗ ζ1 ⊗ · · · ⊗ ζl, and for such a tensor field the trace on the i th contravariant index and the j th covariant
one satisfies

tr
(
Z1 ⊗ · · · ⊗ Zk ⊗ ζ1 ⊗ · · · ⊗ ζl

)
= ζj (Zi)Z1 ⊗ · · · ⊗ Ẑi ⊗ · · · ⊗ Zk ⊗ ζ1 ⊗ · · · ⊗ ζ̂j ⊗ · · · ⊗ ζl.

Then (iv) follows by applying (4.4) and (4.6) to this formula. ■

While (4.4) and (4.6) are useful for proving the existence and uniqueness of the connections in tensor
bundles, they are not very practical for computation, because computing the value of∇XF at a point requires
extending all of its arguments to vector fields and covector fields in an open set, and computing a great
number of derivatives. For computing the components of a covariant derivative in terms of a local frame,
the formulas in the following proposition are far more useful.

Proposition 4.3.2. Let M be a smooth manifold with or without boundary, and let ∇ be a connection in TM .
Suppose (Ei) is a local frame for M,

(
εj
)

is its dual coframe, and
{
Γkij
}

are the connection coefficients of ∇ with
respect to this frame. Let X be a smooth vector field, and let XiEi be its local expression in terms of this frame.

(a) The covariant derivative of a 1-form ω = ωiε
i is given locally by

∇X(ω) =
(
X (ωk)−XjωiΓ

i
jk

)
εk.

(b) If F ∈ Γ
(
T (k,l)TM

)
is a smooth mixed tensor field of any rank, expressed locally as

F = F i1...ikj1...jl
Ei1 ⊗ · · · ⊗ Eik ⊗ εj1 ⊗ · · · ⊗ εjl ,

then the covariant derivative of F is given locally by

∇XF =

(
X
(
F i1...ikj1...jl

)
+

k∑
s=1

XmF i1...p...ikj1...jl
Γismp −

l∑
s=1

XmF i1...ikj1...p...jl
Γpmjs

)
×

Ei1 ⊗ · · · ⊗ Eik ⊗ εj1 ⊗ · · · ⊗ εjl .
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Proof. To show (a), we only need to show

(∇Xω)(Ek) = X(ωk)−XjωiΓ
i
jk

By (4.6), we see

∇Xω(Ek) = X(ω(Ek))− ω(∇XEk)

= X(ωk)− ω

(X( δik︸︷︷︸
constant

) +XjδrkΓ
i
jr)Ei


= X(ωk)− ω

[
(0 +XjΓijk)Ei

]
= X(ωk)− ωiXjΓijk

To show (b), we only need to show

(∇XF )(εi1 , · · · , εik , Ej1 , · · · , Ejl) = X
(
F i1...ikj1...jl

)
+

k∑
s=1

XmF i1...p...ikj1...jl
Γismp −

l∑
s=1

XmF i1...ikj1...p...jl
Γpmjs

By (4.4), we see

(∇XF ) (εi1 , · · · , εik , Ej1 , · · · , Ejl)

=X
(
F (εi1 , · · · , εik , Ej1 , · · · , Ejl)

)
−

k∑
s=1

F
(
εi1 , . . . ,∇Xεis , . . . , εik , Ej1 , . . . , Ejl

)
−

l∑
s=1

F
(
εi1 , · · · , εik , Ej1 , . . . ,∇XEjs , . . . , Ejl

)
=F i1...ikj1...jl

−
k∑
s=1

F
(
εi1 , . . . ,−XmΓismpε

p, . . . , εik , Ej1 , . . . , Ejl
)

−
l∑

s=1

F
(
εi1 , · · · , εik , Ej1 , . . . , XmΓpmjsEp, . . . , Ejl

)
(by (a) and (4.3))

=F i1...ikj1...jl
+

k∑
s=1

XmF i1...p...ikj1...jl
Γismp −

l∑
s=1

XmF i1...ikj1...p...jl
Γpmjs

■

Because the covariant derivative ∇XF of a tensor field (or, as a special case, a vector field) is linear over
C∞(M) in X, the covariant derivatives of F in all directions can be handily encoded in a single tensor field
whose rank is one more than the rank of F , as follows.

Proposition 4.3.3 (The Total Covariant Derivative). Let M be a smooth manifold with or without boundary
and let ∇ be a connection in TM . For every F ∈ Γ

(
T (k,l)TM

)
, the map

∇F : Ω1(M)× · · · × Ω1(M)︸ ︷︷ ︸
k copies

×X(M)× · · · × X(M)︸ ︷︷ ︸
l+1 copies

→ C∞(M)

given by
(∇F )

(
ω1, . . . , ωk, Y1, . . . , Yl, X

)
= (∇XF )

(
ω1, . . . , ωk, Y1, . . . , Yl

)
(4.7)

defines a smooth (k, l + 1)-tensor field on M called the total covariant derivative of F .
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Proof. This follows immediately from the tensor characterization lemma (Lemma 1.1.18): ∇XF is a tensor
field, so it is multilinear over C∞(M) in its k + l arguments; and it is linear over C∞(M) in X by definition
of a connection. ■

Remark 4.3.4. Note that the smooth (k, l + 1)-tensor field induced by ∇F is called the total covariant
derivative of F and is denoted by ∇F as well. One can think of the covariant derivative of a tensor field as
directional derivatives while the total covariant derivative is the total derivative of the tensor field. ♠

When we write the components of a total covariant derivative in terms of a local frame, it is standard practice
to use a semicolon to separate indices resulting from differentiation from the indices resulting from the “+1”
insertion. For example, let Y be a vector field. That is, Y ∈ X(M) = Γ

(
T (1.0)TM

)
where k = 1, l = 0 in the

above proposition. We write it in coordinates as Y = Y iEi. Then the components of the (1, 1)-tensor field
∇Y are written as Y i;j , i.e.,

∇Y = Y i;jEi ⊗ εj (4.8)

where Y i;j is obtained by the following:

Y i;j = ∇Y
(
εi, Ej

)
=
(
∇EjY

) (
εi
)

(4.3)
====

(
Ej
(
Y l
)
+
(
Ej
)m

Y kΓlmk

)
El
(
εi
)

= Ej
(
Y i
)
+
(
Ej
)m

Y kΓimk

= Ej
(
Y i
)
+ Y kΓijk

(4.9)

For a one-form ω ∈ Γ(T (0,1)TM) where k = 0, l = 1 in above proposition, we have a (0, 2)-tensor field ∇ω.
If we write ω = ωmε

m, then the components of the ∇ω are written as ωi;j , i.e.,

∇ω = ωi;jε
i ⊗ εj

where ωi;j is obtained by the following:

ωi;j = ∇ω (Ei, Ej) =
(
∇Ejω

)
(Ei)

(4.6)
==== Ej (ω (Ei))− ω

(
∇EjEi

)
(4.2)
==== Ej (ωmε

m (Ei))− ωmεm
(
ΓkjiEk

)
= Ejωi − ωkΓkji

More generally, replacing (4.3) and (4.6) with (4.4) and using the definition of coefficient Γkij we get a
formula for the components of total covariant derivatives of arbitrary tensor fields as shown in the next
lemma.

Proposition 4.3.5. LetM be a smooth manifold with or without boundary and let∇ be a connection in TM; and
let (Ei) be a smooth local frame for TM and

{
Γkij
}

the corresponding connection coefficients. The components
of the total covariant derivative of a (k, l)-tensor field F with respect to this frame are given by

F i1...ikj1...jl;m
= Em

(
F i1...ikj1...jl

)
+

k∑
s=1

F i1...p...ikj1...jl
Γismp −

l∑
s=1

F i1...ikj1...p...jl
Γpmjs .
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Proof.

Γ
(
T (k,l+1)TM

)
∋ ∇F = F i1,··· ,ikj1,··· ,ji;mEi1 ⊗ · · · ⊗ Fik ⊗ ε

j1 ⊗ · · · ⊗ εjl ⊗ εm

F
i1···ij
j······j;m = ∇F

(
εi, · · · , εik , Ej1 , · · · , Ejl , Em

)
(4.7)
==== ∇Em

F
(
εi1 , · · · , εik , Ej1 , · · · , Ejl

)
prop. 4.3.2(b)
========= Em

(
F i1···ikj1···jl

)
+

k∑
s=1

(Em)
q
F i1···p···ikj,···jl Γisqp −

l∑
s=1

(Em)
q
F i1···ikj1···q···jlΓ

p
qjs

= Em
(
F i1···ikj1···jl

)
+

k∑
s=1

F i1···p···ikj1···jl Γismp −
l∑

s=1

F i1···ikj,··· ,jlΓ
p
mjs

■

Exercise 4.3.6. Suppose F is a smooth (k, l)-tensor field and G is a smooth (r, s) tensor field. Show that the
components of the total covariant derivative of F ⊗G are given by

(∇(F ⊗G))i1...ikp1...prj1...jlq1...qs;m
= F i1...ikj1...jl;m

Gp1...prq1...qs + F i1...ikj1...jl
Gp1...prq1...qs:m.

[Remark: This formula is often written in the following way, more suggestive of the product rule for ordinary
derivatives: (

F i1...ikj1...jl
Gp1...prq1...qs

)
;m

= F i1...ikj1...jl;m
Gp1...prq1...qs + F i1...ikj1...jl

Gp1...prq1...qs;m.

Notice that this does not say that∇(F ⊗G) = (∇F )⊗G+F ⊗(∇G), because in the first term on the right-hand
side of this latter formula, the index resulting from differentiation is not the last lower index.]

4.3.1 Second Covariant Derivative

Having defined the tensor field∇F for a (k, l)-tensor field F , we can in turn take its total covariant derivative
and obtain a (k, l + 2)-tensor field ∇2F = ∇(∇F ). Given vector fields X,Y ∈ X(M), let us introduce the
notation ∇2

X,Y F for the (k, l)-tensor field obtained by inserting X,Y in the last two slots of ∇2F :

∇2
X,Y F (. . .) = ∇2F (. . . , Y,X).

Note the reversal of order of X and Y : this is necessitated by our convention that the last index position
in ∇F is the one resulting from differentiation, while it is conventional to let ∇2

X,Y stand for differentiating
first in the Y direction, then in the X direction. (For this reason, some authors adopt the convention that
the new index position introduced by differentiation is the first instead of the last. As usual, be sure to check
each author’s conventions when you read.)

It is important to be aware that ∇2
X,Y F is not the same as ∇X (∇Y F ). The main reason is that the former

is linear over C∞(M) in Y , while the latter is not. The relationship between the two expressions is given in
the following proposition.

Proposition 4.3.7. Let M be a smooth manifold with or without boundary and let ∇ be a connection in TM.
For every smooth vector field or tensor field F ,

∇2
X,Y F = ∇X (∇Y F )−∇(∇XY )F.

Proof. For Y ∈ X(M) = Γ
(
T (1,0)TM

)
,∇F ∈ Γ

(
T (k,l+1)TM

)
, we have ∇F ⊗ Y ∈ Γ

(
T (k+1,l+1)TM

)
. The

covariant derivative (∇Y F ) (· · · )
(4.7)
==== ∇F (· · · , Y ) can be expressed as the trace of ∇F ⊗ Y on its last two

indices. We have
∇Y F = tr(∇F ⊗ Y ) = Ck+1

l+1 (∇F ⊗ Y ) (4.10)
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as we can verify by computing their components: proposition 4.3.2 shows that

(∇Y F )i1···ikj1···jl = Y
(
F i1···ikj1···jl

)
+

k∑
s=1

Y mF i1···p···ikj1···jl Γismp −
l∑

s=1

Y mF i1···ikj1···p···jlΓ
p
mjs

prop. 4.3.5
======== F i1······jkj1···jl;mY

m (4.11)

On the other hand,

[tr(∇F ⊗ Y )]i1···ikj1···jl
(1.3)
==== (∇F ⊗ Y )i1···ikmj1···jlm

= (∇F ⊗ Y )
(
εi1 , · · · , εik , εm, Ej1 , · · · , Ejl , Em

)
= ∇F

(
εi1 , · · · , εik , Ej1 , · · · , Ejl , Em

)
Y (εm)

= F i1···ikj1···jl;mY
m

(4.12)

Similarly, ∇2
X,Y F can be expressed as an iterated trace:

∇2
X,Y F = tr

(
tr
(
∇2F ⊗X

)
⊗ Y

)
.

(First trace the last index of ∇2F with that of X, and then trace the last remaining free index-originally the
second-to-last in ∇2F -with that of Y .)

We notice that for X ∈ X(M) = Γ
(
T (1,0)TM

)
,∇F ∈ Γ

(
T (k,l+1)TM

)
, we have ∇X(∇F ) ∈ Γ

(
T (k,l+1)TM

)
,

∇(∇F ) ∈ Γ
(
T (k,l+2)TM

)
, ∇(∇F ) ⊗ X ∈ Γ

(
T (k+1,l+2)TM

)
, and ∇X(∇F ) ⊗ Y ∈ Γ

(
T (k+1,l+1)TM

)
. We

write the iterated expression as

Ck+1
l+1

(
Ck+1
l+2 (∇(∇F )⊗X)⊗ Y

) (4.10)
===== Ck+1

l+1 (∇X(∇F )⊗ Y ) = ∇(∇F )(· · · , Y,X) := ∇2
X,Y F,

where the second equality comes from the following reasoning:

[Ck+1
l+1 (∇X(∇F )⊗ Y )]i1···ikj1···jl

(4.12)
===== [∇X(∇F )]i1···ikj1···jl jl+1︸︷︷︸

=q

Y q
(4.11)
===== (∇F )i1···ikj1···jl jl+1︸︷︷︸

=q

jl+2︸︷︷︸
=m

XmY q,

where jl+1 = q and jl+2 = m are just renaming of indices. On the other hand, F ∈ T (k,l)(V ) ⇒ ∇F ∈
T (k,l+1)(V )⇒ [∇(∇F )] ∈ T (k,l+2)(V )⇒ [∇(∇F )(· · · , Y,X)] ∈ T (k,l)(V ) where

∇(∇F )(· · · , Y,X) :
(
ω1, · · · , ωk, Y1, · · · , Yl

)
7→ ∇(∇F )

(
ω1, · · · , ωk, Y1, · · · , Yl, Y,X

)
Now,

[∇(∇F )(· · · , Y,X)]i1···ikj1···jl = ∇(∇F )
(
εi1 , · · · , εik , Ej1 , · · · , Ejl , Y,X

)
= ∇X(∇F )

(
εi1 , · · · , εik , Ej1 , · · · , Ejl , Y

)
prop. 4.3.2
========

[
X
(
(∇F )i1···jkj1···jl+1

)
+

k∑
s=1

Xm(∇F )i1···p···ikj1···jl+1
Γismp −

l∑
s=1

Xm(∇F )i1···ikj1···p···jl+1
Γpmjs

]
× Ei1 ⊗ · · · ⊗ Eik ⊗ εj1 ⊗ · · · ⊗ εjl+1

(
εi1 , · · · , εik , Ej1 , · · · , Ejl , Y

)︸ ︷︷ ︸
=Y jl+1

prop. 4.3.5
======== (∇F )i1···ikj1···jl jl+1︸︷︷︸

=q

jl+2︸︷︷︸
=m

XmY q

This shows
[
Ck+1
l+1 (∇X(∇F )⊗ Y )

]i1··· ,ik
j1···jl

= [∇(∇F )(· · · , Y,X)]i1··· ,ikj1···jl . So

∇2
X,Y F = Ck+1

l+1

(
Ck+1
l+2 (∇(∇F )⊗X)⊗ Y

)
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Therefore, since ∇X commutes with contraction (see prop. 4.3.1 (iv)) and satisfies the product rule with
respect to tensor products (see prop. 4.3.1 (iii)), we have

∇X (∇Y F ) = ∇X(tr(∇F ⊗ Y ))

= tr (∇X(∇F ⊗ Y ))

= tr (∇X(∇F )⊗ Y +∇F ⊗∇XY )

= tr
(
tr
(
∇2F ⊗X

)
⊗ Y

)
+ tr (∇F ⊗∇XY )

= ∇2
X,Y F +∇(∇XY )F

■

4.4 Vector and Tensor Fields Along Curves

Let M be a smooth manifold with or without boundary. Given a smooth curve γ : I → M , a vector field
along γ is a continuous map V : I → TM such that V (t) ∈ Tγ(t)M for every t ∈ I; it is a smooth vector
field along γ if it is smooth as a map from I to TM . We let X(γ) denote the set of all smooth vector fields
along γ. It is a real vector space under pointwise vector addition and multiplication by constants, and it is a
module over C∞(I) with multiplication defined pointwise:

(fX)(t) = f(t)X(t).

The most obvious example of a vector field along a smooth curve γ is the curve’s velocity: γ′(t) ∈ Tγ(t)M for
each t, and its coordinate expression

γ′(t) = γ̇1(t)
∂

∂x1

∣∣∣∣
γ(t)

+ · · · γ̇n(t) ∂

∂xn

∣∣∣∣
γ(t)

shows that it is smooth. Here is another example: if γ is a curve in R2, let N(t) = Rγ′(t), where R is
counterclockwise rotation by π/2, soN(t) is normal to γ′(t). In standard coordinates,N(t) =

(
−γ̇2(t), γ̇1(t)

)
,

so N is a smooth vector field along γ.

A large supply of examples is provided by the following construction: suppose γ : I → M is a smooth curve
and Ṽ is a smooth vector field on an open subset of M containing the image of γ. Define V : I → TM by
setting V (t) = Ṽγ(t) for each t ∈ I. Since V is equal to the composition Ṽ ◦ γ, it is smooth. A smooth vector
field along γ is said to be extendible if there exists a smooth vector field Ṽ on a neighborhood of the image
of γ that is related to V in this way (Fig.4.1).

Not every vector field along a curve need be extendible; for example, if γ (t1) = γ (t2) but γ′ (t1) ̸= γ′ (t2)
(Fig.4.2), then γ′ is not extendible. Even if γ is injective, its velocity need not be extendible, as the next
example shows.

Example 4.4.1. Consider the figure eight curve γ : (−π, π)→ R2 defined by

γ(t) = (sin 2t, sin t).

Its image is a set that looks like a figure eight in the plane (Fig.4.3). [7] Problem 4-7 asks to show that γ
is an injective smooth immersion, but its velocity vector field is not extendible. For problem 4-7, we can
verify a more general claim given by [6] Example 4.2 (b): if γ : J → M is a smooth curve in a smooth
manifold M with or without boundary, then γ is a smooth immersion if and only if γ′(t) ̸= 0 for all t ∈ J .
For (b), suppose that the smooth curve γ is a smooth immersion. Then dγt0 is injective for every t0 ∈ J .
Then γ′ (t0) = dγt0

(
d/ dt|t0

)
̸= 0. Conversely, suppose γ′ (t0) ̸= 0 for every t0 ∈ J . Suppose that dγt0(v) = 0

for some v ∈ Tt0J . Since Tt0J is spanned by d/dttt0 , we have that v = αd/ dt|t0 for some α ∈ R. Then
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Figure 4.1: Extendible vector field

Figure 4.2: Nonextendible vector field

0 = dγt0
(
αd/ dt|t0

)
= αdγt0

(
d/ dt|t0

)
= αγ′ (t0), implying α = 0. Hence, dγt0 is injective, and therefore γ

is a smooth immersion.

We compute

γ′(t) =
dγ1

dt
(t)

∂

∂x
+
dγ2

dt
(t)

∂

∂y
= 2 cos 2t

∂

∂x
+ cos t

∂

∂y
=

(
2 cos 2t

cos t

)
2 cos 2t ’s zeros are ±π4 · ±

3π
4 and cos t ’s zeros are ±π2 , so the velocity is nonvanishing and γ is a smooth

immersion. The injectivity of γ is clear. The claim that V = γ′ is non-extendible is equivalent of saying that
there exists no smooth vector field Ṽ (p) = Ṽx(p)

∂
∂x + Ṽy(p)

∂
∂y of which γ is an integral curve (see [6] p.206),

or that there are no smooth functions Ṽx, Ṽy : R2 → R satisfying(
2 cos 2t

cos t

)
= γ′(t) = Ṽ (γ(t)) =

(
Ṽx(γ(t))

Ṽy(γ(t))

)
=

(
Ṽx(sin 2t, sin t)

Ṽy(sin 2t, sin t)

)

For example, we assume there is g : R2 C∞

−−→ R such that 2 cos 2t = g(sin 2t, sin t) and use the implicit function
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Figure 4.3: The image of the figure eight curve

theorem ... ♣

More generally, a tensor field along γ is a continuous map σ from I to some tensor bundle T (k,l)TM such
that σ(t) ∈ T (k,l)

(
Tγ(t)M

)
for each t ∈ I. It is a smooth tensor field along γ if it is smooth as a map from

I to T (k,l)TM , and it is extendible if there is a smooth tensor field σ̃ on a neighborhood of γ(I) such that
σ = σ̃ ◦ γ.

4.4.1 Continuous Derivatives Along Curves

Here is the promised interpretation of a connection as a way to take derivatives of vector fields along curves.

Theorem 4.4.2 (Covariant Derivative Along a Curve). Let M be a smooth manifold with or without boundary
and let ∇ be a connection in TM . For each smooth curve γ : I → M , the connection determines a unique
operator

Dt : X(γ)→ X(γ),

called the covariant derivative along γ, satisfying the following properties:

(i) LINEARITY OVER R :
Dt(aV + bW ) = aDtV + bDtW for a, b ∈ R.

(ii) PRODUCT RULE:
Dt(fV ) = f ′V + fDtV for f ∈ C∞(I).

(iii) If V ∈ X(γ) is extendible, then for every extension Ṽ of V ,

(DtV ) (t) = ∇γ′(t)Ṽ

where DtV ∈ X(γ) is a vector field along γ, i.e. DtV : I → TM where (DtV ) (t) ∈ Tγ(t)M . For the RHS,
∇γ′(t)Ṽ is understood in terms of remark 4.2.6: let X be a vector field on a nieghborhood U of the point

p = γ(t) such that Xp = γ′(t) = v ∈ TpM , and ∇γ′(t)Ṽ = ∇vṼ =
(
∇X Ṽ

)
p
.

Remark 4.4.3. There are analogous operators on the space of C∞ tensor fields of any type along γ. For
example, the above explains T (1,0)TM = TM case. Another of peculiarity is T (0,0)TM = M × R which
as explained in prop. 4.3.1 gives rise to smooth functions along the curve γ, i.e., f : Im(γ) → R. Then
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analogusly, we have Dt(af + bg) = aDtf + bDtg;Dt(fg) = f ′g+ fDtg; and for extension f̃ ∈ C∞(U) where

Im(γ) ⊆ U , we by similar notations above, (Dtf) (t) = ∇γ′(t)f̃ = ∇v f̃ =
(
∇X f̃

)
p

prop. 4.3.1
======== (Xf̃)p =

Xpf̃ = v(f̃) = γ′(t)(f̃)
[6]p.69

====== (f̃ ◦ γ)′(t) = (f ◦ γ)′(t) = d
dt (f ◦ γ)(t). ♠

Proof. For simplicity, we prove the theorem for the case of vector fields along γ; the proof for arbitrary tensor
fields is essentially identical except for notation.

First we show uniqueness. Suppose Dt is such an operator, and let t0 ∈ I be arbitrary. An argument similar
to that of Lemma 4.2.2 shows that the value of DtV at t0 depends only on the values of V in any interval
(t0 − ε, t0 + ε) containing t0. (If t0 is an endpoint of I, extend γ to a slightly bigger open interval, prove the
lemma there, and then restrict back to I. If M has nonempty boundary, we can do this after first embedding
M into a smooth manifold M̃ without boundary and extending ∇ arbitrarily to a connection on M̃ .) Choose
smooth coordinates

(
xi
)

for M in a neighborhood of γ (t0), and write

V (t) = V j(t)∂j
∣∣
γ(t)

for t near t0, where V 1, . . . , V n are smooth real-valued functions defined on some neighborhood of t0 in I.
By the properties of Dt, since each ∂j is extendible,

DtV (t) = V̇ j(t)∂j

∣∣∣
γ(t)

+ V j(t)∇γ′(t)∂j
∣∣
γ(t)

=
(
V̇ k(t) + γ̇i(t)V j(t)Γkij(γ(t))

)
∂k

∣∣∣
γ(t)

.
(4.13)

We spare some sapce to explain above equation: We interpret ∂j as a vector field along γ. Namely,

∂j : I → TM

t 7→ ∂j |γ(t)

where
(
∂j |γ(t)

)
spans Tγ(t)M .

(DtV ) (t) = Dt

∑
j

V j∂j

 (t)
(i)
=

∑
j

Dt

(
V j∂j

)
(ii)
=

∑
j

V̇ j∂j + V jDt (∂j)

 (t)

Einstein summation
============ V̇ j(t)∂j(t) + V j(t)Dt (∂j) (t)

(iii)
= V̇ j(t)∂j

∣∣∣
γ(t)

+ V j(t)∇γ′(t)

(
∂̃j

)
∂j ∈ X(γ) is natrurally extended to the coordinate vector field in X(U) (see [6] p.176 Example 8.2), still
denoted as ∂j (i.e., ∂̃J = ∂j ). Let X be a vector field on a nieghborhood of the point p = γ(t) such that

Xp = γ′(t) = v ∈ TpM , and ∇γ′(t)

(
∂̃J

)
= ∇γ′(t) (∂j) = (∇X (∂j))p. Now,

∇X (∂j) =
(
X
(
(∂j)

k
)
+Xi (∂j)

m
Γkim

)
∂k = Xi (∂j)

m
Γkim∂k = XiΓkij∂k

where the k-th component funciton (∂j)
k is a constant funciton δkj and thus is evaluated by the vector field

X to be zero (see [6] p.180 and [6] 3.4(a)). Then,

∇γ′(t)

(
∂̃j

)
= (∇X (∂j))γ(t) =

(
XiΓkij∂k

)
γ(t)

= Xi(γ(t))Γkij(γ(t))∂k
∣∣
γ(t)

=
(
Xγ(t)

)i
Γkij(γ(t))∂k

∣∣∣
γ(t)

= γ̇i(t)Γkij(γ(t))∂k
∣∣
γ(t)
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where we notice that Xi,Γkij are all functions. Therefore,

(DtV ) (t) = V̇ j(t)∂j

∣∣∣
γ(t)

+ V j(t)∇γ′(t)

(
∂̃J

)
= V̇ j(t)∂j

∣∣∣
γ(t)

+ V j(t)γ̇i(t)Γkij(γ(t))∂k
∣∣
γ(t)

=
(
V̇ k(t) + V j(t)γ̇i(t)Γkij(γ(t))

)
∂k

∣∣∣
γ(t)

This shows that such an operator is unique if it exists. For existence, if γ(I) is contained in a single chart, we
can define DtV by (4.13); the easy verification that it satisfies the requisite properties is left as an exercise.
In the general case, we can cover γ(I) with coordinate charts and define DtV by this formula in each chart,
and uniqueness implies that the various definitions agree whenever two or more charts overlap. ■

(It is worth noting that in the physics literature, the covariant derivative along a curve is sometimes called
the absolute derivative.)

Exercise 4.4.4. Complete the proof of theorem by showing that the operatorDt defined in coordinates by (4.13)
satisfies properties (i)-(iii).

Apart from its use in proving existence of the covariant derivative along a curve, (4.13) also gives a practical
formula for computing such covariant derivatives in coordinates.

Now we can further improve proposition 4.2.5 by showing that ∇vY actually depends only on the values of
Y along any curve through p whose velocity is v.

Proposition 4.4.5. Let M be a smooth manifold with or without boundary, let ∇ be a connection in TM , and
let p ∈ M and v ∈ TpM . Suppose Y and Ỹ are two smooth vector fields that agree at points in the image of
some smooth curve γ : I →M such that γ (t0) = p and γ′ (t0) = v. Then ∇vY = ∇vỸ .

Proof. We can define a smooth vector field Z along γ by Z(t) = Yγ(t) = Ỹγ(t). Since both Y and Ỹ are
extensions of Z, it follows from condition (iii) in above theorem that both ∇vY and ∇vỸ are equal to
DtZ (t0). ■

4.5 Geodesics

Armed with the notion of covariant differentiation along curves, we can now define acceleration and geodesics.

Let M be a smooth manifold with or without boundary and let ∇ be a connection in TM . For every smooth
curve γ : I → M , we define the acceleration of γ to be the vector field Dtγ

′ along γ. A smooth curve γ is
called a geodesic (with respect to ∇) if its acceleration is zero: Dtγ

′ ≡ 0. In terms of smooth coordinates(
xi
)
, if we write the component functions of γ as γ(t) =

(
x1(t), . . . , xn(t)

)
, then it follows from (4.13) that

γ is a geodesic if and only if its component functions satisfy the following geodesic equation:

ẍk(t) + ẋi(t)ẋj(t)Γkij(x(t)) = 0, (4.14)

where we use x(t) as an abbreviation for the n-tuple of component functions
(
x1(t), . . . , xn(t)

)
. This is a

system of second-order ordinary differential equations (ODEs) for the real-valued functions x1, . . . , xn. The
next theorem uses ODE theory to prove existence and uniqueness of geodesics with suitable initial conditions.
(Because difficulties can arise when a geodesic starts on the boundary or later hits the boundary, we state
and prove this theorem only for manifolds without boundary.)

Theorem 4.5.1 (Existence and Uniqueness of Geodesics). Let M be a smooth manifold and ∇ a connection
in TM . For every p ∈M,w ∈ TpM , and t0 ∈ R, there exist an open interval I ⊆ R containing t0 and a geodesic
γ : I →M satisfying γ (t0) = p and γ′ (t0) = w. Any two such geodesics agree on their common domain.
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Proof. Let
(
xi
)

be smooth coordinates on some neighborhood U of p. A smooth curve in U , written as
γ(t) =

(
x1(t), . . . , xn(t)

)
, is a geodesic if and only if its component functions satisfy (4.14). The standard

trick for proving existence and uniqueness for such a second-order system is to introduce auxiliary variables
vi = ẋi to convert it to the following equivalent first-order system in twice the number of variables:

ẋk(t) = vk(t),

v̇k(t) = −vi(t)vj(t)Γkij(x(t)).
(4.15)

Treating
(
x1, . . . , xn, v1, . . . , vn

)
as coordinates on U × Rn, we can recognize (4.15) as the equations for the

flow of the vector field G ∈ X (U × Rn) given by

G(x,v) = vk
∂

∂xk

∣∣∣∣
(x,v)

− vivjΓkij(x)
∂

∂vk

∣∣∣∣
(x,v)

. (4.16)

By the fundamental theorem on flows 1.2.8, for each (p, w) ∈ U×Rn and t0 ∈ R, there exist an open interval
I0 containing t0 and a unique smooth solution ζ : I0 → U × Rn to this system satisfying the initial condition
ζ (t0) = (p, w). If we write the component functions of ζ as ζ(t) =

(
xi(t), vi(t)

)
, then we can easily check

that the curve γ(t) =
(
x1(t), . . . , xn(t)

)
in U satisfies the existence claim of the theorem.

To prove the uniqueness claim, suppose γ, γ̃ : I →M are both geodesics defined on some open interval with
γ (t0) = γ̃ (t0) and γ′ (t0) = γ̃′ (t0). In any local coordinates around γ (t0), we can define smooth curves
ζ, ζ̃ : (t0 − ε, t0 + ε) → U × Rn as above. These curves both satisfy the same initial value problem for the
system (4.15), so by the uniqueness of ODE solutions, they agree on (t0 − ε, t0 + ε) for some ε > 0. Suppose
for the sake of contradiction that γ(b) ̸= γ̃(b) for some b ∈ I. First suppose b > t0, and let β be the infimum
of numbers b ∈ I such that b > t0 and γ(b) ̸= γ̃(b) (Fig.4.4).

Figure 4.4: Uniqueness of geodesics

Then β ∈ I, and by continuity, γ(β) = γ̃(β) and γ′(β) = γ̃′(β). Applying local uniqueness in a neighborhood
of β, we conclude that γ and γ̃ agree on a neighborhood of β, which contradicts our choice of β. Arguing
similarly to the left of t0, we conclude that γ ≡ γ̃ on all of I. ■

A geodesic γ : I → M is said to be maximal if it cannot be extended to a geodesic on a larger interval, that
is, if there does not exist a geodesic γ̃ : Ĩ →M defined on an interval Ĩ properly containing I and satisfying
γ̃|I = γ. A geodesic segment is a geodesic whose domain is a compact interval.

Corollary 4.5.2. Let M be a smooth manifold and let∇ be a connection in TM . For each p ∈M and v ∈ TpM ,
there is a unique maximal geodesic γ : I → M with γ(0) = p and γ′(0) = v, defined on some open interval I
containing 0 .

Proof. Given p ∈ M and v ∈ TpM , let I be the union of all open intervals containing 0 on which there is a
geodesic with the given initial conditions. By Theorem 4.5.1 , all such geodesics agree where they overlap,
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so they define a geodesic γ : I → M , which is obviously the unique maximal geodesic with the given initial
conditions. ■

The unique maximal geodesic γ with γ(0) = p and γ′(0) = v is often called simply the geodesic with initial
point p and initial velocity v, and is denoted by γv. (For simplicity, we do not specify the initial point
p in the notation; it can implicitly be recovered from v by p = π(v), where π : TM → M is the natural
projection.)

4.6 Parallel Transport

Another construction involving covariant differentiation along curves that will be useful later is called parallel
transport. LetM be a smooth manifold with or without boundary and let∇ be a connection in TM . A smooth
vector or tensor field V along a smooth curve γ is said to be parallel along γ (with respect to ∇) if DtV ≡ 0
(Fig.4.5). Thus a geodesic can be characterized as a curve whose velocity vector field is parallel along the
curve.

Figure 4.5: A parallel vector field along a curve

The fundamental fact about parallel vector and tensor fields along curves is that every tangent vector or
tensor at any point on a curve can be uniquely extended to a parallel field along the entire curve. Before we
prove this claim, let us examine what the equation of parallelism looks like in coordinates. Given a smooth
curve γ with a local coordinate representation γ(t) =

(
γ1(t), . . . , γn(t)

)
, formula (4.13) shows that a vector

field V is parallel along γ if and only if

V̇ k(t) = −V j(t)γ̇i(t)Γkij(γ(t)), k = 1, . . . , n, (4.17)

with analogous expressions based on Proposition 4.3.5 for tensor fields of other types. In each case, this
is a system of first-order linear ordinary differential equations for the unknown coefficients of the vector
or tensor field-in the vector case, the functions

(
V 1(t), . . . , V n(t)

)
. The usual ODE theorem guarantees the

existence and uniqueness of a solution for a short time, given any initial values at t = t0; but since the
equation is linear, we can actually show much more: there exists a unique solution on the entire parameter
interval.

Theorem 4.6.1 (Existence, Uniqueness, and Smoothness for Linear ODEs). Let I ⊆ R be an open interval, and
for 1 ≤ j, k ≤ n, let Akj : I → R be smooth functions. For all t0 ∈ I and every initial vector

(
c1, . . . , cn

)
∈ Rn,

the linear initial value problem
V̇ k(t) = Akj (t)V

j(t)

V k (t0) = ck

has a unique smooth solution on all of I, and the solution depends smoothly on (t, c) ∈ I × Rn.
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Theorem 4.6.2 (Existence and Uniqueness of Parallel Transport). Suppose M is a smooth manifold with or
without boundary, and ∇ is a connection in TM . Given a smooth curve γ : I → M, t0 ∈ I, and a vector
v ∈ Tγ(t0)M or tensor v ∈ T (k,l)

(
Tγ(t)M

)
, there exists a unique parallel vector or tensor field V along γ such

that V (t0) = v.

Proof. As in the proof of Theorem 4.4.2, we carry out the proof for vector fields. The case of tensor fields
differs only in notation.

First suppose γ(I) is contained in a single coordinate chart. Then V is parallel along γ if and only if its com-
ponents satisfy the linear system of ODEs (4.17). Theorem 4.6.1 guarantees the existence and uniqueness of
a solution on all of I with any initial condition V (t0) = v.

Figure 4.6: Existence and uniqueness of parallel transports

Now suppose γ(I) is not covered by a single chart. Let β denote the supremum of all b > t0 for which a
unique parallel transport exists on [t0, b]. (The argument for t < t0 is similar.) We know that β > t0, since for
b close enough to t0, γ ([t0, b]) is contained in a single chart and the above argument applies. Then a unique
parallel transport V exists on [t0, β) (Fig.4.6). If β is equal to sup I, we are done. If not, choose smooth
coordinates on an open set containing γ(β− δ, β+ δ) for some positive δ. Then there exists a unique parallel
vector field Ṽ on (β−δ, β+δ) satisfying the initial condition Ṽ (β−δ/2) = V (β−δ/2). By uniqueness, V = Ṽ

on their common domain, and therefore Ṽ is a parallel extension of V past β, which is a contradiction. ■

The vector or tensor field whose existence and uniqueness are proved in Theorem 4.6.2 is called the parallel
transport of v along γ. For each t0, t1 ∈ I, we define a map

P γt0t1 : Tγ(t0)M → Tγ(t1)M,

called the parallel transport map, by setting P γt0t1(v) = V (t1) for each v ∈ Tγ(t0)M , where V is the parallel
transport of v along γ. This map is linear, because the equation of parallelism is linear. It is in fact an
isomorphism, because P γt1t0 is an inverse for it.

It is also useful to extend the parallel transport operation to curves that are merely piecewise smooth. Given
an admissible curve γ : [a, b] → M , a map V : [a, b] → TM such that V (t) ∈ Tγ(t)M for each t is called a
piecewise smooth vector field along γ if V is continuous and there is an admissible partition (a0, . . . , ak)
for γ such that V is smooth on each subinterval [ai−1, ai]. We will call any such partition an admissible
partition for V . A piecewise smooth vector field V along γ is said to be parallel along γ if DtV = 0
wherever V is smooth.
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Corollary 4.6.3 (Parallel Transport Along Piecewise Smooth Curves). Suppose M is a smooth manifold with
or without boundary, and ∇ is a connection in TM. Given an admissible curve γ : [a, b] → M and a vector
v ∈ Tγ(t0)M or tensor v ∈ T (k,l)

(
Tγ(t)M

)
, there exists a unique piecewise smooth parallel vector or tensor field

V along γ such that V (a) = v, and V is smooth wherever γ is.

Proof. Let (a0, . . . , ak) be an admissible partition for γ. First define V |[a0,a1] to be the parallel transport of v
along the first smooth segment γ|[a0,a1]; then define V |[a1,a2] to be the parallel transport of V (a1) along the
next smooth segment γ|[a1,a2]; and continue by induction. ■

Here is an extremely useful tool for working with parallel transport. Given any basis (b1, . . . , bn) for Tγ(t0)M ,
we can parallel transport the vectors bi along γ, thus obtaining an n-tuple of parallel vector fields (E1, . . . , En)
along γ. Because each parallel transport map is an isomorphism, the vectors (Ei(t)) form a basis for Tγ(t)M
at each point γ(t). Such an n-tuple of vector fields along γ is called a parallel frame along γ. Every smooth
(or piecewise smooth) vector field along γ can be expressed in terms of such a frame as V (t) = V i(t)Ei(t),
and then the properties of covariant derivatives along curves, together with the fact that the Ei ’s are parallel,
imply

DtV (t) = V̇ i(t)Ei(t) (4.18)

wherever V and γ are smooth. This means that a vector field is parallel along γ if and only if its component
functions with respect to the frame (Ei) are constants.

The parallel transport map is the means by which a connection ”connects” nearby tangent spaces. The next
theorem and its corollary show that parallel transport determines covariant differentiation along curves, and
thereby the connection itself.

Theorem 4.6.4 (Parallel Transport Determines Covariant Differentiation). Let M be a smooth manifold with
or without boundary, and let ∇ be a connection in TM. Suppose γ : I →M is a smooth curve and V is a smooth
vector field along γ. For each t0 ∈ I,

DtV (t0) = lim
t1→t0

P γt1t0V (t1)− V (t0)

t1 − t0
. (4.19)

Proof. Let (Ei) be a parallel frame along γ, and write V (t) = V i(t)Ei(t) for t ∈ I. On the one hand, (4.18)
shows that DtV (t0) = V̇ i (t0)Ei (t0).

On the other hand, for every fixed t1 ∈ I, the parallel transport of the vector V (t1) along γ is the constant-
coefficient vector field W (t) = V i (t1)Ei(t) along γ, so P γt1t0V (t1) = V i (t1)Ei (t0). Inserting these formulas
into (4.19) and taking the limit as t1 → t0, we conclude that the right-hand side is also equal to V̇ i (t0)Ei (t0).

■

Corollary 4.6.5 (Parallel Transport Determines the Connection). Let M be a smooth manifold with or without
boundary, and let ∇ be a connection in TM . Suppose X and Y are smooth vector fields on M . For every p ∈M ,

∇XY |p = lim
h→0

P γh0Yγ(h) − Yp
h

(4.20)

where γ : I →M is any smooth curve such that γ(0) = p and γ′(0) = Xp.

Proof. Given p ∈M and a smooth curve γ such that γ(0) = p and γ′(0) = Xp, let V (t) denote the vector field
along γ determined by Y , so V (t) = Yγ(t). By property (iii) of Theorem 4.4.2, ∇XY |p is equal to DtV (0), so
the result follows from Theorem 4.6.4. ■

A smooth vector or tensor field on M is said to be parallel (with respect to ∇) if it is parallel along every
smooth curve in M .
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Proposition 4.6.6. Suppose M is a smooth manifold with or without boundary, ∇ is a connection in TM , and
A is a smooth vector or tensor field on M . Then A is parallel on M if and only if ∇A ≡ 0.

Proof. [7] Problem 4-12. ■

Although Theorem 4.6.2 showed that it is always possible to extend a vector at a point to a parallel vector
field along any given curve, it may not be possible in general to extend it to a parallel vector field on an
open subset of the manifold. The impossibility of finding such extensions is intimately connected with the
phenomenon of curvature, which will occupy a major portion of our attention in the second half of the book.

4.7 Pullback Connections

Like vector fields, connections in the tangent bundle cannot be either pushed forward or pulled back by
arbitrary smooth maps. However, there is a natural way to pull back such connections by means of a diffeo-
morphism. In this section we define this operation and enumerate some of its most important properties.

Suppose M and M̃ are smooth manifolds and φ : M → M̃ is a diffeomorphism. For a smooth vector
field X ∈ X(M), recall that the pushforward of X is the unique vector field φ∗X ∈ X(M̃) that satisfies
dφp (Xp) = (φ∗X)φ(p) for all p ∈M . (see [6] p.182-183)

Lemma 4.7.1 (Pullback Connections). Suppose M and M̃ are smooth manifolds with or without boundary. If
∇̃ is a connection in TM̃ and φ : M → M̃ is a diffeomorphism, then the map φ∗∇̃ : X(M) × X(M) → X(M)
defined by (

φ∗∇̃
)
X
Y =

(
φ−1

)
∗

(
∇̃φ∗X (φ∗Y )

)
(4.21)

is a connection in TM , called the pullback of ∇̃ by φ.

Proof. It is immediate from the definition that
(
φ∗∇̃

)
X
Y is linear over R in Y . To see that it is linear over

C∞(M) in X, let f ∈ C∞(M), and let f̃ = f ◦ φ−1, so φ∗(fX) = f̃φ∗X. Then(
φ∗∇̃

)
fX

Y =
(
φ−1

)
∗

(
∇̃f̃φ∗X

(φ∗Y )
)

=
(
φ−1

)
∗

(
f̃∇̃φ∗X (φ∗Y )

)
= f

(
φ∗∇̃

)
X
Y.

Finally, to prove the product rule in Y , let f and f̃ be as above, and note that an easy result [7] A.7 implies
(φ∗X) (f̃) = (Xf) ◦ φ−1. Thus(

φ∗∇̃
)
X
(fY ) =

(
φ−1

)
∗

(
∇̃φ∗X

(
f̃φ∗Y

))
=
(
φ−1

)
∗

(
f̃∇̃φ∗X (φ∗Y ) + (φ∗X) (f̃)φ∗Y

)
= f

(
φ∗∇̃

)
X
Y + (Xf)Y.

■

The next proposition shows that various important concepts defined in terms of connections-covariant deriva-
tives along curves, parallel transport, and geodesics all behave as expected with respect to pullback connec-
tions.
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Proposition 4.7.2 (Properties of Pullback Connections). Suppose M and M̃ are smooth manifolds with or
without boundary, and φ : M → M̃ is a diffeomorphism. Let ∇̃ be a connection in TM̃ and let ∇ = φ∗∇̃ be
the pullback connection in TM . Suppose γ : I → M is a smooth curve. (a) φ takes covariant derivatives along
curves to covariant derivatives along curves: if V is a smooth vector field along γ, then

dφ ◦DtV = D̃t(dφ ◦ V ),

where Dt is covariant differentiation along γ with respect to ∇, and D̃t is covariant differentiation along φ ◦ γ
with respect to ∇̃. (b) φ takes geodesics to geodesics: if γ is a ∇-geodesic in M , then φ ◦ γ is a ∇̃-geodesic in M̃ .
(c) φ takes parallel transport to parallel transport: for every t0, t1 ∈ I,

dφγ(t1) ◦ P
γ
t0t1 = Pφ◦γt0t1 ◦ dφγ(t0).

Proof. [7] Problem 4-13. ■

4.8 Problems

Exercise 4.8.1. ( [7] Problem 4-6) Let M be a smooth manifold and let ∇ be a connection in TM . Define a
map τ : X(M)× X(M)→ X(M) by

τ(X,Y ) = ∇XY −∇YX − [X,Y ].

(a) Show that τ is a (1, 2)-tensor field, called the torsion tensor of ∇.

(b) We say that ∇ is symmetric if its torsion vanishes identically. Show that ∇ is symmetric if and only if its
connection coefficients with respect to every coordinate frame are symmetric: Γkij = Γkji. [Warning: They might
not be symmetric with respect to other frames.]

(c) Show that ∇ is symmetric if and only if the covariant Hessian ∇2u of every smooth function u ∈ C∞(M) is
a symmetric 2-tensor field.

(d) Show that the Euclidean connection ∇̄ on Rn is symmetric.

Solution. (a) To show τ is a (1, 2)-tensor field, we will need to use tensor characterization lemma. That is,
we need to show T is multilinear over C∞(M). τ(X + Y, Z) = τ(X,Z) + τ(Y,Z) is clear. Let f ∈ C∞(M).

τ(fX, Y ) = ∇fXY −∇Y fX − [fX, Y ]

[LeeSM] prop.8.28
============ ∇fXY −∇Y fX − (f [X,Y ]− (Y f)X)

∇ a connection
========== f∇XY − (f∇YX + (Y f)X)− (f [X,Y ]− (Y f)X)

= f∇XY − f∇YX − f [X,Y ]

= fT (X,Y )

(b) Eq (4.3) gives

∇XY −∇YX =
(
X(Y k) +XiY jΓkij

)
∂k −

(
Y (Xk) + Y jXiΓkji

)
∂k

[LeeSM] eq.(8.9)
=========== [X,Y ] +

(
XiY jΓkij − Y jXiΓkji

)
∂k

= [X,Y ] +XiY j(Γkij − Γkji)∂k

Thus, for τ(X,Y ) to be zero for all X and Y , we must have Γkij = Γkji. To verify this, note that the torsion
tensor τ is determined by

τ(∂i, ∂j) = ∇∂i∂j −∇∂j∂i − [∂i, ∂j ] = (Γkij − Γkji)∂k.
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(where [∂i, ∂j ] = 0 is by [LeeSM] eq.(8.10); note that the result thus relies on this particular frame). Since
the torsion tensor vanishes if and only if Γkij = Γkji, we conclude that:

τ(X,Y ) = 0 ⇐⇒ Γkij = Γkji.

(c)

This is easy: for any smooth function u on M ,

∇2u(Y,X)−∇2u(X,Y ) = Y (Xu)− (∇YX)u−X(Y u) + (∇XY )u

= [Y,X]u+ (∇XY −∇XY )u

= τ(X,Y )u

♦

Exercise 4.8.2. ( [7] Problem 4-9) Let M be a smooth manifold, and let ∇0 and ∇1 be two connections on
TM .

(a) Show that ∇0 and ∇1 have the same torsion (4.8.1) if and only if their difference tensor is symmetric, i.e.,
D(X,Y ) = D(Y,X) for all X and Y .

(b) Show that ∇0 and ∇1 determine the same geodesics if and only if their difference tensor is antisymmetric,
i.e., D(X,Y ) = −D(Y,X) for all X and Y .
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Chapter 5

The Levi-Civita Connection

5.1 The Tangential Connection Revisited

We are eventually going to show that on each Riemannian manifold there is a natural connection that is
particularly well suited to computations in Riemannian geometry. Since we get most of our intuition about
Riemannian manifolds from studying submanifolds of Rn with the induced metric, let us start by examining
that case.

Let M ⊆ Rn be an embedded submanifold. A geodesic in M should be “as straight as possible.” A reasonable
way to make this rigorous is to require that the geodesic have no acceleration in directions tangent to the
manifold, or in other words that its acceleration vector have zero orthogonal projection onto TM .

The tangential connection∇⊤
X(Y ) = π⊤

(
∇X̃ Ỹ |M

)
defined in Example 4.2.10 is perfectly suited to this task,

because it computes covariant derivatives on M by taking ordinary derivatives in Rn and projecting them
orthogonally to TM .

It is easy to compute covariant derivatives along curves in M with respect to the tangential connection.
Suppose γ : I → M is a smooth curve. Then γ can be regarded as either a smooth curve in M or a smooth
curve in Rn, and a smooth vector field V along γ that takes its values in TM can be regarded as either a
vector field along γ in M or a vector field along γ in Rn. Let DtV denote the covariant derivative of V along
γ (as a curve in Rn) with respect to the Euclidean connection∇, and let D⊤

t V denote its covariant derivative
along γ (as a curve in M) with respect to the tangential connection ∇⊤. [7] Proposition 5.1 shows a simple
relationship between them: ∀t ∈ I, D⊤

t V (t) = π⊤(DtV (t)). Via plugging the zero connection coefficients of
the Euclidean connection on Rn into (4.13), we see that Dtγ

′(t) = γ′′(t). Thus, the smooth curve γ : I →M
is a geodesic with respect to the tangential connection on M if and only if its ordinary acceleration γ′′(t) is
orthogonal to Tγ(t)M for all t ∈ I.

Analogs for embedded Riemannian or pseudo-Riemannian manifolds in pseudo-Euclidean space Rr,s are
provided in [7] p.117 as well.

5.2 Connections on Abstract Riemannian Manifolds

There is a celebrated (and hard) theorem of John Nash that says that every Riemannian metric on a smooth
manifold can be realized as the induced metric of some embedding in a Euclidean space. That theorem
was later generalized independently by Robert Greene and Chris J. S. Clarke to pseudo-Riemannian metrics.
Thus, in a certain sense, we would lose no generality by studying only submanifolds of Euclidean and pseudo-
Euclidean spaces with their induced metrics, for which the tangential connection would suffice. However,
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when we are trying to understand intrinsic properties of a Riemannian manifold, an embedding introduces a
great deal of extraneous information, and in some cases actually makes it harder to discern which geometric
properties depend only on the metric. Our task in this chapter is to distinguish some important properties of
the tangential connection that make sense for connections on an abstract Riemannian or pseudo-Riemannian
manifold, and to use them to single out a unique connection in the abstract case.

5.2.1 Metric Connections

The Euclidean connection on Rn has one very nice property with respect to the Euclidean metric: it satisfies
the product rule

∇X⟨Y,Z⟩ =
〈
∇XY,Z

〉
+
〈
Y,∇XZ

〉
, (5.1)

as you can verify easily by computing in terms of the standard basis. (In this formula, the left-hand side
represents the covariant derivative of the real-valued function ⟨Y,Z⟩ regarded as a (0, 0)-tensor field, which
is really just X⟨Y,Z⟩ by virtue of property (ii) of Prop. 4.3.1.) The Euclidean connection has the same
property with respect to the pseudo-Euclidean metric on Rr,s. It is almost immediate that the tangential
connection on a Riemannian or pseudo-Riemannian submanifold satisfies the same product rule, if we now
interpret all the vector fields as being tangent to M and interpret the inner products as being taken with
respect to the induced metric on M (see Prop. 5.2.3 below).

This property makes sense on an abstract Riemannian or pseudo-Riemannian manifold. Let g be a Rieman-
nian or pseudo-Riemannian metric on a smooth manifold M (with or without boundary). A connection ∇
on TM is said to be compatible with g, or to be a metric connection, if it satisfies the following product
rule for all X,Y, Z ∈ X(M) :

∇X⟨Y,Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩ .

The next proposition gives several alternative characterizations of compatibility with a metric, any one of
which could be used as the definition.

Proposition 5.2.1 (Characterizations of Metric Connections). Let (M, g) be a Riemannian or pseudo-Riemannian
manifold (with or without boundary), and let ∇ be a connection on TM . The following conditions are equiva-
lent:

(a) ∇ is compatible with g : ∇X⟨Y,Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩.

(b) g is parallel with respect to ∇ : ∇g ≡ 0.

(c) In terms of any smooth local frame (Ei), the connection coefficients of ∇ satisfy

Γlkiglj + Γlkjgil = Ek (gij) . (5.2)

(d) If V,W are smooth vector fields along any smooth curve γ, then

d

dt
⟨V,W ⟩ = ⟨DtV,W ⟩+ ⟨V,DtW ⟩ . (5.3)

(e) If V,W are parallel vector fields along a smooth curve γ in M , then ⟨V,W ⟩ is constant along γ.

(f) Given any smooth curve γ in M , every parallel transport map along γ is a linear isometry.

(g) Given any smooth curve γ in M , every orthonormal basis at a point of γ can be extended to a parallel
orthonormal frame along γ.

Proof. First we prove (a)⇔ (b). By (4.7) and (4.4), the total covariant derivative of the symmetric 2-tensor
g is given by

(∇g)(Y, Z,X) = (∇Xg) (Y, Z) = X(g(Y, Z))− g (∇XY, Z)− g (Y,∇XZ) .
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This is zero for all X,Y, Z if and only if (5.1) is satisfied for all X,Y, Z. To prove (b) ⇔ (c), note that
Proposition 4.3.5 shows that the components of ∇g in terms of a smooth local frame (Ei) are

gij;k = Ek (gij)− Γlkiglj − Γlkjgil.

These are all zero if and only if (5.2) is satisfied. Next we prove (a) ⇔ (d). Assume (a), and let V,W be
smooth vector fields along a smooth curve γ : I → M . Given t0 ∈ I, in a neighborhood of γ (t0) we may
choose coordinates

(
xi
)

and write V = V i∂i and W = W j∂j for some smooth functions V i,W j(t0 − ε, t0 +
ε)→ R. Applying (5.1) to the extendible vector fields ∂i, ∂j , we obtain

d

dt
⟨V,W ⟩ = d

dt

(
V iW j ⟨∂i, ∂j⟩

)
=
(
V̇ iW j + V iẆ j

)
⟨∂i, ∂j⟩+ V iW j

(〈
∇γ′(t)∂i, ∂j

〉
+
〈
∂i,∇γ′(t)∂j

〉)
= ⟨DtV,W ⟩+ ⟨V,DtW ⟩ ,

which proves (d). Conversely, if (d) holds, then in particular it holds for extendible vector fields along γ,
and then (a) follows from part (iii) of Theorem 4.4.2.

Now we will prove (d)⇒ (e)⇒ (f)⇒ (g)⇒ (d). Assume first that (d) holds. If V and W are parallel along
γ, then (5.3) shows that ⟨V,W ⟩ has zero derivative with respect to t, so it is constant along γ.

Now assume (e). Let v0, w0 be arbitrary vectors in Tγ(t0)M , and let V,W be their parallel transports along
γ, so that V (t0) = v0,W (t0) = w0, P

γ
t0t1v0 = V (t1), and P γt0t1w0 = W (t1). Because ⟨V,W ⟩ is constant

along γ, it follows that
〈
P γt0t1v0, P

γ
t0t1w0

〉
= ⟨V (t1) ,W (t1)⟩ = ⟨V (t0) ,W (t0)⟩ = ⟨v0, w0⟩, so P γt0t1 is a linear

isometry.

Next, assuming (f), we suppose γ : I → M is a smooth curve and (bi) is an orthonormal basis for Tγ(t0)M ,
for some t0 ∈ I. We can extend each bi by parallel transport to obtain a smooth parallel vector field Ei along
γ, and the assumption that parallel transport is a linear isometry guarantees that the resulting n-tuple (Ei)
is an orthonormal frame at all points of γ.

Finally, assume that (g) holds, and let (Ei) be a parallel orthonormal frame along γ. Given smooth vector
fields V and W along γ, we can express them in terms of this frame as V = V iEi and W = W jEj . The fact
that the frame is orthonormal means that the metric coefficients gij = ⟨Ei, Ej⟩ are constants along γ(±1 or 0
), and the fact that it is parallel means that DtV = V̇ iEi and DtW = Ẇ iEi. Thus both sides of (5.3) reduce
to the following expression:

gij

(
V̇ iW j + V iẆ j

)
.

This proves (d). ■

Corollary 5.2.2. Suppose (M, g) is a Riemannian or pseudo-Riemannian manifold with or without boundary,
∇ is a metric connection on M , and γ : I →M is a smooth curve.

(a) |γ′(t)| is constant if and only if Dtγ
′(t) is orthogonal to γ′(t) for all t ∈ I.

(b) If γ is a geodesic, then |γ′(t)| is a constant.

Proof. Let V (t) =W (t) = γ′(t) in proposition 5.2.1(d). ■

Proposition 5.2.3. If M is an embedded Riemannian or pseudo-Riemannian submanifold of Rn or Rr,s, the
tangential connection on M is compatible with the induced Riemannian or pseudo-Riemannian metric.
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Proof. We will show that ∇⊤ satisfies (5.1). Suppose X,Y, Z ∈ X(M), and let X̃, Ỹ , Z̃ be smooth extensions
of them to an open subset of Rn or Rr,s. At points of M , we have

∇⊤
X⟨Y,Z⟩ = X⟨Y, Z⟩ = X̃⟨Ỹ , Z̃⟩

= ∇X̃⟨Ỹ , Z̃⟩

=
〈
∇X̃ Ỹ , Z̃

〉
+
〈
Ỹ ,∇X̃ Z̃

〉
=
〈
π⊤
(
∇X̃ Ỹ

)
, Z̃
〉
+
〈
Ỹ , π⊤

(
∇X̃ Z̃

)〉
=
〈
∇⊤
XY,Z

〉
+
〈
Y,∇⊤

XZ
〉
,

where the next-to-last equality follows from the fact that Z̃ and Ỹ are tangent to M . ■

5.2.2 Symmetric Connections

It turns out that every abstract Riemannian or pseudo-Riemannian manifold admits many different metric
connections (see [7] Problem 5-1), so requiring compatibility with the metric is not sufficient to pin down
a unique connection on such a manifold. To do so, we turn to another key property of the tangential
connection. Recall the definition of the Euclidean connection. The expression on the right-hand side of that
definition is reminiscent of part of the coordinate expression for the Lie bracket:

[X,Y ] = X
(
Y i
) ∂

∂xi
− Y

(
Xi
) ∂

∂xi
.

In fact, the two terms in the Lie bracket formula are exactly the coordinate expressions for ∇XY and ∇YX.
Therefore, the Euclidean connection satisfies the following identity for all smooth vector fields X,Y :

∇XY −∇YX = [X,Y ].

This expression has the virtue that it is coordinate-independent and makes sense for every connection on the
tangent bundle. We say that a connection ∇ on the tangent bundle of a smooth manifold M is symmetric if

∇XY −∇YX ≡ [X,Y ] for all X,Y ∈ X(M).

The symmetry condition can also be expressed in terms of the torsion tensor of the connection, which was
introduced in Problem 4.8.1; this is the smooth (1, 2)-tensor field τ : X(M)× X(M)→ X(M) defined by

τ(X,Y ) = ∇XY −∇YX − [X,Y ].

Thus a connection ∇ is symmetric if and only if its torsion vanishes identically. It follows from the result of
Problem 4.8.1 that a connection is symmetric if and only if its connection coefficients in every coordinate
frame satisfy Γkij = Γkji; this is the origin of the term ”symmetric.”

Proposition 5.2.4. IfM is an embedded (pseudo-)Riemannian submanifold of a (pseudo-)Euclidean space, then
the tangential connection on M is symmetric.

Proof. Let M be an embedded Riemannian or pseudo-Riemannian submanifold of Rn, where Rn is endowed
either with the Euclidean metric or with a pseudoEuclidean metric q(r,s), r + s = n. Let X,Y ∈ X(M), and
let X̃, Ỹ be smooth extensions of them to an open subset of the ambient space. If ι :M ↪→ Rn represents the
inclusion map, it follows that X and Y are ι-related to X̃ and Ỹ , respectively, and thus by the naturality of
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the Lie bracket ( [7] Prop. A.39), [X,Y ] is ι-related to [X̃, Ỹ ]. In particular, [X̃, Ỹ ] is tangent to M , and its
restriction to M is equal to [X,Y ]. Therefore,

∇⊤
XY −∇⊤

YX = π⊤
(
∇X̃ Ỹ

∣∣∣
M
− ∇Ỹ X̃

∣∣∣
M

)
= π⊤

(
[X̃, Ỹ ]

∣∣∣
M

)
= [X̃, Ỹ ]

∣∣∣
M

= [X,Y ].

■

The last two propositions show that if we wish to single out a connection on each Riemannian or pseudo-
Riemannian manifold in such a way that it matches the tangential connection when the manifold is presented
as an embedded submanifold of Rn or Rr,s with the induced metric, then we must require at least that the
connection be compatible with the metric and symmetric. It is a pleasant fact that these two conditions are
enough to determine a unique connection.

Theorem 5.2.5 (Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian or pseudo-
Riemannian manifold (with or without boundary). There exists a unique connection∇ on TM that is compatible
with g and symmetric. It is called the Levi-Civita connection of g (or also, when g is positive definite, the
Riemannian connection).

Proof. We prove uniqueness first, by deriving a formula for ∇. Suppose, therefore, that ∇ is such a con-
nection, and let X,Y, Z ∈ X(M). Writing the compatibility equation three times with X,Y, Z cyclically
permuted, we obtain

X⟨Y,Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩
Y ⟨Z,X⟩ = ⟨∇Y Z,X⟩+ ⟨Z,∇YX⟩
Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇ZY ⟩

Using the symmetry condition on the last term in each line, this can be rewritten as

X⟨Y, Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇ZX⟩+ ⟨Y, [X,Z]⟩
Y ⟨Z,X⟩ = ⟨∇Y Z,X⟩+ ⟨Z,∇XY ⟩+ ⟨Z, [Y,X]⟩
Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇Y Z⟩+ ⟨X, [Z, Y ]⟩

Adding the first two of these equations and subtracting the third, we obtain

X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩ = 2 ⟨∇XY, Z⟩+ ⟨Y, [X,Z]⟩+ ⟨Z, [Y,X]⟩ − ⟨X, [Z, Y ]⟩.

Finally, solving for ⟨∇XY,Z⟩, we get

⟨∇XY,Z⟩ =
1

2
(X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩ − ⟨Y, [X,Z]⟩ − ⟨Z, [Y,X]⟩+ ⟨X, [Z, Y ]⟩). (5.4)

Now suppose ∇1 and ∇2 are two connections on TM that are symmetric and compatible with g. Since the
right-hand side of (5.4) does not depend on the connection, it follows that

〈
∇1
XY −∇2

XY,Z
〉
= 0 for all

X,Y, Z. This can happen only if ∇1
XY = ∇2

XY for all X and Y , so ∇1 = ∇2.

To prove existence, we use (5.4), or rather a coordinate version of it. It suffices to prove that such a
connection exists in each coordinate chart, for then uniqueness ensures that the connections in different
charts agree where they overlap.
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Let
(
U,
(
xi
))

be any smooth local coordinate chart. Applying (5.4) to the coordinate vector fields, whose Lie
brackets are zero, we obtain

⟨∇∂i∂j , ∂l⟩ =
1

2
(∂i ⟨∂j , ∂l⟩+ ∂j ⟨∂l, ∂i⟩ − ∂l ⟨∂i, ∂j⟩) . (5.5)

Recall the definitions of the metric coefficients and the connection coefficients:

gij = ⟨∂i, ∂j⟩ , ∇∂i∂j = Γmij∂m.

Inserting these into (5.5) yields

Γmij gml =
1

2
(∂igjl + ∂jgil − ∂lgij) . (5.6)

Finally, multiplying both sides by the inverse matrix gkl and noting that gmlgkl = δkm, we get

Γkij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) . (5.7)

This formula certainly defines a connection in each chart, and it is evident from the formula that Γkij = Γkji,
so the connection is symmetric by Problem 4.8.1(b). Thus only compatibility with the metric needs to be
checked. Using (5.6) twice, we get

Γlkiglj + Γlkjgil =
1

2
(∂kgij + ∂igkj − ∂jgki) +

1

2
(∂kgji + ∂jgki − ∂igkj)

= ∂kgij

By Proposition 5.2.1 (c), this shows that ∇ is compatible with g. ■

A bonus of this proof is that it gives us explicit formulas that can be used for computing the Levi-Civita
connection in various circumstances.

Corollary 5.2.6 (Formulas for the Levi-Civita Connection). Let (M, g) be a Riemannian or pseudo-Riemannian
manifold (with or without boundary), and let ∇ be its Levi-Civita connection.

(a) IN TERMS OF VECTOR FIELDS: If X,Y, Z are smooth vector fields on M , then

⟨∇XY,Z⟩ =
1

2
(X⟨Y,Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩

− ⟨Y, [X,Z]⟩ − ⟨Z, [Y,X]⟩+ ⟨X, [Z, Y ]⟩)
(5.8)

(This is known as Koszul’s formula.)

(b) IN COORDINATES: In any smooth coordinate chart for M , the coefficients of the Levi-Civita connection
are given by

Γkij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) . (5.9)

(c) IN A LOCAL FRAME: Let (Ei) be a smooth local frame on an open subset U ⊆ M , and let ckij : U → R be
the n3 smooth functions defined by

[Ei, Ej ] = ckijEk. (5.10)

Then the coefficients of the Levi-Civita connection in this frame are

Γkij =
1

2
gkl
(
Eigjl + Ejgil − Elgij − gjmcmil − glmcmji + gimc

m
lj

)
. (5.11)
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(d) IN A LOCAL ORTHONORMAL FRAME: If g is Riemannian, (Ei) is a smooth local orthonormal frame, and
the functions ckij are defined by (5.11), then

Γkij =
1

2

(
ckij − c

j
ik − c

i
jk

)
. (5.12)

Proof. We derived (5.8) and (5.9) in the proof of Theorem 5.2.5. To prove (5.11), apply formula (5.8) with
X = Ei, Y = Ej , and Z = El, to obtain

Γqijgql = ⟨∇Ei
Ej , El⟩

=
1

2

(
Eigjl + Ejgil − Elgij − gjmcmil − glmcmji + gimc

m
lj

)
.

Multiplying both sides by gkl and simplifying yields (5.11). Finally, under the hypotheses of (d), we have
gij = δij , so (5.11) reduces to (5.12) after rearranging and using the fact that ckij is antisymmetric in i, j. ■

On every Riemannian or pseudo-Riemannian manifold, we will always use the Levi-Civita connection from
now on without further comment. Geodesics with respect to this connection are called Riemannian (or
pseudo-Riemannian) geodesics, or simply ”geodesics” as long as there is no risk of confusion. The connec-
tion coefficients Γkij of the Levi-Civita connection in coordinates, given by (5.9), are called the Christoffel
symbols of g.

The next proposition shows that these connections are familiar ones in the case of embedded submanifolds
of Euclidean or pseudo-Euclidean spaces.

Proposition 5.2.7.

(a) The Levi-Civita connection on a (pseudo-)Euclidean space is equal to the Euclidean connection.

(b) Suppose M is an embedded (pseudo-)Riemannian submanifold of a (pseudo-)Euclidean space. Then the
Levi-Civita connection on M is equal to the tangential connection ∇⊤.

Proof. We observed earlier in this chapter that the Euclidean connection is symmetric and compatible with
both the Euclidean metric g and the pseudo-Euclidean metrics q(r,s), which implies (a). Part (b) then follows
from Propositions 5.2.3 and 5.2.4. ■

An important consequence of the definition is that because Levi-Civita connections are defined in coordinate-
independent terms, they behave well with respect to isometries. Recall the definition of the pullback of a
connection (see Lemma 4.7.1).

Proposition 5.2.8 (Naturality of the Levi-Civita Connection). Suppose (M, g) and (M̃, g̃) are Riemannian or
pseudo-Riemannian manifolds with or without boundary, and let ∇ denote the Levi-Civita connection of g and
∇̃ that of g̃. If φ :M → M̃ is an isometry, then φ∗∇̃ = ∇.

Proof. By uniqueness of the Levi-Civita connection, it suffices to show that the pullback connection φ∗∇̃ is
symmetric and compatible with g. The fact that φ is an isometry means that for any X,Y ∈ X(M) and
p ∈M ,

⟨Yp, Zp⟩ = ⟨dφp (Yp) , dφp (Zp)⟩ =
〈
(φ∗Y )φ(p) , (φ∗Z)φ(p)

〉
,
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where φ∗Y is a vector field, called the pushforward of Y by φ; see [6] p.183. In other words, ⟨Y, Z⟩ =
⟨φ∗Y, φ∗Z⟩ ◦ φ. Therefore,

X⟨Y,Z⟩ = X (⟨φ∗Y, φ∗Z⟩ ◦ φ)
[6]Cor.8.21

======== ((φ∗X) ⟨φ∗Y, φ∗Z⟩) ◦ φ
∇̃ a metric conn.
===========

(〈
∇̃φ∗X (φ∗Y ) , φ∗Z

〉
+
〈
φ∗Y, ∇̃φ∗X (φ∗Z)

〉)
◦ φ

see below
=======

〈(
φ−1

)
∗ ∇̃φ∗X (φ∗Y ) , Z

〉
+
〈
Y,
(
φ−1

)
∗ ∇̃φ∗X (φ∗Z)

〉
(4.21)
=====

〈(
φ∗∇̃

)
X
Y, Z

〉
+
〈
Y,
(
φ∗∇̃

)
X
Z
〉
,

which shows that the pullback connection is compatible with g. The fourth equality is true in the same man-
ner as ⟨Y, Z⟩ = ⟨φ∗Y, φ∗Z⟩◦φ. Specifically,

〈
φ∗

((
φ−1

)
∗ ∇̃φ∗X (φ∗Y )

)
, φ∗Z

〉
◦φ =

〈(
φ−1

)
∗ ∇̃φ∗X (φ∗Y ) , Z

〉
.

Symmetry of the pullback connection is proved as follows:(
φ∗∇̃

)
X
Y −

(
φ∗∇̃

)
Y
X

(4.21)
=====

(
φ−1

)
∗

(
∇̃φ∗X (φ∗Y )− ∇̃φ∗Y (φ∗X)

)
∇̃ a sym. conn.
==========

(
φ−1

)
∗ [φ∗X,φ∗Y ]

= [X,Y ]

■

Corollary 5.2.9 (Naturality of Geodesics). Suppose (M, g) and (M̃, g̃) are Riemannian or pseudo-Riemannian
manifolds with or without boundary, and φ : M → M̃ is a local isometry. If γ is a geodesic in M , then φ ◦ γ is
a geodesic in M̃ .

Proof. This is an immediate consequence of Proposition 4.7.2, together with the fact that being a geodesic is
a local property. ■

Like every connection on the tangent bundle, the Levi-Civita connection induces connections on all tensor
bundles.

Proposition 5.2.10. Suppose (M, g) is a Riemannian or pseudo-Riemannian manifold. The connection induced
on each tensor bundle by the Levi-Civita connection is compatible with the induced inner product on tensors, in
the sense that X⟨F,G⟩ = ⟨∇XF,G⟩+ ⟨F,∇XG⟩ for every vector field X and every pair of smooth tensor fields
F,G ∈ Γ

(
T (k,l)TM

)
.

Proof. Since every tensor field can be written as a sum of tensor products of vector and/or covector fields,
it suffices to consider the case in which F = α1 ⊗ · · · ⊗ αk+l and G = β1 ⊗ · · · ⊗ βk+l, where αi and βi are
covariant or contravariant 1-tensor fields, as appropriate. In this case, the formula follows from (2.17) by a
routine computation. ■

Proposition 5.2.11. Let (M, g) be an oriented Riemannian manifold. The Riemannian volume form of g is
parallel with respect to the Levi-Civita connection.

Proof. Let p ∈ M and v ∈ TpM be arbitrary, and let γ : (−ε, ε) → M be a smooth curve satisfying γ(0) = p
and γ′(0) = v. Let (E1, . . . , En) be a parallel oriented orthonormal frame along γ. Since dVg (E1, . . . , En) ≡ 1
and DtEi ≡ 0 along γ, formula (4.4) shows that ∇v (dVg) = Dt (dVg)|t=0 = 0. ■
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Proposition 5.2.12. The musical isomorphisms commute with the total covariant derivative operator: if F is
any smooth tensor field with a contravariant ith index position, and b represents the operation of lowering the i
th index, then

∇
(
F ♭
)
= (∇F )♭. (5.13)

Similarly, if G has a covariant ith position and ♯ denotes raising the ith index, then

∇
(
G♯
)
= (∇G)♯. (5.14)

Proof. The discussion on subsection 2.3.1 shows that F ♭ = tr(F ⊗ g), where the trace is taken on the i th
and last indices of F ⊗ g. Because g is parallel, for every vector field X we have ∇X(F ⊗ g) = (∇XF ) ⊗ g.
Because ∇X commutes with traces, therefore,

∇X
(
F ♭
)
= ∇X(tr(F ⊗ g)) = tr ((∇XF )⊗ g) = (∇XF )♭ .

This shows that when X is inserted into the last index position on both sides of (5.13), the results are equal.
Since X is arbitrary, this proves (5.13). Because the sharp and flat operators are inverses of each other when
applied to the same index position, (5.14) follows by substituting F = G♯ into (5.13) and applying ♯ to both
sides. ■

5.3 Exponential Map

Note that the results in this section are generally true for all connection in TM , not just for the Levi-Civita
connection. For simplicity, we restrict attention here to the latter case. We also restrict to manifolds without
boundary, in order to avoid complications with geodesics running into a boundary.

The next lemma shows that geodesics with proportional initial velocities are related in a simple way.

Lemma 5.3.1 (Rescaling Lemma). For every p ∈M,v ∈ TpM , and c, t ∈ R,

γcv(t) = γv(ct),

whenever either side is defined.

Proof. See [7] Lemma 5.18. ■

The assignment v 7→ γv defines a map from TM to the set of geodesics in M . More importantly, by virtue of
the rescaling lemma, it allows us to define a map from (a subset of) the tangent bundle to M itself, which
sends each line {cv} through the origin in TpM to a geodesic. Define a subset E ⊆ TM , the domain of the
exponential map, by

E = {v ∈ TM : γv is defined on an interval containing [0, 1]} ,

and then define the exponential map exp : E →M by

exp(v) = γv(1)

For each p ∈ M , the restricted exponential map at p, denoted by expp, is the restriction of exp to the set
εp = E ∩ TpM .

The exponential map of a Riemannian manifold should not be confused with the exponential map of a Lie
group. To avoid confusion, we always designate the exponential map of a Lie group G by expG, and reserve
the undecorated notation exp for the Riemannian exponential map.

163



Differential Geometry Anthony Hong

The next proposition describes some essential features of the exponential map. Recall that a subset of a
vector space V is said to be star-shaped with respect to a point x ∈ S if for every y ∈ S, the line segment
from x to y is contained in S.

Proposition 5.3.2 (Properties of the Exponential Map). Let (M, g) be a Riemannian or pseudo-Riemannian
manifold, and let exp : E →M be its exponential map.

(a) E is an open subset of TM containing the image of the zero section, and each set εp ⊆ TpM is star-shaped
with respect to 0 .

(b) For each v ∈ TM , the geodesic γv is given by

γv(t) = exp(tv)

for all t such that either side is defined.

(c) The exponential map is smooth.

(d) For each point p ∈ M , the differential d
(
expp

)
0
: T0 (TpM) ∼= TpM → TpM is the identity map of TpM ,

under the usual identification of T0 (TpM) with TpM .

Proof. Write n = dimM . The rescaling lemma with t = 1 says precisely that exp(cv) = γcv(1) = γv(c)
whenever either side is defined; this is (b). Moreover, if v ∈ Ep, then by definition γv is defined at least on
[0, 1]. Thus for 0 ≤ t ≤ 1, the rescaling lemma says that

expp(tv) = γtv(1) = γv(t)

is defined. Thus, {tv : t ∈ [0, 1]} ⊆ Ep =⇒ the segment [0, v] is in Ep. This shows that εp is star-shaped with
respect to 0.

Next we will show that E is open and exp is smooth. To do so, we revisit the proof of the theorem of
existence and uniqueness theorem for geodesics 4.5.1 and reformulate it in a more invariant way. Let(
xi
)

be any smooth local coordinates on an open set U ⊆ M , let π : TM → M be the projection, and
let
(
xi, vi

)
denote the associated natural coordinates for π−1(U) ⊆ TM . In terms of these coordinates,

formula (4.16) defines a smooth vector field G on π−1(U). The integral curves of G are the curves η(t) =(
x1(t), . . . , xn(t), v1(t), . . . , vn(t)

)
that satisfy the system of ODEs given by (4.15), which is equivalent to the

geodesic equation under the substitution vk = ẋk, as we observed in the proof of Theorem 4.5.1. Stated
somewhat more invariantly, every integral curve of G on π−1(U) projects to a geodesic under π : TM → M
(which in these coordinates is just π(x, v) = x ); conversely, every geodesic γ(t) =

(
x1(t), . . . , xn(t)

)
in U

lifts to an integral curve of G in π−1(U) by setting vi(t) = ẋi(t).

The importance ofG stems from the fact that it actually defines a global vector field on the total space of TM ,
called the geodesic vector field. Then the unique C∞ maximal flow θ obtained from fundamental theorem
on flows 1.2.8 is called geodesic flow. We could verify that G defines a global vector field by computing the
transformation law for the components of G under a change of coordinates and showing that they take the
same form in every coordinate chart; but fortunately there is a way to avoid that messy computation. The
key observation, to be proved below, is that G acts on a function f ∈ C∞(TM) by

Gf(p, v) = G(p,v)f =
d

dt

∣∣∣∣
t=0

f (γv(t), γ
′
v(t)) . (5.15)

(Here and whenever convenient, we use the notations (p, v) and v interchangeably for an element v ∈
TpM , depending on whether we wish to emphasize the point at which v is tangent.) Since this formula is
independent of coordinates, it shows that the various definitions of G given by (4.16) in different coordinate
systems agree.
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To prove that G satisfies (5.15), we write the components of the geodesic γv(t) as xi(t) and those of its
velocity as vi(t) = ẋi(t). Using the chain rule and the geodesic equation in the form (4.15), we can write the
right-hand side of (5.15) as ∂f

∂xk
(

=γv(t)︷︸︸︷
x(t) ,

=γ′
v(t)︷︸︸︷

v(t) )ẋk(t) +
∂f

∂vk
(x(t), v(t))v̇k(t)


∣∣∣∣∣∣∣
t=0

γv=x(t) geodesic ⇔(4.15)
=================

∂f

∂xk
(p, v)vk − ∂f

∂vk
(p, v)vivjΓkij(p)

(4.16)
===== Gf(p, v).

The fundamental theorem on flows shows that there exist an open set D ⊆ R × TM containing {0} × TM
and a smooth map θ : D → TM , such that each curve θ(p,v)(t) = θ(t, (p, v)) is the unique maximal integral
curve of G starting at (p, v), defined on an open interval containing 0.

Now suppose (p, v) ∈ E . This means that the geodesic γv is defined at least on the interval [0, 1], and
therefore so is the integral curve of G starting at (p, v) ∈ TM . Since (1, (p, v)) ∈ D, there is a neighborhood
of (1, (p, v)) in R× TM on which the flow of G is defined (Fig. 5.1). In particular, this means that there is a
neighborhood of (p, v) on which the flow exists for t ∈ [0, 1], and therefore on which the exponential map is
defined. This shows that E is open.

Figure 5.1: E is open.

Since geodesics are projections of integral curves of G, it follows that the exponential map can be expressed
as

expp(v) = γv(1) = π ◦ θ(1, (p, v))

wherever it is defined, and therefore expp(v) is a smooth function of (p, v). To compute d
(
expp

)
0
(v) for an

arbitrary vector v ∈ TpM , we just need to choose a curve τ in TpM starting at 0 whose initial velocity is v,
and compute the initial velocity of expp ◦τ . A convenient curve is τ(t) = tv, which yields

d
(
expp

)
0
(v) =

d

dt

∣∣∣∣
t=0

(
expp ◦τ

)
(t) =

d

dt

∣∣∣∣
t=0

expp(tv) =
d

dt

∣∣∣∣
t=0

γv(t) = v.
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Thus d
(
expp

)
0

is the identity map. ■

Corollary 5.2.9 on the naturality of geodesics translates into the following important property of the expo-
nential map.

Proposition 5.3.3 (Naturality of the Exponential Map). Suppose (M, g) and (M̃, g̃) are Riemannian or pseudo-
Riemannian manifolds and φ : M → M̃ is a local isometry. Then for every p ∈ M , the following diagram
commutes:

Ep Ẽφ(p)

M M̃

dφp

expp
expφ(p)

φ

where Ep ⊆ TpM and Ẽφ(p) ⊆ Tφ(p)M̃ are the domains of the restricted exponential maps expp (with respect to
g) and expφ(p) (with respect to g̃), respectively.

Exercise 5.3.4. Prove above proposition

An important consequence of the naturality of the exponential map is the following proposition, which says
that local isometries of connected manifolds are completely determined by their values and differentials at a
single point.

Proposition 5.3.5. Proposition 5.22. Let (M, g) and (M̃, g̃) be Riemannian or pseudo-Riemannian manifolds,
with M connected. Suppose φ,ψ : M → M̃ are local isometries such that for some point p ∈ M , we have
φ(p) = ψ(p) and dφp = dψp. Then φ ≡ ψ.

Proof. [7] Problem 5-10. ■

A Riemannian or pseudo-Riemannian manifold (M, g) is said to be geodesically complete if every maximal
geodesic is defined for all t ∈ R, or equivalently if the domain of the exponential map is all of TM . It is easy
to construct examples of manifolds that are not geodesically complete; for example, n every proper open
subset of Rn with its Euclidean metric or with a pseudo-Euclidean metric, there are geodesics that reach the
boundary in finite time. Similarly, on Rn with the metric

(
σ−1

)∗
g obtained from the sphere by stereographic

projection, there are geodesics that escape to infinity in finite time.

5.4 Normal Neighborhood and Normal Coordinates

We continue to let (M, g) be a Riemannian or pseudo-Riemannian manifold of dimension n (without bound-
ary). Recall that for every p ∈ M , the restricted exponential map expp maps the open subset Ep ⊆ TpM

smoothly into M . Because d
(
expp

)
0

is invertible, the inverse function theorem guarantees that there exist
a neighborhood V of the origin in TpM and a neighborhood U of p in M such that expp : V → U is a
diffeomorphism. A neighborhood U of p ∈ M that is the diffeomorphic image under expp of a star-shaped
neighborhood of 0 ∈ TpM is called a normal neighborhood of p.

Every orthonormal basis (bi) for TpM determines a basis isomorphism B : Rn → TpM by B
(
x1, . . . , xn

)
=

xibi. If U = expp(V ) is a normal neighborhood of p, we can combine this isomorphism with the exponential

map to get a smooth coordinate mapφ = B−1 ◦
(
expp

∣∣
V

)−1

: U → Rn :
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TpM Rn

U

B−1

(expp |V )−1

φ

Such coordinates are called (Riemannian or pseudo-Riemannian) normal coordinates centered at p.

Proposition 5.4.1 (Uniqueness of Normal Coordinates). Let (M, g) be a Riemannian or pseudo-Riemannian
n-manifold, p a point ofM , and U a normal neighborhood of p. For every normal coordinate chart on U centered
at p, the coordinate basis is orthonormal at p; and for every orthonormal basis (bi) for TpM , there is a unique
normal coordinate chart

(
xi
)

on U such that ∂i|p = bi for i = 1, . . . , n. In the Riemannian case, any two normal
coordinate charts

(
xi
)

and
(
x̃j
)

are related by

x̃j = Ajix
i (5.16)

for some (constant) matrix
(
Aji

)
∈ O(n).

Proof. Let φ be a normal coordinate chart on U centered at p, with coordinate functions
(
xi
)
. By definition,

this means that φ = B−1 ◦ exp−1
p , where B : Rn → TpM is the basis isomorphism determined by some

orthonormal basis (bi) for TpM . Note that dφ−1
p = d

(
expp

)
0
◦ dB0 = B because d

(
expp

)
0

is the identity and
B is linear. Thus ∂i|p = dφ−1

p (∂i|0) = B (∂i|0) = bi, which shows that the coordinate basis is orthonormal
at p. Conversely, every orthonormal basis (bi) for TpM yields a basis isomorphism B and thus a normal
coordinate chart φ = B−1 ◦ exp−1

p , which satisfies ∂i|p = bi by the computation above. If φ̃ = B̃−1 ◦ exp−1
p

is another such chart, then
φ̃ ◦ φ−1 = B̃−1 ◦ exp−1

p ◦ expp ◦B = B̃−1 ◦B,
which is a linear isometry of Rn and therefore has the form (5.16) in terms of standard coordinates on Rn.
Since

(
x̃j
)

and
(
xi
)

are the same coordinates if and only if
(
Aji

)
is the identity matrix, this shows that the

normal coordinate chart associated with a given orthonormal basis is unique. ■

Proposition 5.4.2 (Properties of Normal Coordinates). Let (M, g) be a Riemannian or pseudo-Riemannian
n-manifold, and let

(
U,
(
xi
))

be any normal coordinate chart centered at p ∈M .

(a) The coordinates of p are (0, . . . , 0).

(b) The components of the metric at p are gij = δij if g is Riemannian, and gij = ±δij otherwise.

(c) For every v = vi∂i
∣∣
p
∈ TpM , the geodesic γv starting at p with initial velocity v is represented in normal

coordinates by the line
γv(t) =

(
tv1, . . . , tvn

)
, (5.17)

as long as t is in some interval I containing 0 such that γv(I) ⊆ U .

(d) The Christoffel symbols in these coordinates vanish at p.

(e) All of the first partial derivatives of gij in these coordinates vanish at p.

Proof. Part (a) follows directly from the definition of normal coordinates, and parts (b) and (c) follow from
Propositions 5.4.1 and 5.3.2(b), respectively.

To prove (d), let v = vi∂i
∣∣
p
∈ TpM be arbitrary. The geodesic equation (4.14) for γv(t) =

(
tv1, . . . , tvn

)
simplifies to

Γkij(tv)v
ivj = 0.

Evaluating this expression at t = 0 shows that Γkij(0)v
ivj = 0 for every index k and every vector v. In partic-

ular, with v = ∂a for some fixed a, this shows that Γkaa = 0 for each a and k (no summation). Substituting
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v = ∂a + ∂b and v = ∂b − ∂a for any fixed pair of indices a and b and subtracting, we conclude also that
Γkab = 0 at p for all a, b, k. Finally, (e) follows from (d) together with (5.2) in the case Ek = ∂k. ■

Because they are given by the simple formula (5.17), the geodesics starting at p and lying in a normal
neighborhood of p are called radial geodesics. (But be warned that geodesics that do not pass through p do
not in general have a simple form in normal coordinates.)

5.5 Problems

Exercise 5.5.1 ( [7] 5-1). Let (M, g) be a Riemannian or pseudo-Riemannian manifold, and let ∇ be its Levi-
Civita connection. Suppose ∇̃ is another connection on TM , and D is the difference tensor between ∇ and ∇̃
(Prop.4.2.13). Let Db denote the covariant 3-tensor field defined by Db(X,Y, Z) = ⟨D(X,Y ), Z⟩. Show that ∇̃
is compatible with g if and only if Db is antisymmetric in its last two arguments: D♭(X,Y, Z) = −D♭(X,Z, Y )
for all X,Y, Z ∈ X(M). Conclude that on every Riemannian or pseudo-Riemannian manifold of dimension at
least 2, the space of metric connections is an infinite-dimensional affine space.

Exercise 5.5.2 ( [7] 5-8). Let G be a Lie group and g its Lie algebra. Suppose g is a bi-invariant Riemannian
metric on G, and ⟨·, ·⟩ is the corresponding inner product on g (see [7] Proposition 3.12). Let ad : g → gl(g)
denote the adjoint representation of g (see [7] Appendix C).

(a) Show that ad(X) is a skew-adjoint endomorphism of g for every X ∈ g:

⟨ad(X)Y,Z⟩ = −⟨Y, ad(X)Z⟩.

[Hint: Take the derivative of
〈
Ad
(
expG tX

)
Y,Ad

(
expG tX

)
Z
〉

with respect to t at t = 0, where expG is the
Lie group exponential map of G, and use the fact that Ad∗ = ad.]

(b) Show that ∇XY = 1
2 [X,Y ] whenever X and Y are left-invariant vector fields on G.

(c) Show that the geodesics of g starting at the identity are exactly the one-parameter subgroups. Conclude
that under the canonical isomorphism of g ∼= TeG described in [7] Proposition C.3, the restricted Riemannian
exponential map at the identity coincides with the Lie group exponential map expG : g→ G. (See [7] Proposition
C.7.)

(d) Let R+ be the set of positive real numbers, regarded as a Lie group under multiplication. Show that g =
t−2dt2 is a bi-invariant metric on R+, and the restricted Riemannian exponential map at 1 is given by c∂/∂t 7→
ec.
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Chapter 6

Geodesics and Distance

6.1 Lengths

To say that γ : I → M is a smooth curve is to say that it is smooth as a map from the manifold (with
boundary) I to M . If I has one or two endpoints and M has empty boundary, then γ is smooth if and only if
it extends to a smooth curve defined on some open interval containing I. (If ∂M ̸= ∅, then smoothness of γ
has to be interpreted as meaning that each coordinate representation of γ has a smooth extension to an open
interval.) A curve segment is a curve whose domain is a compact interval. A smooth curve γ : I → M has
a well-defined velocity γ′(t) ∈ Tγ(t)M for each t ∈ I. We say that γ is a regular curve if γ′(t) ̸= 0 for t ∈ I.
This implies that γ is an immersion, so its image has no “corners” or “kinks.” If M is a smooth manifold with
or without boundary, a (continuous) curve segment γ : [a, b] → M is said to be piecewise regular if there
exists a partition (a0, . . . , ak) of [a, b] such that γ|[ai−1,ai]

is a regular curve segment (meaning it is smooth
with nonvanishing velocity) for i = 1, . . . , k. For brevity, we refer to a piecewise regular curve segment as
an admissible curve, and any partition (a0, . . . , ak) such that γ|[ai−1,ai]

is smooth for each i an admissible
partition for γ. (There are many admissible partitions for a given admissible curve, because we can always
add more points to the partition.) It is also convenient to consider any map γ : {a} →M whose domain is a
single real number to be an admissible curve.

Suppose γ is an admissible curve and (a0, . . . , ak) is an admissible partition for it. At each of the in-
termediate partition points a1, . . . , ak−1, there are two one-sided velocity vectors, which we denote by
γ′
(
a−i
)
= limt↗ai γ

′(t), γ′
(
a+i
)
= limt↘ai γ

′(t). They are both nonzero, but they need not be equal.

If γ : I →M is a smooth curve, we define a reparametrization of γ to be a curve of the form γ̃ = γ◦φ : I ′ →
M , where I ′ ⊆ R is another interval and φ : I ′ → I is a diffeomorphism. Because intervals are connected, φ
is either strictly increasing or strictly decreasing on I ′. We say that γ̃ is a forward reparametrization if φ is
increasing, and a backward reparametrization if it is decreasing.

For an admissible curve γ : [a, b]→M , we define a reparametrization of γ a little more broadly, as a curve
of the form γ̃ = γ ◦ φ, where φ : [c, d]→ [a, b] is a homeomorphism for which there is a partition (c0, . . . , ck)
of [c, d] such that the restriction of φ to each subinterval [ci−1, ci] is a diffeomorphism onto its image.

If γ : [a, b]→M is an admissible curve, we define the length of γ to be

Lg(γ) =

∫ b

a

|γ′(t)|g dt

The integrand is bounded and continuous everywhere on [a, b] except possibly at the finitely many points
where γ is not smooth, so this integral is well defined.
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Proposition 6.1.1 (Properties of Lengths). Suppose (M, g) is a Riemannian manifold with or without bound-
ary, and γ : [a, b]→M is an admissible curve.

(a) ADDITIVITY OF LENGTH: If a < c < b, then Lg(γ) = Lg

(
γ|[a,c]

)
+ Lg

(
γ|[c,b]

)
.

(b) PARAMETER INDEPENDENCE: If γ̃ is a reparametrization of γ, then Lg(γ) = Lg(γ̃).

(c) ISOMETRY INVARIANCE: If (M, g) and (M̃, g̃) are Riemannian manifolds (with or without boundary) and
φ :M → M̃ is a local isometry, then Lg(γ) = Lg̃(φ ◦ γ).

Exercise 6.1.2. Prove above proposition.

Suppose γ : [a, b] → M is an admissible curve. The arc-length function of γ is the function s : [a, b] → R
defined by

s(t) = Lg

(
γ|[a,t]

)
=

∫ t

a

|γ′(u)|g du. (6.1)

It is continuous everywhere, and it follows from the fundamental theorem of calculus that it is smooth
wherever γ is, with derivative s′(t) = |γ′(t)|. For this reason, if γ : I → M is any smooth curve (not
necessarily a curve segment), we define the speed of γ at any time t ∈ I to be the scalar |γ′(t)|. We say that
γ is a unit-speed curve if |γ′(t)| = 1 for all t, and a constant-speed curve if |γ′(t)| is constant. If γ is a
piecewise smooth curve, we say that γ has unit speed if |γ′(t)| = 1 wherever γ is smooth. If γ : [a, b]→M is
a unit-speed admissible curve, then its arc-length function has the simple form s(t) = t−a. If, in addition, its
parameter interval is of the form [0, b] for some b > 0, then the arc-length function is s(t) = t. For this reason,
a unit-speed admissible curve whose parameter interval is of the form [0, b] is said to be parametrized by
arc length.

Proposition 6.1.3. Suppose (M, g) is a Riemannian manifold with or without boundary.

(a) Every regular curve in M has a unit-speed forward reparametrization.

(b) Every admissible curve in M has a unique forward reparametrization by arc length.

Proof. (a): For a regular curve γ : I = [a, b]→M we define s(t) as in (6.1) and notice that s′(t) = |γ′(t)| > 0
due to regularity of the curve (γ′ never vanishes). Thus, s′(t) ̸= 0, making s(t) a local diffeomorphism due
to the inverse function theorem; s′(t) > 0 means s(t) is strictly increasing and is thus injective. If we write
s : I → s(I) =: I ′ then s is bijective. The (toy version of) global rank theorem tells us that s must be a
diffeomorphism from I to I ′. Then let φ = s−1 be the reparametrization γ̃ = γ ◦ φ : I ′ → M of γ : I → M .
Since inverse function theorem also gives the formula for the derivative of the inverse function, we see

|γ̃′(s)| = |γ′(φ(s))φ′(s)| = |γ′(φ(s))|
∣∣∣∣ 1

s′(φ(s))

∣∣∣∣ = 1,

showing that γ̃ is a unit-speed reparametrization of γ.

(b): notice that in (a), s(a) = 0. If we denote s(b) = c, then the curve γ̃ is a curve [0, c] → M parametrized
by arc length. This works for the case where there is only one smooth segment in the admissible curve γ. If
there are more than one, do induction. The details are shown in [7, Proposition 2.49]. ■

6.2 Riemannian Distance

Suppose (M, g) is a connected Riemannian manifold with or without boundary. For each pair of points
p, q ∈ M , we define the Riemannian distance from p to q, denoted by dg(p, q), to be the infimum of the
lengths of all admissible curves from p to q. The following proposition guarantees that dg(p, q) is a well-
defined nonnegative real number for each p, q ∈M .
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Proposition 6.2.1. If M is a connected smooth manifold (with or without boundary), then any two points of
M can be joined by an admissible curve.

For convenience, if (M, g) is a disconnected Riemannian manifold, we also let dg(p, q) denote the Riemannian
distance from p to q, provided that p and q lie in the same connected component of M .

Proposition 6.2.2 (Isometry Invariance of the Riemannian Distance Function). Suppose (M, g) and (M̃, g̃)

are connected Riemannian manifolds with or without boundary, and φ : M → M̃ is an isometry. Then
dg̃(φ(x), φ(y)) = dg(x, y) for all x, y ∈M .

Remark 6.2.3. Note that unlike lengths of curves, Riemannian distances are not necessarily preserved by
local isometries. ♠

Theorem 6.2.4 ( [7] Theorem 2.55). Let (M, g) be a connected Riemannian manifold with or without bound-
ary. With the distance function dg,M is a metric space whose metric topology is the same as the given manifold
topology.

Thanks to the preceding theorem, it makes sense to apply all the concepts of the theory of metric spaces
to a connected Riemannian manifold (M, g). For example, we say that M is (metrically) complete if
every Cauchy sequence in M converges. A subset A ⊆ M is bounded if there is a constant C such that
dg(p, q) ≤ C for all p, q ∈ A; if this is the case, the diameter of A is the smallest such constant, i.e.,
diam(A) = sup {dg(p, q) : p, q ∈ A}. Since every compact metric space is bounded, every compact connected
Riemannian manifold with or without boundary has finite diameter.

6.3 Geodesics and Minimizing Curves

Let (M, g) be a Riemannian manifold. An admissible curve γ in M is said to be a minimizing curve if
Lg(γ) ≤ Lg(γ̃) for every admissible curve γ̃ with the same endpoints. When M is connected, it follows from
the definition of the Riemannian distance that γ is minimizing if and only if Lg(γ) is equal to the distance
between its endpoints.

Our first goal in this section is to show that all minimizing curves are geodesics. To do so, we will think
of the length function Lg as a functional on the set of all admissible curves in M with fixed starting and
ending points. (Real-valued functions whose domains are themselves sets of functions are typically called
functionals.) Our project is to search for minima of this functional.

6.3.1 Families of Curves

Given intervals I, J ⊆ R, a continuous map Γ : J × I → M is called a one-parameter family of curves.
Such a family defines two collections of curves in M : the main curves Γs(t) = Γ(s, t) defined for t ∈ I by
holding s constant, and the transverse curves Γ(t)(s) = Γ(s, t) defined for s ∈ J by holding t constant.

If such a family Γ is smooth (or at least continuously differentiable), we denote the velocity vectors of the
main and transverse curves by

∂tΓ(s, t) = (Γs)
′
(t) ∈ TΓ(s,t)M ; ∂sΓ(s, t) = Γ(t)′(s) ∈ TΓ(s,t)M.

Each of these is an example of a vector field along Γ, which is a continuous map V : J × I → TM such that
V (s, t) ∈ TΓ(s,t)M for each (s, t).

The families of curves that will interest us most in this chapter are of the following type. A one-parameter
family Γ is called an admissible family of curves if (i) its domain is of the form J × [a, b] for some open
interval J ; (ii) there is a partition (a0, . . . , ak) of [a, b] such that Γ is smooth on each rectangle of the form
J × [ai−1, ai]; and (iii) Γs(t) = Γ(s, t) is an admissible curve for each s ∈ J (Fig. 6.1). Every such partition
is called an admissible partition for the family.
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Figure 6.1: Admissble family of curves.

If γ : [a, b]→M is a given admissible curve, a variation of γ is an admissible family of curves Γ : J× [a, b]→
M such that J is an open interval containing 0 and Γ0 = γ. It is called a proper variation if in addition, all
of the main curves have the same starting and ending points: Γs(a) = γ(a) and Γs(b) = γ(b) for all s ∈ J .

In the case of an admissible family, the transverse curves are smooth on J for each t, but the main curves are
in general only piecewise regular. Thus the velocity vector fields ∂sΓ and ∂tΓ are smooth on each rectangle
J × [ai−1, ai], but not generally on the whole domain.

We can say a bit more about ∂sΓ, though. If Γ is an admissible family, a piecewise smooth vector field
along Γ is a (continuous) vector field along Γ whose restriction to each rectangle J × [ai−1, ai] is smooth
for some admissible partition (a0, . . . , ak) for Γ. In fact, ∂sΓ is always such a vector field. To see that it is
continuous on the whole domain J × [a, b], note on the one hand that for each i = 1, . . . , k − 1, the values
of ∂sΓ along the set J × {ai} depend only on the values of Γ on that set, since the derivative is taken only
with respect to the s variable; on the other hand, ∂sΓ is continuous (in fact smooth) on each subrectangle
J × [ai−1, ai] and J × [ai, ai+1], so the right-hand and left-hand limits at t = ai must be equal. Therefore ∂sΓ
is always a piecewise smooth vector field along Γ. (However, ∂tΓ is typically not continuous at t = ai.)

If Γ is a variation of γ, the variation field of Γ is the piecewise smooth vector field V (t) = ∂sΓ(0, t) along γ.
We say that a vector field V along γ is proper if V (a) = 0 and V (b) = 0; it follows easily from the definitions
that the variation field of every proper variation is itself proper.

Lemma 6.3.1. If γ is an admissible curve and V is a piecewise smooth vector field along γ, then V is the
variation field of some variation of γ. If V is proper, the variation can be taken to be proper as well.

Proof. Suppose γ and V satisfy the hypotheses, and set Γ(s, t) = expγ(t)(sV (t)). By compactness of [a, b],
there is some positive ε such that Γ is defined on (−ε, ε) × [a, b]. By composition, Γ is smooth on (−ε, ε) ×
[ai−1, ai] for each subinterval [ai−1, ai] on which V is smooth, and it is continuous on its whole domain. By
the properties of the exponential map, the variation field of Γ is V . Moreover, if V (a) = 0 and V (b) = 0, the
definition gives Γ(s, a) ≡ γ(a) and Γ(s, b) ≡ γ(b), so Γ is proper. ■

If V is a piecewise smooth vector field along Γ, we can compute the covariant derivative of V either along
the main curves (at points where V is smooth) or along the transverse curves; the resulting vector fields
along Γ are denoted by DtV and DsV respectively.

A key ingredient in the proof that minimizing curves are geodesics is the symmetry of the Levi-Civita connec-
tion. It enters into our proofs in the form of the following lemma. (Although we state and use this lemma
only for the Levi-Civita connection, the proof shows that it is actually true for every symmetric connection in
TM.)
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Lemma 6.3.2 (Symmetry Lemma). Let Γ : J × [a, b]→ M be an admissible family of curves in a Riemannian
manifold. On every rectangle J × [ai−1, ai] where Γ is smooth, Ds(∂tΓ) = Dt(∂sΓ).

Proof. This is a local question, so we may compute in local coordinates
(
xi
)

around a point Γ (s0, t0). Writing
the components of Γ as Γ(s, t) =

(
x1(s, t), . . . , xn(s, t)

)
, we have

∂tΓ =
∂xk

∂t
∂k; ∂sΓ =

∂xk

∂s
∂k.

Then, using the coordinate formula (4.13) for covariant derivatives along curves, we obtain

Ds∂tΓ =

(
∂2xk

∂s∂t
+
∂xi

∂t

∂xj

∂s
Γkji

)
∂k; Dt∂sΓ =

(
∂2xk

∂t∂s
+
∂xi

∂s

∂xj

∂t
Γkji

)
∂k.

Now, the lemma follows from the following

∂xi

∂s

∂xj

∂t
Γkji =

∂xj

∂s

∂xi

∂t
Γkji

i↔j
====

∂xi

∂t

∂xj

∂s
Γkij

Problem 4.8.1
=========

∂xi

∂t

∂xj

∂s
Γkji

■

6.3.2 Minimizing Curves are Geodesics

We can now compute an expression for the derivative of the length functional along a variation of a curve.
Traditionally, the derivative of a functional on a space of maps is called its first variation.

Theorem 6.3.3 (First Variation Formula). Let (M, g) be a Riemannian manifold. Suppose γ : [a, b] → M is a
unit-speed admissible curve, Γ : J × [a, b] → M is a variation of γ, and V is its variation field (Fig. 6.3). Then
Lg (Γs) is a smooth function of s, and

d

ds

∣∣∣∣
s=0

Lg (Γs) = −
∫ b

a

⟨V,Dtγ
′⟩ dt−

k−1∑
i=1

⟨V (ai) ,∆iγ
′⟩+ ⟨V (b), γ′(b)⟩ − ⟨V (a), γ′(a)⟩ , (6.2)

where (a0, . . . , ak) is an admissible partition for V , and for each i = 1, . . . , k − 1, ∆iγ
′ = γ′

(
a+i
)
− γ′

(
a−i
)

is
the “jump” in the velocity vector field γ′ at ai (Fig.6.2). In particular, if Γ is a proper variation, then

d

ds

∣∣∣∣
s=0

Lg (Γs) = −
∫ b

a

⟨V,Dtγ
′⟩ dt−

k−1∑
i=1

⟨V (ai) ,∆iγ
′⟩ . (6.3)

Figure 6.2: ∆iγ
′ is the “jump” in γ′ at ai

173



Differential Geometry Anthony Hong

Proof. On every rectangle J × [ai−1, ai] where Γ is smooth, since the integrand in Lg (Γs) is smooth and the
domain of integration is compact, we can differentiate under the integral sign as many times as we wish.
Because Lg (Γs) is a finite sum of such integrals, it follows that it is a smooth function of s. For brevity, let
us introduce the notations (see the blue and red v.f. in Fig. 6.3)

T (s, t) = ∂tΓ(s, t), S(s, t) = ∂sΓ(s, t).

Figure 6.3: Vector fields V , S, and T

Differentiating on the interval [ai−1, ai] yields

d

ds
Lg

(
Γs|[ai−1,ai]

)
=

∫ ai

ai−1

∂

∂s
⟨T, T ⟩1/2dt

(5.3)
====

∫ ai

ai−1

1

2
⟨T, T ⟩−1/22 ⟨DsT, T ⟩ dt

Lemma 6.3.2
=========

∫ ai

ai−1

1

|T |
⟨DtS, T ⟩ dt

(6.4)

where we have used the symmetry lemma in the last line. Setting s = 0 and noting that S(0, t) = V (t) and
T (0, t) = γ′(t) (which has length 1 given by assumption of the theorem), we get

d

ds

∣∣∣∣
s=0

Lg

(
Γs|[ai−1,ai]

)
=

∫ ai

ai−1

⟨DtV, γ
′⟩ dt

(5.3)
====

∫ ai

ai−1

(
d

dt
⟨V, γ′⟩ − ⟨V,Dtγ

′⟩
)
dt

FTC
====

〈
V (ai) , γ

′ (a−i )〉− 〈V (ai−1) , γ
′ (a+i−1

)〉
−
∫ ai

ai−1

⟨V,Dtγ
′⟩ dt.

Finally, summing over i, we obtain (6.2). ■
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Because every admissible curve has a unit-speed parametrization and length is independent of parametriza-
tion, the requirement in the above proposition that γ be of unit speed is not a real restriction, but rather just
a computational convenience.

Theorem 6.3.4. In a Riemannian manifold, every minimizing curve is a geodesic when it is given a unit-speed
parametrization.

Proof. Suppose γ : [a, b] → M is minimizing and of unit speed (so that we can use previous theorem), and
(a0, . . . , ak) is an admissible partition for γ. If Γ is any proper variation of γ, then Lg (Γs) is a smooth function
of s that achieves its minimum at s = 0 (we are given that γ is minimizing), so it follows from elementary
calculus that d (Lg (Γs)) /ds = 0 when s = 0. Since every proper vector field along γ is the variation field of
some proper variation (Lemma 6.3.1), the right-hand side of (6.3) must vanish for every such V .

First we show that Dtγ
′ = 0 on each subinterval [ai−1, ai], so γ is a “broken geodesic.” Choose one such

interval, and let φ ∈ C∞(R) be a bump function such that φ > 0 on (ai−1, ai) and φ = 0 elsewhere. Then
(6.3) with V = φDtγ

′ (which is proper and we can thus apply the last sentence of the first paragraph)
becomes

0 = −
∫ ai

ai−1

φ |Dtγ
′|2 dt (∗)

Since the integrand is nonnegative and φ > 0 on (ai−1, ai), this shows thatDtγ
′ = 0 on each such subinterval.

Next we need to show that ∆iγ
′ = 0 for each i between 0 and k, which is to say that γ has no corners. For

each such i, we can use a bump function in a coordinate chart to construct a piecewise smooth vector field V
along γ such that V (ai) = ∆iγ

′ and V (aj) = 0 for j ̸= i. Then (6.2) reduces to − |∆iγ
′|2 = 0, so ∆iγ

′ = 0
for each i.

Finally, since the two one-sided velocity vectors of γ match up at each ai, it follows from uniqueness of
geodesics that γ|[ai,ai+1]

is the continuation of the geodesic γ|[ai−1,ai]
, and therefore γ is smooth. ■

The preceding proof has an enlightening geometric interpretation. Under the assumption that Dtγ
′ ̸= 0, the

first variation with V = φDtγ
′ is negative (RHS of (∗)), which shows that deforming γ in the direction of

its acceleration vector field (since φ > 0) decreases its length (Fig. 6.4). Similarly, the length of a broken
geodesic γ is decreased by deforming it in the direction of a vector field V such that V (ai) = ∆iγ

′ (Fig. 6.5).
Geometrically, this corresponds to “rounding the corner.”

Figure 6.4: Deforming in the direction of the acceleration.

The first variation formula actually tells us a bit more than is claimed in Theorem 6.3.4. In proving that γ is
a geodesic, we did not use the full strength of the assumption that the length of Γs takes a minimum when
s = 0; we only used the fact that its derivative is zero. We say that an admissible curve γ is a critical point of
Lg if for every proper variation Γs of γ, the derivative of Lg (Γs) with respect to s is zero at s = 0. Therefore
we can strengthen Theorem 6.3.4 in the following way.

Corollary 6.3.5. A unit-speed admissible curve γ is a critical point for Lg if and only if it is a geodesic.
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Figure 6.5: Rounding the corner

Proof. If γ is a critical point, the proof of Theorem 6.3.4 goes through without modification to show that γ is
a geodesic. Conversely, if γ is a geodesic, then the first term on the right-hand side of (6.3) vanishes by the
geodesic equation, and the second term vanishes because γ′ has no jumps. ■

The geodesic equation Dtγ
′ = 0 thus characterizes the critical points of the length functional. In general,

the equation that characterizes critical points of a functional on a space of maps is called the variational
equation or the Euler-Lagrange equation of the functional. Many interesting equations in differential
geometry arise as variational equations.

6.3.3 Geodesics Are Locally Minimizing

Next we turn to the converse of Theorem 6.3.4. It is easy to see that the literal converse is not true, because
not every geodesic segment is minimizing. For example, every geodesic segment on Sn that goes more than
halfway around the sphere is not minimizing, because the other portion of the same great circle is a shorter
curve segment between the same two points. For that reason, we concentrate initially on local minimization
properties of geodesics.

As usual, let (M, g) be a Riemannian manifold. A regular (or piecewise regular) curve γ : I → M is said to
be locally minimizing if every t0 ∈ I has a neighborhood I0 ⊆ I such that whenever a, b ∈ I0 with a < b,
the restriction of γ to [a, b] is minimizing.

Lemma 6.3.6. Every minimizing admissible curve segment is locally minimizing.

Exercise 6.3.7. Prove the preceding lemma.

Our goal in this section is to show that geodesics are locally minimizing. The proof will be based on a careful
analysis of the geodesic equation in Riemannian normal coordinates.

If ε is a positive number such that expp is a diffeomorphism from the ball Bε(0) ⊆ TpM to its image (where
the radius of the ball is measured with respect to the norm defined by gp), then the image set expp (Bε(0)) is
a normal neighborhood of p, called a geodesic ball in M , or sometimes an open geodesic ball for clarity.

Also, if the closed ball B̄ε(0) is contained in an open set V ⊆ TpM on which expp is a diffeomorphism onto
its image, then expp

(
B̄ε(0)

)
is called a closed geodesic ball, and expp (∂Bε(0)) is called a geodesic sphere.

Given such a V , by compactness there exists ε′ > ε such that Bε′(0) ⊆ V , so every closed geodesic ball is
contained in an open geodesic ball of larger radius. In Riemannian normal coordinates centered at p, the
open and closed geodesic balls and geodesic spheres centered at p are just the coordinate balls and spheres.

Suppose U is a normal neighborhood of p ∈ M . Given any normal coordinates
(
xi
)

on U centered at p,
define the radial distance function r : U → R by

r(x) =

√
(x1)

2
+ · · ·+ (xn)

2
, (6.5)
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and the radial vector field on U\{p}, denoted by ∂r, by

∂r =
xi

r(x)

∂

∂xi
(6.6)

In Euclidean space, r(x) is the distance to the origin, and ∂r is the unit vector field pointing radially outward
from the origin. (The notation is suggested by the fact that ∂r is a coordinate derivative in polar or spherical
coordinates.)

Lemma 6.3.8. In every normal neighborhood U of p ∈ M , the radial distance function and the radial vector
field are well defined, independently of the choice of normal coordinates. Both r and ∂r are smooth on U\{p},
and r2 is smooth on all of U .

Proof. Proposition 5.4.1 shows that any two normal coordinate charts on U are related by x̃i = Aijx
j for some

orthogonal matrix
(
Aij
)
, and a straightforward computation shows that both r and ∂r are invariant under

such coordinate changes. The smoothness statements follow directly from the coordinate formulas. ■

The crux of the proof that geodesics are locally minimizing is the following deceptively simple geometric
lemma.

Theorem 6.3.9 (The Gauss Lemma). Let (M, g) be a Riemannian manifold, let U be a geodesic ball centered
at p ∈ M , and let ∂r denote the radial vector field on U\{p}. Then ∂r is a unit vector field orthogonal to the
geodesic spheres in U\{p}.

Proof. We will work entirely in normal coordinates
(
xi
)

on U centered at p, using the properties of normal
coordinates described in Proposition 5.4.2.

Let q ∈ U\{p} be arbitrary, with coordinate representation
(
q1, . . . , qn

)
, and let b = r(q) =

√
(q1)

2
+ · · ·+ (qn)

2,
where r is the radial distance function defined by (6.6). It follows that ∂r|q has the coordinate representation

∂r|q =
qi

b

∂

∂xi

∣∣∣∣
q

.

Let v = vi∂i
∣∣
p
∈ TpM be the tangent vector at p with components vi = qi/b. By Proposition 5.4.2(c), the

radial geodesic with initial velocity v is given in these coordinates by

γv(t) =
(
tv1, . . . , tvn

)
.

It satisfies γv(0) = p, γv(b) = q, and γ′v(b) = vi∂i
∣∣
q
= ∂r|q. Because gp is equal to the Euclidean metric in

these coordinates, we have

|γ′v(0)|g = |v|g =
√
(v1)

2
+ · · ·+ (vn)

2
=

1

b

√
(q1)

2
+ · · ·+ (qn)

2
= 1,

so v is a unit vector, and thus γv is a unit-speed geodesic. It follows that ∂r|q = γ′v(b) is also a unit vector.

To prove that ∂r is orthogonal to the geodesic spheres let q, b, and v be as above, and let Σb = expp (∂Bb(0))
be the geodesic sphere containing q. In these coordinates, Σb is the set of points satisfying the equation(
x1
)2
+· · ·+(xn)

2
= b2. Let w ∈ TqM be any vector tangent to Σb at q. We need to show that

〈
w, ∂r|q

〉
g
= 0.

Choose a smooth curve σ : (−ε, ε) → Σb satisfying σ(0) = q and σ′(0) = w, and write its coordinate
representation in

(
xi
)
-coordinates as σ(s) =

(
σ1(s), . . . , σn(s)

)
. The fact that σ(s) lies in Σb for all s means

that (
σ1(s)

)2
+ · · ·+ (σn(s))

2
= b2.
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Figure 6.6: Proof of Gauss lemma.

Define a smooth map Γ : (−ε, ε)× [0, b]→ U (Fig.6.6) by

Γ(s, t) =

(
t

b
σ1(s), . . . ,

t

b
σn(s)

)
.

For each s ∈ (−ε, ε),Γs is a geodesic by Proposition 5.4.2(c). Its initial velocity is Γ′
s(0) = (1/b)σi(s)∂i | p,

which is a unit vector by (6.6) and the fact that gp is the Euclidean metric in coordinates; thus each Γs is a
unit-speed geodesic. As before, let S = ∂sΓ and T = ∂tΓ. It follows from the definitions that

S(0, 0) =
d

ds

∣∣∣∣
s=0

Γs(0) = 0;

T (0, 0) =
d

dt

∣∣∣∣
t=0

γv(t) = v;

S(0, b) =
d

ds

∣∣∣∣
s=0

σ(s) = w;

T (0, b) =
d

dt

∣∣∣∣
t=b

γv(t) = γ′v(b) = ∂r|q .

Therefore ⟨S, T ⟩ is zero when (s, t) = (0, 0) and equal to
〈
w, ∂r|q

〉
when (s, t) = (0, b), so to prove the

theorem it suffices to show that ⟨S, T ⟩ is independent of t. We compute

∂

∂t
⟨S, T ⟩ = ⟨DtS, T ⟩+ ⟨S,DtT ⟩ (compatibility with the metric)

= ⟨DsT, T ⟩+ ⟨S,DtT ⟩ (symmetry lemma)

= ⟨DsT, T ⟩+ 0 (each Γs is a geodesic)

=
1

2

∂

∂s
|T |2 = 0 (|T | = |Γ′

s| ≡ 1 for all (s, t)) .

(6.7)

This proves the theorem. ■

We will use the Gauss lemma primarily in the form of the next corollary.

Corollary 6.3.10. Let U be a geodesic ball centered at p ∈M , and let r and ∂r be the radial distance and radial
vector field as defined by (6.5) and (6.6). Then grad r = ∂r on U\{p}.
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Proof. By the result of Problem 2.5.10, it suffices to show that ∂r is orthogonal to the level sets of r and
∂r(r) ≡ |∂r|2g. The first claim follows directly from the Gauss lemma, and the second from the fact that
∂r(r) ≡ 1 by direct computation in normal coordinates, which in turn is equal to |∂r|2g by the Gauss lemma.

■

Here is the payoff: our first step toward proving that geodesics are locally minimizing. Note that this is
not yet the full strength of the theorem we are aiming for, because it shows only that for each point on a
geodesic, sufficiently small segments of the geodesic starting at that point are minimizing. We will remove
this restriction after a little more work below.

Proposition 6.3.11. Let (M, g) be a Riemannian manifold. Suppose p ∈ M and q is contained in a geodesic
ball around p. Then (up to reparametrization) the radial geodesic from p to q is the unique minimizing curve in
M from p to q.

Proof. Choose ε > 0 such that expp (Bε(0)) is a geodesic ball containing q. Let γ : [0, c] → M be the radial
geodesic from p to q parametrized by arc length, and write γ(t) = expp(tv) for some unit vector v ∈ TpM .
Then Lg(γ) = c, since γ has unit speed.

Figure 6.7: Radial geodesics are minimizing.

To show that γ is minimizing, we need to show that every other admissible curve from p to q has length
at least c. Let σ : [0, b] → M be an arbitrary admissible curve from p to q, which we may assume to be
parametrized by arc length as well. Let a0 ∈ [0, b] denote the last time that σ(t) = p, and b0 ∈ [0, b] the
first time after a0 that σ(t) meets the geodesic sphere Σc of radius c around p (Fig.6.7). Then the composite
function r ◦ σ is continuous on [a0, b0] and piecewise smooth in (a0, b0), so we can apply the fundamental
theorem of calculus to conclude that

r (σ (b0))− r (σ (a0)) =
∫ b0

a0

d

dt
r(σ(t))dt =

∫ b0

a0

dr (σ′(t)) dt

=

∫ b0

a0

〈
grad r|σ(t) , σ

′(t)
〉
dt ≤

∫ b0

a0

| grad r|σ(t)||σ′(t) | dt

=

∫ b0

a0

|σ′(t)| dt = Lg

(
σ|[a0,b0]

)
≤ Lg(σ)

(6.8)

Thus Lg(σ) ≥ r (σ (b0)) − r (σ (a0)) = c, so γ is minimizing. Now suppose Lg(σ) = c. Then b = c, and
both inequalities in (6.8) are equalities. Because we assume that σ is a unit-speed curve, the second of
these equalities implies that a0 = 0 and b0 = b = c, since otherwise the segments of σ before t = a0
and after t = b0 would contribute positive lengths. The first equality then implies that the nonnegative
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expression | grad r|σ(t)||σ′(t) | −
〈
grad r|σ(t) , σ′(t)

〉
is identically zero on [0, b], which is possible only if

σ′(t) is a positive multiple of grad r|σ(t) for each t. Since we assume that σ has unit speed, we must have
σ′(t) = grad r|σ(t) = ∂r|σ(t). Thus σ and γ are both integral curves of ∂r passing through q at time t = c, so
σ = γ. ■

The next two corollaries show how radial distance functions, balls, and spheres in normal coordinates are
related to their global metric counterparts.

Corollary 6.3.12. Let (M, g) be a connected Riemannian manifold and p ∈ M . Within every open or closed
geodesic ball around p, the radial distance function r(x) defined by (6.5) is equal to the Riemannian distance
from p to x in M .

Proof. Since every closed geodesic ball is contained in an open geodesic ball of larger radius, we need only
consider the open case. If x is in the open geodesic ball expp (Bc(0)), the radial geodesic γ from p to x is
minimizing by Proposition 6.3.11. Since its velocity is equal to ∂r, which is a unit vector in both the g-norm
and the Euclidean norm in normal coordinates, the g-length of γ is equal to its Euclidean length, which is
r(x). ■

Corollary 6.3.13. In a connected Riemannian manifold, every open or closed geodesic ball is also an open or
closed metric ball of the same radius, and every geodesic sphere is a metric sphere of the same radius.

Proof. Let (M, g) be a Riemannian manifold, and let p ∈M be arbitrary. First, let V = expp
(
B̄c(0)

)
⊆M be

a closed geodesic ball of radius c > 0 around p. Suppose q is an arbitrary point of M . If q ∈ V , then Corollary
6.3.12 shows that q is also in the closed metric ball of radius c. Conversely, suppose q /∈ V . Let S be the
geodesic sphere expp (∂Bc(0)). The complement of S is the disjoint union of the open sets expp (Bc(0)) and
M\ expp

(
B̄c(0)

)
, and hence disconnected. Thus if γ : [a, b] → M is any admissible curve from p to q, there

must be a time t0 ∈ (a, b) when γ (t0) ∈ S, and then Corollary 6.3.12 shows that the length of γ|[a,t0] must
be at least c. Since γ|[t0,b] must have positive length, it follows that dg(p, q) > c, so q is not in the closed
metric ball of radius c around p.

Next, let W = expp (Bc(0)) be an open geodesic ball of radius c. Since W is the union of all closed geodesic
balls around p of radius less than c, and the open metric ball of radius c is similarly the union of all closed
metric metric balls of smaller radii, the result of the preceding paragraph shows that W is equal to the open
metric ball of radius c.

Finally, if S = expp (∂Bc(0)) is a geodesic sphere of radius c, the arguments above show that S is equal to
the closed metric ball of radius c minus the open metric ball of radius c, which is exactly the metric sphere
of radius c. ■

The last corollary suggests a simplified notation for geodesic balls and spheres in M . From now on, we
will use the notations Bc(p) = expp (Bc(0)) , B̄c(p) = expp

(
B̄c(0)

)
, and Sc(p) = expp (∂Bc(0)) for open and

closed geodesic balls and geodesic spheres, which we now know are also open and closed metric balls and
spheres. (To avoid confusion, we refrain from using this notation for other metric balls and spheres unless
explicitly stated.)

In order to prove that geodesics in (M, g) are locally minimizing, we need the following refinement of the
concept of normal neighborhoods. A subset W ⊆ M is called uniformly normal if there exists some δ > 0
such that W is contained in a geodesic ball of radius δ around each of its points (Fig. 6.8). If δ is any such
constant, we will also say that W is uniformly δ-normal. Clearly every subset of a uniformly δ-normal set is
itself uniformly δ-normal.

Lemma 6.3.14 (Uniformly Normal Neighborhood Lemma). Given p ∈M and any neighborhood U of p, there
exists a uniformly normal neighborhood of p contained in U .
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Figure 6.8: Uniformly normal Neighborhood.

Proof. See [7, Lemma 6.14]. ■

Theorem 6.3.15. Every Riemannian geodesic is locally minimizing.

Proof. Let (M, g) be a Riemannian manifold. Suppose γ : I → M is a geodesic, which we may assume to
be defined on an open interval, and let t0 ∈ I. Let W be a uniformly normal neighborhood of γ (t0), and let
I0 ⊆ I be the connected component of γ−1(W ) containing t0. If a, b ∈ I0 with a < b, then the definition of
uniformly normal neighborhood implies that the image of γ|[a,b] is contained in a geodesic ball centered at
γ(a) (Fig. 6.9).

Figure 6.9: Geodesics are locally minimizing.

Proposition 5.4.2 shows that every geodesic segment lying in that ball and starting at γ(a) is part of a radial
geodesic, and Proposition 6.3.11 shows that each radial geodesic segment is minimizing. However, the
restriction of γ to [a, b] is also a geodesic segment from γ(a) to γ(b) lying in the same geodesic ball, and thus
γ|[a,b] must coincide with this minimizing geodesic. ■
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Given a Riemannian manifold (M, g) (without boundary), for each point p ∈ M we define the injectivity
radius of M at p, denoted by inj(p), to be the supremum of all a > 0 such that expp is a diffeomorphism
from Ba(0) ⊆ TpM onto its image.

If there is no upper bound to the radii of such balls (as is the case, for example, on Rn), then we set
inj(p) = ∞. Then we define the injectivity radius of M , denoted by inj(M), to be the infimum of inj(p) as
p ranges over points of M . It can be zero, positive, or infinite. (The terminology is explained by Problem
9.1.1.)

Lemma 6.3.16. If (M, g) is a compact Riemannian manifold, then inj(M) is positive.

Proof. For each x ∈ M , there is a positive number δ(x) such that x is contained in a uniformly δ(x)-normal
neighborhood Wx, and inj (x′) ≥ δ(x) for each x′ ∈ W . Since M is compact, it is covered by finitely many
such neighborhoods Wx1

, . . . ,Wxk
. Therefore, inj(M) is at least equal to the minimum of δ (x1) , . . . , δ (xk).

It cannot be infinite, because a compact metric space is bounded, and a geodesic ball of radius c contains
points whose distances from the center are arbitrarily close to c. ■

In addition to uniformly normal neighborhoods, there is another, more specialized, kind of normal neigh-
borhood that is frequently useful. Let (M, g) be a Riemannian manifold. A subset U ⊆ M is said to be
geodesically convex if for each p, q ∈ U , there is a unique minimizing geodesic segment from p to q in M ,
and the image of this geodesic segment lies entirely in U .

The next theorem says that every sufficiently small geodesic ball is geodesically convex.

Theorem 6.3.17. Let (M, g) be a Riemannian manifold. For each p ∈ M , there exists ε0 > 0 such that every
geodesic ball centered at p of radius less than or equal to ε0 is geodesically convex.

Proof. Exercise. ■

6.4 Completeness

Recall that such a manifold is said to be geodesically complete if every maximal geodesic is defined for all
t ∈ R. For clarity, we will use the phrase metrically complete for a connected Riemannian manifold that is
complete as a metric space with the Riemannian distance function, in the sense that every Cauchy sequence
converges.

The Hopf-Rinow theorem, which we will state and prove below, shows that these two notions of completeness
are equivalent for connected Riemannian manifolds. Before we prove it, let us establish a preliminary result,
which will have other important consequences besides the Hopf-Rinow theorem itself.

Lemma 6.4.1. Suppose (M, g) is a connected Riemannian manifold, and there is a point p ∈M such that expp
is defined on the whole tangent space TpM . Then

(a) Given any other q ∈M , there is a minimizing geodesic segment from p to q.

(b) M is metrically complete.

Remark 6.4.2. We can call the assumption in the lemma as “locally geodesically complete.” ♠

Proof. Let q ∈ M be arbitrary. If γ : [a, b] → M is a geodesic segment starting at p, let us say that γ aims at
q if γ is minimizing and

dg(p, q) = dg(p, γ(b)) + dg(γ(b), q) (6.9)

(This would be the case, for example, if γ were an initial segment of a minimizing geodesic from p to q; but
we are not assuming that.) To prove (a), it suffices to show that there is a geodesic segment γ : [a, b] → M
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that begins at p, aims at q, and has length equal to dg(p, q), for then the fact that γ is minimizing means that
dg(p, γ(b)) = Lg(γ) = dg(p, q), and (6.9) becomes

dg(p, q) = dg(p, q) + dg(γ(b), q),

which implies γ(b) = q. Since γ is a segment from p to q of length dg(p, q), it is the desired minimizing
geodesic segment.

Choose ε > 0 such that there is a closed geodesic ball B̄ε(p) around p that does not contain q. Since the
distance function on a metric space is continuous, there is a point x in the geodesic sphere Sε(p) where
dg(x, q) attains its minimum on the compact set Sε(p). Let γ be the maximal unit-speed geodesic whose
restriction to [0, ε] is the radial geodesic segment from p to x (Fig. 6.10); by assumption, γ is defined for all
t ∈ R.

Figure 6.10: Proof that γ|[0,ε] aims at q.

We begin by showing that γ|[0,ε] aims at q. Since it is minimizing by Proposition 6.3.11 (noting that every
closed geodesic ball is contained in a larger open one), we need only show that (6.9) holds with b = ε, or

dg(p, q) = dg(p, x) + dg(x, q) (6.10)

To this end, let σ : [a0, b0]→M be any admissible curve from p to q. Let t0 be the first time σ hits Sε(p), and
let σ1 and σ2 denote the restrictions of σ to [a0, t0] and [t0, b0], respectively (Fig. 6.10). Since every point in
Sε(p) is at a distance ε from p, we have Lg (σ1) ≥ dg (p, σ (t0)) = dg(p, x); and by our choice of x we have
Lg (σ2) ≥ dg (σ (t0) , q) ≥ dg(x, q). Putting these two inequalities together yields

Lg(σ) = Lg (σ1) + Lg (σ2) ≥ dg(p, x) + dg(x, q)

Taking the infimum over all such σ, we find that dg(p, q) ≥ dg(p, x) + dg(x, q). The opposite inequality is just
the triangle inequality, so (6.10) holds.

Now let T = dg(p, q) and

A =
{
b ∈ [0, T ] : γ|[0,b] aims at q

}
We have just shown that ε ∈ A. Let A = supA ≥ ε. By continuity of the distance function, it is easy to see
that A is closed in [0, T ], and therefore A ∈ A. If A = T , then γ|[0,T ] is a geodesic of length T = dg(p, q) that
aims at q, and by the remark above we are done. So we assume A < T and derive a contradiction.

Let y = γ(A), and choose δ > 0 such that there is a closed geodesic ball B̄δ(y) around y, small enough that
it does not contain q (Fig. 6.11).

The fact that A ∈ A means that

dg(y, q) = dg(p, q)− dg(p, y) = T −A
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Figure 6.11: Proof that A = T .

Let z ∈ Sδ(y) be a point where dg(z, q) attains its minimum, and let τ : [0, δ] → M be the unit-speed radial
geodesic from y to z. By exactly the same argument as before, τ aims at q, so

dg(z, q) = dg(y, q)− dg(y, z) = (T −A)− δ (6.11)

By the triangle inequality and (6.11),

dg(p, z) ≥ dg(p, q)− dg(z, q)
= T − (T −A− δ) = A+ δ

Therefore, the admissible curve consisting of γ|[0,A] (of length A) followed by τ (of length δ) is a minimizing
curve from p to z. This means that it has no corners, so z must lie on γ, and in fact, z = γ(A+ δ). But then
(6.11) says that

dg(p, q) = T = (A+ δ) + dg(z, q) = dg(p, z) + dg(z, q),

so γ|[0,A+δ] aims at q and A+ δ ∈ A, which is a contradiction. This completes the proof of (a).

To prove (b), we need to show that every Cauchy sequence in M converges. Let (qi) be a Cauchy sequence
in M . For each i, the assumption of local geodesical completeness allows us to get a unit-speed minimizing
geodesic γi(t) = expp (tvi) from p to qi. Let di = dg (p, qi), so that qi = expp (divi). Since (qi) is Cauchy
and dg is continuous, the sequence (di) is Cauchy and thus bounded in R. Let (vi) be a sequence consisting
of unit vectors in TpM . Then the sequence of vectors (divi) in TpM is bounded. Therefore a subsequence
(dikvik) converges to some v ∈ TpM by the Balzano-Weierstrass theorem. By continuity of the exponential
map, qik = expp (dikvik) → expp v, and since the original sequence (qi) is Cauchy, it converges to the same
limit.

■

The next theorem is the main result of this section.

Theorem 6.4.3 (Hopf-Rinow). A connected Riemannian manifold is metrically complete if and only if it is
geodesically complete.

Proof. Let (M, g) be a connected Riemannian manifold. Suppose first that M is geodesically complete. Then
in particular, it satisfies the hypothesis of Lemma 6.4.1, so it is metrically complete.

Conversely, suppose M is metrically complete, and assume for the sake of contradiction that it is not geodesi-
cally complete. Then there is some unit-speed geodesic γ : [0, b)→M that has no extension to a geodesic on
any interval [0, b′) for b′ > b. Let (ti) be any increasing sequence in [0, b) that approaches b, and set qi = γ (ti).
Since γ is parametrized by arc length, the length of γ|[ti,tj ] is exactly |tj − ti|, so dg (qi, qj) ≤ |tj − ti| and
(qi) is a Cauchy sequence in M . By completeness, (qi) converges to some point q ∈M . Let W be a uniformly
δ-normal neighborhood of q for some δ > 0. Choose j large enough that tj > b− δ and qj ∈W (Fig. 6.12).
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Figure 6.12: γ extends past q.

The fact that Bδ (qj) is a geodesic ball means that every unit-speed geodesic starting at qj exists at least
for t ∈ [0, δ). In particular, this is true of the geodesic σ with σ(0) = qj and σ′(0) = γ′ (tj). Define
γ̃ : [0, tj + δ)→M by

γ̃(t) =

{
γ(t), t ∈ [0, b)

σ (t− tj) , t ∈ (tj − δ, tj + δ)

Note that both expressions on the right-hand side are geodesics, and they have the same position and velocity
when t = tj . Therefore, by uniqueness of geodesics, the two definitions agree where they overlap. Since
tj + δ > b, γ̃ is an extension of γ past b, which is a contradiction. ■

A connected Riemannian manifold is simply said to be complete if it is either geodesically complete or
metrically complete; the Hopf-Rinow theorem then implies that it is both. For disconnected manifolds,
we interpret “complete” to mean geodesically complete, which is equivalent to the requirement that each
component be a complete metric space. As mentioned in the previous chapter, complete manifolds are the
natural setting for global questions in Riemannian geometry.

We conclude this section by stating three important corollaries: whose proofs are easy applications of Lemma
6.4.1 and the Hopf-Rinow theorem.

Corollary 6.4.4. If M is a connected Riemannian manifold and there exists a point p ∈ M such that the
restricted exponential map expp is defined on all of TpM , then M is complete.

Corollary 6.4.5. If M is a complete, connected Riemannian manifold, then any two points in M can be joined
by a minimizing geodesic segment.

Since compact metric spaces are complete, we also have:

Corollary 6.4.6. If M is a compact Riemannian manifold, then every maximal geodesic in M is defined for all
time.

The Hopf-Rinow theorem and Corollary 6.4.4 are key ingredients in the following theorem about Riemannian
covering maps. This theorem will play a key role in the proofs of some of the local-to-global theorems.

Theorem 6.4.7. Suppose (M̃, g̃) and (M, g) are connected Riemannian manifolds with M̃ complete, and π :

M̃ →M is a local isometry. Then M is complete and π is a Riemannian covering map.
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Proof. A fundamental property of covering maps is the path-lifting property: if π is a covering map, then
every continuous path γ : I → M lifts to a path γ̃ in M̃ such that π ◦ γ̃ = γ. We begin by proving that π
possesses the path-lifting property for geodesics (Fig. 6.13): if p ∈M is a point in the image of π, γ : I →M
is any geodesic starting at p, and p̃ is any point in π−1(p), then γ has a unique lift starting at p̃. The lifted
curve is necessarily also a geodesic because π is a local isometry.

Figure 6.13: Lifting geodesics.

To prove the path-lifting property for geodesics, suppose p ∈ π(M) and p̃ ∈ π−1(p), and let γ : I → M be
any geodesic with p = γ(0). Let v = γ′(0) and ṽ = (dπp̃)

−1
(v) ∈ Tp̃M̃ (which is well defined because dπp̃

is an isomorphism), and let γ̃ be the geodesic in M̃ with initial point p̃ and initial velocity ṽ. Because M̃ is
complete, γ̃ is defined on all of R. Since π is a local isometry, it takes geodesics to geodesics; and since by
construction π(γ̃(0)) = γ(0) and dπp̃ (γ̃′(0)) = γ′(0), we must have π ◦ γ̃ = γ on I, so γ̃|I is a lift of γ starting
at p̃. To show that M is complete, let p be any point in the image of π. If γ : I →M is any geodesic starting
at p, then γ has a lift γ̃ : I → M̃ . Because M̃ is complete, π ◦ γ̃ is a geodesic defined for all t that coincides
with γ on I, so γ extends to all of R. Thus M is complete by Corollary 6.4.4.

Next we show that π is surjective. Choose some point p̃ ∈ M̃ , write p = π(p̃), and let q ∈ M be arbitrary.
Because M is connected and complete, there is a minimizing unit-speed geodesic segment γ from p to q.
Letting γ̃ be the lift of γ starting at p̃ and r = dg(p, q), we have π(γ̃(r)) = γ(r) = q, so q is in the image of π.

To show that π is a smooth covering map, we need to show that every point of M has a neighborhood U
that is evenly covered, which means that π−1(U) is a disjoint union of connected open sets Ũα such that
π | Ũα : Ũα → U is a diffeomorphism. We will show, in fact, that every geodesic ball is evenly covered.

Let p ∈ M , and let U = Bε(p) be a geodesic ball centered at p. Write π−1(p) = {p̃α}α∈A, and for each α let
Ũα denote the metric ball of radius ε around p̃α (we are not claiming that Ũα is a geodesic ball). The first
step is to show that the various sets Ũα are disjoint. For every α ̸= β, there is a minimizing geodesic segment
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γ̃ from p̃α to p̃β because M̃ is complete. The projected curve γ = π ◦ γ̃ is a geodesic segment that starts and
ends at p (Fig. 6.14), whose length is the same as that of γ̃. Such a geodesic must leave U and reenter it
(since all geodesics passing through p and lying in U are radial line segments), and thus must have length at
least 2ε. This means that dg̃ (p̃α, p̃β) ≥ 2ε, and thus by the triangle inequality, Ũα ∩ Ũβ = ∅.

The next step is to show that π−1(U) =
⋃
α Ũα. If q̃ is any point in Ũα, then there is a geodesic γ̃ of length

less than ε from p̃α to q̃, and then π◦ γ̃ is a geodesic of the same length from p to π(q̃), showing that π(q̃) ∈ U .
It follows that

⋃
α Ũα ⊆ π−1(U).

Conversely, suppose q̃ ∈ π−1(U), and set q = π(q̃). This means that q ∈ U , so there is a minimizing radial
geodesic γ in U from q to p, and r = dg(q, p) < ε. Let γ̃ be the lift of γ starting at q̃ (Fig. 6.14). It follows
that π(γ̃(r)) = γ(r) = p. Therefore γ̃(r) = p̃α for some α, and dg̃ (q̃, p̃α) ≤ Lg(γ̃) = r < ε, so q̃ ∈ Ũα.

Figure 6.14: Left: proof that Ũα ∩ Ũβ = ∅; right: proof that π−1(U) ⊆
⋃
α Ũα.

It remains only to show that π : Ũα → U is a diffeomorphism for each α. It is certainly a local diffeomorphism
(because π is). It is bijective because its inverse can be constructed explicitly: it is the map sending each
radial geodesic starting at p to its lift starting at p̃α. This completes the proof. ■

Corollary 6.4.8. Suppose M̃ and M are connected Riemannian manifolds, and π : M̃ → M is a Riemannian
covering map. Then M is complete if and only if M̃ is complete.

Proof. A Riemannian covering map is, in particular, a local isometry. Thus if M̃ is complete, π satisfies the
hypotheses of Theorem 6.4.7, which implies that M is also complete. ■

Conversely, suppose M is complete. Let p̃ ∈ M̃ and ṽ ∈ TpM̃ be arbitrary, and let p = π(p̃) and v = dπp̃(ṽ).
Completeness of M implies that the geodesic γ with γ(0) = p and γ′(0) = v is defined for all t ∈ R, and then
its lift γ̃ : R→ M̃ starting at p̃ is a geodesic in M̃ with initial velocity ṽ, also defined for all t.

Corollary 6.4.5 to the Hopf-Rinow theorem shows that any two points in a complete, connected Riemannian
manifold can be joined by a minimizing geodesic segment. The next proposition gives a refinement of that
statement.
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Proposition 6.4.9. Suppose (M, g) is a complete, connected Riemannian manifold, and p, q ∈ M . Every path-
homotopy class of paths from p to q contains a geodesic segment γ that minimizes length among all admissible
curves in the same path-homotopy class.

Proof. Let π : M̃ →M be the universal covering manifold of M , endowed with the pullback metric g̃ = π∗g.
Given p, q ∈M and a path σ : [0, 1]→M from p to q, choose a point p̃ ∈ π−1(p), and let σ̃ : [0, 1]→ M̃ be the
lift of σ starting at p̃, and set q̃ = σ̃(1). By Corollary 6.4.5, there is a minimizing g̃-geodesic segment γ̃ from p̃
to q̃, and because π is a local isometry, γ = π ◦ γ̃ is a geodesic in M from p to q. If γ1 is any other admissible
curve from p to q in the same path-homotopy class, then by the monodromy theorem (see [5, Theorem
11.15]), its lift γ̃1 starting at p̃ also ends at q̃. Thus γ̃1 is no shorter than γ̃, which implies γ1 is no shorter
than γ. ■

6.5 Geodesics of the Model Spaces

Euclidean Space (Rn, g)

The Levi-Civita connection of (Rn, g) is the Euclidean connection (by Proposition 5.2.7 (a)):

∇XY = X
(
Y 1
) ∂

∂x1
+ · · ·+X (Y n)

∂

∂xn

Exercise 6.5.1. Show that the maximal geodesics on Rn with respect to the Euclidean connection are exactly
the constant curves (points) and the straight lines with constant-speed parametrizations.

Exercise 6.5.2. Let γ : I → Rn be a smooth curve, show that the smooh vector fields V along γ that are parallel
along γ with respect to the Euclidean connection are exactly the constant-coefficient ones.

Every Euclidean space is geodesically complete.

Spheres (Sn(R),
◦
g)

The round metric on the sphere Sn(R) is induced by the Euclidean metric on Rn+1 (Example 2.2.1), so Propo-

sition 5.2.7 (b) implies that the Levi-Civita connection of (Sn(R),
◦
g) is the tangential connection (Example

4.2.10)
∇⊤
XY := π⊤(∇X̃ Ỹ |M ).

Define a great circle on Sn(R) to be any subset of the form Sn(R) ∩ Π, where Π ⊆ Rn+1 is a 2-dimensional
linear subspace.

Proposition 6.5.3. A nonconstant curve on Sn(R) is a maximal geodesic if and only if it is a periodic constant-
speed curve whose image is a great circle. Thus every sphere is geodesically complete.

Proof. Let p ∈ Sn(R) be arbitrary. Because f(x) = |x|2 is a defining function for Sn(R), [6, Proposition 5.38]
shows that a vector v ∈ TpRn+1 is tangent to Sn(R) if and only if dfp(v) = 2⟨v, p⟩ = 0, where we think of
p as a vector by means of the usual identification of Rn+1 with TpRn+1. Thus TpSn(R) is exactly the set of
vectors orthogonal to p.

Suppose v is an arbitrary nonzero vector in TpSn(R). Let a = |v|/R and v̂ = v/a (so |v̂| = R), and consider
the smooth curve γ : R→ Rn+1 given by

γ(t) = (cos at)p+ (sin at)v̂
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By direct computation, |γ(t)|2 = R2, so γ(t) ∈ Sn(R) for all t. Moreover,

γ′(t) = −a(sin at)p+ a(cos at)v̂

γ′′(t) = −a2(cos at)p− a2(sin at)v̂

Recall from section 5.1 that a smooth curve γ : I → M on embedded submanifold M of Rn is a geodesic
with respect to its tangential connection if and only if its ordinary acceleration γ′′(t) is orthogonal to Tγ(t)M
for all t ∈ I. Now, γ′′(t) is proportional to γ(t) (thinking of both as vectors in Rn+1), it follows that
γ′′(t) is ḡ-orthogonal to Tγ(t)Sn(R), so γ is a geodesic in Sn(R). Since γ(0) = p and γ′(0) = av̂ = v, it
follows that γ = γv. Each γv is periodic of period 2π/a, and has constant speed by Corollary 5.2.2 (or by
direct computation). The image of γv is the great circle formed by the intersection of Sn(R) with the linear
subspace spanned by {p, v̂}, as one can check.

Conversely, suppose C is a great circle formed by intersecting Sn(R) with a 2-dimensional subspace Π, and
let {v, w} be an orthonormal basis for Π. Then C is the image of the geodesic with initial point p = Rw and
initial velocity v. ■

Hyperbolic Spaces (Hn(R), ğR)

The geodesics of hyperbolic spaces can be determined by an analogous procedure using the hyperboloid
model.

Proposition 6.5.4. A nonconstant curve in a hyperbolic space is a maximal geodesic if and only if it is a
constant-speed embedding of R whose image is one of the following:

(a) HYPERBOLOID MODEL: The intersection of Hn(R) with a 2-dimensional linear subspace of Rn,1, called a
great hyperbola (Fig. 6.15).

Figure 6.15: A great hyperbola.
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(b) BELTRAMI-KLEIN MODEL: The interior of a line segment whose endpoints both lie on ∂Kn(R) (Fig. 6.16).

Figure 6.16: Geodesics of Kn(R).

(c) BALL MODEL: The interior of a diameter of Bn(R), or the intersection of Bn(R) with a Euclidean circle
that intersects ∂Bn(R) orthogonally (Fig. 6.17).

Figure 6.17: Geodesics of Bn(R).

(d) HALF-SPACE MODEL: The intersection of Un(R) with one of the following: a line parallel to the y-axis or
a Euclidean circle with center on ∂Un(R) (Fig. 6.18).

Figure 6.18: Geodesics of Un(R).
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Every hyperbolic space is geodesically complete.

Proof. We begin with the hyperboloid model, for which the proof is formally quite similar to what we just
did for the sphere. Since the Riemannian connection on Hn(R) is equal to the tangential connection by
Proposition 5.12, it follows from Corollary 5.2 that a smooth curve γ : I → Hn(R) is a geodesic if and only if
its acceleration γ′′(t) is everywhere q̄-orthogonal to Tγ(t)Hn(R) (where q̄ = q̄(n,1) is the Minkowski metric).

Let p ∈ Hn(R) be arbitrary. Note that f(x) = q̄(x, x) is a defining function for Hn(R), and (3.10) shows that
the gradient of f at p is equal to 2p (where we regard p as a vector in TpRn,1 as before). It follows that a
vector v ∈ TpRn,1 is tangent to Hn(R) if and only if q̄(p, v) = 0. Let v ∈ TpHn(R) be an arbitrary nonzero
vector. Put a = |v|q̄/R = q̄(v, v)1/2/R and v̂ = v/a, and define γ : R→ Rn,1 by

γ(t) = (cosh at)p+ (sinh at)v̂

Direct computation shows that γ takes its values in Hn(R) and that its acceleration vector is everywhere
proportional to γ(t). Thus γ′′(t) is q̄-orthogonal to Tγ(t)Hn(R), so γ is a geodesic in Hn(R) and therefore has
constant speed. Because it satisfies the initial conditions γ(0) = p and γ′(0) = v, it is equal to γv. Note that
γv is a smooth embedding of R into Hn(R) whose image is the great hyperbola formed by the intersection
between Hn(R) and the plane spanned by {p, v̂}.

Conversely, suppose Π is any 2-dimensional linear subspace of Rn,1 that has nontrivial intersection with
Hn(R). Choose p ∈ Π ∩ Hn(R), and let v be another nonzero vector in Π that is q̄-orthogonal to p, which
implies v ∈ TpHn(R). Using the computation above, we see that the image of the geodesic γv is the great
hyperbola formed by the intersection of Π with Hn(R).

Before considering the other three models, note that since maximal geodesics in Hn(R) are constant-speed
embeddings of R, it follows from naturality that maximal geodesics in each of the other models are also
constant-speed embeddings of R. Thus each model is geodesically complete, and to determine the geodesics
in the other models we need only determine their images.

Consider the Beltrami-Klein model. Recall the isometry c : Hn(R) → Kn(R) given by c(ξ, τ) = Rξ/τ
(see (3.11)). The image of a maximal geodesic in Hn(R) is a great hyperbola, which is the set of points
(ξ, τ) ∈ Hn(R) that solve a system of n − 1 independent linear equations. Simple algebra shows that ( ξ, τ
) satisfies a linear equation αiξ

i + βτ = 0 if and only if w = c(ξ, τ) = Rξ/τ satisfies the affine equation
αiw

i = −βR. Thus c maps each great hyperbola onto the intersection of Kn(R) with an affine subspace of
Rn, and since it is the image of a smooth curve, it must be the intersection of Kn(R) with a straight line.

Next consider the Poincaré ball model. First consider the 2-dimensional case, and recall the inverse hyper-
bolic stereographic projection π−1 : B2(R)→ H2(R) constructed in Chapter 3:

π−1(u) = (ξ, τ) =

(
2R2u

R2 − |u|2
, R

R2 + |u|2

R2 − |u|2

)
.

In this case, a great hyperbola is the set of points on H2(R) that satisfy a single linear equation αiξi+βτ = 0.
In the special case β = 0, this hyperbola is mapped by π to a straight line segment through the origin, as
can easily be seen from the geometric definition of π. If β ̸= 0, we can assume (after multiplying through
by a constant if necessary) that β = −1, and write the linear equation as τ = αiξ

i = α · ξ (where the dot
represents the Euclidean dot product between elements of R2 ). Under π−1, this pulls back to the equation

R
R2 + |u|2

R2 − |u|2
=

2R2α · u
R2 − |u|2

on the disk, which simplifies to
|u|2 − 2Rα · u+R2 = 0

Completing the square, we can write this as

|u−Rα|2 = R2
(
|α|2 − 1

)
(6.12)
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If |α|2 ≤ 1, this locus is either empty or a point on ∂B2(R), so it contains no points in B2(R). Since we are
assuming that it is the image of a maximal geodesic, we must therefore have |α|2 > 1. In that case, (6.12)
is the equation of a circle with center Rα and radius R

√
|α|2 − 1. At a point u0 where the circle intersects

∂B2(R), the three points 0, u0, and Rα form a triangle with sides |u0| = R, |Rα|, and |u0 −Rα| (Fig. ??),
which satisfy the Pythagorean identity by (6.12); therefore the circle meets ∂B2(R) in a right angle.

Figure 6.19: Geodesics are arcs of circles orthogonal to the boundary of H2(R).

In the higher-dimensional case, a geodesic on Hn(R) is determined by a 2-plane. If the 2-plane contains
the point (0, . . . , 0, R), then the corresponding geodesic on Bn(R) is a line through the origin as before.
Otherwise, we can use an orthogonal transformation in the ( ξ1, . . . , ξn ) variables (which preserves ğR ) to
move this 2-plane so that it lies in the

(
ξ1, ξ2, τ

)
subspace, and then we are in the same situation as in the

2-dimensional case.

Finally, consider the upper half-space model. The 2-dimensional case is easiest to analyze using complex
notation. Recall the complex formula for the Cayley transform κ : U2(R)→ B2(R) given in Chapter 3:

κ(z) = w = iR
z − iR
z + iR

Substituting this into equation (6.12) and writing w = u + iv and α = a + ib in place of u =
(
u1, u2

)
, α =(

α1, α2
)
, we get

R2 |z − iR|2

|z + iR|2
− iR2ᾱ

z − iR
z + iR

+ iR2α
z̄ + iR

z̄ − iR
+R2|α|2 = R2

(
|α|2 − 1

)
Multiplying through by (z + iR)(z̄ − iR)/2R2 and simplifying yields

(1− b)|z|2 − 2aRx+ (b+ 1)R2 = 0.

This is the equation of a circle with center on the x-axis, unless b = 1, in which case the condition |α|2 > 1
forces a ̸= 0, and then it is a straight line x = constant. The other class of geodesics on the ball, line segments
through the origin, can be handled similarly.

In the higher-dimensional case, suppose first that γ : R → Un(R) is a maximal geodesic such that γ(0) lies
on the y-axis and γ′(0) is in the span of

{
∂/∂x1, ∂/∂y

}
. From the explicit formula (3.15) for κ, it follows

that κ ◦ γ(0) lies on the v-axis in the ball, and (κ ◦ γ)′(0) is in the span of
{
∂/∂u1, ∂/∂v

}
. The image of the

geodesic κ ◦ γ is either part of a line through the origin or an arc of a circle perpendicular to ∂Bn(R), both
of which are contained in the

(
u1, v

)
-plane. By the argument

in the preceding paragraph, it then follows that the image of γ is contained in the
(
x1, y

)
-plane and is either a

vertical half-line or a semicircle centered on the y = 0 hyperplane. For the general case, note that translations
and orthogonal transformations in the x-variables preserve vertical half-lines and circles centered on the
y = 0 hyperplane in Un(R), and they also preserve the metric ğ3R. Given an arbitrary maximal geodesic
γ : R → Un(R), after applying an x-translation we may assume that γ(0) lies on the y-axis, and after an
orthogonal transformation in the x variables, we may assume that γ′(0) is in the span of

{
∂/∂x1, ∂/∂y

}
;

then the argument above shows that the image of γ is either a vertical half-line or a semicircle centered on
the y = 0 hyperplane. ■
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6.6 Problems

Exercise 6.6.1 ( [7] 6-1). Suppose M is a nonempty connected Riemannian 1-manifold. Show that if M is
noncompact, then it is isometric to an open interval in R with the Euclidean metric, while if it is compact, it is
isometric to a circle S1(R) =

{
x ∈ R2 : |x| = R} with its induced metric for some R > 0, using the following

steps.

(a) Let γ : I →M be any maximal unit-speed geodesic. Show that its image is open and closed, and therefore
γ is surjective.

(b) Show that if γ is injective, then it is an isometry between I with its Euclidean metric and M .

(c) Now suppose γ (t1) = γ (t2) for some t1 ̸= t2. In case γ′ (t1) = γ′ (t2), show that γ is periodic, and
descends to a global isometry from an appropriate circle to M .

(d) It remains only to rule out the case γ (t1) = γ (t2) and γ′ (t1) = −γ′ (t2). If this occurs, let t0 =
(t1 + t2) /2, and define geodesics α and β by

α(t) = γ (t0 + t) , β(t) = γ (t0 − t) .

Use uniqueness of geodesics to conclude that α ≡ β on their common domain, and show that this contra-
dicts the fact that γ is injective on some neighborhood of t0.

Exercise 6.6.2 ( [7] 6-4). Previously, we have started with a Riemannian metric and used it to define the Rie-
mannian distance function. This problem shows how to go back the other way: the distance function determines
the Riemannian metric. Let (M, g) be a connected Riemannian manifold.

(a) Show that if γ : (−ε, ε)→M is any smooth curve, then

|γ′(0)|g = lim
t↘0

dg(γ(0), γ(t))

t

(b) Show that if g and g̃ are two Riemannian metrics on M such that dg(p, q) = dg̃(p, q) for all p, q ∈M , then
g = g̃.

Exercise 6.6.3 ( [7] 6-12). Let (M, g) be a connected Riemannian manifold.

(a) Suppose there exists δ > 0 such that for each p ∈ M , every maximal unit-speed geodesic starting at p is
defined at least on an interval of the form (−δ, δ). Prove that M is complete.

(b) Prove that if M has positive or infinite injectivity radius, then it is complete.

(c) Prove that if M is homogeneous, then it is complete.

(d) Give an example of a complete, connected Riemannian manifold that has zero injectivity radius.

Exercise 6.6.4 ( [7] 6-13). Let G be a connected compact Lie group. Show that the Lie group exponential map
of G is surjective. [Hint: Use Problem 5.5.2.]

Exercise 6.6.5 ( [7] 6-16). Suppose (M, g) is a complete, connected Riemannian manifold with positive or
infinite injectivity radius.

(a) Let ρ ∈ (0,∞] denote the injectivity radius of M , and define T ρM to be the subset of TM consisting of
vectors of length less than ρ, and Dρ to be the subset {(p, q) : dg(p, q) < ρ} ⊆M ×M . Define E : T ρM →
Dρ by E(x, v) = (x, expx v). Prove that E is a diffeomorphism.

(b) Use part (a) to prove that if B is a topological space and F,G : B → M are continuous maps such that
dg(F (x), G(x)) < inj(M) for all x ∈ B, then F and G are homotopic.
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Exercise 6.6.6 ( [7] 6-17). Suppose (M, g) is a connected Riemannian manifold. A closed geodesic in M is
a nonconstant geodesic segment γ : [a, b] → M such that γ(a) = γ(b) and γ′(a) = γ′(b). Show that if M is a
compact and connected, then every nontrivial free homotopy class in M is represented by a closed geodesic that
has minimum length among all admissible loops in the given free homotopy class. [Hint: Use Prop. 6.4.9 to
show that the given free homotopy class is represented by a geodesic loop, i.e., a geodesic whose starting and
ending points are the same. Show that the lengths of such loops have a positive greatest lower bound; then
choose a sequence of geodesic loops whose lengths approach that lower bound, and show that a subsequence
converges uniformly to a geodesic loop whose length is equal to the lower bound. Use Problem 6.6.5 to show
that the limiting curve is in the given free homotopy class, and apply the first variation formula to show that the
limiting curve is in fact a closed geodesic.]

Exercise 6.6.7 ( [7] 6-18). A connected Riemannian manifold (M, g) is said to be k-point homogeneous if
for any two ordered k-tuples (p1, . . . , pk) and (q1, . . . , qk) of points in M such that dg (pi, pj) = dg (qi, qj) for
all i, j, there is an isometry φ : M → M such that φ (pi) = qi for i = 1, . . . , k. Show that (M, g) is 2-point
homogeneous if and only if it is isotropic. [Hint: Assuming that M is isotropic, first show that it is homogeneous
by considering the midpoint of a geodesic segment joining sufficiently nearby points p, q ∈ M , and then use the
result of Problem 6.6.3 (c) to show that it is complete.]

Exercise 6.6.8 ( [7] 6-19). Prove that every Riemannian symmetric space is homogeneous. [Hint: Proceed as
in Problem 6.6.7.]

Exercise 6.6.9 ( [7] 5-22). A smooth vector field X on a Riemannian manifold is called a Killing vector field if
the Lie derivative LXg of the metric with respect to X vanishes. By Proposition 1.2.12 (g) (which is an analogue
of [6, Theorem 9.42]), this is equivalent to the requirement that the metric be invariant under the flow of X.
Prove that X is a Killing vector field if and only if the covariant 2-tensor field (∇X)♭ is antisymmetric. [Hint:
Proposition 1.2.12 (d).]

Exercise 6.6.10 ( [7] 6-24). Let (M, g) be a Riemannian manifold.

(a) Prove that a Killing vector field that is normal to a geodesic at one point is normal everywhere along the
geodesic.

(b) Prove that if a Killing vector field vanishes at a point p, then it is tangent to geodesic spheres centered at p.

(c) Prove that a Killing vector field on an odd-dimensional manifold cannot have an isolated zero.
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Chapter 7

Curvature

Recall that a Riemannian manifold is said to be flat if it is locally isometric to a Euclidean space, that is, if
every point has a neighborhood that is isometric to an open set in Rn with its Euclidean metric. Similarly,
a pseudo-Riemannian manifold is flat if it is locally isometric to a pseudo-Euclidean space. For Euclidean con-
nection on Rn, we see that∇X∇Y Z = XY

(
Zk
)
∂k,∇Y∇XZ = Y X

(
Zk
)
∂k, and

(
XY

(
Zk
)
− Y X

(
Zk
))
∂k =

∇[X,Y ]Z due to Example 4.8. Thus, the following relation holds for all vector fields X,Y, Z defined on an
open subset of Rn:

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z.

We say that a connection ∇ on a smooth manifold M satisfies the flatness criterion if whenever X,Y, Z are
smooth vector fields defined on an open subset of M , the following identity holds:

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z. (7.1)

Example 7.0.1. The metric on the n-torus induced by the embedding in R2n given in Example 2.2.11 is flat,
because each point has a coordinate neighborhood in which the metric is Euclidean. ♣

Proposition 7.0.2. If (M, g) is a flat Riemannian or pseudo-Riemannian manifold, then its Levi-Civita connec-
tion satisfies the flatness criterion.

Proof. We just showed that the Euclidean connection on Rn satisfies (7.1). By naturality (see Proposition
5.2.8), the Levi-Civita connection on every manifold that is locally isometric to a Euclidean or pseudo-
Euclidean space must also satisfy the same identity. ■

7.1 Curvature Tensor

Motivated by the computation in the preceding section, we make the following definition. Let (M, g) be a
Riemannian or pseudo-Riemannian manifold, and define a map R : X(M)× X(M)× X(M)→ X(M) by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (7.2)

Proposition 7.1.1. The map R defined above is multilinear over C∞(M), and thus defines a (1,3)-tensor field
on M .
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Proof. The map R is obviously multilinear over R. For f ∈ C∞(M),

R(X, fY )Z = ∇X∇fY Z −∇fY∇XZ −∇[X,fY ]Z

prop.1.2.4
======= ∇X∇fY Z −∇fY∇XZ −∇f [X,Y ]+(Xf)Y Z

defn.4.2.1
======= (Xf)∇Y Z + f∇X∇Y Z − f∇Y∇XZ − f∇[X,Y ]Z − (Xf)∇Y Z
= fR(X,Y )Z.

The same proof shows that R is linear over C∞(M) in X, because R(X,Y )Z = −R(Y,X)Z from the defini-
tion. The remaining case to be checked is linearity over C∞(M) in Z: using definition of connection and Lie
Bracket, we see

R(X,Y )fZ = ∇X∇Y fZ −∇Y∇XfZ −∇[X,Y ]fZ

= ∇X(f∇Y Z + Y fZ)−∇Y (f∇XZ +XfZ)− f∇[X,Y ]Z − [X,Y ]fZ

= f∇X∇Y Z +Xf∇Y Z + Y f∇XZ +X(Y f)Z

− f∇Y∇XZ − Y f∇XZ −Xf∇Y Z−Y (Xf)Z

− f∇[X,Y ]Z−[X,Y ]fZ

= fR(X,Y )Z

By the tensor characterization lemma 1.1.18, the fact that R is multilinear over C∞(M) implies that it is a
(1, 3)-tensor field (R takes in three vectors and output one vector, so R ∈ L(V, V, V ;V ) ∼= V ⊗V ∗⊗V ∗⊗V ∗ =
T (1,3)(V ).) ■

Thanks to this proposition, for each pair of vector fields X,Y ∈ X(M), the map R(X,Y ) : X(M) → X(M)
given by Z 7→ R(X,Y )Z is a smooth bundle endomorphism of TM (see [6] 10.29), called the curvature
endomorphism determined by X and Y . The tensor field R itself is called the (Riemann) curvature
endomorphism or the (1, 3)-curvature tensor or the Riemann curvature tensor of the second kind (Some
authors call it simply the curvature tensor, but we reserve that name instead for another closely related tensor
field, defined below.)

As a (1, 3)-tensor field, the curvature endomorphism can be written in terms of any local frame with one
upper and three lower indices. We adopt the convention that the last index is the contravariant (upper)
one. (This is contrary to our default assumption that covector arguments come first.) Thus, for example, the
curvature endomorphism can be written in terms of local coordinates

(
xi
)

as

R = Rijk
ldxi ⊗ dxj ⊗ dxk ⊗ ∂l,

where the coefficients Rijkl are defined by

R (∂i, ∂j) ∂k = Rijk
l∂l. (7.3)

We explain this a bit: looking back at proposition 1.1.5, we write above equation really to mean that for the
R ∈ T (1,3)TM ,

Ψ(R) (∂i, ∂j , ∂k) = Rijk
l∂l,

or
τ(R( · , ∂i, ∂j , ∂k)) = Rijk

l∂l.

Since τ is an isomorphism whose inverse sends a vector to its evaluation map v̄, showing this equality is
exactly showing that

Rijkl∂l = R( · , ∂i, ∂j , ∂k),

but Rijkl∂l(dxm) =
∑
lRijk

ldxm(∂l) = Rijk
m and R( · , ∂i, ∂j , ∂k)(dxm) = R(dxm, ∂i, ∂j , ∂k) = Rijk

m.

The next proposition shows how to compute the components of R in coordinates.
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Proposition 7.1.2. Let (M, g) be a Riemannian or pseudo-Riemannian manifold. In terms of any smooth local
coordinates, the components of the (1, 3)-curvature tensor are given by

Rijk
l = ∂iΓ

l
jk − ∂jΓlik + ΓmjkΓ

l
im − ΓmikΓ

l
jm. (7.4)

Proof.
R(∂i, ∂j)∂k = ∇∂i∇∂j∂k −∇∂j∇∂i∂k −∇[∂i,∂j ]∂k

[6](8.10)
======= ∇∂i∇∂j∂k −∇∂j∇∂i∂k
(4.2)
==== ∇∂i(Γmjk∂m)−∇∂j (Γmik∂m)

Γ’s are functions
=========== Γmjk∇∂i∂m + ∂iΓ

m
jk∂m − Γmik∇∂j∂m − ∂jΓmik∂m

= ΓmjkΓ
l
im∂l + ∂iΓ

l
jk∂l − ΓmikΓ

l
jm∂l − ∂jΓlik∂l

= [∂iΓ
l
jk − ∂jΓlik + ΓmjkΓ

l
im − ΓmikΓ

l
jm∂l

The characterization (7.3) then concludes. ■

Importantly for our purposes, the curvature endomorphism also measures the failure of second covariant
derivatives along families of curves to commute. Given a smooth one-parameter family of curves Γ : J× I →
M , recall from previous chapter that the velocity fields T (s, t) = ∂tΓ(s, t) = (Γs)

′
(t) and S(s, t) = ∂sΓ(s, t) =

Γ(t)′(s) are smooth vector fields along Γ.

Proposition 7.1.3. Suppose (M, g) is a smooth Riemannian or pseudo-Riemannian manifold and Γ : J×I →M
is a smooth one-parameter family of curves in M . Then for every smooth vector field V along Γ,

DsDtV −DtDsV = R (∂sΓ, ∂tΓ)V. (7.5)

Proof. This is a local question, so for each (s, t) ∈ J × I, we can choose smooth coordinates
(
xi
)

defined on
a neighborhood of Γ(s, t) and write

Γ(s, t) =
(
γ1(s, t), . . . , γn(s, t)

)
, V (s, t) = V j(s, t)∂j

∣∣
Γ(s,t)

.

The product rule for covariant derivatives along curves yields

DtV =
∂V i

∂t
∂i + V iDt∂i.

Therefore, applying product rule again, we get

DsDtV =
∂2V i

∂s∂t
∂i +

∂V i

∂t
Ds∂i +

∂V i

∂s
Dt∂i + V iDsDt∂i.

Interchanging s and t and subtracting, we see that all the terms except the last cancel:

DsDtV −DtDsV = V i (DsDt∂i −DtDs∂i) . (7.6)

Now we need to compute the commutator in parentheses. For brevity, let us write

S = ∂sΓ =
∂γk

∂s
∂k; T = ∂tΓ =

∂γj

∂t
∂j .

Because ∂i is extendible,

Dt∂i = ∇T∂i =
∂γj

∂t
∇∂j∂i,
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and therefore, because ∇∂j∂i is also extendible,

DsDt∂i = Ds

(
∂γj

∂t
∇∂j∂i

)
=
∂2γj

∂s∂t
∇∂j∂i +

∂γj

∂t
∇S
(
∇∂j∂i

)
=
∂2γj

∂s∂t
∇∂j∂i +

∂γj

∂t

∂γk

∂s
∇∂k∇∂j∂i.

Interchanging s↔ t and j ↔ k and subtracting, we find that the first terms cancel, and we get

DsDt∂i −DtDs∂i =
∂γj

∂t

∂γk

∂s

(
∇∂k∇∂j∂i −∇∂j∇∂k∂i

)
=
∂γj

∂t

∂γk

∂s
R (∂k, ∂j) ∂i = R(S, T )∂i

Finally, inserting this into (7.6) yields the result. ■

For many purposes, the information contained in the curvature endomorphism is much more conveniently
encoded in the form of a covariant 4-tensor. We define the (Riemann) curvature tensor (of the first kind)
to be the (0, 4)-tensor field Rm = R♭ (also denoted by Riem by some authors) obtained from the (1, 3)-
curvature tensor R by lowering its last index. Its action on vector fields is given by

Rm(X,Y, Z,W ) = ⟨R(X,Y )Z,W ⟩g (7.7)

(Thr LHS is R♭(X,Y, Z,W ) = R(X,Y, Z,W ♭); what this really means is that for R ∈ L(V, V, V ;V ) given by
(7.2), Φ(R)(X,Y, Z,W ♭) =RHS. This is true as Φ(R)(X,Y, Z,W ♭) = W ♭(R(X,Y, Z)) = ĝ(W )(R(X,Y )Z) =
g(W,R(X,Y )Z) = g(R(X,Y )Z,W ).) In terms of any smooth local coordinates it is written

Rm = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl,

where Rijkl = glmRijk
m (see Example 2.3.3). Thus (7.4) yields

Rijkl = glm

(
∂iΓ

m
jk − ∂jΓmik + ΓpjkΓ

m
ip − ΓpikΓ

m
jp

)
. (7.8)

It is appropriate to note here that there is much variation in the literature with respect to index positions
in the definitions of the curvature endomorphism and curvature tensor. While almost all authors define
the (1, 3)-curvature tensor as we have, there are a few whose definition is the negative of ours. There is
much less agreement on the definition of the (0, 4)-curvature tensor: whichever definition is chosen for the
curvature endomorphism, you will see the curvature tensor defined as in (7.7) but with various permutations
of (X,Y, Z,W ) on the right-hand side. After applying the symmetries of the curvature tensor that we will
prove later in this chapter, however, all of the definitions agree up to sign. There are various arguments to
support one choice or another; we have made a choice that makes equation (7.7) easy to remember. You just
have to be careful when you begin reading any book or article to determine the author’s sign convention.

The next proposition gives one reason for our interest in the curvature tensor.

Proposition 7.1.4. The curvature tensor is a local isometry invariant: if (M, g) and (M̃, g̃) are Riemannian or
pseudo-Riemannian manifolds and φ :M → M̃ is a local isometry, then φ∗R̃m = Rm.

Exercise 7.1.5. Prove above proposition.
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7.2 Flat Manifolds

To give a qualitative geometric interpretation to the curvature tensor, we will show that it is precisely the
obstruction to being locally isometric to Euclidean (or pseudo-Euclidean) space. (In next chapter, after we
have developed more machinery, we will be able to give a far more detailed quantitative interpretation.) The
crux of the proof is the following lemma.

Lemma 7.2.1. Suppose M is a smooth manifold, and∇ is any connection on M satisfying the flatness criterion.
Given p ∈ M and any vector v ∈ TpM , there exists a parallel vector field V on a neighborhood of p such that
Vp = v.

Proof. Let p ∈M and v ∈ TpM be arbitrary, and let
(
x1, . . . , xn

)
be any smooth coordinates for M centered

at p. By shrinking the coordinate neighborhood if necessary, we may assume that the image of the coordinate
map is an open cube Cε =

{
x :
∣∣xi∣∣ < ε, i = 1, . . . , n

}
. We use the coordinate map to identify the coordinate

domain with Cε.

Begin by parallel transporting v along the x1-axis; then from each point on the x1-axis, parallel transport
along the coordinate line parallel to the x2-axis; then successively parallel transport along coordinate lines
parallel to the x3 through xn axes (Fig. 7.2). The result is a vector field V defined in Cε. The fact that V
is smooth follows from by an inductive application of Theorem 1.2.8 to vector fields of the form Wk|(x,v) =
∂/∂xk − viΓjki(x)∂/∂vj on Cε × Rn; the details are left as an exercise.

Since ∇XV is linear over C∞(M) in X, to show that V is parallel, it suffices to show that ∇∂iV = 0 for
each i = 1, . . . , n. By construction, ∇∂1V = 0 on the x1-axis, ∇∂2V = 0 on the

(
x1, x2

)
-plane, and in general

∇∂kV = 0 on the slice Mk ⊆ Cε defined by xk+1 = · · · = xn = 0. We will prove the following fact by
induction on k :

∇∂1V = · · · = ∇∂kV = 0 on Mk.

For k = 1, this is true by construction, and for k = n, it means that V is parallel on the whole cube Cε. So
assume that (7.9) holds for some k. By construction,∇∂k+1

V = 0 on all of Mk+1, and for i ≤ k, the inductive
hypothesis shows that ∇∂iV = 0 on the hyperplane Mk ⊆ Mk+1. Since [∂k+1, ∂i] = 0, the flatness criterion
gives

∇∂k+1
(∇∂iV ) = ∇∂i

(
∇∂k+1

V
)
= 0 on Mk+1.

This shows that ∇∂iV is parallel along the xk+1-curves starting on Mk. Since ∇∂iV vanishes on Mk and the
zero vector field is the unique parallel transport of zero, we conclude that ∇∂iV is zero on each xk+1-curve.
Since every point of Mk+1 is on one of these curves, it follows that ∇∂iV = 0 on all of Mk+1. This completes
the inductive step to show that V is parallel. ■

Exercise 7.2.2. Prove that the vector field V constructed in the preceding proof is smooth.

Theorem 7.2.3. A Riemannian or pseudo-Riemannian manifold is flat if and only if its curvature tensor vanishes
identically.

Proof. One direction is immediate: Proposition 7.0.2 showed that the Levi-Civita connection of a flat metric
satisfies the flatness criterion, so its curvature endomorphism is identically zero, which implies that the
curvature tensor is also zero.

Now suppose (M, g) has vanishing curvature tensor. This means that the curvature endomorphism vanishes
as well, so the Levi-Civita connection satisfies the flatness criterion. We begin by showing that g shares one
important property with Euclidean and pseudo-Euclidean metrics: it admits a parallel orthonormal frame in
a neighborhood of each point.

Let p ∈ M , and choose an orthonormal basis (b1, . . . , bn) for TpM . In the pseudo-Riemannian case, we
may assume that the basis is in standard order (with positive entries before negative ones in the matrix
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gij = gp (bi, bj) ). Lemma 7.2.1 shows that there exist parallel vector fields E1, . . . , En on a neighborhood U
of p such that Ei|p = bi for each i = 1, . . . , n. Because parallel transport preserves inner products, the vector
fields (Ej) are orthonormal (and hence linearly independent) in all of U . Because the Levi-Civita connection
is symmetric, we have

[Ei, Ej ]
symmetric conn.
=========== ∇Ei

Ej −∇Ej
Ei =

(
Γkij − Γkji

)
Ek

Pb.4.8.1
====== 0.

Thus the vector fields (E1, . . . , En) form a commuting orthonormal frame on U . The canonical form theorem
for commuting vector fields ( [6] proposition ??) shows that there are coordinates

(
y1, . . . , yn

)
on a (possibly

smaller) neighborhood of p such that Ei = ∂/∂yi for i = 1, . . . , n. In any such coordinates, gij = g (∂i, ∂j) =
g (Ei, Ej) = ±δij , so the map y =

(
y1, . . . , yn

)
is an isometry from a neighborhood of p to an open subset of

the appropriate Euclidean or pseudo-Euclidean space. ■

Using similar ideas, we can give a more precise interpretation of the meaning of the curvature tensor: it is a
measure of the extent to which parallel transport around a small rectangle fails to be the identity map.

Figure 7.1: The curvature endomorphism and parallel transport around a closed loop.

Theorem 7.2.4. Let (M, g) be a Riemannian or pseudo-Riemannian manifold; let I be an open interval con-
taining 0; let Γ : I×I →M be a smooth one-parameter family of curves; and let p = Γ(0, 0), x = ∂sΓ(0, 0), and
y = ∂tΓ(0, 0) (see Fig.6.3). For any s1, s2, t1, t2 ∈ I, let P s1,t2s1,t1 : TΓ(s1,t1)M → TΓ(s1,t2)M denote parallel trans-
port along the curve Γs1 |[t1,t2] : t 7→ Γ (s1, t) from time t1 to time t2, and let P s2,t1s1,t1 : TΓ(s1,t1)M → TΓ(s2,t1)M

denote parallel transport along the curve Γ(t1)
∣∣
[s1,s2]

: s 7→ Γ (s, t1) from time s1 to time s2. (See Fig.7.1) Then
for every z ∈ TpM ,

R(x, y)z = lim
δ,ε→0

P 0,0
δ,0 ◦ P

δ,0
δ,ε ◦ P

δ,ε
0,ε ◦ P

0,ε
0,0 (z)− z

δε
. (7.9)

Proof. Define a vector field Z along Γ by first parallel transporting z along the curve t 7→ Γ(0, t), and then for
each t, parallel transporting Z(0, t) along the curve s 7→ Γ(s, t). The resulting vector field along Γ is smooth
by another application of Theorem 1.2.8 as in the proof of lemma 7.2.1; and by construction, it satisfies
DtZ(0, t) = 0 for all t ∈ I, and DsZ(s, t) = 0 for all (s, t) ∈ I × I. Proposition 7.1.3 shows that

R(x, y)z = DsDtZ(0, 0)−DtDsZ(0, 0) = DsDtZ(0, 0).
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Thus we need only show that DsDtZ(0, 0) is equal to the limit on the right-hand side of (7.10). From
Theorem 4.6.4, we have

(DtZ)(s, 0) = lim
ε→0

P s,0s,ε (Z(s, ε))− Z(s, 0)
ε

, (7.10)

(Ds(DtZ)) (0, 0) = lim
δ→0

P 0,0
δ,0 (DtZ(δ, 0))−DtZ(0, 0)

δ
. (7.11)

Evaluating (7.10) first at s = δ and then at s = 0, and inserting the resulting expressions into (7.11), we
obtain

(Ds(DtZ)) (0, 0) = lim
δ,ε→0

P 0,0
δ,0 ◦ P

δ,0
δ,ε (Z(δ, ε))− P

0,0
δ,0 (Z(δ, 0))− P

0,0
0,ε (Z(0, ε)) + Z(0, 0)

δε
. (7.12)

Here we have used the fact that parallel transport is linear, so the ε-limit can be pulled past P 0,0
δ,0 .

Now, the fact that Z is parallel along t 7→ Γ(0, t) and along all of the curves s 7→ Γ(s, t) implies

P 0,0
δ,0 (Z(δ, 0)) = P 0,0

0,ε (Z(0, ε)) = Z(0, 0) = z

Z(δ, ε) = P δ,ε0,ε (Z(0, ε)) = P δ,ε0,ε ◦ P
0,ε
0,0 (z).

Inserting these relations into (7.12) yields (7.9). ■

7.3 Symmetries of the Curvature Tensor

The curvature tensor on a Riemannian or pseudo-Riemannian manifold has a number of symmetries besides
the obvious skew-symmetry in its first two arguments.

Proposition 7.3.1 (Symmetries of the Curvature Tensor). Let (M, g) be a Riemannian or pseudo-Riemannian
manifold. The (0, 4)-curvature tensor of g has the following symmetries for all vector fields W,X, Y, Z:

(a) Rm(W,X, Y, Z) = −Rm(X,W, Y, Z).

(b) Rm(W,X, Y, Z) = −Rm(W,X,Z, Y ).

(c) Rm(W,X, Y, Z) = Rm(Y, Z,W,X).

(d) Rm(W,X, Y, Z) +Rm(X,Y,W,Z) +Rm(Y,W,X,Z) = 0.

Remark 7.3.2. Before we begin the proof, a few remarks are in order. First, as the proof will show, (a) is a
trivial consequence of the definition of the curvature endomorphism; (b) follows from the compatibility of
the Levi-Civita connection with the metric; (d) follows from the symmetry of the connection; and (c) follows
from (a), (b), and (d). The identity in (d) is called the algebraic Bianchi identity (or more traditionally
but less informatively, the first Bianchi identity). It is easy to show using (a)-(d) that a three-term sum
obtained by cyclically permuting any three arguments of Rm is also zero. Finally, it is useful to record the
form of these symmetries in terms of components with respect to any basis:

(a’) Rijkl = −Rjikl.

(b’) Rijkl = −Rijlk.

(c’) Rijkl = Rklij

(d’) Rijkl +Rjkil +Rkijl = 0.

♠
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Proof. Identity (a) is immediate from the definition of the curvature tensor, becauseR(W,X)Y = −R(X,W )Y .
To prove (b), it suffices to show thatRm(W,X, Y, Y ) = 0 for all Y , denoted as identity (⋆) for then (b) follows
from the expansion of Rm(W,X, Y + Z, Y + Z) = 0:

0
(⋆)
=== Rm(W,X, Y + Z, Y + Z)

= ⟨R(W,X)(Y + Z), Y + Z⟩g
= ⟨R(W,X)Y +R(W,X)Z, Y + Z⟩g
= ⟨R(W,X)Y, Y ⟩g + ⟨R(W,X)Y, Z⟩g + ⟨R(W,X)Z, Y ⟩g + ⟨R(W,X)Z,Z⟩g
(⋆)
=== ⟨R(W,X)Y,Z⟩g + ⟨R(W,X)Z, Y ⟩g

=⇒ ⟨R(W,X)Y,Z⟩g = −⟨R(W,X)Z, Y ⟩g, or Rm(W,X, Y, Z) = −Rm(W,X,Z, Y )

we now show (⋆): the compatibility with the metric gives

∇X⟨Y, Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩
=⇒ ∇X⟨Y, Y ⟩︸ ︷︷ ︸

X|Y |2

= ⟨∇XY, Y ⟩+ ⟨Y,∇XY ⟩ = 2⟨∇XY, Y ⟩ (∗)

and

∇X⟨Y,Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩
=⇒ ∇W ⟨∇XY,Z⟩︸ ︷︷ ︸

W ⟨∇XY,Z⟩

= ⟨∇W∇XY, Z⟩+ ⟨∇XY,∇WZ⟩ (∗∗)

Thus,

WX|Y |2 (∗)(∗∗)
======W (2 ⟨∇XY, Y ⟩) = 2 ⟨∇W∇XY, Y ⟩+ 2 ⟨∇XY,∇WY ⟩ ;

XW |Y |2 (∗)(∗∗)
====== X (2 ⟨∇WY, Y ⟩) = 2 ⟨∇X∇WY, Y ⟩+ 2 ⟨∇WY,∇XY ⟩ ;

[W,X]|Y |2 (∗)
=== 2

〈
∇[W,X]Y, Y

〉
.

When we subtract the second and third equations from the first, the left-hand side is zero. The terms
2 ⟨∇XY,∇WY ⟩ and 2 ⟨∇WY,∇XY ⟩ cancel on the right-hand side, giving

0 = 2 ⟨∇W∇XY, Y ⟩ − 2 ⟨∇X∇WY, Y ⟩ − 2
〈
∇[W,X]Y, Y

〉
= 2⟨R(W,X)Y, Y ⟩
= 2Rm(W,X, Y, Y ).

Next we prove (d). From the definition of Rm, this will follow immediately from

R(W,X)Y +R(X,Y )W +R(Y,W )X = 0.

Using the definition of R and the symmetry of the connection, the left-hand side expands to(
∇W∇XY −∇X∇WY −∇[W,X]Y

)
+
(
∇X∇YW −∇Y∇XW −∇[X,Y ]W

)
+
(
∇Y∇WX −∇W∇YX −∇[Y,W ]X

)
= ∇W (∇XY −∇YX) +∇X (∇YW −∇WY ) +∇Y (∇WX −∇XW )

−∇[W,X]Y −∇[X,Y ]W −∇[Y,W ]X

= ∇W [X,Y ] +∇X [Y,W ] +∇Y [W,X]

−∇[W,X]Y −∇[X,Y ]W −∇[Y,W ]X

= [W, [X,Y ]] + [X, [Y,W ]] + [Y, [W,X]].
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This is zero by the Jacobi identity (see property 1.2.4).

Finally, we show that identity (c) follows from the other three. Writing the algebraic Bianchi identity four
times with indices cyclically permuted gives

Rm(W,X, Y, Z) +Rm(X,Y,W,Z) +Rm(Y,W,X,Z) = 0
Rm(X,Y, Z,W ) +Rm(Y,Z,X,W ) +Rm(Z,X, Y,W ) = 0
Rm(Y,Z,W,X) +Rm(Z,W, Y,X) +Rm(W,Y,Z,X) = 0
Rm(Z,W,X, Y ) +Rm(W,X,Z, Y ) +Rm(X,Z,W, Y ) = 0.

Now add up all four equations. Applying (b) four times makes all the terms in the first two columns cancel.
Then applying (a) and (b) in the last column yields 2Rm(Y,W,X,Z) − 2Rm(X,Z, Y,W ) = 0, which is
equivalent to (c). ■

There is one more identity that is satisfied by the covariant derivatives of the curvature tensor on every
Riemannian manifold. Classically, it was called the second Bianchi identity, but modern authors tend to use
the more informative name differential Bianchi identity.

Proposition 7.3.3 (Differential Bianchi Identity). The total covariant derivative of the curvature tensor satisfies
the following identity:

∇Rm(X,Y , Z, V ,W ) +∇Rm(X,Y , V,W,Z) +∇Rm(X,Y ,W,Z, V ) = 0. (7.13)

In components, this is
Rijkl;m +Rijlm;k +Rijmk;l = 0. (7.14)

Proof. First of all, we show that by the symmetries of Rm, (7.13) is equivalent to

∇Rm(Z, V ,X, Y ,W ) +∇Rm(V,W,X, Y , Z) +∇Rm(W,Z,X, Y , V ) = 0. (7.15)

For example,

∇Rm(X,Y, Z, V,W ) = (∇WRm)(X,Y, Z, V )

(4.4)
====W (Rm(X,Y, Z, V ))−Rm(∇WX,Y, Z, V )−Rm(X,∇WY, Z, V )−Rm(X,Y,∇WZ, V )−Rm(X,Y, Z,∇WV )

prop.7.3.1
======= −W (Rm(Z, V,X, Y ))︸ ︷︷ ︸

=−∇W (Rm(Z, V,X, Y )︸ ︷︷ ︸
a function

)

−Rm(∇WX,Y, Z, V )︸ ︷︷ ︸
(1)

−Rm(X,∇WY, Z, V )︸ ︷︷ ︸
(2)

−Rm(X,Y,∇WZ, V )︸ ︷︷ ︸
(3)

−Rm(X,Y, Z,∇WV )︸ ︷︷ ︸
(4)

and

∇Rm(Z, V,X, Y,W )

=W (Rm(Z, V,X, Y ))−
(3)︷ ︸︸ ︷

Rm(∇WZ, V,X, Y )−
(4)︷ ︸︸ ︷

Rm(Z,∇WV,X, Y )−
(1)︷ ︸︸ ︷

Rm(Z, V,∇WX,Y )−
(2)︷ ︸︸ ︷

Rm(Z, V,X,∇WY )

Equation (7.15) be proved by a long and tedious computation, but there is a standard shortcut for such
calculations in Riemannian geometry that makes our task immeasurably easier. To prove that (7.15) holds
at a particular point p, it suffices by multilinearity to prove the formula when X,Y, Z, V,W are basis vectors
with respect to some frame. The shortcut consists in choosing a special frame for each point p to simplify the
computations there.

Let p be an arbitrary point, let
(
xi
)

be normal coordinates centered at p, and let X,Y, Z, V,W be arbitrary
coordinate basis vector fields. These vectors satisfy two properties that simplify our computations enor-
mously: (1) their commutators vanish identically, since [∂i, ∂j ] ≡ 0; and (2) their covariant derivatives
vanish at p, since Γkij(p) = 0 (Prop.5.4.2(d)).
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Using these facts and the compatibility of the connection with the metric, the first term in (7.15) evaluated
at p becomes

(∇WRm) (Z, V,X, Y ) = ∇W (Rm(Z, V,X, Y ))

= ∇W ⟨R(Z, V )X,Y ⟩
= ∇W

〈
∇Z∇VX −∇V∇ZX −∇[Z,V ]X,Y

〉
= ⟨∇W∇Z∇VX −∇W∇V∇ZX,Y ⟩ .

Write this equation three times, with the vector fields W,Z, V cyclically permuted. Summing all three gives

∇Rm(Z, V,X, Y,W ) +∇Rm(V,W,X, Y, Z) +∇Rm(W,Z,X, Y, V )

= ⟨∇W∇Z∇VX −∇W∇V∇ZX
+∇Z∇V∇WX −∇Z∇W∇VX
+∇V∇W∇ZX −∇V∇Z∇WX,Y ⟩

= ⟨R(W,Z) (∇VX) +R(Z, V ) (∇WX) +R(V,W ) (∇ZX) , Y ⟩
= 0,

where the last line follows because ∇VX = ∇WX = ∇ZX = 0 at p. ■

7.4 The Ricci Identities

The curvature endomorphism also appears as the obstruction to commutation of total covariant derivatives.
Recall that if F is any smooth tensor field of type (k, l), then its second covariant derivative∇2F = ∇(∇F ) is
a smooth (k, l + 2)-tensor field, and for vector fields X and Y , the notation ∇2

X,Y F denotes ∇2F (. . . , Y,X).
Given vector fields X and Y , let R(X,Y )∗ : T ∗M → T ∗M denote the dual map to R(X,Y ), defined by

(R(X,Y )∗η) (Z) = η(R(X,Y )Z).

Theorem 7.4.1 (Ricci Identities). On a Riemannian or pseudo-Riemannian manifold M , the second total
covariant derivatives of vector and tensor fields satisfy the following identities. If Z is a smooth vector field,

∇2
X,Y Z −∇2

Y,XZ = R(X,Y )Z. (7.16)

If β is a smooth 1-form,
∇2
X,Y β −∇2

Y,Xβ = −R(X,Y )∗β. (7.17)

And if B is a smooth (k, l)-tensor field,(
∇2
X,YB −∇2

Y,XB
) (
ω1, . . . , ωk, V1, . . . , Vl

)
= B

(
R(X,Y )∗ω1, ω2, . . . , ωk, V1, . . . , Vl

)
+ · · ·

+B
(
ω1, . . . , ωk−1, R(X,Y )∗ωk, V1, . . . , Vl

)
−B

(
ω1, . . . , ωk, R(X,Y )V1, V2, . . . , Vl

)
− · · ·

−B
(
ω1, . . . , ωk, V1, . . . , Vl−1, R(X,Y )Vl

)
(7.18)

for all covector fields ωi and vector fields Vj . In terms of any local frame, the component versions of these
formulas read

Zi; pq − Zi; qp = −RpqmiZm, (7.19)

βj;pq − βj;qp = Rpqj
mβm, (7.20)

Bi1...ikj1...jl;pq
−Bi1...ikj1...jl;qp

=−Rpqmi1Bmi2...ikj1...jl
− · · · −RpqmikBi1...ikmj1...jl

+Rpqj1
mBi1...ikmj2...jl

+ · · ·+Rpqjl
mBi1...ikj1...jl−1m

.
(7.21)
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Proof. For any tensor field B and vector fields X,Y , Proposition 4.3.7 implies

∇2
X,YB −∇2

Y,XB = ∇X∇YB −∇(∇XY )B −∇Y∇XB +∇(∇YX)B

= ∇X∇YB −∇Y∇XB −∇[X,Y ]B,
(7.22)

where the last equality follows from the symmetry of the connection. In particular, this holds when B = Z is
a vector field, so (7.16) follows directly from the definition of the curvature endomorphism. Next we prove
(7.17). Using (4.6) repeatedly, we compute

(∇X∇Y β) (Z) = X ((∇Y β) (Z))− (∇Y β) (∇XZ)
= X (Y (β(Z))− β (∇Y Z))− (∇Y β) (∇XZ)
= XY (β(Z))− (∇Xβ) (∇Y Z)− β (∇X∇Y Z)− (∇Y β) (∇XZ) .

(7.23)

Reversing the roles of X and Y , we get

(∇Y∇Xβ) (Z) = Y X(β(Z))− (∇Y β) (∇XZ)− β (∇Y∇XZ)− (∇Xβ) (∇Y Z) , (7.24)

and applying (4.6) one more time yields(
∇[X,Y ]β

)
(Z) = [X,Y ](β(Z))− β

(
∇[X,Y ]Z

)
. (7.25)

Now subtract (7.24) and (7.25) from (7.23): all but three of the terms cancel, yielding(
∇X∇Y β −∇Y∇Xβ −∇[X,Y ]β

)
(Z) = −β

(
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

)
= −β(R(X,Y )Z),

which is equivalent to (7.17). Next consider the action of ∇2
X,Y −∇2

Y,X on an arbitrary tensor product:(
∇2
X,Y− ∇2

Y,X

)
(F ⊗G)

=
(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
(F ⊗G)

=∇X∇Y F ⊗G+∇Y F ⊗∇XG+∇XF ⊗∇YG+ F ⊗∇X∇YG
−∇Y∇XF ⊗G−∇XF ⊗∇YG−∇Y F ⊗∇XG− F ⊗∇Y∇XG
−∇[X,Y ]F ⊗G− F ⊗∇[X,Y ]G

=
(
∇2
X,Y F −∇2

Y,XF
)
⊗G+ F ⊗

(
∇2
X,YG−∇2

Y,XG
)
.

A simple induction using this relation together with (7.16) and (7.17) shows that for all smooth vector fields
W1, . . . ,Wk and 1-forms η1, . . . , ηl,(

∇2
X,Y −∇2

Y,X

) (
W1 ⊗ · · · ⊗Wk ⊗ η1 ⊗ · · · ⊗ ηl

)
= (R(X,Y )W1)⊗W2 ⊗ · · · ⊗Wk ⊗ η1 ⊗ · · · ⊗ ηl + · · ·
+W1 ⊗ · · · ⊗Wk−1 ⊗ (R(X,Y )Wk)⊗ η1 ⊗ · · · ⊗ ηl

+W1 ⊗ · · · ⊗Wk ⊗
(
−R(X,Y )∗η1

)
⊗ η2 ⊗ · · · ⊗ ηl + · · ·

+W1 ⊗ · · · ⊗Wk ⊗ η1 ⊗ · · · ⊗ ηl−1 ⊗
(
−R(X,Y )∗ηl

)
.

Since every tensor field can be written as a sum of tensor products of vector fields and 1-forms, this implies
(7.18). Finally, the component formula (7.21) follows by applying (7.18) to(

∇2
Eq,Ep

B −∇2
Ep,Eq

B
) (
εi1 , . . . , εik , Ej1 , . . . , Ejl

)
,

where (Ej) and
(
εi
)

represent a local frame and its dual coframe, respectively, and using

R (Eq, Ep)Ej = Rqpj
mEm = −RpqjmEm,

R (Eq, Ep)
∗
εi = Rqpm

iεm = −Rpqmiεm.

The other two component formulas are special cases of (7.21). ■
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7.5 Ricci and Scalar Curvature

Suppose (M, g) is an n-dimensional Riemannian or pseudo-Riemannian manifold. Because 4-tensors are so
complicated, it is often useful to construct simpler tensors that summarize some of the information contained
in the curvature tensor. The most important such tensor is the Ricci curvature or Ricci tensor, denoted by
Rc (or often Ric in the literature), which is the covariant 2-tensor field defined as the trace of the curvature
endomorphism on its first and last indices. That is, Rc = C1

3 (R) where C1
3 is the unique linear mapping from

T (1,3)(TM) to T (0,2)(TM) such that

ω1 ⊗ ω2 ⊗ ω3 ⊗ v1 7→ ⟨ω1, v1⟩ω2 ⊗ ω3

(note that we didn’t write v1 ⊗ ω1 ⊗ ω2 ⊗ ω3 because we want to be aligned with the convention that
the contravariant index is placed at last for Riemannian endomorphism; as in definition 2.3.2 the order of
covariant and contravariant is assumed to be dropped.) Now, since

R = Rijk
ldxi ⊗ dxj ⊗ dxk ⊗ ∂l,

we see that C1
3 sends R to

Rijk
l⟨dxi, ∂l⟩dxj ⊗ dxk = Rijk

lδildx
j ⊗ dxk = Rpjk

pdxj ⊗ dxk =

Rc︷ ︸︸ ︷
Rkij

kdxi ⊗ dxj .

The components of Rc are usually denoted as Rij , so above equation implies

Rij = Rkij
k

Proposition 7.5.1.

(1) For vector fields X,Y ,
Rc(X,Y ) = tr(Z 7→ R(Z,X)Y ).

(2) For orthonormal basis (Ei), we have

tr(Z 7→ R(Z,X)Y ) =
∑
i

⟨R(Ei, X)Y,Ei⟩g

(3) Rij = gkmRkijm.

Proof. (1): We denote Z 7→ R(Z,X)Y as the operator A ∈ End(TM). Then f = Φ(A) ∈ T (1,1)(TM) is
defined by

f(W,Z) = Φ(A)(W,Z) =W (R(Z,X)Y )

To get the trace of f = Φ(A), we compute f(dxi, ∂j):

f ij = f(dxi, ∂j) = dxi(R(∂j , X
k∂k)(Y

m∂m))
(7.3)
==== dxi

(
Rjkm

lXkY m∂l
)
= Rjkm

iXkY m.

Thus, the trace of f is ∑
i

f ii = Rikm
iXkY m = Rkij

kXiY j

which is the same as Rkijkdxi ⊗ dxj(X,Y ) = Rc(X,Y ).

(2) In general, for f ∈ End(V ),
tr(f) =

∑
i

⟨Ei, f (Ei)⟩ .
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That’s because f(Ei) =
∑
j fjiEj where (fij) is the matrix of f , and ⟨Ei, f (Ei)⟩ =

∑
j fji⟨Ei, Ej⟩ =∑

j fjiδij = fII.

(3) It is known that the components of Riemann curvature tensor satisfies Rijkl = glmRijk
m. Thus

gkmRkijm = gkmgmpRkij
p

(2.6)
==== δkpRkij

p

= Rkij
k = Rij

■

The scalar curvature is the function S pointewise defined as the trace of the Ricci tensor:

S = trg Rc = Ri
i = gijRij .

where we used equation (2.14). Note that (Rcp)♯(v, ω) = Rcp(v, ω
♯) and Sp = tr((Rcp)

♯) (note that it is the
last index, or the second covariant, that is raised, so we write (v, w) instead of (ω, v); just as in definition
2.3.2, the order of covariant and contravariant is assumed to be dropped).

Lemma 7.5.2. The Ricci curvature is a symmetric 2-tensor field. It can be expressed in any of the following
ways:

Rij = Rkij
k = Rik

k
j = −Rkikj = −Rikjk.

Proof. To show Rij = Rik
k
j , we use Example 2.3.3. By the symmetry of Riemann curvature tensor we obtain

Rik
k
j = gkmRikmj = gkm(−Rkimj) = gkm(−(−Rkijm)) = gkmRkijm

prop.7.5(3)
========= Rij

Similarly,
−Rkikj = −gkmRkimj = gkmRkijm = Rij ,

and
−Rikjk = −gkmRikjm = gkmRkijm = Rij .

■

It is sometimes useful to decompose the Ricci tensor into a multiple of the metric and a complementary piece
with zero trace. Define the traceless Ricci tensor of g as the following symmetric 2-tensor:

◦
Rc= Rc− 1

n
Sg.

Proposition 7.5.3. Let (M, g) be a Riemannian or pseudo-Riemannian n-manifold. Then trg Rc ≡ 0, and the
Ricci tensor decomposes orthogonally as

Rc =
◦
Rc +

1

n
Sg. (7.26)

Therefore, in the Riemannian case,

|Rc|2g = |Rc|2g +
1

n
S2 (7.27)

Remark 7.5.4. The statement about norms, and others like it that we will prove below, works only in the
Riemannian case because of the additional absolute value signs required to compute norms in the pseudo-
Riemannian case. The pseudo-Riemannian analogue would be ⟨Rc,Rc⟩g = ⟨Rc,Rc⟩g + 1

nS
2, but this is not

as useful. ♠
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Proof. Note that in every local frame, we have

trg g = gijg
ji = δii = n.

It then follows directly from the definition of
◦
Rc that trg

◦
Rc≡ 0 and (7.26) holds:

trg
◦
Rc= trg(Rc−

1

n
Sg)

linearity
====== trg Rc−

1

n
S trg g = S − 1

n
Sn = 0

where we again note that S is a function and Sp is thus only a scalar. The fact that the decomposition is
orthogonal follows easily from the fact that for every symmetric 2-tensor h, we have

⟨h, g⟩ = gikgjlhijgkl = gijhij = trg h,

and therefore ⟨
◦
Rc, g⟩ = trg

◦
Rc= 0. Finally, (7.27) follows from (7.26) and the fact that ⟨g, g⟩ = trg g = n. ■

The next proposition, which follows directly from the differential Bianchi identity, expresses some important
relationships among the covariant derivatives of the various curvature tensors. To express it concisely, it is
useful to introduce another operator on tensor fields. If T is a smooth 2-tensor field on a Riemannian or
pseudo-Riemannian manifold, we define the exterior covariant derivative of T to be the 3-tensor field DT
defined by

(DT )(X,Y, Z) = −(∇T )(X,Y, Z) + (∇T )(X,Z, Y ).

In terms of components, this is
(DT )ijk = −Tij;k + Tik;j

(This operator is a generalization of the ordinary exterior derivative of a 1-form, which can be expressed in
terms of the total covariant derivative by (dη)(Y,Z) = −(∇η)(Y,Z)+(∇η)(Z, Y ) by the result of [7] Problem
5-13. The exterior covariant derivative can be generalized to other types of tensors as well, but this is the
only case we need.)

Proposition 7.5.5 (Contracted Bianchi Identities). Let (M, g) be a Riemannian or pseudo-Riemannian mani-
fold. The covariant derivatives of the Riemann, Ricci, and scalar curvatures of g satisfy the following identities:

trg(∇Rm) = −D(Rc), (7.28)

trg(∇Rc) =
1

2
dS, (7.29)

where the trace in each case is on the first and last indices. In components, this is

Rijkl;
i = Rjk;l −Rjl;k, (7.30)

Ril;
i =

1

2
S;l. (7.31)

Proof. Start with the component form (7.14) of the differential Bianchi identity, raise the index m, and then
contract on the indices i,m to obtain (7.30). (Note that covariant differentiation commutes with contraction
by Proposition 4.3.1 and with the musical isomorphisms by Proposition 5.2.12, so it does not matter whether
the indices that are raised and contracted come before or after the semicolon.) Then do the same with
the indices j, k and simplify to obtain (7.31). The coordinate-free formulas (7.28) and (7.29) follow by
expanding everything out in components. ■
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It is important to note that if the sign convention chosen for the curvature tensor is the opposite of ours, then
the Ricci tensor must be defined as the trace of Rm on the first and third (or second and fourth) indices. (The
trace on the first two or last two indices is always zero by antisymmetry.) The definition is chosen so that
the Ricci and scalar curvatures have the same meaning for everyone, regardless of the conventions chosen
for the full curvature tensor. So, for example, if a manifold is said to have positive scalar curvature, there is
no ambiguity as to what is meant.

A Riemannian or pseudo-Riemannian metric is said to be an Einstein metric if its Ricci tensor is a constant
multiple of the metric-that is,

Rc = λg for some constant λ. (7.32)

This equation is known as the Einstein equation. As the next proposition shows, for connected manifolds of
dimension greater than 2, it is not necessary to assume that λ is constant; just assuming that the Ricci tensor
is a function times the metric is sufficient.

Proposition 7.5.6 (Schur’s Lemma). Suppose (M, g) is a connected Riemannian or pseudo-Riemannian mani-
fold of dimension n ≥ 3 whose Ricci tensor satisfies Rc = fg for some smooth real-valued function f . Then f is
constant and g is an Einstein metric.

Proof. Proof. Taking traces of both sides of Rc = fg shows that f = 1
nS, so the traceless Ricci tensor is

identically zero. It follows that
◦
Rc≡ 0. Because the covariant derivative of the metric is zero, this implies the

following equation in any coordinate chart:

0 = Rij;k −
1

n
S;kgij

Tracing this equation on i and k, and comparing with the contracted Bianchi identity (7.31), we conclude
that

0 =
1

2
S;j −

1

n
S;j

Because n ≥ 3, this implies S;j = 0. But S;j is the component of ∇S = dS, so connectedness of M implies
that S is constant and thus so is f . ■

Corollary 7.5.7. If (M, g) is a connected Riemannian or pseudo-Riemannian manifold of dimension n ≥ 3, then
g is Einstein if and only if Rc = 0.

Proof. Suppose first that g is an Einstein metric with Rc = λg. Taking traces of both sides, we find that
λ = 1

nS, and therefore Rc = Rc−λg = 0. Conversely, if Rc = 0, Schur’s lemma implies that g is Einstein. ■

7.6 The Second Fundamental Form

Suppose (M, g) is a Riemannian submanifold of a Riemannian manifold (M̃, g̃). Recall that this means that
M is a submanifold of M̃ endowed with the induced metric g = ι∗M g̃ (where ιM : M ↪→ M̃ is the inclusion
map). We will study the relationship between the geometry of M and that of M̃ . We assume that (M̃, g̃) is
a Riemannian or pseudo-Riemannian manifold of dimension m, and (M, g) is an embedded n dimensional
Riemannian submanifold of M̃ . For other cases, see [7] p.226 for more explanation.

Our first main task is to compare the Levi-Civita connection of M with that of M̃ . The starting point for
doing so is the orthogonal decomposition of sections of the ambient tangent bundle TM̃

∣∣∣
M

into tangential
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and orthogonal components. Just as we did for submanifolds of Rn, we define orthogonal projection maps
called tangential and normal projections:

π⊤ : TM̃
∣∣∣
M
→ TM,

π⊥ : TM̃
∣∣∣
M
→ NM.

In terms of an adapted orthonormal frame (E1, . . . , Em) for M in M̃ , these are just the usual projections
onto span (E1, . . . , En) and span (En+1, . . . , Em) respectively, so both projections are smooth bundle homo-
morphisms (i.e., they are linear on fibers and map smooth sections to smooth sections). If X is a section of
TM̃

∣∣∣
M

, we often use the shorthand notations X⊤ = π⊤X and X⊥ = π⊥X for its tangential and normal

projections.

If X,Y are vector fields in X(M), we can extend them to vector fields on an open subset of M̃ (still denoted
by X and Y ), apply the ambient covariant derivative operator ∇̃, and then decompose at points of M to get

∇̃XY =
(
∇̃XY

)⊤
+
(
∇̃XY

)⊥
. (7.33)

We wish to interpret the two terms on the right-hand side of this decomposition. Let us focus first on the
normal component. We define the second fundamental form of M to be the map II : X(M) × X(M) →
Γ(NM) (read “two”) given by

II(X,Y ) =
(
∇̃XY

)⊥
,

where X and Y are extended arbitrarily to an open subset of M̃ . Since π⊥ maps smooth sections to smooth
sections, II(X,Y ) is a smooth section of NM .

The term first fundamental form, by the way, was originally used to refer to the induced metric g on M .
Although that usage has mostly been replaced by more descriptive terminology, we seem unfortunately to be
stuck with the name “second fundamental form.” The word “form” in both cases refers to bilinear form, not
differential form.

Proposition 7.6.1 (Properties of the Second Fundamental Form). Suppose (M, g) is an embedded Riemannian
submanifold of a Riemannian or pseudo-Riemannian manifold (M̃, g̃), and let X,Y ∈ X(M).

(a) II(X,Y ) is independent of the extensions of X and Y to an open subset of M̃ .

(b) II(X,Y ) is bilinear over C∞(M) in X and Y .

(c) II(X,Y ) is symmetric in X and Y .

(d) The value of II(X,Y ) at a point p ∈M depends only on Xp and Yp.

Proof. Proof. Choose particular extensions of X and Y to a neighborhood of M in M̃ , and for simplicity
denote the extended vector fields also by X and Y . We begin by proving that II(X,Y ) is symmetric in X and
Y when defined in terms of these extensions. The symmetry of the connection ∇̃ implies

II(X,Y )− II(Y,X) =
(
∇̃XY − ∇̃YX

)⊥
= [X,Y ]⊥.

Since X and Y are tangent to M at all points of M , so is their Lie bracket (Cor.1.2.6). Therefore [X,Y ]⊥ = 0,
so II is symmetric.

Because ∇̃XY
∣∣∣
p

depends only on Xp, it follows that the value of II(X,Y ) at p depends only on Xp, and

in particular is independent of the extension chosen for X. Because ∇̃XY is linear over C∞(M̃) in X, and
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every f ∈ C∞(M) can be extended to a smooth function on a neighborhood of M in M̃ , it follows that
II(X,Y ) is linear over C∞(M) in X. By symmetry, the same claims hold for Y . ■

As a consequence of the preceding proposition, for every p ∈ M and all vectors v, w ∈ TpM , it makes sense
to interpret II(v, w) as the value of II(V,W ) at p, where V and W are any vector fields on M such that Vp = v
and Wp =W , and we will do so from now on without further comment.

The following theorem shows that for the normal part of the decomposition, we have a relationship similar
to the Euclidean case: (∇̃XY )⊤ = ∇XY .

Theorem 7.6.2 (The Gauss Formula). Suppose (M, g) is an embedded Riemannian submanifold of a Rieman-
nian or pseudo-Riemannian manifold (M̃, g̃). If X,Y ∈ X(M) are extended arbitrarily to smooth vector fields
on a neighborhood of M in M̃ , the following formula holds along M :

∇̃XY = ∇XY + II(X,Y )

The Gauss formula can also be used to compare intrinsic and extrinsic covariant derivatives along curves. If
γ : I → M is a smooth curve and X is a vector field along γ that is everywhere tangent to M , then we can
regard X as either a vector field along γ in M̃ or a vector field along γ in M . We let D̃tX and DtX denote
its covariant derivatives along γ as a curve in M̃ and as a curve in M , respectively. The next corollary shows
how the two covariant derivatives are related.

Corollary 7.6.3 (The Gauss Formula Along a Curve). Suppose (M, g) is an embedded Riemannian submanifold
of a Riemannian or pseudo-Riemannian manifold (M̃, g̃), and γ : I → M is a smooth curve. If X is a smooth
vector field along γ that is everywhere tangent to M , then

D̃tX = DtX + II (γ′, X) .

Although the second fundamental form is defined in terms of covariant derivatives of vector fields tangent
to M , it can also be used to evaluate extrinsic covariant derivatives of normal vector fields, as the following
proposition shows. To express it concisely, we introduce one more notation. For each normal vector field
N ∈ Γ(NM), we obtain a scalar-valued symmetric bilinear form IIN : X(M)× X(M)→ C∞(M) by

IIN (X,Y ) = ⟨N, II(X,Y )⟩. (7.34)

Let WN : X(M)→ X(M) denote the self-adjoint linear map associated with this bilinear form, characterized
by

⟨WN (X), Y ⟩ = IIN (X,Y ) = ⟨N, II(X,Y )⟩. (7.35)

The map WN is called the Weingarten map in the direction of N . Because the second fundamental
form is bilinear over C∞(M), it follows that WN is linear over C∞(M) and thus defines a smooth bundle
homomorphism from TM to itself.

Proposition 7.6.4 (The Weingarten Equation). Suppose (M, g) is an embedded Riemannian submanifold of
a Riemannian or pseudo-Riemannian manifold (M̃, g̃). For every X ∈ X(M) and N ∈ Γ(NM), the following
equation holds: (

∇̃XN
)⊤

= −WN (X) (7.36)

when N is extended arbitrarily to an open subset of M̃ .

In addition to describing the difference between the intrinsic and extrinsic connections, the second funda-
mental form plays an even more important role in describing the difference between the curvature tensors
of M̃ and M . The explicit formula, also due to Gauss, is given in the following theorem.
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Theorem 7.6.5 (The Gauss Equation). Suppose (M, g) is an embedded Riemannian submanifold of a Rieman-
nian or pseudo-Riemannian manifold (M̃, g̃). For all W,X, Y, Z ∈ X(M), the following equation holds:

R̃m(W,X, Y, Z) = Rm(W,X, Y, Z)− ⟨II(W,Z), II(X,Y )⟩+ ⟨II(W,Y ), II(X,Z)⟩.

There is one other fundamental submanifold equation, which relates the normal part of the ambient cur-
vature endomorphism to derivatives of the second fundamental form. We will not have need for it, but we
include it here for completeness. To state it, we need to introduce a connection on the normal bundle of a
Riemannian submanifold.

If (M, g) is a Riemannian submanifold of a Riemannian or pseudo-Riemannian manifold (M̃, g̃), the normal
connection ∇⊥ : X(M)× Γ(NM)→ Γ(NM) is defined by

∇
⊥
X N =

(
∇̃XN

)⊥
,

where N is extended to a smooth vector field on a neighborhood of M in M̃ .

Proposition 7.6.6. If (M, g) is an embedded Riemannian submanifold of a Riemannian or pseudo-Riemannian
manifold (M̃, g̃), then ∇⊥ is a well-defined connection in NM , which is compatible with g̃ in the sense that for
any two sections N1, N2 of NM and every X ∈ X(M), we have

X ⟨N1, N2⟩ =
〈
∇⊥
X
N1, N2

〉
+
〈
N1,∇⊥

XN2

〉
.

Exercise 7.6.7. Prove the preceding proposition.

We need the normal connection primarily to make sense of tangential covariant derivatives of the second
fundamental form. To do so, we make the following definitions. Let F → M denote the bundle whose fiber
at each point p ∈ M is the set of bilinear maps TpM × TpM → NpM . It is easy to check that F is a smooth
vector bundle over M , and that smooth sections of F correspond to smooth maps X(M)×X(M)→ Γ(NM)
that are bilinear over C∞(M), such as the second fundamental form. Define a connection ∇F in F as
follows: if B is any smooth section of F , let ∇FXB be the smooth section of F defined by(

∇FXB
)
(Y, Z) = ∇⊥

X(B(Y,Z))−B (∇XY,Z)−B (Y,∇XZ) .

Exercise 7.6.8. Prove that ∇F is a connection in F .

Now we are ready to state the last of the fundamental equations for submanifolds.

Theorem 7.6.9 (The Codazzi Equation). Suppose (M, g) is an embedded Riemannian submanifold of a Rie-
mannian or pseudo-Riemannian manifold (M̃, g̃). For all W,X, Y ∈ X(M), the following equation holds:

(R̃(W,X)Y )⊥ =
(
∇FW II

)
(X,Y )−

(
∇FXII

)
(W,Y ). (7.37)

7.6.1 Curvature of Curve

By studying the curvatures of curves, we can give a more geometric interpretation of the second fundamental
form. Suppose (M, g) is a Riemannian or pseudoRiemannian manifold, and γ : I → M is a smooth unit-
speed curve in M . We define the (geodesic) curvature of γ as the length of the acceleration vector field,
which is the function κ : I → R given by

κ(t) = |Dtγ
′(t)| .

If γ is an arbitrary regular curve in a Riemannian manifold (not necessarily of unit speed), we first find a unit-
speed reparametrization γ̃ = γ ◦φ, and then define the curvature of γ at t to be the curvature of γ̃ at φ−1(t).
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In a pseudo-Riemannian manifold, the same approach works, but we have to restrict the definition to curves
γ such that |γ′(t)| is everywhere nonzero. [7] Problem 8-6 gives a formula that can be used in the Riemannian
case to compute the geodesic curvature directly without explicitly finding a unit-speed reparametrization.

From the definition, it follows that a smooth unit-speed curve has vanishing geodesic curvature if and only
if it is a geodesic, so the geodesic curvature of a curve can be regarded as a quantitative measure of how far
it deviates from being a geodesic. If M = Rn with the Euclidean metric, the geodesic curvature agrees with
the notion of curvature introduced in advanced calculus courses.

Now suppose (M̃, g̃) is a Riemannian or pseudo-Riemannian manifold and (M, g) is a Riemannian subman-
ifold. Every regular curve γ : I → M has two distinct geodesic curvatures: its intrinsic curvature κ as a
curve in M , and its extrinsic curvature κ̃ as a curve in M̃ . The second fundamental form can be used to
compute the relationship between the two.

Proposition 7.6.10 (Geometric Interpretation of II). Suppose (M, g) is an embedded Riemannian submanifold
of a Riemannian or pseudo-Riemannian manifold (M̃, g̃), p ∈M , and v ∈ TpM .

(a) II(v, v) is the g̃-acceleration at p of the g-geodesic γv.

(b) If v is a unit vector, then | II(v, v)| is the g̃-curvature of γv at p.

Note that the second fundamental form is completely determined by its values of the form II(v, v) for unit
vectors v, by the following lemma.

Lemma 7.6.11. Suppose V is an inner product space, W is a vector space, and B,B′ : V × V → W are
symmetric and bilinear. If B(v, v) = B′(v, v) for every unit vector v ∈ V , then B = B′.

Because the intrinsic and extrinsic accelerations of a curve are usually different, it is generally not the case
that a g̃-geodesic that starts tangent to M stays in M ; just think of a sphere in Euclidean space, for example.
A Riemannian submanifold (M, g) of (M̃, g̃) is said to be totally geodesic if every g̃-geodesic that is tangent
to M at some time t0 stays in M for all t in some interval (t0 − ε, t0 + ε).

Proposition 7.6.12. Suppose (M, g) is an embedded Riemannian submanifold of a Riemannian or pseudo-
Riemannian manifold (M̃, g̃), The following are equivalent:

(a) M is totally geodesic in M̃ .

(b) Every g-geodesic in M is also a g̃-geodesic in M̃ .

(c) The second fundamental form of M vanishes identically.

7.7 Hypersurfaces

Now we specialize the preceding considerations to the case in which M is a hypersurface (i.e., a submani-
fold of codimension 1) in M̃ . Throughout this section, our default assumption is that (M, g) is an embedded
n-dimensional Riemannian submanifold of an (n+ 1)-dimensional Riemannian manifold (M̃, g̃). (The anal-
ogous formulas in the pseudo-Riemannian case are a little different; see [7] Problem 8-19.)

In this situation, at each point of M there are exactly two unit normal vectors. In terms of any local adapted
orthonormal frame (E1, . . . , En+1), the two choices are ±En+1. In a small enough neighborhood of each
point of M , therefore, we can always choose a smooth unit normal vector field along M .

If both M and M̃ are orientable, we can use an orientation to pick out a global smooth unit normal vector
field along all of M . In general, though, this might or might not be possible. Since all of our computations
in this chapter are local, we will always assume that we are working in a small enough neighborhood that
a smooth unit normal field exists. We will address as we go along the question of how various quantities
depend on the choice of normal vector field.
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7.7.1 The Scalar Second Fundamental Form and the Shape Operator

Having chosen a distinguished smooth unit normal vector field N on the hypersurface M ⊆ M̃ , we can
replace the vector-valued second fundamental form II by a simpler scalar-valued form. The scalar second
fundamental form of M is the symmetric covariant 2-tensor field h ∈ Γ

(
Σ2T ∗M

)
defined by h = ΠN (see

(7.34)); in other words,
h(X,Y ) = ⟨N, II(X,Y )⟩. (7.38)

Using the Gauss formula ∇̃XY = ∇XY + II(X,Y ) and noting that ∇XY is orthogonal to N , we can rewrite
the definition as

h(X,Y ) =
〈
N, ∇̃XY

〉
. (7.39)

Also, since N is a unit vector spanning NM at each point, the definition of h is equivalent to

II(X,Y ) = h(X,Y )N. (7.40)

Note that replacing N by −N multiplies h by −1, so the sign of h depends on which unit normal is chosen;
but h is otherwise independent of the choices.

The choice of unit normal field also determines a Weingarten map WN : X(M)→ X(M) by (??); in the case
of a hypersurface, we use the notation s = WN and call it the shape operator of M . Alternatively, we can
think of s as the (1, 1)-tensor field on M obtained from h by raising an index. It is characterized by

⟨sX, Y ⟩ = h(X,Y ) for all X,Y ∈ X(M).

Because h is symmetric, s is a self-adjoint endomorphism of TM , that is,

⟨sX, Y ⟩ = ⟨X, sY ⟩ for all X,Y ∈ X(M).

As with h, the sign of s depends on the choice of N .

Remark 7.7.1. We can think of s as the (1, 1)-tensor field on M obtained from h by raising an index. In fact,
by mimicing Example 2.3.3 and using (2.6), we see that

hi
j = (h♯)i

j = gjlhil

=⇒ h♭ = hi
jdxi ⊗ ∂j = gilhildx

i ⊗ ∂j
=⇒ s(X) = Ψ(h♯)(X) = Ψ(gilhildx

i ⊗ ∂j)(X)

= gilhil[Ψ(dxi ⊗ ∂j)](X) = gilhildx
i(X)∂j

= gilhilX
i∂j

=⇒ ⟨sX, Y ⟩ = ⟨gjlhilXi∂j , Y
k∂k⟩ = gilgjkhilX

iY k

= δlkhilX
iY k = hikX

iY k = h(X,Y )

where Ψ is the isomorphism from T (1,1)(TM) to End(TM). ♠

In terms of the tensor fields h and s, the formulas of the last section can be rewritten somewhat more simply.
For this purpose, we will use the Kulkarni-Nomizu product of symmetric 2-tensors h, k:

h⃝∧ k(w, x, y, z) = h(w, z)k(x, y) + h(x, y)k(w, z)
−h(w, y)k(x, z)− h(x, z)k(w, y),

and the exterior covariant derivative of a smooth symmetric 2-tensor field T is

(DT )(x, y, z) = −(∇T )(x, y, z) + (∇T )(x, z, y).
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Theorem 7.7.2 (Fundamental Equations for a Hypersurface). Suppose (M, g) is a Riemannian hypersurface
in a Riemannian manifold (M̃, g̃), and N is a smooth unit normal vector field along M .

(a) THE GAUSS FORMULA FOR A HYPERSURFACE: If X,Y ∈ X(M) are extended to an open subset of M̃ , then

∇̃XY = ∇XY + h(X,Y )N.

(b) THE GAUSS FORMULA FOR A CURVE IN A HYPERSURFACE: If γ : I → M is a smooth curve and X : I →
TM is a smooth vector field along γ, then

D̃tX = DtX + h (γ′, X)N .

(c) The WEINGARTEN EQUATION FOR A HYPERSURFACE: For every X ∈ X(M),

∇̃XN = −sX

(d) The GAUSS EQUATION FOR A HYPERSURFACE: For all W,X, Y, Z ∈ X(M),

R̃m(W,X, Y, Z) = Rm(W,X, Y, Z)− 1

2
(h⃝∧ h)(W,X, Y, Z).

(e) THE CODAZZI EQUATION FOR A HYPERSURFACE: For all W,X, Y ∈ X(M),

R̃m(W,X, Y,N) = (Dh)(Y,W,X).

7.7.2 Principal Curvatures

At every point p ∈ M , we have seen that the shape operator s is a self-adjoint linear endomorphism of the
tangent space TpM . To analyze such an operator, we recall some linear-algebraic facts about self-adjoint
endomorphisms.

Lemma 7.7.3. Suppose V is a finite-dimensional inner product space and s : V → V is a self-adjoint linear
endomorphism. Let C denote the set of unit vectors in V . There is a vector v0 ∈ C where the function v 7→
⟨sv, v⟩ achieves its maximum among elements of C, and every such vector is an eigenvector of s with eigenvalue
λ0 = ⟨sv0, v0⟩.

Proposition 7.7.4 (Finite-Dimensional Spectral Theorem). Suppose V is a finitedimensional inner product
space and s : V → V is a self-adjoint linear endomorphism. Then V has an orthonormal basis of s-eigenvectors,
and all of the eigenvalues are real.

Proof. The proof is by induction on n = dimV . The n = 1 result is easy, so assume that the theorem holds
for some n ≥ 1 and suppose dimV = n+ 1. Above lemma shows that s has a unit eigenvector b0 with a real
eigenvalue λ0. Let B ⊆ V be the span of b0. Since s(B) ⊆ B, self-adjointness of s implies s

(
B⊥) ⊆ B⊥. The

inductive hypothesis applied to s|B ⊥ implies thatB⊥ has an orthonormal basis (b1, . . . , bn) of s-eigenvectors
with real eigenvalues, and then (b0, b1, . . . , bn) is the desired basis of V . ■

Applying this proposition to the shape operator s : TpM → TpM , we see that s has real eigenvalues
κ1, . . . , κn, and there is an orthonormal basis (b1, . . . , bn) for TpM consisting of s-eigenvectors, with sbi =
κibi for each i (no summation). In this basis, both h and s are represented by diagonal matrices, and h has
the expression

h(v, w) = κ1v
1w1 + · · ·+ κnv

nwn.

The eigenvalues of s at a point p ∈M are called the principal curvatures of M at p, and the corresponding
eigenspaces are called the principal directions. The principal curvatures all change sign if we reverse the
normal vector, but the principal directions and principal curvatures are otherwise independent of the choice
of coordinates or bases.
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There are two combinations of the principal curvatures that play particularly important roles for hypersur-
faces. The Gaussian curvature is defined as K = det(s), and the mean curvature as H = (1/n) tr(s) =
(1/n) trg(h). Since the determinant and trace of a linear endomorphism are basis-independent, these are
well defined once a unit normal is chosen. In terms of the principal curvatures, they are

K = κ1κ2 · · ·κn, H =
1

n
(κ1 + · · ·+ κn) ,

as can be seen by expressing s in terms of an orthonormal basis of eigenvectors. If N is replaced by −N ,
then H changes sign, while K is multiplied by (−1)n.

7.7.3 Hypersurfaces in Euclidean Space

Now we specialize even further, to hypersurfaces in Euclidean space. In this section, we assume that M ⊆
Rn+1 is an embedded n-dimensional submanifold with the induced Riemannian metric. The Euclidean metric
will be denoted as usual by ḡ, and covariant derivatives and curvatures associated with ḡ will be indicated
by a bar. The induced metric on M will be denoted by g.

In this setting, because Rm ≡ 0, the Gauss and Codazzi equations take even simpler forms:

1

2
h⃝∧ h = Rm, (7.41)

Dh = 0, (7.42)

or in terms of a local frame for M ,

hilhjk − hikhjl = Rijkl, (7.43)

hij;k − hik;j = 0. (7.44)

In particular, this means that the Riemann curvature tensor of a hypersurface in Rn+1 is completely deter-
mined by the second fundamental form. A symmetric 2-tensor field that satisfies Dh = 0 is called a Codazzi
tensor, so Dh = 0 can be expressed succinctly by saying that h is a Codazzi tensor.

Exercise 7.7.5. Show that a smooth 2-tensor field h on a Riemannian manifold is a Codazzi tensor if and only
if both h and ∇h are symmetric.

The equations 1
2h⃝∧ h = Rm and Dh = 0 can be viewed as compatibility conditions for the existence of

an embedding or immersion into Euclidean space with prescribed first and second fundamental forms. If
(M, g) is a Riemannian n-manifold and h is a given smooth symmetric 2-tensor field on M , then Theorem
8.13 shows that these two equations are necessary conditions for the existence of an isometric immersion
M → Rn+1 for which h is the scalar second fundamental form. (Note that an immersion is locally an
embedding, so the theorem applies in a neighborhood of each point.) It is a remarkable fact that the Gauss
and Codazzi equations are actually sufficient, at least locally. A sketch of a proof of this fact, called the
fundamental theorem of hypersurface theory, can be found in [Pet16, pp. 108-109].

In the setting of a hypersurface M ⊆ Rn+1, we can give some very concrete geometric interpretations of the
quantities we have defined so far. We begin with curves. For every unit vector v ∈ TpM , let γ = γv : I →M
be the g-geodesic in M with initial velocity v. Then the Gauss formula shows that the ordinary Euclidean
acceleration of γ at 0 is γ′′(0) = D̄tγ

′(0) = h(v, v)Np. Thus |h(v, v)| is the Euclidean curvature of γ at 0, and
h(v, v) = ⟨γ′′(0), Np⟩ > 0 if and only if γ′′(0) points in the same direction as Np. In other words, h(v, v) is
positive if γ is curving in the direction of Np, and negative if it is curving away from Np.
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Proposition 7.7.6. Suppose γ : I → Rm is a unit-speed curve, t0 ∈ I, and κ (t0) ̸= 0.

(a) There is a unique unit-speed parametrized circle c : R→ Rm, called the osculating circle at γ (t0), with the
property that c and γ have the same position, velocity, and acceleration at t = t0.

(b) The Euclidean curvature of γ at t0 is κ (t0) = 1/R, where R is the radius of the osculating circle.

Proof. An easy geometric argument shows that every circle in Rm with center q and radius R has a unit-speed
parametrization of the form

c(t) = q +R cos

(
t− t0
R

)
v +R sin

(
t− t0
R

)
w,

where (v, w) is a pair of orthonormal vectors in Rm. By direct computation, such a parametrization satisfies

c (t0) = q +Rv, c′ (t0) = w, c′′ (t0) = −
1

R
v.

Thus if we put

R =
1

|γ′′ (t0)|
=

1

κ (t0)
, v = −Rγ′′ (t0) , w = γ′ (t0) , q = γ (t0)−Rv

we obtain a circle satisfying the required conditions, and its radius is equal to 1/κ (t0) by construction.
Uniqueness is left as an exercise. ■

Exercise 7.7.7. Complete the proof of the preceding proposition by proving uniqueness of the osculating circle.

7.7.4 Computations in Euclidean Space

When we wish to compute the invariants of a Euclidean hypersurface M ⊆ Rn+1, it is usually unnecessary
to go to all the trouble of computing Christoffel symbols. Instead, it is usually more effective to use either a
defining function or a parametrization to compute the scalar second fundamental form, and then use (??) to
compute the curvature. Here we describe several contexts in which this computation is not too hard.

Usually the computations are simplest if the hypersurface is presented in terms of a local parametriza-
tion. Suppose M ⊆ Rn+1 is a smooth embedded hypersurface, and let X : U → Rn+1 be a smooth local
parametrization of M . The coordinates

(
u1, . . . , un

)
on U ⊆ Rn thus give local coordinates for M . The

coordinate vector fields ∂i = ∂/∂ui push forward to vector fields dX (∂i) on M , which we can view as sec-
tions of the restricted tangent bundle TRn+1

∣∣
M

, or equivalently as Rn+1-valued functions. If we think of
X(u) =

(
X1(u), . . . , Xn+1(u)

)
as a vector-valued function of u, these vectors can be written as

dXu (∂i) = ∂iX(u) =
(
∂iX

1(u), . . . , ∂iX
n+1(u)

)
.

For simplicity, write Xi = ∂iX. Once these vector fields are computed, a unit normal field can be computed
as follows: Choose any coordinate vector field ∂/∂xj0 that is not contained in span (X1, . . . , Xn) (there will
always be one, at least in a neighborhood of each point). Then apply the Gram-Schmidt algorithm to the
local frame

(
X1, . . . , Xn, ∂/∂x

j0
)

along M to obtain an adapted orthonormal frame (E1, . . . , En+1). The two
choices of unit normal are N = ±En+1.

The next proposition gives a formula for the second fundamental form that is often easy to use for computa-
tion.
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Proposition 7.7.8. Suppose M ⊆ Rn+1 is an embedded hypersurface, X : U → M is a smooth local
parametrization of M, (X1, . . . , Xn) is the local frame for TM determined by X, and N is a unit normal
field on M . Then the scalar second fundamental form is given by

h (Xi, Xj) =

〈
∂2X

∂ui∂uj
, N

〉
.

Here is another approach. When it is practical to write down a smooth vector field N = N i∂i on an open
subset of Rn+1 that restricts to a unit normal vector field along M , then the shape operator can be computed
straightforwardly using the Weingarten equation and observing that the Euclidean covariant derivatives of
N are just ordinary directional derivatives in Euclidean space. Thus for every vector X = Xj∂j tangent to
M , we have

sX = −∇̄XN = −
n+1∑
i,j=1

Xj
(
∂jN

i
)
∂i

One common way to produce such a smooth vector field is to work with a local defining function for M :
Recall that this is a smooth real-valued function defined on some open subset U ⊆ Rn+1 such that U ∩M
is a regular level set of F (see [7] Prop. A.27). The definition ensures that grad F (the gradient of F with
respect to ḡ) is nonzero on some neighborhood of M ∩ U , so a convenient choice for a unit normal vector
field along M is

N =
gradF

| gradF |

Here is an application.

Example 7.7.9 (Shape Operators of Spheres). The function F : Rn+1 → R defined by F (x) = |x|2 is a
smooth defining function for each sphere Sn(R). The gradient of this function is grad F = 2

∑
i x

i∂i, which
has length 2R along Sn(R). The smooth vector field

N =
1

R

n+1∑
i=1

xi∂i

thus restricts to a unit normal along Sn(R). (It is the outward pointing normal.) The shape operator is now
easy to compute:

sX = − 1

R

n+1∑
i,j=1

Xj
(
∂jx

i
)
∂i = −

1

R
X.

Therefore s = (−1/R) Id. The principal curvatures, therefore, are all equal to −1/R, and it follows that the
mean curvature is H = −1/R and the Gaussian curvature is (−1/R)n. ♣

For surfaces in R3, either of the above methods can be used. When a parametrization X is given, the normal
vector field is particularly easy to compute: because X1 and X2 span the tangent space to M at each point,
their cross product is a nonzero normal vector, so one choice of unit normal is

N =
X1 ×X2

|X1 ×X2|

7.7.5 Gauss’s Theorema Egregium

Because the Gaussian and mean curvatures are defined in terms of a particular embedding of M into Rn+1,
there is little reason to suspect that they have much to do with the intrinsic Riemannian geometry of (M, g).
The next exercise illustrates the fact that the mean curvature has no intrinsic meaning.
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Exercise 7.7.10. LetM1 ⊆ R3 be the plane {z = 0}, and letM2 ⊆ R3 be the cylinder
{
x2 + y2 = 1

}
. Show that

M1 and M2 are locally isometric, but the former has mean curvature zero, while the latter has mean curvature
± 1

2 , depending on which normal is chosen.

The amazing discovery made by Gauss was that the Gaussian curvature of a surface in R3 is actually an
intrinsic invariant of the Riemannian manifold (M, g). He was so impressed with this discovery that he
called it Theorema Egregium, Latin for ”excellent theorem.”

Theorem 7.7.11 (Gauss’s Theorema Egregium). Suppose (M,g) is an embedded 2-dimensional Riemannian
submanifold of R3. For every p ∈M , the Gaussian curvature of M at p is equal to one-half the scalar curvature
of g at p, and thus the Gaussian curvature is a local isometry invariant of (M, g).

Motivated by the Theorema Egregium, for an abstract Riemannian 2-manifold (M, g), not necessarily em-
bedded in R3, we define the Gaussian curvature to be K = 1

2S, where S is the scalar curvature. If M is a
Riemannian submanifold of R3, then the Theorema Egregium shows that this new definition agrees with the
original definition of K as the determinant of the shape operator.

Corollary 7.7.12. If (M, g) is a Riemannian 2-manifold, the following relationships hold:

Rm =
1

2
Kg⃝∧ g, Rc = Kg, S = 2K.

7.8 Sectional Curvature

Now, finally, we can give a quantitative geometric interpretation to the curvature tensor in dimensions higher
than 2 . Suppose M is a Riemannian n-manifold (with n ≥ 2 ), p is a point of M , and V ⊆ TpM is a star-
shaped neighborhood of zero on which expp is a diffeomorphism onto an open set U ⊆ M . Let Π be any
2dimensional linear subspace of TpM . Since Π ∩ V is an embedded 2-dimensional submanifold of V , it
follows that SΠ = expp(Π ∩ V ) is an embedded 2-dimensional submanifold of U ⊆ M containing p (Fig.
8.5), called the plane section determined by Π. Note that SΠ is just the set swept out by geodesics whose
initial velocities lie in Π, and TpSΠ is exactly Π.

We define the sectional curvature of Π, denoted by sec(Π), to be the intrinsic Gaussian curvature at p of the
surface SΠ with the metric induced from the embedding SΠ ⊆ M . If (v, w) is any basis for Π, we also use
the notation sec(v, w) for sec(Π).

The next theorem shows how to compute the sectional curvatures in terms of the curvature of (M, g). To
make the formula more concise, we introduce the following notation. Given vectors v, w in an inner product
space V , we set

|v ∧ w| =
√
|v|2|w|2 − ⟨v, w⟩2

It follows from the Cauchy-Schwarz inequality that |v ∧ w| ≥ 0, with equality if and only if v and w are
linearly dependent, and |v ∧ w| = 1 when v and w are orthonormal.

Proposition 7.8.1 (Formula for the Sectional Curvature). Let (M, g) be a Riemannian manifold and p ∈ M .
If v, w are linearly independent vectors in TpM , then the sectional curvature of the plane spanned by v and w is
given by

sec(v, w) =
Rmp(v, w,w, v)

|v ∧ w|2
(7.45)

Exercise 7.8.2. Suppose (M, g) is a Riemannian manifold and g̃ = λg for some positive constant λ. Use
Theorem 7.30 to prove that for every p ∈ M and plane Π ⊆ TpM , the sectional curvatures of Π with respect to
g̃ and g are related by s̃ec(Π) = λ−1 sec(Π).

The formula for the sectional curvature shows that one important piece of quantitative information provided
by the curvature tensor is that it encodes the sectional curvatures of all plane sections. It turns out, in fact,
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that this is all of the information contained in the curvature tensor: as the following proposition shows, the
sectional curvatures completely determine the curvature tensor.

Proposition 7.8.3. Suppose R1 and R2 are algebraic curvature tensors on a finitedimensional inner product
space V. Iffor every pair of linearly independent vectors v, w ∈ V ,

R1(v, w,w, v)

|v ∧ w|2
=
R2(v, w,w, v)

|v ∧ w|2

then R1 = R2.

Proposition 7.8.4 (Geometric Interpretation of Ricci and Scalar Curvatures). Let (M, g) be a Riemannian
n-manifold and p ∈M .

(a) For every unit vector v ∈ TpM,Rcp(v, v) is the sum of the sectional curvatures of the 2-planes spanned by
(v, b2) , . . . , (v, bn), where (b1, . . . , bn) is any orthonormal basis for TpM with b1 = v.

(b) The scalar curvature at p is the sum of all sectional curvatures of the 2-planes spanned by ordered pairs of
distinct basis vectors in any orthonormal basis.

Proof. Given any unit vector v ∈ TpM , let (b1, . . . , bn) be as in the hypothesis. Then Rcp(v, v) is given by

Rcp(v, v) = R11(p) = Rk11
k(p) =

n∑
k=1

Rmp (bk, b1, b1, bk) =

n∑
k=2

sec (b1, bk)

For the scalar curvature, we let (b1, . . . , bn) be any orthonormal basis for TpM , and compute

S(p) = Rj
j(p) =

n∑
j=1

Rcp (bj , bj) =

n∑
j,k=1

Rmp (bk, bj , bj , bk) =
∑
j ̸=k

sec (bj , bk) .

■

One consequence of this proposition is that if (M, g) is a Riemannian manifold in which all sectional curva-
tures are positive, then the Ricci and scalar curvatures are both positive as well. The analogous statement
holds if “positive” is replaced by “negative,” “nonpositive,” or “nonnegative.”

If the opposite sign convention is chosen for the curvature tensor, then the righthand side of formula (7.45)
has to be adjusted accordingly, with Rmp(v, w, v, w) taking the place of Rmp(v, w,w, v). This is so that
whatever sign convention is chosen for the curvature tensor, the notion of positive or negative sectional,
Ricci, or scalar curvature has the same meaning for everyone.

7.8.1 Sectional Curvatures of the Model Spaces

7.9 Problems

Exercise 7.9.1 ( [7] 7-13). Let G be a Lie group with a bi-invariant metric g. Show that the following formula
holds whenever X,Y, Z are left-invariant vector fields on G:

R(X,Y )Z =
1

4
[Z, [X,Y ]]

(see Problem 5.5.2.)

Exercise 7.9.2 ( [7] 8-17). Let G be a Lie group with a bi-invariant metric g.
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(a) Suppose X and Y are orthonormal elements of Lie(G). Show that sec (Xp, Yp) = 1
4 |[X,Y ]|2 for each

p ∈ G, and conclude that the sectional curvatures of ( G, g ) are all nonnegative.

(b) Show that every Lie subgroup of G is totally geodesic in G.

(c) Now suppose G is connected. Show that G is flat if and only if it is abelian.

Exercise 7.9.3 ( [7] 8-12). Suppose π : (M̃, g̃) → (M, g) is a Riemannian submersion, and (M̃, g̃) has all
sectional curvatures bounded below by a constant c. Use O’Neill’s formula (Problem 7-14) to show that the
sectional curvatures of ( M, g ) are bounded below by the same constant.

Exercise 7.9.4 ( [7] 8-13). Let p : S2n+1 → CPn be the Riemannian submersion described in Example 2.30.
In this problem, we identify Cn+1 with R2n+2 by means of coordinates (x1, y1, . . . , xn+1, yn+1) defined by zj =
xj + iyj .

(a) Show that the vector field

S = xj
∂

∂yj
− yj ∂

∂xj

on Cn+1 is tangent to S2n+1 and spans the vertical space Vz at each point z ∈ S2n+1. (The implicit
summation here is from 1 to n+ 1.)

(b) Show that for all horizontal vector fields W,Z on S2n+1,

[W,Z]V = −dω(W,Z)S = 2⟨W,JZ⟩S

where ω is the 1 -form on Cn+1 given by

ω = Sb =
∑
j

xjdyj − yjdxj

and J : TCn+1 → TCn+1 is the real-linear orthogonal map given by

J

(
aj

∂

∂xj
+ bj

∂

∂yj

)
= aj

∂

∂yj
− bj ∂

∂xj

(This is just multiplication by i =
√
−1 in complex coordinates. Notice that J ◦ J = −Id.)

(c) Using O’Neill’s formula (Problem 7-14), show that the curvature tensor of CPn satisfies

Rm(w, x, y, z) =⟨w̃, z̃⟩⟨x̃, ỹ⟩ − ⟨w̃, ỹ⟩⟨x̃, z̃⟩
− 2⟨w̃, Jx̃⟩⟨ỹ, J z̃⟩ − ⟨w̃, Jỹ⟩⟨x̃, Jz̃⟩
+ ⟨w̃, Jz̃⟩⟨x̃, Jỹ⟩

for every q ∈ CPn and w, x, y, z ∈ TqCPn, where w̃, x̃, ỹ, z̃ are horizontal lifts of w, x, y, z to an arbitrary
point q̃ ∈ p−1(q) ⊆ S2n+1.

(d) Using the notation of part (c), show that for orthonormal vectors w, x ∈ TqCPn, the sectional curvature of
the plane spanned by {w, x} is

sec(w, x) = 1 + 3⟨w̃, Jx̃⟩2

(e) Show that for n ≥ 2, the sectional curvatures at each point of CPn take on all values between 1 and 4 ,
inclusive, and conclude that CPn is not frame-homogeneous.

(f) Compute the Gaussian curvature of CP1.
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Chapter 8

Laplacian on Riemannian Manifolds

8.1 Basic Examples

[11] chapter 1 Basic Examples

Because the theory of the Laplacian on a Riemannian manifold involves some technical preliminaries, we
begin by examining some simple examples. In fact, considering the Laplacian and the associated heat flow
on just S1 and R highlights essential differences between the Laplacian on a compact and on a noncompact
manifold.

First, recall that if T : V → V is a symmetric, nonnegative linear transformation of a finite dimensional inner
product space V , then there exists an orthonormal basis of eigenvectors of V with eigenvalues 0 ≤ λ1 ≤
. . . ≤ λn. The set {λi} is called the spectrum of T , denoted σ(T ). Note that λ ∈ σ(T ) if any only if there is
some nonzero vector v that solves the system of linear equations (T − λI)v = 0, i.e., ker(T − λI) ̸= 0. Also,
the system Ax = 0 has nonzero solutions if and only if the matrix A is singular, i.e., det(A) = 0. Thus, we
can equivalently write

λ /∈ σ(T ) ⇐⇒ ker(T − λI) = 0 ⇐⇒ det(T − λI) ̸= 0 ⇐⇒ (T − λI)−1 exists

This eigenvector decomposition of V generalizes to the infinite dimensional case where V is a Hilbert space
and T is a compact operator, i.e. an operator such that if {vi} is a bounded sequence in V , then {Tvi} has a
convergent subsequence. (For example, any projection onto a finite dimensional subspace is compact, and in
fact any compact operator is the norm limit of such finite rank operators.) In this case, the spectral theorem
for compact operators says that V again has an orthonormal basis of eigenvectors for T , each eigenspace
has only finite multiplicity, and the only (finite or infinite) accumulation point for the set of eigenvalues
is zero. In particular, since the absolute values of the eigenvalues are bounded, the operator T is itself
bounded. Remember that in infinite dimensions a linear operator may well be unbounded, or equivalently
discontinuous.

The spectral theorem for compact operators is an easy generalization of the finite dimensional situation.
We want to show that this eigenvector decomposition holds for certain unbounded differential operators on
compact manifolds. The space V will be some Hilbert space of functions or forms on the manifold. We
remark that unbounded operators are only defined on a dense subset of a Hilbert space, and in general one
must be very careful to define the domains of such operators and their adjoints correctly. The domains of
definition of our unbounded operators are rather easy to construct on compact manifolds, but noncompact
manifolds are more difficult to treat.
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8.2 Hilbert Spaces Associated to a Compact Riemannian Manifold

[1] chapter 2 section 1

8.3 Some Canonical Differential Operators on a Riemannian Manifold

[1] chapter 2 section 2

8.4 Heat Kernel

[11] chapter 3

8.5 Atiyah-Singer Index Theorem

[11] chapter 4
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Chapter 9

Jacobi Fields

9.1 Problems

Exercise 9.1.1 ( [7] 10-24). Let (M, g) be a complete Riemannian manifold and p ∈ M . Show that inj(p) is
equal to the radius of the largest open ball in TpM on which expp is injective.
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Chapter 10

Curvature and Topology
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Chapter 11

Appendix
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