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Chapter 1

Groups

1.1 Recap: Groups, Cosets, and Homomorphisms

Definition 1.1.1 (Group). We define a binary operation (multiplication) ˚ : GˆGÑ G on a nonempty set
G, and pG, ¨q is called a group if ˚ satisfies the following rules.

(1) the multiplication is closed on G;

(2) associativity of multiplication: a ˚ pb ˚ cq “ pa ˚ bq ˚ c,@a, b, c P G;

(3) G has an identity element (i.e. De P G s.t. @g P G : e ˚ g “ g ˚ e “ g);

(4) each element g P G has an inverse (i.e. Dg´1 P G s.t. g ˚ g´1 “ g´1 ˚ g “ e).

Remark 1.1.2. Several remarks are in order:

1. We will denote ab “ a ˚ b and am ˚ an “ an`m “ an ˚ am and pamqn “ amn “ panqm.

2. A magma is a tuple pG, ˚q with (1) above; a semigroup is an associative magma, i.e. tuple pG, ˚q with
(1) and (2) above; a monoid is a semigroup with an identity element, i.e., tuple pG, ˚q with (1), (2),
and (3) above.

3. Let pR,`, ˚q be a ring with unity 1. That is, pR, ˚q is a monoid. An element x is called a unit or
invertible element if it has an inverse, so the set of all invertible elements UpRq is a group, called
group of units in R.

4. Rules (3) and (4) in definition 1.1.1 are equivalent to the following condition (proof of the equivalence
outlined in the exercise 1):

(5) @a, b P G : equations ax “ b, ya “ b have solutions in G.

Definition 1.1.3 (Abelian Group). A group G is called Abelian if @a, b P G : ab “ ba.

Definition 1.1.4 (Subgroup). A non-empty subset H Ď G is a subgroup, denoted as H ď G, if

(1) a P H ùñ a´1 P H

(2) a, b P H ùñ ab P H

Proposition 1.1.5.

1. H ď G implies that H is a group with operation of G (see [9] Theorem 2.1);

2. H Ď G is a subgroup iff e P H and a, b P H ùñ ab´1 P H (see [9] Theorem 2.2).
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3. G finite, then a nonempty subset H of G is a subgroup iff a, b P H ñ ab P H (see [9] Corollary 2.4).

Theorem 1.1.6. The inverse and the identity element of a group are both unique.

Proof. Suppose e, e1 P G and @g P G we have

e ¨ g “ g ¨ e “ g (1.1)

e1 ¨ g “ g ¨ e1 “ g (1.2)

Putting g “ e in (1.2) results in e “ e ¨ e1 and putting g “ e1 in (1.1) results in e ¨ e1 “ e1. So e “ e1. Suppose
h and k are inverses of g, so that in particular hg “ e and gk “ e. Then phgqk “ ek “ k, but hpgkq “ he “ h.
But the associativity law tells us phgqk “ hpgkq, which says k “ h.

Example 1.1.7. The trivial group G “ teu with ˚ defined by e ˚ e “ e. pC,ˆq is not a group. What would
the inverse element of 0 be? But if we write Cˆ for the set of nonzero complex numbers then pCˆ,ˆq is a
group. Equally the nonzero real numbers or rational numbers under multiplication are groups. Let GLpn,Cq
be the set of n ˆ n invertible matrices over the complex numbers. Then GLnpCq with matrix multiplication
is a nonabelian group.

Definition 1.1.8 (group homomorphism). Let G,G1 be a group. ϕ : G Ñ G1 is a homomorphism if
ϕpabq “ ϕpaqϕpbq for all a, b P G. f is an isomorphism if the homomorphism is bijective, denoted by
G – H. An injective homomorphism is called a monomorphism. A surjective homomorphism is called a
epimorophism. If G “ G1, we say the homomorphism is an endomorphism. If furthermore that endomor-
phism is also bijective, we say it is an automorphism.

Remark 1.1.9 (Isomorphism is an equiv relation). If ϕ : G Ñ G1 is a group isomorphism, i.e., a bijective
homomorphism, then its inverse is also an isomorphism. Therefore, if we find the inverse function of a
group homomorphism as a function, then that inverse function automatically becomes an isomorphism.
This means isomorphism is a symmetric relation on the set of all groups. Isomorphism is also reflexive and
transitive, so it’s an equivalence relation. The proof of these two are left as exercises. We show the symmetric
property: Since ϕ is bijective, there is an inverse function ϕ´1 : G1 Ñ G. Suppose a, b P G1, and we want
to show ϕ´1pabq “ ϕ´1paqϕ´1pbq. Let x “ ϕ´1paq and y “ ϕ´1pbq. Since ϕ is a homomorphism, we have
ϕpxyq “ ϕpxqϕpyq “ ab, so ϕ´1pabq “ xy.

Theorem 1.1.10. Let f : pG, ˚q Ñ pG1, ˝q be a homomorphism.

1. fpeq “ e1, where e1 is the identity in G1;

2. If a P G, then f
`

a´1
˘

“ fpaq´1;

3. If a P G and n P Z, then f panq “ fpaqn;

4. H ď Gñ fpHq ď G1 and H 1 ď G1 ñ f´1pH 1q ď G;

Proof.

1. Applying f to the equation e “ e ˚ e gives fpeq “ fpe ˚ eq “ fpeq ˝ fpeq. Now multiply each side of the
equation by fpeq´1 to obtain e1 “ fpeq.

2. Applying f to the equations a ˚ a´1 “ e “ a´1 ˚ a gives fpaq ˚ f
`

a´1
˘

“ e1 “ f
`

a´1
˘

˚ fpaq. It follows
from Theorem 1.10, the uniqueness of the inverse, that f

`

a´1
˘

“ fpaq´1.

3. Induction shows f panq “ fpaqn for all n ě 0, and then f pa´nq “ f
``

a´1
˘n˘

“ f
`

a´1
˘n
“ fpaq´n.

4. e1 P fpHq by 1. Let x1, y1 P fpHq, then Dx, y P H s.t. fpxq “ x1, fpyq “ y1. Thus xy´1 P H ñ x1y1´1 “

fpxy´1q P fpHq. Now, e P f´1pH 1q by 1. Let x, y P f´1pH 1q. Then fpxy´1q “ fpxqfpyq´1 P H 1 ñ

xy´1 P f´1pH 1q.
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Example 1.1.11 (Klein-four group). For small groups pG, ˚q we can completely describe the group operation
by drawing a table called a group table or Cayley table. It is a n ˆ n matrix whose i, j entry is the group
element gigj , where n “ |G|. For example, one can show that V “ t1,´1, i,´iu Ď C with multiplication
of complex numbers ¨ is a group, where the group table is given below. This is an abelian group. One

˚ 1 ´1 i ´i
1 1 ´1 i ´i
´1 ´1 1 ´i i
i i ´i ´1 1
´i ´i i 1 ´1

can also show that it is isomorphic to t1, p12qp34q, p13qp24q, p14qp23qu with composition of permutation as
multiplication (i.e., as a subgroup of S4) and also to Z2 ‘ Z2 – D2 “ xa, b|a

2 “ b2 “ pabq2 “ ey.

Example 1.1.12 (Quaternion group). The quaternion group, Q8, is defined by

Q8 “ t1,´1, i,´i, j,´j, k,´ku

with product ¨ computed as follows:

1 ¨ a “ a ¨ 1 “ a, for all a P Q8

p´1q ¨ p´1q “ 1, p´1q ¨ a “ a ¨ p´1q “ ´a, for all a P Q8

i ¨ i “ j ¨ j “ k ¨ k “ ´1

i ¨ j “ k, j ¨ i “ ´k

j ¨ k “ i, k ¨ j “ ´i

k ¨ i “ j, i ¨ k “ ´j.

It is tedious to check the associative law (it can be proven by a less computational mean), but the other
axioms are easily checked. Note that Q8 is a non-abelian group of order 8.

Example 1.1.13. Consider the set of nonzero real numbers, R˚, with the group operation of multiplication.
The identity of this group is 1 and the inverse of any element a P R˚ is just 1{a. We will show that

Q˚ “ tp{q : p and q are nonzero integers u

is a subgroup of R˚. The identity of R˚ is 1 ; however, 1 “ 1{1 is the quotient of two nonzero integers.
Hence, the identity of R˚ is in Q˚. Given two elements in Q˚, say p{q and r{s, their product pr{qs is also in
Q˚. The inverse of any element p{q P Q˚ is again in Q˚ since pp{qq´1 “ q{p. Since multiplication in R˚ is
associative, multiplication in Q˚ is associative.

Example 1.1.14. Let SL2pRq be the subset of GL2pRq consisting of matrices of determinant one; that is, a
matrix

A “

ˆ

a b
c d

˙

is in SL2pRq exactly when ad ´ bc “ 1. To show that SL2pRq is a subgroup of the general linear group, we
must show that it is a group under matrix multiplication. The 2 ˆ 2 identity matrix is in SL2pRq, as is the
inverse of the matrix A :

A´1 “

ˆ

d ´b
´c a

˙

It remains to show that multiplication is closed; that is, that the product of two matrices of determinant one
also has determinant one. We will leave this task as an exercise. The group SL2pRq is called the special
linear group.
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Example 1.1.15. It is important to realize that a subset H of a group G can be a group without being a
subgroup of G. For H to be a subgroup of G, it must inherit the binary operation of G. The set of all 2 ˆ 2
matrices, M2pRq, forms a group under the operation of addition. The 2 ˆ 2 general linear group is a subset
of M2pRq and is a group under matrix multiplication, but it is not a subgroup of M2pRq. If we add two
invertible matrices, we do not necessarily obtain another invertible matrix. Observe that

ˆ

1 0
0 1

˙

`

ˆ

´1 0
0 ´1

˙

“

ˆ

0 0
0 0

˙

but the zero matrix is not in GL2pRq.

Two subtleties regarding the binary operation need to be addressed:

Theorem 1.1.16 (associative invariance of bracketing). For each way of bracketing the multiplication of n
elements a1, ¨ ¨ ¨ , an P A, we denote it as

πi pa1 ¨ a2 ¨ ¨ ¨ ¨ anq , i “ 1, 2, ¨ ¨ ¨ , N

where it can be proved that N “ p2n ´ 2q!{rn!pn ´ 1q!s. For example, let n “ 3 and we will have N “ 2
ways to bracket the three elements: π1 pa1 ¨ a2 ¨ a3q “ pa1 ¨ a2q ¨ a3 and π2 pa1 ¨ a2 ¨ a3q “ a1 ¨ pa2 ¨ a3q. We
now claim that these N ways of bracketing are the same if associativity of order 3 holds for the set A (i.e.
π1 pa1 ¨ a2 ¨ a3q “ π2 pa1 ¨ a2 ¨ a3q, or pa1 ¨ a2q ¨ a3 “ a1 ¨ pa2 ¨ a3qq, and then the notation a1 ¨ a2 ¨ ¨ ¨ ¨ ¨ an is
well-defined.

Proof. See exercise 1.1-7.

Theorem 1.1.17 (commutative invariance of permutation). If both associativity and commutativity hold for
a binary operation ¨, then permutating the following multiplication in any order results the same

a1 ¨ a2 ¨ ¨ ¨ ¨ ¨ aN

Proof. See exercise 1.1-8.

Definition 1.1.18. If G is a group and a P G, then the cyclic subgroup generated by a, denoted by xay, is
the set of all the powers of a. A group G is called cyclic if there is a P G with G “ xay; that is, G consists of
all the powers of a.

It is plain that xay is, indeed, a subgroup of G. Notice that different elements can generate the same cyclic
subgroup. For example, xay “

@

a´1
D

.

Example 1.1.19. Let Cn “
␣

e2πik{n : k P Z
(

, a subset of the complex numbers. This is a group under
multiplication: certainly multiplication is a binary operation on this set, for

e2πik{ne2πil{n “ e2πipk`lq{n

which is an element of Cn. You can check the other group axioms. Cn is a cyclic group, because every
element is a power of ζ “ e2πi{n, and ζ has order n so |Cn| “ n. Any generator of Cn is called a primitive
n-th root of unity.

Definition 1.1.20. If G is a group and a P G, then the order of a is |xay|, the number of elements in xay.

Theorem 1.1.21. If G is a group and a P G has finite order m, then m is the smallest positive integer such
that am “ 1.

10
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Proof. If a “ 1, then m “ 1. If a ‰ 1, there is an integer k ą 1 so that 1, a, a2, . . . , ak´1 are distinct elements
of G while ak “ ai for some i with 0 ď i ď k ´ 1. We claim that ak “ 1 “ a0. If ak “ ai for some i ě 1, then
k ´ i ď k ´ 1 and ak´i “ 1, contradicting the original list 1, a, a2, . . . , ak´1 having no repetitions. It follows
that k is the smallest positive integer with ak “ 1.

It now suffices to prove that k “ m; that is, that xay “
␣

1, a, a2, . . . , ak´1
(

. Clearly xay Ą
␣

1, a, a2, . . . , ak´1
(

.
For the reverse inclusion, let al be a power of a. By the division algorithm, l “ qk ` r, where 0 ď r ă k.
Hence, al “ aqk`r “ aqkar “ ar (because ak “ 1

˘

, and so al “ ar P
␣

1, a, a2, . . . , ak´1
(

.

Theorem 1.1.22. Every subgroup of a cyclic group is cyclic.

Proof. The main tools used in this proof are the division algorithm and the Principle of Well-Ordering. Let
G be a cyclic group generated by a and suppose that H is a subgroup of G. If H “ teu, then trivially H is
cyclic. Suppose that H contains some other element g distinct from the identity. Then g can be written as an

for some integer n. Since H is a subgroup, g´1 “ a´n must also be in H. Since either n or ´n is positive, we
can assume that H contains positive powers of a and n ą 0. Let m be the smallest natural number such that
am P H. Such an m exists by the Principle of Well-Ordering. We claim that h “ am is a generator for H. We
must show that every h1 P H can be written as a power of h. Since h1 P H and H is a subgroup of G, h1 “ ak

for some integer k. Using the division algorithm, we can find numbers q and r such that k “ mq ` r where
0 ď r ă m; hence,

ak “ amq`r “ pamq
q
ar “ hqar.

So ar “ akh´q. Since ak and h´q are in H, ar must also be in H. However, m was the smallest positive
number such that am was in H; consequently, r “ 0 and so k “ mq. Therefore,

h1 “ ak “ amq “ hq

and H is generated by h.

Corollary 1.1.23. The subgroups of Z are exactly nZ for n “ 0, 1, 2, . . ...

Proof. First, nZ “ t¨ ¨ ¨ ,´2n,´n, 0, n, 2n, ¨ ¨ ¨ u “ xny. Then let H ď Z. Since Z is cyclic, H “ xny for some
n P Z by above theorem.

Proposition 1.1.24. Let G be a cyclic group of order n and suppose that a is a generator for G. Then ak “ e
if and only if n divides k.

Proof. First suppose that ak “ e. By the division algorithm, k “ nq ` r where 0 ď r ă n; hence,

e “ ak “ anq`r “ anqar “ ear “ ar.

Since the smallest positive integer m such that am “ e is n, we have r “ 0. Conversely, if n divides k, then
k “ ns for some integer s. Consequently,

ak “ ans “ panq
s
“ es “ e.

Proposition 1.1.25. An infinite cyclic group xay – Z has exactly two generators a, ´a. Let G be a cyclic
group of order n and suppose that a P G is a generator of the group. If b “ ak, then the order of b is n{d,
where d “ gcdpk, nq.

11
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Proof. The first statement is trivial. We show the second: we wish to find the smallest integer m such that
e “ bm “ akm. By above proposition, this is the smallest integer m such that n divides km or, equivalently,
n{d divides mpk{dq. Since d is the greatest common divisor of n and k, n{d and k{d are relatively prime.
Hence, for n{d to divide mpk{dq it must divide m. The smallest such m is n{d.

Theorem 1.1.26. The intersection of any family of subgroups of a group G is again a subgroup of G.

Proof. Let tSi : i P Iu be a family of subgroups of G. Now 1 P Si for every i, and so 1 P
Ş

Si. If a, b P
Ş

Si,
then a, b P Si for every i, and so ab´1 P Si for every i; hence, ab´1 P

Ş

Si, and
Ş

Si ď G.

Corollary 1.1.27. If X is a subset of a group G, then subgroup generated by X, defined as

xXy :“
č

XĎHďG

H

is the smallest subgroup H of G containing X, that is, if X Ă S and S ď G, then H ď S.

Proof. There are subgroups of G containing X; for example, G itself contains X; define H as the intersection
of all the subgroups of G which contain X. Note that H is a subgroup, by Theorem 1.1.26, and X Ă H. If
S ď G and X Ă S, then S is one of the subgroups of G being intersected to form H; hence, H ď S, and so
H is the smallest such subgroup.

Definition 1.1.28. If X is a nonempty subset of a group G, then a word on X is an element w P G of the
form

w “ xe11 x
e2
2 . . . xenn ,

where xi P X, ei “ ˘1, and n ě 1.

Theorem 1.1.29. Let X be a subset of a group G. If X “ ∅, then xXy “ 1; if X is nonempty, then xXy is the
set of all the words on X:

xXy “ tw “ xe11 x
e2
2 . . . xenn |xi P X, ei “ ˘1, n ě 1u

Proof. If X “ ∅, then the subgroup 1 “ t1u contains X, and so xXy “ 1. If X is nonempty, let W denote
the set of all the words on X. It is easy to see that W is a subgroup of G containing X : 1 “ x´1

1 x1 P W ;
the inverse of a word is a word; the product of two words is a word. Since xXy is the smallest subgroup
containing X, we have xXy ĂW . The reverse inclusion also holds, for every subgroup H containing X must
contain every word on X. Therefore, W ď H, and W is the smallest subgroup containing X.

Proposition 1.1.30. Let φ : GÑ G be a homomorphism. Then φpxXyq “ xφpXqy.

Proof. Routine.

Definition 1.1.31. Let H ď G, g P G. The right coset of H in G represented by g is Hg “ thg
ˇ

ˇh P Hu.
Similarly, left coset is defined as gH “ tgh

ˇ

ˇh P Hu.

Example 1.1.32 ( [9] Example 2.3). Let G be the additive group of the plane R2 : the elements of G
are vectors px, yq, and addition is given by the ”parallelogram law”: px, yq` px1, y1q “ px` x1, y ` y1q. A
line ℓ through the origin is the set of all scalar multiples of some nonzero vector v “ px0, y0q; that is,
ℓ “ trv : r P Ru. It is easy to see that ℓ is a subgroup of G. If u “ pa, bq is a vector, then the coset u ` ℓ is
easily seen to be the line parallel to ℓ which contains u.

Example 1.1.33 ( [9] Example 2.4). If G is the additive group Z of all integers, if S is the set of all multiples
of an integer npS “ xny, the cyclic subgroup generated by nq, and if a P Z, then the coset a` S “ ta` qn :
q P Zu “ tk P Z : k ” a mod nu; that is, the coset a` xny is precisely the congruence class ras of a mod n.

12
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Proposition 1.1.34. Two observations:

• Ha “ Hb ðñ H “ Hba´1 ðñ ba´1 P H;

• aH “ bH ðñ a´1bH “ H ðñ a´1b P H.

Corollary 1.1.35. For two cosets, either Hg1 “ Hg2 or Hg1 XHg2 “ ∅ (similar for left cosets).

Proof. Let a “ Hg1XHg2. Then a “ h1g2 “ h2g2 and h´1
2 h1 “ g2g

´1
1 ùñ g2g

´1
1 P H ùñ Hg1 “ Hg2.

Example 1.1.36. A right coset is not necessarily a left coset. See [9] Example 2.5.

Proposition 1.1.37. There is a bijection between the set of distinct left cosets of H and distinct right cosets
of H: aH ÞÑ Ha´1.

Proof. aH “ bH ðñ a´1b P H ðñ pa´1bq´1 P H ðñ b´1a P H ðñ Ha´1 “ Hb´1

Definition 1.1.38. The index of subgroup H in G, rG : Hs, is the number of distinct right (left) cosets of H
in G.

Theorem 1.1.39 (Lagrange’s theorem). If G is a finite group and S ď G, then |S| divides |G| and rG : Ss “
|G|{|S|, or |G| “ rG : Ss|S|.

Proof. By Corollary 1.1.35, G is partitioned into its right cosets

G “ St1 Y St2 Y ¨ ¨ ¨ Y Stn,

and so |G| “
řn
i“1 |Sti|. But it is easy to see that fi : S Ñ Sti, defined by fipsq “ sti, is a bijection, and so

|Sti| “ |S| for all i. Thus |G| “ n|S|, where n “ rG : Ss.

Corollary 1.1.40. The order of an element of a finite group divides the order of the group.

Proof. The order of an element a of a group G is equal to the order of the cyclic subgroup xay generated by
a. Then apply Lagrange’s theorem.

Corollary 1.1.41. If p is a prime and |G| “ p, then G is a cyclic group.

Proof. Take a P G with a ‰ 1. Then the cyclic subgroup xay has more than one element (it contains a and
1), and its order |xay| ą 1 is a divisor of p. Since p is prime, |xay| “ p “ |G|, and so xay “ G.

1.1 EXERCISES

1. By steps i.-iv., prove the equivalence between 1.1.1(1)-(4) and 1.1.1(1),(2)+1.1.2(5):

Suppose (1), (2), and (5) are true, show that there exists a left identity element el such that ela “ a for
any a P G and show that there exists a left inverse g´1

l for any g P G such that g´1
l g “ el.

i.

If there is a left inverse element, then there is a right inverse element, and they are the same.ii.
If there is a left identity element, then there is a right identity element, and they are the same.iii.
Show that (1)-(4) imply (5).iv.

2. [3][1.1 ex9] Let G “ ta` b
?
2 P R | a, b P Qu.

13
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Prove that G is a group under addition.i.
Prove that the nonzero elements of G are a group under multiplication. (Hint: ”Rationalize the denomi-
nators” to find multiplicative inverses.)

ii.

3. Prove that a finite group is abelian if and only if its group table is a symmetric matrix.

4. (Cancellation property): suppose ¨ is an internal binary operation for the set A. We say that the operation
- is left-cancellative if @a, b P A : a ¨b “ a ¨cñ b “ c and rightcancellative if @a, b P A : b ¨a “ c ¨añ b “ c.
When the operation is both left and right cancellative we simply say it is cancellative. Show that:

The cross product of vectors does not obey cancellation law.i.
Determine when does matrix multiplication obey the cancellation law.ii.
Given a finite set G with an operation ; prove that if ¨ is right and left cancellative and associative and G
is closed under, then G is a group.

iii.

Observe that an operation ¨ of a group pG, ¨q obeys left (right) cancellation law iff each row (column) of
its group table has elements of itself distinct.

iv.

5. Show that for x in a group G, (1) |x| “ 1ô x “ e; (2) x´1 “ xô x2 “ e.

6. Show that for x in a group G, (1) |x| “
ˇ

ˇx´1
ˇ

ˇ; (2) |x| “ nñ
ˇ

ˇxk
ˇ

ˇ “ n
pk,nq

.

7. Prove Theorem 1.1.16.

8. Prove Theorem 1.1.17.

9. [9][p.27 ex2.11] Let a P G have order n “ mk, where m, k ě 1. Prove that ak has order m.

10. [9][p.27 ex2.12] Show that

every group G of order 4 is isomorphic to either Z4 or the Klein-four group V (see example 1.1.11).i.
If G is a group with |G| ď 5, then G is abelian.ii.

11. [9][p.27 ex2.13] If a P G has order n and k is an integer with ak “ 1, then n divides k. Indeed,
␣

k P Z : ak “ 1
(

consists of all the multiplies of n.

12. [9][p.27 ex2.14] If a P G has finite order and f : G Ñ H is a homomorphism, then the order of fpaq
divides the order of a.

13. [9][p.27 ex2.15] Prove that a group G of even order has an odd number of elements of order 2 (in
particular, it has at least one such element). (Hint. If a P G does not have order 2 , then a ‰ a´1.)

14. [9][p.27 ex2.17]

If a, b P G commute and if am “ 1 “ bn, then pabqk “ 1, where k “ lcmtm,nu. (The order of ab may be
smaller than k; for example, take b “ a´1.) Conclude that if a and b have finite order, then ab also has
finite order.

i.

Let G “ GLp2,Qq and let A,B P G be given by

A “

„

0 ´1
1 0

ȷ

and B “

„

0 1
´1 ´1

ȷ

.

Show that A4 “ E “ B3, but that AB has infinite order.

ii.

15. [9][p.27 ex2.19] Prove that two cyclic groups are isomorphic if and only if they have the same order.

16. If K ď H ď G with G not necessarily finite, and if rG : Hs, rH : Ks ă 8, then rG : Ks ă 8 and
rG : Ks “ rH : KsrG : Hs.

14
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17. [9][p.27 ex2.16] If H ď G has index 2,then a2 P H for every a P G.

18. Suppose f : GÑ G1 is a homomorphism, show that fpxXyq “ xfpXqy for any subset X Ď G.

1.2 More Groups

We will present the following groups in this section: Z, Zn, and Zˆ
n ; cyclic groups; symmetric group Sn and

alternating group An; dihedral group Dn.

1.2.1 Z, Zn, and Zˆ
n

Definition 1.2.1 (Congruence). Let n, a, b P Z. We say a is congruent to b modulo (or just mod) n if a´ b is
divisible by n. In this case we write

a ” b pmodnq

Observe that a „ bô a ” bpmodnq is an equivalence relation. The equivalence class is denoted as rasn, ras,
or ā, called the congruence class. We denote the collection of all equivalence classes rasn under „ as Zn.

Theorem 1.2.2. Define a binary operation ` on Zn by rasn ` rbsn “ ra` bsn. Then pZn,`q is a group.

Proof. First we need to check that this really does define a binary operation on Zn. The potential problem
is that an eqivalence class rasn can have lots of different representatives, e.g. r5s3 “ r2s3, but our definition
of + seems to depend on a specific choice of representative. Couldn’t it be that rasn “ ra1s and rbsn “ rb1sn
but ra ` bsn ‰ ra

1 ` b1sn ? If so our definition of + wouldn’t work - it would not be ”welldefined.” We need
to check that if rasn “ ra1sn and rbsn “ rb1sn then ra ` bsn “ ra

1 ` b1sn. Because rasn “ ra1sn, a and a1 are
congruent modn so a “ a1 ` kn for some integer k, and similarly b “ b1 ` ln for some integer I. Therefore

a` b “ a1 ` kn` b1 ` ln

“ a1 ` b1 ` pk ` lqn

so a ` b ” a1 ` b1 mod n and ra ` bsn “ ra
1 ` b1sn. The group axioms are easy to check. r0sn is clearly an

identity element, r´asn is inverse to rasn, and because + is associative on Z we have rasn ` prbsn ` rcsnq “
rasn ` rb` csn “ ra` b` csn and prasn ` rbsnq ` rcsn “ ra` bsn ` rcsn “ ra` b` csn so

rasn ` prbsn ` rcsnq “ prasn ` rbsnq ` rcsn

and + is associative on Zn.

Theorem 1.2.3. Zn is a cyclic group and the generators of Zn are the integers r such that 1 ď r ă n and
gcdpr, nq “ 1.

Proof. To show Zn is cyclic, we only need to show that Zn “ xxy :“ te, x, ¨ ¨ ¨ , xn´1u for some x P Zn. The
choice x “ r1sn would work.
We note that r “ 1` ¨ ¨ ¨ ` 1 (r times). Let b “ r and a “ 1 in the prop. 1.1.25 and conclude that the order
of r is n

d where d “ gcdpk, nq. Since the order of r, a generator of Zn, is n, we see n
d “ nñ d “ 1.

Example 1.2.4. Let us examine the group Z16. The numbers 1, 3, 5, 7, 9, 11, 13, and 15 are the elements of
Z16 that are relatively prime to 16 . Each of these elements generates Z16. For example,

1 ¨ 9 “ 9 2 ¨ 9 “ 2 3 ¨ 9 “ 11
4 ¨ 9 “ 4 5 ¨ 9 “ 13 6 ¨ 9 “ 6
7 ¨ 9 “ 15 8 ¨ 9 “ 8 9 ¨ 9 “ 1
10 ¨ 9 “ 10 11 ¨ 9 “ 3 12 ¨ 9 “ 12
13 ¨ 9 “ 5 14 ¨ 9 “ 14 15 ¨ 9 “ 7
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We can also use the usual multiplication as binary operation on Zn:

rasn ˆ rbsn “ rabsn (1.3)

Again, we should check that this really defines a binary operation on Zn : if rasn “ ra1sn and rbsn “ rb1sn
then we need rabsn “ ra1b1sn. This is true because a “ a1 ` kn and b “ b1 ` ln for some k, l P Z so

ab “
`

a1 ` kn
˘ `

b1 ` ln
˘

“ a1b1 ` n
`

kb1 ` la1 ` kln
˘

so ab ” a1b1pmodnq and therefore rabsn “ ra1b1sn. This does not make pZn,ˆq into a group, because 0 has
no inverse for the operation ˆ.

We notice that pZn,ˆq where multiplication ˆ is given by eq. (1.3) is a monoid with identity r1sn. Therefore,
due to Remark 1.1.2, we define Zˆ

n as the group of units in Zn, i.e.,

Zˆ
n “ tl P Zn| gcdpl, nq “ 1u

(That’s because rlmsn “ r1sn ô lm ” 1 mod nq ô Dq P Z s.t. lm´ 1 “ qnô Dpp“ ´qq P Z s.t. lm` pn “ 1)
If n “ p is a prime, then

Zˆ
p “ tl P Zn| gcdpl, pq “ 1u “ tr1s, ¨ ¨ ¨ , rp´ 1su

where we note that The greatest common divisor of 0 and any non-zero number is the non-zero number
itself (0 is a multiple of every non-zero number).

Example 1.2.5. If G is a cyclic group of order n, i.e., G – Zn, then AutpGq – Zˆ
n .

Proof. Let G “ xxy and

ϕ : GÑ G

x ÞÑ xl

for some 0 ď l ď n ´ 1. Thus ϕpxjq “ xlj . Every endomorphism (homomorphism with G Ñ G) is of this
form, and we wonder what condition on l can make it an automorphism, i.e., also an isomorphism. In fact,
ϕ is an isomorphism iff xl is a generator of G. By theorem 1.2.3, we see this is the case iff gcdpn, lq “ 1.
Since tl P Zn| gcdpn, lq “ 1u “ Zˆ

n , we have an isomorphism:

Φ : AutpGq Ñ Zˆ
n

ϕ ÞÑ l where ϕpxq “ xl

(For i “ 1, 2, ϕi ÞÑ li ñ ϕipxq “ xli , so ϕ1 ˝ ϕ2pxq “ ϕ1px
l2q “ xl1l2 .)

1.2.2 Cyclic Groups

We begin with definition of Euler φ-function. φpnq is defined as the number of non-negative integers less
than n that are relatively prime to n. In other words,

φpnq “

#

1 if n “ 1

|tl P Zn : gcdpl, nq “ 1u| “ |Zˆ
n | if n ą 1

.

Lemma 1.2.6. If G “ xay is cyclic of order n, then ak is also a generator of G if and only if pk, nq “ 1. Thus
the number of generators of G is φpnq.

Proof. This is just a restatement of Theorem 1.2.3.
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Lemma 1.2.7. If G is a cyclic group of order n, then there exists a unique subgroup of order d for every
divisor d of n.

Proof. If G “ xay, then
@

an{d
D

is a subgroup of order d, by Question 1.1-9. Assume that S “ xby is a subgroup
of order d ( S must be cyclic, by Theorem 1.1.22). Now bd “ 1; moreover, b “ am for some m. By Question
1.1-11, md “ nk for some integer k, and b “ am “

`

an{d
˘k

. Therefore, xby ď
@

an{d
D

, and this inclusion is
equality because both subgroups have order d.

Theorem 1.2.8. If n is a positive integer, then

n “
ÿ

d|n

φpdq,

where the sum is over all divisors d of n with 1 ď d ď n.

Proof. If C is a cyclic subgroup of a group G, let genpCq denote the set of all its generators. It is clear that G
is the disjoint union

G “
ď

genpCq,

where C ranges over all the cyclic subgroups of G. We have just seen, when G is cyclic of order n, that there
is a unique cyclic subgroup Cd of order d for every divisor d of n. Therefore, n “ |G| “

ř

d|n |gen pCdq|. In
Lemma 1.2.6, however, we saw that |gen pCdq| “ φpdq; the result follows.

We now characterize finite cyclic groups.

Theorem 1.2.9 (characterization of cyclic group). A group G of order n is cyclic if and only if, for each
divisor d of n, there is at most one cyclic subgroup of G having order d.

Proof. If G is cyclic, then the result is Lemma 1.2.7. For the converse, recall from the previous proof that
G is the disjoint union Y genpCq, where C ranges over all the cyclic subgroups of G. Hence, n “ |G| “
ř

| genpCq| ď
ř

d|n φpdq “ n, by Theorem 1.2.8. We conclude that G must have a cyclic subgroup of order d
for every divisor d of n; in particular, G has a cyclic subgroup of order d “ n, and so G is cyclic.

Observe that the condition in Theorem 1.2.9 is satisfied if, for every divisor d of n, there are at most d
solutions x P G of the equation xd “ 1 (two cyclic subgroups of order dwould contain more than d solutions).

1.2.3 Sn and An

If X is a nonempty set, a permutation of X is a bijection α : X Ñ X. We denote the set of all permutations
of X by SX . We will focus on the special case X “ 1, ¨ ¨ ¨ , n, where SX is denoted by Sn. Elements in it
is of the form α “

`

1 2 3 ¨¨¨ n´1 n
α1 α2 α3 ¨¨¨ αn´1 αn

˘

where ai “ αpiq. Sn is a group, called symmetric group, with
function composition as multiplication (and we keep the tradition of function composition that permutation
of elements is applied from left to right). For example, α “

`

1 2 3
3 2 1

˘

and β “
`

1 2 3
2 3 1

˘

are permutations of
t1, 2, 3u. The product αβ is

`

1 2 3
2 1 3

˘

. We compute the product by first applying β and then α:

αβp1q “ αpβp1qq “ αp2q “ 2,

αβp2q “ αpβp2qq “ αp3q “ 1,

αβp3q “ αpβp3qq “ αp1q “ 3.

Note that βα “
`

1 2 3
1 3 2

˘

, so that αβ ‰ βα.
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Definition 1.2.10. Let i1, i2, . . . , ir be distinct integers between 1 and n. If α P Sn fixes the remaining n´ r
integers and if

α pi1q “ i2, α pi2q “ i3, . . . , α pir´1q “ ir, α pirq “ i1,

then α is an r-cycle; one also says that α is a cycle of length r. Denote α by pi1 i2 ¨ ¨ ¨ inq. Every 1-cycle fixes
every element of X, and so all 1-cycles are equal to the identity. A 2-cycle, which merely interchanges a pair
of elements, is called a transposition. Observe that p1 2 3 ¨ ¨ ¨ r ´ 1 rq “ p2 3 ¨ ¨ ¨ r 1q “ pr 1 ¨ ¨ ¨ r ´ 1q, so
there are exactly r such notations for this r-cycle.

Multiplication is easy when one uses the cycle notation. For example, let us compute γ “ αβ, where α “ p1 2q
and β “ p1 3 4 2q. Since multiplication is composition of functions, γp1q “ α ˝ βp1q “ αpβp1qq “ αp3q “ 3;
Next, γp3q “ αpβp3qq “ αp4q “ 4, and γp4q “ αpβp4qq “ αp2q “ 1. Having returned to 1, we now seek γp2q,
because 2 is the smallest integer for which γ has not yet been evaluated. We end up with p1 2qp1 3 4 2 5q “
p1 3 4qp2 5q. The cycles on the right are disjoint as defined below.

Definition 1.2.11. Two permutations α, β P SX are disjoint if every x moved by one is fixed by the other.
In symbols, if αpxq ‰ x, then βpxq “ x and if βpyq ‰ y, then αpyq “ y (of course, it is possible that there
is z P X with αpzq “ z “ βpzq ). A family of permutations α1, α2, . . . , αm is disjoint if each pair of them
is disjoint. Observe that for α “ pi1 i2 ¨ ¨ ¨ irq and β “ pj1 j2 ¨ ¨ ¨ jsq, α and β are disjoint if and only if
ti1, i2, . . . , iru X tj1, j2, . . . , jsu “ ∅.

The identity of Sn is 1, or p1q. To find the inverse of a permutation just write it backwards. If τ “ p1243qp67q
then τ´1 “ p76qp3421q which can then be rewritten as τ´1 “ p1342qp67q.

How does one prove this?

First consider a single cycle: σ “ pa1a2 . . . akq. If b R ta1, . . . , aku, then σpbq “ b so σ´1pbq “ b. Thus b
shouldn’t appear in the inverse. Next σ paiq “ ai`1 so σ´1 pai`1q “ ai. Thus if σ : a1 ÞÑ a2 ÞÑ a3 ÞÑ ¨ ¨ ¨ ÞÑ

ak ÞÑ a1, then σ´1 : ak ÞÑ ak´1 ÞÑ ak´2 ÞÑ ¨ ¨ ¨ ÞÑ a1 ÞÑ ak. This is precisely the cycle pak, ak´1 . . . , a2, a1q
which is nothing more than σ written backwards.

Now what about a list of cycles? Say σ “ σ1 ¨ ¨ ¨σℓ. Recall that σ´1 “ pσ1 ¨ ¨ ¨σℓq
´1
“ σ´1

ℓ ¨ ¨ ¨σ´1
1 . So we

reverse the list of cycles and then write each one backwards – thus the inverse is just the whole thing written
backwards.

One thing to note: This still works even if σ is not written in terms of disjoint cycles.

Proposition 1.2.12. If α and β are disjoint permutations, then αβ “ βα; that is, α and β commute.

Proof. See [5] Proposition 5.8.

Now we present results for factorization or permuations.

Theorem 1.2.13. Every permutation α P Sn is either a cycle or a product of disjoint cycles.

Proof. see [9] Theorem 1.1.

Theorem 1.2.14. Every permutation α P Sn is a product of transpositions.

Proof. By Theorem 1.2.13, it is enough to factor cycles: for n ą 1,

σ “ pa1 . . . anq “ pa1 anqpa1 an´1q . . . pa1 a2q

One can prove that the parity of the number of factors is the same for all factorizations of a permutation a
that is, the number of transpositions is always even or odd. We say that a permuation is even if it has even
parity and is odd if it has odd parity. See [9] p.8-9 for more of this.
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Corollary 1.2.15. A cycle σ “ pa1 . . . anq is even if and only if n is odd.

One of the most important subgroups of Sn is the set of all even permutations, An. The group An is called
the alternating group on n letters.

Theorem 1.2.16. The set An is a subgroup of Sn.

Proof. Since the product of two even permutations must also be an even permutation, An is closed. The
identity is an even permutation and therefore is in An. If σ is an even permutation, then

σ “ σ1σ2 ¨ ¨ ¨σr

where σi is a transposition and r is even. Since the inverse of any transposition is itself,

σ´1 “ σrσr´1 ¨ ¨ ¨σ1

is also in An.

Proposition 1.2.17. The number of even permutations in Sn, n ě 2, is equal to the number of odd permu-
tations; hence, the order of An is n!{2.

Proof. Let An be the set of even permutations in Sn and Bn be the set of odd permutations. If we can
show that there is a bijection between these sets, they must contain the same number of elements. Fix a
transposition σ in Sn. Since n ě 2, such a σ exists. Define

λσ : An Ñ Bn

by
λσpτq “ στ.

Suppose that λσpτq “ λσpµq. Then στ “ σµ and so

τ “ σ´1στ “ σ´1σµ “ µ.

Therefore, λσ is one-to-one. The proof that λσ is surjective is left as an exercise.

Example 1.2.18 (Subgroups of A4). The group A4 is the subgroup of S4 consisting of even permutations.
There are twelve elements α1-α12 in A4: an identity α1, three permutations written as products of two
disjoint cycles α2-α4 (each of them having order 2), and eight cycles α5-α12 fixing one element (each of
them having order 3). We have the Cayley table of A4 below (In this table, an entry k inside the table
represents αk. For example, α3α8 “ α6.)

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

p1q “ α1 1 2 3 4 5 6 7 8 9 10 11 12
p12qp34q “ α2 2 1 4 3 6 5 8 7 10 9 12 11
p13qp24q “ α3 3 4 1 2 7 8 5 6 11 12 9 10
p14qp23q “ α4 4 3 2 1 8 7 6 5 12 11 10 9
p123q “ α5 5 8 6 7 9 12 10 11 1 4 2 3
p243q “ α6 6 7 5 8 10 11 9 12 2 3 1 4
p142q “ α7 7 6 8 5 11 10 12 9 3 2 4 1
p134q “ α8 8 5 7 6 12 9 11 10 4 1 3 2
p132q “ α9 9 11 12 10 1 3 4 2 5 7 8 6
p143q “ α10 10 12 11 9 2 4 3 1 6 8 7 5
p234q “ α11 11 9 10 12 3 1 2 4 7 5 6 8
p124q “ α12 12 10 9 11 4 2 1 3 8 6 5 7
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We will find all subgroups of A4: since the order of H ď A4 must divide the order of A4 and |A4| “ 12 “
1ˆ12 “ 3ˆ4 “ 2ˆ6, we see H can have size 1, 2, 3, 4, 6, 12. H with |H| “ 1 and 12 are just trivial subgroup
and A4 itself. Thanks to Question 10, we already know the classification of all groups with size smaller than
6: subgroups H with |H| “ 2, 3, 5 are isomorphic to Z2,Z3,Z5 and H with |H| “ 4 is isomorphic either to Z4

or V. There is no subgroup of order 6 (proved in the following lemma).

By observations about α2-α4 and α5-α12 we made in the beginning, we see subgroups of order 2 are just
xα2y, ¨ ¨ ¨ , xα4y; and subgroups of order 3 are just xα5y, ¨ ¨ ¨ , xα12y. Since there is no element with order 4 in
A4, subgroup H of order 4 can only be V, which is contained in A4 as tα1, ¨ ¨ ¨ , α4u. Our classification is
complete.

Lemma 1.2.19. There is no subgroup of index 2 in A4.

Proof. Suppose a subgroup H of A4 has index 2, i.e., |H| “ 6. We will show for each g P A4 that g2 P H. If
g P H then clearly g2 P H. If g R H then gH is a left coset of H different from H (since g P gH and g R H ),
so from rG : Hs “ 2 the only left cosets of H are H and gH. Which one is g2H ? If g2H “ gH then g2 P gH,
so g2 “ gh for some h P H, and that implies g “ h, so g P H, but that’s a contradiction. Therefore g2H “ H,
so g2 P H. Every 3-cycle pa b cq in A4 is a square: pabcq has order 3, so pa b cq “ pa b cq4 “

`

pa b cq2
˘2

. Thus
H contains all 3-cycles in A4, in total 8 of them, which thus contradicts to |H| “ 6.

1.2.4 Dn

We from example 1.2.18 see that the Klein-four group V is a subgroup of A4 and is thus a subgroup of S4.
We remarked in example 1.1.11 that V is isomorphic to D2. We call subgroups of Sn permuation groups.
In last subsection, we examined alternating groups An; now we examine another type of permuation groups,
the dihedral groups Dn. Such groups consist of the rigid motions of a regular n-sided polygon or n-gon. For
n “ 3, 4, . . ., we define the n-th dihedral group to be the group of rigid motions of a regular n-gon. We will
denote this group by Dn. We can number the vertices of a regular n-gon by 1, 2, . . . , n. Notice that there are
exactly n choices to replace the first vertex. If we replace the first vertex by k, then the second vertex must
be replaced either by vertex k` 1 or by vertex k´ 1; hence, there are 2n possible rigid motions of the n-gon.
We summarize these results in the following theorem.

Theorem 1.2.20. The dihedral group, Dn, is a subgroup of Sn of order 2n.

Theorem 1.2.21 (Dihedral group). The group Dn, n ě 3, consists of all products of the two elements r and
s, where r has order n and s has order 2, and these two elements satisfy the relation psrq2 “ 1.

Proof. The possible motions of a regular n-gon are either reflections or rotations (Figure 1.1).

There are exactly n possible rotations:

id,
360˝

n
, 2 ¨

360˝

n
, . . . , pn´ 1q ¨

360˝

n
.

We will denote the rotation 360˝{n by r. The rotation r generates all of the other rotations. That is,

rk “ k ¨
360˝

n

Label the n reflections s1, s2, . . . , sn, where sk is the reflection that leaves vertex k fixed. There are two cases
of reflections, depending on whether n is even or odd. If there are an even number of vertices, then two
vertices are left fixed by a reflection, and s1 “ sn{2`1, s2 “ sn{2`2, . . . , sn{2 “ sn. If there are an odd number
of vertices, then only a single vertex is left fixed by a reflection and s1, s2, . . . , sn are distinct (Figure 1.2).

In either case, the order of each sk is two. Let s “ s1. Then s2 “ 1 and rn “ 1. Since any rigid motion t of
the n-gon replaces the first vertex by the vertex k, the second vertex must be replaced by either k ` 1 or by
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Figure 1.1: Rotations and reflections of a regular n-gon
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Figure 1.2: Types of reflections of a regular n-gon

k ´ 1. If the second vertex is replaced by k ` 1, then t “ rk. If the second vertex is replaced by k ´ 1, then
t “ rks. Hence, r and s generate Dn. That is, Dn consists of all finite products of r and s,

Dn “
␣

1, r, r2, . . . , rn´1, s, rs, r2s, . . . , rn´1s
(

.

We will leave the proof that psrq2 “ 1 as an exercise.
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Example 1.2.22. The group of rigid motions of a square, D4, consists of eight elements. With the vertices
numbered 1,2,3,4 (Figure 1.3), the rotations are

r “ p1 2 3 4q

r2 “ p1 3qp2 4q

r3 “ p1 4 3 2q

r4 “ p1q

and the reflections are
s1 “ p2 4q

s2 “ p1 3q.

1 2

34

Figure 1.3: The group D4

The order of D4 is 8. The remaining two elements are

rs1 “ p12qp34q

r3s1 “ p14qp23q.

A Supplementary Note

One can also analyze group of symmetry of solids. For example, group of rigid motions of a cube is S4

(Figure 1.4) (see [5] Theorem 5.27). For more on this, including the Planotic solids, see [1] section 6.12.

12

3 4

1 2

34

Figure 1.4: cube

1.2 EXERCISES
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1. If 1 ď r ď n, then there are p1{rqrnpn´ 1q . . . pn´ r ` 1qs r-cycles in Sn.

2. If α, β P Sn are disjoint and αβ “ 1, then α “ 1 “ β.

3. Let α P Sn for n ě 3. If αβ “ βα for all β P Sn, prove that α must be the identity permutation; hence,
the center of Sn is the trivial subgroup (the center of a group G is defined as ZpGq “ tg P G : gx “
xg for all x P Gu.)

4. If σ P An and τ P Sn, show that τ´1στ P An.

5. Let τ “ pa1, a2, . . . , akq be a cycle of length k.

Prove that if σ is any permutation, then

στσ´1 “ pσ pa1q , σ pa2q , . . . , σ pakqq

is a cycle of length k.

i.

Let µ be a cycle of length k. Prove that there is a permutation σ such that στσ´1 “ µ.ii.

6. [9][p.24 ex2.9]

Prove that Sn can be generated by p1 2q, p1 3q, ¨ ¨ ¨ , p1 nq.i.
Prove that Sn can be generated by p1 2q, p2 3q, ¨ ¨ ¨ , pi i` 1q, ¨ ¨ ¨ , pn´ 1 nq.ii.
Prove that Sn can be generated by the two elements p1 2q and p1 2 ¨ ¨ ¨nq.iii.

7. Draw group tables of S2 and S3.

8. [9][p.5 ex1.12]

Let α “
`

i0 i1 . . . ir´1

˘

be an r-cycle. For every j, k ě 0, prove that αk pijq “ ik`j if subscripts are
read modulo r.

i.

Prove that if α is an r-cycle, then αr “ 1, but that αk ‰ 1 for every positive integer k ă r.ii.
If α “ β1β2 . . . βm is a product of disjoint ri-cycles βi, then the smallest positive integer l with αl “ 1 is

the least common multiple of tr1, r2, . . . , rmu. Therefore, the order of a permutation α “ β1 ¨ ¨ ¨βt, where
βi is an ri-cycle, is lcmtr1, ¨ ¨ ¨ , rtu.

iii.

9. By previous question, deduce that each order-3 cycle is a product of 3-cycles.

10. Dihedral group.

Show that Dn “ xr, s|rn, s2, psrq2y “ Dn “ xr, s|rn, s2, prsq2y, that is, rn “ 1, s2 “ 1, psrq2 “ 1 iff
rn “ 1, s2 “ 1, prsq2 “ 1.

i.

Show that rks “ sr´k in Dn.ii.
Prove that the order of rk P Dn is n{ gcdpk, nq.iii.

11. Show that there is an index-2 subgroup of Dihedral group Dn.

1.3 Normal Subgroups and Quotient Groups

Definition 1.3.1. Subgroup H ď G is normal, denoted as H ⊴G, if @g P G, gHg´1 Ď H.

Note that gHg´1 “ tghg´1|h P Hu ď G, as ghg´1pgh1g´1q´1 P gHg´1.

Example 1.3.2.

• If G is an abelian group, then every subgroup of G is normal. The converse is false: see Question 1.3-4.
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• SLpn,Rq is a normal subgroup of GLpn,Rq: for A P GLpn,Rq, B P SLpn,Rq we have detpABA´1q “

detpAqdetpBqdetpA´1q “ detpAqdetpA´1q “ 1.

Proposition 1.3.3 (characterization of normal subgroup). If H ď G, then the following are equivalent.

1. H ⊴G;

2. @g P G, gHg´1 “ H;

3. @g P G, Hg “ gH;

4. Every right coset of H is a left coset;

5. Every left coset of H is a right coset.

Proof. 1 equiv to 2: the ð direction is clear. Conversely, suppose @g P G, gHg´1 Ď H, so g´1Hpg´1q´1 Ď

H ùñ g´1Hg Ď H. Multiply from left and right to cancel, so H Ď gHg´1. So gHg´1 “ H.

2 equiv to 3: @g P G, gHg´1 “ H ðñ @g P G, h P H, there is some h1 P H such that h1 “ ghg´1 ðñ

@g P G, h P H, Dh1 P H s.t. h1g “ gh.

We prove that 3,4,5 are equivalent.

3 implies 4: we note that 3 is directly stronger than 4, as 4 can be rephrased as: for a right coset Hg, there
is some g1 P G such that Hg “ g1H.

4 implies 3: SupposeHg “ aH for some a. But then g P Hg “ aH, and g P gH. So aH “ gH ùñ Hg “ gH.

3 implies 5 implies 3: similarly.

Corollary 1.3.4. Any subgroup of index 2 in any group G is normal.

Proof. rG : Hs “ 2 ùñ two distinct left cosets, H, aH where a R H. Similarly, H and Ha are distinct right
cosets. This gives H X aH “ ∅, H XHa “ ∅, so by 4 in proposition 1.3.3, H is normal.

If N ⊴ G, then the set of cosets of N in G, G{N , form a group under multiplication paNqpbNq “ abN . We
need to check that

• Well-defined: aN “ a1N and bN “ b1N ùñ abN “ a1b1N :

NaNb “ Na
`

a´1Na
˘

b (because N is normal)

“ N
`

aa´1
˘

Nab “ NNab “ Nab (because N ď G
˘

.

Thus, NaNb “ Nab, and so the product of two cosets is a coset.

• Group properties easily follow from the group properties of G (associativity, identity N “ N1 “ 1N ,
and inverse a´1N (“ Na´1) for aN (“ Na).)

Proposition 1.3.5. If N⊴G, then the natural map, or canonical projection (i.e., the function q : GÑ G{N
defined by qpaq “ Na ) is a surjective homomorphism with kernel N .

Proof. The equation qpaqqpbq “ qpabq is just the formula NaNb “ Nab; hence, q is a homomorphism. If
Na P G{N , then Na “ qpaq, and so v is surjective. Finally, qpaq “ Na “ N if and only if a P N , so that
N “ Kerpqq.

We define conjugation γa : G Ñ G, where γapxq “ axa´1, and call γapxq “ axa´1 a conjugate of x in a
group G, also denoted as xa. Moreover, for g P G we set

Hg :“ gHg´1
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and say that Hg is a conjugate of H in G (more precisely, the conjugate of H by g). For any K Ď G set

HK :“
␣

Hk | k P K
(

.

We have now shown in Proposition 1.3.5 that every normal subgroup is the kernel of some homomorphism.
Different homomorphisms can have the same kernel. For example, if a “ p1 2q and b “ p1 3q, then γa, γb :
S3 Ñ S3 are distinct and Kerpγaq “ 1 “ Kerpγbq.

The quotient group construction is a generalization of the construction of Zn from Z. Recall that if n is
a fixed integer, then ras, the congruence class of a mod n, is the coset a ` xny. Now xny ⊴ Z, because
Z is abelian, and the quotient group Z{xny has elements all cosets a ` xny, where a P Z, and operation
pa` xnyq ` pb` xnyq “ a` b` xny; in congruence class notation, ras ` rbs “ ra` bs. Therefore, the quotient
group Z{xny is equal to Zn, the group of integers modulo n. An arbitrary quotient group G{N is often called
G mod N because of this example.

1.3 EXERCISES

1. [9][p.31 ex2.29]

(H. B. Mann). Let G be a finite group, and let S and T be (not necessarily distinct) nonempty subsets.
Prove that either G “ ST or |G| ě |S| ` |T |.

i.

Prove that every element in a finite field F is a sum of two squares.ii.

2. [9][p.31 ex2.32] If H ď G, then H ⊴G if and only if, for all x, y P G, xy P H if and only if yx P H.

3. [9][p.31 ex2.33] If K ď H ď G and K ⊴G, then K ⊴H.

4. Every subgroup of an abelian group is normal. This exercise shows that the converse is not true: Let G
be the subgroup of GLp2,Cq generated by

A “

„

0 i
i 0

ȷ

, B “

„

0 1
´1 0

ȷ

.

Find the order of A and B in G.i.
Show G has order 8 by listing all the elements of G. Show G is is not abelian.ii.
List all elements of oder 2 in G.iii.
Show that every subgroup of G is normal.iv.

5. If N,H1, H2 are subgroups of a group G such that N ⊴G and H1 ⊴H2, then show NH1 ⊴NH2.

6. Prove that An ⊴ Sn for every n by showing that it is an index-2 subgroup (thus |An| “ 1
2n!).

7. [9][p.31 ex2.37]

The intersection of any family of normal subgroups of a group G is itself a normal subgroup of G.
Conclude that if X is a subset of G, then there is a smallest normal subgroup of G which contains X; it is
called the normal subgroup generated by X (or the normal closure of X; it is often denoted by xXyG

˘

.

i.

If X “ ∅, then xXyG “ 1. If X ‰ ∅, then xXyG is the set of all words on the conjugates of elements in
X.

ii.

If gxg´1 P X for all x P X and g P G, then xXy “ xXyG ⊴G.iii.

8. [9][p.31 ex2.38] If H,K ⊴G, then xH YKy⊴G.

9. Suppose f : GÑ G1 is a homomorphism. Show that N ⊴Gñ fpNq⊴G1; N 1 ⊴G1 ñ f´1pN 1q⊴G.
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10. Finite product (see Definition 1.4.3) and finite intersection of normal subgroups of G are still normal.

11. Suppose H ď G and N ⊴ G. Show that H X N ⊴ H but not necessarily H X N ⊴ G Also note that
H ď N ⊴ G does not imply H ⊴ G; not even H ⊴ N ⊴ G implying H ⊴ G. Show such transitivity of
normality fails by the counterexample that K “ xp1 2qp3 4qy⊴V and V ⊴ S4 while K is not a subgroup
of S4.

12. (Product formula) If S and T are subgroups of a finite group G, then |ST ||S X T | “ |S||T |.

13. Show that conjugacy is an equivalence relation, that is, x „ y ðñ Dg P G s.t. y “ xg :“ gxg´1 defines
an equivalence relation. We call the equivalence class with respect to this relation conjugacy class. Use
this definition to show that a subgroup H ď G is normal if and only if it is a union of conjugacy classes
of G.

1.4 Isomorphism Theorems

Facts (proofs are left as exercises): for a group homomorphism ϕ : GÑ G1,

1. Kerpϕq :“ ta P G|ϕpaq “ eG1u⊴G

2. Impϕq :“ tϕpaq|a P Gu ď G1

Theorem 1.4.1 (1st Isomorphism Theorem). If f : GÑ G1 is a group homomorphism and K “ Kerpfq (so
K ⊴G), then

G{K – Impfq

Proof. Define ϕ : G{K Ñ Impfq by ϕpaKq “ fpaq. ϕ is well-defined and injective: aK “ bK ðñ

a´1b P K “ Kerpfq ðñ fpa´1bq “ fpaq´1fpbq “ e ðñ fpbq “ fpaq. ϕ is a homomorphism:
ϕpaKerpfqbKerpfqq “ ϕpabKerpfqq since kernel is normal group and that is fpabq. On the other side,
ϕpaKerpfqqϕpbKerpfqq “ fpaqfpbq, so this is homomorphism since f is homomorphism. Lastly, ϕ is surjec-
tive: if b P Impfq, then b “ fpaq for some a. So ϕpaKerpfqq “ b.

Example 1.4.2. SLpn,Rq⊴GLpn,Rq. Then GLpn,Rq{SLpn,Rq » pR´ t0u, ¨q.

Proof. f : GLpn,Rq Ñ R ´ t0u, A ÞÑ detpAq. This is a group homomorphism, f is surjective, Kerpfq “
SLpn,Rq ùñ GLpn,Rq{SLpn,Rq » R´ t0u.

Definition 1.4.3. For H,K ď G, define product set

HK “ thk|h P H, k P Ku

and inverse set
H´1 “

␣

h´1|h P H
(

Remark 1.4.4.

1. HK is not necessarily a subgroup of G. For example, consider G “ S3 and H “ te, p1 2qu, K “

te, p1 3qu. We have Proposition 1.4.5 (same as [9] Lemma 2.25) instead.

2. Observe that pABq´1 “ B´1A´1.

Proposition 1.4.5. Let A and B be subgroups of G. Then AB is a subgroup of G if and only if AB “ BA.
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Proof. From AB ď G we get
pABq “ pABq´1 “ B´1A´1 “ BA.

If AB “ BA, then
pABqpABq “ ApBAqB “ ApABqB “ AABB “ AB

and
pABq´1 “ B´1A´1 “ BA “ AB.

Thus AB ď G.

Proposition 1.4.6. If H ď G and N ⊴ G, then HN ď G, HN “ NH, and HN is the subgroup of G
generated by H YN .

Proof. HN ď G : If a “ h1n1, b “ h2n2, then ab´1 “ h1n1n
´1
2 h´1

2 “ h1h
´1
2 h2n1n

´1
2 h´1

2 . Clearly, n1n´1
2 P N

so h2n1n´1
2 h´1

2 P N . Thus, ab´1 P HN .

HN “ NH: We need to first show HN Ď NH. Let hn P HN ùñ hnh´1 “ n1 P N ùñ hn “ n1h P NH,
so HN Ď NH. Similar for other direction.

Clearly, H,N Ď HN ď G. And for any K ď G, let H,N Ď K. Since K is a subgroup, @n P N,h P H,hn P K.
Thus HN ď K is the smallest subgroup. In particular, HN is the subgroup generated by H YN .

Theorem 1.4.7 (2nd Isomorphism Theorem). Let H ď G,N ⊴G. Then H XN ⊴H and

H{H XN » HN{N

Proof. H XN ⊴H due to Question 1.3-11. Let ϕ : H Ñ HN{N be given by ϕphq “ hN . The result follows
from the first isomorphism theorem after showing the following three facts. We left them as exercises.

• Kerpϕq “ th P H|hN “ Nu “ H XN .

• ϕ is surjective: hnN “ hN “ ϕphq.

• ϕ is homomorphism.

Suppose H2 Ď H1, H1, H2 ⊴G. Then we can define a surjective map called the enlargement of coset:

ϕ :
G

H2
Ñ

G

H1
; aH2 ÞÑ aH1

It is well-defined: if aH2 “ bH2 ô b´1a P H2 Ď H1 ñ b´1a P H1 ô aH1 “ bH2, then ϕ paH2q “ ϕ pa1H2q. It
is a homomorphism: ϕ paH2qϕ pbH2q “ paH1q pbH1q “ aH1 “ ϕ pabH2q. It is surjective: for every aH1 P

G
H1

,
we have ϕ paH2q “ aH1. Therefore, by 1st isomorphism theorem, G

H2
{Kerpϕq – G

H1
, so G{H1 is a quotient

of G{H2.

Remark 1.4.8.

(1) Now, let G be a group and N ⊴ G. Let f : G Ñ G1 be a homomorphism whose kernel K “ Kerpfq
contains N . Then we have a composition

f˚ “ ψ ˝ ϕ :
G

N
Ñ

G

K
Ñ G1; aN ÞÑ aK ÞÑ fpaq

where ψ : G{K Ñ G1 is the homomorphism from the 1st isomorphism theorem and ϕ : G{N Ñ G{K
is the enlargement of coset. This composition g is the unique homomorphism f˚ : G{N Ñ G1, said to
be induced by f , making the following diagram commutative:
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G G1

G{N

f

φ f˚

As before, φ is the canonical projection.

(2) Now, let G again be a group. Let f : G Ñ G1 be a homomorphism. Consider N 1 ⊴ G1 and N :“
f´1pN 1q⊴G instead (the normality is justified by Proposition 1.4.14). Consider the composition

g “ q ˝ f : GÑ G1 Ñ
G1

N 1

in replace of the homomorphism f in the above commutative diagram, where q : G1 Ñ G1{N 1 is
the canonical projection. Observe that K “ Kerpgq “ tx P G|fpxq P N 1u “ f´1pN 1q “ N , so the
enlargement ϕ : G{N Ñ G{K degenerates to the identity homomorphism i and the induced map
g˚ : GN Ñ G

K Ñ G1

N 1 ; aN ÞÑ aK ÞÑ gpaq becomes the homomorphism in the first isomorphism theorem
g˚ “ ψ : GN Ñ G1

N 1 ; aN Ñ gpaq. The map is then injective as ψ is injective.

Theorem 1.4.9 (3rd Isomorphism Theorem). Suppose K ď N ⊴G and K ⊴G. Then

N{K ⊴G{K and pG{Kq{pN{Kq » G{N

Proof. First part follows from definition. Application of the first isomorphism theorem to the enlargement of
coset map ϕ : G{K Ñ G{N , ϕpgKq “ gN will prove the second part (check that Kerpϕq “ N{K and ϕ is
surjective).

Restating the proof that ϕ : G{K Ñ Impfq, defined in the first isomorphism theorem, is well-defined, we get

Proposition 1.4.10 ( [1] Proposition 2.7.1). Let K be the kernel of a homomorphism φ : G Ñ G1. Let
b P G1, then φ´1pbq is called a fiber. If a P φ´1pbq, then φ´1pbq “ aK, the coset of K containing a. These
cosets partition the group G, and they correspond to elements of the image of φ:

G{K ÐÑ Impφq

aK ÐÑ φpaq

Since |G{K| “ rG : Ks for finite group G, and |G{K| “ | Impφq| by the above proposition, we immediately
have

Corollary 1.4.11 ( [1] Corollary 2.8.13). Let φ : GÑ G1 be a homomorphism of finite groups. Then

• |G| “ |Kerpφq| ¨ | Imφ|;

• |Kerpφq| divides |G|;

• | Impφq| divides both |G| and |G1|.

Proposition 1.4.12. Let φ : GÑ G1 be a homomorphism and H ď G. Then the restriction φ|H : H Ñ G1 is
also a homomorphism with Kerpφ|Hq “ Kerpφq XH and Impφ|Hq “ φpHq.

Remark 1.4.13. By Corollary 1.4.11, we see | ImφH | “ |φpHq| divides |H| and |G1|. Therefore, if |H| and
|G1| have no common factors, then |φpHq| “ 1 ùñ φpHq “ eG1 ùñ φ is a trivial homomorphism. [1]
Example 2.10.3 gives an application of this observation on the sign homomorphism from Sn to t˘1u – Z2.
This will require some readings in permutation matrices that define the sign homomorphism ( [1] handles
the sign of permutation in a neater way than [9] does).
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Proposition 1.4.14 ( [1] Proposition 2.10.4). Let φ : G Ñ G be a homomorphism with kernel K and let H
be a subgroup of G. Denote the inverse image φ´1pHq by H. Then H is a subgroup of G that contains K.
If H is a normal subgroup of G, then H is a normal subgroup of G. If φ is surjective and if H is a normal
subgroup of G, then H is a normal subgroup of G.

Theorem 1.4.15 (4th Isomorphism Theorem (Correspondence Theorem)). Let N ⊴ G, then ϕ : G Ñ

G{N,ϕpgq “ gN induces a 1-1 correspondence Φ : H Ñ ϕpHq “ H{N between subgroups of G which
contain N and subgroups of G{N :

S “ tsubgroups of G that contain Nu ÐÑ S 1 “ tsubgroups of G{Nu

a subgroup H of G that contains N ÝÑ its image ϕpHq “ H{N in G{N

its inverse image ϕ´1pHq in GÐÝ a subgroup H of G{N

Moreover, if we denote H{N by H˚, then

• For H1,2 P S, H1 ď H2 if and only if H˚
1 ď H˚

2 , and then rH2 : H1s “ rH
˚
2 : H˚

1 s;

• For H1,2 P S, H1 ⊴H2 if and only if H˚
1 ⊴H˚

2 , and then H2{H1 – H˚
2 {H

˚
1 .

Remark 1.4.16. For the proof of the above theorem, see [9] Theorem 2.28. Also note that [1] Theorem
2.10.5 relaxes the assumption to surjective homomorphism ϕ while getting less interesting results than the
case ϕ being the canonical projection.

1.4 EXERCISES

1. [9][p.31 ex2.29] Prove that a homomorphism f : GÑ H is an injection if and only if Kerpfq “ 1.

2. [9][p.37 ex2.48] (Modular Law). Let A,B, and C be subgroups of G with A ď B. If A X C “ B X C
and AC “ BC (we do not assume that either AC or BC is a subgroup), then A “ B.

3. [9][p.37 ex2.49] (Dedekind Law). Let H,K, and L be subgroups of G with H ď L. Then HK X L “
HpK X Lq (we do not assume that either HK or HpK X Lq is a subgroup).

1.5 Simple and Solvable Groups

Definition 1.5.1. A group G is called simple if it has no normal subgroup other than teu and G.

Example 1.5.2. Cyclic groups G of prime order are simple: |N | | |G| “ p ùñ |N | “ 1 or p ùñ N “ G or
N “ teu.

Example 1.5.3. Consider the alternating group An. By Question 1.3-6, we see An ⊴ Sn.

A2 “ teu is simple. A3 “ te, p1 2 3q, p1 3 2qu is cyclic of prime order 3 and is thus simple (apply previous
example). A4 is not simple: V is normal in A4 because it is the union of conjugacy classes in A4 (see
Question 1.5-1 and Question 1.3-13).

Theorem 1.5.4. An is simple if n ě 5

Proof. The proof is made up of the following three facts:

(1) An, n ě 5 is generated by 3-cycles;

(2) Every two 3-cycles are conjugate with each other in An: σ1, σ2 are 3-cycles, then Dτ P An : τσ1τ
´1 “

σ2.;
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(3) every normal subgroup N ‰ teu in An has at least one 3-cycle.

Together they prove the statement: suppose N ‰ teu, and we want to show N “ An. (3) gives a 3-cycle
σ1 P N , so @τ P An, τσ1τ´1 “ σ2 P N as N ⊴ An. (2) then implies that all 3-cycles are in N . (1) states that
An “ x3-cyclesy is the smallest subgroup of An containing all 3-cycles, so N ⊴An has to be equal to An.

We prove the three facts:

(1): T “ tpa b cq
ˇ

ˇ 1 ď a ă b ă c ď nu Ă An, then xT y Ă An. If

σ “ pa bqpc dq “

$

’

&

’

%

e, if ta, bu “ tc, du
pa c bqpa c dq, if a, b, c, d all distinct
pa d bq if a “ c

Then σ P xT y ùñ An Ď T .

(2) is due to a more general theorem, namely Theorem permutations are conjugate iff they have the same
cycle structure.

(3): See Exercise 1.5-2.

Theorem 1.5.5. Permutations α, β P Sn are conjugate if and only if they have the same cycle structure.

Proof. See [9] Theorem 3.5 or Math5031 HW3 Q4.

Theorem 1.5.6. Jordan-Holder Theorem. If G is any finite group, then there is a unique tower of
subgroups

teu “ N0 ⊴N1 ⊴ ¨ ¨ ¨⊴Nk´1 ⊴Nk “ G

such that Ni{Ni´1 is simple.

Definition 1.5.7. A tower of subgroups

Gm ď Gm´1 ď ¨ ¨ ¨ ď G1 ď G0 “ G

is subnormal if Gi`1⊴Gi and normal if furthermore Gi⊴G for each i. A subnormal series is called abelian
if each Gi{Gi`1 is abelian. A group G is called solvable if there is an abelian series

teu “ Gm ď Gm´1 ď ¨ ¨ ¨ ď G1 ď G0 “ G.

Example 1.5.8.

• Any abelian group is solvable.

• S3 is solvable.

• S4 is solvable.

• Sn, n ě 5 is not solvable.

• Dn is not simple and is solvable.

Proof.

• For an abelian group G, any N ď G is normal and abelian, so N{teu is abelian. The factor group G{N
is abelian because the natural homomorphism ϕ : GÑ G{N is surjective.

• teu ⊴ A3 ⊴ S3. Question 1.3-6 gives |A3| “
1
23! “ 3 which is prime, so A3 – Z3 is abelian. It is also

normal in S3 with index 2, so S3{A3 – Z2 is abelian.
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• Solvablility of S4 is due to teu⊴V⊴A4 ⊴S4. A4 ⊴Sn and S4{A4 abelian. V⊴A4 (see example 1.5.3)
and V{teu is abelian.

• Let N ⊴ Sn. Since An ⊴ Sn, by 2nd isomorphism theorem, N XAn ⊴An. Since An for n ě 5 is simple,
we see N XAn “ teu or An.

If N X An “ An, then An ď N ď Sn ùñ N “ An or N “ Sn because Question 1.1-16 implies
2 “ rSn : Ans “ rSn : N srN : Ans.

If N X An “ teu and if N ‰ teu, then: σ1, σ2 ‰ e, σ1, σ2 P N , then σ1σ2 P N , and σ1σ2 “ e because
σ1σ2 is even (so σ1σ2 is also in An). Thus N “ te, σ, σ´1u and σ2 “ σ´1. σ has order 3, which by
Question 1.2-9 implies that it is a product of 3-cycles. But by parts (1) and (2) of theorem 1.5.4, we
see N “ An. Therefore, N “ teu, N, or Sn ùñ Sn, n ě 5 is not solvable.

• The index-2 subgroup in Question 1.2-11 is the cyclic subgroup generated by the rotation xry and is
thus abelian and is also normal in Dn due to corollary 1.3.4. Then teu⊴ xry⊴Dn is the desired abelian
subnormal series as Dn{xry is a group of order 2, isomorphic to Z2.

Definition 1.5.9. Let x, y P G. The commutator of x, y :“ xyx´1y´1 “ rx, ys

Note that rx, ys “ e ðñ xy “ yx, and rx, ys´1 “ ry, xs. This gives us a notion of how far a group is from
abelian.

Definition 1.5.10. G1, the commutator subgroup, is the subgroup generated by all the commutators rx, ys,
where x, y P G. G1 “ trx1, y1srx2, y2s ¨ ¨ ¨ rxk, yks

ˇ

ˇxi, yi P Gu

Proposition 1.5.11.

• G1 “ teu ðñ G is ableian

• G1 ⊴G

• G{G1 is abelian

Proof. Insert gg´1 between the elements: grxysg´1 “ gxg´1gyg´1gx´1g´1gy´1g´1 “ rgxg´1, gyg´1s P G1.

Similarly, grx1, y1s ¨ ¨ ¨ rxk, yksg´1 “ pgrx1, y1sg
´1q ¨ ¨ ¨ pgrxkyksg

´1q

G{G1 is abelian: we want to show that abG1 “ baG1. a´1b´1ab “ ra´1, b´1s P G1. So it is true.

Proposition 1.5.12. If N ⊴G, then G{N is abelian ðñ G1 ď N

Proof. ùñ : @a, b P G,G{N abelian so a´1b´1N “ b´1a´1N . Then aba´1b´1 P N ùñ ra, bs P N ùñ

G1 ď N

ðù: a´1b´1ab “ ra´1, b´1s P G1 Ď N ùñ a´1b´1ab P N

Example 1.5.13. pSnq1 “ An. See Question 1.5-3.

Let Gp0q :“ G,Gp1q “ G1, ¨ ¨ ¨ , Gpiq “ pGpi´1qq1. Gpi`1q ⊴Gpiq and Gpi`1q{Gpiq is abelian.

Proposition 1.5.14. G is solvable iff Gpmq “ teu for some m ě 1.

Proof. ðù: teu “ Gpmq ⊴ ¨ ¨ ¨⊴Gp1q ⊴G is an abelian tower.

ùñ : If teu “ Gm⊴¨ ¨ ¨⊴G1⊴G0 “ G is abelian, then G1⊴G0, G0{G1 abelian ùñ G1 ď G1, G2⊴G1, G1{G2

abelian ùñ pG1q
1 ď G2 implies together that Gp2q ď G1

1 ď G2 ùñ Gp2q ď G2.

By induction, Gpiq ď Gi@i, G
pmq ď Gm “ teu.
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The following proposition is a good exercise (Math5031 HW2 Q4) for one to review all the isomorphism
theorems and various normality theorems.

Proposition 1.5.15. If N ⊴G, then N,G{N are solvable ðñ G is solvable.

Proof. G solvable ùñ N solvable:
Let

teu “ Gm ⊴Gm´1 ⊴ ¨ ¨ ¨⊴G0 “ G

be a subnormal series where Gi{Gi`1 is abelian. Let Ni “ N XGi. We claim that

teu “ N X teu “ Nm ⊴Nm´1 ⊴ ¨ ¨ ¨N0 “ N XG “ N

is the desired subnormal series where Ni{Ni`1 is abelian.

We apply Question 1.3-11 three times: Gi ď G,N ⊴ G ñ Ni “ Gi X N ⊴ Gi and Gi`1 ⊴ Gi ñ Ni X
Gi`1 “ Ni`1 ⊴ Gi`1. Similarly, Ni ⊴ Gi with the third application to Ni ⊴ Gi, Ni`1 ⊴ Gi`1, which implies
Ni XNi`1 “ Ni`1 ⊴Ni.

Applying Remark 1.4.8 (2) with homomorphism the inclusion of Ni in Gi, f “ ι : Ni ãÑ Gi, N 1 “ Gi`1, and
N “ ι´1pGi`1q “ Ni XGi`1 “ Ni`1, we obtain an injective homomorphism g˚ : Ni{Ni`1 Ñ Gi{Gi`1. Thus
Gi{Gi`1 being abelian implies Ni{Ni`1 being abelian (note that injectivity is necessary for this implication:

φpxyq “ φpxqφpyq
abelian codomain
ùùùùùùùùùùùù φpyqφpxq “ φpyxq

injectivity
ùñ xy “ yx).

G solvable ùñ G{N solvable:
Let

teu “ Gm ⊴Gm´1 ⊴ ¨ ¨ ¨⊴G0 “ G

be a normal series where each Gi{Gi`1 is abelian. Let Hi “ NGi{N . Proposition 1.4.6 implies that NGi`1 “

Gi`1N,NGi “ GiN . Notice that N Ď Gi`1N ⊴GiN due to Question 1.3-5. Since N Ď Gi`1N ⊴GiN,N ⊴
GiN , the 3rd isomorphism theorem states that

Hi`1 “
NGi`1

N
⊴
NGi
N

“ Hi

The remaining is to show Hi

Hi`1
is abelian: first observe that

p˚q : GiN “ Gi pGi`1Nq

and then
Hi

Hi`1
“

NGi

N
NGi`1

N

3rd iso
–

GiN

Gi`1N

p˚q
“

Gi pGi`1Nq

Gi`1N

2nd iso
–

Gi
Gi XGi`1N

where each of the isomorphism theorem’s conditions are satisfied (the only nontrivial relationship isGi`1N⊴
GiN and is proved above).

3rd : N Ď Gi`1N ⊴GiN,N ⊴GiN.

2nd : Gi ď GiN,Gi`1N ⊴GiN.

By enlargement of coset map and Gi`1 Ď Gi ñ Gi`1 Ď Gi X Gi`1N , we see Gi

GiXGi`1N
is isomorphic to a

quotient of Gi

Gi`1
, which is abelian, so Gi

GiXGi`1N
is abelian (quotient of abelian group is abelian because the

canonical projection is a surjective homomorphism).

G{N solvable and N solvable ùñ G solvable:
N and G{N are solvable ñ G is solvable. Suppose

teu “ Nm ⊴Nm´1 ⊴ ¨ ¨ ¨⊴N0 “ N

␣

eG{N

(

“ Hn ⊴Hn´1 ⊴ ¨ ¨ ¨⊴H0 “
G

N
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Then by 4th isomorphism theorem, for each Hi which is a subgroup of G
N , we can find a unique subgroup

Ki of G containing N such that Ki

N “ Hi. Then

teu “ Nm ⊴Nm´1 ⊴ ¨ ¨ ¨⊴N0 “ N “ Kn ⊴Kn´1 ⊴ ¨ ¨ ¨⊴K0 “ G

The factKi`1⊴Ki is from properties of the 1 -1 correspondence Φ : tK : A Ď K ď Gu Ø
␣

Ā “ A
N : AN ď G

N

(

.
Recall that A Ď B ô Ā Ď B̄ and A ⊴G ô Ā ⊴ Ḡ where A and B are two subgroups containing N . By the
two properties we see

Kn Ď Kn´1 Ď ¨ ¨ ¨ Ď K0

@i : Ki ⊴G

Also note that p ě q ñ Kp ď Kq. That’s because Kp Ď Kq and Kp ď G. Thus for each i “ 1, K2 ď

G,K2 Ď K1 ⊴ K0 “ G ñ K2 “ K2 X K1 ⊴ K1. We set induction hypothesis that Ki`1 ⊴ Ki then have
Ki`2 ď Ki,Ki`2 Ď Ki`1 ⊴ Ki ñ Ki`2 “ Ki`2 X Ki`1 ⊴ Ki`1. The induction establishes the series
as normal. We now show that Ki{Ki`1 is abelian due to the third isomorphism theorem (conditions are
satisfied: N “ K0 Ď Ki`1 ⊴Ki, N “ K0 ⊴Ki ):

Ki

Ki`1
–

Ki

N
Ki`1

N

“
Hi

Hi`1

Therefore, G is also solvable.

Remark 1.5.16. The proof of a more general nature can be seen in [6] 6.1.1 and 6.1.2, but need an equiva-
lence proof (6.1.5) of their first definition of solvability and the definition we used in class (or used by Serge
Lang). 6.1.1 shows that subgroups and homomorphic images of solvable groups are solvable, which implies
the ñ direction of the above statement, because N is normal subgroup of G and G{N is the homomorphic
image of the map ψ : GÑ G

N ;x ÞÑ xN .

1.5 EXERCISES

1. If G is a group, by a conjugacy class of G we mean all elements of G which are conjugate to a fixed
element (so it is an orbit of G for the action of G on G by conjugation).

Find all conjugacy classes of A4.i.
Show that if rG : ZpGqs “ n, then every conjugacy class has at most n elements.ii.

2. Use the following steps to show every normal subgroup N ‰ teu of An, n ě 5, contains a 3-cycle. This
finishes the proof of the fact that An is simple if n ě 5.

Show that if N contains a permutation of the form σ “ p1 2 ¨ ¨ ¨ rqµ (where µ is a product of cycles
disjoint from t1, 2, . . . , ru) with r ě 4, then N contains a 3-cycle by letting ρ “ p1 2 3q and computing
σ´1ρ´1σρ.

i.

Show that if N contains a permutation of the form σ “ p1 2 3qp4 5 6qµ (where µ is a product of cycles
disjoint from t1, 2, . . . , 6u), then N contains a 3-cycle by letting ρ “ p1 2 4q and computing σ´1ρ´1σρ.

ii.

Show that if N contains a permutation of the form σ “ p1 2 3qµ, where µ is a product of 2-cycles a
product of 2-cycles which are mutually disjoint and are also disjoint form t1, 2, 3u, then N contains a
3-cycle by computing σ2.

iii.

Show that if N contains a permutation of the form σ “ p1 2qp3 4qµ, where µ is a product of 2-cycles
which are mutually disjoint and are also disjoint from t1, 2, 3, 4u, then N contains a 3-cycle by letting
ρ “ p1 2 3q, computing η “ σ´1ρ´1σρ and ζ “ p1 5 2qηp1 2 5q.

iv.
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Remark: This problem divides into three subcases: (1) the cycle has length ě 4 (corresponded to i); (2)
the cycle has length ď 3 (but with at least on of them being 3 ) (corresponded to ii and iii); (3) the cycle
has length ď 2 (corresponded to iv). WLOG, each case can be converted to the considerations of the
explicit forms given in the above problem.

3. The commutator subgroup of Sn is An (Hint: show that every 3-cycle is a commutator, and use the fact
that An is generated by 2-cycles.)

4. (A simple group of infinite order) Let A8 be defined in the following way: identify An´1 with the
subgroup of An consisting of those permutations which fixes n, and let A8 be the union

Ť

ně1An.

Show that A8 is a group.i.
Prove A8 is a simple group.ii.

1.6 Group Actions

Definition 1.6.1. Let G be a group and X be a set, an action of G on X is a function α : G ˆ X Ñ

X, pg, xq ÞÑ g ¨ x such that

• e ¨ x “ x, @x P X.

• pg1g2q ¨ x “ g1 ¨ pg2 ¨ xq, @x1, x2 P X, g P G

Note that @g P X, ϕg : X Ñ X, x ÞÑ g ¨ x is a permutation. ϕg is bijective, as g ¨ x “ g ¨ x1 ùñ g´1 ¨ pg ¨ xq “
g´1 ¨ pg ¨ x1q ùñ e ¨ x “ e ¨ x1. Besides, @x P X,ϕgpg´1 ¨ xq “ g ¨ pg´1 ¨ xq “ x.

A group action G ñ X gives rise to a homomorphism ϕ : G Ñ SX , g ÞÑ ϕg (not necessarily injective):
ϕg1g2pxq “ pg1g2q ¨ x “ g1 ¨ pg2 ¨ xq “ ϕg1 ˝ ϕg2pxq.

Example 1.6.2.

1. Trivial action. @g P G, x P X, g ¨ x “ x.

2. Conjugation on elements of G. X “ G, g ¨ x “ gxg´1.

3. Conjugation on subgroups ofG. LetX be set of subgroups ofG, g P G,H P X. Then g¨H “ gHg´1 ď G
(for a, b P gHg´1, a “ ghg´1, b “ gh1g´1 ùñ ab “ gphh1qg´1.)

4. Translation on elements of G. X “ G, g ¨ x “ gx.

Theorem 1.6.3 (Cayley’s Theorem). Every group is isomorphic to a permutation group.

Proof. Let the set X be G with action by translation (see example 1.6.2). The the homomorphism we
constructed above

ϕ : GÑ SX

g ÞÑ ϕg

gives an isomorphism by restricting SX to Impϕq: it is automatically surjective. Injectivity is becasue:

ϕg “ ϕh ðñ @x P G, ϕgpxq “ ϕhpxq ðñ gx “ hx ðñ g “ h

where the last step is due to cancellation law of the group.
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Definition 1.6.4. Suppose G acts on X,x P X. Then the stabilizer is defined as

Gx :“ tg P G | gx “ xu

It is a subgroup of G because

• e P Gx;

• g P Gx then g ¨ x “ xñ x “ g´1 ¨ pg ¨ xq “ g´1 ¨ xñ g´1 P Gx.

• g, g1 P Gx ñ pgg1q ¨ x “ gpg1xq “ gx “ x.

Definition 1.6.5. We also define an orbit of X.

Ox “ tgx | g P Gu Ď X

Note: x „ y if y P Ox, so y “ gx for some g. Thus, any two orbits are either equal or disjoint, and they form
a partition of X.

Example 1.6.6. For Example 1.6.2 above, the stabilizer and orbit are

1. Trivial action. Ox “ txu. Gx “ G.

2. Conjugation on elements of G. Ox “ tgxg´1 | g P Gu, the conjugacy class of x in G. Gx “ tg P G |
gx “ xgu “ Npxq ď G, the normalizer of x.

3. Conjugation on subgroups of G. OH = all subgroups conjugate to H, GH “ tg P G | gHg´1 “ Hu “
tg P G | gH “ Hgu “ NGpHq, the normalizer of H in G. Note that H ⊴NGpHq ď G and is the largest
subgroup of G in which H is normal. Also, H ⊴G ðñ NGpHq “ G

4. Translation on elements of G. Ox “ tgx | g P Gu “ G. Gx “ tg P G | gx “ xu “ teu

Remark 1.6.7. For a subset S of group G, one can define its centralizer as

CGpSq “ tg P G | @s P S, gs “ sgu

and its normalizer as
NGpSq “ tg P G | gS “ Sgu.

We note that the condition in the normalizer is weaker, so CGpSq Ď NGpSq. If S “ txu is a singleton, then
the two definitions give the same set, as in Example 1.6.6 (2).

The proof of the following lemma is straightforward:

Lemma 1.6.8. Let N be a normal subgroup of G. Then

1. If N contains an element x, then it contains the conjugacy class Cpxq of x.

2. N is a union of conjugacy classes.

3. The order of N is the sum of the orders of the conjugacy classes that it contains.

Definition 1.6.9. For group G, the center of G, ZpGq, is the set of elements in G commuting with all
elements in G:

ZpGq “ tg P G|@g1 P G, gg1 “ g1gu

That is, ZpGq “ CGpGq.

Proposition 1.6.10.

• Observe that S1 Ď S2 ùñ CGpS2q Ď CGpS1q, so @S Ď G, ZpGq “ CGpGq Ď CGpSq. In particular,
ZpGq Ď CGptxuq “ NGptxuq “ Npxq for an element x P G.
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• ZpGq “ G ðñ G abelian

• ZpGq⊴G

Proof. The first and second statement are trivial.

ZpGq ď G: e P ZpGq. g P ZpGq ñ g´1 P ZpGq as g1g´1 “ g´1g1, and if g1, g2 P ZpGq then g1g2g1 “ g1g
1g2 “

g1pg1g2q so g1g2 P ZpGq.

ZpGq ⊴ G: let g P ZpGq and h P G. We want to show that hgh´1 P ZpGq. hgh´1g1 “ hh´1gg1 “ gg1 but
g1hgh´1 “ g1ghh´1 “ g1g. Since hgh´1g1 “ g1hgh´1 we see gg1 “ g1g.

Example 1.6.11. ZpSnq “ teu, n ě 3. This is a nontrivial fact. ZpAnq “ teu, n ě 4. That’s because for n ě 5,
An is simple but ZpAnq⊴ ZpAnq “ teu or ZpAnq “ An. For n “ 4, find an element not commuting with any
element in the Klein-four group V.

Theorem 1.6.12 (Orbit-Stabilizer Theorem). Let X be a G-set, then @x P X,

|Ox| “ rG : Gxs, or |G| “ |Ox||Gx|

where we note that Gx ď G as we showed when defining it.

Proof. For the point x, we define

ϕ : Ox “ tgx|g P Gu Ñ tall left cosets of Gxu

gx ÞÑ gGx

Injective: gGx “ g1Gx ðñ g´1g1 P Gx “ tg P G | gx “ xu ðñ g´1g1x “ x ðñ gx “ g1x.

Surjective: clear.

Therefore, rG : Gxs “ tall left cosets of Gxu| “ |Ox|

Example 1.6.13. If G acts on the set X of its subgroups, tH | H ď Gu, then by example 1.6.6, we have
OH “ the set of all subgroups conjugate to H and GH “ NGpHq. Orbit-stabilizer theorem then says
|OH | “ rG : NGpHqs. Also notice that |H| divides |NGpHq|, and |NGpHq| divides |G|.

Lemma 1.6.14. An observation: an element x of group G is in the center if and only if its centralizer CGpxq
is the whole group G, and this happens if and only if the conjugacy class Cpxq consists of the element x
alone. In symbols,

x P ZpGq ðñ CGpxq “ G ðñ Cpxq “ x

Example 1.6.15. Class Formula is obtained by letting G acts on G via conjugation. If x P X “ G, by
example 1.6.6, we have stabilizer Gx “ Npxq and orbit Ox “ Cpxq. Since orbits Ox give a partition of

X “ G, we see |G| “
ř

distinct orbits |Ox|
orb-stab thm
ùùùùùùùùù

ř

distinct orbitsrG : Gxs. Also, due to Lemma 1.6.14, we can
write that summing all distinct conjugacy classes with more than 1 element:

|G| “ ZpGq ` |C1| ` ¨ ¨ ¨ ` |Ck|
looooooooomooooooooon

distinct conj classes with sizeą1

(1.4)

Corollary 1.6.16. If |G| “ pr, p prime, then ZpGq ‰ teu.
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Proof. By equation (1.4), we see, if ZpGq “ teu, we get

pr “ 1` |C1| ` ¨ ¨ ¨ ` |Ck|
looooooooomooooooooon

distinct conj classes with sizeą1

.

Each |Ci| “ |G|{|Gx| is a divisor of |G| “ pr, i.e., powers of p, but excluding p0 “ 1 since the size of conjugacy
classes in above summation is greater than 1. This implies that

pr ´ sum of some multiples of p greater than 1 “ 1,

so p
ˇ

ˇ 1, a contradiction. Thus, ZpGq ‰ teu.

Corollary 1.6.17. If |G| “ pr, then G is not simple.

Proof. The center ZpGq is a nontrivial normal subgroup by corollary 1.6.16 and proposition 1.6.10.

Corollary 1.6.18. If |G| “ p2, then G is ableian.

Proof. If G is not abelian, then |ZpGq| “ p, so ZpGq is proper subgroup of G. Pick a P G ´ ZpGq, then
Npaq “ tb

ˇ

ˇ ab “ bau ‰ G. However ZpGq is proper subgroup of Npaq and Npaq proper subgroup of G, a
contradiction (a in Npaq but not in ZpGq).

[1] 7.3.4 claims that G with |G| “ p2 is either cyclic or a product of two cyclic groups of order p.

Corollary 1.6.19. If |G| “ pr, then G is solvable.

Proof. Proof by induction on r, r “ 1 true.

Suppose this holds for 1, ..., r´1. Consider ZpGq⊴G and ZpGq ‰ teu. Here |ZpGq| and |G{ZpGq| are powers
of p. So by hypothesis, ZpGq and G{ZpGq are solvable ùñ G also solvable.

Definition 1.6.20. An action G ñ X is transitive if there is only one orbit, Ox “ X. Equivalently, @x, y P X,
Dg P G s.t. g ¨ x “ y.

Definition 1.6.21. An action G ñ X is faithful or effective if there is only the identity e P G that fixes
all x P X (i.e. @x P X, g ¨ x “ x implies g “ e). This is equivalent of saying that the homomorphism
ϕ : G Ñ SX ; g Ñ ϕg is injective or that ϕ is a monomorphism. If X1 and X2 are left G-spaces, a mapping
f : X1 Ñ X2 is called G-equivariant, or simply a mapping of left G-spaces, in case

fpg ¨ xq “ g ¨ pfxq

for any g P G and x P X1. A G-equivariant map f : X1 Ñ X2 is called isomorphism of left G-spaces
in case there exists another G-equivariant map f 1 : X2 Ñ X1 such that f 1f “ idX1 and ff 1 “ idX2 .
This is equivalent to the condition that f be one-to-one and onto. This definition of isomorphism is the
natural one in this context. The reader should note that it is sometimes possible for a group G to operate
in several different, nonisomorphic ways on a given set E. As usual, an automorphism of a G-space is a
self-isomorphism.

Theorem 1.6.22 (Burnside’s Lemma). If G,X finite, X is a G-set, then the number of orbits of the action
G ñ X is 1

|G|

ř

gPG |Fg|, where Fg is the set of elements of X fixed by g.

Proof. Consider S “ tpg, xq
ˇ

ˇ gx “ xu Ă GˆX. We can count S in two different ways.

1. @g P G, there are |Fg| elements fixed by g so |S| “
ř

gPG |Fg|.

2. @x P X, there are |Gx| elements fixed in x, which equals |G|{rOxs by the orbit-stabilizer theorem.
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So

ÿ

gPG

|Fg| “
ÿ

xPX

|G|

|Ox|

“ |G|

¨

˚

˚

˚

˝

1

|Ox1
|
` ¨ ¨ ¨ `

1

|Oxk
|

looooooooooomooooooooooon

the same

` ¨ ¨ ¨

˛

‹

‹

‹

‚

“ |G|
ÿ

distinct orbits Oy1 ,Oy2 ¨¨¨ ,

1

|Oyi |
|Oyi |

“ |G| ˆ num distinct orbits

where for the third equality we notice that Ox “ Oy exactly when x and y are both in the same orbit. Thus
when going through all X, those in the same orbit will have the same 1{|Ox| and there are in total |Ox| of
them having this same 1{|Ox|.

Corollary 1.6.23. If G acts transitively on X, and |X| ą 1, then there is g P G such that Fg “ ∅.

Proof. Burnside’s Lemma gives |G| “
ř

gPG |Fg| “ Fe `
ř

g‰e |Fg|.

If @g, |Fg| ě 1, then |G| “ |X| `
ř

g‰e |Fg| ě |X| ` p|G| ´ 1q ùñ |X| ď 1, a contradiction.

1.6 EXERCISES

1. [9][p.45 ex3.5] Prove that Z pG1 ˆ ¨ ¨ ¨ ˆGnq “ Z pG1q ˆ ¨ ¨ ¨ ˆ Z pGnq.

2. [9][p.45 ex3.6]

Prove, for every a, x P G, that CG
`

axa´1
˘

“ aCGpxqa
´1.i.

Prove that if H ď G and h P H, then CHphq “ CGphq XH.ii.

3. [9][p.45 ex3.9]

Prove that NG
`

aHa´1
˘

“ aNGpHqa
´1.i.

If H ď K ď G, then NKpHq “ NGpHq XK.ii.
If H,K ď G, prove that NGpHq X NGpKq ď NGpH X Kq. Give an example in which the inclusion is
proper.

iii.

1.7 Sylow Theorems

Definition 1.7.1. A group G is a p-group if |G| “ pr. Since ordpaq
ˇ

ˇ pr, we see @e ‰ a P G, a is some multiple
of p that is not 1, so p

ˇ

ˇ ordpaq. And if |G| “ prm, gcdpm, pq “ 1, H ď G, then H is a called a p-subgroup if
|H| “ ps, and H is a Sylow p-subgroup if |H| “ pr.

Using number of elements to define a subgroup need to be justified by an existence proof, because usually
we define subgroup by some form like tg P G | ppgqu where pp¨q is a statement. This existence proof is the
content of the first Sylow theorem.

Theorem 1.7.2 (First Sylow theorem). Suppose |G| “ prm, r ě 1, gcdpp,mq “ 1. Then G has a subgroup of
size ps for any 0 ď s ď r.
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Lemma 1.7.3. If G is abelian and p
ˇ

ˇ |G|, then G has an element of order p and thus a subgroup of order p.

Proof. Induction on order of G. If |G| “ p, there is nothing to prove. Suppose |G| ą p, Let e ‰ a P G, t “
ordpaq. Then H “ xay “ te, a, ¨ ¨ ¨ , at´1u ď G, so prm “ |G| “ |H|rG : Hs “ t ¨ k. There are two cases:

1. If p
ˇ

ˇ t, then
ˇ

ˇ

ˇ

A

a
t
p

E
ˇ

ˇ

ˇ
“ p.

2. Otherwise, let n “ |G|, n “ tn1 so p
ˇ

ˇn1 “ |G{H| ă n . So, by induction hypothesis, G{H has subgroup
of order p, so has an element b̄ of order p. Consider the canonical projection ϕ : G Ñ G{H, so if
ϕpbq “ b̄, then p

ˇ

ˇ ordpbq. So we can apply case 1 to b and get a subgroup of order p due to the following
remark.

Remark 1.7.4. If ϕ : G Ñ G1 is a group homomorphism and g P G and ordpϕpgqq
ˇ

ˇ ordpgq
loomoon

m

, so gm “ e Ñ

ϕpgqm “ e. pak “ e ùñ ordpaq
ˇ

ˇ kq

Proof of theorem. Recall that class formula states that whenG acts onG by conjugation, |G| “ |ZpGq|`
ř

rG :
Gxs, summing over distinct orbits with more than 1 element.

Fix p induction on G. If |G| “ p, we are done. Now, let’s have two cases where (1) p
ˇ

ˇ |ZpGq| and (2) p
doesn’t divide |ZpGq|.

In case 1, by lemma, ZpGq has subgroup H of order p. Since H ď ZpGq and ZpGq⊴G, we get H⊴G so G{H
is a group of size pr´1m. So by induction hypothesis G{H has a subgroup of order s for all 0 ď s ď r ´ 1.
Any subgroup of G{H is K{H for H ď K ď G. So |H| “ p, |K{H| “ ps ùñ |K| “ ps`1. So this holds for
1 ď s` 1 ď r.

In case 2, G is not abelian, and we make two subcases.

1. Suppose @x R ZpGq, p
ˇ

ˇ rG : Gxs. This case is not possible since p
ˇ

ˇ |G| and p doesn’t divide ZpGq

2. Dx P ZpGq, p ∤ rG : Gxs “ |G|{|Gx| ùñ pr
ˇ

ˇ |Gx|, and |Gx| ă |G|. By induction hypothesis, Gx and
therefore G has a subgroup of ps, 0 ď s ď r.

Theorem 1.7.5 (Second Sylow theorem). If p
ˇ

ˇ |G|, then

1. Every p subgroup is contained in a Sylow p-subgroup.

2. Any two Sylow p-subgroups are conjugate.

Proof. Assuming proposition 1.7.6, we can show the two claims.
Part 1: |gPg´1| “ |P | (this is because gPg´1 Ñ P ; k ÞÑ g´1kg gives an inverse of the map P Ñ gPg´1; k ÞÑ
gkg´1), so the conjugate is also a Sylow p-subgroup.

Part 2: P, P 1 Sylow p-subgroups, then Dg s.t. P 1 Ď gPg´1. Then |gPg´1| “ |P | “ pr and |P 1| “ r ùñ P 1 “

gPg´1.

Proposition 1.7.6. If H is a p-subgroup and P is a Sylow p-subgroup, then H is contained in a conjugate of
P : Dg P G,H ď gP´1g
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Proof of the proposition. Let S be the set of conjugates of P and H acts on S by conjugation, so that h ¨
gPg´1 :“ hgPg´1h´1. Then S “

ř

distinct orbits |Os| “ number of fixed points `
ř

distinct w/ sizeą1 |Os|.

Now the goal is to show that there D a fixed point. Since |Os| “ rH : Hss and |H| “ ps, then p
ˇ

ˇ |Os|.

Here, |S| “ rG : NGpP qs ùñ |S| “ |G|

|NGpP q|
. Since P ⊴ NGpP q ď G and pr

ˇ

ˇ |NGpP q|, I get p ∤ |S| and so
pr

ˇ

ˇ |NGpP q|.

Let gPg´1 be a fixed point. Then @h P H,hgPg´1h´1 “ gPg´1 ùñ P “ g´1h´1gPg´1hg ùñ P “

g´1h´1gP pg´1h´1gq´1 ùñ g´1h´1g P NGpP q. So @h P H ùñ g´1Hg Ď NGpP q.

Let K “ g´1Hg, K,P ď NGpP q and P ⊴NGpP q.

So by the second isomorphism theorem, KP {P » K{K X P ùñ |KP | “ |P ||K|

|KXP |
and |KP |

ˇ

ˇ |G|, and |P ||K|

is a power of p ùñ |K|

|KXP |
“ 1 ùñ K Ď P ùñ g´1Hg Ď P ùñ H Ď gPg´1.

Theorem 1.7.7 (Third Sylow theorem). Suppose |G| “ prm and gcdpp,mq “ 1. If s “ number of p-Sylow
subgroups, then s

ˇ

ˇm and s ” 1pmod pq.

Proof. By part 2 of the second Sylow theorem, s “ number of all conjugates of P “ rG : NGpP qs, and
rG : NGpP qs

ˇ

ˇ |G|.

To show s ” 1pmod pq, let H “ P from proof of the proposition, so that s “ number of fixed points + a
multiple of p

If gPg´1 is a fixed point, then by the proof P Ď gPg´1, but |P | “ |gPg´1| so P “ gPg´1. So only one fixed
point ùñ s ” 1pmod pq.

Corollary 1.7.8. As a corollary of second Sylow theorem, we see a group G has only one Sylow p-subgroup
H if and only if that subgroup is normal. In symbols, s “ 1 ðñ @g P G, gPg´1 “ P ðñ P ⊴G.

Corollary 1.7.9. If |G| “ pq where p, q are distinct primes and p ı 1pmod qq and q ı 1pmod pq. Then G is
cyclic.

Proof. Let r1 be the number of Sylow p-subgroups and r2 be the number of Sylow q-subgroups. Then
r1

ˇ

ˇ pq, r1 ” 1 mod p ùñ r1 “ 1, and similarly r2 “ 1

If H1, H2 ď G with |H1| “ p and |H2| “ q, then by the note, H1, H2 ⊴G.

H1 “ te, a, ..., ap´1u “ xay, H2 “ te, b, ..., bq´1u “ xby. For aba´1 P H2 and ba´1b´1 P H1, aba´1b´1 P

H1 XH2 “ teu ùñ ab “ ba ùñ ordpabq P t1, p, q, pqu. So pabqp “ apbp “ bp ‰ e ùñ ordpabq “ pq ùñ
G “ xaby.

Example 1.7.10. |G| “ 33 “ 3 ˆ 11. 3 ´ 1 “ 2 is relatively prime with 11; 11 ´ 1 “ 10 is relatively prime
with 3. Therefore, G – Z33 due to above corollary.

Several observations in summary:

1. Any abelian group is solvable.

2. group with prime order is cyclic, abelian, and thus solvable.

3. group with prime order is simple (see Example 1.5.2).

4. A simple group is solvable iff it is abelian.

Our goal is to show the following theorem:

Theorem 1.7.11. Any group of order ă 60 is solvable (note that |A5| “ 60).
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Our plan:

(1) G prime order
obsp2q
ùñ we’re done.

(2) G not prime order. We want to find a nontrivial N ⊴ G (which also gets us non-simplicity) such that
N,G{N are solvable, which then implies that G is solvable due to Proposition 1.5.15.

Proposition 1.7.12. If |G| “ n and p is the smallest prime divisor of n and H ď G has index p, then H ⊴G.

Proof. If p “ 2, this is proved before (rG : Hs “ 2 is the smallest prime and index-2 subgroup is normal).

Suppose H đ G. Then there is g P G s.t. gHg´1 ‰ H. Let K “ gHg´1 ď G.

By product formula, |HK| “ |H| |K|

|HXK|
,where the latter fraction is an integer which divides |K| “ |gHg´1| “

|H| “ p and so divides |G| “ pm. Then either |K|

|HXK|
“ 1 or |K|

|HXK|
“ p.

For the first case, H XK “ K ùñ K Ď H ùñ gHg´1 Ď H ùñ gHg´1 “ H, not true.

For second case, |HK| “ p|H| “ |G| ùñ HK “ G ùñ g´1 P HK “ HgHg´1. So for some
h, h1 P H,hgh1 “ e ùñ g “ h´1h1´1 P H ùñ gHg´1 “ H, a contradiction. So H ⊴G.

Corollary 1.7.13. If |G| “ pqr, and p, q are distinct prime and p ă q. Then G has a nontrivial normal
subgroup.

Proof. By First Sylow theorem, there is a Sylow q-subgroupH, so rG : Hs “ p. H is normal from the previous
corollary.

Corollary 1.7.14. If |G| “ pq, p ‰ q, then G has a non-trivial normal subgroup.

Proposition 1.7.15. If |G| “ pq2, and p, q are distinct prime, then G has a non-trivial normal subgroup.

Proof. If p ă q, we are done by previous corollary.

So if p ą q, let r be the number of Sylow p-subgroups and s be number of Sylow q subgroups.

Goal is to show that r “ 1 or s “ 1 since the only Sylow subgroup is normal (corollary 1.7.8).

Since r ” 1 mod p, r
ˇ

ˇ |G| “ pq2 ùñ r
ˇ

ˇ q2. So either r “ 1, r “ q, r “ q2. If r “ 1, we are done. r “ q is
impossible since q ” 1pmod pq and p

ˇ

ˇ q ´ 1 but p ą q. Thus r “ q2.

Because s ” 1 mod q, s
ˇ

ˇ |G| “ pq2, we see s
ˇ

ˇ p ùñ s “ 1 or s “ p. If s “ 1, we are done. So assume s “ p.

Then we have q2 subgroups Hi of order p and p subgroups Ki of order q2. Consider H1XH2. It is a subgroup
of H1 and H2 and thus |H1XH2|

ˇ

ˇ |H1| “ p ùñ |H1XH2| “ 1 or p, so H1XH2 “ teu or H1 “ H2. Similarly,
|K1 X H1|

ˇ

ˇ |H1| “ p ùñ |K1 X H1| “ 1 or p and |K1 X H1|
ˇ

ˇ |K1| “ q2 ùñ |K1 X H1| “ 1, q, or q2, so
|H1 XK1| “ 1 and H1 XK1 “ teu. Then |G| ě 1` q2pp´ 1q ` pq2 ´ 1q (element e, which contributes to 1, is
in the common intersection of the Sylow groups. We notice that while we know all the Sylow p-subgroups
only have trivial intersection, so each of them contributes p ´ 1 distinct elements. We also know that at
least one Sylow q-subgroup contributes q2 ´ 1 elements distinct from those already contributed by those
p-subgroups. We don’t know, however, if Sylow q-subgroups intersection trivially, so we only add pq2 ´ 1q
instead of ppq2 ´ 1q). Accidentally, the RHS is 1 ` q2pp ´ 1q ` pq2 ´ 1q “ 1 ` q2p ´ q2 ` q2 ´ 1 “ q2p “ |G|
attaining the equality to the LHS, so s “ 1, and we are done.

Proposition 1.7.16. If |G| “ pqr where p, q, r are distinct prime numbers, then G has a normal Sylow
subgroup.
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Proof. We assume p ă q ă r and let np “ # of p-Sylow subgroups; nq “ # of q-Sylow subgroups; nr “ # of
r-Sylow subgroups. Sylow’s theorem gives nr | pq, nr ” 1pmodrq. If nr “ 1 then we’re done. nr cannot be p
or q because q ă r and p ă r, so nr “ pq. Sylow’s theorem gives nq | pr, nq ” 1pmodqq. If nq “ 1 then we’re
done. nq cannot be p as p´ 1 ă q ñ q ∤ p´ 1,so nq “ r or pr. Sylow’s theorem gives np | qr, np ” 1pmodpq.
If np “ 1 then we’re done. np “ q, r, or qr.

We can count by separating the common identity e. Because intersection of subgroups of prime order is
a subgroup of each and divides both primes, we see the intersection can only be e if we assume the two
subgroups are not the same (to rule out the case that they have the same prime order). Then nr “ pq, nq ě r,
and np ě q provide a lower bound of |G| :

|G| “ 1` nrpr ´ 1q ` nqpq ´ 1q ` nppp´ 1q

ě 1` pqpr ´ 1q ` rpq ´ 1q ` qpp´ 1q

“ pqr ` pr ´ 1qpq ´ 1q ą pqr

which is a contradiction. Thus either nr ‰ pq ñ nr “ 1 (we’re done) or np ă r ñ np “ 1 (we’re done) or
np ă q ñ np “ 1 (we’re done).

Corollary 1.7.17. Group with order |G| “ 30 “ 2ˆ 3ˆ 5 has a normal Sylow subgroup.

Corollary 1.7.18. Every group of size n ď 30 which is not of prime order is not simple.

Proof. We recall three rules: we have a nontrivial normal subgroup N ⊴G if

1. |G| “ pq with p ‰ q (due to Corollary 1.7.14);

2. |G “ pq2 (due to Proposition 1.7.15);

3. |G| “ pr (due to Corollary 1.6.17).

Now apply rule 1 to the following group orders:

6 “ 2ˆ 3, 10 “ 2ˆ 5, 14 “ 2ˆ 7, 15 “ 3ˆ 5, 21 “ 3ˆ 7, 22 “ 2ˆ 11, 26 “ 13ˆ 2

Apply rule 2 to the following group orders:

12 “ 22 ˆ 3, 18 “ 2ˆ 32, 20 “ 22 ˆ 5, 28 “ 22 ˆ 7

Apply rule 3 to the following group orders:

8 “ 23, 9 “ 32, 16 “ 24, 27 “ 33

There are only two without being checked: |G| “ 30 and |G| “ 24. The |G| “ 30 case is checked by Corollary
1.7.17. We show that group with order 24 has a non-trivial normal subgroup as well now:

Note that 24 “ 23ˆ3. Let r be the number of Sylow 2-subgroups and s be the number of Sylow 3-subgroups.
#

r ” 1pmod 2q

r
ˇ

ˇ 3
ùñ

#

r “ 1, so we have normal subgroup
r “ 3

So assume r “ 3, and we have Sylow 2-subgroups H1, H2, H3, |Hi| “ 8. Let S “ tH1, H2, H3u and G acts
on S by conjugation, i.e., g ¨Hi “ gHig

´1.

So there is a homomorphism ϕ : GÑ S3, the group of permuations of S.

Note that Kerpϕq ⊴ G and we calim that Kerpϕq ‰ teu or G, so Kerpϕq is the nontrivial normal subgroup
we want to find.
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• Kerϕ ‰ teu: |G| “ 24, |S3| “ 6 ùñ ϕ not injective ùñ Kerϕ ‰ teu

• Kerpϕq ‰ G: Note that gHiG
´1 is still in S due to second Sylow theorem, so Dg P G s.t. gH1g

´1 “

H2 ùñ g ¨H1 ‰ H1 ùñ ϕpgq ‰ e, so there is some element in G that is not in the kernel of ϕ.

We have finished half of proving that any group of order ă 60 is non-simple and solvable. The remaining
orders are left as exercise below.

1.7 EXERCISES

1. Show that group of order 36 is non-simple by mimicing the proof for |G| “ 24.

2. Show that group of order 48 is non-simple by mimicing the proof for |G| “ 24.

3. Show that group of order 40 is non-simple by counting the number of Sylow 5-subgroups.

4. Show that group of order 56 is non-simple by counting the contributions of distinct elements from each
Sylow subgroups.

5. Deduce that group of order ă 60 is non-simple.

6. Deduce that group of order ă 60 is solvable.

1.8 Products of Groups

1.8.1 Direct Product of Groups

Let G1, G2 be groups. Then G1 ˆ G2 “ tpg1, g2q
ˇ

ˇ g1 P G1, g2 P G2u with pg1, g2qpg1
1, g

1
2q “ pg1g

1
1, g2g

1
2q is the

direct product of them. The identity element is pe1, e2q and the inverse of pg1, g2q is pg1, g2q´1 “ pg´1
1 , g´1

2 q.

Proposition 1.8.1. Let H and K be subgroups of a group G, and let f : H ˆK Ñ G be the multiplication
map, defined by fph, kq “ hk. Its image is the set HK “ thk | h P H, k P Ku.

(a) f is injective if and only if H XK “ t1u.

(b) f is a homomorphism from the product group H ˆK to G if and only if elements of K commute with
elements of H : hk “ kh.

(c) If H is a normal subgroup of G, then HK is a subgroup of G.

(d) f is an isomorphism from the product group H ˆK to G if and only if H XK “ t1u, HK “ G, and
also H and K are normal subgroups of G.

It is important to note that the multiplication map may be bijective though it isn’t a group homomorphism.
This happens, for instance, when G “ S3 and H “ xxy and K “ xyy where x “ p1 2 3q and y “ p1 2q.

Proof.

(a) If H X K contains an element x ‰ 1, then x´1 is in H, and f
`

x´1, x
˘

“ 1 “ fp1, 1q, so f is not
injective. Suppose that H X K “ t1u. Let ph1, k1q and ph2, k2q be elements of H ˆ K such that
h1k1 “ h2k2. We multiply both sides of this equation on the left by h´1

1 and on the right by k´1
2 ,

obtaining k1k´1
2 “ h´1

1 h2. The left side is an element of K and the right side is an element of H. Since
H XK “ t1u, k1k

´1
2 “ h´1

1 h2 “ 1. Then k1 “ k2, h1 “ h2, and ph1, k1q “ ph2, k2q.
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(b) Let ph1, k1q and ph2, k2q be elements of the product group H ˆ K. The product of these elements in
the product group H ˆK is ph1h2, k1k2q, and f ph1h2, k1k2q “ h1h2k1k2, while f ph1, k1q f ph2, k2q “
h1k1h2k2. These elements are equal if and only if h2k1 “ k1h2.

(c) Suppose that H is a normal subgroup. We note that KH is a union of the left cosets kH with k in
K, and that HK is a union of the right cosets Hk. Since H is normal, kH “ Hk, and therefore
HK “ KH. Closure of HK under multiplication follows, because HKHK “ HHKK “ HK. Also,
phkq´1 “ k´1h´1 is in KH “ HK. This proves closure of HK under inverses.

(d) Suppose that H and K satisfy the conditions given. Then f is both injective and surjective, so it is
bijective. According to (b), it is an isomorphism if and only if hk “ kh for all h in H and k in K.
Consider the commutator

`

hkh´1
˘

k´1 “ h
`

kh´1k´1
˘

. Since K is normal, the left side is in K, and
since H is normal, the right side is in H. Since H XK “ t1u, hkh´1k´1 “ 1, and hk “ kh. Conversely,
if f is an isomorphism, one may verify the conditions listed in the isomorphic group H ˆK instead of
in G.

Remark 1.8.2. In proof of (d), we saw H XK “ t1u, H,K ⊴G ðñ @h P H, k P K, hk “ kh.

The condition @h P H, k P K, hk “ kh cannot be dropped. We give an example where G fl H ˆK.

Example 1.8.3. G “ S3, H “ te, p1 2 3q, p1 3 2qu,K “ te, p1 2qu. HK “ S3, H X K “ teu. But S3 fi

H ˆK » Z3 ˆ Z2.

Example 1.8.4. One can use the above proposition to classify group of order 4 (a more elementary way is
to use the group table, as in Question 10). See [1] Proposition 2.11.5.

We generalize the proudct of two groups:

Let I be an index set. Let Gi, i P I be groups indexed by I. Then
ź

iPI

Gi “ tpxiqiPI
ˇ

ˇxi P Giu

is the direct product of Gi. It is a group with multiplicaiton pxiqiPIpyiqiPI “ pxiyiqiPI . For Ai, i P I abelian,
we have the direct sum

à

iPI

Ai “ tpaiqiPI
ˇ

ˇ there are only finitely many non-zero aiu ď
ź

iPI

Ai

which is an abelian group. For arbitrary groups Gi, i P I, we can similarly define weak product as the set of
I-tuples of gi P Gi with only finitely many non-identity entries.

Let I “ t1, 2, ¨ ¨ ¨ , nu, i.e., I is finite, then
À

iPI Gi “
ś

iPI Gi. Obviously, for j “ 1, . . . , n the embedding

εj : Gj Ñ
ź

iPI

Gi

g ÞÑ p1, . . . , 1, g
loomoon

j-th

, 1, . . . , 1q.

is an isomorphism from Gj to
G˚
j :“ tpg1, . . . , gnq | gi “ 1 for i ‰ ju .

For the subgroups G˚
1 , . . . , G

˚
n of G :“

ś

iPI Gi one has:

• G “ G˚
1 ¨ ¨ ¨G

˚
n

• G˚
i ⊴G, i “ 1, . . . , n
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• G˚
i X

ś

j‰iG
˚
j “ 1, i “ 1, . . . , n.

Conversely, we have

Theorem 1.8.5. Let G be a group with subgroups G˚
1 , . . . , G

˚
n such that above three properties hold. Then

the mapping

α :
n
ź

i“1

G˚
i Ñ G; pg1, ¨ ¨ ¨ , gnq ÞÑ g1 ¨ ¨ ¨ gn

is an isomorphism.

Proof. See [6] 1.6.1.

Theorem 1.8.6. Let G “ G1 ˆ ¨ ¨ ¨ ˆGn.

(a) ZpGq “ Z pG1q ˆ ¨ ¨ ¨ ˆ Z pGnq.

(b) G1 “ G1
1 ˆ ¨ ¨ ¨ ˆG

1
n.

(c) Let N be a normal subgroup of G and Ni “ N X Gipi “ 1, . . . , nq. Suppose that N “ N1 ˆ ¨ ¨ ¨ ˆ Nn.
Then the mapping

α : G “ G1 ˆ ¨ ¨ ¨ ˆGn Ñ G1{N1 ˆ ¨ ¨ ¨ ˆGn{Nn

given by
g “ pg1, . . . , gnq ÞÑ pg1N1, . . . , gnNnq

is an epimorphism, with Ker α “ N . In particular

G{N – G1{N1 ˆ ¨ ¨ ¨ ˆGn{Nn

(d) If the factors G1, . . . , Gn are characteristic subgroups of G, then

Aut G – AutG1 ˆ ¨ ¨ ¨ ˆAutGn.

Proof. See [6] 1.6.2 for the rest.

Theorem 1.8.7. Let G be a group having normal subgroups H1, ¨ ¨ ¨ , Hn. Then,

(a) If G “ x
Ťn
i“1Hiy and, for all j, 1 “ Hj X x

Ť

i‰j Hiy, then G – H1 ˆ ¨ ¨ ¨ ˆHn.

(b) If each a P G has a unique expression of the form a “ h1 ¨ ¨ ¨hn, where each hi P Hi, then G –

H1 ˆ ¨ ¨ ¨ ˆHn.

Proof. See [9] Exercise 2.75.

Here are two technical results about direct sums and products that will be useful.

Theorem 1.8.8 (Characteristic property of direct sum). Let G be an abelian group, let tAkukPK be a family
of abelian groups, and let tik : Ak Ñ GukPK be a family of homomorphisms. Then G –

À

kPK Ak if and only
if, given any abelian group H and any family of homomorphisms tfk : Ak Ñ H : k P Ku, then there exists a
unique homomorphism φ : GÑ H making the following diagrams commute pφik “ fkq:

Ak G

H

ik

fk
φ

Proof. See [9] Theorem 10.9.
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Theorem 1.8.9. LetG be an abelian group, let tAkukPK be a family of abelian groups, and let tik : Ak Ñ GukPK

be a family of homomorphisms. Then G –
ś

kPK Ak if and only if, given any abelian group H and any family
of homomorphisms tfk : H Ñ Ak : k P Ku, then there exists a unique homomorphism φ : H Ñ G making
the following diagrams commute for all k:

Ak G

H

ik

φfk

Proof. See [9] Theorem 10.10.

Proposition 1.8.10.

(i) If G “
À

Ak, prove that the maps ik : Ak Ñ G in Theorem 10.9 are injections.

(ii) If G “
ś

Ak, prove that the maps pk : GÑ Ak in Theorem 10.10 are surjections.

Proof. See [9] Exercise 10.4.

1.8.2 Semi-Direct Product of Groups

We proved in the second isomomorphism theorem that if K ď G,H ⊴G, then HK ď G. Then K acts on H
by conjugation.

ϕ : K Ñ AutpHq

k ÞÑ ϕk

where ϕk : hÑ H; h ÞÑ khk´1. It is easy to see that ϕ is a homomorphism.

Definition 1.8.11. Given two groups H and K and homomorphism ϕ : K Ñ AutpHq, k ÞÑ ϕk. Then
the set H ˆ K with operation ph, kqph1, k1q “ phϕkph

1q, kk1q is a group, denoted by H ¸ K, the (external)
semi-direct product of H and K. The identity is peH , eKq, as peH , eKqph, kq “ peHϕeK phq, kq “ ph, kq.
ph, kqpeH , eKq “ phϕhpeHq, keKq “ ph, kq. Inverse of ph, kq is pϕk´1ph´1q, k´1q, as ph, kqpϕk´1ph´1q, k´1q “

phϕkpϕk´1qph´1q, eKq “ peH , eKq.

Fact: If ϕ is the identity homomorphism ϕk “ e on H, then H ¸K » H ˆK.

We have noted in last subsection that H ˆ K contains copies H and K as normal subgroup. That is,
H ˆ teu⊴H ˆK, teu ˆK ⊴H ˆK. We show that this is also the case for semi-direct product:

Proposition 1.8.12. Let H and K be groups with ϕ : K Ñ AutpHq a homomorphism. Then the natural
function from H to H ¸K sending h to ph, eq is an injective group homomorphism and its image is a normal
subgroup of H ¸K.

Proof. Let f : H Ñ H¸K;h ÞÑ ph, eKq be the function. We show that it is an injective group homomorphism.

It is a homomorphism: let a, b P H.

fpaqfpbq “ pa, eKq pb, eKq “ paϕeK pbq, eKeKq “ pab, eKq “ fpabq

It is injective: let fphq “ peH , eKq.

fphq “ pa, eKq “ peH , eKq ñ h “ eH ñ Kerpfq “ teHu
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The image of f is
Impfq “ tfphq : h P Hu “ tph, eKq , h P Hu “ H ˆ teKu

We show that H ˆ teKu⊴H ¸K : let pa, bq P H ¸K. Then pa, bq´1 “
`

ϕb´1

`

a´1
˘

, b´1
˘

and

pa, bq ph, eKq pa, bq
´1 “ pa, bq ph, eKq

`

ϕb´1

`

a´1
˘

, b´1
˘

“ paϕbphq, bq
`

ϕb´1

`

a´1
˘

, b´1
˘

“
`

aϕbphqϕb
`

ϕb´1

`

a´1
˘˘

, bb´1
˘

“
`

aϕbphqϕeK
`

a´1
˘

, eK
˘

“ p a
loomoon

PH

ϕbphq
loomoon

PH

a´1
loomoon

PH

, eKq P H ˆ teKu

which shows that Impfq “ H ˆ teKu⊴H ¸K.

Proposition 1.8.13. If H,K ď G,H ⊴ G,H X K “ teu, G “ HK, then we call G (internal) semi-direct
product of H and K, as we can prove that it is isomomorphic to the externel semi-direct product of H and
K with respect to conjugation as the homomorphism k ÞÑ AutpHq, k ÞÑ ϕk, ϕkphq “ khk´1.

Proposition Proof. f : H ¸K Ñ G, ph, kq ÞÑ hk. To show f injective, fph, kq “ e ùñ hk “ e ùñ h, k “ e.
Check that it’s a homomorphism.

Corollary 1.8.14. G “ S3, H “ te, p1 2 3q, p1 3 2qu – Z3, K “ te, p1 2q – Z2u. S3 » Z3 ¸ Z2. Z3 has two
automomorphisms, id and f : a Ñ a2 (a is the generator). Z2 has two elements r0s, r1s and should be sent
to tid, fu. r0s ÞÑ id, so r1s ÞÑ f .

1.8.3 Wreath Product of Groups

see Rotman [9] p.172.

1.9 Free Groups, Free Products, and Group Presentations

We copy almost verbatim from RotmanGroup p.343-349. and p.388-391.

Definition 1.9.1 (Characteristic property of Free Group). If X is a subset of a group F , then F is a free
group with basisX if, for every groupG and every function f : X Ñ G, there exists a unique homomorphism
φ : F Ñ G extending f .

F

X G

φ

f

We call this characteristic property of free group.

We shall see later that X must generate F .

Observe that a basis in a free group behaves precisely as does a basis B “ tv1, . . . , vmu of a finite-dimensional
vector space V . The theorem of linear algebra showing that matrices correspond to linear transformations
rests on the fact that if W is any vector space and w1, . . . , wm P W , then there exists a unique linear
transformation T : V ÑW with T pviq “ wi for all i.

The following construction will be used in proving that free groups exist. Let X be a set and let X´1 be a
set, disjoint from X, for which there is a bijection X Ñ X´1, which we denote by x ÞÑ x´1. Let X 1 be a
singleton set disjoint from X Y X´1 whose only element is denoted by 1. If x P X, then x1 may denote x
and x0 may denote 1.
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Definition 1.9.2. A word on X is a sequence w “ pa1, a2, . . .q, where ai P X YX´1 Y t1u for all i, such that
all ai “ 1 from some point on; that is, there is an integer n ě 0 with ai “ 1 for all i ą n. In particular, the
constant sequence

p1, 1, 1, . . .q

is a word, called the empty word, and it is also denoted by 1.

Since words contain only a finite number of letters before they become constant, we use the more suggestive
notation for nonempty words:

w “ xε11 x
ε2
2 . . . xεnn ,

where xi P X, εi “ `1,´1, or 0 , and εn “ ˘1. Observe that this spelling of a word is unique: two sequences
paiq and pbiq are equal if and only if ai “ bi for all i. The length of the empty word is defined to be 0 ; the
length of w “ xε11 x

ε2
2 . . . xεnn is defined to be n.

Definition 1.9.3. If w “ xε11 . . . xεnn is a word, then its inverse is the word w´1 “ x´εn
n . . . x´ε1

1 .

Definition 1.9.4. A word w on X is reduced if either w is empty or w “ xε11 x
ε2
2 . . . xεnn , where all xi P X, all

εi “ ˘1, and x and x´1 are never adjacent. The empty word is reduced, and the inverse of a reduced word
is reduced.

Definition 1.9.5. Definition. A subword of w “ xε11 x
ε2
2 . . . xεnn is either the empty word or a word of the

form v “ xεii . . . x
εj
j , where 1 ď i ď j ď n.

Thus, v is a subword of w if there are (possibly empty) subwords w1 and w2 with w “ w1vw2. A nonempty
word w is reduced if and only if it contains no subwords of the form xεx´ε or x0.

There is a multiplication of words: if

w “ xε11 x
ε2
2 . . . xεnn , u “ yδ11 y

δ2
2 . . . yδmm ,

then wu “ xε11 x
ε2
2 . . . xεnn y

δ1
1 y

δ2
2 . . . yδmm . This multiplication does not define a product on the set of all reduced

words on X because wu need not be reduced (even when both w and u are). One can define a new
multiplication of reduced words w and u as the reduced word obtained from wu after cancellations. More
precisely, there is a (possibly empty) subword v of w with w “ w1v such that v´1 is a subword of u with
u “ v´1u2 and such that w1u2 is reduced. Define a product of reduced words, called juxtaposition, by

wu “ w1u2.

Theorem 1.9.6. Given a set X, there exists a free group F with basis X.

Proof. See [9] Theorem 11.1.

Corollary 1.9.7. Every group G is a quotient of a free group.

Proof. Construct a set X “ txg : g P Gu so that f : xg ÞÑ g is a bijection X Ñ G. If F is free with basis
X, then there is a homomorphism φ : F Ñ G extending f , and φ is a surjection because f is. Therefore,
G – F { kerφ.

1.9.1 Group Presentations

Definition 1.9.8. Let X be a set and let ∆ be a family of words on X. A group G has generators X and
relations ∆ if G – F {R, where F is the free group with basis X and R is the normal subgroup of F generated
by ∆. The presentation of G is denoted as xX | ∆y.
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A relation r P ∆ is often written as r “ 1 to convey its significance in the quotient group G being presented.

There are two reasons forcing us to define R as the normal subgroup of F generated by ∆ : if r P ∆ and
w P F , then r “ 1 in G implies wrw´1 “ 1 in G; we wish to form a quotient group.

Example 1.9.9. G “ Z6 has generator x and relation x6 “ 1. A free group F “ xxy on one generator is
infinite cyclic, and xxy{

@

x6
D

– Z6. A presentation of G is xx | x6y.

Another presentation of Z6 is Z6 “ xx, y | x
3 “ 1, y2 “ 1, xyx´1y´1 “ 1y. The inclusion of a commutator as

the relator makes the group abelian.

Example 1.9.10. A free abelian group G with basis X has presentation

G “ xX | xyx´1y´1 “ 1 for all x, y P Xy;

a free group F with basis X has presentation

F “ xX | ∅y “ xXy.

Example 1.9.11. X “ tx, yu, then F “ txk1yr1 ¨ ¨ ¨xknyrn
ˇ

ˇ rn, kn P Z, n ą 0u.

Proposition 1.9.12. Let G be a free group generated by x, y. G is finitely generated, H ď G generated by
tyxy´1, y2xy´2, y3xy´3, ...u. Then H is not finitely generated.

Theorem 1.9.13. Let F and G be free groups with bases X and Y , respectively. Then F – G if and only if
|X| “ |Y |.

Proof. See [9] Theorem 11.4.

Definition 1.9.14. The rank of a free group F is the number of elements in a basis of F .

Above theorem says that the rank of F does not depend on the choice of the basis.

Corollary 1.9.15. If F is free with basis X, then F is generated by X.

Proof. See [9] Corollary 11.5.

Theorem 1.9.16 (Nielsen-Schreier). Every subgroup H of a free group F is itself free.

Proof. See [9] Theorem 11.44.

1.9.2 Free Abelian Groups

Definition 1.9.17. A Free abelian group F is a direct sum of infinite cyclic groups. More precisely, there is
a subset X Ă F of elements of infinite order serving as its basis, i.e.,

F “
à

xPX

xxy –
à

xPX

Z.

We allow the possibility X “ ∅, in which case F “ 0.

It is easy to see that if X is a basis of a free abelian group F , then each u P F has a unique expression of the
form u “

ř

mxx, where mx P Z and mx “ 0 for “almost all” x P X; that is, mx ‰ 0 for only a finite number
of x.

The following theorem justifies “freeness” of the free abelian group (compare to characteristic property of
free group where G is arbitrary. G is instead abelian in the following proposition.)
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Proposition 1.9.18. Let F be a free abelian group with basis X, let G be any abelian group, and let f : X Ñ

G be any function. Then there is a unique homomorphism φ : F Ñ G extending f ; that is,

φpxq “ fpxq for all x P X.

Indeed, if u “
ř

mxx P F , then φpuq “
ř

mxfpuq.

F

X G

φ

f

Proof. If u P F , then uniqueness of the expression u “
ř

mxx shows that φ : u ÞÑ
ř

mxfpuq is a well defined
function. That φ is a homomorphism extending f is obvious; φ is unique because homomorphisms agreeing
on a set of generators must be equal.

As analogs of Corollary 1.9.7 and theorem 1.9.13, we have

Corollary 1.9.19. Every abelian group G is a quotient of a free abelian group.

Proof. See [9] Corollary 10.12.

Theorem 1.9.20. Too free groups F “
À

xPXxxy and G “
À

yPY xyy are isomomorphic if and only if
|X| “ |Y |.

Proof. See [9] Theorem 10.14.

Definition 1.9.21. The rank of a free abelian group is the cardinal of a basis.

It is clear that if F and G are free abelian, then

rankpF ‘Gq “ rankpF q ` rankpGq,

for a basis of F ‘G can be chosen as the union of a basis of F and a basis of G.

Remark 1.9.22. Exercise 11.46 and Theorem 11.6 of Rotman show that a group is free iff it has the projective
property. This is the same case for the free abelian group. However, as we have noted, free abelian groups
are not free groups (The only free abelian groups that are free groups are the trivial group and the infinite
cyclic group). To see that the projective property for abelian group defines the free abelian group, we may
note that a free module is projective and free abelian group is a free Z-module. A projective module is free
when R is a principal ideal domain like Z.

As an analog of Theorem 1.9.16, we have

Theorem 1.9.23. Every subgroup H of a free abelian group F of rank n is itself free abelian; moreover,
rankpHq ď rankpF q.

Proof. See [9] Theorem 10.18.
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1.9.3 Free Products

We now generalize the notion of free group to that of free product. As with free groups, free products will be
defined with a diagram; that is, they will be defined as solutions to a certain ”universal mapping problem.”
Once existence and uniqueness are settled, then we shall give concrete descriptions of free products in terms
of their elements and in terms of presentations.

Definition 1.9.24. Let tAi : i P Iu be a family of groups. A free product of the Ai is a group P and a family of
homomorphisms ji : Ai Ñ P such that, for every group G and every family of homomorphisms fi : Ai Ñ G,
there exists a unique homomorphism φ : P Ñ G with φji “ fi for all i.

P

Ai G

φ
ji

fi

One should compare this with Theorem 1.8.8, the analogous property of direct sums of abelian groups.

Lemma 1.9.25. If P is a free product of tAi : i P Iu, then the homomorphisms ji are injections.

Proof. For fixed i P I, consider the diagram in which G “ Ai, fi is the identity and, for k ‰ i, the maps
fk : Ak Ñ Ai are trivial.

P

Ai Ai

φ
ji

1

Then φji “ 1Ai
, and so ji is an injection.

In light of this lemma, the maps ji : Ai Ñ P are called the imbeddings.

Example 1.9.26. A free group F is a free product of infinite cyclic groups. If X is a basis of F , then xxy
is infinite cyclic for each x P X; define jx : xxy ãÑ F to be the inclusion. If G is a group, then a function
f : X Ñ G determines a family of homomorphisms fx : xxy Ñ G, namely, xn ÞÑ fpxqn. Also, the unique
homomorphism φ : F Ñ G which extends the function f clearly extends each of the homomorphisms fx;
that is, φjx “ fx for all x P X.

Here is the uniqueness theorem.

Theorem 1.9.27. Let tAi : i P Iu be a family of groups. If P and Q are each a free product of the Ai, then
P – Q.

Proof. Let ji : Ai Ñ P and ki : Ai Ñ Q be the embeddings. Since P is a free product of the Ai, there is a
homomorphism φ : P Ñ Q with φi “ ki for all i. Similarly, there is a map ψ : QÑ P with ψki “ ji for all i.

P

Ai Q

φ
ji

ki

Consider the new diagram.
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P

Ai P

ψφ
ji

ji

Both ψφ and 1P are maps making this diagram commute. By hypothesis, there can only be one such map,
and so ψφ “ 1P . Similarly, φψ “ 1Q, and so φ : P Ñ Q is an isomomorphism.

Because of Theorem 11.50, we may speak of the free product P of tAi : i P Iu ; it is denoted by

P “ ˚iPIAi

if there are only finitely many Ai ’s, one usually denotes the free product by

A1 ˚ ¨ ¨ ¨ ˚An.

Theorem 1.9.28. Given a family tAi : i P Iu of groups, a free product exists.

Proof. See [9] Theorem 11.51.

For more theories, including the Van Kampen theorem, see Rotman [9] or an algebraic topology text.

1.9.4 Todd-Coxeter Algorithm

See RotmanGroup [9] p.351 or Artin [1] 7.11.

1.10 Abelian Groups

There are two remarks greatly facilitating the study of abelian groups. First, if a, b P G and n P Z, then
npa ` bq “ na ` nb (in multiplicative notation, pabqn “ anbn, for a and b commute). Second, if X is a
nonempty subset of G, then xXy is the set of all linear combinations of elements in X having coefficients in
Z.

Definition 1.10.1. If G is an abelian p-group for some prime p, then G is called a p-primary group.

Theorem 1.10.2 (Primary decomposition). Every finite abelian group G is a direct sum of p-primary groups.

G –
à

pi prime

Gp.

where Gp is the set of all elements a in G such that ordpaq is a power of p, i.e., Dr ě 1, pra “ 0.

Proof. One may see Rotman [9] Theorem 6.1 (which has many references to results in the book). We give a
proof here.

Let ϕ : ‘p primeAppq Ñ A is homomorphism, pxpq ÞÑ
ř

xp P A.

ϕ surjective: a P A, ordpaq “ m “ pr11 ¨ ¨ ¨ p
rn
n , pi distinct prime. Then proceed by induction on n. If n “ 1,

then ordpaq “ pr11 ùñ a P Appq ùñ a P Impϕq. Then for n, ordpaq “ pr11 ¨ ¨ ¨ p
rn
n ðñ apr11 ¨ ¨ ¨ p

rn
n “ 0. So

since pn1 ¨ ¨ ¨ p
rn´1

n´1 and prnn coprime, Ds, t P Z s.t. spn1 ¨ ¨ ¨ p
rn´1

n´1 ` tp
rn
n “ 1, aspnn ¨ ¨ ¨ p

rn´1

n´1 ` atp
rn
n “ a. Since the

two numbers are in Imϕ, their sum is in Impϕq.

ϕ injective: Suppose ϕppx0qq “ 0, and Dq, xq ‰ 0, then
ř

xp “ 0 ùñ xq “ ´
ř

p‰q xp ùñ xq “ ´xp1´ ...´

´xpn . ord(xpiq “ psii ùñ ps11 ¨ ¨ ¨ p
sr
r p´xp1 ´ ...´ xpr q “ 0 ðñ qpps11 ¨ ¨ ¨ p

sr
r q “ 0 ùñ ordpqq

ˇ

ˇ ps11 ¨ ¨ ¨ p
sr
r , a

contradiction.
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Example 1.10.3. G “ Q{Z, where Gp “ tab ` Z
ˇ

ˇ

pra
b P Zu for some r.Then pra

b “ c ùñ a
b “

c
pr , so

“ t cpr ` Z
ˇ

ˇ c P Z, r ě 0u.

Lemma 1.10.4. Let p be a prime. A group G of order pn is cyclic if and only if it is an abelian group having
a unique subgroup of order p. Thus, If A is a finite abelian p-group which is not cyclic, then A has at least 2
subgroups of order p.

Proof. See Rotman [9] Theorem 2.19.

Theorem 1.10.5 (Cyclic decomposition). A finite abelian p-group is a direct sum of cyclic groups (note that
subgroups of p-groups are necessarily p-groups due to Lagrange’s theorem, so these cyclic groups are also
primary).

Proof. Let a P A be an element of maximal order. We prove by induction on |A| that there is a B ď A such
that A “ xay ‘B. This means that if B1, B2 ď A s.t. B1 XB2 “ t0u.

If |A| “ p, we are done.

Let ordpaq “ ps. Then xay has a unique subgroup of order p. Let xby be another subgroup of order p in
A s.t. xay X xby “ t0u, which exists due to the previous lemma.

Consider Ā “ A{xby, |Ā| “ |A|

p ă |A|. Then there is ā “ a` xby, an element of maximal order in Ā.

By the induction hypothesis, there is a B̄ such that Ā “ xāy ‘ B̄.

So B̄ ď Ā “ A{xay ùñ B̄ “ B{xay for B ď A with xay Ă B0. Then A “ xay ‘B.

Corollary 1.10.6 (Basis Theorem). Due to Theorem 1.10.2 and Theorem 1.10.5, every finite abelian group
G can be written as

G – Zpr11 ‘ Zpr22 ‘ ¨ ¨ ¨ ‘ Zprmm

We will only mention the following result. See its proof in [9] Theorem 6.13 and 6.14, with definitions of
elementary divisors, Uppn,Gq, and invariant factors.

Theorem 1.10.7 (Fundamental Theorem of Finite Abelian Groups). If G and H are finite abelian groups,
then G – H ðñ for all primes p, they have the same elementary divisors ðñ they have the same
invariant factors.

We then come to the classification of finitely generated abelian groups. We first need a lemma to separate
the torsion and torsion-free parts of the abelian group. We have seen that for H,K ď G, we have G –

H ˆ K ðñ H,K ⊴ G, H X K “ t1u, HK “ G. For abelian gruoup G, H,K ⊴ G is automatic. Thus,
G – H ‘K ðñ H XK “ t0u, H `K “ G.

Lemma 1.10.8. If A is abelian and B ď A such that A{B is a free abelian group, then there is a subgroup
C ď A such that A “ B ‘ C and C – A{B.

Proof. Let tai ` BuiPI be a basis for A{B. Let C “ xaiy ď A, which is free and thus by Theorem 1.9.13 is
isomorphic to A{B. We claim that A “ B ‘ C:

(1). B X C “ t0u : Suppose
ř

iPI λiai P B, then
ř

iPI λiai `B “ B. Thus,
ř

iPI λipai `Bq “ B, where B is
the 0 of A{B. Then, λi “ 0@i.

(2). A “ B ` C: If a P A, then a ` B “
ř

iPI λipa ` Bq in A{B, and a ` B “
ř

iPIpλiaiq ` B. So
a´

ÿ

iPI

λiai
loomoon

PC

P B ùñ a P B ` C.
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Another lemma will be used.

Lemma 1.10.9. Every subgroup of a finitely generated abelian group is finitely generated.

Proof. Let H ď A,A “ xa1, ..., any, and proceed by induction on n. If n “ 1, this is cyclic so clearly true.

n ´ 1 ùñ n: Let B “ xa1, ..., an´1y ď A. Then by induction hypothesis, H X B “ xh1, ..., hn´1y generated
by at most n´ 1 elements.

Also, A{B “ă an `B ą.

Note that H`B
B » H

HXB . Since H`B
B ď A

B , it is also cyclic, so H
HXB cyclic, generated by some xhn ` pH X

Bqy, hn P H.

So H “ă h1, .., hn ą, I need to show that they actually generate H. If h P H, then h ` pH X Bq “

λnhn ` pH XBq ùñ h´ λnhn P pH XBq ùñ h´ λnhn “
řn´1
i“1 λihi ùñ h “

řn
i“1 λihi.

Definition 1.10.10. Let G be an ableian group. Then

• An element a P G is torsion if ordpaq is finite: Dn ą 0, na “ 0.

• tG is the set of torsion elements in G, tG ď G since na “ 0,mb “ 0 ùñ nmpa` bq “ 0.

• G is torsion-free if tG “ t0u.

• G is torsion if tG “ G.

Example 1.10.11. Z is torsion-free. Z{m is torsion, and any finite abelian group is torsion.

Plan:

By applying Proposition 1.1.30 to the homomorphism q : G Ñ G{tG, we see G{tG “ G{Kerpqq – Impqq
is finitely generated if the abelian group G is finitely generated (note that G being abelian ensures tG is
normal). Now, Theorem 1.10.12 will show that G{tG is torsion-free. This has a series of consequences:

Theorem 1.10.13 then says G{tG is free abelian, that is, G{tG – Z‘ ¨ ¨ ¨ ‘Z. Then Lemma 1.10.8 applies to
G to get

G – tG‘ F, F – G{tG.

tG as a subgroup of finitely generated group G is finitely generated due to Lemma 1.10.9. This finitely
generated torsion group is then finite by Theorem 1.10.14. Therefore, Theorem 1.10.6 concludes that

tG “ Zpr11 ‘ ¨ ¨ ¨ ‘ Zprmm .

Combine the two previous displayed equations to get

G – tG‘ F – Zpr11 ‘ ¨ ¨ ¨ ‘ Zprmm – Z‘ ¨ ¨ ¨ ‘ Z.

Theorem 1.10.12. The quotient group G{tG is torsion-free.

Proof. If npg ` tGq “ 0 in G{tG for some n ‰ 0, then ng P tG, and so there is m ‰ 0 with mpngq “ 0. Since
mn ‰ 0, we see g P tG, and g ` tG “ 0 in G{tG. Thus, G{tG is torsion-free.

Theorem 1.10.13. Every finitely generated torsion-free abelian group G is free abelian.
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Proof. We prove the theorem by induction on n, where G “ xx1, . . . , xny. If n “ 1 and G ‰ 0, then G is
cyclic; G – Z because it is torsion-free.

Define H “ tg P G : mg P xxny for some positive integer mu. Now H is a subgroup of G and G{H is torsion-
free: if x P G and kpx ` Hq “ 0, then kx P H,mpkxq P xxny, and so x P H. Since G{H is a torsion-free
group that can be generated by fewer than n elements, it is free abelian, by induction. By Lemma 1.10.8,
G “ F ‘H, where F – G{H, and so it suffices to prove that H is cyclic. Note that H is finitely generated,
being a summand (and hence a quotient) of the finitely generated group G.

If g P H and g ‰ 0, thenmg “ kxn for some nonzero integersm and k. It is routine to check that the function
φ : H Ñ Q, given by g ÞÑ k{m, is a well defined injective homomorphism; that is, H is (isomorphic to) a
finitely generated subgroup of Q, say, H “ xa1{b1, . . . , at{bty. If b “

śt
i“1 bi, then the map ψ : H Ñ Z, given

by h ÞÑ bh, is an injection (because H is torsion-free). Therefore, H is isomorphic to a nonzero subgroup of
Z, and hence it is infinite cyclic.

Theorem 1.10.14. Every finitely generated torsion abelian group is finite.

Proof. If ordpaiq “ mi, and A “ xa1, ..., aky “ tn1a1 ` ... ` nkak
ˇ

ˇni P Zu “ tn1a1 ` ... ` nkak
ˇ

ˇn1 P Z, 0 ď
ni ă miu, which is finite.

Theorem 1.10.15 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely generated
abelian group G is a direct sum of primary and infinite cyclic groups, and the number of summands of each
kind depends only on G.

Proof. The first past is proved by our plan written before, i.e.,

G – tG‘ F – Zpr11 ‘ ¨ ¨ ¨ ‘ Zprmm – Z‘ ¨ ¨ ¨ ‘ Z.

The uniqueness of the number of primary cyclic summands is precisely [9] Theorem 6.11; the number of
infinite cyclic summands is just rankpG{tGq, and so it, too, depends only on G.

Proposition 1.10.16. Free abelian groups are torsion-free

Proof. A “ xaiy. Suppose b ‰ 0 P A s.t. mb “ 0, b “
ř

ai ùñ mb “
ř

pmλiqai ùñ mλ “ 0@i ùñ b “ 0,
a contradiction.

Example 1.10.17. Torsion-free abelian groups are not necessarily free. Consider Q as an example:

• Q is torsion-free: let 0 ‰ p{q P Q. Suppose mpp{qq “ 0. Then mp
p‰0
ùñ m “ 0. Thus, Em ą

0 s.t. mpp{qq “ 0. p{q is not torsion. tQ “ t0u.

• Q is not free: Any two nonzero rationals linearly independent, i.e., if a, b P Q, a ‰ 0, b ‰ 0, then
Dm,n P Z´ t0u s.t. na`mb “ 0. So if Q were free, it would be free of rank 1 and hence cyclic.

1.11 Classification of Small Groups

For more on classification of small groups, see [9] Chapter4 p.82

By order,

2. Z2

3. Z3

4. Z6 – Z2 ‘ Z2,Z4
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5. Z5

6. Z2 ‘ Z3. Non-abelian: S3

7. Z7

8. Z8,Z2 ‘ Z4,Z2 ‘ Z2 ‘ Z2. Non-abelian: D4, Q8

9. Z9,Z3 ‘ Z3

10. Z10 – Z5 ‘ Z2. Non-abelian: D5

11. Z11

12. Z12 – Z3 ‘ Z4,Z6 ‘ Z2 – Z3 ‘ Z2 ‘ Z2. Non-abelian: D6p– Z2 ˆ S3q, A4,Z3 ¸ Z4,
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Chapter 2

Rings

2.1 Rings and Ring Homomorphisms

Definition 2.1.1. A non-empty set R is a ring if it is closed under multiplication(¨) and addition p`q on R
such that

• pR,`q is an abelian group.

• (associativity) a ¨ pb ¨ cq “ pa ¨ bq ¨ c

• (distributivity) a ¨ pb` cq “ a ¨ b` a ¨ c, pb` cq ¨ a “ b ¨ a` c ¨ a.

• There is a unity” 1 P R s.t. @a P R, a ¨ 1 “ 1 ¨ a “ a.

Proposition 2.1.2.

• Unity is unique. (1 “ 1 ¨ 11 “ 11)

• @a P R, 0a “ 0. (0a “ p0` 0qa “ 0a` 0añ 0a “ 0)

• @a P R, a0 “ 0. (Similarly)

• p´aqb “ ap´bq “ ´pabq. (p´aqb`ab “ p´a`aqb “ 0b “ 0ñ p´aqb “ ´pabq; similarly, ap´bq “ ´pabq)

• ´a “ p´1qa. (1` p´1q “ 0, a` p´1qa “ ap1` p´1qq “ a0 “ 0ñ p´1qa “ ´a)

Example 2.1.3. pR,`, ¨q, pMnpRq,`, ¨q, pRrxs,`, ¨q, pRrrxss,`, ¨q, which is the ring of formal power series
ta0 ` a1x` a2x

2 ` ...
ˇ

ˇ ai P Ru.

Example 2.1.4. f : RÑM2pRq, r ÞÑ
„

r 0
0 0

ȷ

does not satisfy fp1Rq “ 1S .

Let us see some more classes.

Definition 2.1.5. S Ď R is a subring if

• pS,`q ď pR,`q. (inherits additive group structure)

• 1 P S and S is closed under multiplication. (inherits multiplicative structure)

Definition 2.1.6. An extension ring (or ring extension) of a ring R is any ring S of which R is a subring.

For example, the field of rational numbers Q and the ring of Gaussian integers Zris are extension rings of the
ring of integers Z.
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For every ring R, the polynomial ring Rrxs is a ring extension of R. If S is a ring extension of R, and a P S,
the set

Rras “ tfpaq | fpxq P Rrxsu,

is the smallest subring of S containing R and a, and is a ring extension of R. More generally, given finitely
many elements a1, . . . , an of S, we can consider

R ra1, . . . , ans “ tf pa1, . . . , anq | f px1 . . . , xnq P R rx1, . . . , xnsu ,

which is the ring extension of R in S generated by a1, . . . , an.

Definition 2.1.7.

• R is a division ring if every 0 ‰ a P R is a unit, i.e., has a multiplicative inverse a´1 such that
a´1a “ aa´1 “ 1.

• A commutative division ring is a field.

• If a, b P R, a, b ‰ 0 but ab “ 0, then a, b are called zero devisors. That is, a P R is a zero divisor if a ‰ 0
and there is some b ‰ 0 such that ab “ 0.

• A nonzero commutative ring, i.e., ‰ t0u, with no zero divisor is an integral domain. By the remark
below, we see R is an integral domain if @a, b P R, ab “ 0ñ a “ 0 or b “ 0.

Remark 2.1.8.

• units cannot be zero divisors: a has a multiplicative inverse a´1. Then suppose Db ‰ 0 such that ab “ 0.
Then a´1ab “ a´10 “ 0ñ b “ 0, contradiction.

• a is not a zero divisor ðñ ␣pDb ‰ 0 s.t. ab “ 0q ðñ @b ‰ 0, ab ‰ 0 pthat is b ‰ 0 Ñ ab ‰ 0q ðñ
pab “ 0Ñ b “ 0q.

Example 2.1.9.

• Z is an integral domain

• Zn is a field ðñ n is prime.

Proof. We prove that Zn is a field ðñ n is prime. We need to show that n is a prime ðñ every ras ‰ r0s
has a multiplicative inverse.

ð: ras ‰ r0s a unit, so by Remark 2.1.8, ras is not a zero divisor. Then we show that gcdpa, nq “ 1. Suppose
not, then d “ gcdpa, nq ą 1 and ras

“

n
d

‰

“
“

a
d

‰

rns
loomoon

“r0s

“ r0s, which makes ras a zero divisor. Contradiction.

ñ: Suppose gcdpa, nq “ 1. Then gcdpa, nq “ ax ` ny “ 1. Since ax ` ny ‰ ax pmod nq, we see raxs “
rax` nys “ r1s. Thus rasrxs “ r1s, rxs “ ras´1.

Definition 2.1.10. Let R,S be rings, f : RÑ S is a ring homomorphism if

• fpa` bq “ fpaq ` fpbq. (i.e., f : pR,`q Ñ pS,`q is a group homomorphism)

• fpabq “ fpaqfpbq, fp1Rq “ fp1Sq. (i.e., multiplicative structure is also preserved)

If f is a bijective ring homomorphism, then it is a ring isomorphism.

Remark 2.1.11. We notice that a ring homomorphism is just a group homomorphism (with respect to the
additive structure) plus a monoid homomorphism (with respect to the multiplicative structure). The inverse
of a group isomorphism is a group isomorphism, and the inverse of a monid isomorphism is a monoid
isomorphism. Thus, the inverse of a ring isomomorphism is a ring isomomorphism. In fact, just as in remark
1.1.9, it is an equivalence relation, and if we find an inverse function of a ring homomorphism as a function
between sets, the map and its inverse will both automatically be ring isomomorphisms.
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2.1.1 Matrix Rings 1

Fix an arbitrary ring R and let n be a positive integer. Let MnpRq be the set of all nˆn matrices with entries
from R. The element paijq of MnpRq is an n ˆ n square array of elements of R whose entry in row i and
column j is aij P R. The set of matrices becomes a ring under the usual rules by which matrices of real
numbers are added and multiplied. Addition is componentwise: the i, j entry of the matrix paijq ` pbijq is
aij ` bij . The i, j entry of the matrix product paijq ˆ pbijq is

řn
k“1 aikbkj (note that these matrices need to

be square in order that multiplication of any two elements be defined). It is a straightforward calculation to
check that these operations make MnpRq into a ring. When R is a field we shall prove that MnpRq is a ring
by less computational means in Part III.

Note that if R is any nontrivial ring (even a commutative one) and n ě 2 then MnpRq is not commutative:
if ab ‰ 0 in R let A be the matrix with a in position 1,1 and zeros elsewhere and let B be the matrix with b
in position 1,2 and zeros elsewhere; then ab is the (nonzero) entry in position 1,2 of AB whereas BA is the
zero matrix.

These two matrices also show that MnpRq has zero divisors for all nonzero rings R whenever n ě 2.

An element paijq of MnpRq is called a scalar matrix if for some a P R, aii “ a for all i P t1, . . . , nu and aij “ 0
for all i ‰ j (i.e., all diagonal entries equal a and all off-diagonal entries are 0 ). The set of scalar matrices is
a subring of MnpRq. This subring is a copy of R (i.e., is ”isomorphic” to R ): if the matrix A has the element
a along the main diagonal and the matrix B has the element b along the main diagonal then the matrix
A ` B has a ` b along the diagonal and AB has ab along the diagonal (and all other entries 0 ). If R is
commutative, the scalar matrices commute with all elements of MnpRq. If R has a 1, then the scalar matrix
with l’s down the diagonal (the nˆ n identity matrix) is the 1 of MnpRq. In this case the units in MnpRq are
the invertible n ˆ n matrices and the group of units is denoted GLnpRq, the general linear group of degree
n over R.

If S is a subring of R then MnpSq is a subring of MnpRq. For instance MnpZq is a subring of MnpQq and
Mnp2Zq is a subring of both of these. Another example of a subring of MnpRq is the set of upper triangular
matrices: tpaijq | apq “ 0 whenever p ą qu (the set of matrices all of whose entries below the main diagonal
are zero) - one easily checks that the sum and product of upper triangular matrices is upper triangular.

2.1.2 Group Rings 2

Fix a commutative ring R with identity 1 ‰ 0 and let G “ tg1, g2, . . . , gnu be any finite group with group
operation written multiplicatively. Define the group ring, RG, of G with coefficients in R to be the set of all
formal sums

a1g1 ` a2g2 ` ¨ ¨ ¨ ` angn ai P R, 1 ď i ď n.

If g1 is the identity of G we shall write a1g1 simply as a1. Similarly, we shall write the element 1g for g P G
simply as g. Addition is defined ”componentwise”

pa1g1 ` a2g2 ` ¨ ¨ ¨ ` angnq ` pb1g1 ` b2g2 ` ¨ ¨ ¨ ` bngnq
“ pa1 ` b1q g1 ` pa2 ` b2q g2 ` ¨ ¨ ¨ ` pan ` bnq gn.

Multiplication is performed by first defining pagiq pbgjq “ pabqgk, where the product ab is taken in R and
gigj “ gk is the product in the group G. This product is then extended to all formal sums by the distributive
laws so that the coefficient of gk in the product pa1g1 ` ¨ ¨ ¨ ` angnq ˆ pb1g1 ` ¨ ¨ ¨ ` bngnq is

ř

gigj“gk
aibj .

It is straightforward to check that these operations make RG into a ring (again, commutativity of R is not
needed). The associativity of multiplication follows from the associativity of the group operation in G. The
ring RG is commutative if and only if G is a commutative group.

1Taken from [3] sec 7.2
2Taken from [3] sec 7.2
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Example 2.1.12. Let G “ D8 be the dihedral group of order 8 with the usual generators r, s
`

r4 “ s2 “ 1
and rs “ sr´1 ) and let R “ Z. The elements α “ r ` r2 ´ 2s and β “ ´3r2 ` rs are typical members of
ZD8. Their sum and product are then

α` β “ r ´ 2r2 ´ 2s` rs

αβ “
`

r ` r2 ´ 2s
˘ `

´3r2 ` rs
˘

“ r
`

´3r2 ` rs
˘

` r2
`

´3r2 ` rs
˘

´ 2s
`

´3r2 ` rs
˘

“ ´3r3 ` r2 ´ 3` r3s` 6r2s´ 2r3

“ ´3´ 5r3 ` 7r2 ` r3s

The ring R appears in RG as the ”constant” formal sums i.e., the R-multiples of the identity of G (note
that the definition of the addition and multiplication in RG restricted to these elements is just the addition
and multiplication in R ). These elements of R commute with all elements of RG. The identity of R is the
identity of RG.

The group G also appears in RG (the element gi appears as 1gi - for example, r, s P D8 are also elements
of the group ring ZD8 above) - multiplication in the ring RG restricted to G is just the group operation. In
particular, each element of G has a multiplicative inverse in the ring RG (namely, its inverse in G ). This
says that G is a subgroup of the group of units of RG.

If |G| ą 1 then RG always has zero divisors. For example, let g be any element of G of order m ą 1. Then

p1´ gq
`

1` g ` ¨ ¨ ¨ ` gm´1
˘

“ 1´ gm “ 1´ 1 “ 0

so 1 ´ g is a zero divisor (note that by definition of RG neither of the formal sums in the above product is
zero).

If S is a subring of R then SG is a subring of RG. For instance, ZG (called the integral group ring of G ) is a
subring of QG (the rational group ring of G ). Furthermore, if H is a subgroup of G then RH is a subring of
RG. The set of all elements of RG whose coefficients sum to zero is a subring (without identity). If |G| ą 1,
the set of elements with zero ”constant term” (i.e., the coefficient of the identity of G is zero) is not a subring
(it is not closed under multiplication).

2.1 EXERCISES

1. [3] 7.1.13. An element x in R is called nilpotent if xm “ 0 for some m P Z`.

Show that if n “ akb for some integers a and b then ab is a nilpotent element of Z{nZ.i.
If a P Z is an integer, show that the element ā P Z{nZ is nilpotent if and only if every prime divisor of n
is also a divisor of a. In particular, determine the nilpotent elements of Z{72Z explicitly.

ii.

Let R be the ring of functions from a nonempty set X to a field F . Prove that R contains no nonzero
nilpotent elements.

iii.

2. [3] 7.1.14. Let x be a nilpotent element of the commutative ring R (cf. the preceding exercise).

Prove that x is either zero or a zero divisor.i.
Prove that rx is nilpotent for all r P R.ii.
Prove that 1` x is a unit in R.iii.
Deduce that the sum of a nilpotent element and a unit is a unit.iv.
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2.2 Ideals and Quotient Rings

Definition 2.2.1. I Ď R is a left ideal if

• pI,`q ď pR,`q

• @r P R, a P I, we have ra P I.

A right ideal is similarly defined:

• pI,`q ď pR,`q

• @r P R, a P I, we have ar P I.

I Ă R is an ideal if it is both a left ideal and a right ideal.

We note that since a P I and 0 P R we have 0a “ a0 “ 0 in ideal I. Also, 1 may not be in the ideal. If 1 P I,
then I is the whole ring R, and we will give it a name soon.

Remark 2.2.2. We will assume that all rings R are commutative rings in this course if not specified, that is,
@a, b P R, ab “ ba.

Due to this remark, left and ring ideals are just ideals.

Definition 2.2.3. In any ring R, the multiples of a particular element a form an ideal called the principal
ideal generated by a. An element b of R is in this ideal if and only if b is a multiple pf a, which is to say, if
and only if a divides b in R, denoted by a

ˇ

ˇ b. There are several notations for this principal ideal:

paq “ aR “ Ra “ tra | r P Ru

Example 2.2.4. The ring R itself is the principal ideal p1q, and because of this it is called the unit ideal. It is
the only ideal that contains a unit of the ring. The set consisting of zero alone is the principal ideal p0q, and
is called the zero ideal. An ideal I is proper if it is neither the zero ideal nor the unit ideal.

Definition 2.2.5. The ideal I generated by a set of elements X Ă R is the smallest ideal that contains
those elements. It is defined as

xXy :“ tr1x1 ` ¨ ¨ ¨ rkxk | k ě 1, ri P R, xi P Xu.

In particular, for an ideal I and an element a P R, we have

xa, Iy “ tr1a` r2i | r1, r2 P R, i P Iu “ tra` i | r P R, i P Iu

Proposition 2.2.6. If f : RÑ S is a ring homomorphism, then

(1) Kerpfq is an ideal of R.

(2) If I 1 is an ideal of S, then f´1pI 1q is an ideal (as the kernel of R Ñ S Ñ S{I); however, fpIq for ideal
I Ď R may not be an ideal. When f is surjective, fpIq is an ideal.

(3) Impfq is a subring of S.

(4) If P is a subring of R, then fpP q is a subring; If P 1 is a subring of S, then f´1pP 1q is a subring.

Proof. We leave the last two statements as exercises and prove the first two and give an example illustrating
when fpIq is not an ideal.

(1) Clearly, pKerpfq,`q ď pR,`q. Then consider a P Kerpfq, i.e., fpaq “ 0, and r P R. Now,

fparq “ fpaqfprq “ 0

fpraq “ fprqfpaq “ 0.
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(2) Let I “ f´1 pI 1q. We know that the preimage of a group homomorphism is a subgroup, so I is an
additive subgroup of R. We need to show for r P R and a P I, we have ra P I. Since I 1 is an ideal,
fpraq “ fprqfpaq P I 1, thus ra P f´1 pSq “ I. Thus I is an ideal of R. This proved that the preimage
of an ideal under a ring homomorphism is an ideal. We now show that the image of an ideal under
a surjective ring homomorphism is an ideal. As I is an additive subgroup of R and f is also a group
homomorphism, fpIq is an additive subgroup of S. We need to show for s P S and fpaq P fpIq, we
have sfpaq P fpIq. For s P S, because f is surjective, there exists r P R such that fprq “ s. Then ra P I,
so

sfpaq “ fprqfpaq “ fpraq P fpIq

Thus fpIq is an ideal.

Example 2.2.7. Let i : ZÑ Q be inclusion. Since Q is a field, ideal I in Q is either p0q or p1q “ Q. We take
an ideal nZ in Z with n ‰ 0. Since ipnZq “ nZ is not p0q or p1q we see that it is not an ideal.

Let I Ă R be an ideal, then we define R{I :“ tr ` I
ˇ

ˇ r P Ru, with pr ` Iq ` ps ` Iq :“ pr ` sq ` I and
pr ` Iqps` Iq “ rs` I.

Proof of Well-defined Multiplication. Want to check that r`I “ r1`I and s`I “ s1`I ùñ rs`I “ r1s1`I.

r ´ r1, s´ s1 P I. On the other side, rs´ r1s1 “ rps´ s1q ` pr ´ r1qs1 P I, which is true.

R{I is a ring, called quotient ring, with unity 1`R and zero 0`R. The canonical homomorphism is given
by

ϕ : RÑ R{I, r ÞÑ r ` I

where f is clearly surjective and Kerpϕq “ I.

Proposition 2.2.8 (Mapping property). Suppose f : RÑ R1 is a ring homomorphism with K “ Kerpfq and
I Ď K an ideal. Then D! homomorphism f̄ : R “ R{I Ñ R1 such that f̄ϕ “ f :

R R

R “ R{I

f

ϕ f̄

We say f factors through ϕ.

2.2.1 Ring Isomorphism Theorems

If I and J are two ideals in R, we define

I ` J “ ti` j | i P I, j P Ju

IJ “

#

n
ÿ

i“1

aibi | n ě 1, ai P I, bi P J

+

Proposition 2.2.9. If I and J are two ideals of R, then their sum I ` J , intersection I X J , and product IJ
are still ideals. Besides, IJ Ď I X J .

Proof. Exercise.

We state the isomomorphism theorems for rings without proof (see [1] or [10] if one needs).
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Theorem 2.2.10 (First Isomorphism Theorem for Rings). If f : RÑ S is a ring homomorphism, then

R{Kerpfq
loomoon

an ideal

– Impfq
loomoon

a subring

Theorem 2.2.11 (Second Isomorphism Theorem for Rings). Let R be a ring, and let S be a subring of R, J
be an ideal of R.

Then:

• S ` J is a subring of R;

• J is an ideal of S ` J ;

• S X J is an ideal of S;

• S
SXJ –

S`J
J .

Theorem 2.2.12 (Third Isomorphism Theorem for Rings). If I Ă J Ď R, and I, J are ideals in R, then

J{I “ tj ` I
ˇ

ˇ j P Ju

is an ideal of R{I and
R{I

J{I
– R{J.

Theorem 2.2.13 (Fourth Isomorphism Theorem (Correspondance Theorem) for Rings). Let φ : R Ñ R be
a surjective ring homomorphism with kernel K. There is a bijective correspondence between the set of all
ideals of R and the set of ideals of R that contain K:

tideals of R that contain Ku ÐÑ tideals of Ru.

This correspondence is defined as follows:

• If I is a ideal of R and if K Ă I, the corresponding ideal of R is φpIq.

• If I is a ideal of R, the corresponding ideal of R is φ´1pIq.

If the ideal I of R corresponds to the ideal I of R, the quotient rings R{I and R{I are naturally isomorphic.

Note that the inclusion K Ă I is the reverse of the one in the mapping property.

Remark 2.2.14. A more common version is to let the surjective ring homomorphism in the above statement
be φ : RÑ R{J where J is an ideal of R.

2.2 EXERCISES

1. Let I and J be ideals of R.

Prove that I ` J is the smallest ideal of R containing both I and J .i.
Prove IJ is an ideal contained in I X Jii.
Give and example where IJ ‰ I X J .iii.
Prove if I ` J “ R, the IJ “ I X J .iv.

2. For an ideal I of R, let ?
I “ tx P R | xn P I for some n ě 1u .

?
I is called the radical of I.
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Show that
?
I is an ideal of R which contains I.i.

Show that
?
IJ “

?
I X J for any two ideals I and J .ii.

For more on radicals of rings, see [2] Chap.8.

3. [3] Ex7.3-6. Decide which of the following are ring homomorphisms from M2pZq to Z:
ˆ

a b
c d

˙

ÞÑ a (projection onto the 1,1 entry)i.
ˆ

a b
c d

˙

ÞÑ a` d (the trace of the matrix)ii.
ˆ

a b
c d

˙

ÞÑ ad´ bc (the determinant of the matrix).iii.

4. [3] Ex7.3-7. Let R “

"ˆ

a b
0 d

˙

ˇ

ˇ

ˇ
a, b, d P Z

*

be the subring of M2pZq of upper triangular matrices.

Prove that the map

φ : RÑ Zˆ Z defined by φ :

ˆ

a b
0 d

˙

ÞÑ pa, dq

is a surjective homomorphism and describe its kemel.

5. [3] Ex7.3-8. Decide which of the following are ideals of the ring Zˆ Z:

tpa, aq | a P Zui.
tp2a, 2bq | a, b P Zuii.
tp2a, 0q | a P Zuiii.
tpa,´aq | a P Zu.iv.

2.3 Maximal Ideals and Prime Ideals

We will first present Zorn’s Lemma using a well-written document, which is widely used in many proofs, and
then talk about two important ideals, maximal ideals and prime ideals.

2.3.1 Zorn’s Lemma

Theorem 2.3.1 (Zorn’s lemma). Let S be a partially ordered set. If every totally ordered subset of S has an
upper bound, then S contains a maximal element.

To understand Zorn’s Lemma, we need to know four terms: partially ordered set, totally ordered subset,
upper bound, and maximal element.

A partial ordering on a (nonempty) set S is a binary relation on S, denoted ď, which satisfies the following
properties:

• reflexive: for all s P S, s ď s,

• antisymmetric: if s ď s1 and s1 ď s then s “ s1,

• transitive: if s ď s1 and s1 ď s2 then s ď s2.

When we fix a partial ordering ď on S, we refer to S (or, more precisely, to the pair pS,ďqq as a partially
ordered set, also abbreviated as poset.
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It is important to notice that we do not assume all pairs of elements in S are comparable under ď : for some
s and s1 we may have neither s ď s1 nor s1 ď s. If all pairs of elements can be compared (that is, for all s
and s1 in S either s ď s1 or s1 ď s ) then we say S is totally ordered with respect to ď.

Example 2.3.2. The usual ordering relation ď on R or on Z` is a partial ordering of these sets. In fact it is
a total ordering on either set. This ordering on Z` is the basis for proofs by induction.

Example 2.3.3. On Z`, declare a ď b if a
ˇ

ˇ b. This partial ordering on Z` is different from the one in previous
example and is called ordering by divisibility. It is one of the central relations in number theory. (Proofs about
Z` in number theory sometimes work not by induction, but by starting on primes, then extending to prime
powers, and then extending to all positive integers using prime factorization. Such proofs view Z` through
the divisibility relation rather than through the usual ordering relation.) Unlike the ordering on Z` in
previous example, Z` is not totally ordered by divisibility: most pairs of integers are not comparable under
the divisibility relation. For instance, 3 doesn’t divide 5 and 5 doesn’t divide 3 . The subset t1, 2, 4, 8, 16, . . .u
of powers of 2 is totally ordered under divisibility.

Example 2.3.4. Let S be the set of all subgroups of a given group G. For H,K P S (that is, H and K
are subgroups of G ), declare H ď K if H is a subset of K. This is a partial ordering, called ordering by
inclusion. It is not a total ordering: for most subgroups H and K neither H Ă K nor K Ă H.

One can similarly partially order the subspaces of a vector space or the ideals (or subrings or all subsets) of
a commutative ring by inclusion. We shall see this in the next section.

Example 2.3.5. If S is a partially ordered set for the relation ď and T Ă S, then the relation ď provides a
partial ordering on T . Thus T is a new partially ordered set under ď. For instance, the partial ordering by
inclusion on the subgroups of a group restricts to a partial ordering on the cyclic subgroups of a group.

Lemma 2.3.6. Let S be a partially ordered set. If ts1, . . . , snu is a finite totally ordered subset of S then
there is an si such that sj ď si for all j “ 1, . . . , n.

Proof. The si ’s are all comparable to each other; that’s what being totally ordered means. Since we’re
dealing with a finite set of pairwise comparable elements, there will be one that is greater than or equal to
them all in the partial ordering on S. The reader can formalize this with a proof by induction on n, or think
about the bubble sort algorithm.

An upper bound on a subset T of a partially ordered set S is an s P S such that t ď s for all t P T . It is
important to notice that when we say T has an upper bound in S, we do not assume the upper bound is in
T itself; it is just in S.

Example 2.3.7. In R with its natural ordering, the subset Z has no upper bound while the subset of negative
real numbers has the upper bound 0 (or any positive real). No upper bound on the negative real numbers is
a negative real number.

Example 2.3.8. In the proper subgroups of Z ordered by inclusion, an upper bound on t4Z, 6Z, 8Zu is 2Z
since 4Z, 6Z, and 8Z all consist entirely of even numbers. (Note 4Z Ă 2Z, not 2Z Ă 4Z.)

A maximal element m of a partially ordered set S is an element that is not below any element to which it
is comparable: for all s P S to which m is comparable, s ď m. Equivalently, m is maximal when the only
s P S satisfying m ď s is s “ m. This does not mean s ď m for all s in S since we don’t insist that maximal
elements are actually comparable to every element of S. A partially ordered set could have many maximal
elements.

We now return to the statement of Zorn’s lemma: If every totally ordered subset of a partially ordered set S
has an upper bound, then S contains a maximal element.

All the terms being used here have now been defined. Of course this doesn’t mean the statement should be
any clearer!
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Zorn’s lemma is not intuitive, but it turns out to be logically equivalent to more readily appreciated state-
ments from set theory like the Axiom of Choice (which says the Cartesian product of any family of nonempty
sets is nonempty) and Well-Ordering Principle (which says every nonempty set has a well-ordering: that
means a total ordering in which every nonempty subset has a least element).

2.3.2 Maximal Ideals

The ideals in a commutative ring can be partially ordered by inclusion. The whole ring, which is the unit
ideal p1q, is obviously maximal for this ordering. But this is boring and useless. Proper ideals that are
maximal for inclusion among the proper ideals are called the maximal ideals in the ring. (That is, a maximal
ideal is understood to mean a maximal proper ideal.)

Definition 2.3.9 (Maximal Ideals). An ideal M Ĺ R is called a maximal ideal if for any I Ď R with
M Ď I Ď R, then I “M or I “ R. That is, the only ideals containing M are M and R.

Proposition 2.3.10. Every nonzero commutative ring contains a maximal ideal.

Proof. Let S be the set of proper ideals in a commutative ring R ‰ 0. Since the zero ideal p0q is a proper
ideal, S ‰ H. We partially order S by inclusion.

Let tIαuαPA be a totally ordered set of proper ideals in R. To write down an upper bound for these ideals in
S, it is natural to try their union I “

Ť

αPA Iα. As a set, I certainly contains all the Iα ’s, but is I an ideal? We
may be hesitant about this, since a union of ideals is not usually an ideal: try 2Z Y 3Z. But we are dealing
with a union of a totally ordered set of ideals, and the total ordering of the ideals will be handy!

If x and y are in I then x P Iα and y P Iβ for two of the ideals Iα and Iβ . Since this set of ideals is
totally ordered, Iα Ă Iβ or Iβ Ă Iα. Without loss of generality, Iα Ă Iβ . Therefore x and y are in Iβ , so
x˘ y P Iβ Ă I. Hence I is an additive subgroup of R. The reader can check rx P I for r P R and x P I, so I
is an ideal in R.

Because I contains every Iα, I is an upper bound on the totally ordered subset tIαuαPA provided it is actually
in S : is I a proper ideal? Well, if I is not a proper ideal then 1 P I. Since I is the union of the Iα ’s, we must
have 1 P Iα for some α, but then Iα is not a proper ideal. That is a contradiction, so 1 R I. Thus I P S and
we have shown every totally ordered subset of S has an upper bound in S.

By Zorn’s lemma S contains a maximal element. This maximal element is a proper ideal of R that is maximal
for inclusion among all proper ideals (not properly contained in any other proper ideal of R ). That means
it is a maximal ideal of R.

Corollary 2.3.11. Every proper ideal in a nonzero commutative ring is contained in a maximal ideal.

Proof. Let R be the ring and I be a proper ideal in R. The quotient ring R{I is nonzero, so it contains
a maximal ideal by previous theorem. The inverse image of this ideal under the natural reduction map
RÑ R{I is a maximal ideal of R that contains I.

Proposition 2.3.12. I is maximal ideal ðñ R{I is a field.

Proof. ùñ : Assume r ` I ‰ I, so r R I. Let J “ xr, Iy Ď R (see Definition 2.2.5). Clearly, I Ď J Ď R.
Since J an ideal and I a maximal ideal, we have I “ J or J “ R. Since r P J ´ I, so J “ R ùñ 1 P J “
xr, Iy ùñ 1 “ r1r` i. Thus 1´ rr1 P I ùñ p1` Iq “ pr` Iqpr1` Iq, where pr1` Iq is the inverse of pr` Iq.

ðù: If R{I is a field and I Ď J Ď R, then J{I is an ideal of R{I. The only proper ideals of a field is t0u or
itself. Therefore, J{I is p0q or R{I, so J “ I or J “ R.

While the trick above worth remembering, we have an easier proof of the fact.
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Proposition 2.3.13.

(a) Let φ : R Ñ R1 be a surjective ring homomorphism, with kernel I. The image R1 is a field if and only
if I is a maximal ideal.

(b) An ideal I of a ring R is maximal if and only if R̄ “ R{I is a field.

(c) The zero ideal of a ring R is maximal if and only if R is a field.

Proof. (a): A ring is a field if it contains precisely two ideals,so the Correspondence Theorem asserts that the
image of φ is a field if and only if there are two precisely ideals that contain its kernel I. This will be true if
and only if I is a maximal ideal.

(b) and (c) follow from (a) by applying to the map RÑ R{I.

Corollary 2.3.14. I “ t0u is a maximal ideal ðñ R “ R{t0u is a field.

2.3.3 Some Terminologies

We review some concepts and also give others. Let R be a commutative ring with unity 1.

1. u is a unit ðñ Du´1 s.t. uu´1 “ u´1u “ 1 ðñ puq “ p1q.

2. a divides b ðñ a
ˇ

ˇ b ðñ b “ aq for some q P R ðñ b P paq ðñ pbq Ă paq.

3. a and b are associates ðñ each divides the other ðñ b “ ua with u a unit (for b “ ua ñ u´1b “
a; a “ ubñ u´1a “ b) ðñ paq “ pbq (for a

ˇ

ˇ bñ pbq Ă paq; b
ˇ

ˇ aÑ paq Ă pbq.)

4. 0 ‰ a is irreducible ðñ a is not a unit, and a “ xy ñ x “ unit or y “ unit.

5. 0 ‰ a is prime ðñ the principal ideal paq generated by this nonzero a is a prime ideal (an ideal I Ĺ R is
prime if ab P I implies a P I or b P I.) ðñ a is not a unit and a

ˇ

ˇ bc implies a
ˇ

ˇ b or a
ˇ

ˇ c ðñ a is not a unit
and bc P paq implies b P paq or c P paq.

Remark 2.3.15. We want to emphasize that zero cannot be a prime element but p0q is a prime ideal iff R is
an integral domain (see Corollary 2.3.19).

2.3.4 Prime Ideals

Definition 2.3.16. If I Ĺ R is an ideal, we say I is prime if ab P I ùñ a P I or b P I for a, b P R.

Example 2.3.17. R “ Z. Since subgroups of Z are all of the form mZ, and an ideal is first an additive
subgroup of Z, we see that ideals in Z are of the form mZ (since each mZ has @z P Z, a P mZ, za P mZ).
Now, we also claim that for positive m, mZ is a prime ideal iff m is a prime number. Since mZ “ p´mqZ, we
then see that each prime ideal in Z is of the form p˘pqZ or p0q (it will be proved at the end of this subsection
that the zero ideal is prime iff the ring is an integral domain).

Proof. Let m be positive.

ùñ : If m “ ab, and a, b ą 1, then ab “ m P mZ, but a, b R mZ. Contradiction.

ðù: To show mZ is prime, we suppose ab P mZ “ pmq, then subsection 2.3.3 2 shows that m
ˇ

ˇ ab. m being
prime number then implies m

ˇ

ˇ a or m
ˇ

ˇ b.

Proposition 2.3.18.

1. Every maximal ideal is prime.

2. I Ĺ R is prime ðñ R{I is an integral domain.
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3. P is a prime ideal ðñ IJ Ď P implies I Ď P or J Ď P for ideals I, J Ď R.

Proof (1): If M is maximal and ab PM and a RM , then the ideal generated by a,M , pa,Mq :“ tra`m,m P

M, r P Ru is an ideal where M Ĺ xa,My Ă R. Then xa,My “ R since M maximal, so 1 “ ra `m for some
r P R,m PM ùñ b “ rab`mb, so b PM .

Proof (2): ùñ : If pa` Iqpb` Iq “ 0, then ab` I “ 0, so ab P I ùñ a P I or b P I, so a` I “ 0̄ or b` I “ 0̄,
where 0̄ is the zero of R{I.

ðù: If ab P I, then pa` Iqpb` Iq “ 0̄, so a` I “ 0̄ or b` I “ 0̄, so a P I or b P I.

Proof (3): If P is prime and IJ Ď P but I Ĺ P and J Ĺ P , then pick a P IzP and b P JzP , then ab P IJ but
ab R P , a contradiction.

Conversely, assume IJ Ď P implies I Ď P or J Ď P for ideals I, J Ď R. Let I “ paq “ tra | r P Ru and
J “ pbq “ trb | r P Ru. Then IJ “ pabq (check this). So IJ Ď P , so a P I Ď P or b P J Ď P , so a P P or
b P P .

Corollary 2.3.19. t0u is a prime ideal ðñ R is an integral domain.

Example 2.3.20. mZ Ď Z is prime ðñ mZ is maximal ðñ m is prime.

Proof. Due to Proposition 2.3.18 and Example 2.3.17, we only need to show that mZ prime implies mZ
maximal.

To show mZ is maximal, we suppose mZ Ă nZ, i.e., pmq Ă pnq. By subsection 2.3.3, this is equivalent to
n
ˇ

ˇm. But m is prime so either n “ 1 or n “ m.

2.3 EXERCISES

1. Show that in every finite commutative ring, every prime ideal is maximal.

2. A proper ideal I of R is said the be a primary ideal if ab P I implies a P I or bn P I for some positive
integer n.

Find all the primary ideals of Z.i.
Show that if I is a primary ideal, then

?
I is a prime ideal.ii.

2.4 Product of Rings

Theorem 2.4.1 (Chinese Remainder Theorem). For 0 ă m1, ...,mn P Z, gcdpmi,mjq “ 1, then for any
r1, ..., rn P Z, the system of equations

$

’

&

’

%

x ” r1 pmodm1q

¨ ¨ ¨

x ” rn pmodmnq

has a solution.

Theorem 2.4.2 ((Generalized) Chinese Remainder Theorem). R commutaitve ring. Let I1, ..., In, n ě 2 be
ideals in R such that Ii ` Ij “ R for every i, j, i ‰ j. Then for any r1, ..., rn P R, there is x P R s.t. x ´ ri P
Ii @1 ď i ď n.

68



Math 5031-32 Algebra Anthony Hong

Remark 2.4.3. We first see it is indeed a generalization:

gcdpmi,mjq “ 1 ðñ 1 “ xmi ` ymj for x, y P Z
ðñ 1 P xmiy ` xmjy

ðñ Z “ xmiy ` xmjy

proof of the Generalized Chinese Remainder Theorem.
Proceed with induction on n: If n “ 2, I1 ` I2 “ R ùñ Dai P Ii s.t. a1 ` a2 “ 1. Then let x “ r1a1 ` r2a1,
then x´ r1 “ r1pa2 ´ 1q ` r2a1 “ ´r1a1 ` r2a1 P I1. Similar for x´ r2.

n´ 1 ùñ n : For I1, ..., In, let J “ I2 ¨ ¨ ¨ In. Claim: I ` J “ R.

So for I1 ` Ii “ R@i ě 2, Dai P I1, bi P Ii s.t. ai ` bi “ 1 ùñ 1 “
śn
i“2pai ` biq “ I1 ` J . By case 2 of

the theorem, Dy1 P R s.t. y1 ´ 1 P I1, y1 ´ 0 P J ùñ y1 P I2 ¨ ¨ ¨ In. In a similar way, @1 ď i ď n, we find
yi P R s.t. yi ´ 1 P Ii and yi “ I1 ¨ ¨ ¨ Îi ¨ In Ď Ij@j ‰ i. Note that I X J Ď IJ .

Let x “ r1y1 ` ... ` rnyn. Then x ´ ri “ r1y1 ` ¨ ¨ ¨ ripyi ´ 1q ` ¨ ¨ ¨ rnyn. Every yi is in Ii, so this entire
expression is in Ii.

Definition 2.4.4. Let R,S be rings, then product of R and S is

Rˆ S “ tpr, sq
ˇ

ˇ r P R, s P Su

where pr1, s1q ` pr2, s2q “ pr1 ` r2, s1 ` s2q. and pr1, s1qpr2, s2q “ pr1r2, s1s2q. Its additive identity is p0, 0q.
Its unity is p1, 1q. One can define more general product of rings just like that for groups.

Corollary 2.4.5. If I1, ..., In are ideals of R such that Ii ` Ij “ R for i ‰ j. Then

R
Şn
i“1 In

»

n
ź

i“1

R{Ii

as isomorphism of rings.

Proof. Define ϕ : RÑ
śn
i“1R{Ii by ϕprq “ pr` I1, ..., r` Inq. ϕ is a ring homomorphism. Kerpϕq “ Xni“1Ii.

ϕ surjective: @pr1`I1, ..., rn`Inq P
śn
i“1R{Ii, by the Chinese remainder theorem, Dx P R s.t. x`Ii “ ri`Ii,

so by the first isomorphism theorem, we get the result.

Example 2.4.6. If R “ Z, and prime factorization m “ pr11 ¨ ¨ ¨ p
rn
n , Ii “ prii Z. Then note that Ii “ prii Z, Ii `

Ij “ Z because prii and prjj coprimes, which implies 1 “ xprii ` yp
rj
j P Ii ` Ij . Also,

Şn
i“1 Ii “ mZ because

a P
Şn
i“1 Ii ðñ a is a multiple of all prii ðñ a is a multiple of m. So,

Z{mZ »
n
ź

i“1

Z{prii Z

as rings. That is,

Zm »
n
ź

i“1

Zripi

as rings. This is a stronger result than the group version.

2.4 EXERCISES
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1. [3] Ex7.6-3. Let R and S be rings with identities. Prove that every ideal of R ˆ S is of the form I ˆ J
where I is an ideal of R and J is an ideal of S.

2. [3] Ex7.6-6. Let f1pxq, f2pxq, . . . , fkpxq be polynomials with integer coefficients of the same degree d.
Let n1, n2, . . . , nk be integers which are relatively prime in pairs (i.e., pni, njq “ 1 for all i ‰ j ). Use
the Chinese Remainder Theorem to prove there exists a polynomial fpxq with integer coefficients and of
degree d with

fpxq ” f1pxq mod n1, fpxq ” f2pxq mod n2, . . . , fpxq ” fkpxq mod nk

i.e., the coefficients of fpxq agree with the coefficients of fipxq mod ni. Show that if all the fipxq are
monic, then fpxq may also be chosen monic. [Apply the Chinese Remainder Theorem in Z to each of the
coefficients separately.]

3. [1] p.378 Ex1.5. Let a and b be relatively prime integers. Prove that there are integers m and n such th
am ` bn ” 1 modulo ab.

2.5 Localization

Suppose R is an integral domain. Consider the equivalence relation a
b „

c
d ðñ ad “ bc. Then, we can mod

out by equivalence relationship to get the set of all equivalence classes
!a

b

ˇ

ˇ a, b P R, b ‰ 0
)

{ „

Then we define the ring structure such that for b, d ‰ 0, ab `
c
d “

ad`bc
bd , ab

c
d “

ac
bd . There are well-defined.

The unity is 1
1 , and the zero is 0

1 . This is a commutative ring as R is commutaitve. Any non-zero element a
b

(i.e., a, b ‰ 0 bc. a
b “

0
1 ô a “ 0) has a multiplicative inverse b

a . Thus we get a field, namely the field of
fraction, or Quotient field of R. We will generalize this construction below.

Definition 2.5.1. Suppose R is a commutative ring. Then S Ă R is a multiplicative subset if 1 P S, 0 R S,
and a, b P S ùñ ab P S.

Example 2.5.2.

• For 0 ‰ r P R, S “ t1, r, r2, ...u

• P Ĺ R be a prime ideal and S “ RzP . Then a, b R P ùñ ab R P . Observe that

P prime ðñ pab P P ñ a P P or b P P q

ðñ pa, b R P ñ ab R P q

ðñ pa, b P S ´ P ñ ab P S ´ P q

1 P S ´ P becasue P Ĺ R (if 1 R S ´ P , then 1 P P and P “ R).

Definition 2.5.3. Define S´1R “ tpr, sq
ˇ

ˇ r P R, s P Su{ „ with the equivalence relationship pr, sq »
pr1, s1q ðñ Ds2 P S s.t. s2prs1 ´ sr1q “ 0.

If 0 P S, then pr, sq » p0, 0q, and everything is in a single equivalence class. That’s the reason why we assume
0 R S.

Proposition 2.5.4. S´1R is a commutaitve ring with the operations

r

s
`
r1

s1
“
rs1 ` r1s

ss1
,

r

s

r1

s1
“
rr1

ss1
.

Zero is 0
1 . Unity is 1

1 .
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Proof. Addition is well-defined: if r
s “

r0
s0
, then Ds2, s2prs0 ´ r0sq “ 0. Want to check that r

s `
r1

s1 “
r0
s0
` r1

s1 .
Equivalently,

rs1 ` r1s

ss1
“
r0s

1 ` r1s0
s0s1

“ 0 ðñ s2ps0s
1prs1`r1sq´ss1pr0s

1`r1s0qq “ s2ps12ps0r ´ sr0q
looooooomooooooon

“0

` s0s
1r1s´ ss1r1s0

looooooooomooooooooon

“0

q “ 0.

Multiplication’s well-definedness is easy to prove. The remaining is left as an exercise.

There is a natural ring homomorphism defined by

ϕ : RÑ S´1R; r ÞÑ
r

1
.

In particular if R is an integral domain, then ϕ is injective:

r

1
“
r1

1
ô Ds2 P S s.t. s2pr ¨ 1´ 1 ¨ r1q “ s2pr ´ r1q “ 0

R int. dom., 0RS
ðñ r ´ r1 “ 0, r “ r1

We now see how S´1R generalizes K “ field of fractions of R:

r

s
„S´1R

r1

s
ô Ds2 P S s.t. s2prs1 ´ sr1q “ s2pr ´ r1q “ 0

R int. dom., 0RS
ðñ rs1 ´ sr1 “ 0, rs1 “ sr1 ô

r

s
„K

r1

s1

Thus, S´1R is a subring of the field of fractions of R, which we can write as R Ă S´1R Ă K, where the first
is by the injection r Ñ r{1 and the second is by the inclusion above.

Note that ϕ : RÑ S´1R also has the property that ϕpsq is invertible for any s P S. Namely @s P S, ϕpsq “ s
1 ,

so s
1
1
s “

1
1 . And if ψ : RÑ R1 is a ring homomorphism such that ψpsq invertible in R1, then D!f : S´1RÑ R1

such that f ˝ ϕ “ ψ

R R1

S´1R

ψ

ϕ f

1 “ fp1{1q “ f pϕpsqp1{sqq “ ψp1qfp1{sq ñ ψpsq´1 “ fp1{sq

Example 2.5.5. Assume R is an integral domain.

• If S “ Rzt0u, then S´1R is the field of fractions of R.

• If S “ t1, f, f2, ..., u where f P R s.t. @n, fn ‰ 0. Then

Rf “ S´1R “

"

a

fr

ˇ

ˇ

ˇ
a P R, r ě 0

*

.

• If P Ĺ R is a prime ideal and S “ RzP . Then

RP “ S´1R “
!a

b

ˇ

ˇ

ˇ
a, b P R, b R P

)

RP is a local ring. i.e. it has a unique maximal ideal, which is

I “
!a

b

ˇ

ˇ

ˇ
a, b P R, b R P, a P P

)

.

It is easy to see I is an ideal. We show it is maximal. Notice that for a
b ` I P RP {I, we have pab ` Iqp

b
a `

Iq “ I as long as a R P . When a P P , ab ` I “ I. Thus, every nonzero element of RP {I is a unit. By
Corollary 2.3.12, I is maximal.
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2.5 EXERCISES

Some useful sources: link.

1. Prove the following claims:

The preimage of a prime ideal under a ring homomorphism is a prime ideal.i.
The preimage of a proper ideal under a surjective ring homomoprhism is a proper ideal.ii.

2. (Correspondence theorem for localization of rings) Let S a multiplicative subset of R not containing 0 ,
and let ϕ : RÑ S´1R be the map ϕprq “ r

1 . For an ideal I in R, let

S´1I “

"

i

s

∣∣∣∣ i P I, s P S* Ă S´1R.

Show that S´1I is an ideal of S´1R, and S´1ϕ´1pJq “ J for any ideal J of S´1R.i.
Show the map P ÞÑ S´1P gives a one-to-one correspondence between prime ideals of R whose intersec-
tion with S is empty and prime ideals of S´1R.

ii.

3. Let R be a PID and S a multiplicative subset not containing 0 . Show S´1R is a PID.

2.6 PIDs

Definition 2.6.1. Recall from definition 2.2.3 of principal ideal. We say an integral domain R in which every
ideal is principal ideal is called a principal ideal domain.

Example 2.6.2.

• Z is PID. Every ideal in Z is of the form nZ “ pnq.

• Rrxs is a PID. If I ‰ t0u is an ideal and 0 ‰ fpxq P I has the smallest degree, then I “ pfq. If
g P I, dividing g by f gives that gpxq “ qpxqfpxq ` rpxq. So rpxq “ 0 or degprq ă degpfq. Since
rpxq “ gpxq ´ qpxqfpxq P I and f is chosen to have smallest degree, we see deg rpxq ě deg fpxq ùñ
r “ 0 ùñ g P pfq.

• Rrx, ys is not a PID. px, yq “ tfpx, yq
ˇ

ˇ fp0, 0q “ 0u not principal.

• Zrxs is not a PID. px, 2q “ tfpxq
ˇ

ˇ fp0q is evenu not principal: 2 P px, 2q. Thus, if px, 2q “ paq, then
Dr P Zrxs s.t. ra “ 2. Either r “ 1, a “ 2 or r “ 2, a “ 1 since the RHS already has the smallest possible
degree. 1 R px, 2q, so a “ 2. Contradiction.

Definition 2.6.3. Recall from subsection 2.3.3 that

• a P R is prime if paq is a prime ideal. Equivalently, a
ˇ

ˇ bc ùñ a
ˇ

ˇ b or a
ˇ

ˇ c.

• 0 ‰ a P R is irreducible if it is not a unit and if a “ xy, then x is a unit or y is a unit.

Proposition 2.6.4. If R is an integral domain, a prime element is irreducible.

Proof. If a is prime (so a ‰ 0) and a “ xy, then a
ˇ

ˇx or a
ˇ

ˇ y, so x “ ax1 or y “ ay1 ùñ a “ ax1y or a “ xay1

ùñ ap1´ x1yq “ 0 or ap1´ xy1q “ 0
R int. dom.
ùùùùùùùñ 1 “ x1y or 1 “ xy1, so y is a unit or x is a unit.

Example 2.6.5. Let
R “ Zr

?
´5s “ ta` b

?
´5

ˇ

ˇ a, b P Zu Ď C

. It is clear that this is a ring. We claim that
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• units of R are ˘1.

• 2, 3, 1˘
?
´5, 2˘

?
´5 are all irreducibles.

• 3 P R is not prime, so R is not a principal ideal domain due to proposition 2.6.6.

• R is not a unique factorization domain (defn. 2.7.2).

Proof. We first show that the units of R are ˘1. Suppose

pa` b
?
´5qpc` d

?
´5q “ 1 “ unity

Then

square it ùñ pa2 ` 5b2
looomooon

PZ

qpc2 ` 5d2
looomooon

PZ

q “ 1.

ùñ b and d must be 0 because in Z unites are ˘ 1.

ùñ a, c “ ˘1.

We use the following way to show irredciblility:
We show 3 is irredciblle for example. Suppose not, then

3 “ xy “ pa` b
?
´5qpc` d

?
´5q ùñ 9 “ pa2 ` 5b2qpc2 ` 5d2q

We note that a2` 5b2, c2` 5d2 P t0, 1, 4, 5, 9, 16, ¨ ¨ ¨ u and their multiplicaiton belongs to t0, 1, 4, 5, 9, 16, ¨ ¨ ¨ u,
where we note that 0 is obtained by 0 ˆ 0 or 0 ˆ other, 1, 4, 5, 9 are obtained by multiplication of 1 with
1, 4, 5, 9 (so it has to be the case that a ` b

?
´5 or c ` d

?
´5 is a unit), and 16 is obtained by either 1 ˆ 16,

16ˆ 1, or 4ˆ 4. Therefore, 3 is irreducible. In fact, we also proved that 2 is irreducible as 22 “ 4.

We show that 3 is not prime:
9 “ p2`

?
´5qp2´

?
´5q is in I “ p3q, but 3 ∤ p2`

?
´5q and 3 ∤ 2´

?
´5 since 2`

?
5 ‰ 3pa` b

?
´5q, for

a, b P Z.

R is not UFD:
That is to say, there are some elements of R that can be written in products that are irreducibles that are not
associates. 6 and 9 do:

2 ¨ 3 “ 6 “ p1`
?
´5qp1´

?
´5q

3 ¨ 3 “ 9 “ p2`
?
´5qp2´

?
´5q

They are not associates simply because the units are ˘1.

Proposition 2.6.6. If R is a PID, then irreducible ùñ prime.

Proof. Suppose a P R is irreducible, then it suffices to show that a is a prime ideal. Then the ideal generated
by a, paq ‰ R since a is not a unit. So there is a maximal ideal M where paq ĎM Ĺ R.

Since R is a PID, M “ pbq for some b ùñ paq Ď pbq ùñ a “ bc for some C. pbq ‰ R so b is not a unit. Since
a irreducible, C has to be a unit. So b “ c´1a ùñ b P paq ùñ pbq Ď paq, so paq “ pbq, so paq maximal and
therefore prime.

Proposition 2.6.7. Every prime ideal is maximal in a PID.

Proof. If I “ paq prime, then paq ĎM Ĺ R where M is maximal, then let M “ pbq ùñ a P pbq ùñ a “ bc.
a is prime so it is irreducible, so C is a unit. So b P paq ùñ paq “ pbq ùñ paq maximal.
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2.6 EXERCISES

1. Show that Zr
?
´5s is not a PID by finding a non-principal ideal.

2. Show the subring Zr2is “ ta ` 2bi | a, b P Zu of the Guassian integers Zris is not a UFD by showing
4 “ 2 ¨ 2 “ p´2iq ¨ p2iq gives two factorization of 4 into product of irreducible elements.

2.7 UFDs and GCDs

We collect some obvious observations and talk about UFDs and GCDs.

Theorem 2.7.1. Let the elements a, b, c P R. Then,

(1) a
ˇ

ˇ 0, 1
ˇ

ˇ a, a
ˇ

ˇ a;

(2) a | 1 if and only if a is invertible;

(3) if a | b, then ac | bc;

(4) if a | b and b | c, then a | c;

(5) if c | a and c | b, then c | pax` byq for every x, y P R.

Definition 2.7.2. A unique factorization domain (UFD) is defined to be an integral domain R in which
every non-zero element x of R can be written as a product of a unit u and zero or more irreducible elements
pi of R :

x “ up1p2 ¨ ¨ ¨ pn with n ě 0

and this representation is “unique up to associates and units” in the following sense: if q1, . . . , qm are irre-
ducible elements of R and w is a unit such that

x “ wq1q2 ¨ ¨ ¨ qm with m ě 0,

then m “ n, and there exists a bijective map ϕ : t1, . . . , nu Ñ t1, . . . ,mu such that pi is associated to qϕpiq for
i P t1, . . . , nu. We note that if there are multiple units in the decomposition, they are first combined to give
a single unit by commutativity. We will later in our writing assume that the decomposition into irreducibles
p1 ¨ ¨ ¨ pn already include a unit in it if any.

Remark 2.7.3. The condition

up1 ¨ ¨ ¨ pn “ wq1 ¨ ¨ ¨ qk ñ k “ n, and pi, qj associate

is equivalent to the condition

p1 ¨ ¨ ¨ pn “ q1 ¨ ¨ ¨ qk ñ k “ n, and pi, qj associate

Proof.
One should first notice that an irreducible is not a unit by definition. ùñ direction is direct.
ðù:

up1 ¨ ¨ ¨ pn “ x “ wq1 ¨ ¨ ¨ qk

p1 ¨ ¨ ¨ pm “ xu´1 “ pwq1 ¨ ¨ ¨ qkqw
´1 “

“

wu´1q1
‰

loooomoooon

irreducible

q2 ¨ ¨ ¨ qk
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where wu´1q1 is irreducible becasue

wu´1q1 “ xy ñ q1
loomoon

irreducible

“ rwu´1xsy ùñ wu´1x a unit or y a unit ùñ x unit or y unit

We will use this second condition for UFD for now on.

Example 2.7.4. For Z, the units are ˘1. Prime elements are t˘p | p primeu (see example 2.3.17). Z is UFD.

Example 2.7.5. Zr
?
´5s is not a UFD (see example 2.6.5).

Proposition 2.7.6. Integral Domain R is a UFD if and only if

(1) Every irreducible element is prime.

(2) Ascedning chain condition on principal ideals (AACP): R satisfies the ascending chain condition for
principle ideals. Namely, if we have

pa1q Ă pa2q Ď ¨ ¨ ¨ Ď pamq Ď ¨ ¨ ¨ ,

then Dn s.t. panq “ pan`1q “ ¨ ¨ ¨ . That is, R does not contain an infinite strictly increasing chain of
principal ideals.

Proof.
ùñ : First assume R is a UFD.

(1). If a P R irreducible and a
ˇ

ˇ bc, so for bc “ ax, write b, c, x as a product of irreducible elements, where
b “ q1 ¨ ¨ ¨ ql, c “ y1 ¨ ¨ ¨ yt, x “ x1 ¨ ¨ ¨xk. So bc “ ax ùñ q1 ¨ ¨ ¨ qly1 ¨ ¨ ¨ yt “ ax1 ¨ ¨ ¨xk. Since R UFD, Dqi or yi
associate to a. Assume WLOG uqi “ a for a unit u, so u´1a “ qi

ˇ

ˇ b ùñ b “ b1u´1a ùñ a
ˇ

ˇ b.

(2). paq Ď pbq ðñ b
ˇ

ˇ a. If paq Ĺ pbq, then a “ bc, where C is a non-unit. So the number of irreducible
factors of b ă the number of irreducible factors of a, so there cannot be infinitely many strict inclusion in the
chain.

ðù: Assume (1) and (2) holds. Suppose an element a factors in two ways into irreducible elements, say
p1 ¨ ¨ ¨ pm “ a “ q1 ¨ ¨ ¨ qn, where m ď n. If n “ 1, then m “ 1 and p1 “ q1. Suppose that n ą 1. Since p1 is
prime, it divides one of the factors q1, . . . , qn, say q1. Since q1 is irreducible and since p1 is not a unit, q1 and
p1 are associates, say p1 “ uq1, where u is a unit. We move the unit factor over to q2, replacing q1 by uq1 and
q2 by u´1q2. The result is that now p1 “ q1. Then we cancel p1 and use induction on n.

Uniqueness: Suppose a “ x1 ¨ ¨ ¨xn “ y1 ¨ ¨ ¨ ym, where xi, yj irreducible. Then y1
ˇ

ˇx1 ¨ ¨ ¨xn and yi prime
ùñ y1

ˇ

ˇxi for some i. So, xi “ uy1 and xi irreducible ùñ u is a unit, so y1, xi associates.

Theorem 2.7.7. Every PID is a UFD.

Proof. (1) It is proved that every irreducible element is prime in proposition 2.6.6.

(2) If pa1q Ă pa2q Ă ¨ ¨ ¨ . Let I “
Ť

paiq, then it is easy to see I is an ideal. Since R is a PID, we have I “ pbq.
Since b P I, Di s.t. b P paiq, so pbq Ď paiq. But paiq Ď pbq, so paiq “ pbq, so paiq “ pai`1q “ pai`1q “ ....

Definition 2.7.8. If R is an integral domain and a, b P R. Then d is the greatest common divisor of a, b if

• d
ˇ

ˇ a and d
ˇ

ˇ b.

• If d1
ˇ

ˇ a and d1
ˇ

ˇ b, then d1
ˇ

ˇ d
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Any two greatest common divisors d and d1 are associate elements. The first condition tells us that both d
and d1 divide a and b, and then the second one tells us that d1 divides d and also that d divides d1.

However, a greatest common divisor may not exist. There will often be a common divisor m that is maximal,
meaning that a{m and b{m have no proper divisor in common. But this element may fail to satisfy condition
(b). For instance, in the ring Zr

?
´5s considered above (12.2.3), the elements a “ 6 and b “ 2` 2

?
´5 are

divisible both by 2 and by 1 `
?
´5. These are maximal elements among common divisors, but neither one

divides the other.

One case in which a greatest common divisor does exist is that a and b have no common factors except units.
Then 1 is a greatest common divisor. When this is so, a and b are said to be relatively prime.

We call an integral domain in which any two non-zero elements have a greatest common divisor a GCD domain.
We show that UFDs are GCDs:

Proposition 2.7.9 (UFD is GCD). Let x, y P Rzt0u for UFD R. Factor x and y into pairwise non-associated
irreducible elements:

x “ pe11 ¨ ¨ ¨ p
en
n ,

y “ pf11 ¨ ¨ ¨ p
fn
n .

Then one can check that the product pr11 ¨ ¨ ¨ p
rn
n with ri :“ min tei, fiu is a greatest common divisor of x and

y.

We can generalize the notion of gcd for more elements:

Definition 2.7.10. Let a1, a2, . . . , an be nonzero elements of the ring R. An element d P R is a greatest
common divisor of a1, a2, . . . , an if it possesses the properties

(1) d | ai for i “ 1, 2, . . . , n pd is a common divisor),

(2) c | ai for i “ 1, 2, . . . , n implies that c | d.

Remark 2.7.11. GCDs can be safely deifned as the rings where any finite number of nonzero elements of R
admit a greatest common divisor. Just notice that gcdpa1, ¨ ¨ ¨ , ak`1q “ gcdpgcdpa1, ¨ ¨ ¨ , akq, ak´1q.

Remark 2.7.12 (gcd unique up to associates). A natural question to ask is whether the elements a1, a2, . . . , an P
R can possess two different greatest common divisors. For an answer, suppose that there are two elements
d and d1 in R satisfying the conditions of Definition refgcd defn.. Then, by (2), we must have d | d1 as well
as d1 | d; according to subsection 2.3.3, this implies that d and d1 are associates. Thus, the greatest common
divisor of a1, a2, . . . , an is unique, whenever it exists, up to arbitrary invertible factors.

We shall find it convenient to denote any greatest common divisor of a1, a2, . . . , an by gcd pa1, a2, . . . , anq.
The next theorem will prove that greatest common divisor of any finite set of nonzero elements can be
exprssed as a linear combination. We will first give an example where this fails in UFD:

Example 2.7.13. We give an example of gcd of two elements in a UFD that is not expressible into a linear
combination. Let’s consider Rrx, ys. The gcd of x2y and xy2 is xy so we are looking for a, b P Rrx, ys such
that ax2y ` bxy2 “ xy ñ ax` by “ 1. But the constant term of both ax and by is 0 , so the constant term of
their sum is also zero. Contradiction.

Theorem 2.7.14. Let a1, a2, . . . , an be nonzero elements of the ring R. Then a1, a2, . . . , an have a greatest
common divisor d, expressible in the form

d “ r1a1 ` r2a2 ` ¨ ¨ ¨ ` rnan pri P Rq ,

if and only if the ideal pa1, a2, . . . , anq is principal.

Proof. Suppose that d “ gcd pa1, a2, . . . , anq exists and can be written in the form d “ r1a1`r2a2`¨ ¨ ¨`rnan,
with ri P R. Then the element d lies in the ideal pa1, a2, . . . , anq, which implies that pdq Ď pa1, a2, . . . , anq.
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To obtain the reverse inclusion, observe that since d “ gcd pa1, a2, . . . , anq, each ai is a multiple of d; say,
ai “ xid, where xi P R. Thus, for an arbitrary member y1a1 ` y2a2 ` ¨ ¨ ¨ ` ynan of the ideal pa1, a2, . . . , anq,
we must have

y1a1 ` y2a2 ` ¨ ¨ ¨ ` ynan “ py1x1 ` y2x2 ` ¨ ¨ ¨ ` ynxnq d P pdq.

This fact shows that pa1, a2, . . . , anq Ď pdq, and equality follows. For the converse, let pa1, a2, . . . , anq be a
principal ideal of R :

pa1, a2, . . . , anq “ pdq pd P Rq.

Our aim, of course, is to prove that d “ gcd pa1, a2, . . . , anq. Since each a1 P pdq, there exist elements bi in R
for which ai “ bid, whence d | ai for i “ 1, 2, . . . , n. It remains only to establish that any common divisor C
of the ai also divides d. Now, ai “ sic for suitable si P R. As an element of pa1, a2, . . . , anq , d must have the
form d “ r1a1 ` r2a2 ` ¨ ¨ ¨ ` rnan, with ri in R. This means that

d “ pr1s1 ` r2s2 ` ¨ ¨ ¨ ` rnsnq c,

which is to say that c | d. Thus, d is a greatest common divisor of a1, a2, . . . , an and has the desired represen-
tation.

When pa1, a2, . . . , anq “ R, the elements a1, a2, . . . , an must have a common divisor which is an invertible
element of R; in this case, we say that a1, a2, . . . , an are relatively prime and shall write gcd pa1, a2, . . . , anq “
1.

If a1, a2, . . . , an are nonzero elements of a principal ideal ring R, then the theorem tells us that a1, a2, . . . , an
are relatively prime if and only if there exist r1, r2, . . . , rn P R such that

r1a1 ` r2a2 ` ¨ ¨ ¨ ` rnan “ 1 (Bezout’s Identity).

Proposition 2.7.15. Let a, b, c be elements of the principal ideal ring R. c | ab, with a and C relatively
prime, then c | b.

Proof. Since a and C are relatively prime, so that gcdpa, cq “ 1, there exint elements r, s P R satisfying
1 “ ra` sc; hence,

b “ 1b “ rab` scb.

As c | ab and c | c, Theorem 2.7.1 (5) guarantees that c | prab` scbq, or rather, c | b.

Dual to the notion of greatest common divisor there is the idea of a least common multiple, defined below.

Definition 2.7.16. Let a1, a2, . . . , an be nonzero elements of a ring R. An element d P R is a least common
multiple of a1, a2, . . . , an if

(1) ai | d for i “ 1, 2, . . . , n (d is a common multiple),

(2) ai | c for i “ 1, 2, . . . , n implies d | c.

In brief, an element d P R is a least common multiple of a1, a2, . . . , a1 if it is a common multiple of
a1, a2, . . . , an which divides any other common multiple. The reader should note that a least common mul-
tiple, in case it exists, is unique apart from the distinction between associates; indeed, if d and d1 are both
least common multiples of a1, a2, . . . , an, then d | d1 and d1 | d; hence, d and d1 are associates. We hereafter
adopt the standard notation lcm pa1, a2, . . . , anq to represent any least common multiple of a1, a2, . . . , an. It
can be shown that nonzero elements a1, a2, . . . , an in any ring R have a least common multiple if and only if
the ideal Xpaiq is principal (see [2] Theorem 6-5). It can also be shown that GCDs are exactly LCMs.
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2.7 EXERCISES

1. [1] p.379 EX2.1. Factor the following polynomials into irreducible factors in Fprxs.

x3 ` x2 ` x` 1, p “ 2,i.
x2 ´ 3x´ 3, p “ 5,ii.
x2 ` 1, p “ 7iii.

2. [1] p.379 EX2.2. Compute the greatest common divisor of the polynomials x6 ` x4 ` x3 ` x2 ` x ` 1
and x5 ` 2x3 ` x2 ` x` 1 in Qrxs.

3. [1] p.379 EX2.3. How many roots does the polynomial x2 ´ 2 have, modulo 8?

2.8 Noetherian Rings3

We have seen in the proof of PID implying UFD that PIDs has the ascending chain condition:

Definition 2.8.1. A ring R is said to satisfy the ascending chain condition (ACC) if any ascending chain of
ideals I1 Ă I2 Ă ¨ ¨ ¨ eventually terminates.

Lemma 2.8.2. A ring R satisfies ACC iff all ideals I P R are finitely generated.

Proof. Trivial.

Definition 2.8.3. A ring R is called Noetherian if it satisfies ACC. Note that apart from above lemma, ACC
is also equivalent to the condition that every non-empty set of ideals in A has a maximal element.

Theorem 2.8.4 (Hilbert’s Basis Theorem). If R is Noetherian, then RrXs is also Noetherian.

Proof. Start with an ideal J ⊴ RrXs. Pick f1 P J with minimal degree. If J “ pf1q, we are done. Otherwise
we can pick f2 P Jzpf1q with minimal degree. Continuing this, if J is not finitely generated, then there is a
nested sequence

pf1q Ĺ pf1, f2q Ĺ ¨ ¨ ¨ ,deg f1 ď deg f2 ď ¨ ¨ ¨

Let ai be the leading coefficient of fi, then consider a chain of ideals pa1q Ă pa1, a2q Ă ¨ ¨ ¨ . R is Noetherian, so
this sequence must eventually terminates, so in particular there is some m P N such that am`1 P pa1, . . . , amq.
So am`1 “ λ1a1 ` ¨ ¨ ¨ ` λmam. Now consider

gpXq “
m
ÿ

i“1

λiX
deg fm`1´deg fifi

So g, fm`1 has the same degree and leading coefficient, so degpfm`1 ´ gq ă deg fm`1. But fm`1 ´ g P J ,
so since we chose fm`1 to have the minimal degree in Jzpf1, . . . , fmq, fm`1 ´ g P pf1. . . . , fmq, so fm`1 P

pf1, . . . , fmq, contradiction.

Corollary 2.8.5. RrX1, . . . , Xns is Noetherian whenever R is.

In particular, ZrX1, . . . , Xns,FrX1, . . . , Xns are Noetherian (where F is a field).

Proof. Apply the preceding theorem recursively.
3Taken from David
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Example 2.8.6. Let R “ CrX1, . . . , Xns. Let V Ă Cn be of the form

V pFq “ tpa1, . . . , anq P Cn : fpa1, . . . , anq “ 0,@f P Fu

for some (possibly infinite) subset F Ă R. Let

I “

#

m
ÿ

i“1

λifi : m P N, λi P R, fi P F

+

Then I ⊴R and V pIq “ V pFq, but R is Noetherian by the preceding corollary, so I is finitely generated and
thus V pFq can be defined by only finitely many polynomials.

Lemma 2.8.7. Any quotient ring of a Noetherian ring is again Noetherian.

Proof. Suppose R is Noetherian and I ⊴ R is an ideal. Consider a chain of ideals J1 Ă J2 Ă ¨ ¨ ¨ in R{I.
But we know the correspondence between the ideals in R{I and the ideals of R containing I, so there are
ideals I1, I2, . . . all containing I with Ji “ Ii{I. But then I1 Ă I2 Ă . . ., so there is N P N such that for any
m ą N , Im “ IN , hence Jm “ Im{I “ IN{I “ JN , hence the sequence eventually terminates, thus R{I is
Noetherian.

Example 2.8.8. 1. The Gaussian integers can be written as Zris – ZrXs{pX2 ` 1q hence is Noetherian.
2. If RrXs is Noetherian, then R is Noetherian since R – RrXs{pXq, so Hilbert’s Basis Theorem is actually
an “if and only if”.

Example 2.8.9 (Non-example). We shall give examples of a non-Noetherian rings.
1. We consider the ring as the upper limit

R “ ZrX1, X2, . . .s “
ď

nPN
ZrX1, . . . , Xns

Then pX1q Ĺ pX1, X2q Ĺ ¨ ¨ ¨ , so R is not Noetherian.
2. Consider the ring R ď QrXs by collecting R “ tf P QrXs : fp0q P Zu, then R is obviously a ring with

pXq Ĺ p2´1Xq Ĺ p2´2Xq Ĺ ¨ ¨ ¨

3. Consider the ring R of infinitely differentiable functions r´1, 1s Ñ R under pointwise operations, this is
also not Noetherian (exercise).

2.8 EXERCISES

We list some results from Atiyah and MacDonald’s Introduction to Commutative Algebra (AM) regarding
primary decomposition of Neotherian rings. First, an ideal I is called irreducible iff I “ J X K ñ pI “
J or I “ Kq.

1. AM Lemma 7.11. In a Noetherian ring A, every ideal is a finite intersection of irreducible ideals.

2. AM Lemma 7.12. In a Noetherian ring A, every irreducible ideal is primary.

3. AM Theorem 7.13. In a Noetherian ring A, every ideal has a primary decomposition.

2.9 Euclidean Domains and Euclid’s Algorithms

Remark: rings Ą commutative rings Ą integral domains Ą GCD domains Ą UFDs Ą PIDs Ą Euclidean do-
mains Ą fields Ą algebraically closed fields.
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Definition 2.9.1. An integral domain R is a Euclidean domain if there is a map d : Rzt0u ÝÑ Z` with the
following division-with-remainder property:

• Let a and b be elements of R, and suppose that a is not zero. There are elements q and r in R such that
b “ aq ` r, and either r “ 0 or else dprq ă dpaq.

Example 2.9.2.

(1) R “ Z with dpaq “ |a| is a Euclidean domain.

(2) If R “ F rxs where F is a field, then dpfpxqq= degpfq. R with d is a Euclidean domain.

(3) For any field F , we define @a P F zt0u, dpaq “ 0. Then it is a Euclidean domain.

Proposition 2.9.3. Euclidean domains are PIDs.

Proof. We mimic the proof that the ring of integers is a principal ideal domain once more. Let R be a
Euclidean domain with size function σ, and let A be an ideal of R. We must show that A is principal. The
zero ideal is principal, so we may assume that A is not the zero ideal. Then A contains a nonzero element.
We choose a nonzero element a of A such that dpaq is as small as possible, and we show that A is the principal
ideal paq of multiples of a.

Because A is an ideal and a is in A, any multiple aq with q in R is in A. So paq Ă A. To show that A Ă paq,
we take an arbitrary element b of A. We use division with remainder to write b “ aq` r, where either r “ 0,
or dprq ă dpaq. Then b and aq are in A, so r “ b ´ aq is in A too. Since dpaq is minimal, we can’t have
dprq ă dpaq, and it follows that r “ 0. This shows that a divides b, and hence that b is in the principal ideal
paq. Since b is arbitrary, A Ă paq, and therefore A “ paq.

Theorem 2.9.4 (Euclid’s division lemma). Given two integers a and b, with b ‰ 0, there exist unique integers
q and r such that

a “ bq ` r, 0 ď r ă |b|.

In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called
the divisor, q is called the quotient and r is called the remainder.

Theorem 2.9.5 (Euclid’s division lemma (half remainder version)). For every pair of integers a, b where
b ‰ 0, there exist unique integers q, r such that a “ qb` r and ´ |b|

2 ď r ă |b|

2 :

@a, b P Z, b ‰ 0 : D!q, r P Z : a “ qb` r,´
|b|

2
ď r ă

|b|

2

We show that the Gauss integers form a Euclidean domain too and provide the division algorithm for Gauss
integers.

Example 2.9.6. Zris “ ta` bi
ˇ

ˇ a, b P Zu is an Euclidean domain with

d : Zris ´ t0u ÝÑ Z`; a` bi ÞÑ |a` bi| “ a2 ` b2.

Proof. d is multiplicative: dppa ` biqpa1 ` b1iqq “ dppaa1 ´ bb1q ` pab1 ` a1bqiq “ pa2 ` b2qpa12 ` b12q “

dpa` biqdpa1 ` b1iq.

(1): If a “ bc, where a, b, c ‰ 0, then dpaq “ dpbqdpcq ą dpbq.

(2): Suppose x, y P Zris and we want to divide x by y.

case 1: if y “ n P Z`, x “ a ` bi. Then a and b are both integers now. We can write by Theorem 2.9.5
a “ nq ` r, r “ 0 or |r| ă n

2 and b “ nq1 ` r, r1 “ 0 or |r1| ă n
2 . Then x “ a ` bi “ pnq ` rq ` ipnq1 ` r1q “

npq ` iq1q ` pr ` ir1q, and dpr ` ir1q “ r2 ` r12 ă n2

4 `
n2

4 “
n2

2 ă n2 “ dpnq.
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case 2: Now suppose we are dividing x by an arbitary y, and we use the previous result by letting n “ yȳ “
dpyq ą 0. So we can divide xȳ by n where

xȳ “ qn` r, dprq ă dpnq ùñ xȳ “ qȳy ` r

Then claim that x “ qy ` px´ qyq, where dpx´ qyq ă dpyq. Notice that

dpx´ qyqdpȳq “ dpxȳ ´ qyȳq “ dprq ă dpnq “ dpyq2 ùñ dpx´ qyq ă dpyq

Thus, this result holds.

Example 2.9.7. This is not unique. 3 “ p1 ` iqp1 ´ iq ` 1, dp1q ă dp1 ´ iq. Also 3 “ p2 ´ iqp1 ´ iq ´ i,
dp´iq ă dp1´ iq

Theorem 2.9.8 (Euclid’s Algorithm). If R is a Euclidean Domain, and a, b P R ‰ 0, we can find the gcd
using the following algorithm

a “ bq0 ` r0 gcdpa, bq “ gcdpb, r0q

if r0 ‰ 0, b0 “ r0q1 ` r1 gcdpb, r0q “ gcdpr0, r1q

r0 “ r1q2 ` r2 gcdpr0, r1q “ gcdpr1, r2q

...
...

rn “ rn`1qn`2 ` rn`2 gcdprn, rn`1q “ gcdprn`1, rn`2q

rn`1 “ rn`2qn`3 ` 0 gcdprn`1, rn`2q “ gcdprn`2, rn`3q “ rn`2

where the remainder will eventually go to zero as the degree keeps decreasing.

Proof. For example, to verify gcdpa, bq “ gcdpb, r0q “ gcdpb, r ´ q0q is to show

• gcdpa, bq
ˇ

ˇ b, gcdpa, bq
ˇ

ˇ a´ bq0.

• d1
ˇ

ˇ b, d1
ˇ

ˇ a´ bq0 ùñ d1
ˇ

ˇ gcdpa, bq.

That’s direct computation.

2.9 EXERCISES

1. Let R “ Zris and dpa` biq “ a2 ` b2. Let α “ 11` 3i and β “ 1` 8i.

Write α “ βq ` r in R with dprq ă dpβq using the method we discussed in class.i.
Find the gcd of α and β by using the Euclidean algorithm.ii.

2. [1] p.379 Ex2.6. Prove that the following rings are Euclidean domains.

Zrωs, ω “ e2πi{3i.
Zr
?
´2s.ii.

3. F5 “ t0, 1, 2, 3, 4u is the field of five elements, with addition and multiplication modulo 5 , isomorphic to
Z{5Z. Find polynomials qpXq, rpXq in F5rXs such that

X7 ` 2X6 ` 3X5 ` 4X4 `X2 ` 2X ` 3 “ qpXq ¨
`

X2 ` 4
˘

` rpXq

where rpXq has degree at most 1.
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2.10 Rings of Formal Power Series

- We will extensively copy from [2] chap.7 and [1]’s section “Factoring Integer Polynomial” for the last four
sections of this chapter.

To begin with simpler things, given an arbitrary ring R, let seq R denote the totality of all infinite sequences

f “ pa0, a1, a2, . . . , ak, . . .q

of elements ak P R. Such sequences are called formal power series, or merely power series, over R. (Our
choice of terminology will be justified shortly.)

We intend to introduce suitable operations in the set seq R so that the resulting system forms a ring contain-
ing R as a subring. At the outset, it should be made perfectly clear that two power series

f “ pa0, a1, a2, . . .q and g “ pb0, b1, b2, . . .q

are considered to be equal if and only if they are equal term by term:

f “ g if and only if ak “ bk for all k ě 0.

Now, power series may themselves be added and multiplied as follows:

f ` g “ pa0 ` b0, a1 ` b1, . . .q ,

fg “ pc0, c1, c2, . . .q

where, for each k ě 0, ck is given by

ck “
ÿ

i`j“k

aibj “ a0bk ` a1bk´1 ` ¨ ¨ ¨ ` ak´1b1 ` akb0.

(It is understood that the above summation runs over all integers i, j ě 0 subject to the restriction that
i` j “ k.)

A routine check establishes that with these two definitions seq R becomes a ring. To verify a distributive law,
for instance, take

f “ pa0, a1, . . .q , g “ pb0, b1, . . .q , h “ pc0, c1, . . .q .

One finds quickly that

fpg ` hq “ pa0, a1, . . .q pb0 ` c0, b1 ` c1, . . .q “ pd0, d1, . . .q ,

where
dk “

ÿ

i`j“k

ai pbj ` cjq “
ÿ

i`j“k

paibj ` aicjq

“
ÿ

i`j“k

aibj `
ÿ

i`j“k

aicj .

A similar calculation of fg ` fh leads to the same general term, so that fpg ` hq “ fg ` fh. The rest of
the details are left to the reader’s care. We simply point out that the sequence p0, 0, 0, . . .q serves as the zero
element of this ring, while the additive inverse of an arbitrary member pa0, a1, a2, . . .q of seq R is, of course,
p´a0,´a1,´a2, . . .q. To summarize what we know so far:

Theorem 2.10.1. The system seq R forms a ring, known as the ring of (formal) power series over R.
Furthermore, the ring seq R is commutative with unity if and only if the given ring R has these properties.
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If S represents the subset of all sequences having 0 for every term beyond the first, that is, the set

S “ tpa, 0, 0, . . .q | a P Ru,

then it is not particularly difficult to show that S constitutes a subring of seq R which is isomorphic to R;
one need only consider the mapping that sends the sequence pa, 0, 0, . . .q to the element a. In this sense, seq
R contains the original ring R as a subring.

Having reached this stage, we shall no longer distinguish between an element a P R and the special sequence
pa, 0, 0, . . .q of seq R. The elements of R, regarded as power series, are hereafter called constant series, or
just constants.

With the aid of some additional notation, it is possible to represent power series the way we would like them
to look. As a first step in this direction, we let ax designate the sequence

p0, a, 0, 0, . . .q.

That is, ax is the specific member of seq R which has the element a for its second term and 0 for all other
terms. More generally, the symbol ax4, n ě 1, will denote the sequence

p0, . . . , 0, a, 0, . . .q,

where the element a appears as the pn` 1q st term in this sequence; for example, we have and

ax2 “ p0, 0, a, 0, . . .q

ax3 “ p0, 0, 0, a, 0, . . .q.

By use of these definitions, each power series

f “ pa0, a1, a2, . . . , an, . . .q

may be uniquely expressed in the form

f “ pa0, 0, 0, . . .q ` p0, a1, 0, . . .q ` ¨ ¨ ¨ ` p0, . . . , 0, an, 0, . . .q ` ¨ ¨ ¨

“ a0 ` a1x` a2x
2 ` ¨ ¨ ¨ ` anx

n ` ¨ ¨ ¨

with the obvious identification of a0 with the sequence pa0, 0, 0, . . .q. Thus there is no loss in regarding the
power series ring seq R as consisting of all formal expressions

f “ a0 ` a1x` a2x
2 ` ¨ ¨ ¨ ` anx

n ` ¨ ¨ ¨ ,

where the elements a0, a1, . . . , an, . . . (the coefficients of f ) lie in R. As a notational device, we shall often
write this as f “

ř

akx
k (the summation symbol is not an actual sum and convergence is not at issue here).

Using sigma notation, the definitions of addition and multiplication of power series assume the form where
ÿ

akx
k `

ÿ

bkx
k “

ÿ

pak ` bkqx
k,

´

ÿ

akx
k
¯´

ÿ

bkx
k
¯

“
ÿ

ckx
k,

ck “
ÿ

i`j“k

aibj “
k
ÿ

i“0

aibk´i.

We should emphasize that, according to our definition, x is simply a new symbol, or indeterminant, totally
unrelated to the ring R and in no sense represents an element of R. To indicate the indeterminant x, it is
common practice to write Rrrxss for the set seq R, and fpxq for any member of the same. From now on, we
shall make exclusive use of this notation.
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Remark 2.10.2. If the ring R happens to have a multiplicative identity 1 , many authors will identify the
power series 0` 1x` 0x2 ` 0x3 ` ¨ ¨ ¨ with x thereby treating x itself as a special member of Rrrxss; namely,
the sequence x “ p0, 1, 0, 0, . . .q. From this view, ax becomes an actual product of members of Rrrxss :

ax “ pa, 0, 0, . . .qp0, 1, 0, 0, . . .q.

Concerning the notation of power series, it is customary to omit terms with zero coefficients and to replace
p´akqx

k by ´akxk. Although x is not to be considered as an element of Rrrxss, we shall nonetheless take
the liberty of writing the term 1xk as xkpk ě 1q. With these conventions, one should view, for example, the
power series

1` x2 ` x4 ` ¨ ¨ ¨ ` x2n ` ¨ ¨ ¨ P Zrrxss

as representing the sequence p1, 0, 1, 0, . . .q. An important definition in connection with power series is that
of order, given below.

Definition 2.10.3. If fpxq “
ř

akx
k is a nonzero power series (that is, if not all the ak “ 0q in Rrrxss,

then the smallest integer n such that an ‰ 0 is called the order of fpxq and denoted by ord fpxq. Suppose
fpxq, gpxq P Rrrxss, with ord fpxq “ n and ord gpxq “ m, so that

fpxq “ anx
n ` an`1x

n`1 ` ¨ ¨ ¨ pan ‰ 0q ,
gpxq “ bmx

m ` bm`1x
m`1 ` ¨ ¨ ¨ pbm ‰ 0q .

From the definition of multiplication in Rrrxss, the reader may easily check that all coefficients of fpxqgpxq
up to the pn`mq th are zero, whence

fpxqgpxq “ anbmx
n`m ` pan`1bm ` anbm`1qx

n`m`1 ` ¨ ¨ ¨ .

If we assume that one of an or bm is not a divisor of zero in R, then anbm ‰ 0 and

ordpfpxqgpxqq “ n`m “ ord fpxq ` ord gpxq.

This certainly holds if R is taken to be an integral domain, or again if R has an identity and one of an or bm
is the identity element.

The foregoing argument serves to establish the first part of the next theorem; the proof of the second asser-
tion is left as an exercise.

Theorem 2.10.4. If fpxq and gpxq are nonzero power series in Rrrxss, then

(1) either fpxqgpxq “ 0 or ord pfpxqgpxqq ě ord fpxq` ord gpxq, with equality if R is an integral domain;

(2) either fpxq ` gpxq “ 0 or

ordpfpxq ` gpxqq ě mintord fpxq, ord gpxqu.

The notation of order can be used to prove the following corollary.

Corollary 2.10.5. If the ring R is an integral domain, then so also is its power series ring Rrrxss.

Proof. We observed earlier that whenever R is a commutative ring with identity, these properties carry over
to Rrrxss. To see that Rrrxss has no zero divisors, select fpxq ‰ 0, gpxq ‰ 0 in Rrrxss. Then,

ord pfpxqgpxqq “ ord fpxq ` ord gpxq ą 0;

hence, the product fpxqgpxq cannot be the zero series.
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Although arbitrary power series rings are of some interest, the most important consequences arise on spe-
cializing the discussion to power series whose coefficients are taken from a field. These will be seen to form
principal ideal domains and, in consequence, unique factorization domains. The following intermediate
result is directed towards establishing this fact.

Lemma 2.10.6. LetR be a commutative ring with identity. A formal power series fpxq “
ř

akx
k is invertible

in Rrrxss if and only if the constant term a0 has an inverse in R.

Proof. If fpxqgpxq “ 1, where gpxq “
ř

bkx
k, then the definition of multiplication in Rrrxss shows that

a0b0 “ 1; hence, a0 is invertible as an element of R.

For the converse, suppose that the element a0 has an inverse in R. We proceed inductively to define the
coefficients of a power series

ř

bkx
k in Rrrxss which is the inverse of fpxq. To do this, simply take b0 “ a´1

0

and, assuming b1, b2, . . . , bk´1 have already been defined, let

bk “ ´a
´1
0 pa1bk´1 ` a2bk´2 ` ¨ ¨ ¨ ` akb0q .

Then a0b0 “ 1, while, for k ě 1,

ck “
ÿ

i`j“k

aibj “ a0bk ` a1bk´1 ` ¨ ¨ ¨ ` akb0 “ 0.

By our choice of the bk ’s, we evidently must have
`
ř

akx
k
˘ `

ř

bkx
k
˘

“ 1, and so
ř

akx
k possesses an

inverse in Rrrxss.

Corollary 2.10.7. A power series fpxq “
ř

akx
k P F rrxss, where F is a field, has an inverse in F rrxss if

and only if its constant term a0 ‰ 0. Having dealt with these preliminaries, we are now ready to proceed to
describe the ideal structure of F rrxss.

Theorem 2.10.8. For any field F , the power series ring F rrxss is a principal ideal domain; in fact, the
nontrivial ideals of F rrxss are of the form

`

xk
˘

, where k P Z`.

Proof. Let I be any proper ideal of F rrxss. Either I “ t0u, in which case I is just the principal ideal p0q, or
else I contains nonzero elements. In the batter event, choose a nonzero power series fpxq P I of minimal
order. Suppose that fpxq is of order k, so that

fpxq “ akx
k ` ak`1x

k`1 ` ¨ ¨ ¨ “ xk pak ` ak`1x` ¨ ¨ ¨ q .

Since the coefficient ak ‰ 0, the previous lemma insures that the power series ak`ak`1x`¨ ¨ ¨ is an invertible
element of F rrxss; in other words, fpxq “ xkgpxq, where gpxq has an inverse in F rrxss. But, then,

xk “ fpxqgpxq´1 P I,

which leads to the inclusion
`

xk
˘

Ď I. On the other hand, take hpxq to be any nonzero power series in I, say
of order n. Since fpxq is assumed to have least order among all members of I, it is clear that k ď n; thus,
hpxq can be written in the form

hpxq “ xk
`

bnx
n´k ` bn`1x

n´k`1 ` ¨ ¨ ¨
˘

P
`

xk
˘

.

This implies that I Ď
`

xk
˘

, and the equality I “
`

xk
˘

follows.

Corollary 2.10.9. The ring F rrxss is a local ring with pxq as its maximal ideal.
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Proof. Inasmuch as the ideals of F rrxss form a chain

F rrxss Ą pxq Ą
`

x2
˘

Ą ¨ ¨ ¨ Ą t0u,

the conclusion is obvious.

Corollary 2.10.10. Any nonzero element fpxq P F rrxss can be written in the form fpxq “ gpxqxk, where
gpxq is invertible and k ě 0.

To this we add, for future reference, the following assertion regarding the maximal ideals of a power series
ring over a commutative ring with identity.

Theorem 2.10.11. LetR be a commutative ring with identity. There is a one-to-one correspondence between
the maximal ideals M of the ring R and the maximal ideals M 1 of Rrrxss in such a way that M 1 corresponds
to M if and only if M 1 is generated by M and x; that is, M 1 “ pM,xq.

Proof. See [2] Theorem 7-4.

The ring of formal Laurent series in x with coefficients in R is denoted by Rppxqq, and is defined as follows.
The elements of Rppxqq are infinite expressions of the form

fpxq “ arx
r ` ar`1x

r`1 ` ar`2x
r`2 ` ¨ ¨ ¨

in which r P Z and an P R for all n ě r. That is, a formal Laurent series is a generalization of a formal power
series in which finitely many negative exponents are permitted. Addition and multiplication are defined just
as for the ring Rrrxss of formal power series, and Rppxqq is commutative because R is. (I encourage you to
check that when multiplying two formal Laurent series the coefficients of the product really are polynomial
functions of the coefficients of the factors, and hence are in the ring R. This ensures that the multiplication
in Rppxqq is well-defined.) Note that the ring Rrrxss is a subset of the ring Rppxqq, and that the algebraic
operations of these rings agree on the subset Rrrxss. If fpxq P Rppxqq and fpxq ‰ 0, then there is a smallest
integer n such that rxns fpxq ‰ 0; this is called the index of fpxq and is denoted by Ipfq. By convention,
the index of 0 is Ip0q :“ `8. Concerning the existence of multiplicative inverses in Rppxqq, we have the
following proposition.

Proposition 2.10.12. Let R be a commutative ring. If R is a field then Rppxqq is a field.

Proof. Consider a nonzero fpxq “
ř8

n“Ipfq anx
n in Rppxqq. Then aIpfq ‰ 0 so that it is invertible in R, since

R is a field. We may write fpxq “ xIpfqgpxq with gpxq “
ř8

n“0 an`Ipfqx
n, so that gpxq is a formal power

series in Rrrxss. The coefficient of x0 in gpxq is aIpfq and, by Lemma 2.10.6, it follows that gpxq is invertible
in Rrrxss, and hence in Rppxqq. Let hpxq :“ x´Ipfqg´1pxq. Then

fpxqhpxq “ xIpfqgpxqx´Ipfqg´1pxq “ 1,

so that hpxq “ f´1pxq and fpxq is invertible in Rppxqq. Therefore, Rppxqq is a field.

The inclusions Rrxs Ă Rrrxss Ă Rppxqq and Rrxs Ă Rpxq have been remarked upon already. In fact, if R is a
field then Rpxq Ă Rppxqq as well. Also, the rings Rrrxss and Rpxq have a nontrivial intersection, but neither
one contains the other. Since we have no pressing need for these facts we will not pause to prove them, but
instead relegate them to exercises.

The usual rules of arithmetic hold for all of the rings constructed above, but there are other operations on
these rings that have no analogues in Z. Care must be taken with these operations to ensure that they
produce well-defined power series. In other words, these operations are not universally defined.
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The first of the new operations are formal differentiation and formal integration. Since Rppxqq contains all
the other rings above (if R is a field) we will just define these operations on a typical formal Laurent series
fpxq “

ř8

n“Ipfq anx
n. The formal derivative is always defined as

f 1pxq :“
d

dx
fpxq :“

8
ÿ

n“Ipfq

nanx
n´1.

The formal integral is defined only if Q Ď R and a´1 “ 0, in which case
ż

fpxqdx :“
ÿ

něIpfq,n‰´1

an
xn`1

n` 1
.

In particular, the formal integral is defined on all of Rrrxss when Q Ď R. One can show algebraically from
the definitions that the familiar rules of calculus (the Product Rule, Quotient Rule, Chain Rule, Integration
by Parts, and so on) continue to hold when all the integrals involved are defined. Concepts of onvergence,
sequence, and limit etc. can also be considered in new context. We direct one with further interest to the
link.

2.10 EXERCISES

1. Let R be a commutative ring. For a P R consider the function µa : R Ñ R defined by µaprq :“ ar for all
r P R.

Show that if R is an integral domain and a ‰ 0, then µa : RÑ R is an injection.i.
Show that if R is a finite integral domain then R is a field. (The ring Z of integers is an integral domain
which is not a field. Thus, finiteness of R is essential for this problem.)

ii.

2. Let R be a commutative ring.

Show that if R is an integral domain, then Rrxs is an integral domain.i.
Show that neither of Rrrxss nor Rpxq contains the other.ii.
Show that if R is a field then Rpxq is a proper subset of Rppxqq.iii.
Find an element of Zpxq which is not in Zppxqq.iv.
Show that Rrrxssrys is a proper subset of Rrysrrxss.v.

3. Let fpxq and gpxq be in Rppxqq. Show that

d

dx
pfpxqgpxqq “ f 1pxqgpxq ` fpxqg1pxq.

2.11 Polynomial Rings

Power series have so far received all the attention, but our primary concern is with polynomials.

Definition 2.11.1. Let Rrxs denote the set of all power series in Rrrxss whose coefficients are zero from
some index onward (the particular index varies from series to series):

Rrxs “ ta0 ` a1x` ¨ ¨ ¨ ` anx
n | ak P R;n ě 0u .

An element of Rrxs is called a polynomial (in x) over the ring R.
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In essence, we are defining a polynomial to be a finitely nonzero sequence of elements of R. Thus, the
sequence p1, 1, 1, 0, 0, . . .q would be a polynomial over Z2, but p1, 0, 1, 0, . . . , 1, 0, . . .q would not.

It is easily verified that Rrxs constitutes a subring of Rrrxss, the socalled ring of polynomials over R (in an
indeterminant x); indeed, if fpxq “

ř

akx
k, gpxq “

ř

bkx
k are in Rrxs, with ak “ 0 for all k ě n and bk “ 0

for all k ě m, then
ak ` bk “ 0 for k ě maxtm,nu

ÿ

i`j“k

aibj “ 0 for k ě m` n

so that both the sum fpxq ` gpxq and product fpxqgpxq belong to Rrxs. Running parallel to the idea of the
order of a power series is that of the degree of a polynomial, which we introduce at this time.

Definition 2.11.2. Given a nonzero polynomial

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n pan ‰ 0q

in Rrxs, we call an the leading coefficient of fpxq; and the integer n, the degree of the polynomial. The
degree of any nonzero polynomial is therefore a nonnegative integer; no degree is assigned to the zero
polynomial. Notice that the polynomials of degree 0 are precisely the nonzero constant polynomials. If R is
a ring with identity, a polynomial whose leading coefficient is 1 is said to be a monic polynomial.

As a matter of notation, we shall hereafter write deg fpxq for the degree of any nonzero polynomial fpxq P
Rrxs.

The result below is similar to that given for power series and its proof is left for the reader to provide; the
only change of consequence is that we now use the notion of degree rather than order.

Theorem 2.11.3. If fpxq and gpxq are nonzero polynomials in Rrxs, then

(1) either fpxqgpxq “ 0 or degpfpxqgpxqq ď deg fpxq ` deg gpxq, with equality whenever R is an integral
domain;

(2) either fpxq ` gpxq “ 0 or

degpfpxq ` gpxqq ď maxtdeg fpxq,deg gpxqu.

Knowing this, one could proceed along the lines of the corollary 2.10.5 to establish

Corollary 2.11.4. If the ring R is an integral domain, then so is its polynomial ring Rrxs.

Example 2.11.5. As an illustration of what might happen if R has zero divisors, consider Z8, the ring of
integers modulo 8 . Taking

fpxq “ 1` 2x, gpxq “ 4` x` 4x2,

we obtain fpxqgpxq “ 4` x` 6x2, so that

degpfpxqgpxqq “ 2 ă 1` 2 “ deg fpxq ` deg gpxq.

Although many properties of the ring R carry over to the associated polynomial ring Rrxs, it should be
pointed out that for no ring R does Rrxs form a field. In fact, when R is a field (or, for that matter, an
integral domain), no element of Rrxs which has positive degree can possess a multiplicative inverse. For,
suppose that fpxq P Rrxs, with deg fpxq ą 0; if fpxqgpxq “ 1 for some gpxq in Rrxs, we could obtain the
contradiction

0 “ deg 1 “ degpfpxqgpxqq “ deg fpxq ` deg gpxq ‰ 0.

The degree of a polynomial is used in the factorization theory of Rrxs in much the same way as the absolute
value is employed in Z. For, it is through the degree concept that induction can be utilized in Rrxs to develop
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a polynomial counterpart of the familiar division algorithm. One can subsequently establish that the ring
F rxs with coefficients in a field forms a Euclidean domain in which the degree function is taken to be the
Euclidean valuation.

Before embarking on this program, we wish to introduce several new ideas. To this purpose, let R be a ring
with identity; assume further that R1 is any ring containing R as a subring (that is, R1 is an extension of R )
and let r be an arbitrary element of R1. For each polynomial

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n

in Rrxs, we may define fprq P R1 by taking

fprq “ a0 ` a1r ` ¨ ¨ ¨ ` anr
n.

The element fprq is said to be the result of substituting r for x in fpxq. Suffice it to say, the addition and
multiplication used in defining fprq are those of the ring R1, not those of Rrxs.

Now, suppose that fpxq, gpxq are polynomials in Rrxs and r P centerpR1q (that’s bc. [2] does not assume
commutativity of the ring here). We leave the reader to prove that if then

hpxq “ fpxq ` gpxq, kpxq “ fpxqgpxq,
hprq “ fprq ` gprq, kprq “ fprqgprq.

This being so, it may be concluded that the mapping ϕr : Rrxs Ñ R1 which sends fpxq to fprq is a homomor-
phism of Rrxs into R1. Such a homomorphism will be called the substitution homomorphism determined
by r and its image denoted by the symbol Rrrs :

Rrrs “ tfprq | fpxq P Rrxsu

“ ta0 ` a1r ` ¨ ¨ ¨ ` anr
n | ak P R;n ě 0u .

It is a simple matter to show that Rrrs constitutes a subring of R1; in fact, Rrrs is the subring of R1 generated
by the set R Y tru. (Since R has an identity element 1, 1x “ x P Rrxs, and so r P Rrrs.) Notice also that
Rrrs “ R if and only if r P R. The foregoing remarks justify part of the next theorem.

Theorem 2.11.6. Let R be a ring with identity, R1 an extension ring of R, and the element r P cent R1. Then
there is a unique homomorphism ϕr : Rrxs Ñ R1 such that ϕrpxq “ r, ϕrpaq “ a for all a P R.

Proof. We need only verify that ϕr is unique. Suppose, then, that there is another homomorphism τ : Rrxs Ñ
R satisfy in the indicated conditions and consider any polynomial fpxq “ a0 ` a1x ` ¨ ¨ ¨ ` anx

n P Rrxs. By
assumption, τ pakq “ ak for each coefficient ak, while τ

`

xk
˘

“ τpxqk “ rk. Taking stock of the fact that τ is
a homomorphism,

τpfpxqq “ τ pa0q ` τ pa1q τpxq ` ¨ ¨ ¨ ` τ panq τpxq
n

“ a0 ` a1r ` ¨ ¨ ¨ ` anr
n “ fprq “ ϕrpfpxqq.

This proves that τ “ ϕr, yielding the uniqueness conclusion. Without some commutativity assumption, the
above remarks need not hold. For, if we let then

hpxq “ px´ aqpx´ bq “ x2 ´ pa` bqx` ab,

hprq “ r2 ´ pa` bqr ` ab.

Lacking the hypothesis that r P cent R1, it cannot be concluded that

pr ´ aqpr ´ bq “ r2 ´ ar ´ rb` ab
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will equal hprq; in other words, hpxq “ fpxqgpxq does not always imply hprq “ fprqgprq.

Whenever fprq “ 0, we call the element r a root or zero of the polynomial fpxq. Of course, a given
polynomial fpxq P Rrxs may not have a root in R; we shall see later that when R is a field, there always
exists an extension field R1 of R in which fpxq possesses a root. It is perhaps appropriate to point out at this
time that the problem of obtaining all roots of a polynomial fpxq P Rrxs is equivalent to that of finding all
elements r P R1 for which fpxq P kerϕr.

After this brief digression, let us now state and prove the division algorithm for polynomials.

Theorem 2.11.7 (Division Algorithm (Polynomials)). Let R be a commutative ring with identity and f, g be
nonzero polynomials in Rrxs, with the leading coefficient of g an invertible element. Then there exist unique
polynomials q, r P Rrxs such that

fpxq “ qpxqgpxq ` rpxq,

where either rpxq “ 0 or deg rpxq ă deg gpxq.

Proof. The proof is by induction on the degree of fpxq. First, notice that if fpxq “ 0 or fpxq ‰ 0 and
deg fpxq ă deg gpxq, a representation meeting the requirements of the theorem exists on taking qpxq “
0, rpxq “ fpxq. Furthermore, if deg fpxq “ deg gpxq “ 0, fpxq and gpxq are both elements of the ring R, and
it suffices to let qpxq “ fpxqgpxq´1, rpxq “ 0.

This being so, assume that the theorem is true for polynomials of degree less than n (the induction hypoth-
esis) and let deg fpxq “ n,deg gpxq “ m, where n ě m ě 1; that is,

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n, an ‰ 0,

gpxq “ b0 ` b1x` ¨ ¨ ¨ ` bmx
m, bm ‰ 0 pn ě mq.

Now, the polynomial
f1pxq “ fpxq ´

`

anb
´1
m

˘

xn´mgpxq

lies in Rrxs and, since the coefficient of xn is an ´
`

anb
´1
m

˘

bm “ 0, has degree less than n. By supposition,
there are polynomials q1pxq, rpxq P Rrxs such that

f1pxq “ q1pxqgpxq ` rpxq,

where rpxq “ 0 or deg rpxq ă deg gpxq. Substituting, we obtain the equation

fpxq “
`

q1pxq `
`

anb
´1
m

˘

xn´m
˘

gpxq ` rpxq

“ qpxqgpxq ` rpxq,

which shows that the desired representation also exists when deg fpxq “ n As for uniqueness, suppose that

fpxq “ qpxqgpxq ` rpxq “ q1pxqgpxq ` r1pxq,

where rpxq and r1pxq satisfy the requirements of the theorem. Subtracting we obtain

rpxq ´ r1pxq “
`

q1pxq ´ qpxq
˘

gpxq.

Since the leading coefficient of gpxq is invertible, it follows that q1pxq´qpxq “ 0 if and only if rpxq´r1pxq “ 0.
With this in mind, let q1pxq ´ qpxq ‰ 0. Knowing that bm is not a zero divisor of R,

deg pq1pxq ´ qpxqq gpxq “ deg pq1pxq ´ qpxqq ` deg gpxq
ě deg gpxq ą deg prpxq ´ r1pxqq

a contradiction; the last inequality relies on the fact that the degrees of rpxq and r1pxq are both less than the
degree of gpxq. Thus, q1pxq “ qpxq, which in turn implies that r1pxq “ rpxq.
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The polynomials qpxq and rpxq appearing in the division algorithm are called, respectively, the quotient and
remainder on dividing fpxq by gpxq. In this connection, it is important to observe that if gpxq is a monic
polynomial, or if R is taken to be a field, one need not assume that the leading coefficient of gpxq is invertible.

We now come to a series of theorems concerning the factorization properties of Rrxs.

Theorem 2.11.8 (Remainder Theorem). Let R be a commutative ring with identity. If fpxq P Rrxs and
a P R, then there exists a unique polynomial qpxq in Rrxs such that fpxq “ px´ aqqpxq ` fpaq.

Proof. All this is scarcely more than an application of the division algorithm to the polynomials fpxq and
x´ a. We then obtain

fpxq “ px´ aqqpxq ` rpxq,

where rpxq “ 0 or deg rpxq ă degpx´ aq “ 1. It follows in either case that rpxq is a constant polynomial, say
rpxq “ r P R. Substitution of a for x leads to

fpaq “ pa´ aqqpaq ` rpaq “ r,

as desired.

Corollary 2.11.9. The polynomial fpxq P Rrxs is divisible by x ´ a if and only if a is a root of fpxq. Let us
next show that a polynomial cannot have more roots in an integral domain than its degree.

We give some results without proof:

Theorem 2.11.10 ( [2] Theorem 7-9). LetR be an integral domain and fpxq P Rrxs be a nonzero polynomial
of degree n. Then fpxq can have at most n distinct roots in R.

Corollary 2.11.11. Let fpxq and gpxq be two nonzero polynomials of degree n over the integral domain R.
If there exist n` 1 distinct elements ak P Rpk “ 1, 2, . . . , n` 1q such that f pakq “ g pakq, then fpxq “ gpxq.

Corollary 2.11.12. Let fpxq P Rrxs, where R is an integral domain, and let S be any infinite subset of R. If
fpaq “ 0 for all a P S, then fpxq is the zero polynomial.

Example 2.11.13. Consider the polynomial xp ´ x P Zprxs, where p is a prime number. Now, the nonzero
elements of Zp form a abelian group under multiplication of order p´1. Hence, we have ap´1 “ 1, or ap “ a
for every a ‰ 0. This is equally true if a “ 0. Our example shows that it may very well happen that every
element of the underlying ring is a root of a polynomial, yet the polynomial is not zero.

With the Division Algorithm at our disposal, we can prove that the ring F rxs is rich in structure.

Theorem 2.11.14. The polynomial ring F rxs, where F is a field, forms a Euclidean domain.

Proof. As has been noted in Corollary 2.11.4, F rxs is an integral domain. Moreover, the function δ defined
by δpfpxqq “ deg fpxq for any nonzero fpxq P F rxs is a suitable Euclidean valuation. If fpxq and gpxq are
two nonzero polynomials in F rxs Theorem 2.11.3 implies that

δpfpxqgpxqq “ degpfpxqgpxqq

“ deg fpxq ` deg gpxq ě deg fpxq “ δpfpxqq,

since deg gpxq ě 0. Thus, the function δ satisfies the requisite properties of a Euclidean valuation.

The reader is no doubt anticipating the corollary below.

Corollary 2.11.15. F rxs with F a field is a principal ideal domain; hence, a unique factorization domain.

Since a field is trivially a unique factorization domain, part of the last corollary could be regarded as a special
case of the coming theorem.
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Theorem 2.11.16. If R is a unique factorization domain, then so is Rrxs.

Proof. Suppose that Rrxs is not a unique factorization domain and let S be the set of all nonconstant poly-
nomials in Rrxs which do not have a unique factorization into irreducible elements. Select fpxq P S to be of
minimal degree. We may assume that

fpxq “ p1pxqp2pxq ¨ ¨ ¨ prpxq “ q1pxqq2pxq ¨ ¨ ¨ qspxq,

where the pipxq and qjpxq are all irreducible and

m “ deg p1pxq ě deg p2pxq ě ¨ ¨ ¨ ě deg prpxq,

n “ deg q1pxq ě deg q2pxq ě ¨ ¨ ¨ ě deg qspxq,

with n ě m ą 0; it is further evident that no pipxq “ uqjpxq for any invertible element u (otherwise, the
polynomial obtained on dividing fpxq by qjpxq will have unique factorization; this implies that fpxq can also
be factored uniquely). Let a, b be the leading coefficients of p1pxq, q1pxq, respectively, and define

gpxq “ afpxq ´ bp1pxqx
n´mq2pxq ¨ ¨ ¨ qspxq.

On one hand, we have

gpxq “ ap1pxqp2pxq ¨ ¨ ¨ prpxq ´ bp1pxqx
n´mq2pxq ¨ ¨ ¨ qspxq

“ p1pxq
`

ap2pxq ¨ ¨ ¨ prpxq ´ bx
n´mq2pxq ¨ ¨ ¨ qspxq

˘

,

and, on the other hand,

gpxq “ aq1pxqq2pxq ¨ ¨ ¨ qspxq ´ bp1pxqx
n´mq2pxq ¨ ¨ ¨ qspxq

“
`

aq1pxq ´ bp1pxqx
n´m

˘

q2pxq ¨ ¨ ¨ qspxq.

Now, either gpxq “ 0, which forces aq1pxq “ bp1pxqx
n´m, or else deg gpxq ă deg fpxq. In the latter event,

gpxq must possess a unique factorization into irreducibles, some of which are q2pxq, . . . , qspxq and p1pxq. The
net result of this is that p1pxq | gpxq, but p1pxq ∤ qipxq for i ą 1, so that

p1pxq |
`

aq1pxq ´ bp1pxqx
n´m

˘

and therefore p1pxq | aq1pxq. In either of the two cases considered, we are able to conclude that p1pxq divides
the product aq1pxq; this being so, aq1pxq “ p1pxqhpxq for some polynomial hpxq P Rrxs. Since R is taken to
be a unique factorization domain, a has a unique factorization as a product of irreducible elements of R -
hence, of Rrxs-say, a “ c1c2 ¨ ¨ ¨ ck, where each c1 is irreducible in Rrxs. (The only factorizations of a as an
element of Rrxs are those it had as an element of R.) Arguing from the representation

c1c2 ¨ ¨ ¨ ckq1pxq “ p1pxqhpxq

with p1pxq an irreducible, it follows that each ci and, in consequence, the element a divides hpxq. But, then,

aq1pxq “ p1pxqah1pxq

for some h1pxq in Rrxs or, upon canceling, q1pxq “ p1pxqh1pxq; in other words, p1pxq | q1pxq. Using the
irreducibility of q1pxq as a member of Rrxs, p1pxq must be an associate of q1pxq. However, this conflicts with
our original assumptions. Thus, we see that Rrxs is indeed a unique factorization domain.

Coming back to the corollary 2.11.15, there is an interesting converse which deserves mention: namely, if R
is an integral domain such that the polynomial ringRrxs forms a principal ideal domain, thenR is necessarily
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a field. In verifying this, the main point to be proved is that any nonzero element a P R is invertible in R. By
virtue of our hypothesis, the ideal generated by x and a must be principal; for instance,

px, aq “ pfpxqq, 0 ‰ fpxq P Rrxs.

Since both x, a P pfpxqq, it follows that

a “ gpxqfpxq, and x “ hpxqfpxq

for suitable gpxq, hpxq in Rrxs. The first of these relations signifies that deg fpxq “ 0, say fpxq “ a0, and as a
result deg hpxq “ 1, say hpxq “ b0` b1x pb1 ‰ 0q. We thus obtain x “ a0 pb0 ` b1xq. But this means that the
product a0b1 “ 1, thereby making a0 (or, equivalently, fpxqq an invertible element of R. The implication is
that the ideal px, aq is the entire ring Rrxs. It is therefore possible to write the identity element in the form

1 “ xk1pxq ` ak2pxq,

with the two polynomials k1pxq, k2pxq P Rrxs. This can only happen if ac0 “ 1, where c0 ‰ 0 is the constant
term of k2pxq. In consequence, the element a has a multiplicative inverse in R, which settles the whole affair.

2.11 EXERCISES

1. Prove that the three additive groups Zˆ Z,Zris, and Zrxs{
`

x2
˘

are all isomorphic to each other.i.
Prove that no two of the rings Zˆ Z,Zris, and Zrxs{

`

x2
˘

are isomorphic to each other.ii.

2. Which of the following ideals of Zrx, ys are prime? Which are maximal? Justify your answer.

px, yq, px, 3yq,
`

x2 ` 1, y
˘

,
`

x2 ` 1, 3, y
˘

,
`

x2 ` 1, 5, y
˘

3. Determine the maximal ideals of the following rings.

Qrxs{
`

x2 ´ 5x` 6
˘

,i.
Qrxs{

`

x2 ` 4x` 6
˘

.ii.

2.12 Irreducibility

At the heart of all the interesting questions on factorization in Rrxs lies the idea of an irreducible polynomial.
Unwrapping the definition of irreducible element, we have

Definition 2.12.1. Let R be an integral domain. A nonconstant polynomial fpxq P Rrxs is said to be
irreducible over R, or is an irreducible polynomial in Rrxs, if fpxq cannot be expressed as the product of
two polynomials (in Rrxs) of positive degree. Otherwise, fpxq is termed reducible in Rrxs.

In the case of the principal ideal domain F rxs, where F is a field, the irreducible polynomials are precisely
the irreducible elements of F rxs (recall that the invertible elements of the polynomial ring F rxs are just the
nonzero constant polynomials); by Theorem 5 ´ 9, these coincide with the prime elements of F rxs. Of the
equivalent notions, irreducible polynomial, irreducible element, and prime element, the term ”irreducible
polynomial” is the one customarily preferred for F rxs.

Perhaps we should emphasize that Definition 2.12.1 applies only to polynomials of positive degree; the
constant polynomials are neither reducible nor irreducible. Thus, the factorization theory of F rxs concerns
only polynomials of degree ě 1.
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The dependence of Definition 2.12.1 upon the polynomial domain Rrxs is essential. It may very well happen
that a given polynomial is irreducible when viewed as an element of one domain, yet reducible in another.
One such example is the polynomial x2 ` 1; it is irreducible in Rrxs, but reducible in both Crxs, where
x2 ` 1 “ px` iqpx´ iq, and Z2rxs, where x2 ` 1 “ px` 1qpx` 1q. Thus, to ask merely whether a polynomial
is irreducible, without specifying the coefficient ring involved, is incomplete and meaningless.

More often than not, it is a formidable task to decide when a given polynomial is irreducible over a specific
ring. If F is a finite field, say one of the fields of integers modulo a prime, we may actually examine all of
the possible roots. To cite a simple illustration, the polynomial fpxq “ x3 ` x ` 1 is irreducible in Z2rxs. If
there are any factors of this polynomial, at least one must be linear. But the only possible roots for fpxq are
0 and 1 , yet fp0q “ fp1q “ 1 ‰ 0, showing that no roots exist in Z2.

Example 2.12.2. Any linear polynomial ax` b, a ‰ 0, is irreducible in Rrxs, where R is an integral domain.
Indeed, since the degree of a product of two polynomials is the sum of the degree of the factors, it follows
that a representation

ax` b “ gpxqhpxq, gpxq, hpxq P Rrxs,

with 1 ď deg gpxq, 1 ď deg hpxq is impossible. This signifies that every reducible polynomial has degree at
least 2 .

Example 2.12.3. The polynomial x2 ´ 2 is irreducible in Qrxs, where Q as usual is the field of rational
numbers. Otherwise, we would have

x2 ´ 2 “ pax` bqpcx` dq

“ pacqx2 ` pad` bcqx` bd,

with the coefficients a, b, c, d P Q. Accordingly,

ac “ 1, ad` bc “ 0, bd “ ´2,

whence c “ 1{a, d “ ´2{b. Substituting in the relation ad` bc “ 0, we obtain

0 “ ´2a{b` b{a “
`

´2a2 ` b2
˘

{ab.

Thus, ´2a2 ` b2 “ 0, or pb{aq2 “ 2, which is impossible because
?
2 is not a rational number. Although

irreducible in Qrxs, the polynomial x2 ´ 2 is nonetheless reducible in Rrxs; in this case, x2 ´ 2 “ px ´?
2qpx`

?
2q and both factors are in Rrxs.

For ease of reference more than to present new concepts, let us summarize in the next theorem some of the
results of previous sections as applied to the principal ideal domain F rxs.

Theorem 2.12.4. If F is a field, the following statements are equivalent:

(1) fpxq is an irreducible polynomial in F rxs;

(2) the principal ideal pfpxqq is a maximal (prime) ideal of F rxs;

(3) the quotient ring F rxs{pfpxqq forms a field.

The theorem on prime factorization of polynomials is stated now.

Theorem 2.12.5 (Unique factorization in polynomial ring of a field). Each polynomial fpxq P F rxs of
positive degree is the product of a nonzero element of F and irreducible monic polynomials of F rxs. Apart
from the order of the factors, this factorization is unique.

Suffice it to say, this theorem can be made more explicit for particular polynomial domains. When we deal
with polynomials over the complex numbers, the crucial tool is the Fundamental Theorem of Algebra.
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Theorem 2.12.6 (The Fundamental Theorem of Algebra). Let C be the field of complex numbers. If fpxq P
Crxs is a polynomial of positive degree, then fpxq has at least one root in C.

Although many proofs of the result are available, none is strictly algebraic in nature; thus, we shall as-
sume the validity of above theorem without proof. The reader will experience little difficulty, however, in
establishing the following corollary.

Corollary 2.12.7. If fpxq P Crxs is a polynomial of degree n ą 0, then fpxq can be expressed in Crxs as a
product of n (not necessarily distinct) linear factors.

Another way of stating the corollary above is that the only irreducible polynomials in Crxs are the linear
polynomials. Directing our attention now to the real field, we can obtain the form of the prime factorization
in Rrxs (bear in mind that polynomials with coefficients from R are polynomials in Crxs and therefore have
roots in C).

Corollary 2.12.8. If fpxq P Rrxs is of positive degree, then fpxq can be factored into linear and irreducible
quadratic factors.

Proof. Since fpxq also belongs to Crxs, fpxq factors in Crxs into a product of linear polynomials x´ck, ck P C.
If ck P R, then x´ ck P Rrxs. Otherwise, ck “ a` bi, where a, b P R and b ‰ 0. But the complex roots of real
polynomials occur in conjugate pairs (exercise), so that c̄k “ a´ bi is also a root of fpxq. Thus,

px´ ckq px´ c̄kq “ x2 ´ 2ax`
`

a2 ` b2
˘

P Rrxs

is a factor of fpxq. The quadratic polynomial x2´2ax`
`

a2 ` b2
˘

is irreducible in Rrxs, since any factorization
in Rrxs is also valid in Crxs and px´ ckq px´ c̄kq is its unique factorization in Crxs.

An interesting remark, to be recorded without proof, is that if F is a finite field, the polynomial ring F rxs
contains irreducible polynomials of every degree.

This may be a convenient place to introduce the notion of a primitive polynomial.

Definition 2.12.9. Let R be a unique factorization domain. The content of a nonconstant polynomial
fpxq “ a0` a1x` ¨ ¨ ¨ ` anx

n P Rrxs, denoted by the symbol cont fpxq, is defined to be the greatest common
divisor of its coefficients :

cont fpxq “ gcd pa0, a1, . . . , anq .

We call fpxq a primitive polynomial if cont fpxq “ 1.

Viewed otherwise, Definition 2.12.9 asserts that a polynomial fpxq P Rrxs is primitive if and only if there
is no irreducible element of R which divides all of its coefficients. In this connection, it may be noted
that in the domain F rxs of polynomials with coefficients from a field F , every nonconstant polynomial is
primitive (indeed, there are no primes in F ). The reader should also take care to remember that the notion
of greatest common divisor and, in consequence, the content of a polynomial is not determined uniquely,
but determined only to within associates.

Given a polynomial fpxq P Rrxs of positive degree, it is possible to write fpxq “ cf1pxq, where c P R and
f1pxq is primitive; simply let c “ cont fpxq. To a certain extent this reduces the question of factorization
in Rrxs (at least, when R is a unique factorization domain) to that of primitive polynomials. By way of
specific illustrations, we observe that fpxq “ 3x3 ´ 4x ` 35 is a primitive polynomial in Zrxs, while gpxq “
12x2 ` 6x´ 3 “ 3

`

4x2 ` 2x´ 1
˘

is not a primitive element of the same, since gpxq has content 3.

Here is another new concept: Suppose that I is a (proper) ideal of R, a commutative ring with identity.
There is an obvious mapping v : Rrxs Ñ pR{Iqrxs; for any polynomial fpxq P Rrxs simply apply natI to the
coefficients of fpxq, so that

vpfpxqq “ pa0 ` Iq ` pa1 ` Iqx` ¨ ¨ ¨ ` pan ` Iqx
n,
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or, more briefly, vpfpxqq “
ř

pnatI akqx
k. The reader will encounter no difficulty in verifying that v, defined

in this way, is a homomorphism of Rrxs onto pR{Iqrxs, the so-called reduction homomorphism modulo I.
The polynomial vpfpxqq is said to be the reduction of fpxq modulo I.

In another view, we can derive it from the substitution homomorphism. Let ψ : R Ñ S be a ring homo-
morphism. Composing ψ with the inclusion of S as a subring of the polynomial ring Srxs, we obtain a
homomorphism φ : R Ñ Srxs. The substitution principle asserts that there is a unique extension of φ to a
homomorphism Φ : Rrxs Ñ Srxs that sends x ù x. This map operates on the coefficients of a polynomial,
while leaving the variable x fixed. If we denote ψpaq by a1, then it sends a polynomial anxn ` ¨ ¨ ¨ ` a1x` a0
to a1

nx
n ` ¨ ¨ ¨ ` a1

1x` a
1
0.

A particularly interesting case is that φ is the homomorphism ZÑ Fp that sends an integer a to its residue ā
modulo p. This map extends to a homomorphism Φ : Zrxs Ñ Fprxs, defined by

Φ : Zrxs Ñ Fprxs
fpxq “ anx

n ` ¨ ¨ ¨ ` a0 ÞÑ ānx
n ` ¨ ¨ ¨ ` ā0 “ f̄pxq

(2.1)

where āi is the residue class of ai modulo p. It is natural to call the polynomial f⃗pxq the residue of fpxq
modulo p.

Another example: Let R be any ring, and let P denote the polynomial ring Rrxs. One can use the substitution
principle to construct an isomorphism

Rrx, ys Ñ P rys “ pRrxsqrys.

This is stated and proved below in Proposition 2.12.10. The domain is the ring of polynomials in two
variables x and y, and the range is the ring of polynomials in y whose coefficients are polynomials in x.
The statement that these rings are isomorphic is a formalization of the procedure of collecting terms of like
degree in y in a polynomial fpx, yq. For example,

x4y ` x3 ´ 3x2y ` y2 ` 2 “ y2 `
`

x4 ´ 3x2
˘

y `
`

x3 ` 2
˘

.

This procedure can be useful. For one thing, one may end up with a polynomial that is monic in the variable
y, as happens in the example above. If so, one can do division with remainder (see Corollary 2.12.11).

Proposition 2.12.10. Let x “ px1, . . . , xmq and y “ py1, . . . , ynq denote sets of variables. There is a unique
isomorphism Rrx, ys Ñ Rrxsrys, which is the identity on R and which sends the variables to themselves.

This is very elementary, but it would be boring to verify compatibility of multiplication in the two rings
directly.

Proof. We note that since R is a subring of Rrxs and Rrxs is a subring of Rrxsrys, R is also a subring of
Rrxsrys. Let φ be the inclusion of R into Rrxsrys. The substitution principle tells us that there is a unique
homomorphism Φ : Rrx, ys Ñ Rrxsrys, which extends φ and sends the variables xµ and yν wherever we
want. So we can send the variables to themselves. The map Φ thus constructed is the required isomorphism.
It isn’t difficult to see that Φ is bijective. One way to show this would be to use the substitution principle
again, to define the inverse map.

Corollary 2.12.11. Let fpx, yq and gpx, yq be polynomials in two variables, elements ofRrx, ys. Suppose that,
when regarded as a polynomial in y, f is a monic polynomial of degree m. There are uniquely determined
polynomials qpx, yq and rpx, yq such that g “ fq ` r, and such that if rpx, yq is not zero, its degree in the
variable y is less than m.

Although it might seem to be rather special, the reduction homomorphism will serve us in good stead on
several occasions. We make immediate use of it to characterize primitive polynomials.
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Theorem 2.12.12. Let R be a unique factorization domain and let fpxq “ a0 ` a1x ` ¨ ¨ ¨ ` anx
n P Rrxs,

with deg fpxq ą 0. Then fpxq is a primitive polynomial in Rrxs if and only if, for each prime element p P R,
the reduction of fpxq modulo the principal ideal ppq is nonzero.

Proof. By definition, the reduction of fpxq modulo ppq is

vpfpxqq “ pa0 ` ppqq ` pa1 ` ppqqx` ¨ ¨ ¨ ` pan ` ppqqx
n.

Thus, to say that vpfpxqq “ 0 for some prime p P R is equivalent to asserting that ak P ppq, or rather, p | ak
for all k. But the latter condition signifies that cont fpxq ‰ 1; hence, fpxq is not primitive.

One of the most crucial facts concerning primitive polynomials is Gauss’s Lemma, which we prove next.

Theorem 2.12.13 (Gauss’s Lemma). Let R be a unique factorization domain. If fpxq, gpxq are both primitive
polynomials in Rrxs, then their product fpxqgpxq is also primitive in Rrxs.

Proof. Given a prime element p P R, ppq is a prime ideal of R, whence the quotient ring R1 “ R{ppq forms
an integral domain. We next consider the reduction homomorphism v modulo the principal ideal ppq. Since
R1rxs is an integral domain, it follows that the reduction of fpxqgpxq cannot be the zero polynomial:

vpfpxqgpxqq “ vpfpxqqvpgpxqq ‰ 0.

The assertion of the theorem is now a direct consequence of our last result.

Corollary 2.12.14 (Content is multiplicative). If R is a unique factorization domain and fpxq, gpxq P Rrxs,
then

cont pfpxqgpxqq “ cont fpxq cont gpxq.

Proof. As noted earlier, we can write fpxq “ af1pxq, gpxq “ bg1pxq, where a “ cont fpxq, b “ cont gpxq and
where f1pxq, g1pxq are primitive in Rrxs. Therefore, fpxqgpxq “ abf1pxqg1pxq. According to the theorem, the
product f1pxqg1pxq is a primitive polynomial of Rrxs. This entails that the content of fpxqgpxq is simply ab,
or, what amounts to the same thing, cont fpxq cont gpxq.

Any unique factorization domain R, being an integral domain, possesses a field of quotients (field of frac-
tions) K “ QclpRq and we may consider the ring of polynomials Rrxs as imbedded in the polynomial ring
Krxs. The next theorem deals with the relation between the irreducibility of a polynomial in Rrxs as com-
pared to its irreducibility when considered as an element of the larger ring Krxs. (The classic example of
this situation is, of course, the polynomial domain Zrxs Ď Qrxs.) Before concentrating our efforts on this
relationship, we require a preliminary lemma.

Lemma 2.12.15. Let R be a unique factorization domain, with field of quotients K. Given a nonconstant
polynomial fpxq P Krxs, there exist (nonzero) elements a, b P R and a primitive polynomial f1pxq in Rrxs
such that

fpxq “ ab´1f1pxq.

Furthermore, f1pxq is unique up to invertible elements of R as factors.

Proof. Inasmuch as K is the field of quotients of R, fpxq can be written in the form

fpxq “
`

a0b
´1
0

˘

`
`

a1b
´1
1

˘

x` ¨ ¨ ¨ `
`

anb
´1
n

˘

xn,
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where ai, bi P R and bi ‰ 0. Take b to be any common multiple of the bi; for instance, b “ b0b1 ¨ ¨ ¨ bn. Then
b ‰ 0 and, since the coefficients of bfpxq all lie in R, we have bfpxq “ gpxq P Rrxs. Accordingly,

fpxq “ b´1gpxq “ ab´1f1pxq,

where f1pxq P Rrxs is a primitive polynomial and a “ cont gpxq. We emphasize that f1pxq is of the same
degree as fpxq, so cannot be invertible in Rrxs.

As for uniqueness, suppose that fpxq “ ab´1f1pxq “ cd´1f2pxq are two representations that satisfy the
conditions of the theorem. Then,

adf1pxq “ bcf2pxq.

Since f1pxq and f2pxq are both primitive, the corollary to Gauss’s Lemma implies that we must have ad “ ubc
for some invertible element u P R. In consequence, f1pxq “ uf2pxq, showing that f1pxq is unique to within
invertible factors in R.

Corollary 2.12.16.

(a) Let f0 be a primitive polynomial, and let g P Rrxs. If f0 divides g in Krxs, then f0 divides g in Rrxs.
The converse is also true (obviously).

(b) If two polynomials f and g in Rrxs have a common nonconstant factor in Krxs, they have a common
nonconstant factor in Rrxs.

Proof.
(a) f0 divides g in Krxs, then g “ f0q where q P Krxs. We want to show that q P Rrxs. We write g “ cg1, and
q “ c1q1, with g1 and q1 primitives by above theorem. Then cg1 “ c1f1q1. Gauss’s Lemma tells us that f1q1
is primitive. Therefore by the uniqueness assertion of above theorem, c “ c1 and g1 “ f1q1. Since g P Rrxs,
c P R, we see q “ cq1 P Rrxs.

(b) If the two polynomials f and g in Rrxs have a common factor h in Krxs and if we write h “ ch1, where
h1 is primitive, then h1 also divides f and g in Krxs, and by (a), h1 divides both f and g in Rrxs.

Theorem 2.12.17. Let R be a unique factorization domain, with field of quotients K. If fpxq P Rrxs is an
irreducible primitive polynomial, then it is also irreducible as an element of Krxs.

Proof. Assume to the contrary that fpxq is reducible over K. Then, fpxq “ gpxqhpxq, where the polynomials
gpxq, hpxq are in Krxs and are of positive degree. By virtue of the lemma just proven,

gpxq “ ab´1g1pxq, hpxq “ cd´1h1pxq,

with a, b, c, d P R and g1pxq, h1pxq primitive in Rrxs. Thus,

bdfpxq “ acg1pxqh1pxq.

Now, Gauss’s Lemma asserts that the product g1pxqh1pxq is a primitive polynomial in Rrxs, whence fpxq and
g1pxqh1pxq differ by an invertible element of R :

fpxq “ ug1pxqh1pxq.

Since deg g1pxq “ deg gpxq ą 0,deg h1pxq “ deg hpxq ą 0, the outcome is a nontrivial factorization of fpxq in
Rrxs, contrary to hypothesis.
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Remark 2.12.18. There is an obvious converse to above theorem viz.: if the primitive polynomial fpxq P
Rrxs is irreducible as an element of Krxs, it is also irreducible in Rrxs. This is justified by the fact that Rrxs
(or an isomorphic copy thereof) appears naturally as a subring of Krxs; thus, if fpxq were reducible in Rrxs,
it would obviously be reducible in the larger ring Krxs.

Our remarks lead to the following conclusion:

Theorem 2.12.19. Given a primitive polynomial fpxq P Rrxs, R a unique factorization domain, fpxq is
irreducible in Rrxs if and only if fpxq is irreducible in Krxs. The irredciblle elements of Rrxs are of two
types: irreducible elements of R, and primitive elements of Rrxs that are irreducible in Krxs.

Proposition 2.12.20. If f P ZrXs is monic, then every monic factor of f in QrXs lies in ZrXs.

Proof. Let g be a monic factor of f in QrXs, so that f “ gh with h P QrXs also monic. Let m,n be the
positive integers with the fewest prime factors such that mg, nh P ZrXs. As in the proof of Gauss’s Lemma,
if a prime p divides mn, then it divides all the coefficients of at least one of the polynomials mg, nh, say mg,
in which case it divides m because g is monic. Now m

p g P ZrXs, which contradicts the definition of m.

Theorem 2.12.21. Let R be an integral domain and the nonconstant polynomial fpxq “ a0 ` a1x ` ¨ ¨ ¨ `
anx

n P Rrxs. Suppose that there exists a prime ideal P of R such that

(1) an R P ,

(2) ak P P for 0 ď k ă n,

(3) a0 R P
2.

Then fpxq is irreducible in Rrxs.

Proof. Assume that, contrary to assertion, fpxq is reducible in Rrxs; say, fpxq “ gpxqhpxq for polynomials
gpxq, hpxq P Rrxs, where

gpxq “ b0 ` b1x` ¨ ¨ ¨ ` brx
r

hpxq “ c0 ` c1x` ¨ ¨ ¨ ` csx
s pr ` s “ n; r, s ą 0q

Now consider the reduction of fpxq modulo the ideal P . Invoking hypothesis (2), it can be inferred that

vpgpxqqvphpxqq “ vpfpxqq “ pan ` P qx
n.

Since the polynomial ring pR{P qrxs comprises an integral domain, the only possible factorizations of pan ` P qxn

are into linear factors. This being so, a moment’s reflection shows that

vpgpxqq “ pbr ` P qx
r,

vphpxqq “ pcs ` P qx
s.

This means that the constant terms of these reductions are zero; that is,

b0 ` P “ c0 ` P “ P.

Altogether we have proved that both b0, c0 P P , revealing at the same time that a0 “ b0c0 P P
2, which is

untenable by (3). Accordingly, no such factorization of fpxq can occur, and fpxq is indeed irreducible in
Rrxs.

Immediately follows is that
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Theorem 2.12.22 (Eisenstein Criterion). Let R be a unique factorization domain and K be its field of
quotients. Let fpxq “ a0 ` a1x ` ¨ ¨ ¨` anx

n be a nonconstant polynomial in Rrxs. Suppose further that for
some prime p P R,

(1) p ∤ an,

(2) p | ak for 0 ď k ă n,

(3) p2 ∤ a0.

Then, fpxq is irreducible in Krxs.

Proof. We already know that ppq is a prime ideal of R. Taking stock of the theorem, fpxq is an irreducible
polynomial of Rrxs; hence, of Krxs (at this point a direct appeal is made to Theorem 2.12.17).

This is probably a good time at which to examine some examples.

Example 2.12.23. x2 ` y2 ` 1 is irreducible in Crx, ys.

Proof. Let R “ Crxs, which is UFD. We then use Eisenstein’s criterion to show that y2 ` px2 ` 1q “ y2 ` a0
where a0 “ x2 ` 1 is irreducible in Krys where K is the field of fractions of R, which then implies that it is
irreducible in Rrys due to remark 2.12.18. a2 “ 1, a1 “ 0, a0 “ x2 ` 1. Let p “ x ` i P R, then y2 ` a0 is
irredciblle as

(1) x` i ∤ 1,

(2) p | 0 “ 0px` iq, p | x2 ` 1 “ px` iqpx´ iq,

(3) p2 “ px` iq2 ∤ a0 “ px` iqpx´ iq as px` iq ∤ px´ iq.

Example 2.12.24. Consider the monic polynomial

fpxq “ xn ` a P Zrxs pn ą 1q,

where a ‰ ˘1 is a nonzero square-free integer. For any prime p dividing a, p is certainly a factor of all
the coefficients except the leading one, and our hypothesis ensures that p2 ∤ a. Thus, fpxq fulfils Eisenstein’s
criterion, and so is irreducible over Q. Incidentally, this example shows that there are irreducible polynomials
in Qrxs of every degree.

On the other hand, notice that x4`4 “
`

x2 ` 2x` 2
˘ `

x2 ´ 2x` 2
˘

; one should not expect Theorem 2.12.21
to lead to a decision in this case, since, of course, 4 fails to be a square-free integer.

Example 2.12.25. Eisenstein’s test is not directly applicable to the cyclotonic polynomial

fpxq “
xp ´ 1

x´ 1
“ xp´1 ` xp´2 ` ¨ ¨ ¨ ` x` 1 P Zrxs, p prime.

because no suitable prime is available. This problem is resolved by the observation that fpxq is irreducible in
Zrxs if and only if fpx` 1q is irreducible. That’s because f reducible ùñ fpxq “ hpxqgpxq ùñ fpx` 1q “
hpx ` 1qgpx ` 1q “ upxqvpxq ùñ fpx ` 1q reducible; fpx ` 1q “ upxqvpxq ùñ fpxq “ fppx ´ 1q ` 1q “
upx´ 1qvpx´ 1q. Now, a simple computation yields

fpx` 1q “
p´1
ÿ

i“0

px` 1qi “
p´1
ÿ

i“0

i
ÿ

j“0

ˆ

i

j

˙

xj “
p´1
ÿ

j“0

˜

p´1
ÿ

i“j

ˆ

i

j

˙

¸

xj

100



Math 5031-32 Algebra Anthony Hong

By combinatorial identity
`

j
j

˘

` ¨ ¨ ¨ `
`

m
j

˘

“
`

m`1
j`1

˘

, cj “
řp´1
i“j

`

i
j

˘

“
`

p
j`1

˘

“
p!

pj`1q!pp´j´1q! . Thus p
ˇ

ˇ cj for

0 ď j ă p ´ 1. Also, p ∤ cp´1 “
`

p´1
p´1

˘

“ 1 and p2 ∤ c0 “
`

p
1

˘

“ 1. Eisenstein criterion then concludes that
fpx` 1q is irreducible, so fpxq irreducible.

2.12 EXERCISES

1. [1] p.379 Ex3.1. Let φ denote the homomorphism Zrxs Ñ R defined by

φpxq “ 1`
?
2,i.

φpxq “ 1
2 `

?
2.ii.

Is the kernel of φ a principal ideal? If so, find a generator.

2. [1] p.379 Ex3.2. Prove that two integer polynomials are relatively prime elements of Qrxs if and only if
the ideal they generate in Zrxs contains an integer.

3. [1] p.379 Ex3.4. Let x, y, z, w be variables. Prove that xy ´ zw, the determinant of a variable 2 ˆ 2
matrix, is an irreducible element of the polynomial ring Crx, y, z, ws.

2.13 Factoring Rational and Integer Polynomials

Every monic polynomial fpxqwith rational coefficients can be expressed uniquely in the form p1 ¨ ¨ ¨ pk, where
pi are monic polynomials that are irreducible elements in the ring Qrxs.

Example 2.13.1. Here are some examples of irreducible elements in Qrxs:

• Linear Polynomials: Any linear polynomial ax` b (with a ‰ 0 ) is irreducible in Qrxs because it cannot
be factored further into non-constant polynomials with rational coefficients. For example 2x ` 3 is
irreducible.

• Quadratic Polynomials: A quadratic polynomial ax2 ` bx ` c is irreducible in Qrxs if its discriminant
b2 ´ 4ac is not a perfect square in Q. For example, x2 ` x ` 1 is irreducible in Qrxs because its
discriminant 12 ´ 4 ¨ 1 ¨ 1 “ ´3 is not a perfect square.

• Cubic Polynomials: A cubic polynomial ax3 ` bx2 ` cx ` d may be irreducible if it does not have a
rational root (which can be checked using the Rational Root Theorem) and cannot be factored into a
product of a linear and a quadratic polynomial with rational coefficients. For example, x3 ` 2x ` 1 is
irreducible in Qrxs.

Algorithm for factoring a polynomial in Qrxs: To see this, consider f P Qrxs. Multiply fpxq by a rational
number so that it is monic, and then replace it by Ddegpfqf

`

x
D

˘

, with D equal to a common denominator
for the coefficients of f , to obtain a monic polynomial with integer coefficients. Thus we need consider only
polynomials

fpxq “ xm ` a1x
m´1 ` ¨ ¨ ¨ ` am, ai P Z.

From the fundamental theorem of algebra, we know that f splits completely in Crxs :

fpxq “
m
ź

i“1

px´ αiq , αi P C.

From the equation
0 “ f pαiq “ αmi ` a1α

m´1
i ` ¨ ¨ ¨ ` am,
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it follows that |αi| is less than some bound depending only on the degree and coefficients of f ; in fact,

|αi| ď maxt1,mBu, B “ max |ai| .

Now if gpxq is a monic factor of fpxq, then its roots in C are certain of the αi, and its coefficients are
symmetric polynomials in its roots. Therefore, the absolute values of the coefficients of gpxq are bounded in
terms of the degree and coefficients of f . Since they are also integers (by proposition2.12.20), we see that
there are only finitely many possibilities for gpxq. Thus, to find the factors of fpxq we (better PARI) have to
do only a finite amount of checking.

Therefore, we need not concern ourselves with the problem of factoring polynomials in the rings QrXs or
FprXs since PARI knows how to do it. For example, typing content(6*X^2+18*X-24) in PARI returns 6, and
factor(6*X^2+18*X-24) returns X ´ 1 and X ` 4, showing that

6X2 ` 18X ´ 24 “ 6pX ´ 1qpX ` 4q

in QrXs. Typing factormod(X^2+3*X+3,7) returns X ` 4 and X ` 6, showing that

X2 ` 3X ` 3 “ pX ` 4qpX ` 6q

in F7rXs.

Figure 2.1: SageMath example. See manual.

Figure 2.2: SageMath example. See manual.

More examples can be seen in the link.

We have shown that The polynomial ring Zrxs is also a unique factorization domain. That is, nonzero
polynomial fpxq P Zrxs that is not ˘1 can be written as a product

fpxq “ ˘p1 ¨ ¨ ¨ pmq1pxq ¨ ¨ ¨ qnpxq,

where pi are integer primes and qjpxq are primitive irreducible polynomials. This expression is unique except
for the order of the factors.

We have two main tools for studying factoring in Zrxs. The first is the inclusion of the integer polynomial
ring into the ring of polynomials with rational coefficients:

Zrxs Ă Qrxs.

This can be useful because algebra in the ring Qrxs is simpler. The second tool is reduction modulo some
integer prime p, the homomorphism

ψp : Zrxs Ñ Fprxs

that sends x ù x. We’ll often denote the image ψppfq of an integer polynomial by f̄ , though this notation
is ambiguous because it doesn’t mention p. The next lemma should be clear.
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Lemma 2.13.2. Let fpxq “ anx
n ` ¨ ¨ ¨ ` a1x ` a0 be an integer polynomial, and let p be an integer prime.

The following are equivalent:

• p divides every coefficient ai of f in Z,

• p divides f in Zrxs,

• f is in the kernel of ψp.

The lemma shows that the kernel of ψp can be interpreted easily without mentioning the map. But the facts
that ψp is a homomorphism and that its image Fprxs is an integral domain make the interpretation as a
kernel useful.

We pose the problem of factoring an integer polynomial

fpxq “ anx
n ` ¨ ¨ ¨ ` a1x` a0,

with an ‰ 0. Linear factors can be found fairly easily.

Lemma 2.13.3.

(a) If an integer polynomial b1x` b0 divides f in Zrxs, then b1 divides an and b0 divides a0.

(b) A primitive polynomial b1x` b0 divides f in Zrxs if and only if the rational number ´b0{b1 is a root of
f .

(c) A rational root of a monic integer polynomial f is an integer.

Proof. (a) The constant coefficient of a product pb1x` b0q
`

qn´1x
n´1 ` ¨ ¨ ¨ ` q0

˘

is b0q0, and if qn´1 ‰ 0, the
leading coefficient is b1qn´1.

(b) According to Corollary 2.12.16, b1x ` b0 divides f in Zrxs if and only if it divides f in Qrxs, and this is
true if and only if x` b0{b1 divides f , i.e., ´b0{b1 is a root.

(c) If α “ a{b is a root, written with b ą 0, and if gcdpa, bq “ 1, then bx ´ a is a primitive polynomial that
divides the monic polynomial f , so b “ 1 and α is an integer.

Corollary 2.13.4 (Rational Root Theorem). Suppose we have a rational ´b0{b1 written in lowest terms so
that b1 and b0 are relatively prime (i.e., b1x` b0 primitive). Thus it is a root of f P Zrxs iff b1x` b0 divides f
due to (b), which by (a) implies that b1 divides an and b0 divides a0.

The homomorphism ψp : Zrxs Ñ Fprxs (eq. (2.1)) is useful for explicit factoring, one reason being that there
are only finitely many polynomials in Fprxs of each degree.

Proposition 2.13.5. Let fpxq “ anx
n ` ¨ ¨ ¨ ` a0 be an integer polynomial, and let p be a prime integer that

does not divide the leading coefficient an. If the residue f̄ of f modulo p is an irreducible element of Fprxs,
then f is an irreducible element of Qrxs.

Proof. We prove the contrapositive, that if f is reducible, then f̄ is reducible. Suppose that f “ gh is
a proper factorization of f in Qrxs. We may assume that g and h are in Zrxs (cor 2.12.16). Since the
factorization in Qrxs is proper, both g and h have positive degree, and, if deg f denotes the degree of f , then
deg f “ deg g ` deg h.

Since ψp is a homomorphism, f̄ “ ḡh̄, so deg f̄ “ deg ḡ ` deg h̄. For any integer polynomial p, deg p̄ ď deg p.
Our assumption on the leading coefficient of f tells us that deg f̄ “ deg f . This being so we must have
deg ḡ¨ “ deg g and deg h̄ “ deg h. Therefore the factorization f̄ “ ḡh̄ is proper.
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If p divides the leading coefficient of f , then f̄ has lower degree, and using reduction modulo p becomes
harder.

If we suspect that an integer polynomial is irreducible, we can try reduction modulo p for a small prime,
p “ 2 or 3 for instance, and hope that f̄ turns out to be irreducible and of the same degree as f . If so, f will
be irreducible too. Unfortunately, there exist irreducible integer polynomials that can be factored modulo
every prime p. The polynomial x4 ´ 10x2 ` 1 is an example. So the method of reduction modulo p may not
work. But it does work quite often.

The irreducible polynomials in Fprxs can be found by the ”sieve” method. The sieve of Eratosthenes is the
name given to the following method of determining the prime integers less than a given number n. We list
the integers from 2 to n. The first one, 2 , is prime because any proper factor of 2 must be smaller than 2, and
there is no smaller integer on our list. We note that 2 is prime, and we cross out the multiples of 2 from our
list. Except for 2 itself, they are not prime. The first integer that is left, 3, is a prime because it isn’t divisible
by any smaller prime. We note that 3 is a prime and then cross out the multiples of 3 from our list. Again,
the smallest remaining integer, 5, is a prime, and so on.

The same method will determine the irreducible polynomials in Fprxs. We list the monic polynomials, degree
by degree, and cross out products. For example, the linear polynomials in F2rxs are x and x ` 1. They are
irreducible. The polynomials of degree 2 are x2, x2 ` x, x2 ` 1, and x2 ` x ` 1. The first three have roots
in F2, so they are divisible by x or by x ` 1. The last one, x2 ` x ` 1, is the only irreducible polynomial of
degree 2 in F2rxs. The irreducible polynomials of degree ď 4 in F2rxs:

x, x` 1; x2 ` x` 1; x3 ` x2 ` 1, x3 ` x` 1;

x4 ` x3 ` 1, x4 ` x` 1, x4 ` x3 ` x2 ` x` 1.

By trying the polynomials on this list, we can factor polynomials of degree at most 9 in F2rxs. For example,
let’s factor fpxq “ x5 ` x3 ` 1 in F2rxs. If it factors, there must be an irreducible factor of degree at most
2. Neither 0 nor 1 is a root, so f has no linear factor. There is only one irreducible polynomial of degree 2,
namely p “ x2 ` x ` 1. We carry out division with remainder: fpxq “ ppxq

`

x3 ` x2 ` x
˘

` px ` 1q. So p
doesn’t divide f , and therefore f is irreducible.

Consequently, the integer polynomial x5´64x4`127x3´200x`99 is irreducible in Qrxs, because its residue
in F2rxs is the irreducible polynomial x5 ` x3 ` 1. The monic irreducible polynomials of degree 2 in F3rxs :

x2 ` 1, x2 ` x´ 1, x2 ´ x´ 1.

2.13 EXERCISES

1. [1] p.380 Ex4.1. (a) Factor x9 ´ x and x9 ´ 1 in F3rxs. (b) Factor x16 ´ x in F2rxs.

2. [1] p.380 Ex4.2. Prove that the following polynomials are irreducible:

x2 ` 1, in F7rxs,i.
x3 ´ 9, in F31rxs.ii.

3. [1] p.380 Ex4.3. Decide whether or not the polynomial x4 ` 6x3 ` 9x` 3 generates a maximal ideal in
Qrxs.

4. [1] p.380 Ex4.4. Factor the integer polynomial x5` 2x4` 3x3` 3x` 5 modulo 2 , modulo 3 , and in Q.

5. Which of the following polynomials are irreducible in Qrxs?
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x2 ` 27x` 213,i.
8x3 ´ 6x` 1,ii.
x3 ` 6x2 ` 1iii.
x5 ´ 3x4 ` 3.iv.

6. [1] p.380 Ex4.5. Factor x5 ` 5x` 5 into irreducible factors in Qrxs and in F2rxs.

7. [1] p.380 Ex4.10. Factor the following polynomials in Qrxs. (a) x2 ` 2351x` 125 (b) x3 ` 2x2 ` 3x` 1,
(c) x4 ` 2x3 ` 2x2 ` 2x` 2, (d) x4 ` 2x3 ` 3x2 ` 2x` 1, (e) x4 ` 2x3 ` x2 ` 2x` 1, (f) x4 ` 2x2 ` x` 1,
(g) x8 ` x6 ` x4 ` x2 ` 1, (h) x6 ´ 2x5 ´ 3x2 ` 9x´ 3, (j) x4 ` x2 ` 1, (k) 3x5 ` 6x4 ` 9x3 ` 3x2 ´ 1, (l)
x5 ` x4 ` x2 ` x` 2.
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Chapter 3

Modules

We will extensively copy from [10] for modules.

3.1 Categories and Functors

Definition 3.1.1. A category C consists of three ingredients: a class objpCq of objects, a set of mor-
phisms HompA,Bq for every ordered pair pA,Bq of objects, and composition HompA,Bq ˆ HompB,Cq Ñ
HompA,Cq, denoted by

pf, gq ÞÑ gf

for every ordered triple A,B,C of objects. [We often write f : AÑ B or A f
ÝÑ B instead of f P HompA,Bq.]

These ingredients are subject to the following axioms:

(i) the Hom sets are pairwise disjoint; that is, each f P HompA,Bq has a unique domain A and a unique
target B;

(ii) for each object A, there is an identity morphism 1A P HompA,Aq such that f1A “ f and 1Bf “ f for
all f : AÑ B;

(iii) composition is associative: given morphisms A f
ÝÑ B

g
ÝÑ C

h
ÝÑ D, then

hpgfq “ phgqf.

Example 3.1.2.

1. Sets. The objects in this category are sets (not proper classes), morphisms are functions, and composi-
tion is the usual composition of functions.

It is an axiom of set theory that if A and B are sets, then the class HompA,Bq of all functions from A
to B is also a set. That Hom sets are pairwise disjoint is just a reflection of the definition of equality of
functions, which says that two functions are equal if they have the same domains and the same targets
(as well as having the same graphs). For example, if U Ĺ X is a proper subset of a set X, then the
inclusion function U Ñ X is distinct from the identity function 1U , for they have different targets. If
f : AÑ B and g : C Ñ D are functions, we define their composite gf : AÑ D if B “ C. In contrast,
in Analysis, one often says gf is defined when B Ď C. We do not recognize this; for us, gf is not
defined, but gif is defined, where i : B Ñ C is the inclusion.

2. Groups. Objects are groups, morphisms are homomorphisms, and composition is the usual compo-
sition (homomorphisms are functions). Part of the verification that Groups is a category involves
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checking that identity functions are homomorphisms and that the composite of two homomorphisms
is itself a homomorphism [one needs to know that if f P HompA,Bq and g P HompB,Cq, then
gf P HompA,Cqs.

3. A partially ordered set X can be regarded as the category whose objects are the elements of X, whose
Hom sets are either empty or have only one element:

Hompx, yq “

#

∅ if x ł y
␣

ιxy
(

if x ĺ y

(the symbol ιxy is the unique element in the Hom set when x ĺ y ), and whose composition is given
by ιyzι

x
y “ ιxz . Note that 1x “ ιxx, by reflexivity, while composition makes sense because ĺ is transitive.

The converse is false: if C is a category with |Hompx, yq| ď 1 for every x, y P objpCq, define x ĺ y if
Hompx, yq ‰ ∅. Then C may not be partially ordered because ĺ need not be antisymmetric. The two-
point category ‚ Ô ‚ having only two nonidentity morphisms is such an example that is not partially
ordered.

We insisted, in the definition of category, that each HompA,Bq be a set, but we did not say it was
nonempty. The category X, where X is a partially ordered set, is an example in which this possibility
occurs. [Not every Hom set in a category C can be empty, for 1A P HompA,Aq for every A P objpCq.]

4. Let X be a topological space, and let U denote its topology; that is, U is the family of all the open
subsets of X. Then U is a partially ordered set under ordinary inclusion, and so it is a category as in
part 3. In this case, we can realize the morphism ιUV , when U Ď V , as the inclusion iUV : U Ñ V .

5. View a natural number n ě 1 as the partially ordered set whose elements are 0, 1, . . . , n ´ 1 and
0 ď 1 ď ¨ ¨ ¨ ď n ´ 1. As in part 3, there is a category n with objpnq “ t0, 1, . . . , n ´ 1u and with
morphisms iÑ j for all 0 ď i ď j ď n´ 1.

6. Let S be a set with a relation „ that is reflexive and transitive, and C is a category objpCq. HomCpa, bq “
ϕ if a ȷ b and tpa, bqu if a „ b.

a P objpCq, 1a “ pa, aq with composition pa, bq P Hompa, bq, pb, cq P Hompb, cq therefore pb, cqpa, bq “
pa, cq.

7. Let C be a category, A P objpCq and CA be a new catory, where objects are morphism from any object
of C to A.

HomCA
pf, gq “ tσ P HomCpB,Cq

ˇ

ˇ gσ “ fu

and HomCA
pf, gq ˆ HomCA

pg, hq Ñ HomCA
pf, hq, pσ, αq ÞÑ ασ. So hpασq “ phαqσ “ gσ “ f , and

1Bf “ f .

8. Top. Objects are all topological spaces, morphisms are continuous functions, and composition is the
usual composition of functions. In checking that Top is a category, one must note that identity func-
tions are continuous and that composites of continuous functions are continuous.

9. Ab. Objects are abelian groups, morphisms are homomorphisms, and composition is the usual compo-
sition.

10. Rings. Objects are rings, morphisms are ring homomorphisms, and composition is the usual compo-
sition. We assume that all rings R have a unit element 1 , but we do not assume that 1 ‰ 0. (Should
1 “ 0, however, the equation 1r “ r for all r P R shows that R “ t0u, because 0r “ 0. In this case, we
call R the zero ring.) We agree, as part of the definition, that φp1q “ 1 for every ring homomorphism
φ. Since the inclusion map S Ñ R of a subring should be a homomorphism, it follows that the unit
element 1 in a subring S must be the same as the unit element 1 in R. Category C with objpCq the
commutative rings is termed ComRings
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Definition 3.1.3. Let C be a category, f P HomCpA,Bq. Then f is an isomorphism if it has a two-sided
inverse under composition with g P HompB,Aq so that gf “ 1A, fg “ 1B . This inverse is unique, and is
denoted by f´1. This has the properties that

• p1Aq
´1 “ 1A

• pfgq´1 “ g´1f´1

• pf´1q´1 “ f

Example 3.1.4.

• If C is a set, then isomorphism are bijections.

• „ on S: pa, bq is an isomorphism ðñ b „ a

Definition 3.1.5. f P HomCpA,Bq is a monomorphism if @C P objpCq and g1, g2 P HomCpA,Cq with
fg1, fg1, we have g1 “ g2. f is an epimorophism if @C P objpCq, h1, h2 P HomCpB,Cq with h1f “ h2f , we
have h1 “ h2

Example 3.1.6.

• For C a set, a monomorphism is injective and epimorphism is surjective.

• For S,„, all morphisms are monomorphism and epimorphism.

Definition 3.1.7. A category S is a subcategory of a category C if

(i) objpSq Ď objpCq,

(ii) HomSpA,Bq Ď HomCpA,Bq for all A,B P objpSq, where we denote Hom sets in S by HomSp˝, ˝q,

(iii) if f P HomSpA,Bq and g P HomSpB,Cq, then the composite gf PHomSpA,Cq is equal to the composite
gf P HomCpA,Cq,

(iv) if A P objpSq, then the identity 1A P HomSpA,Aq is equal to the identity 1A P HomCpA,Aq.

A subcategory S of C is a full subcategory if, for all A,B P objpSq, we have HomSpA,Bq “ HomCpA,Bq.

Example 3.1.8. For example, Ab is a full subcategory of Groups. Call a category discrete if its only mor-
phisms are identity morphisms. If S is the discrete category with objpSq “ objpSetsq, then S is a subcategory
of Sets that is not a full subcategory. On the other hand, the homotopy category Htp is not a subcategory of
Top, even though objpHtpq “ objpTopq, for morphisms in Htp are not continuous functions.

If C is any category and S Ď objpCq, then the full subcategory generated by S, also denoted by S, is the
subcategory with objpSq “ S and with HomSpA,Bq “ HomCpA,Bq for all A,B P objpSq. For example, we
define the category Top2 to be the full subcategory of Top generated by all Hausdorff spaces.

Functors are homomorphisms of categories.

Definition 3.1.9. If C and D are categories, then a functor T : C Ñ D is a function such that

(i) if A P objpCq, then T pAq P objpDq,

(ii) if f : AÑ A1 in C, then T pfq : T pAq Ñ T pA1q in D,

(iii) if A f
ÝÑ A1 g

ÝÑ A2 in C, then T pAq
T pfq
ÝÝÝÑ T pA1q

T pgq
ÝÝÝÑ T pA2q in D and T pgfq “ T pgqT pfq,

(iv) T p1Aq “ 1T pAq for every A P objpCq.

Example 3.1.10.

(i) If S is a subcategory of a category C, then the definition of subcategory may be restated to say that the
inclusion I : S Ñ C is a functor [this is one reason for the presence of Axiom (iv)].
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(ii) If C is a category, then the identity functor 1C : C Ñ C is defined by 1CpAq “ A for all objects A and
1Cpfq “ f for all morphisms f .

(iii) If C is a category and A P objpCq, then the Hom functor TA : C Ñ Sets, usually denoted by HompA, ˝q,
is defined by

TApBq “ HompA,Bq for all B P objpCq,

and if f : B Ñ B1 in C, then TApfq : HompA,Bq Ñ Hom pA,B1q is given by

TApfq : h ÞÑ fh.

We call TApfq “ HompA, fq the induced map, and we denote it by f˚; thus,

f˚ : h ÞÑ fh.

Suppose now that g : B1 Ñ B2. Let us compare the functions

pgfq˚, g˚f˚ : HompA,Bq Ñ Hom
`

A,B2
˘

.

If h P HompA,Bq, i.e., if h : AÑ B, then

pgfq˚ : h ÞÑ pgfqh;

on the other hand, associativity of composition gives

g˚f˚ : h ÞÑ fh ÞÑ gpfhq “ pgfqh,

as desired. Finally, if f is the identity map 1B : B Ñ B, then

p1Bq˚ : h ÞÑ 1Bh “ h

for all h P HompA,Bq, so that p1Bq˚ “ 1HompA,Bq.

(iv) A functor T : Z Ñ C, where Z is the category obtained from Z viewed as a partially ordered set [as in
Example 1.3(vi)], is a sequence

¨ ¨ ¨ Ñ Cn`1 Ñ Cn Ñ Cn´1 Ñ ¨ ¨ ¨ .

(v) Define the forgetful functor U : GroupsÑ Sets as follows: UpGq is the underlying set of a group G
and Upfq is a homomorphism f regarded as a mere function. Strictly speaking, a group is an ordered
pair pG,µq [where G is its (underlying) set and µ : G ˆ G Ñ G is its operation], and UppG,µqq “ G;
the functor U ”forgets” the operation and remembers only the set. There are many variants. For
example, a ring is an ordered triple pR,α, µq [where α : R ˆ R Ñ R is addition and µ : R ˆ R Ñ R
is multiplication], and there are forgetful functors U 1 : Rings Ñ Ab with U 1pR,α, µq “ pR,αq, the
additive group of R, and U2RingsÑ Sets with U2pR,α, µq “ R, the underlying set.

Definition 3.1.11. A contravariant functor T : C Ñ D, where C and D are categories, is a function such
that

(i) if C P objpCq, then T pCq P objpDq,

(ii) if f : C Ñ C 1 in C, then T pfq : T pC 1q Ñ T pCq in D (note the reversal of arrows),

(iii) if C f
ÝÑ C 1 g

ÝÑ C2 in C, then T pC2q
T pgq
ÝÝÝÑ T pC 1q

T pfq
ÝÝÝÑ T pCq in D and

T pgfq “ T pfqT pgq,
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(iv) T p1Aq “ 1T pAq for every A P objpCq.

To distinguish them from contravariant functors, the functors defined earlier are called covariant functors.

Example 3.1.12. If C is a category and B P objpCq, then the contravariant Hom functor TB : C Ñ Sets,
usually denoted by Homp˝, Bq, is defined, for all C P objpCq, by

TBpCq “ HompC,Bq,

and if f : C Ñ C 1 in C, then TBpfq : Hom pC 1, Bq Ñ HompC,Bq is given by

TBpfq : h ÞÑ hf.

We also call TBpfq “ Hompf,Bq the induced map, and we denote it by f˚; thus,

f˚ : h ÞÑ hf.

Because of the importance of this example, we verify the axioms, showing that Homp˝, Bq is a (contravariant)
functor.

Given homomorphisms

C
f
ÝÑ C 1 g

ÝÑ C2,

let us compare the functions
pgfq˚, f˚g˚ : Hom

`

C2, B
˘

Ñ HompC,Bq.

If h P Hom pC2, Bq, i.e., if h : C2 Ñ B, then

pgfq˚ : h ÞÑ hpgfq

on the other hand,
f˚g˚ : h ÞÑ hg ÞÑ phgqf “ hpgfq “ phgqf,

as desired. Finally, if f is the identity map 1C : C Ñ C, then

p1Cq
˚
: h ÞÑ h1C “ h

for all h P HompC,Bq, so that p1Cq
˚
“ 1HompC,Bq.

Definition 3.1.13. For category C, I P objpCq is initial if for any A P objpCq,HomCpI,Aq has one element.
F P objpCq is final if for any A P objpCq, then HomCpA,F q has one element.

Example 3.1.14.

• For C a set, ∅ is the initial object, any singleton set is a final object.

• For pS,„q with pZ,ďq, there is no initial or final object.

Note: Initial and final objects are unique up to isomorphism.

Example 3.1.15.

• For category of sets, initial object is ∅ and final object is singleton set.

• For category of groups, initial object is teu and final is also teu.

• For category of rings, intial object is Z, final object is t0u.

• For category of R-modules, initial element is t0u and final is t0u.

• For category of fields, there are no initial and final objects
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Definition 3.1.16. A category C is a groupoid if every morphism is an isomorphism.

Example 3.1.17. If „ on S is an equivalence relation,

a b

pa bq

pb aq

Definition 3.1.18. If A P objpCq isomorphisms P HompA,Aq are automorphism, they form a group denoted
by AutpAq

Fact: A group is a groupoid of 1 object!

3.2 Modules

Definition 3.2.1. Suppose we have arbitrary ring R and abelian group M such that there is R ˆM Ñ M ,
pr,mq ÞÑ rm with distributivity. This is a left module, and satisfies the distributivity below:

• pr ` sqm “ rm` sm

• rpm1 `m2q “ rm1 ` rm2

• prsqm “ rpsmq

• 1Rm “ m

Modules also satisfy the following properties:

• r0M “ 0M ,

• 0Rm “ 0M ,

• p´rqm “ ´prmq.

Definition 3.2.2. Let M be an R-module, a subset N Ă M is called a R-submodule of M , written as
N ďM , if pN,`q ď pM,`q and for any r P R,n P N , we have r ¨ n P N .

Example 3.2.3. 1. If R is a field, then an R-module M is a vector space over R.
2. Let R be a ring and R be a module over R. Submodules are (left) ideals in this case.
3. A Z-module is precisely the same as an abelian group as the scalar multiplication can be uniquely defined
by n ¨ a “ a` ¨ ¨ ¨ ` a for n many copies of a.
4. Consider the ring R “ FrXs for a field F and V a vector space over F. Consider α : V Ñ V an
endomorphism. We can make V an R-module over the scalar multiplication FrXs ˆ V Ñ V by pf, vq ÞÑ
fpαqpvq. Note that different choice of α makes V a different module. We sometimes write this as Vα.

There are some general construction methods to produce a module.

Example 3.2.4. 1. For any ring R, Rn is an R-module by r ¨ pr1, . . . , rnq “ prr1, . . . , rrnq for r, ri P R. In
particular, when n “ 1, R itself is an R-module.
2. If I is an ideal, then I is an R-module by r ¨ i “ ri for r P R, i P I.
3. If I is an ideal, then R{I is an R-module by r ¨ ps` Iq “ rs` I for r, s P R.
4. If ϕ : RÑ S is a ring homomorphism, then any S-module M is also an M -module by r ¨m “ ϕprq ¨m for
r P R,m PM . In particular, if R ď S, then any S-module can be viewed as an R-module.

Example 3.2.5. 1. Any R-submodule of R is an ideal.
2. When R is a field, then an R-module is a vector space, then a submodule is a vector subspace.

Definition 3.2.6. If N is a R-submodule of M , we can form the quotient M{N by taking the quotient group
under addition. We can make it as an R-module by specifying the scalar multiplication r ¨pm`Nq “ r ¨m`N .
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We can check easily that the scalar multiplication defined in this way is well-defined and makes M{N an
R-module.

Definition 3.2.7. Let M,N be R-modules, then a function f :M Ñ N is a homomorphism of R-modules (or
R-module map) if f is a homomorphism of groups under addition and @r P R,m PM,fpr ¨mq “ r ¨ fpmq.
A bijective homomorphism is called an isomorphism, and two R-modules M,N are called isomorphic (writ-
ten as M – N) if there is an isomorphism between them.

Example 3.2.8. When R is a field, a homomorphism of R-modules is a linear map.

Isomomorphism Theorems

If N ĎM is a submodule, then M{N has the structure of a R-module.

rpm`Nq :“ rm`N

well-defined: Does m ` N “ m1 ` N ùñ rpm ` Nq “ rpm1 ` Nq?. yes, because m ´ m1 P N and
rpm´m1q P N

Isomorphism Theorem 1: If f :M Ñ N is a R-homomorphism, then

M{Kerpfq » Impfq as R-modules

Isomorphism Theorem 2: If N1, N2 are submodules of M , then N1 ` N2 :“ tx ` y
ˇ

ˇx P N1, y P N2u is a
submodule of M , and N1 XN2 is also a submodule of M , and

N2

N1 XN2
»
N1 `N2

N1
, f : N2 Ñ

N1 `N2

N1
, fpn2q “ n2 `N1

Isomorphism Theorem 3: If N ĎM and K Ď N are submodules, then N{K is a submodule of M{K, and

M{K

N{K
»M{N

Isomorphism Theorem 4: If N Ď M is a submodule, the canonical map M Ñ M{N,m ÞÑ m `N induces
a 1-1 correspondence between submodules of M{N and submodules of M containing N

3.3 Finitely Generated Modules

Definition 3.3.1. Let M be an R-module, and m P M , then the submodule Rm generated by m is the
smallest R-submodule of M containing m, i.e. Rm “ tr ¨m : r P Ru.

Definition 3.3.2. Let M be an R-module. M is called cyclic if M “ Rm for some m P M . M is finitely
generated if Dm1, . . . ,mn PM such that Rm1 ` ¨ ¨ ¨Rmn “M .

Lemma 3.3.3. An R-module M is cyclic iff M is isomorphic as an R-module to R{I for some I ⊴R.

Proof. IfM is cyclic, writeM “ Rm, then there is a surjectiveR-module homomorphismRÑM by r ÞÑ r¨m
so the claim follows by the First Isomorphism Theorem.
Conversely If M – R{I, then M – R{I “ Rp1` Iq.

Lemma 3.3.4. An R-module M is finitely generated iff there exists a surjective R-module homomorphism
from f : Rn ÑM for some n.
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Proof. If M is finitely generated, then M “ Rm1` ¨ ¨ ¨`Rmn where mi PM , so we can take fpr1, . . . , rnq “
r1m1 ` ¨ ¨ ¨ ` rnmn.
Conversely, if such a map f exists, then M “ Rfpe1q ` ¨ ¨ ¨ ` Rfpenq, then ei has 1 in ith entry and 0 in jth

entry for any j ‰ i.

Corollary 3.3.5. The quotient of a finitely generated R-module is a finitely generated R-module.

Proof. Obvious from the preceding lemma.

Remark 3.3.6. A submodule of a finitely generated R-module needs not be finitely generated. For example,
we can take a non-Noetherian ring R itself as an R-module and consider a non-finitely generated ideal of it.

Lemma 3.3.7. Let R be an integral domain, then every R-submodule of a cyclic R-module is cyclic iff R is
a PID.

Proof. R itself is a cyclic R-module, so if all R-submodules of it are cyclic, then all of its ideals are generated
by one element, so R is a PID.
Conversely, if R is a PID and M is a cyclic R-module, so M – R{I for I ⊴R, so the R-submodules of M are
in the form J{I for I Ă J ⊴R. Now since R is a PID, J is principal, so J{I is cyclic.

Theorem 3.3.8. Let R be a PID, and M an R-module. Suppose M is generated by n elements, then any
R-submodule N of M can also be generated by at most n elements.

Proof. n “ 1 is the preceding lemma. For general n, we proceed by induction. Suppose M “ Rx1 ` ¨ ¨ ¨Rxn.
Let Mi “ Rx1 ` ¨ ¨ ¨Rxi and 0 “M0 ďM1 ď ¨ ¨ ¨ ďMn “M . So we have

0 “M0 XN ďM1 XN ď ¨ ¨ ¨ ďMn XN “ N

Then the R-module map Mi XN ÑMi{Mi´1 by m ÞÑ m`Mi´1 has kernel Mi´1 XN . Hence

pMi XNq{pMi´1 XNq –M 1 ďMi{Mi´1

But Mi{Mi´1 is cyclic by hypothesis, so by preceding lemma, pMi X Nq{pMi´1 X Nq is also cyclic and is
generated by yi ` Mi´1 X N where yi P Mi X N . Therefore Mi “ Mi´1 X N ` Ryi. It follows that
Mi X N “ Ry1 ` ¨ ¨ ¨ ` Ryi. In particular, N “ Mn X N “ Ry1 ` ¨ ¨ ¨ ` Ryn, so N is generated by n
elements.

Example 3.3.9. Take R “ Z, then we know that any subgroup of Zn can be generated by n elements.

3.4 Exact Sequences

Definition 3.4.1. Let R be a ring and M,M 1,M2 be R-modules. A sequence of R-homomorphism M 1 f
ÝÝÑ

M
g
ÝÝÑ M2 is called exact if Impfq “ kerpgq. More generally, sequence M1

f1
ÝÝÑ M2

f2
ÝÝÑ M3 is exact if

Impfiq “ kerpfi`1q.

Example 3.4.2. The sequence 0ÑM 1 f
ÝÝÑM , is exact if and only if f is injective.

Example 3.4.3. The sequence M g
ÝÝÑM2 Ñ 0 is exact if and only if g is surjective

Definition 3.4.4. If 0 Ñ M 1 f
ÝÝÑ M

g
ÝÝÑ M2 Ñ 0 is an exact sequence, then it is called a short exact

sequence

Example 3.4.5. If N ĎM is a submodule, 0 ÝÑ N ÝÑM ÝÑM{N ÝÑ 0.
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Proposition 3.4.6. Let 0 ÝÑ M 1
f
ÝáâÝ
ψ
M

g
ÝáâÝ
ϕ
M2 ÝÑ 0 be a short exact sequence of R-modules. Then the

following conditions are equivalent.

1. D R-homomorphism ϕ :M2 ÑM s.t. g ˝ ϕ “ idM2

2. D R-homomorphism ψ :M ÑM 1 s.t. ψ ˝ f “ idM 1

and they imply M »M 1 ‘M2. In this case, we say the sequence splits

Example 3.4.7. R “ Z4,M “ Z4, N “ t0, 2u. Then 0 Ñ N Ñ Z4 Ñ Z4{N Ñ 0. Notice that ψp1q “ 0 ùñ

ψp2q “ 0 and ψp1q “ 2 ùñ ψp2q “ 0. Therefore this does not split.

Proof of Proposition. p1q ùñ p2q : If m P M , then gpϕpgpmqqq “ gpmq ùñ gpm ´ ϕpgpmqqq “ 0 ùñ

m´ ϕpgpmqq P kerpgq “ Impfq ùñ D!x PM 1 s.t. fpxq “ m´ ϕpgpmqq.

Let ψpmq “ x. We need to check that ψ is a R-homomorphism (exercise), and ψ ˝ f “ idM 1 : if y P M 1, let
m “ fpyq. Then m´ϕpgpmqq “ fpyq´ϕpgpfpyqq

loomoon

“0

q “ fpyq. By definition of ψ : ψpmq “ y ùñ ψpfpyqq “ y @y

p2q ùñ p1q: Suppose x PM2, then Dy PM s.t. gpyq “ x. Then let ϕpxq “ y ´ fpψpyqq.

This is well-defined: If y1 P M such that gpy1q “ x. I want to check that y ´ fpψpyqq “ y1 ´ fpψpy1qq, or
y´y1 “ fpψpy´y1qq. But gpy´y1q “ 0. Since Kerpgq “ Impfq, Dz PM 1 s.t. y´y1 “ fpzq ùñ fpψpy´y1qq “

fpψpfpzqqq “ fpzq “ y ´ y1. So ϕ well-defined.

Also g ˝ ϕ “ idM2 : If x P M2, ϕpxq “ y ´ fpψpyqq for some y P M with gpyq “ x, so gpϕpxqq “ gpyq ´
gpfpψpyqqq “ gpyq “ x, since g ˝ f “ 0. Also ϕ is a R-homomorphism, since @r, s P R, x1, x2 P M2, ϕprx1 `
sx2q “ rϕpx1 ` sϕpx2qq.

Direct Sum: Define
M 1 ‘M2 α

ÝÝÑM, px, yq ÞÑ fpxq ` ϕpxq

M
β
ÝÑM 1 ‘M2,m ÞÑ pψpmq, gpmqq

Then β ˝ αpx, yq “ βpfpxq ` ϕpyqq “ px, yq, since ψ ˝ ϕ “ 0 (Show this as an exercise:)

3.5 Hom Functors

Definition 3.5.1. Let M,N be R-module, with HomRpM,Nq being the set of R-homomorphism f :M ÝÑ

N , and HomRpM,Nq has the structure of an R-module.

Let f, g P HomRpM,Nq if f `g P HomRpM,Nq. Note prfqpmq “ rfpmq, pf `gqpmq “ fpmq`gpmq. We have

HomRpM,Nq
´˝f
ÝÝÝÑ HomRpM

1, Nq

HomRpN,M
1q

f˝´
ÝÝÝÑ HomRpN,Mq

M 1 M

N 1 N

f

gg1
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Lemma 3.5.2. If 0 ÝÑ M 1 f
ÝÑ M

g
ÝÑ M2 Ñ 0 is a short exact sequence of R-modules and N is a R-module,

then
p1q. 0Ñ HomRpN,M

1q
ψ
ÝÑ HomRpN,Mq

ϕ
ÝÑ HomRpN,M

2q exact

p2q. 0 ÝÑ HomRpM
2, Nq ÝÑ HompM,Nq ÝÑ HompM 1, Nq exact

Proof.

M 1 M M2

N 1

f g

f˝α“β
α

g˝β

HomRpN,M
1q ÑR HompN,Mq injective: If f ˝ α “ 0 for some α P HomRpN,M

1q, then since f injective,
α “ 0.

ϕ ˝ ψ “ 0p ùñ Impψq Ă kerpϕqq : If α P HomRpN,M
1q, then ϕ ˝ ψpαq “ g ˝ f ˝ α “ 0, where g ˝ f “ 0 since

it is exact.

If β P Kerpϕq, then g ˝ β “ 0, so for any x P N, gpβpxqq “ 0, so βpxq P Impfq ùñ there is a unique y P M 1

such that fpyq “ βpxq. Let α : N Ñ M 1 be defined by αpxq “ y, then α is a R-homomorphism (Exercise).
And clearly β “ f ˝ α, so β P Impψq

Remark: If M 1 ĎM is a submodule, then 0ÑM 1 ÑM ÑM{M 1 is a short exact sequence. If g :M ÑM2

is a surjective R homomorphism, then 0Ñ kerpgq ÑM ÑM2 Ñ 0 is a short exact sequence.

ñ px, 0q P Impkq “
␣`

´f
`

m1
˘

, i
`

m1
˘˘(

ñ 0 “ i
`

m1
˘ i inclusion
ÝÝÝÝÝÝÑ m1 “ 0ñ x “ ´f

`

m1
˘

“ 0

We then by exactness get R-homomorphism q : P Ñ Q such that q ˝ α “ 1Q. If we let h “ q ˝ β, then
the desired relationship f “ h ˝ i is obtained from q by composing f on both sides of q ˝ α “ 1Q, i.e.,
h ˝ i “ q ˝ β ˝ i “ q ˝ α ˝ f “ 1Q ˝ f “ f if β ˝ i “ α ˝ f , i.e., the square diagram is commutative, which
is immediate: pβi ´ αfqpxq “ rp0, ipxqq ` Impkqs ´ rpfpxq, 0q ` Impkqs “ p0, ipxqq ´ pfpxq, 0q ` Impkq “
p´fpxq, ipxqq ` ` Impkq “ kpxq

loomoon

PImpkq

` Impkq “ 0 in the quotient. Thus, the map h “ q ˝ β concludes.

3.6 Direct Sums and Free Modules

Definition 3.6.1. If M1, . . . ,Mn are R-modules, then their direct sum M1‘¨ ¨ ¨‘Mn is the set M1ˆ¨ ¨ ¨ˆMn

with entry-wise addition and scalar multiplications.

Example 3.6.2. 1. Rn is simply R‘ ¨ ¨ ¨ ‘R of n copies of R.
2. If M1,M2 ď M , then the R-module homomorphism M1 ‘ M2 Ñ M by pm1,m2q ÞÑ m1 ` m2 is an
isomorphism iff M1 XM2 “ ∅ and M1 `M2 “M .

Lemma 3.6.3. If M “
Àn

i“1Mn, and N1 ďMi. Take N “
Àn

i“1Ni, then

M{N –

n
à

i“1

Mi{Ni

Proof. Apply the first isomorphism theorem to the surjective R-module map ϕ : M Ñ
Àn

i“1Mi{Ni by
pm1, . . . ,mnq ÞÑ pm1 `N1, . . . ,mn `Nnq.
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Example 3.6.4. Taking R “ Z then Z2 “ Z‘ Z, then we have pZ‘ Zq{pmZ‘ nZq – pZ{mZq ‘ pZ{nZq.

Definition 3.6.5. Let m1, . . . ,mn PM . The set tm1, . . . ,mnu is independent if r1m1 ` ¨ ¨ ¨ ` rnmn “ 0 ùñ
@i, ri “ 0.

Definition 3.6.6. A subset S of an R-module M generates M freely if S generates M and any function
ψ : S Ñ N for another R-module N extends to an R-module homomorphism M Ñ N .

Note that if such an extension exists then it is necessarily unique.

Definition 3.6.7. A freely-generated R-module is called a free R-module. The corresponding S is called the
free basis.

Proposition 3.6.8. For an R-module M and a subset S “ tm1, . . . ,mnu ĂM , the followings are equivalent:
1. S generates M freely.
2. S generates M and S is independent.
3. Every m PM can be written uniquely in the form m “ r1m1 ` ¨ ¨ ¨ ` rnmn for r1, . . . , rn P R.
4. The R-module homomorphism Rn ÑM by pr1, . . . , rnq ÞÑ r1m1 ` . . . rnmn is an isomorphism.

Proof. 1 ùñ 2: We already knows that S generates M , so it suffices to show that S is independent. Suppose
for sake of contradiction that r1m1 ` . . . ` rnmn “ 0 for some ri P R and some rj is nonzero. Consider
the function ψ : S Ñ R by mj ÞÑ 1 and mi ÞÑ 0 for any i ‰ j. Suppose this extends to an R-module map
θ :M Ñ R, then 0 “ θp0q “ θpr1m1 ` ¨ ¨ ¨ ` rnmnq “ rj , contradiction.
Remaining implications 2 ùñ 3 ùñ 1 and 3 ðñ 4 are just as easy if not easier.

Sadly not all R-modules are free. Even if it is, the free basis does not behave like what we expect from a
vector space.

Example 3.6.9 (non-example). 1. Suppose we have a nontrivial finite abelian group A, then A is not free
as a Z-module since it is not isomorphic to Zn which is infinite.
2. The set t2, 3u Ă Z generates Z as a Z-module, but it is not independent and no subset of it gives a free
basis.

Proposition 3.6.10 (Theorem on Invariant of Dimension). Let R be a nonzero ring. If Rm – Rn as R-
modules, then m “ n.

We introduce the following general construction: Let R be a ring and I ⊴ R and M is an R-module. We
write IM “ tim : i P I,m PMu ďM . Then the quotient M{pIMq is an R{I module by pr ` Iqpm` IMq “
rm ` IM . Also by Zorn’s Lemma, for any proper ideal I in a ring R, there is a maximal ideal containing I
(this is obvious when R is Noetherian). 1

Proof. Return to our proof, suppose Rm – Rn. Choose I ⊴R maximal, then we have

pR{Iqm – Rm{pIRmq – Rn{pIRnq – pR{Iqn

But R{I is a field, so m “ n.

3.7 Projective Module and Injective Module

Definition 3.7.1. If M is a R-module, and S Ă M is a basis if @m P M,m “ r1s1 ` ... ` rksk in a unique
way with r P R, s P S. Equivalently, if 0 “ r1s1 ` ...` rksk, then r1 “ ... “ rk “ 0. If tsiuiPI is a basis for M ,
then M »

À

iPI R. Then, M is free is it has a basis.

Definition 3.7.2. If R is a ring and P is a R-module, then P is a projective module if it satisfies the
following:

1I think we can prove the proposition without using AC (or equivalence)
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1. If g, ϕ are R homomorphism, Dψ : P ÑM , R-homomorphism s.t. g ˝ ψ “ ϕ

P

M M2 0

ϕ
Dψ

g

2. If 0ÑM 1 ÑM Ñ P Ñ 0 is exact, then it splits.

3. There is a R-module N such that N ‘ P is a free module.

4. If 0ÑM 1 ÑM ÑM2 is exact, then

0Ñ HompP,M 1q Ñ HompP,Mq Ñ HompP,M2q Ñ 0

is exact.

p1q ùñ p2q. If 0 Ñ M 1 Ñ M Ñ P Ñ 0 is exact, then by (1) Dψ : P Ñ M s.t. g ˝ ψ “ idP , so the sequence
splits

P

M P 0

idP
Dψ
g

p2q ùñ p3q. Let txiuiPI be a generating subset of P as a R-module. Then, g :
À

iPI R Ñ P, priqiPI ÞÑ
ř

iPI rixi. is surjective. Then, 0 Ñ kerpgq Ñ
À

iPI R Ñ P Ñ 0 is a short exact sequence. By (2) this splits,
so free R-module

À

iPI R » kerpgq ‘ P .

p3q ùñ p4q. It is enough to show that HompP,Mq Ñ HompP,M2q is surjective. If P is free and pxiqiPI is a
basis for P and let yi “ ϕpxiq and zi P m s.t. gpziq “ yi. Then let ψpxiq “ zi and ψp

ř

rixiq “
ř

rizi. Then
g ˝ψ “ ϕ. If N

À

P is free, then ϕ̃pr, pq “ ϕppq is a R homomorphism, Dψ̃ : N ‘P ÑM such that g ˝ ψ̃ “ ϕ̃.
Define ψ : P ÑM,ψppq “ ψ̃pn, pq, then g ˝ ψ “ ϕ.

P

M M2

ϕ
ψ

g

ùñ

Q “ N ‘ P

M M2

ϕ̃
ψ̃g

p4q ùñ p1q. The surjective map g :M ÑM 1 gives a short exact sequence 0Ñ kerpgq ÑM ÑM2 Ñ 0. So
by p4q there is a surjective map HompP,M2q Ñ HompP,Mq. This is exactly 1.

Example 3.7.3. R “ Z6. Let Z6 be a Z6-module and I1 “ t0, 3u, I2 “ t0, 2, 4u. Then I1 X I2 “ t0u and
I1 ` I2 “ Z6 ùñ Z6 “ I1 ` I3. So by 3, I1, I2 are projective modules but not free.

We introduce injective module.

Theorem 3.7.4. Let R be a commutative ring and Q a module over R. We show that the following are
equivalent:

(a) If M is an R-module, if M 1 is a submodule of M , and if f :M 1 Ñ Q is a R homomorphism, then there
is an extension of f to a R-homomorphism M Ñ Q, i.e., there is a R-homomorphism h :M Ñ Q such
that the following diagram is commutative
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(b) For any short exact sequence 0ÑM 1 ÑM ÑM2 Ñ 0, the sequence

0Ñ HomR

`

M2,Q
˘

Ñ HomRpM,Qq Ñ HomR

`

M1,Q
˘

Ñ 0

is exact.

(c) Every short exact sequence 0Ñ QÑM ÑM2 Ñ 0 splits.

Proof. These are contents of Rotman’s An Introduction to Homological Algebra e2 Proposition 3.25 and
3.26and 3.40. Note that the ring R is commutative.
paq ñ pbq : We have shown in class that exactness of M 1 i

ÝÑM
p
ÝÑM2 Ñ 0 gives the exactness of

0Ñ HomR

`

M2, Q
˘ p˚

“pq˝p
ÝÝÝÝÝÑ HomRpM,Qq

i˚“pq˝i
ÝÝÝÝÝÑ HomR

`

M 1, Q
˘

Therefore, to show exactness of

p˚q 0ÑM 1 i
ÑM

p
ÝÑM2 Ñ 0

implies

p˚˚q 0Ñ HomR

`

M2, Q
˘ p˚

“pq˝p
ÝÝÝÝÝÑ HomRpM,Qq

i˚“pq˝i
ÝÝÝÝÝÑ HomR

`

M 1, Q
˘

Ñ 0

we only need to show injectivity of i implies surjectivity of i˚, given Q is an injective module, i.e., (a) is
satisfied. Let f P HomR pM

1, Qq, i.e., f : M 1 Ñ Q is an R-homomorphism. Since i is an injective R-

homomorphism, i pM 1q Ď M is a submodule, then ϕ “ i|
ipM 1q denoting the restriction of i on its codomain

i pM 1q is an R-isomorphism. Let l be the inclusion of the submodule of M . Let f 1 : i pM 1q Ñ Q be equal to
f ˝ ϕ´1. By (a), there is an R homomorphism h :M Ñ Q making the following diagram commutative:

M 1 ipM 1q M

Q
f

ϕ“i|ipM1q

f 1
“f˝ϕ´1

ι

h

Since i “ l ˝ ϕ and f 1 “ h ˝ l, we see i˚phq “ h ˝ i “ h ˝ pl ˝ ϕq “ ph ˝ lq ˝ ϕ “ f 1 ˝ ϕ “ f˝ ϕ´1 ˝ ϕ “ f , so
there is h P HomRpM,Qq such that i˚phq “ f , proving that i˚ is surjective.
(b) ñ pcq : ”(b) ñ pcq ” is like ”Im i Ď ker p ” part of the last exercise we proved: given that p˚˚q is exact,
which implies i˚p˚ “ ppiq˚ “ 0, we ;et Q “ M 1 in p˚˚q and consider the identity homomorphism f “ 1M 1

in HomR pM
1,M 1q. Then there is some h P HomR pM,M 1q such that i˚phq “ h ˝ i “ f “ 1M 1 . Then by the

definition/proposition of split, p˚q is exact (there is an R-homo h : M Ñ M 1 such that h ˝ i is the identity).
pcq ñ paq : Let i : M 1 Ñ M be the inclusion and f : M 1 Ñ Q be the given R-homomorphism. We want to
show that there is an R-homomorphism h :M Ñ Q making the following diagram commutative:

0 M 1 M

Q

f
h

Define
k :M 1 Ñ Q‘M

x ÞÑ p´fpxq, ipxqq
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which is clearly an R-homomorphism since f and i are. To obtain an R-homomorphism h : M Ñ Q, we
consider using exactness of a sequence of the form 0 Ñ Q Ñ P Ñ P

Q Ñ 0 to induce a map P Ñ Q

descending to h :M Ñ Q. Let P “ Q‘M
Impkq

be the quotient of Q‘M over submodule Impkq and define

α : QÑ P

x ÞÑ px, 0q ` Impkq

and
β :M Ñ P

y ÞÑ p0, yq ` Impkq

Consider the following diagram:

M 1 M

0 Q P P {αpQq 0

f

i

β

α p

To show 0 Ñ Q
α
ÝÑ P

p
ÝÑ P

αpQq
Ñ 0 is exact (where p is the canonical projection), we need to show that α is

injective:
αpxq “ px, 0q ` Impkq “ 0

ñ px, 0q P Impkq “
␣`

´f
`

m1
˘

, i
`

m1
˘˘(

ñ 0 “ i
`

m1
˘ i inclusion
ùùùùùùñ m1 “ 0ñ x “ ´f

`

m1
˘

“ 0

We then by exactness get R-homomorphism q : P Ñ Q such that q ˝ α “ 1Q. If we let h “ q ˝ β, then
the desired relationship f “ h ˝ i is obtained from q by composing f on both sides of q ˝ α “ 1Q, i.e.,
h ˝ i “ q ˝ β ˝ i “ q ˝ α ˝ f “ 1Q ˝ f “ f if β ˝ i “ α ˝ f , i.e., the square diagram is commutative, which
is immediate: pβi ´ αfqpxq “ rp0, ipxqq ` Impkqs ´ rpfpxq, 0q ` Impkqs “ p0, ipxqq ´ pfpxq, 0q ` Impkq “
p´fpxq, ipxqq ` ` Impkq “ kpxq

loomoon

PImpkq

` Impkq “ 0 in the quotient. Thus, the map h “ q ˝ β concludes.

Example 3.7.5. Let R be a commutative ring and I an ideal of R. By considering the exact sequence
0 Ñ I Ñ R Ñ R{I Ñ 0, show that if R{I is a projective R-module, then I is a principal ideal generated by
an element a such that a2 “ a.

Solution. R is a commutaitve ring. I Ď R is an ideal. If R{I is a projective R-module, then I “ paq with
a2 “ a.

We look at the SES
0Ñ I

ρ
ÝÑ RÑ R{I Ñ 0

Then projective module R{I gives ϕ : R Ñ I such that ϕ ˝ ρ “ idI . Let a “ ϕp1q, so a P I. For any i P I,
ϕp ρpiq
loomoon

PR

q “ i. Then i “ ϕpiq “ iϕp1q “ iañ i P paq @i P I ñ I “ paq. Let i “ a, then we get a2 “ a.

Example 3.7.6. Let R be a commutative ring, and let M be a R-module. Let S be a multiplicative subset
of R such that 1 P S and 0 R S. Consider the set of all tpm, sq,m P M, s P Su, and show that the relation
pm1, s1q „ pm2, s2q if there is s P S such that s ps2m1 ´ s1m2q “ 0 is an equivalence relation. Denote the
class of pm, sq by m

s , and set
S´1M “ tpm, sq,m PM, s P Su{ „

(i) Show that S´1M is a module over S´1R.
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(ii) If 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 is an exact sequence of R-modules, show that 0 Ñ S´1M 1 Ñ S´1M Ñ

S´1M2 Ñ 0 is an exact sequence of S´1M -modules.

Solution. (i): S´1M is an abelian group with addition

m1

s1
`
m2

s2
“
s2m1 ` s1m2

s1s2

The definition is commutative: s2m1`s1m2 “ s1m2`s2m1, s1s2 “ s2s1. It is also well-defined: let m0

s0
“ m1

s1
then s ps0m1 ´ s1m0q “ 0 for some s P S. Then

s ps0s2 ps2m1 ` s1m2q ´ s1s2 ps2m0 ` s0m2qq

“ s
`

s0s
2
2m1 ` s0s2s1m2 ´ s1s

2
2m0 ´ s1s2s0m2

˘

“ s
`

s22 ps0m1 ´ s1m0q
˘

“ 0

Thus s2m1`s1m2

s1s2
“ s2m0`s0m2

s0s2
by element s P S. Similarly, m

1

s1 “
m2

s2
will give s2m1`s1m2

s1s2
“ s1m1`s1m

1

s1s1 . Thus
s1m1`s1m

1

s1s1 “ s2m1`s1m2

s1s2
“ s2m0`s0m2

s0s2
. The definition of addition is then regardless of representatives of the

equivalence classes chosen. S´1M is a S´1R-module with the scalar multiplication ˚ : S´1R ˆ S´1M Ñ

S´1M defined by
r

s
˚
m

s1
“
rm

ss1

This is well defined: let m0

s0
“ m

s1 then s2 ps0m´ s
1m0q “ 0 for some s2 P S. Then

s2
`

ss0rm´ ss
1rm0

˘

“ s2
`

sr
`

s0m´ s
1m0

˘˘

“ 0

Thus rm
ss1 “

rm0

ss0
by element s2 P S. Similar argument as for addition implies that the definition of scalar

multiplication is regardless of representatives of the equivalence classes chosen.

(ii)

We are given the exact sequence

0ÑM 1 f
ÝÑM

g
ÝÑM2 Ñ 0

with R-homomorphisms f and g. Then f is injective, g is surjective and Impfq “ kerpgq. Naturally, we define

S´1R-homomorphisms p : S´1M 1 Ñ S´1M ; m
1

s ÞÑ
fpm1q
s and q : S´1M Ñ S´1M2; ms ÞÑ

gpmq

s . Consider the
following sequence

0Ñ S´1M 1 p
ÝÑ S´1M

q
ÝÑ S´1M2 Ñ 0

Note that g˝f “ 0ñ q˝p
´

m1

s

¯

“
gpfpm1qq

s “ 0
s “ 0ñ q˝p “ 0. To show it is a short exact sequence, we need

to show p injective, q surjective, and Imppq “ kerpqq : - p injective: Let
fpm1

1q
s1

“ p
´

m1
1

s1

¯

“ p
´

m1
2

s2

¯

“
fpm1

2q
s2

.
Then Ds P S s.t.

s
`

s2f
`

m1
1

˘

´ s1f
`

m1
2

˘˘

“ 0
fR´ homo
ùùùùùùùñ f

`

s
`

s2m
1
1 ´ s1m

1
2

˘˘

“ 0

finjective
ùùùùùùñ s

`

s2m
1
1 ´ s1m

1
2

˘

“ 0ñ
m1

1

s1
“
m1

2

s2

- q surjective: Since g is surjective, we see for m2 P M2 we have gpmq “ m2 for some m P M , then
q
`

m
s

˘

“
gpmq

s “ m2

s .

- Imppq “ kerpqq:
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kerpqq “

"

m

s
: q

´m

s

¯

“
gpmq

s
“

0

1

*

“

!m

s
: Ds1 P S s.t. s1gpmq “ 0

)

“

$

’

&

’

%

m

s
: Ds1 P S s.t. s1m “ kerpgq

loomoon

“Impfq

,

/

.

/

-

“

!m

s
: Ds1 P S,m1 PM 1 s.t. f

`

m1
˘

“ s1m
)

“

"

m

s
: Ds1 P S,m1 PM 1 s.t.

f pm1q

s1s
“
s1m

s1s

*

“

"

p

ˆ

m1

s1s

˙

: s1 P S,m1 PM 1

*

“

"

p

ˆ

m1

s2

˙

: s2 P S,m1 PM 1

*

“ Imppq

3.8 Tensor Products

LetR be a ring andM,N beR-modules. Let F be a free module generated by elements pm,nq,m PM,n P N.
F “ tr1pm1, n1q ` ...` rkpmk, nkq

ˇ

ˇ ri P R,mi PM,ni P Nu. D is the submodule of F generated by elements
of the forms below

• pm1 `m2, nq ´ pm1, nq ´ pm2, nq,

• pm,n1 ` n2q ´ pm,n1q ´ pm,n2q

• prm, nq ´ rpm,nq

• pm, rnq ´ rpm,nq

with r P R,m,m1,m2 PM,n, n1, n2 P N .

Let T :“ F {D be an R-module. Note there is a map α : M ˆ N ÝÑ T, αpm,nq “ pm,nq `D. This map is
bilinear: αpr1m1 ` r2m2, nq “ r1αpm1, nq ` r2αpm2, nq and αpm, r1n1 ` r2n2q “ r1αpm,n1q ` r2αpm,n2q

Proof of above requires us to show pr1m1 ` r2m2, nq ´ r1pm1, nq ´ r2pm2, nq P D. Rewrite expression into
ppr1m1 ` r2m2, nq ´ pr1m1, nq ´ pr2m2, nqq ` ppr1m1, nq ´ r1pm1, nqq ` ppr2m2, nq ´ r2pm2, nqq

M ˆN Q

T

ϕ

α D!ψ

T has the following universal property: If Q is a R-module and ϕ :M ˆN ÝÑ Q is a bilinear map, then there
is a unique R-homomorphism ψ : T Ñ Q with ϕ “ ψ ˝α, and define ψppr1pm1, n1q` ...` rkpmk, nkqq`Dq “
r1ϕpm1, n1q ` ...` rkϕpmk, nkq.

We need to check that ψ is well-defined and is a R-homomorphism. For well-defined, it suffices to show that
elements P D.

We denote tensor product of M and N as M bR N “ T “ F {D. Any element is of the form

r1pm1, n1q ` ...` rkpmk, nkq `D “ pr1m1, n1q ` ...` prkmk, nkq `D
looooooooooooooooooooomooooooooooooooooooooon

:“r1m1bn1`...`rkmkbnk

Proposition 3.8.1. The following properties are satisfied:

1. mb pn1 ` n2q “ mb n1 `mb n2

2. pm1 `m2q b n “ m1 b n`m2 b n

122



Math 5031-32 Algebra Anthony Hong

3. prmq b n “ rpmb nq “ mb prnq

4. 0b n “ 0 “ mb 0

Example 3.8.2. • Zp bZ Q “ t0u: ab b
c “ ab bp

cp “ pab b
cp “ 0b b

cp “ 0.

• Z2 b Z3 “ t0u : 0b x “ 0, 1b 0, 2 “ 0. Finally 1b 1 “ 1b p2` 2q “ 2b 1` 2b 1 “ 0` 0 “ 0.

• gcdpm,nq “ 1,Zm bZ Zn “ t0u

Proposition 3.8.3. If M,N,P are R-modules, then

• M bR N » N bRM

• pM bR Nq bR P »M bR pN bR P q

• M bR pN ‘ P q »M bR N
À

M bR P

• M bR R » RbRM »M

Proposition 1 Proof. M ˆN
α
ÝÑ N bM is clearly bilinear, pm,nq ÞÑ nbm

M ˆN N bM

M bN

α

D!ψ

By the universal property, we have R-homomorphism ψpm b nq “ αpm,nq “ n b m. Conversely, DR-
homomorphism ϕ : N bM ÑM bN , and nbm ÞÑ mb n, and ϕ ˝ ψ and ψ ˝ ϕ are identity maps.

Proposition 2 Proof. Fix m P M and define αm : N ˆ P Ñ pM b Nq b P, pn, pq ÞÑ pm b nq b p. Then, αm
is bilinear: αmpn, p1 ` p2q “ αmpn, p1q ` αmpn, p2q. αmpn1 ` n2, pq “ αmpn1, pq ` αmpn2, pq. αmpm, pq “
rαmpn, pq. αmpn, rpq´rαmpn, pq. Together, this implies that DR-homomorphism ψm : NbP ÝÑ pMbNqbP .

Now, we have a bilinear map ψ : M ˆ pN b P q Ñ pM b Nq b P,ψpm,xq “ ψmpxq and show that this is
bilinear.

• ψpm,x1 ` x2q “ ψpm,x1q ` ψpm,x2q

• ψpm, rxq “ rψpm,xq

So ψm is a R-homomorphism. Also ψpm1 ` m2, xq “ ψpm1, xq ` ψpm2, xq and ψprm, xq “ rψpm,xq so
ψm1`m2

“ ψm1
` ψm2

.

Since there is a bilinear map, DR-homomorphism γ :MbpNbP q Ñ pMbNqbP,mbpnbpq “ pmbnqbp.

Similarly, there is a R´homomorphism β : pM bNq b P “M b pN b P q, pmb nq b p ÞÑ mb pnb pq. γ, β
are inverse maps, so they are isomorphisms.

Proposition 4 Proof. There is a binear mapMˆR α
ÝÑM, pm, rq ÞÑ rm bilinear. So there is anR-homomorphism

ψ : M b R Ñ M,m b r ÞÑ rm. Also there is an R-homomorphism ϕ : M Ñ M b R,m ÞÑ m b 1.
ψ ˝ ϕ “ id, ϕ ˝ ψpmb rq “ ϕprmq “ rmb 1 “ mb r ùñ ϕ ˝ ψ “ id ùñ ϕ isomorphism.

Example 3.8.4. Consider RrxsbRRrxs, where R is a commutative ring, we claim that RrxsbRrxs » Rrx, ys.

Let ϕ : Rrxs bR rrxs Ñ Rrx, ys be the R-homomorphism induced by the bilinear map Rrxs ˆ Rrxs ÝÑ
Rrx, ys, pfpxq, gpxqq ÞÑ fpxqgpyq.

To define ψ, note that Rrx, ys is a free module over R with basis xiyj , 0 ď i, j. Let ψ : Rrx, ys Ñ RrxsbRRrxs
be such that ψpxiyjq “ xi b xj .
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ϕ, ψ are inverse maps: xiyj ψ
ÝÑ xi b xj

ϕ
ÝÑ xiyj , fpxq b gpxq “

ř

i,j ci,jx
i b xj , xi b xj

ϕ
ÝÑ xiyj

ψ
ÝÑ xi b xj .

Proposition 3.8.5. Let 0Ñ M 1 Ñ M Ñ M2 Ñ 0 be a short exact sequence of R-modules, and let N be an
R module, then

M 1 bR N ÑM bR N ÑM2 bR N Ñ 0

is exact. Here, M 1 f
ÝÑM induces M 1 bN

fbid
ÝÝÝÑM bN ,

ř

m1
i b ni ÞÑ

ř

fpm1
iq b ni.

Lemma 3.8.6. Let M,N,Q be R modules, then HomRpM bR N,Qq » HomRpM,HomRpN,Qqq.

Corollary 3.8.7. If Q “ R, pM bR Nq
_ » HomRpM,N_q.

Example 3.8.8. Let k be a field, R “ krx, ys{px, yq,M “ R{pxq, N “ R{pyq. Then, MbRN “ R{pxqbRpyq »
R{px, yq. Also, pM bR Nq

_ » pR{px, yqq_ “ HomRpR{px, yq, Rq “ t0u.

Also, M_ “ HompR{pxq, Rq » M,N_ “ HompR{pyq, Rq » N . Consider ϕ : R{pxq Ñ R, 1 ÞÑ f̄ , 0 “ x̄ ÞÑ
xf “ 0, f P krx, ys ùñ xf P pxyq ùñ f P pyq.

So M_ bN_ »M bN » R{px, yq ‰ t0u.

Proposition Proof using Lemma. If M 1 Ñ M Ñ M2 Ñ 0 is exact, then let Q be an arbitrary R-module and
take Homp´,HomRpN,Qqq. Then we have exact sequence

0Ñ HompM2,HomRpM
2, Qqq Ñ HomRpM,HomRpN,Qqq Ñ HomRpM

1
, HompN,Qqq

So we have an exact sequence

0Ñ HomRpM
2 bN,Qq Ñ HomRpM bN,Qq Ñ HomRpM

1 bN,Qq

So by homework 9 question, M 1 bR N ÑM bR N ÑM2 bR N Ñ 0 is exact.

Example 3.8.9. Let 0Ñ Z f
ÝÑ ZÑ Z2 be a short exact sequence of Z-modules and tensored with Z2, where

f : a ÞÑ 2a.

Then, Zb Z2
loomoon

»Z2

Ñ Zb Z2. [fill in from notes]

Proof of Lemma. Define ϕ : HomRpM bR N,Qq Ñ HomRpM,HomRpN,Qqq, where pα :M bN Ñ P q ÞÑ pβ :
M Ñ HomRpN,Qqq. β : m ÞÑ βm, βpnq “ αpmb nq P Q.

I need to show that β is R-homomorphism, ϕ is R-homomorphism.

β homomorphism: β P HomRpM,HomRpN,Qqq : Show that βr1m1`r2m2
“ r1βm1

`r2βm2
. So, βr1m1`r2m2

pnq “
αppr1m1` r2m2qbnq “ αpr1pm1bnq` r2pm2bnqq, and pr1βm1 ` r2βm2qpnq “ r1αpm1bnq` r2αpm2bnq,
which is true

ϕ homomorphism shown similarly.

Also define ψ : HomRpM,HomRpN,Qqq Ñ HomRpM bR N,Qq with β : M Ñ HomRpN,Qq given. Define
bilinear map M ˆN Ñ Q, pm,nq ÞÑ βpmqpnq, this gives a map α :M bR N Ñ Q.

So ϕ, ψ are inverse maps.

Definition 3.8.10. A module F is flat if for any short exact sequence 0 Ñ M 1 f
ÝÑ M

g
ÝÑ M2 Ñ 0, the

following sequence is exact:

0ÑM 1 b F
fbid
ÝÝÝÑM b F

gbid
ÝÝÝÑM2 b F Ñ 0

Equivalently, F is flat if for any R-homomorphism f :M 1 ÑM,M 1 b F ÑM bN is injective.
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Example 3.8.11. Z2 is not a flat Z-module. Consider Z Ñ Z, n ÞÑ 2n. Z b Z2 Ñ Z b Z2, a b b ÞÑ 2a b b “
ab 2b “ 0. Not injective, so this is not flat.

Example 3.8.12. Suppose R is an integral domain:

• Free modules are flat. If F is a free R-module, F »
À

iPI R, f :M 1 ÑM is an injective map that gives
the following injectivity.

M 1 b F

M b F

fbid »

M 1 b p
À

iRq

M b p
À

iRq

fbid »

À

iM
1 bR

À

iM bR

À

fbid »

À

iM
1

À

iM

‘f

• More generally, projective modules are flat. If P is projective, DP 1 s.t. for a free module F , F “ P‘P 1.
Then ifM 1 ÑM is injective, thenM 1bF ÑMbF by the previous example. SoM 1bP

À

M 1bP 1 ÝÑ

M b P
À

M b P 1 is an injective map ùñ M 1 b P ÑM b P is injective.

• Flat module does not necessarily imply projective modules. Q as a Z-module is flat. [Check 11/29
minute 30 for proof] But Q is not projective. Suppose Q ‘ P 1 is free, then pick a basis and write
p1, 0q “ λ1x1 ` ...` λnxn, x1, ..., xn part of a basis and λ1, ..., λn P Z. Pick N where N ą |λ1|, ..., |λn|.
Then write p 1

N , 0q as a combination of basis elements, where p 1
N , 0q “ c1x1`...`cnxn,where c1, ..., cn P

Z may be 0. So p1, 0q “ Nc1x1 ` ...`Ncnxn. If ci ‰ 0, then |Nci| ą |λi|, so they cannot be equal.

• If F is a flat R-module, then it is torsion-free. We need to show that if 0 ‰ x P F and 0 ‰ r P R, then
rx ‰ 0. Let R f

ÝÑ R, s ÞÑ rs be multiplication by r. Then f is injective since R is an integral domain.

So, Rb F fbid
ÝÝÝÑ Rb F is injective. 0 ‰ 1b x ÞÑ r b x “ 1b rx. So 1b rx ‰ 0, rx ‰ 0

Note: Free ùñ Projective ùñ Flat ùñ Torsion-free

Let R f
ÝÑ S be a ring homomorphism.

• Any S-module M has the structure of an R-module, rm : fprqm

• Now, suppose N is a module over R. N bR S is a R-module which has the structure of S-module,
spn1 b s1q :“ n1 b ss1

If ϕ : N1 Ñ N2 is a R-homomorphism, ϕb id : N1 b S Ñ N2 bR S is a S-homomorphism.
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Chapter 4

Fields

We will extensively use J.S. Milne’s tex file for field theory and Galois theory.

4.1 Basic Definitions

Note: we will use RrXs instead of Rrxs now to emphasize the indeterminant X in the polynomial ring.

Definition 4.1.1. A field is a set F with two composition laws ` and ¨ such that

1. pF,`q is a commutative group;

2. pFˆ, ¨q, where Fˆ “ F ∖ t0u, is a commutative group;

3. the distributive law holds.

Thus, a field is a nonzero commutative ring such that every nonzero element has an inverse. In particular, it
is an integral domain. A field contains at least two distinct elements, 0 and 1. The smallest, and one of the
most important, fields is F2 “ Z{2Z “ t0, 1u.

A subfield S of a field F is a subring that is closed under passage to the inverse. It inherits the structure of
a field from that on F .

We have shown

Lemma 4.1.2. A nonzero commutative ring R is a field if and only if it has no ideals other than p0q and R.

Example 4.1.3. The following are fields: Q, R, C, Fp “ Z{pZ (p prime).

Definition 4.1.4. A homomorphism of fields is simply a homomorphism of rings. Such a homomorphism
is always injective, because its kernel is a proper ideal (it doesn’t contain 1), which must therefore be zero.

Let F be a field. An F -algebra (or algebra over F ) is a ring R containing F as a subring (so the inclusion
map is a homomorphism). A homomorphism of F -algebras α : R Ñ R1 is a homomorphism of rings such
that αpcq “ c for every c P F .

Remark 4.1.5. Let F be a field.

The ring F rXs of polynomials in the symbol (or ”indeterminate” or ”variable”) X with coefficients in F is an
F -vector space with basis 1, X, . . . ,Xn, . . ., and with the multiplication

˜

ÿ

i

aiX
i

¸˜

ÿ

j

bjX
j

¸

“
ÿ

k

˜

ÿ

i`j“k

aibj

¸

Xk.
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The F -algebra F rXs has the following universal property: for any F -algebra R and element r of R, there is
a unique homomorphism of F -algebras α : F rXs Ñ R such that αpXq “ r.

4.1.1 Generated Subrings and Subfields

An intersection of subrings of a ring is again a ring (this is easy to prove). Let F be a subfield of a field
E, and let S be a subset of E. The intersection of all the subrings of E containing F and S is obviously
the smallest subring of E containing both F and S. We call it the subring of E generated by F and S (or
generated over F by S), and we denote it by F rSs. When S “ tα1, ..., αnu, we write F rα1, ..., αns for F rSs.
For example, C “ Rr

?
´1s.

Lemma 4.1.6. The ring F rSs consists of the elements of E that can be expressed as finite sums of the form
ÿ

ai1¨¨¨inα
i1
1 ¨ ¨ ¨α

in
n , ai1¨¨¨in P F, αi P S, ij P N. (4.1)

Proof. Let R be the set of all such elements. Obviously, R is a subring of E containing F and S and contained
in every other such subring. Therefore it equals F rSs.

Example 4.1.7. The ring Qrπs, π “ 3.14159..., consists of the real numbers that can be expressed as a finite
sum

a0 ` a1π ` a2π
2 ` ¨ ¨ ¨ ` anπ

n, ai P Q.
The ring Qris consists of the complex numbers of the form a` bi, a, b P Q.

Note that the expression of an element in the form (4.1) will not be unique in general. This is so already in
Rris.

Lemma 4.1.8. Let R be an integral domain containing a subfield F (as a subring). If R is finite-dimensional
when regarded as an F -vector space, then it is a field.

Proof. Let α be a nonzero element of R — we have to show that α has an inverse in R. The map R Ñ

R : x ÞÑ αx is an injective linear map of finite-dimensional F -vector spaces, and is therefore surjective. In
particular, there is an element β P R such that αβ “ 1.

Note that the lemma applies to every subring containing F of a finite extension of F .

An intersection of subfields of a field is again a field. Let F be a subfield of a field E, and let S be a
subset of E. The intersection of all the subfields of E containing F and S is obviously the smallest subfield
of E containing both F and S. We call it the subfield of E generated by F and S (or generated over
F by S), and we denote it F pSq. It is the field of fractions of F rSs in E because this is a subfield of E
containing F and S and contained in every other such field. When S “ tα1, ..., αnu, we write F pα1, ..., αnq
for F pSq. Thus, F rα1, . . . , αns consists of all elements of E that can be expressed as polynomials in the αi
with coefficients in F , and F pα1, . . . , αnq consists of all elements of E that can be expressed as a quotient of
two such polynomials.

If α1, . . . , αk P E, then

F pα1, . . . , αkq
looooooomooooooon

a finitely generated extension

“ subfield of E generated by F, α1, . . . , αk

“

"

f pα1, . . . , αkq

g pα1, . . . , αkq

f, g P F rx1, . . . , xks
g pα1, . . . , αkq ‰ 0

*

Note that
F Ă F pα1q Ă F pα1, α2q Ă ¨ ¨ ¨ Ă F pα1, . . . , αkq Ă E

F pα1, . . . , αkq “ F pα1, . . . , αk´1q pαkq
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Remark 4.1.9. Lemma 4.1.8 shows that F rSs is already a field if it is finite-dimensional over F , in which
case F pSq “ F rSs.

Example 4.1.10. (a) The field Qpπq, π “ 3.14 . . ., consists of the complex numbers that can be expressed as
a quotient

gpπq{hpπq, gpXq, hpXq P QrXs, hpXq ‰ 0.

(b) The ring Qris is already a field.

Example 4.1.11. Suppose E{F is a field extension. α P E. Above definitions of generated subrings and
subfields give

F rαs “ tbmα
m ` ¨ ¨ ¨ ` b1α` b0|bi P F u

and

F pαq “

"

bmα
m ` ¨ ¨ ¨ ` b1α` b0

crαr ` ¨ ¨ ¨ ` c1α` c0
: bi, cj P F and crαr ` ¨ ¨ ¨ ` c0 ‰ 0

*

4.1.2 The Characteristic of a Field

One checks easily that the map

ZÑ F, n ÞÑ n ¨ 1F
def
“ 1F ` 1F ` ¨ ¨ ¨ ` 1F pn copies of 1F q,

is a homomorphism of rings. For example,

p1F ` ¨ ¨ ¨ ` 1F
looooooomooooooon

m

q ` p1F ` ¨ ¨ ¨ ` 1F
looooooomooooooon

n

q “ 1F ` ¨ ¨ ¨ ` 1F
looooooomooooooon

m`n

because of the associativity of addition. Therefore its kernel is an ideal in Z.

CASE 1: The kernel of the map is p0q, so that

n ¨ 1F “ 0 (in F ) ùñ n “ 0 (in Z).

Nonzero integers map to invertible elements of F under n ÞÑ n ¨ 1F : Z Ñ F , and so this map extends to a
homomorphism

Q ãÑ F : mn ÞÑ pm ¨ 1F qpn ¨ 1F q
´1.

In this case, F contains a copy of Q, and we say that it has characteristic zero.

Thus characteristic of a field F is the order of 1, as an element of the additive group F`, provided that the
order is finite. It is the smallest positive integer n such that the sum 1` ¨ ¨ ¨ ` 1 of n copies of 1 evaluates to
0. If the order is infinite, that is, 1` ¨ ¨ ¨ ` 1 is never 0 in F , the field is then said to have characteristic zero.
We denote the characteristic of a field by charpF q.

CASE 2: The kernel of the map is ‰ p0q, so that n ¨ 1F “ 0 for some n ‰ 0. The smallest positive such n will
be a prime p (otherwise there will be two nonzero elements in F whose product is zero), and p generates
the kernel. Thus, the map n ÞÑ n ¨ 1F : ZÑ F defines an isomorphism from Z{pZ onto the subring

tm ¨ 1F | m P Zu

of F . In this case, F contains a copy of Fp, and we say that it has characteristic p.

A field isomorphic to one of the fields F2,F3,F5, . . . ,Q is called a prime field. Every field contains exactly
one prime field (as a subfield).
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More generally, a commutative ring R is said to have characteristic p (resp. 0) if it contains a prime field (as
a subring) of characteristic p (resp. 0).1 Then the prime field is unique and, by definition, contains 1R. Thus,
if R has characteristic p ‰ 0, then 1R ` ¨ ¨ ¨ ` 1R “ 0 (p terms).

Let R be a nonzero commutative ring. If R has characteristic p ‰ 0, then

pa def
“ a` ¨ ¨ ¨ ` a
looooomooooon

p terms

“ p1R ` ¨ ¨ ¨ ` 1Rq
loooooooomoooooooon

p terms

a “ 0a “ 0

for all a P R. Conversely, if pa “ 0 for all a P R, then R has characteristic p.

Let R be a nonzero commutative ring. The usual proof by induction shows that the binomial theorem

pa` bqm “ am `
`

m
1

˘

am´1b`
`

m
2

˘

am´2b2 ` ¨ ¨ ¨ ` bm

holds in R. If p is prime, then it divides
ˆ

p
r

˙

def
“

p!

r!pp´ rq!

for all r with 1 ď r ď p ´ 1 because it divides the numerator but not the denominator. Therefore, when R
has characteristic p,

pa` bqp “ ap ` bp for all a, b P R,

and so the map RÑ R : a ÞÑ ap is a homomorphism of rings (even of Fp-algebras). It is called the Frobenius
endomorphism of R. The map R Ñ R : a ÞÑ ap

n

, n ě 1, is the composite of n copies of the Frobenius
endomorphism, and so it also is a homomorphism. Therefore,

pa1 ` ¨ ¨ ¨ ` amq
pn “ ap

n

1 ` ¨ ¨ ¨ ` ap
n

m

for all ai P R.

When F is a field, the Frobenius endomorphism is injective, and hence an automorphism if F is finite.

The characteristic exponent of a field F is 1 if F has characteristic 0, and p if F has characteristic p ‰ 0.
Thus, if q is the characteristic exponent of F and n ě 1, then x ÞÑ xq

n

is an isomorphism of F onto a subfield
of F (denoted F q

n

).

Example 4.1.12. The polynomial ring in one variable RrXs over an integral domain R is an integral domain.
The field of rational fractions in one variable RpXq is the field of fractions of RrXs.

Example 4.1.13. Subfields F of C have charpF q “ 0. charpQq “ 0. charpZpq “ p with p prime.

Proposition 4.1.14. The characteristic of any field F is either zero or a prime number.

Proof. To avoid confusion, we let 0 and 1 denote the additive and the multiplicative identities in the field
F , respectively, and if k is a positive integer, we let k̄ denote the sum of k copies of 1. Suppose that the
characteristic m is not zero. Then 1 generates a cyclic subgroup H of F`of order m, and m̄ “ 0. The distinct
elements of the cyclic subgroup H generated by 1 are the elements k̄ with k “ 0, 1, . . . ,m´ 1. Suppose that
m isn’t prime, say m “ rs, with 1 ă r, s ă m. Then r̄ and s̄ are in the multiplicative group Fˆ “ F ´ t0u,
but the product r̄s̄, which is equal to 0, is not in Fˆ. This contradicts the fact that Fˆis a group. Therefore
m must be prime.

1A commutative ring has a characteristic if and only if it contains a field as a subring. For example, neither Z nor F2 ˆ F3 has a
characteristic.
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4.2 Field Extensions

Definition 4.2.1. If F is a subfield of E, then E is a called a field extension of F . The notation E{F will
indicate that E is a field extension of F . We note that a field extension E of F can always be regarded as
an F -vector space. Addition is the addition law in E, and scalar multiplication of an element of E by an
element of F is obtained by multiplying these two elements in E. The dimension of E, when regarded as an
F -vector space, is called the degree of the field extension. rE : F s :“ degpE{F q “ dim of E as a v.s. over F .
An example of finite rE : F s is C{R with basis 1, i; of an infinite one is R{Q. A field extension E{F is a finite
extension if its degree is finite. Extensions of degree 2 are quadratic extensions, those of degree 3 are cubic
extensions, and so on.

Example 4.2.2. The field of Gaussian numbers

Qpiq def
“ ta` bi P C | a, b P Qu

has degree 2 over Q (basis t1, iu).

The field of rational fractions in one variable F pXq has infinite degree over F ; in fact, even its subspace
F rXs has infinite dimension over F (basis 1, X,X2, . . .).

Definition 4.2.3. If E{F is an extension. α P E. α is algebraic over F if there is a non-zero polynomial
0 ‰ fpXq P F rXs such that fpαq “ 0. Elements of E that are not algebraic over F are called transcendental.
E{F is called an algebraic extension if every α P E is algebraic over F .

Proposition 4.2.4. If rE : F s ă 8, then E is algebraic over F .

Proof. If α P E and rE : F s “ n, then 1, α, ¨ ¨ ¨ , αn are linearly independent, so there are c0, ¨ ¨ ¨ , cn P F such
that

c0 ` c1α` ¨ ¨ ¨ ` cnα
n “ 0

so if fpXq “ c0 ` c1X ` ¨ ¨ ¨ ` cnX
n P F rXs, then fpαq “ 0.

Example 4.2.5. C{R is algebraic. Let z “ a` ib. Let z̄ “ a´ ib be the complex conjugate of z. Note that

zz̄ “ a2 ` b2, z ` z̄ “ 2a

This reminds us of the Viète’s Formulas. Consider the polynomial

X2 ´ 2aX `
`

a2 ` b2
˘

Its roots are

X1,2 “
2a˘

a

4a2 ´ 4pa2 ` b2q

2
“

2a˘ 2bi

2
“ a˘ bi “ z, z̄

Thus both z and z̄ are roots of the polynomial.

The converse of the proposition is incorrect: Q Ă R. Those of the form
?
p with p prime are algebraic over

Q.
`?
p
˘2
´ p “ 0. We will later show that Q Ă Qp

?
2,
?
3,
?
5, ¨ ¨ ¨ q Ă R gives a non-finite extension.

Proposition 4.2.6 (multiplicativity of degrees). If F Ă E Ă K and rE : F s “ n and rK : Es “ m, then
rK : F s “ mn.

Proof. Let x1, ¨ ¨ ¨ , xn be a basis for E{F and y1, ¨ ¨ ¨ , ym be a basis of K{E. Then xiyj , 1 ď i ď n, 1 ď j ď m
is a basis for K{F :
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• linear independency: if
ř

i,j λijxiyj “ 0 for λij P F , then

0 “
ÿ

i,j

λijxiyj “
m
ÿ

j“1

˜

n
ÿ

i“1

λijxi

¸

loooooomoooooon

PE

yj ñ
n
ÿ

i“1

λijxi “ 0 @j ñ λij “ 0 @i, j

• span: if z P K, then z “
ř

1ďjďm cjyj for cj P E. cj “
ř

1ďiďn bijxi. bij P F , so

z “
m
ÿ

j“1

n
ÿ

i“1

bijxiyj

An extension E of F is said to be simple if E “ F pαq some α P E. For example, Qpπq and Qris are simple
extensions of Q.

Let F and F 1 be subfields of a field E. The intersection of the subfields of E containing both F and F 1 is
obviously the smallest subfield of E containing both F and F 1. We call it the composite of F and F 1 in E,
and we denote it by F ¨ F 1. It can also be described as the subfield of E generated over F by F 1, or the
subfield generated over F 1 by F :

F pF 1q “ F ¨ F 1 “ F 1pF q.

Let fpXq P F rXs be a monic polynomial of degree m, and let pfq be the ideal generated by f . Consider the
quotient ring F rXs{pfpXqq, and write x for the image of X in F rXs{pfpXqq, i.e., x is the coset X ` pfpXqq.

(a) The map

F rXs Ñ F rxs “ F rXs{pfpXqq

P pXq ÞÑ P pxq “ P pX ` pfpXqqq “
ÿ

aipX ` fpXqq
i

“
ÿ

aipX
i ` pfpXqqq “

ÿ

aiX
i ` pfpXqq “ P pXq ` pfpXqq

is a homomorphism sending fpXq to fpXq ` pfpXqq “ pfpXqq “ 0F rxs. Therefore, fpxq “ 0.

(b) The division algorithm shows that every element gpxq of F rXs{pfq is represented by a unique polynomial
r of degree ă m (g is of the form P pXq ` pfpXqq. By division algorithm, P pXq “ qpXqfpXq ` rpXq. Thus
g “ rpXq ` qpXqfpXq ` pfpXqq “ rpXq ` pfpXqq). Hence each element of F rxs can be expressed uniquely
as a sum

a0 ` a1x` ¨ ¨ ¨ ` am´1x
m´1, ai P F. (4.2)

(c) To add two elements, expressed in the form (4.2), simply add the corresponding coefficients.

(d) To multiply two elements expressed in the form (4.2), multiply in the usual way, and use the relation
fpxq “ 0 to express the monomials of degree ě m in x in terms of lower degree monomials.

(e) Now assume that fpXq is irreducible. Then every nonzero α P F rxs has an inverse, which can be found as
follows. Use (b) to write α “ gpxq with gpXq a polynomial of degree ď m´ 1, and apply Euclid’s algorithm
in F rXs to find polynomials apXq and bpXq such that

apXqfpXq ` bpXqgpXq “ dpXq

with dpXq the gcd of f and g. In our case, dpXq is 1 because fpXq is irreducible and deg gpXq ă deg fpXq.
When we replace X with x, the equality becomes

bpxqgpxq “ 1.
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Hence bpxq is the inverse of gpxq.

We have proved the following statement.

Claim 4.2.7. For a monic irreducible polynomial fpXq of degree m in F rXs,

F rxs def
“ F rXs{pfpXqq

is a field of degree m over F . Computations in F rxs come down to computations in F .

Note that, because F rxs is a field, F pxq “ F rxs.2

Example 4.2.8. Let fpXq “ X2 ` 1 P RrXs. Then Rrxs has

elements: a` bx, a, b P R;

addition: pa` bxq ` pa1 ` b1xq “ pa` a1q ` pb` b1qx;

multiplication: pa` bxqpa1 ` b1xq “ paa1 ´ bb1q ` pab1 ` a1bqx;

inverses: in this case, it is possible write down the inverse of a` bx directly.

We usually write i for x and C for Rrxs.

Example 4.2.9. Let fpXq “ X3 ´ 3X ´ 1 P QrXs. The polynomial is irreducible because its only possible
roots in Q are ˘1 by rational root theorem (or directly by lemma 2.13.3 (c)), but fp1q ‰ 0 ‰ fp´1q. Then
Qrxs is a field. It has basis t1, x, x2u as a Q-vector space. Let

β “ x4 ` 2x3 ` 3 P Qrxs.

Then using that x3 ´ 3x´ 1 “ 0, we find that β “ 3x2 ` 7x` 5. This is done by commands below.

sage: R.<x> = PolynomialRing(QQ)

sage: f = x^4 + 2*x^3 +3

sage: g = x^3 - 3*x - 1

sage: f.quo_rem(g)

(x + 2, 3*x^2 + 7*x + 5)

Because X3 ´ 3X ´ 1 is irreducible,

gcdpX3 ´ 3X ´ 1, 3X2 ` 7X ` 5q “ 1.

Euclid’s algorithm gives

pX3 ´ 3X ´ 1q
`

´7
37X `

29
111

˘

` p3X2 ` 7X ` 5q
`

7
111X

2 ´ 26
111X `

28
111

˘

“ 1.

Hence
p3x2 ` 7x` 5q

`

7
111x

2 ´ 26
111x`

28
111

˘

“ 1,

and we have found the inverse of β.

We can also do this in PARI: b=Mod(X^4+2*X^3+3,X^3-3*X-1) reveals that β “ 3x2 ` 7x ` 5 in Qrxs, and
b^(-1) reveals that β´1 “ 7

111x
2 ´ 26

111x`
28
111 .

Let f be a monic irreducible polynomial in F rXs. A pair pE,αq consisting of an extension E of F and
an α P E is called3 a stem field for f if E “ F rαs and fpαq “ 0. For example, the pair pE,αq with

2Thus, we can denote it by F pxq or by F rxs. The former is more common, but I use F rxs to emphasize the fact that its elements are
polynomials in x.

3Following A.A. Albert (Modern Higher Algebra, 1937) who calls the splitting field of a polynomial its root field.
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E “ F rXs{pfq “ F rxs and α “ x is a stem field for f . Let pE,αq be a stem field, and consider the surjective
homomorphism of F -algebras

F rXs Ñ E : gpXq ÞÑ gpαq.

Its kernel is generated by a nonzero monic polynomial, which divides f , and so must equal it. Therefore the
homomorphism defines an F -isomorphism

F rxs Ñ E : x ÞÑ α, where F rxs “ F rXs{pfq.

In other words, the stem field pE,αq of f is F -isomorphic to the standard stem field pF rXs{pfq, xq. It follows
that every element of a stem field pE,αq for f can be written uniquely in the form

a0 ` a1α` ¨ ¨ ¨ ` am´1α
m´1, ai P F, m “ degpfq,

and that arithmetic in F rαs can be performed using the same rules as in F rxs. If pE1, α1q is a second stem
field for f , then there is a unique F -isomorphism E Ñ E1 sending α to α1. We sometimes abbreviate “stem
field pF rαs, αq” to “stem field F rαs”.

4.3 Algebraic and Transcendental Elements

Let F be a field. We view the algebraic and transcendental elements in another way. Recall from the
substitution principle that an element α of an extension E of F defines a homomorphism

Φ : F rXs Ñ E

fpXq ÞÑ fpαq.

There are two possibilities.

CASE 1: The kernel of the map is p0q, so that, for f P F rXs,

fpαq “ 0 ùñ f “ 0 (in F rXs).

In this case, we say that α transcendental over F . The homomorphism F rXs Ñ F rαs : X ÞÑ α is an
isomorphism, and it extends to an isomorphism F pXq Ñ F pαq of the fields of fractions.

CASE 2: The kernel is ‰ p0q, so that gpαq “ 0 for some nonzero g P F rXs. In this case, we say that α is
algebraic over F . The polynomials g such that gpαq “ 0 form a nonzero ideal in F rXs (the kernel of the
substitution homomorphism),

I “ tgpXq P F rXs | gpαq “ 0u Ď F rXs.

Then there is some f generating I as F being a field makes F rXs PID. This f is the monic polynomial of
least degree such fpαq “ 0. We call f the minimal (or minimum) polynomial of α over F .4

f is irreducible: suppose not then fpXq “ ppXqqpXq. f being monic by definition implies that 0 ă
degppq,degpqq ă degpfq. f having least degree in I implies that ñ p, q R I so ppαq ‰ 0 ‰ qpαq, which
contradicts to the fact that 0 “ fpαq “ ppαqqpαq because two nonzero elements in field (thus an integral
domain) E cannot multiply to get 0.

The minimal polynomial is characterized as an element of F rXs by each of the following conditions,

• f is monic, fpαq “ 0, and f divides every other g in F rXs such that gpαq “ 0 (that’s because g “
qf ` r ñ 0 “ gpαq “ qpαqfpαq ` rpαq “ rpαq ñ r P I, but it cannot be the case tht degprq ă degpfq so
r has to be 0);

4When we order the polynomials by degree, f is a minimal element of the set of polynomials having α as a root. It is also the unique
minimal (hence least or minimum) element of the set of monic polynomials having α as a root. See Wikipedia: partially ordered set.
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• f is the monic polynomial of least degree such that fpαq “ 0 (this is the first definition we used above);

• f is monic, irreducible, and fpαq “ 0.

Since f is the generator of the kernel of Φ : F rXs Ñ E, the first isomorphism theorem implies that F rxs “
F rXs{pfq – ImpΦq “ F rαs. Explicitly, this map sends gpxq “ gpXq ` pfq to gpαq. Since F rxs is a field due to
claim 4.2.7, so also is F rαs,

F pαq “ F rαs.

Thus, F rαs is a stem field for f .

Example 4.3.1.

1. R Ă C. α “ i. The minimal polynomial is p “ x2 ` 1. C “ Rris “ ta` bi : a, b P Ru.

2. Q Ă R. α “ 3
?
2. The minimal polynomial is x3 ´ 2. Qpαq “ taα2 ` bα` c|a, b, c P Qu.

Example 4.3.2. Let α P C be such that α3 ´ 3α´ 1 “ 0. Then X3 ´ 3X ´ 1 is monic, irreducible, and has α
as a root, and so it is the minimal polynomial of α over Q. The set t1, α, α2u is a basis for Qrαs over Q. The
calculations in Example 4.2.9 show that if β is the element α4` 2α3` 3 of Qrαs, then β “ 3α2` 7α` 5, and

β´1 “ 7
111α

2 ´ 26
111α`

28
111 .

Remark 4.3.3. PARI knows how to compute in Qras. For example, factor(X^4+4) returns the factorization

X4 ` 4 “ pX2 ´ 2X ` 2qpX2 ` 2X ` 2q

in QrXs. Now type F=nfinit(a^2+2*a+2) to define a number field “F” generated over Q by a root a of
X2 ` 2X ` 2. Then nffactor(F,x^4+4) returns the factorization

X4 ` 4 “ pX ´ a´ 2qpX ´ aqpX ` aqqpX ` a` 2q,

in Qras.

A extension E of F is said to be algebraic (and E is said to be algebraic over F ), if all elements of E are
algebraic over F , i.e., each element of E has some polynomial over F vanishing it; otherwise it is said to be
transcendental (and E is said to be transcendental over F ). Thus, E{F is transcendental if at least one
element of E is transcendental over F .

Proposition 4.3.4. Let E Ą F be fields. If E{F is finite, then E is algebraic and finitely generated (as a
field) over F ; conversely, if E is generated over F by a finite set of algebraic elements, then it is finite (and
hence algebraic) over F .

Proof.
ùñ: To say that an element α of E is transcendental over F amounts to saying that its powers 1, α, α2, . . .
are linearly independent over F . Thus, if E is finite over F , then every element of E is algebraic over F .
It remains to show that E is finitely generated over F . If E “ F , then it is generated by the empty set.
Otherwise, there exists an α1 P E ∖ F . If E ‰ F rα1s, then there exists an α2 P E ∖ F rα1s, and so on. Since

rF rα1s : F s ă rF rα1, α2s : F s ă ¨ ¨ ¨ ă rE : F s

this process terminates with E “ F rα1, α2, . . . , αns.

ðù: Let E “ F pα1, ..., αnq with α1, α2, . . . αn algebraic over F . The extension F pα1q{F is finite because α1

is algebraic over F , and the extension F pα1, α2q{F pα1q is finite because α2 is algebraic over F and hence
over F pα1q. Thus, by (4.2.6), F pα1, α2q is finite over F . Now repeat the argument.
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Corollary 4.3.5.
(a) If E is algebraic over F , then every subring R of E containing F is a field.

(b) Consider fields L Ą E Ą F . If L is algebraic over E and E is algebraic over F , then L is algebraic over
F.

Proof.
(a) If α P R, then F rαs Ă R. But F rαs is a field because α is algebraic (see p. 135), and so R contains α´1.

(b) By assumption, every α P L is a root of a monic polynomial

Xm ` am´1X
m´1 ` ¨ ¨ ¨ ` a0 P ErXs.

Each of the extensions

F ra0, . . . , am´1, αs Ą F ra0, . . . , am´1s Ą F ra0, . . . , am´2s Ą ¨ ¨ ¨ Ą F

is generated by a single algebraic element, and so is finite. Therefore F ra0, . . . , am´1, αs is finite over F (see
4.2.6), which implies that α is algebraic over F .

Example 4.3.6.
Q Ă Q

´

21{2, 21{3, 21{4, ¨ ¨ ¨ , 21{n, ¨ ¨ ¨
¯

loooooooooooooooooooomoooooooooooooooooooon

E

Ă R

Note that
Q Ă Qp21{2q Ă Qp21{2, 21{3q Ă Qp21{2, 21{3, 21{4q Ă ¨ ¨ ¨ Ă R

E “
ď

n

Qp21{2, 21{3, ¨ ¨ ¨ , 21{nq Ă
loomoon

subfield

R

We claim that E is algebraic over Q but rE : Qs “ 8.

• α P E: Then Dn s.t. α P Qp21{2, ¨ ¨ ¨ , 21{nq. 21{m is algebraic over Q: p21{mqm´2 “ 0, so xm´2 vanishes
at 21{m. By Lemma 4.3.5, we see rQp21{2, ¨ ¨ ¨ , 21{n : Qqs ă 8 and α is algebraic over Q.

• rE : Qs “ 8: suppose to the contrary rE : Qs “ r ă 8. Now look at α “
1

r`1 . Then fpαq “ 0 where

fpxq “ xr`1 ´ 2
looomooon

irreducible by Eisenstein

P Qrxs

Thus the degree of minimal polynomial of α is r ` 1. Then rQp21{2, ¨ ¨ ¨ , 2
1

r`1 q : Qs ě r ` 1. Contradic-
tion.

4.3.1 Applications

See [4] sections “transcendental numbers” and “constructions with straight-edge and compass” for some
interesting discussions.

4.4 Algebraically Closed Fields

Let F be a field. A polynomial is said to split in F rXs if it is a product of polynomials of degree at most 1 in
F rXs.

Proposition 4.4.1. For a field Ω, the following statements are equivalent:

(a) Every nonconstant polynomial in ΩrXs splits in ΩrXs.
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(b) Every nonconstant polynomial in ΩrXs has at least one root in Ω.

(c) The irreducible polynomials in ΩrXs are those of degree 1.

(d) Every field of finite degree over Ω equals Ω.

Proof. The implications (a)ñ(b)ñ(c) are obvious.

(c)ñ(a). This follows from the fact that ΩrXs is a unique factorization domain.

(c)ñ(d). Let E be a finite extension of Ω, and let α P E. The minimal polynomial of α, being irreducible,
has degree 1 by (c), and, being monic by definition of min poly, thus has the form fpXq “ X ` a with a P Ω.
Then fpαq “ 0ñ a “ ´α P Ω, so α P Ω.

(d)ñ(c). Let f be an irreducible polynomial in ΩrXs. Then ΩrXs{pfq is an extension of Ω of degree degpfq
(see 4.3.4), and so degpfq “ 1.

Definition 4.4.2.
(a) A field Ω is algebraically closed if it satisfies the equivalent statements of Proposition 4.4.1.

(b) A field Ω is an algebraic closure of a subfield F if it is algebraically closed and algebraic over F .

Example 4.4.3. For example, the fundamental theorem of algebra says that C is algebraically closed (by
characterization (b)). It is an algebraic closure of R.

Proposition 4.4.4. If Ω is algebraic over F and every polynomial f P F rXs splits in ΩrXs, then Ω is
algebraically closed (hence an algebraic closure of F ).

Proof. Let f be a nonconstant polynomial in ΩrXs. We have to show that f has a root in Ω. We know (see
4.2.7) that f has a root α in some finite extension Ω1 of Ω. Set

f “ anX
n ` ¨ ¨ ¨ ` a0, ai P Ω,

and consider the fields
F Ă F ra0, . . . , ans Ă F ra0, . . . , an, αs.

Each extension generated by a finite set of algebraic elements, and hence is finite (4.3.4). Therefore α lies
in a finite extension of F (see 4.2.6), and so is algebraic over F (see 4.2.4) — it is a root of a polynomial g
with coefficients in F . By assumption, g splits in ΩrXs, and so the roots of g in Ω1 all lie in Ω. In particular,
α P Ω.

Proposition 4.4.5. Let Ω Ą F ; then

tα P Ω | α algebraic over F u

is a field.

Proof. If α and β are algebraic over F , then F rα, βs is a field (see 4.3.5) of finite degree over F (see 4.3.4).
Thus, every element of F rα, βs is algebraic over F (see 4.2.4). In particular, α˘β, α{β, and αβ are algebraic
over F .

The field constructed in the proposition is called the algebraic closure of F in Ω.

Corollary 4.4.6. Let Ω be an algebraically closed field. For any subfield F of Ω, the algebraic closure E of F
in Ω is an algebraic closure of F.

Proof. It is algebraic over F by definition. Every polynomial in F rXs splits in ΩrXs and has its roots in E,
and so splits in ErXs. Now apply Proposition 4.4.4.
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Thus, when we admit the fundamental theorem of algebra, every subfield of C has an algebraic closure (in
fact, a canonical algebraic closure).

Theorem 4.4.7. Every field F has an algebraic closure.

Proof. (Emil Artin.) Consider the polynomial ring F r. . . , xf , . . .s in a family of symbols xf indexed by the
nonconstant monic polynomials f P F rXs. If 1 lies in the ideal I of F r. . . , xf , . . .s generated by the polyno-
mials fpxf q, then

g1f1pxf1q ` ¨ ¨ ¨ ` gnfnpxfnq “ 1 pin F r. . . , xf , . . .sq

for some gi P F r. . . , xf , . . .s and some nonconstant monic fi P F rXs. Let E be an extension of F such that
each fi, i “ 1, . . . , n, has a root αi in E. Under the F -homomorphism F r. . . , xf , . . .s Ñ E sending

"

xfi ÞÑ αi
xf ÞÑ 0, f R tf1, . . . , fnu

the above relation becomes 0 “ 1. From this contradiction, we deduce that 1 does not lie in I, and so
corollary 2.3.11 applied to F r. . . , xf , . . .s{I shows that I is contained in a maximal ideal M of F r. . . , xf , . . .s.
Let Ω “ F r. . . , xf , . . .s{M . Then Ω is a field containing (a copy of) F in which every nonconstant polynomial
in F rXs has at least one root. Repeat the process starting with E1 instead of F to obtain a field E2. Continue
in this fashion to obtain a sequence of fields

F “ E0 Ă E1 Ă E2 Ă ¨ ¨ ¨ ,

and let E “
Ť

iEi. Then E is algebraically closed because the coefficients of any nonconstant polynomial g
in ErXs lie in Ei for some i, and so g has a root in Ei`1. Therefore, the algebraic closure of F in E is an
algebraic closure of F (4.4.6).

4.5 Homomorphisms from simple extensions.

Let F be a field, and letE andE1 be fields containing F . Recall that an F -homomorphism is a homomorphism
φ : E Ñ E1 such that φpaq “ a for all a P F . Thus an F -homomorphism φ maps a polynomial

ÿ

ai1¨¨¨imα
i1
1 ¨ ¨ ¨α

im
m , ai1¨¨¨im P F, αi P E,

to
ÿ

ai1¨¨¨imφpα1q
i1 ¨ ¨ ¨φpαmq

im .

An F -isomorphism is a bijective F -homomorphism.

An F -homomorphism E Ñ E1 of fields is, in particular, an injective F -linear map of F -vector spaces, and so
it is an F -isomorphism if E and E1 have the same finite degree over F .

Proposition 4.5.1. Let F pαq be a simple extension of F and Ω a second extension of F .

1. Let α be transcendental over F . For every F -homomorphism φ : F pαq Ñ Ω, φpαq is transcendental
over F , and the map φ ÞÑ φpαq defines a one-to-one correspondence

tF -homomorphisms F pαq Ñ Ωu Ø telements of Ω transcendental over F u.

2. Let α be algebraic over F with minimal polynomial fpXq. For every F -homomorphism φ : F rαs Ñ Ω,
φpαq is a root of fpXq in Ω, and the map φ ÞÑ φpαq defines a one-to-one correspondence

tF -homomorphisms φ : F rαs Ñ Ωu Ø troots of f in Ωu.

In particular, the number of such maps is the number of distinct roots of f in Ω.
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Proof. (a) To say that α is transcendental over F means that F rαs is isomorphic to the polynomial ring in the
symbol α. Therefore, for every γ P Ω, there is a unique F -homomorphism φ : F rαs Ñ Ω such that φpαq “ γ
(see ??). This φ extends (uniquely) to the field of fractions F pαq of F rαs if and only if nonzero elements of
F rαs are sent to nonzero elements of Ω, which is the case if and only if γ is transcendental over F . Thus
we see that there are one-to-one correspondences between (a) the F -homomorphisms F pαq Ñ Ω, (b) the
F -homomorphisms φ : F rαs Ñ Ω such that φpαq is transcendental, (c) the transcendental elements of Ω.

(b) Let fpXq “
ř

aiX
i, and consider an F -homomorphism φ : F rαs Ñ Ω. On applying φ to the equality

ř

aiα
i “ 0, we obtain the equality

ř

aiφpαq
i “ 0, which shows that φpαq is a root of fpXq in Ω. Conversely,

if γ P Ω is a root of fpXq, then the map F rXs Ñ Ω, gpXq ÞÑ gpγq, factors through F rXs{pfpXqq. When com-
posed with the inverse of the canonical isomorphism F rXs{pfpXqq Ñ F rαs, this becomes a homomorphism
F rαs Ñ Ω sending α to γ.

We shall need a slight generalization of this result.

Proposition 4.5.2. Let F pαq be a simple extension of F and φ0 : F Ñ Ω a homomorphism from F into a
second field Ω.

1. If α is transcendental over F , then the map φ ÞÑ φpαq defines a one-to-one correspondence

textensions φ : F pαq Ñ Ω of φ0u Ø telements of Ω transcendental over φ0pF qu.

2. If α is algebraic over F , with minimal polynomial fpXq, then the map φ ÞÑ φpαq defines a one-to-one
correspondence

textensions φ : F rαs Ñ Ω of φ0u Ø troots of φ0f in Ωu.

In particular, the number of such maps is the number of distinct roots of φ0f in Ω.

By φ0f we mean the polynomial obtained by applying φ0 to the coefficients of f . By an extension of φ0 to
F pαq we mean a homomorphism φ : F pαq Ñ Ω whose restriction to F is φ0. The proof of the proposition is
essentially the same as that of the preceding proposition (indeed, it is essentially the same proposition).

4.6 Splitting Fields

Let f be a polynomial with coefficients in F . A field E containing F is said to splitf if f splits in ErXs, i.e.,

fpXq “ a
źm

i“1
pX ´ αiq with all αi P E.

If E splits f and is generated by the roots of f ,

E “ F rα1, . . . , αms,

then it is called a splitting or root field for f .

Note that
ś

fipXq
mi (mi ě 1) and

ś

fipXq have the same splitting fields. Note also that f splits in E if it
has degpfq ´ 1 roots in E because the sum of the roots of f lies in F (if f “ aXm ` a1X

m´1 ` ¨ ¨ ¨ , then
Vieta’s formula gives

ř

αi “ ´a1{a).

Example 4.6.1. (a) Let fpXq “ aX2 ` bX ` c P QrXs, and let α “
?
b2 ´ 4ac. The subfield Qrαs of C is a

splitting field for f .

(b) Let fpXq “ X3 ` aX2 ` bX ` c P QrXs be irreducible, and let α1, α2, α3 be its roots in C. Then
Qrα1, α2, α3s “ Qrα1, α2s is a splitting field for fpXq. Note that rQrα1s : Qs “ 3 and that rQrα1, α2s : Qrα1ss “

1 or 2, and so rQrα1, α2s : Qs “ 3 or 6. We’ll see later that the degree is 3 if and only if the discriminant of
fpXq is a square in Q. For example, the discriminant of X3` bX ` c is ´4b3´ 27c2, and so the splitting field
of X3 ` 10X ` 1 (discriminant ´4027q has degree 6 over Q.
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Proposition 4.6.2. Every polynomial f P F rXs has a splitting field Ef , and

rEf : F s ď pdeg fq! pfactorial deg fq.

Proof. Let F1 “ F rα1s be a stem field for some monic irreducible factor of f in F rXs. Then fpα1q “ 0,
and we let F2 “ F1rα2s be a stem field for some monic irreducible factor of fpXq{pX ´ α1q in F1rXs.
Continuing in this fashion, we arrive at a splitting field Ef . Let n “ deg f . Then rF1 : F s “ deg g1 ď n,
rF2 : F1s ď n´ 1, ..., and so rEf : F s ď n!.

Remark 4.6.3. Let F be a field. For a given integer n, there may or may not exist polynomials of degree n
in F rXs whose splitting field has degree n! — this depends on F .

Example 4.6.4. (a) Let fpXq “ pXp ´ 1q{pX ´ 1q P QrXs, p prime. If ζ is one root of f , then the remaining
roots are ζ2, ζ3, . . . , ζp´1, and so the splitting field of f is Qrζs.

(b) Let F have characteristic p ‰ 0, and let f “ Xp ´X ´ a P F rXs. If α is one root of f in some extension
of F , then the remaining roots are α` 1, ..., α` p´ 1, and so the splitting field of f is F rαs.

(c) If α is one root of Xn´a, then the remaining roots are all of the form ζα, where ζn “ 1. Therefore, F rαs
is a splitting field for Xn ´ a if and only if F contains all the nth roots of 1 (by which we mean that Xn ´ 1
splits in F rXs). Note that if p is the characteristic of F , then Xp ´ 1 “ pX ´ 1qp, and so F automatically
contains all the pth roots of 1.

Proposition 4.6.5. Let f P F rXs. Let E be an extension of F generated by the roots of f in E, and let Ω be
an extension of F splitting f .

1. There exists an F -homomorphism φ : E Ñ Ω; the number of such homomorphisms is at most rE : F s,
and equals rE : F s if f has distinct roots in Ω.

2. If E and Ω are both splitting fields for f , then every F -homomorphism E Ñ Ω is an isomorphism. In
particular, any two splitting fields for f are F -isomorphic.

As f splits in ΩrXs, fpXq “ a
śdegpfq

i“1 pX´βiq with β1, β2, . . . P Ω. To say that f has distinct roots in Ω means
that βi ‰ βj if i ‰ j.

Proof. We may suppose that f is monic.

We begin with an observation: let F , f , and Ω be as in the statement of the proposition, let L be a subfield
of Ω containing F , and let g be a monic factor of f in LrXs; as g divides f in ΩrXs, it is a product of certain
number of the factors X ´ βi of f in ΩrXs; in particular, we see that g splits in Ω, and that it has distinct
roots in Ω if f does..

(a) By hypothesis, E “ F rα1, ..., αms with each αi a root of fpXq in E. The minimal polynomial of α1 is
an irreducible polynomial f1 dividing f . From the initial observation with L “ F , we see that f1 splits in
Ω, and that its roots are distinct if the roots of f are distinct. According to Proposition 4.5.1, there exists
an F -homomorphism φ1 : F rα1s Ñ Ω, and the number of such homomorphisms is at most rF rα1s : F s, with
equality holding when f has distinct roots in Ω.

The minimal polynomial of α2 over F rα1s is an irreducible factor f2 of f in F rα1srXs. On applying the
initial observation with L “ φ1F rα1s and g “ φ1f2, we see that φ1f2 splits in Ω, and that its roots are
distinct if the roots of f are distinct. According to Proposition 4.5.2, each φ1 extends to a homomorphism
φ2 : F rα1, α2s Ñ Ω, and the number of extensions is at most rF rα1, α2s : F rα1ss, with equality holding when
f has distinct roots in Ω.

On combining these statements we conclude that there exists an F -homomorphism

φ : F rα1, α2s Ñ Ω,
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and that the number of such homomorphisms is at most rF rα1, α2s : F s, with equality holding if f has distinct
roots in Ω.

After repeating the argument m times, we obtain (a).

(b) Every F -homomorphism E Ñ Ω is injective, and so, if there exists such a homomorphism, then rE : F s ď
rΩ: F s. If E and Ω are both splitting fields for f , then (a) shows that there exist homomorphisms E Ô Ω,
and so rE : F s “ rΩ: F s. It follows that every F -homomorphism E Ñ Ω is an F -isomorphism.

Corollary 4.6.6. Let E and L be extensions of F , with E finite over F .

1. The number of F -homomorphisms E Ñ L is at most rE : F s.

2. There exists a finite extension Ω{L and an F -homomorphism E Ñ Ω.

Proof. Write E “ F rα1, . . . , αms, and let f P F rXs be the product of the minimal polynomials of the αi; thus
E is generated over F by roots of f . Let Ω be a splitting field for f regarded as an element of LrXs. The
proposition shows that there exists an F -homomorphism E Ñ Ω, and the number of such homomorphisms is
ď rE : F s. This proves (b), and since an F -homomorphism E Ñ L can be regarded as an F -homomorphism
E Ñ Ω, it also proves (a).

Remark 4.6.7. (a) Let E1, E2, . . . , Em be finite extensions of F , and let L be an extension of F . From
the corollary we see that there exists a finite extension L1{L such that L1 contains an isomorphic image
of E1; then that there exists a finite extension L2{L1 such that L2 contains an isomorphic image of E2. On
continuing in this fashion, we find that there exists a finite extension Ω/L such that Ω contains an isomorphic
copy of every Ei.

(b) Let f P F rXs. If E and E1 are both splitting fields of f , then we know there exists an F -isomorphism
E Ñ E1, but there will in general be no preferred such isomorphism. Error and confusion can result if the
fields are simply identified. Also, it makes no sense to speak of “the field F rαs generated by a root of f”
unless f is irreducible (the fields generated by the roots of two different factors are unrelated). Even when
f is irreducible, it makes no sense to speak of “the field F rα, βs generated by two roots α, β of f” (the
extensions of F rαs generated by the roots of two different factors of f in F rαsrXs may be very different).

4.7 Multiple roots

Even when polynomials in F rXs have no common factor in F rXs, one might expect that they could acquire
a common factor in ΩrXs for some Ω Ą F . In fact, this doesn’t happen — greatest common divisors don’t
change when the field is extended.

Proposition 4.7.1. Let f and g be polynomials in F rXs, and let Ω be an extension of F . If rpXq is the gcd of
f and g computed in F rXs, then it is also the gcd of f and g in ΩrXs. In particular, distinct monic irreducible
polynomials in F rXs do not acquire a common root in any extension of F.

Proof. Let rF pXq and rΩpXq be the greatest common divisors of f and g in F rXs and ΩrXs respectively.
Certainly rF pXq|rΩpXq in ΩrXs, but Euclid’s algorithm shows that there are polynomials a and b in F rXs
such that

apXqfpXq ` bpXqgpXq “ rF pXq,

and so rΩpXq divides rF pXq in ΩrXs.

For the second statement, note that the hypotheses imply that gcdpf, gq “ 1 (in F rXs), and so f and g can’t
acquire a common factor in any extension field.
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The proposition allows us to speak of the greatest common divisor of f and g without reference to a field.

Let f P F rXs. Then f splits into linear factors

fpXq “ a
r
ź

i“1

pX ´ αiq
mi , αi distinct, mi ě 1,

r
ÿ

i“1

mi “ degpfq, (4.3)

in ErXs for some extension E of F (see 4.6.2). We say that αi is a root of f of multiplicity mi in E. If
mi ą 1, then αi is said to be a multiple root of f , and otherwise it is a simple root.

I claim that the unordered sequence of integers m1, . . . ,mr in (4.3) is independent of the extension E
chosen to split f . Certainly, it is unchanged when E is replaced with its subfield F rα1, . . . , αrs, and so
we may suppose that E is a splitting field for f . Let E and E1 be splitting fields for F , and suppose that
fpXq “ a

śr
i“1pX ´ αiq

mi in ErXs and fpXq “ a1
śr1

i“1pX ´ α1
iq
m1

i in E1rXs. Let φ : E Ñ E1 be an F -
isomorphism, which exists by (4.6.5b), and extend it to an isomorphism ErXs Ñ E1rXs by sending X to X.
Then φ maps the factorization of f in ErXs onto a factorization

fpXq “ φpaq
r
ź

i“1

pX ´ φpαiqq
mi

in E1rXs. By unique factorization, this coincides with the earlier factorization in E1rXs up to a renumbering
of the αi. Therefore r “ r1, and

tm1, . . . ,mru “ tm
1
1, . . . ,m

1
ru.

We say that f has a multiple root when at least one of the mi ą 1, and that f has only simple roots when
all mi “ 1. Thus “f has a multiple root” means “f has a multiple root in one, hence every, extension of F
splitting f”, and similarly for “f has only simple roots”.

We wish to determine when a polynomial has a multiple root. If f has a multiple factor in F rXs, say
f “

ś

fipXq
mi with some mi ą 1, then obviously it will have a multiple root. If f “

ś

fi with the fi
distinct monic irreducible polynomials, then Proposition 4.7.1 shows that f has a multiple root if and only if
at least one of the fi has a multiple root. Thus, it suffices to determine when an irreducible polynomial has a
multiple root.

Example 4.7.2. Let F be of characteristic p ‰ 0, and assume that F contains an element a that is not a
pth-power, for example, a “ T in the field FppT q. Then Xp ´ a is irreducible in F rXs, but by 4.1.2 we have
Xp ´ a “ pX ´ αqp in its splitting field. Thus an irreducible polynomial can have multiple roots.

The derivative of a polynomial fpXq “
ř

aiX
i is defined to be f 1pXq “

ř

iaiX
i´1. The usual rules for

differentiating sums and products still hold, but note that in characteristic p the derivative of Xp is zero.

Proposition 4.7.3. For a nonconstant irreducible polynomial f in F rXs, the following statements are equiv-
alent:

1. f has a multiple root;

2. gcdpf, f 1q ‰ 1;

3. F has nonzero characteristic p and f is a polynomial in Xp, i.e., of the form

fpXq “ an pX
pq
n
` an´1 pX

pq
n´1

` ¨ ¨ ¨ ` a1X
p ` a0

4. all the roots of f are multiple.

Proof. (a) ñ (b). Let α be a multiple root of f , and write f “ pX ´ αqmgpXq, m ą 1, in some extension
field. Then

f 1pXq “ mpX ´ αqm´1gpXq ` pX ´ αqmg1pXq. (4.4)
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Hence f and f 1 have X ´ α as a common factor.

(b) ñ (c). As f is irreducible and degpf 1q ă degpfq,

gcdpf, f 1q ‰ 1 ùñ f 1 “ 0.

Let f “ a0 ` ¨ ¨ ¨ ` adX
d, d ě 1. Then f 1 “ a1 ` ¨ ¨ ¨ ` iaiX

i´1 ` ¨ ¨ ¨ ` dadX
d´1, which is the zero polynomial

if only if F has characteristic p ‰ 0 and ai “ 0 for all i not divisible by p.

(c) ñ (d). By hypothesis, fpXq “ gpXpq with gpXq P F rXs. Let gpXq “
ś

ipX ´ aiq
mi in some extension

field. Then each ai becomes a pth power, say, ai “ αpi , in some possibly larger extension field. Now

fpXq “ gpXpq “
ź

i
pXp ´ aiq

mi “
ź

i
pX ´ αiq

pmi

which shows that every root of fpXq has multiplicity at least p.

(d) ñ (a). Obvious.

Proposition 4.7.4. The following conditions on a nonzero polynomial f P F rXs are equivalent:

1. gcdpf, f 1q “ 1 in F rXs;

2. f has only simple roots.

Proof. Let Ω be an extension of F splitting f . From (4.4), p. 142, we see that a root α of f in Ω is multiple if
and only if it is also a root of f 1.

If gcdpf, f 1q “ 1, then f and f 1 have no common factor in ΩrXs (see 4.7.1). In particular, they have no
common root, and so f has only simple roots.

If f has only simple roots, then gcdpf, f 1q must be the constant polynomial, because otherwise it would have
a root in Ω which would then be a common root of f and f 1.

Definition 4.7.5. A polynomial is separable if it is nonzero and satisfies the equivalent conditions on
(4.7.4).5

Remark 4.7.6. Thus a nonconstant irreducible polynomial f is not separable if and only if F has characteris-
tic p ‰ 0 and f is a polynomial inXp (see 4.7.3). Let f “

ś

fi with f and the fi monic and the fi irreducible;
then f is separable if and only if the fi are distinct and separable. If f is separable as a polynomial in F rXs,
then it is separable as a polynomial in ErXs for every extension E of F .

Definition 4.7.7. A field F is perfect if it has characteristic zero or it has characteristic p and every element
of F is a p-th power.

Thus, F is perfect if and only if F “ F q, where q is the characteristic exponent of F .

Proposition 4.7.8. A field F is perfect if and only if every irreducible polynomial in F rXs is separable.

Proof. If F has characteristic zero, the statement is obvious, and so we may suppose F has characteristic
p ‰ 0. If F contains an element a that is not a pth power, then Xp ´ a is irreducible in F rXs but not
separable (see 4.7.2). Conversely, if every element of F is a pth power, then every polynomial in Xp with
coefficients in F is a pth power in F rXs,

ř

aiX
ip “

`
ř

biX
i
˘p

if ai “ bpi ,

and so it is not irreducible.
5This is Bourbaki’s definition. Often (e.g., in the books of Jacobson and in earlier versions of these notes) a polynomial f is said to

be separable if each of its irreducible factors has only simple roots.
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Example 4.7.9. 1. A finite field F is perfect, because the Frobenius endomorphism a ÞÑ ap : F Ñ F is
injective and therefore surjective (by counting).

2. A field that can be written as a union of perfect fields is perfect. Therefore, every field algebraic over
Fp is perfect.

3. Every algebraically closed field is perfect.

4. If F0 has characteristic p ‰ 0, then F “ F0pXq is not perfect, because X is not a pth power.

Remark 4.7.10. Let F be a perfect field. We’ll see later that every finite extension E{F is simple, i.e.,
E “ F rαs with α a root of a (separable) polynomial f P F rXs of degree rE : F s. Thus it follows directly
from (4.5.2b) that, for any extension Ω of F , the number of F -homomorphisms E Ñ Ω is ď rE : F s, with
equality if and only if f splits in Ω. We can’t use this argument here because it would make the exposition
circular.

4.1 EXERCISES

1. Let F be a field of characteristic ‰ 2.

1. Let E be quadratic extension of F ; show that

SpEq “ ta P Fˆ | a is a square in Eu

is a subgroup of Fˆ containing Fˆ2.

2. Let E and E1 be quadratic extensions of F ; show that there exists an F -isomorphism φ : E Ñ E1 if
and only if SpEq “ SpE1q.

3. Show that there is an infinite sequence of fields E1, E2, . . . with Ei a quadratic extension of Q such
that Ei is not isomorphic to Ej for i ‰ j.

4. Let p be an odd prime. Show that, up to isomorphism, there is exactly one field with p2 elements.

2. (a) Let F be a field of characteristic p. Show that if Xp ´X ´ a is reducible in F rXs, then it splits into
distinct factors in F rXs.

(b) For every prime p, show that Xp ´X ´ 1 is irreducible in QrXs.

3. Construct a splitting field for X5 ´ 2 over Q. What is its degree over Q?

4. Find a splitting field of Xpm ´ 1 P FprXs. What is its degree over Fp?

5. Let f P F rXs, where F is a field of characteristic 0. Let dpXq “ gcdpf, f 1q. Show that gpXq “
fpXqdpXq´1 has the same roots as fpXq, and these are all simple roots of gpXq.

6. Let fpXq be an irreducible polynomial in F rXs, where F has characteristic p. Show that fpXq can be
written fpXq “ gpXpeq where gpXq is irreducible and separable. Deduce that every root of fpXq has the
same multiplicity pe in any splitting field.
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Chapter 5

Galois Theory

In this chapter, we prove the fundamental theorem of Galois theory, which classifies the subfields of the
splitting field of a separable polynomial f in terms of the Galois group of f . We also investigate general
methods for computing Galois groups.

5.1 Groups of Automorphisms of Fields

Consider fieldsE Ą F . An F -isomorphismE Ñ E is called an F -automorphism ofE. The F -automorphisms
of E form a group, which we denote AutpE{F q.

Claim 5.1.1. If F Ă E and fpXq P F rXs and α P E is a root of f , then ϕ P AutpE{F q sends α to a root of
fpXq, becasue

fpXq “ anX
n ` ¨ ¨ ¨ ` aX ` a0 ñ anα

n ` ¨ ¨ ¨ ` a1α` a0 “ 0

ñ ϕ panα
n ` ¨ ¨ ¨ ` aαα` aq “ 0

ñ anϕpαq
n ` ¨ ¨ ¨ ` a1ϕpαq ` a0 “ 0.

Example 5.1.2.

• R Ă C. i P C is a root of x`1 P RrXs. Let ϕ P AutpC{Rq. Then ϕpiq also a root of x2 ` 1, so ϕpiq “ ˘i.
If ϕpiq “ i, then it is the identity; if ϕpiq “ ´i, then ϕ is conjugator, i.e., ϕpa` ibq “ a´ ib.

Therefore, AutpC{Rq – Z2.

• Q Ă Qp 3
?
2q. We compute AutpQp 3

?
2q{Qq. α is a root of x3 ´ 2 P QrXs. Other roots are ωα and ω2α,

where ω is the third root of unity. So ωα, ω2α are not in Qpαq. Any ϕ P AutpQpαq{Qq fixes α., so ϕ
fixes Qpαq. So $ fixes Qpαq ñ |AutpQpαq{Qq| “ 1

Example 5.1.3.
(a) There are two obvious automorphisms of C, namely, the identity map and complex conjugation. We’ll
see later that by using the Axiom of Choice we can construct uncountably many more.

(b) Let E “ CpXq. A C-automorphism of E sends X to another generator of E over C. It follows from
(??) below that these are exactly the elements aX`b

cX`d , ad´ bc ‰ 0. Therefore AutpE{Cq consists of the maps

fpXq ÞÑ f
´

aX`b
cX`d

¯

, ad´ bc ‰ 0, and so

AutpE{Cq » PGL2pCq,
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the group of invertible 2 ˆ 2 matrices with complex coefficients modulo its centre. Analysts will note that
this is the same as the automorphism group of the Riemann sphere. Here is the explanation. The field E of
meromorphic functions on the Riemann sphere P1

C consists of the rational functions in z, i.e., E “ Cpzq »
CpXq, and the natural map AutpP1

Cq Ñ AutpE{Cq is an isomorphism.

(c) The group AutpCpX1, X2q{Cq is quite complicated — there is a map

PGL3pCq “ AutpP2
Cq ãÑ AutpCpX1, X2q{Cq,

but this is very far from being surjective. When there are even more variables X, the group is not known.
The group AutpCpX1, . . . , Xnq{Cq is the group of birational automorphisms of projective n-space PnC, and is
called the Cremona group. Its study is part of algebraic geometry (Wikipedia: Cremona group).

In this section, we’ll be concerned with the groups AutpE{F q when E is a finite extension of F .

Proposition 5.1.4. If E{F is a finite extension, then |AutpE{F q| ď rE : F s.

Proof. Induction on r “ rE : F s. We show if σ : F Ñ F 1 is an F -isomorphism of fields. F Ă E, F 1 Ă E1 are
fleld extansions with

rE : F s “
“

E1 : F 1
‰

“ r,

then there are ď r ways to extend σ to an isomorphism rσ : E Ñ E1. r “ 1 case is trivial. We show
1, ¨ ¨ ¨ , r ´ 1 ùñ r. Pick α P EzF and let fpXq P F pXq be the minimal polynomial of α. Let g “ σpfq P
F 1rXs. Then any rσ : E Ñ E1 extending σ sends α to a root of g by observation 5.1.1.

degpgq “ degpfq “ rF pαq : F s “: m

so there are ď m choices for σpαq. Fix such a choice β. Consider

ψ : F pαq Ñ F 1pβq

with ψpαq “ β and
F pαq “ tam´1α

m´1 ` ¨ ¨ ¨ ` a1α` a0 | ai P F u

ψpam´1α
m´1 ` ¨ ¨ ¨ ` a1α` a0q “ σpam´1qβ

m´1 ` ¨ ¨ ¨ ` σpa1qβ ` a0

Then the extension EzF pαq has degree r{m. By induction hypothesis, there are ď r{m ways to extend ψ to
an isomomorphism E Ñ E1. m ¨ pr{mq “ r.

Proposition 5.1.5. Let E be a splitting field of a separable polynomial f in F rXs; then |AutpE{F q| “
rE : F s.

Proof. As f is separable, it has deg f distinct roots inE. Therefore Proposition 4.6.5 shows that the number of
F -homomorphisms E Ñ E is rE : F s. Because E is finite over F , all such homomorphisms are isomorphisms.

Example 5.1.6. Consider a simple extension E “ F rαs, and let f be a polynomial in F rXs having α as a
root. If α is the only root of f in E, then AutpE{F q “ 1 by (4.5.1b). For example, if 3

?
2 is the real cube root

of 2, then AutpQr 3
?
2s{Qq “ 1. As another example, let F be a field of characteristic p ‰ 0, and let a be an

element of F that is not a pth power. Let E be a splitting field of f “ Xp ´ a. Then f has only one root in E
(see 4.7.2), and so AutpE{F q “ 1.

These examples show that, in the statement of the proposition, is necessary that E be a splitting field of a
separable polynomial.
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When G is a group of automorphisms of a field E, we set

EG “ InvpGq “ tα P E | σα “ α, all σ P Gu.

It is a subfield of E, called the subfield of G-invariants of E or the fixed field of G.

In this section, we’ll show that, when E is the splitting field of a separable polynomial in F rXs and G “

AutpE{F q, then the maps
M ÞÑ AutpE{Mq, H ÞÑ InvpHq

give a one-to-one correspondence between the set of intermediate fields M , F Ă M Ă E, and the set of
subgroups H of G.

Facts: M Ď EAutpE{Mq; H ď AutpE{EHq.

Theorem 5.1.7 (E. Artin). Let G be a finite group of automorphisms of a field E, then

rE : EGs ď pG : 1q.

Proof. Let F “ EG, and let G “ tσ1, . . . , σmu with σ1 the identity map. It suffices to show that every set
tα1, . . . , αnu of elements of E with n ą m is linearly dependent over F . For such a set, consider the system
of linear equations

σ1pα1qX1 ` ¨ ¨ ¨ ` σ1pαnqXn “ 0

... (5.1)

σmpα1qX1 ` ¨ ¨ ¨ ` σmpαnqXn “ 0

with coefficients in E. There are m equations and n ą m unknowns, and hence there are nontrivial solutions
in E. We choose one pc1, . . . , cnq having the fewest possible nonzero elements. After renumbering the αi,
we may suppose that c1 ‰ 0, and then, after multiplying by a scalar, that c1 P F . With these normalizations,
we’ll show that all ci P F , and so the first equation

α1c1 ` ¨ ¨ ¨ ` αncn “ 0

(recall that σ1 is the identity map) is a linear relation on the αi.

If not all ci are in F , then σkpciq ‰ ci for some k ‰ 1 and i ‰ 1. On applying σk to the system of linear
equations

σ1pα1qc1 ` ¨ ¨ ¨ ` σ1pαnqcn “ 0

...

σmpα1qc1 ` ¨ ¨ ¨ ` σmpαnqcn “ 0

and using that tσkσ1, . . . , σkσmu “ tσ1, . . . , σmu (σk merely permutes the σi), we find that

pc1, σkpc2q, . . . , σkpciq, . . .q

is also a solution to the system of equations (5.1). On subtracting it from the first solution, we obtain a
solution p0, . . . , ci ´ σkpciq, . . .q, which is nonzero (look at the ith entry), but has more zeros than the first
solution (look at the first entry) — contradiction.

Corollary 5.1.8. Let G be a finite group of automorphisms of a field E; then

G “ AutpE{EGq.

Proof. As G Ă AutpE{EGq, we have inequalities

rE : EGs
5.1.7
ď pG : 1q ď pAutpE{EGq : 1q

4.6.6a
ď rE : EGs.

All the inequalities must be equalities, and so G “ AutpE{EGq.
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5.2 Separable, normal, and Galois extensions

Definition 5.2.1. An algebraic extension E{F is separable if the minimal polynomial of every element of E
is separable; otherwise, it is inseparable.

Thus, an algebraic extension E{F is separable if every irreducible polynomial in F rXs having at least one
root in E is separable, and it is inseparable if

• F is nonperfect, and in particular has characteristic p ‰ 0, and

• there is an element α of E whose minimal polynomial is of the form gpXpq, g P F rXs.

See 4.7.5 et seq. For example, the extension FppT q of FppT pq is inseparable extension because T has minimal
polynomial Xp ´ T p.

Definition 5.2.2. An extensionE{F is normal1 if it is algebraic and the minimal polynomial of every element
of E splits in ErXs.

In other words, an algebraic extension E{F is normal if and only if every irreducible polynomial f P F rXs
having at least one root in E splits in ErXs.

Let f be a monic irreducible polynomial of degree m in F rXs, and let E be an algebraic extension of F . If f
has a root in E, so that it is the minimal polynomial of an element of E, then

E{F separable ùñ f has only simple roots

E{F normal ùñ f splits in E

+

ùñ f has m distinct roots in E.

It follows that E{F is separable and normal if and only if the minimal polynomial of every element α of E
has rF rαs : F s distinct roots in E.

Example 5.2.3. (a) The polynomial X3 ´ 2 has one real root 3
?
2 and two nonreal roots in C. Therefore the

extension Qr 3
?
2s{Q (which is separable) is not normal.

(b) The extension FppT q{FppT pq (which is normal) is not separable because the minimal polynomial of T is
not separable.

Theorem 5.2.4. For an extension E{F , the following statements are equivalent:

1. E is the splitting field of a separable polynomial f P F rXs;

2. E is finite over F and F “ EAutpE{F q;

3. F “ EG for some finite group G of automorphisms of E;

4. E is normal, separable, and finite over F .

Proof. (a) ñ (b). Certainly, E is finite over F . Let F 1 “ EAutpE{F q Ą F . We have to show that F 1 “ F .
Note that E is also the splitting field of f regarded as a polynomial with coefficients in F 1, and that f is still
separable when it is regarded in this way. Hence

ˇ

ˇAutpE{F 1q
ˇ

ˇ

5.1.5
“ rE : F 1s ď rE : F s

5.1.5
“ |AutpE{F q| .

According to Corollary 5.1.8, AutpE{F q “ AutpE{F 1q, and so rE : F 1s “ rE : F s and F 1 “ F .

(b) ñ (c). Let G “ AutpE{F q. We are given that F “ EG, and G is finite because E is finite over F (apply
4.6.6a).

(c) ñ (d). According to Theorem 5.1.7, rE : F s ď pG : 1q; in particular, E{F is finite. Let α P E, and
let f be the minimal polynomial of α; we have to show that f splits into distinct factors in ErXs. Let

1Bourbaki says “quasi-galoisienne”.
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tα1 “ α, α2, ..., αmu be the orbit of α under the action of G on E (so the αi are distinct elements of E), and
let

gpXq “
źm

i“1
pX ´ αiq “ Xm ` a1X

m´1 ` ¨ ¨ ¨ ` am.

The coefficients aj are symmetric polynomials in the αi, and each σ P G permutes the αi, and so σaj “ aj
for all j. Thus gpXq P F rXs. As it is monic and gpαq “ 0, it is divisible by f (see the definition of minimal
polynomial, p. 134). Let αi “ σα; on applying σ to the equation fpαq “ 0 we find that fpαiq “ 0. Therefore
every αi is a root of f , and so g divides f . Hence f “ g, and we conclude that fpXq splits into distinct factors
in E.

(d) ñ (a). Because E has finite degree over F , it is generated over F by a finite number of elements, say,
E “ F rα1, ..., αms, αi P E, αi algebraic over F . Let fi be the minimal polynomial of αi over F , and let f be
the product of the distinct fi. Because E is normal over F , each fi splits in E, and so E is the splitting field
of f. Because E is separable over F , each fi is separable, and so f is separable.

Definition 5.2.5. An extension E{F of fields is Galois if it satisfies the equivalent conditions of (5.2.4).
When E{F is Galois, AutpE{F q is called the Galois group of E over F , and it is denoted by GalpE{F q.

Remark 5.2.6. (a) Let E be Galois over F with Galois group G, and let α P E. The elements α1, α2, ..., αm
of the orbit of α under G are called the conjugates of α. In the course of proving the theorem we showed
that the minimal polynomial of α is

ś

pX ´ αiq, i.e., the conjugates of α are exactly the roots of its minimal
polynomial in E.

(b) Let G be a finite group of automorphisms of a field E, and let F “ EG. By definition, E is Galois over
F . Moreover, GalpE{F q “ G (apply 5.1.8) and rE : F s “ |GalpE{F q| (apply 5.1.5).

Corollary 5.2.7. Every finite separable extension E of F is contained in a Galois extension.

Proof. Let E “ F rα1, ..., αms, and let fi be the minimal polynomial of αi over F . The product of the distinct
fi is a separable polynomial in F rXs whose splitting field is a Galois extension of F containing E.

Corollary 5.2.8. Let E ĄM Ą F ; if E is Galois over F , then it is Galois over M.

Proof. We know E is the splitting field of some separable f P F rXs; it is also the splitting field of f regarded
as an element of M rXs.

Remark 5.2.9. An element α of an algebraic extension of F is said to be separable over F if its minimal
polynomial over F is separable. The proof of Corollary 5.2.7 shows that every finite extension generated
by separable elements is separable. Therefore, the elements of an algebraic extension E of F that are
separable over F form a subfield Esep of E that is separable over F . When E is finite over F , we let
rE : F ssep “ rEsep : F s and call it the separable degree of E over F .

An algebraic extension E is purely inseparable over F if the only elements of E separable over F are the
elements of F . If E is a finite extension of F , then E is purely inseparable over Esep. See Jacobson 1964,
Chap. I, Section 10, for more on this topic.

Definition 5.2.10. An extension E of F is cyclic (resp. abelian, resp. solvable, etc.q if it is Galois with cyclic
(resp. abelian, resp. solvable, etc.) Galois group.

5.3 The fundamental theorem of Galois theory

Let E be an extension of F . A subextension of E{F is an extension M{F with M Ă E, i.e., a field M with
F ĂM Ă E. When E is Galois over F , the subextensions of E{F are in one-to-one correspondence with the
subgroups of GalpE{F q. More precisely, there is the following statement.
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Theorem 5.3.1 (Fundamental theorem of Galois theory). Let E be a Galois extension of F with Galois group
G. The map H ÞÑ EH is a bijection from the set of subgroups of G to the set of subextensions of E{F ,

tsubgroups H of Gu 1: 1
Ø tsubextensions F ĂM Ă Eu,

with inverse M ÞÑ GalpE{Mq. Moreover,

1. the correspondence is inclusion-reversing: H1 Ą H2 ðñ EH1 Ă EH2 ;

2. indexes equal degrees: pH1 : H2q “ rE
H2 : EH1s;

3. σHσ´1 Ø σM , i.e., EσHσ
´1

“ σpEHq; GalpE{σMq “ σGalpE{Mqσ´1.

4. H is normal in G ðñ EH is normal (hence Galois) over F , in which case

GalpEH{F q » G{H.

Proof. For the first statement, we have to show that H ÞÑ EH and M ÞÑ GalpE{Mq are inverse maps. Let H
be a subgroup of G. Then, Corollary 5.1.8 shows that GalpE{EHq “ H. Let M{F be a subextension. Then
E is Galois over M by (5.2.8), which means that EGalpE{Mq “M .

(a) We have the obvious implications,

H1 Ą H2 ùñ EH1 Ă EH2 ùñ GalpE{EH1q Ą GalpE{EH2q.

As GalpE{EHiq “ Hi, this proves (a).

(b) Let H be a subgroup of G. According to 5.2.6b,

pGalpE{EHq : 1q “ rE : EH s.

This proves (b) in the case H2 “ 1, and the general case follows, using that

pH1 : 1q “ pH1 : H2qpH2 : 1q

rE : EH1s
4.2.6
“ rE : EH2srEH2 : EH1s.

(c) For τ P G and α P E,
τα “ α ðñ στσ´1pσαq “ σα.

Therefore, τ fixes M if and only if στσ´1 fixes σM , and so σGalpE{Mqσ´1 “ GalpE{σMq. This shows that
σGalpE{Mqσ´1 corresponds to σM.

(d) Let H be a normal subgroup of G. Because σHσ´1 “ H for all σ P G, we must have σEH “ EH for all
σ P G, i.e., the action of G on E stabilizes EH . We therefore have a homomorphism

σ ÞÑ σ|EH : GÑ AutpEH{F q

whose kernel is H. As pEHqG{H “ F , we see that EH is Galois over F (by Theorem 5.2.4) and that
G{H » GalpEH{F q (by 5.2.6b).

Conversely, suppose that M is normal over F , and let α1, . . . , αm generate M over F . For σ P G, σαi is
a root of the minimal polynomial of αi over F , and so lies in M . Hence σM “ M , and this implies that
σHσ´1 “ H (by (c)).

Remark 5.3.2. Let E{F be a Galois extension, so that there is an order reversing bijection between the
subextensions of E{F and the subgroups of G. From this, we can read off the following results.
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(a) Let M1,M2, . . . ,Mr be subextensions of E{F , and let Hi be the subgroup corresponding to Mi (i.e.,
Hi “ GalpE{Miq). Then (by definition) M1M2 ¨ ¨ ¨Mr is the smallest field containing all Mi; hence it must
correspond to the largest subgroup contained in all Hi, which is

Ş

Hi. Therefore

GalpE{M1 ¨ ¨ ¨Mrq “ H1 X ...XHr.

(b) Let H be a subgroup of G and let M “ EH . The largest normal subgroup contained in H is N “
Ş

σPG σHσ
´1 (see GT, 4.1), and so EN is the smallest normal extension of F containing M . Note that, by

(a), EN is the composite of the fields σM . It is called the normal, or Galois, closure of M in E.

Proposition 5.3.3. Let E and L be extensions of F contained in some common field. If E{F is Galois, then
EL{L and E{E X L are Galois, and the map

σ ÞÑ σ|E : GalpEL{Lq Ñ GalpE{E X Lq

is an isomorphism.

Proof. Because E is Galois over F , it is the splitting field of a separable polynomial

f P F rXs. Then EL is the splitting field of f over L, and E is the splitting field of
f over E X L. Hence EL{L and E{E X L are Galois. Every automorphism σ of EL
fixing the elements of L maps roots of f to roots of f , and so σE “ E. There is
therefore a homomorphism

σ ÞÑ σ|E : GalpEL{Lq Ñ GalpE{E X Lq.

If σ P GalpEL{Lq fixes the elements of E, then it fixes the elements of EL, and
hence is the identity map. Thus, σ ÞÑ σ|E is injective. If α P E is fixed by all
σ P GalpEL{Lq, then α P E X L. By Corollary 5.1.8,

EL

E L

E X L

F

“

“

this implies that the image of σ ÞÑ σ|E is GalpE{E X Lq.

Corollary 5.3.4. Suppose, in the proposition, that L is finite over F . Then

rEL : F s “
rE : F srL : F s

rE X L : F s
.

Proof. According to Proposition 4.2.6,

rEL : F s “ rEL : LsrL : F s,

but

rEL : Ls
5.3.3
“ rE : E X Ls

4.2.6
“

rE : F s

rE X L : F s
.

Proposition 5.3.5. Let E1 and E2 be extensions of F contained in some common field. If E1 and E2 are
Galois over F , then E1E2 and E1 X E2 are Galois over F , and the map

σ ÞÑ pσ|E1, σ|E2q : GalpE1E2{F q Ñ GalpE1{F q ˆGalpE2{F q

is an isomorphism of GalpE1E2{F q onto the subgroup

H “ tpσ1, σ2q | σ1|E1 X E2 “ σ2|E1 X E2u

of GalpE1{F q ˆGalpE2{F q.
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PROOF: Let a P E1 X E2, and let f be its minimal polynomial over F . Then f has

deg f distinct roots in E1 and deg f distinct roots in E2. Since f can have at most
deg f roots in E1E2, it follows that it has deg f distinct roots in E1 X E2. This
shows that E1 X E2 is normal and separable over F , and hence Galois (5.2.4). As
E1 and E2 are Galois over F , they are splitting fields for separable polynomials
f1, f2 P F rXs. Now E1E2 is a splitting field for lcmpf1, f2q, and hence it also is
Galois over F . The map σ ÞÑ pσ|E1, σ|E2q is clearly an injective homomorphism,
and its image is contained in H. We’ll prove that the image is the whole of H by
counting.

E1E2

E1 E2

E1 X E2

F

From the fundamental theorem,

GalpE2{F q

GalpE2{E1 X E2q
» GalpE1 X E2{F q,

and so, for each σ1 P GalpE1{F q, σ1|E1XE2 has exactly rE2 : E1XE2s extensions to an element of GalpE2{F q.
Therefore,

pH : 1q “ rE1 : F srE2 : E1 X E2s “
rE1 : F s ¨ rE2 : F s

rE1 X E2 : F s
,

which equals rE1E2 : F s by (5.3.4). ˝

Example 5.3.6. We analyse the extension Qrζs{Q, where ζ is a primitive 7th root of 1, say ζ “ e2πi{7.

Note that Qrζs is the splitting field of the polynomial X7´1, and
that ζ has minimal polynomial

X6 `X5 `X4 `X3 `X2 `X ` 1

(see ??). Therefore, Qrζs is Galois of degree 6 over Q. For any
σ P GalpQrζs{Qq, σζ “ ζi, some i, 1 ď i ď 6, and the map σ ÞÑ i
defines an isomorphism GalpQrζs{Qq Ñ pZ{7Zqˆ. Let σ be the
element of GalpQrζs{Qq such that σζ “ ζ3. Then σ generates
GalpQrζs{Qq because the class of 3 in pZ{7Zqˆ generates it (the
powers of 3 mod 7 are 3, 2, 6, 4, 5, 1). We investigate the subfields
of Qrζs corresponding to the subgroups xσ3y and xσ2y.

Qrζs

Qrζ ` ζ̄s Qr
?
´7s

Q

xσ3
y xσ2

y

xσy{xσ3
y xσy{xσ2

y

Note that σ3ζ “ ζ6 “ ζ̄ (complex conjugate of ζq, and so ζ ` ζ̄ “ 2 cos 2π
7 is fixed by σ3. Now Qrζs Ą

Qrζsxσ3
y Ą Qrζ ` ζ̄s ‰ Q, and so Qrζsxσ3

y “ Qrζ ` ζ̄s (look at degrees). As xσ3y is a normal subgroup of
xσy, Qrζ ` ζ̄s is Galois over Q, with Galois group xσy{xσ3y. The conjugates of α1

def
“ ζ ` ζ̄ are α3 “ ζ3 ` ζ´3,

α2 “ ζ2 ` ζ´2. Direct calculation shows that

α1 ` α2 ` α3 “
ÿ6

i“1
ζi “ ´1,

α1α2 ` α1α3 ` α2α3 “ ´2,

α1α2α3 “ pζ ` ζ
6qpζ2 ` ζ5qpζ3 ` ζ4q

“ pζ ` ζ3 ` ζ4 ` ζ6qpζ3 ` ζ4q

“ pζ4 ` ζ6 ` 1` ζ2 ` ζ5 ` 1` ζ ` ζ3q

“ 1.
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Hence the minimal polynomial2 of ζ ` ζ̄ is

gpXq “ X3 `X2 ´ 2X ´ 1.

The minimal polynomial of cos 2π
7 “

α1

2 is therefore

gp2Xq

8
“ X3 `X2{2´X{2´ 1{8.

The subfield of Qrζs corresponding to xσ2y is generated by β “ ζ`ζ2`ζ4. Let β1 “ σβ. Then pβ´β1q2 “ ´7.
Hence the field fixed by xσ2y is Qr

?
´7s.

Example 5.3.7. We compute the Galois group of a splitting field E of X5 ´ 2 P QrXs.

Recall from Exercise 3 that E “ Qrζ, αs where ζ is a primitive 5th root of 1, and
α is a root of X5 ´ 2. For example, we could take E to be the splitting field of
X5 ´ 2 in C, with ζ “ e2πi{5 and α equal to the real 5th root of 2. We have the
picture at right, and

rQrζs : Qs “ 4, rQrαs : Qs “ 5.

Because 4 and 5 are relatively prime,

rQrζ, αs : Qs “ 20.

Qrζ, αs

Qrζs Qrαs

Q

N H

G{N

Hence G “ GalpQrζ, αs{Qq has order 20, and the subgroups N and H fixing Qrζs and Qrαs have orders 5
and 4 respectively. Because Qrζs is normal over Q (it is the splitting field of X5 ´ 1), N is normal in G.
Because Qrζs ¨Qrαs “ Qrζ, αs, we have H XN “ 1, and so G “ N ¸θ H. Moreover, H » G{N » pZ{5Zqˆ,
which is cyclic, being generated by the class of 2. Let τ be the generator of H corresponding to 2 under this
isomorphism, and let σ be a generator of N . Thus σpαq is another root of X5 ´ 2, which we can take to be
ζα (after possibly replacing σ by a power). Hence:

"

τζ “ ζ2

τα “ α

"

σζ “ ζ
σα “ ζα.

Note that τστ´1pαq “ τσα “ τpζαq “ ζ2α and it fixes ζ; therefore τστ´1 “ σ2. Thus G has generators σ
and τ and defining relations

σ5 “ 1, τ4 “ 1, τστ´1 “ σ2.

The subgroup H has five conjugates, which correspond to the five fields Qrζiαs,

σiHσ´i Ø σiQrαs “ Qrζiαs, 1 ď i ď 5.

5.4 The Galois group of a polynomial

If a polynomial f P F rXs is separable, then its splitting field Ff is Galois over F , and we call GalpFf {F q the
Galois group Gf of f.

Let fpXq “
śn
i“1pX ´αiq in a splitting field Ff . We know that the elements of GalpFf {F q map roots of f to

roots of f , i.e., they map the set tα1, α2, . . . , αnu into itself. Being automorphisms, they act as permutations
on tα1, α2, . . . , αnu. As the αi generate Ff over F , an element of GalpFf {F q is uniquely determined by the
permutation it defines. Thus Gf can be identified with a subset of Symptα1, α2, . . . , αnuq « Sn (symmetric

2More directly, on setting X “ ζ ` ζ̄ in
pX3 ´ 3Xq ` pX2 ´ 2q ` X ` 1

one obtains 1 ` ζ ` ζ2 ` ¨ ¨ ¨ ` ζ6 “ 0.
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group on n symbols). In fact, Gf consists exactly of the permutations σ of tα1, α2, . . . , αnu such that, for
P P F rX1, . . . , Xns,

P pα1, . . . , αnq “ 0 ùñ P pσα1, . . . , σαnq “ 0. (5.2)

To see this, note that the kernel of the map

F rX1, . . . , Xns Ñ Ff , Xi ÞÑ αi, (5.3)

consists of the polynomials P pX1, . . . , Xnq such that P pα1, . . . , αnq “ 0. Let σ be a permutation of the αi
satisfying the condition (5.2). Then the map

F rX1, . . . , Xns Ñ Ff , Xi ÞÑ σαi,

factors through the map (5.3), and defines an F -isomorphism Ff Ñ Ff , i.e., an element of the Galois group.
This shows that every permutation satisfying the condition (5.2) extends uniquely to an element of Gf , and
it is obvious that every element of Gf arises in this way.

This gives a description of Gf not mentioning fields or abstract groups, neither of which were available to
Galois. Note that it shows again that pGf : 1q, hence rFf : F s, divides degpfq!.

5.5 Solvability of equations

For a polynomial f P F rXs, we say that fpXq “ 0 is solvable in radicals if its solutions can be obtained by
the algebraic operations of addition, subtraction, multiplication, division, and the extraction of mth roots,
or, more precisely, if there exists a tower of fields

F “ F0 Ă F1 Ă F2 Ă ¨ ¨ ¨ Ă Fm

such that

1. Fi “ Fi´1rαis, αmi
i P Fi´1;

2. Fm contains a splitting field for f.

Theorem 5.5.1 (Galois, 1832). Let F be a field of characteristic zero, and let f P F rXs. The equation
fpXq “ 0 is solvable in radicals if and only if the Galois group of f is solvable.

We’ll prove this later (??). Also we’ll exhibit polynomials fpXq P QrXs with Galois group Sn, which are
therefore not solvable when n ě 5 by GT, 4.37.

Remark 5.5.2. When F has characteristic p, the theorem fails for two reasons,

1. f need not be separable, and so not have a Galois group;

2. Xp ´X ´ a “ 0 need not be solvable in radicals even though it is separable with abelian Galois group
(cf. Exercise 2).

If the definition of solvable is changed to allow extensions defined by polynomials of the type in (b) in the
chain, then the theorem holds for fields F of characteristic p ‰ 0 and separable f P F rXs.

5.6 When is Gf Ă An?

Let σ be a permutation of the set t1, 2, . . . , nu. The pairs pi, jq with i ă j but σpiq ą σpjq are called the
inversions of σ, and σ is said to be even or odd according as the number of inversions is even or odd.
The signature of σ, signpσq, is `1 or ´1 according as σ is even or odd. We can define the signature of
a permutation σ of any set S of n elements by choosing a numbering of the set and identifying σ with a
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permutation of t1, . . . , nu. Then sign is the unique homomorphism SympSq Ñ t˘1u such that signpσq “ ´1
for every transposition. In particular, it is independent of the choice of the numbering. See GT, 4.25.

Now consider a monic polynomial

fpXq “ Xn ` a1X
n´1 ` ¨ ¨ ¨ ` an

and let fpXq “
śn
i“1pX ´ αiq in some splitting field. Set

∆pfq “
ź

1ďiăjďn

pαi ´ αjq, Dpfq “ ∆pfq2 “
ź

1ďiăjďn

pαi ´ αjq
2.

The discriminant of f is defined to be Dpfq. Note that Dpfq is nonzero if and only if f has only simple roots,
i.e., is separable. Let Gf be the Galois group of f , and identify it with a subgroup of Symptα1, . . . , αnuq (as
on p. 153).

Proposition 5.6.1. Let f P F rXs be a separable polynomial, and let σ P Gf .

1. σ∆pfq “ signpσq∆pfq, where signpσq is the signature of σ.

2. σDpfq “ Dpfq.

Proof. Each inversion of σ introduces a negative sign into σ∆pfq, and so (a) follows from the definition of
signpσq. The equation in (b) is obtained by squaring that in (a).

While ∆pfq depends on the choice of the numbering of the roots of f , Dpfq does not.

Corollary 5.6.2. Let fpXq P F rXs be separable of degree n. Let Ff be a splitting field for f and let
Gf “ GalpFf {F q.

1. The discriminant Dpfq P F .

2. Assume that F has characteristic ‰ 2. The subfield of Ff corresponding to An XGf is F r∆pfqs. Hence

Gf Ă An ðñ ∆pfq P F ðñ Dpfq is a square in F.

Proof. (a) The discriminant of f is an element of Ff fixed by Gf def
“ GalpFf {F q, and hence lies in F (by the

fundamental theorem).

(b) Because f has simple roots, ∆pfq ‰ 0, and so the formula σ∆pfq “ signpσq∆pfq shows that an element
of Gf fixes ∆pfq if and only if it lies in An. Thus, under the Galois correspondence,

Gf XAn Ø F r∆pfqs.

Hence,
Gf XAn “ Gf ðñ F r∆pfqs “ F.

The roots of X2 ` bX ` c are ´b˘
?
b2´4c
2 and so

∆pX2 ` bX ` cq “
a

b2 ´ 4c (or ´
a

b2 ´ 4c),

DpX2 ` bX ` cq “ b2 ´ 4c.

Similarly,
DpX3 ` bX ` cq “ ´4b3 ´ 27c2.

By completing the cube, one can put any cubic polynomial in this form (in characteristic ‰ 3).
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Although there is a not a universal formula for the roots of f in terms of its coefficients when the degpfq ą 4,
there is for its discriminant. However, the formulas for the discriminant rapidly become very complicated,
for example, that for X5 ` aX4 ` bX3 ` cX2 ` dX ` e has 59 terms. Fortunately, PARI knows them. For
example, typing poldisc(X^3+a*X^2+b*X+c,X) returns the discriminant of X3 ` aX2 ` bX ` c, namely,

´4ca3 ` b2a2 ` 18cba` p´4b3 ´ 27c2q.

Remark 5.6.3. Suppose F Ă R. Then Dpfq will not be a square if it is negative. It is known that the sign of
Dpfq is p´1qs where 2s is the number of nonreal roots of f in C (see ANT 2.40). Thus if s is odd, then Gf is
not contained in An. This can be proved more directly by noting that complex conjugation acts on the roots
as the product of s disjoint transpositions.

The converse is not true: when s is even, Gf is not necessarily contained in An.

5.7 When does Gf act transitively on the roots?

Proposition 5.7.1. Let fpXq P F rXs be separable. Then fpXq is irreducible if and only if Gf permutes the
roots of f transitively.

Proof. ùñ : If α and β are two roots of fpXq in a splitting field Ff for f , then they both have fpXq as their
minimal polynomial, and so F rαs and F rβs are both stem fields for f . Hence, there is an F -isomorphism

F rαs » F rβs, αØ β.

Write Ff “ F rα1, α2, ...s with α1 “ α and α2, α3, . . . the other roots of fpXq. Then the F -homomorphism
α ÞÑ β : F rαs Ñ Ff extends (step by step) to an F -homomorphism Ff Ñ Ff (use 4.5.2b), which is an
F -isomorphism sending α to β.

ðù : Let gpXq P F rXs be an irreducible factor of f , and let α be one of its roots. If β is a second root of f ,
then (by assumption) β “ σα for some σ P Gf . Now, because g has coefficients in F ,

gpσαq “ σgpαq “ 0,

and so β is also a root of g. Therefore, every root of f is also a root of g, and so fpXq “ gpXq.

Note that when fpXq is irreducible of degree n, n|pGf : 1q because rF rαs : F s “ n and rF rαs : F s divides
rFf : F s “ pGf : 1q. Thus Gf is a transitive subgroup of Sn whose order is divisible by n.

5.8 Polynomials of degree at most three

Example 5.8.1. Let fpXq P F rXs be a polynomial of degree 2. Then f is inseparable ðñ F has charac-
teristic 2 and fpXq “ X2 ´ a for some a P F ∖ F 2. If f is separable, then Gf “ 1p“ A2q or S2 according as
Dpfq is a square in F or not.

Example 5.8.2. Let fpXq P F rXs be a polynomial of degree 3. We can assume f to be irreducible, for
otherwise we are essentially back in the previous case. Then f is inseparable if and only if F has characteristic
3 and fpXq “ X3 ´ a for some a P F ∖ F 3. If f is separable, then Gf is a transitive subgroup of S3 whose
order is divisible by 3. There are only two possibilities: Gf “ A3 or S3 according as Dpfq is a square in F or
not. Note that A3 is generated by the cycle p123q.

For example, X3´3X`1 is irreducible in QrXs by rational root theorem. Its discriminant is ´4p´3q3´27 “
81 “ 92, and so its Galois group is A3.

On the other hand, X3 ` 3X ` 1 P QrXs is also irreducible (apply ??), but its discriminant is ´135 which is
not a square in Q, and so its Galois group is S3.
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5.9 Quartic polynomials

Let fpXq be a separable quartic polynomial. In order to determine Gf we’ll exploit the fact that S4 has

V “ t1, p12qp34q, p13qp24q, p14qp23qu

as a normal subgroup — it is normal because it contains all elements of type 2 ` 2 (GT, 4.29). Let E be a
splitting field of f , and let fpXq “

ś

pX ´ αiq in E. We identify the Galois group Gf of f with a subgroup
of the symmetric group Symptα1, α2, α3, α4uq. Consider the partially symmetric elements

α “ α1α2 ` α3α4

β “ α1α3 ` α2α4

γ “ α1α4 ` α2α3.

They are distinct because the αi are distinct; for example,

α´ β “ α1pα2 ´ α3q ` α4pα3 ´ α2q “ pα1 ´ α4qpα2 ´ α3q.

The group Symptα1, α2, α3, α4uq permutes tα, β, γu transitively. The stabilizer of each of α, β, γ must there-
fore be a subgroup of index 3 in S4, and hence has order 8. For example, the stabilizer of β is xp1234q, p13qy.
Groups of order 8 in S4 are Sylow 2-subgroups. There are three of them, all isomorphic to D4. By the Sylow
theorems, V is contained in a Sylow 2-subgroup; in fact, because the Sylow 2-subgroups are conjugate and
V is normal, it is contained in all three. It follows that V is the intersection of the three Sylow 2-subgroups.
Each Sylow 2-subgroup fixes exactly one of α, β, or γ, and therefore their intersection V is the subgroup of
Symptα1, α2, α3, α4uq fixing α, β, and γ.

Lemma 5.9.1. The fixed field of Gf X V is F rα, β, γs. Hence F rα, β, γs is Galois
over F with Galois group Gf {Gf X V .

Proof. The above discussion shows that the subgroup of Gf of elements fixing
F rα, β, γs is Gf X V , and so EGf XV “ F rα, β, γs by the fundamental theorem
of Galois theory. The remaining statements follow from the fundamental theorem
using that V is normal.

E

F rα, β, γs

F

Gf X V

Gf {Gf X V

Let M “ F rα, β, γs, and let gpXq “ pX ´ αqpX ´ βqpX ´ γq P M rXs — it is called the resolvent cubic of
f . Every permutation of the αi (a fortiori, every element of Gf ) merely permutes α, β, γ, and so fixes gpXq.
Therefore (by the fundamental theorem) gpXq has coefficients in F . More explicitly, we have:

Lemma 5.9.2. The resolvent cubic of f “ X4 ` bX3 ` cX2 ` dX ` e is

g “ X3 ´ cX2 ` pbd´ 4eqX ´ b2e` 4ce´ d2.

The discriminants of f and g are equal.

sketch of proof. Expand f “ pX´α1qpX´α2qpX´α3qpX´α4q to express b, c, d, e in terms of α1, α2, α3, α4.
Expand g “ pX ´ αqpX ´ βqpX ´ γq to express the coefficients of g in terms of α1, α2, α3, α4, and substitute
to express them in terms of b, c, d, e.

Now let f be an irreducible separable quartic. Then G “ Gf is a transitive subgroup of S4 whose order is
divisible by 4. There are the following possibilities for G:
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G pGX V : 1q pG : V XGq

S4 4 6

A4 4 3

V 4 1

D4 4 2

C4 2 2

pGX V : 1q “ rE : M s

pG : V XGq “ rM : F s

The groups of type D4 are the Sylow 2-subgroups discussed above, and the groups of type C4 are those
generated by cycles of length 4.

We can compute pG : V XGq from the resolvent cubic g, because G{V XG “ GalpM{F q and M is the splitting
field of g. Once we know pG : V X Gq, we can deduce G except in the case that it is 2. If rM : F s “ 2, then
GX V “ V or C2. Only the first group acts transitively on the roots of f , and so (from 5.7.1) we see that in
this case G “ D4 or C4 according as f is irreducible or not in M rXs.

Example 5.9.3. Consider fpXq “ X4´4X`2 P QrXs. It is irreducible by Eisenstein’s criterion (??), and its
resolvent cubic is gpXq “ X3´ 8X ´ 16, which is irreducible because it has no roots in F5. The discriminant
of gpXq is ´4864, which is not a square, and so the Galois group of gpXq is S3. From the table, we see that
the Galois group of fpXq is S4.

Example 5.9.4. Consider fpXq “ X4 ` 4X2 ` 2 P QrXs. It is irreducible by Eisenstein’s criterion (??), and
its resolvent cubic is pX ´ 4qpX2 ´ 8q; thus M “ Qr

?
2s. From the table we see that Gf is of type D4 or C4,

but f factors over M (even as a polynomial in X2), and hence Gf is of type C4.

Example 5.9.5. Consider fpXq “ X4 ´ 10X2 ` 4 P QrXs. It is irreducible in QrXs because (by inspection)
it is irreducible in ZrXs. Its resolvent cubic is pX ` 10qpX ` 4qpX ´ 4q, and so Gf is of type V .

Example 5.9.6. Consider fpXq “ X4 ´ 2 P QrXs. It is irreducible by Eisenstein’s criterion (??), and its
resolvent cubic is gpXq “ X3 ` 8X. Hence M “ Qri

?
2s. One can check that f is irreducible over M , and

Gf is of type D4.

Alternatively, analyse the equation as in (5.3.7).

As we explained in (4.3.3), PARI knows how to factor polynomials with coefficients in Qrαs.

Example 5.9.7. (From the web, sci.math.research, search for “final analysis”.) Consider fpXq “ X4 ´

2cX3 ´ dX2 ` 2cdX ´ dc2 P ZrXs with a ą 0, b ą 0, c ą 0, a ą b and d “ a2 ´ b2. Let r “ d{c2 and let w
be the unique positive real number such that r “ w3{pw2 ` 4q. Let m be the number of roots of fpXq in Z
(counted with multiplicities). The Galois group of f is as follows:

• If m “ 0 and w not rational, then G is S4.

• If m “ 1 and w not rational then G is S3.

• If w is rational and w2 ` 4 is not a square then G “ D4.

• If w is rational and w2 ` 4 is a square then G “ V “ C2 ˆ C2.

This covers all possible cases. The hard part was to establish that m “ 2 could never happen.

For a discussion of whether the method of solving a quartic by reducing to a cubic generalizes to other even
degrees, see mo149099.

5.10 Examples of polynomials with Sp as Galois group over Q
The next lemma gives a criterion for a subgroup of Sp to be the whole of Sp.

Lemma 5.10.1. For p prime, the symmetric group Sp is generated by any transposition and any p-cycle.
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Proof. After renumbering, we may assume that the transposition is τ “ p12q, and we may write the p-cycle σ
so that 1 occurs in the first position, σ “ p1 i2 ¨ ¨ ¨ ipq. Now some power of σ will map 1 to 2 and will still be a
p-cycle (here is where we use that p is prime). After replacing σ with the power, we have σ “ p1 2 j3 . . . jpq,
and after renumbering again, we have σ “ p1 2 3 . . . pq. Now

pi i` 1q “ σip12qσ´i

(see GT, 4.29) and so lies in the subgroup generated by σ and τ . These transpositions generate Sp.

Proposition 5.10.2. Let f be an irreducible polynomial of prime degree p in QrXs. If f splits in C and has
exactly two nonreal roots, then Gf “ Sp.

Proof. Let E be the splitting field of f in C, and let α P E be a root of f . Because f is irreducible, rQrαs : Qs “
deg f “ p, and so p|rE : Qs “ pGf : 1q. Therefore Gf contains an element of order p (Cauchy’s theorem, GT,
4.13), but the only elements of order p in Sp are p-cycles (here we use that p is prime again).

Let σ be complex conjugation on C. Then σ transposes the two nonreal roots of fpXq and fixes the rest.
Therefore Gf Ă Sp and contains a transposition and a p-cycle, and so is the whole of Sp.

It remains to construct polynomials satisfying the conditions of the Proposition.

Example 5.10.3. Let pě 5 be a prime number. Choose a positive even integer m and even integers

n1 ă n2 ă ¨ ¨ ¨ ă np´2,

and let

gpXq “ pX2 `mqpX ´ n1q...pX ´ np´2q.

The graph of g crosses the x-axis exactly at the points n1, . . . , np´2, and it doesn’t have a local maximum or
minimum at any of those points (because the ni are simple roots). Thus e “ ming1pxq“0 |gpxq| ą 0, and we
can choose an odd positive integer n such that 2

n ă e.

Consider

fpXq “ gpXq ´
2

n
.

As 2
n ă e, the graph of f also crosses the x-axis at exactly p ´ 2 points, and so f has exactly two nonreal

roots. On the other hand, when we write

nfpXq “ nXp ` a1X
p´1 ` ¨ ¨ ¨ ` ap,

the ai are all even and ap is not divisible by 22, and so Eisenstein’s criterion implies that f is irreducible.
Over R, f has p´ 2 linear factors and one irreducible quadratic factor, and so it certainly splits over C (high
school algebra). Therefore, the proposition applies to f .3

Example 5.10.4. The reader shouldn’t think that, in order to have Galois group Sp, a polynomial must have
exactly two nonreal roots. For example, the polynomial X5 ´ 5X3 ` 4X ´ 1 has Galois group S5 but all of
its roots are real.

3If m is taken sufficiently large, then gpXq ´ 2 will have exactly two nonreal roots, i.e., we can take n “ 1, but the proof is longer
(see Jacobson 1964, p. 107, who credits the example to Brauer). The shorter argument in the text was suggested to me by Martin Ward.
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5.11 Finite fields

Let Fp “ Z{pZ, the field of p elements. As we noted in §1, every field E of characteristic p contains a copy of
Fp, namely, tm1E | m P Zu. No harm results if we identify Fp with this subfield of E.

Let E be a field of degree n over Fp. Then E has q “ pn elements, and so Eˆ is a group of order q ´ 1.
Therefore the nonzero elements of E are roots of Xq´1´1, and all elements of E are roots of Xq´X. Hence
E is a splitting field for Xq ´X, and so any two fields with q elements are isomorphic.

Proposition 5.11.1. Every extension of finite fields is simple.

Proof. Consider E Ą F . Then Eˆ is a finite subgroup of the multiplicative group of a field, and hence is
cyclic (see Exercise ??). If ζ generates Eˆ as a multiplicative group, then certainly E “ F rζs.

Now let E be a splitting field of fpXq “ Xq ´ X, q “ pn. The derivative f 1pXq “ ´1, which is relatively
prime to fpXq (in fact, to every polynomial), and so fpXq has q distinct roots in E. Let S be the set of its
roots. Then S is obviously closed under multiplication and the formation of inverses, but it is also closed
under subtraction: if aq “ a and bq “ b, then

pa´ bqq “ aq ´ bq “ a´ b.

Hence S is a field, and so S “ E. In particular, E has pn elements.

Proposition 5.11.2. For each power q “ pn of p there exists a field Fq with q elements. Every such field is a
splitting field for Xq ´X, and so any two are isomorphic. Moreover, Fq is Galois over Fp with cyclic Galois
group generated by the Frobenius automorphism σpaq “ ap.

Proof. Only the final statement remains to be proved. The field Fq is Galois over Fp because it is the splitting
field of a separable polynomial. We noted in 4.1.2 that x σ

ÞÑ xp is an automorphism of Fq. An element a of
Fq is fixed by σ if and only if ap “ a, but Fp consists exactly of such elements, and so the fixed field of xσy is
Fp. This proves that Fq is Galois over Fp and that xσy “ GalpFq{Fpq (see 5.2.6b).

Corollary 5.11.3. Let E be a field with pn elements. For each divisor m of n, m ě 0, E contains exactly one
field with pm elements.

Proof. We know that E is Galois over Fp and that GalpE{Fpq is the cyclic group of order n generated by σ.
The group xσy has one subgroup of order n{m for each m dividing n, namely, xσmy, and so E has exactly
one subfield of degree m over Fp for each m dividing n, namely, Exσm

y. Because it has degree m over Fp,
Exσm

y has pm elements.

Corollary 5.11.4. Each monic irreducible polynomial f of degree d|n in FprXs occurs exactly once as a
factor of Xpn ´X; hence, the degree of the splitting field of f is ď d.

Proof. First, the factors of Xpn ´X are distinct because it has no common factor with its derivative. If fpXq
is irreducible of degree d, then fpXq has a root in a field of degree d over Fp. But the splitting field of
Xpn ´ X contains a copy of every field of degree d over Fp with d|n. Hence some root of Xpn ´ X is also
a root of fpXq, and therefore fpXq|Xpn ´X. In particular, f divides Xpd ´X, and therefore it splits in its
splitting field, which has degree d over Fp.

Proposition 5.11.5. Let F be an algebraic closure of Fp. Then F contains exactly one field Fpn with pn

elements for each integer n ě 1, and Fpn consists of the roots of Xpn ´X. Moreover,

Fpm Ă Fpn ðñ m|n.
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The partially ordered set of finite subfields of F is isomorphic to the set of integers n ě 1 partially ordered
by divisibility.

Proof. In fact, the set of roots of Xpn ´ X is a field (see above), with pn elements, and is the only such
subfield. If Fpm Ă Fpn , say, rFpn : Fpms “ d, then pn “ ppmqd “ pmd, and so m|n; the converse follows from
the first statement. The final statement follows from the second statement.

Proposition 5.11.6. The field Fp has an algebraic closure F.

Proof. Choose a sequence of integers 1 “ n1 ă n2 ă n3 ă ¨ ¨ ¨ such that ni|ni`1 for all i, and every integer
n divides some ni. For example, let ni “ i!. Define the fields Fpni inductively as follows: Fpn1 “ Fp; Fpni is
the splitting field of Xpni

´X over Fpni´1 . Then, Fpn1 Ă Fpn2 Ă Fpn3 Ă ¨ ¨ ¨ , and we define F “
Ť

Fpni . As a
union of a chain of fields algebraic over Fp, it is again a field algebraic over Fp. Moreover, every polynomial
in FprXs splits in F, and so it is an algebraic closure of F (by 4.4.4).

Remark 5.11.7. Since the Fpn are not subsets of a fixed set, forming the union requires explanation. Let S
be the disjoint union of the Fpn . For a, b P S, set a „ b if a “ b in one of the Fpn . Then „ is an equivalence
relation, and we let F “ S{ „.

Any two fields with q elements are isomorphic, but not necessarily canonically isomorphic. However, once
we have chosen an algebraic closure F of Fp, there is a unique subfield of F with q elements.

PARI factors polynomials modulo p very quickly. Recall that the syntax is
factormod(f(X),p). For example, to obtain a list of all monic polynomials of degree 1, 2, or 4 over F5, ask
PARI to factor X625 ´X modulo 5 (note that 625 “ 54).

In one of the few papers published during his lifetime, Galois defined finite fields of arbitrary prime power
order and established their basic properties, for example, the existence of a primitive element (Notices
A.M.S., Feb. 2003, p. 198). For this reason finite fields are often called Galois fields and the field with q
elements is often denoted by GFpqq.

5.12 Computing Galois groups over Q
In the remainder of this chapter, I describe a practical method for computing Galois groups over Q and
similar fields. Recall that for a separable polynomial f P F rXs, Ff denotes a splitting field for F , and
Gf “ GalpFf {F q denotes the Galois group of f . Moreover, Gf permutes the roots α1, . . . , αm, m “ deg f , of
f in Ff :

G Ă Symtα1, . . . , αmu.

The first result generalizes Proposition 5.7.1.

Proposition 5.12.1. Let fpXq be a separable polynomial in F rXs, and suppose that the orbits of Gf acting
on the roots of f have m1, . . . ,mr elements respectively. Then f factors as f “ f1 ¨ ¨ ¨ fr with fi irreducible
of degree mi.

Proof. We may suppose that f is monic. Let α1, . . . , αm, be the roots of fpXq in Ff . The monic factors of
fpXq in Ff rXs correspond to subsets S of tα1, . . . , αmu,

S Ø fS “
ź

αPS

pX ´ αq,

and fS is fixed under the action of Gf (and hence has coefficients in F ) if and only if S is stable under Gf .
Therefore the irreducible factors of f in F rXs are the polynomials fS corresponding to minimal subsets S of
tα1, . . . , αmu stable under Gf , but these subsets S are precisely the orbits of Gf in tα1, . . . , αmu.
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Remark 5.12.2. Note that the proof shows the following: let tα1, . . . , αmu “
Ť

Oi be the decomposition of
tα1, . . . , αmu into a disjoint union of orbits for the group Gf ; then

f “
ź

fi, where fi “
ź

αjPOi

pX ´ αjq,

is the decomposition of f into a product of irreducible polynomials in F rXs.

Now suppose that F is finite, with pn elements say. Then Gf is a cyclic group generated by the Frobenius
automorphism σ : x ÞÑ xp

n

. When we regard σ as a permutation of the roots of f , then the orbits of
σ correspond to the factors in its cycle decomposition (GT, 4.26). Hence, if the degrees of the distinct
irreducible factors of f are m1,m2, . . . ,mr, then σ has a cycle decomposition of type

m1 ` ¨ ¨ ¨ `mr “ deg f.

Proposition 5.12.3. Let R be a unique factorization domain with field of fractions F , and let f be a monic
polynomial in RrXs. Let P be a prime ideal in R, let F̄ “ R{P , and let f̄ be the image of f in F̄ rXs. Assume
that f̄ is separable. Then f is separable, and its roots α1, . . . , αm lie in some finite extension R1 of R. Their
reductions ᾱi modulo PR1 are the roots of f̄ , and Gf̄ Ă Gf when both are identified with subgroups of
Symtα1, . . . , αmu “ Symtᾱ1, . . . , ᾱmu.

We defer the proof to the end of this section.

On combining these results, we obtain the following theorem.

Theorem 5.12.4 (Dedekind). Let fpXq P ZrXs be a monic polynomial of degree m, and let p be a prime
such that f mod p has simple roots (equivalently, Dpfq is not divisible by p). Suppose that f̄ “

ś

fi with fi
irreducible of degree mi in FprXs. Then Gf contains an element whose cycle decomposition is of type

m “ m1 ` ¨ ¨ ¨ `mr.

Example 5.12.5. Consider X5 ´X ´ 1. Modulo 2, this factors as

pX2 `X ` 1qpX3 `X2 ` 1q,

and modulo 3 it is irreducible. The theorem shows that Gf contains permutations pikqplmnq and p12345q,
and so also ppikqplmnqq3 “ pikq. Therefore Gf “ S5 by (5.10.1).

Lemma 5.12.6. A transitive subgroup of H Ă Sn containing a transposition and an pn´ 1q-cycle is equal to
Sn.

Proof. After renumbering, we may suppose that the pn´1q-cycle is p123 . . . n´1q. Because of the transitivity,
the transposition can be transformed into pinq, some 1 ď i ď n ´ 1. Conjugating pinq by p123 . . . n ´ 1q and
its powers will transform it into p1nq, p2nq, . . ., pn´ 1nq, and these elements obviously generate Sn.

Example 5.12.7. Select separable monic polynomials of degree n, f1, f2, f3 with coefficients in Z with the
following factorizations:

1. f1 is irreducible modulo 2;

2. f2 “ pdegree 1qpirreducible of degree n´ 1q mod 3;

3. f3 “ pirreducible of degree 2)(product of 1 or 2 irreducible polynomials of odd degree) mod 5.

Take
f “ ´15f1 ` 10f2 ` 6f3.

Then
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(i) Gf is transitive (it contains an n-cycle because f ” f1 mod 2);

(ii) Gf contains a cycle of length n´ 1 (because f ” f2 mod 3);

(iii) Gf contains a transposition (because f ” f3 mod 5, and so it contains the product of a transposition
with a commuting element of odd order; on raising this to an appropriate odd power, we are left with
the transposition). Hence Gf is Sn.

The above results give the following strategy for computing the Galois group of an irreducible polynomial
f P QrXs. Factor f modulo a sequence of primes p not dividing Dpfq to determine the cycle types of the
elements in Gf — a difficult theorem in number theory, the effective Chebotarev density theorem, says that
if a cycle type occurs in Gf , then this will be seen by looking modulo a set of prime numbers of positive
density, and will occur for a prime less than some bound. Now look up a table of transitive subgroups of Sn
with order divisible by n and their cycle types. If this doesn’t suffice to determine the group, then look at its
action on the set of subsets of r roots for some r.

See, Butler and McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), 863–911.
This lists all transitive subgroups of Sn, n ď 11, and gives the cycle types of their elements and the orbit
lengths of the subgroup acting on the r-sets of roots. With few exceptions, these invariants are sufficient to
determine the subgroup up to isomorphism.

PARI can compute Galois groups for polynomials of degree ď 11 over Q. The syntax is polgalois(f)

where f is an irreducible polynomial of degree ď 11 (or ď 7 depending on your setup), and the output is
pn, s, k,nameq where n is the order of the group, s is `1 or ´1 according as the group is a subgroup of the
alternating group or not, and “name” is the name of the group. For example, polgalois(X^5-5*X^3+4*X-1)
(see 5.10.4) returns the symmetric group S5, which has order 120, polgalois(X^11-5*X^3+4*X-1) returns
the symmetric group S11, which has order 39916800, and
polgalois(X^12-5*X^3+4*X-1) returns an apology. The reader should use PARI to check the examples
5.9.3–5.9.6.

See also, Soicher and McKay, Computing Galois groups over the rationals, J. Number Theory, 20 (1985)
273–281.

5.12.1 Proof of Proposition 5.12.3

We follow the elegant argument in van der Waerden, Modern Algebra, I, §61.

Let fpXq be a separable polynomial in F rXs and α1, . . . , αm its roots. Let T1, . . . , Tm be symbols. For
a permutation σ of t1, . . . ,mu, we let σα and σT respectively denote the corresponding permutations of
tα1, . . . , αmu and tT1, . . . , Tmu.

Let
θ “ T1α1 ` ¨ ¨ ¨ ` Tmαm

and
fpX,T q “

ź

σPSm

pX ´ σT θq.

Clearly fpX,T q is symmetric in the αi, and so its coefficients lie in F . Let

fpX,T q “ f1pX,T q ¨ ¨ ¨ frpX,T q (5.4)

be the factorization of fpX,T q into a product of irreducible monic polynomials. Here we use that F rX,T1, . . . , Tms
is a unique factorization domain (CA 4.10). The permutations σ such that σT carries any one of the factors,
say f1pX,T q, into itself form a subgroup G of Sm.

Lemma 5.12.8. The map σ ÞÑ σα is an isomorphism from G onto Gf .
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Proof. In any F -algebra containing the roots of f , the polynomial f1pX,T q is a product of factors of the form
X ´ σθ. After possibly renumbering the roots of f , we may suppose that f1pX,T q contains the factor X ´ θ.
Note that sT sα leaves θ invariant, i.e., sT sαθ “ θ, and so

sαθ “ s´1
T θ. (5.5)

Let σ be a permutation of t1, . . . ,mu. If σT leaves f1pX,T q invariant, then it permutes its roots. Therefore, it
maps X´θ into a linear factor of f1pX,T q. Conversely, if σT maps X´θ into a linear factor of f1pX,T q, then
this linear factor will be a common factor of f1pX,T q and the image of f1pX,T q under σT , which implies
that the two are equal, and so σT leaves f1pX,T q invariant. We conclude that σT leaves f1pX,T q invariant
if and only if σT maps X ´ θ into a linear factor of f1pX,T q.

!!In the third paragraph of the proof of Lemma 4.34, θ is algebraic over the field F pT q “def F pT1, . . . , Tmq
with minimal polynomial equal to fpX,T q (regarded as a polynomial in X with coefficients in the field
F pT q).!!

Again, let σ be a permutation of t1, . . . ,mu. Then σα P Gf if and only if it maps F pT qrθs isomorphically onto
F pT qrσαθs, i.e., if and only if θ and σαθ have the same minimal polynomial. The minimal polynomial of θ is
f1pX,T q, and so this shows that sα lies in Gf if and only if σα leaves f1pX,T q invariant, i.e., if and only if
σα maps X ´ θ into a linear factor of f1pX,T q.

From the last two paragraphs and (5.5), we see that the condition for σ to lie in G is the same as the
condition for σα to lie in Gf , which concludes the proof.

After these preliminaries, we prove Lemma 5.12.3. With the notation of the lemma, let R1 “ Rrα1, . . . , αms.
Then R1 is generated by a finite number of elements, each integral over R, and so it is finite as an R-algebra
(CA 6.2). Clearly, the map a ÞÑ ā : R1 Ñ R1{PR1 sends the roots of f onto the roots of f̄ . As the latter are
distinct, so are the former, and the map is bijective.

A general form of Proposition ?? shows that, in the factorization (5.4), the fi lie in RrX,T s. Hence (5.4)
gives a factorization

f̄pX,T q “ f̄1pX,T q ¨ ¨ ¨ f̄rpX,T q

in F̄ rX,T s. Let f̄1pX,T q1 be an irreducible factor of f̄1pX,T q. According to Lemma 5.12.8, Gf is the set of
permutations σα such that σT leaves f1pX,T q invariant, and Gf̄ is the set of permutations σα such that σT
leaves f̄1pX,T q1 invariant. Clearly Gf̄ Ă Gf .

For a monic polynomial f of degree n with bounded integers as coefficients, it is expected that the Galois
group of f equals Sn with probability 1 as n Ñ 8. See Bary-Soroker, Kozma, and Gady, Duke Math. J. 169
(2020), 579–598, for precise statements.

5.13 Exercises

Exercise 5.13.1. Let F be a field of characteristic 0. Show that F pX2q X F pX2 ´ Xq “ F (intersection
inside F pXq). [Hint: Find automorphisms σ and τ of F pXq, each of order 2, fixing F pX2q and F pX2 ´Xq
respectively, and show that στ has infinite order.]

Exercise 5.13.2. 4 Let p be an odd prime, and let ζ be a primitive pth root of 1 in C. Let E “ Qrζs, and
let G “ GalpE{Qq; thus G “ pZ{ppqqˆ. Let H be the subgroup of index 2 in G. Put α “

ř

iPH ζ
i and

β “
ř

iPGzH ζ
i. Show:

1. α and β are fixed by H;

4This problem shows that every quadratic extension of Q is contained in a cyclotomic extension of Q. The Kronecker-Weber theorem
says that every abelian extension of Q is contained in a cyclotomic extension.
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2. if σ P GzH, then σα “ β, σβ “ α.

Thus α and β are roots of the polynomial X2 `X ` αβ P QrXs. Compute5 αβ and show that the fixed field
of H is Qr?ps when p ” 1 mod 4 and Qr

?
´ps when p ” 3 mod 4.

Exercise 5.13.3. Let M “ Qr
?
2,
?
3s and E “M r

b

p
?
2` 2qp

?
3` 3qs (subfields of R).

1. Show that M is Galois over Q with Galois group the 4-group C2 ˆ C2.

2. Show that E is Galois over Q with Galois group the quaternion group.

Exercise 5.13.4. Let E be a Galois extension of F with Galois group G, and let L be the fixed field of a
subgroup H of G. Show that the automomorphism group of L{F is N{H where N is the normalizer of H in
G.

Exercise 5.13.5. Let E be a finite extension of F . Show that the order of AutpE{F q divides the degree
rE : F s.

Exercise 5.13.6. Find the splitting field of Xm ´ 1 P FprXs.

Exercise 5.13.7. Find the Galois group of X4 ´ 2X3 ´ 8X ´ 3 over Q.

Exercise 5.13.8. Find the degree of the splitting field of X8 ´ 2 over Q.

Exercise 5.13.9. Give an example of a field extension E{F of degree 4 such that there does not exist a field
M with F ĂM Ă E, rM : F s “ 2.

Exercise 5.13.10. List all irreducible polynomials of degree 3 over F7 in 10 seconds or less (there are 112).

Exercise 5.13.11. “It is a thought-provoking question that few graduate students would know how to ap-
proach the question of determining the Galois group of, say,

X6 ` 2X5 ` 3X4 ` 4X3 ` 5X2 ` 6X ` 7.”

[over Q].

1. Can you find it?

2. Can you find it without using the “polgalois” command in PARI?

Exercise 5.13.12. Let fpXq “ X5 ` aX ` b, a, b P Q. Show that Gf « D5 (dihedral group) if and only if

1. fpXq is irreducible in QrXs, and

2. the discriminant Dpfq “ 44a5 ` 55b4 of fpXq is a square, and

3. the equation fpXq “ 0 is solvable by radicals.

Exercise 5.13.13. Show that a polynomial f of degree n “
śk
i“1 p

ri
i (the pi are distinct primes) is irreducible

over Fp if and only if (a) gcdpfpXq, Xpn{pi
´ Xq “ 1 for all 1 ď i ď k and (b) f divides Xpn ´ X (Rabin

irreducibility test6).

Exercise 5.13.14. Let fpXq be an irreducible polynomial in QrXs with both real and nonreal roots. Show
that its Galois group is nonabelian. Can the condition that f is irreducible be dropped?

Exercise 5.13.15. Let F be a Galois extension of Q, and let α be an element of F such that αFˆ2 is not
fixed by the action of GalpF {Qq on Fˆ{Fˆ2. Let α “ α1, . . . , αn be the orbit of α under GalpF {Qq. Show:

1. F r
?
α1, . . . ,

?
αns{F is Galois with commutative Galois group contained in pZ{2Zqn.

5Schoof suggests computing α ´ β instead.
6Rabin, Michael O. Probabilistic algorithms in finite fields. SIAM J. Comput. 9 (1980), no. 2, 273–280.
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2. F r
?
α1, . . . ,

?
αns{Q is Galois with noncommutative Galois group contained in pZ{2Zqn ¸ GalpF {Qq.

(Cf. mo113794.)
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Chapter 6

Linear Algebra and Representation
Theory

We refer to Artin’s [1] Chapter10 for a short introduction to group representation, Lang’s [7] for a compre-
hensive one, and also Steinberg’s [11] for the finite case

167



Math 5031-32 Algebra Anthony Hong

168



Math 5031-32 Algebra Anthony Hong

Chapter 7

Commutative Ring Theory
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Chapter 8

Affine Algebraic Geometry

171



Math 5031-32 Algebra Anthony Hong

172



Math 5031-32 Algebra Anthony Hong

Chapter 9

Category Theory

9.1 Product and Coproduct

Definition 9.1.1. Let C be a category with A,B P objpCq. Z is a product of A,B if Df P HompZ,Aq, g P
HompZ,Bq such that @C P objpCq, σ1 P HompC,Aq, σ2 P HompC,Dq, D!ϕ P HompC,Zq s.t. f ˝ ϕ “ σ1, g ˝ ϕ “
σ2

A

C Z

B

D!ϕ

σ1

σ2

f

g

Definition 9.1.2. It is a coproduct is the following diagram commutes:

A

Z C

B

f σ1

Dψ

g σ2

If product (coproduct) of A,B then it is unique up to isomorphism. If Z,Z 1 coproduct ψ : Z Ñ Z 1, ϕ : ZÑ Z
(replace C with Z 1 from above). Then ϕ ˝ σ2 “ g, ψ ˝ g “ σ2.

Example 9.1.3. For set A,B, A ˆ B is the product and the coproduct is the disjoint union A \ B. By
definition, t1, 2u \ t2, 3u “ t1, 2, 21, 3u.

Example 9.1.4. For groups G1, G2, the product is G1 ˆG2 and the coproduct is free product G1 ˚G2 (Note
that G1 ˆG2 is only coproduct when it is abelian.)
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9.2 Limits

Definition 9.2.1.
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Chapter 10

Homological Algebra
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Chapter 11

Answer to Selected Problems

Exercises 1.1

1. Exercise 1.1-1

Let a P G. By (5), ya “ a has a solution y0 P G.
We need that for other b P G, the equation y0b “ b
also holds. This is true because ax “ b has a solu-
tion x0 P G, so b “ ax0 “ y0ax0 “ y0pax0q “ y0b.
This shows the existence of a left identity el “ y0.
The existence of a left inverse directly follows
from the fact that there is a solution y P G for
yg “ el.

i.

Let a´1 be the left inverse of a P G. Let a1 be
the left inverse of a´1. Thus, a´1a “ el and
a1a´1 “ el. On the one hand,

`

a1a´1
˘ `

aa´1
˘

“

el
`

aa´1
˘

“ pelaqa
´1 “ aa´1 on the other hand

`

a1a´1
˘ `

aa´1
˘

“ a1
“`

a´1a
˘

a´1
‰

“ a1
`

ela
´1

˘

“

a1a´1 “ el so aa´1 “ el.

ii.

On the one hand,
`

aa´1
˘

a “ ela “ a. On the
other hand,

`

aa´1
˘

a “ a
`

a´1a
˘

“ ael. Thus,
ael “ a, which shows that el is also the right
identity. Therefore, el “ er “ e, and this in turn
elevates “a´1a “ el ñ aa´1 “ el” to become
“a´1a “ eñ aa´1 “ e.”

iii.

For the eq. ax “ b, just take x “ a´1b which is
in G as a´1 P G and G is closed under multipli-
cation. Similarly, for the eq. ya “ b, just take
y “ ba´1 P G.

iv.

2. Exercise 1.1-6

Trivial.i.
Follows immediately from prop. 1.1.25.ii.

3. Exercise 1.1-7: Let the statement be ppnq. We use
the strong induction. First we see that n “ 2, 3
the claim is true. Now assume that for n ď N ´ 1

the proposition ppnq is true. To show ppNq is
true, we only need to show that for any brack-
eting π pa1 ¨ a2 ¨ ¨ ¨ ¨ ¨ ¨ anq we have

π pa1 ¨ a2 ¨ ¨ ¨ ¨ ¨ anq “ a1 ¨ pa2 ¨ ¨ ¨ ¨ ¨ anq

where the bracket on the RHS is well-defined
by our induction hypothesis. any bracketing
π pa1 ¨ a2 ¨ ¨ ¨ ¨ ¨ anq, its last step of computation
has to be of the form b1 ¨ b2 where

b1 “ a1 ¨ a2 ¨ ¨ ¨ ¨ ai, b2 “ ai`1 ¨ ai`2 ¨ ¨ ¨ ¨ ¨ ¨ an

Since i, n´ i ď N´1, we by induction hypothesis
have them well-defined. To show

π pa1 ¨ ¨ ¨ ¨ ¨ anq “ pa1 ¨ a2 ¨ ¨ ¨ ¨ aiq ¨ pai`1 ¨ ¨ ¨ ¨ ¨ anq

“ a1 ¨ pa2 ¨ ¨ ¨ ¨ ¨ anq

we see for i “ 1 there is nothing to prove, so we
assume i ą 1 and observe

π pa1 ¨ a2 ¨ ¨ ¨ ¨ anq

“ pa1 ¨ a2 ¨ ¨ ¨ ¨ ¨ ¨ aiq ¨ pai`1 ¨ ai`2 ¨ ¨ ¨ ¨ ¨ ¨ anq

IHpiq
ùùùùù pa1 ¨ pa2 ¨ ¨ ¨ ¨ aiqq ¨ pai`1 ¨ ai`2 ¨ ¨ ¨ ¨ anq

IHp3q
ùùùùù a1 ¨ pa2 ¨ ¨ ¨ ¨ aiq ¨ pai`1 ¨ ai`2 ¨ ¨ ¨ ¨ ¨ ¨ anq

IHpN´1q
ùùùùùùùù a1 ¨ pa2 ¨ ¨ ¨ ¨ ¨ ¨ ai ¨ ai`1 ¨ ai`2 ¨ ¨ ¨ ¨ anq

“ a1 ¨ pa2 ¨ ¨ ¨ ¨ anq

We’re done.

4. Exercise 1.1-8: We proceed by weak induction.
For n “ 1, 2 the statement is true. Suppose the
statement is true when n “ N ´ 1. We want to
show that permutating a1 ¨ a2 ¨ ¨ ¨ ¨ aN , which is
ai1 ¨ ai2 ¨ ¨ ¨ ¨ aiN , won’t change the result. Sup-
pose the permutation sends N to ik. Let C stand
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for commutativity and A stand for associativity.
Then

ai1 ¨ ai2 ¨ ¨ ¨ ¨ ¨ ¨ aiN

“
`

ai1 ¨ ¨ ¨ ¨ ¨ ¨ aik´1

˘

¨
“

aik ¨
`

aik`1
¨ ¨ ¨ ¨ aiN

˘‰

“
`

ai1 ¨ ¨ ¨ ¨ aik´1

˘

¨
“

aN ¨
`

aik`1
¨ ¨ ¨ ¨ aiN

˘‰

Cp2q
ùùùùù

`

ai1 ¨ ¨ ¨ ¨ aik´1

˘

¨
“`

aik`1
¨ ¨ ¨ ¨ ¨ ¨ aiN

˘

¨ aN
‰

Ap2q
ùùùùù

“`

ai1 ¨ ¨ ¨ ¨ ¨ ¨ aik´1

˘

¨
`

aik`1
¨ ¨ ¨ ¨ ¨ ¨ aiN

˘‰

¨ aN
Thm1.1.16,ApN´1q
ùùùùùùùùùùùùùù

`

ai1 ¨ ¨ ¨ aik´1
¨ aik`1

¨ ¨ ¨ aiN
˘

¨ aN
IH
ùùùù pa1 ¨ ¨ ¨ ¨ ¨ ¨ aN´1q ¨ aN
ApNq
ùùùùù a1 ¨ ¨ ¨ ¨ ¨ ¨ aN´1 ¨ aN

5. Exercise 1.1-9: let l “ |ak| :“ mintm : pakqm “

1u. Then: (1) akl “ pakql “ 1 ñ kl ě |a| “ n “
km ñ l ě m; (2) m ě l (because 1 “ akm “

pakqm). They combine to show l “ m.

6. Exercise 1.1-10: When n “ 1, G is automatically
abelian. For n “ 2, 3, 5 which are primes, G is
cyclic and thus abelian. For n “ 4, one can use
Cayley table to do the classification to see that G
is isomorphic to either Z4 or the Klein-four group
V , both abelian.

7. Exercise 1.1-11: n “ mintm : am “ 1u ñ k ě
n, k “ np` q ñ 1 “ ak “ anp`q “ panqpaq “ aq.
Since q ă n “ mintm : am “ 1u, we see q “ 0.

8. Exercise 1.1-15: the isomorphism is given by
ϕpxq “ y and note that isomorphism is bijection.

9. Exercise 1.1-16: We write the distinct cosets of K
in G as tgiKuiPI . Thus G “ >iPIgiK. Similarly,
we write K “ >jPJkjH. We claim that gikjH are
all distinct cosets of H in G. Then, as left cosets
form a partition, rG : Hs “

ˇ

ˇ

ˇ
tgikjHuiPI,jPJ

ˇ

ˇ

ˇ
“

|I||J | “ rG : KsrK : Hs, where we used the fact
that rG : Hs, rH : Ks ă 8. The claim consists of
two parts: (1) every left coset xH of H in G is
in tgikjHuiPI,jPJ because it is already clear that
each gikjH is a coset of H in G. (2) each gikjH
is distinct.
proof of (1): For any left coset xK of K in G,
Dgi P G : xK “ giK ðñ g´1

i x P H. Then
g´1
i xH is a left coset of subgroup H in K and

is one of tkjHu: Dkj P K : g´1
i xH “ kjH ô

Dh P H : k´1
j g´1

i x “ h Thus x “ gikjh and

xH “ gikjhH “ gikjH.
proof of (2): Suppose not. gikjH “ gi1kj1H for
some gi, kj , g

1
i, k

1
j ðñ pgikjq

´1
pgi1kj1q P H Ď

K ñ gikjK “ gi1kj1K ñ giK “ gi1K ñ gi “ gi1

by distinctiveness in tgiKuiPI . Thus

gi pkjHq “ gi1 pkj1Hq
gi“gi1

ùñ kjH “ kj1H ñ kj “ kj1

by distinctiveness in tkjHujPJ .

10. Exercise 1.1-17: H has index 2, so there are two
left cosets H, aH for some a P G such that aH ‰

H, i.e., a ‰ H. Thus, a´1 R H ñ a´1H ‰ H ñ

a´1H “ aH ô pa´1q´1a “ a2 P H. If a P H,
then clearly a2 P H. Therefore, @a P G, a2 P H.

11. Exercise 1.1-18: use theorem 1.1.29.

Exercises 1.2

1. Exercise 1.2-6: Since every permutation can
be written as product of transpositions, it
suffices to show that transpositions can be
generated in each of the case. Then note
that pm kq “ p1 mqp1 kqp1 mq, and
pm, kq “pm,m` dq

“pk ´ 1, kq . . . pm` 1,m` 2qpm,m` 1q

pm` 1,m` 2q´1 . . . pk ´ 1, kq´1

“pk ´ 1, kq . . . pm` 1,m` 2qpm,m` 1q

pm` 1,m` 2q . . . pk ´ 1, kq
Thus each of pi, i`1q in the generating set of Sn is
further generated by (12) and p12 ¨ ¨ ¨nq, proving
the result. For the third claim, just observe that
pi i` 1q “ p1 2 ¨ ¨ ¨ nqi´1p1 2qp1 2 ¨ ¨ ¨ nq´i`1.

2. Exercise 1.2-7: S2 “ tp1q, p1 2qu – Z2. Group
table of S3: let σ0 “ p1q, σ1 “ p1 2 3q, σ2 “
p1 3 2q, σ3 “ p2 3q, σ4 “ p1 3q, σ5 “ p1 2q

˝ σ0 σ1 σ2 σ3 σ4 σ5

σ0 σ0 σ1 σ2 σ3 σ4 σ5
σ1 σ1 σ2 σ0 σ4 σ5 σ3
σ2 σ2 σ0 σ1 σ5 σ3 σ4
σ3 σ3 σ5 σ4 σ0 σ2 σ1
σ4 σ4 σ3 σ5 σ1 σ0 σ2
σ5 σ5 σ4 σ3 σ2 σ1 σ0

3. Exercise 1.2-9: The permutation ρ has a decom-
position as a product of disjoint, hence commut-
ing, (non-trivial) cycles: ρ “ γ1 ¨ ¨ ¨ γr. By Ques-
tion 1.2-iii., The order of ρ is the l.c.m. of the
orders of the cycles, so each γi has order 3. As
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the order of a cycle is its length, this means each
γi is a 3-cycle.

4. Exercise 1.2-10:

psrq2 “ 1 ùñ psrq´1 “ r´1s´1 “ sr ùñ

s´1r´1s´1 “ r ùñ s´1r´1 “ rs ùñ prsq´1 “

rs. Vice versa.

i.

rks “ sr´k: start with prsq2 “ rsrs “ 1 ô

rs “ s´1r´1 s2“e
“ sr´1, we see for any k P

t0, ¨ ¨ ¨ , n´ 1u,

rks “ r ¨ ¨ ¨ rr
loomoon

#“k

s “ r ¨ ¨ ¨ r
loomoon

#“k´1

rs

“ r ¨ ¨ ¨ r
loomoon

#“k´1

sr´1 “ r ¨ ¨ ¨ r
loomoon

#“k´2

prsqr´1

“ r ¨ ¨ ¨ r
loomoon

#“k´2

sr´1r´1 “ ¨ ¨ ¨ “ sr´k

ii.

immediately follows from Proposition 1.1.25.iii.

5. Exercise 1.2-11: Let

Dn “
␣

e, r, ¨ ¨ ¨ , rn´1, s, sr, . . . srn´1
(

where r is the rotation and s is the reflection
`

s2 “ e, rn “ e, prsq2 “ e
˘

. We note that H “
␣

e, r, r2, r3, . . . , rn´1
(

“ xry is a cyclic subgroup
contained in Dn with order n. The complement
of it is Hc “

␣

s, sr, sr2, sr3, . . . srn´1
(

, which has
order n as well. Since Hc “ sH is the coset of
H,H is itself a right coset, and there are no other
cosets since they fill the whole group, then the
index of H in Dn is 2.

Exercises 1.2

1. Exercise 1.3-4:

A2 “ ´I, A3 “ ´A, A4 “ I

so the order of A in G is 4 .

B2 “ ´I, B3 “ ´B, B4 “ I

so the order of B in G is 4.

i.

We already have six distinct elements
I,´I,A,B,A3, B3 above. G is nonabelian with
following two additional elements

AB “

„

´i 0
0 i

ȷ

, BA “

„

i 0
0 ´i

ȷ

ii.

By the calculation in i, it is obvious that
I, A,B,A3, B3 don’t have order 2, while ´I has
order 2 as p´Iq2 “ I2 “ I. We check the rest of
the eight:

pABq2 “

„

´i 0
0 i

ȷ „

´i 0
0 i

ȷ

“ ´I ‰ I

pBAq2 “

„

i 0
0 ´i

ȷ „

i 0
0 ´i

ȷ

“ ´I ‰ I

Thus, the only element with order 2 is ´I.

iii.

By Lagrange’s theorem 8 “ |G| “ |H|rG : Hs for
subgroup H in G. Hence, except for subgroup
teu and G, which are trivial subgroups that are
also normal, we only have factorization 8 “ 2ˆ 4
or 8 “ 4 ˆ 2, i.e, |H| “ 2 with rG : Hs “ 4 or
|H| “ 4 with rG : Hs “ 2. By an example in class
that ”every subgroup of index 2 in any group is
normal” we see subgroup H1 with |H1| “ 4 is
normal. The remaining is H2 with |H2| “ 2. Sub-
groups H2 with |H2| “ 2 must include an identity
I and another element x. Counting formula tells
us that 2 “ |H2| “ |xxy| rH2 : xxys where xxy is
the cyclic subgroup generated by x and the order
of it is just the order of the element x. The only
possible factorization is 2 “ 2 ˆ 1, so x is an ele-
ment of order 2 and H2 “ xxy. For this problem,
x “ ´I “ A2 “ B2 by part i and part iii. Thus,
H2 “ x´Iy “ tI,´Iu. To show H2 is normal in
G, we take any M P G and see that MIM´1 “

I P H2; Mp´IqM´1 “ ´MM´1 “ ´I P H2

Therefore, all subgroups of G are normal.

iv.

2. Exercise 1.3-5: We want to show that @x P

NH1, y P NH2, yxy
´1 P NH1. Thus, x “ n1h1

for some n1 P N and h1 P H1, and y “ n2h2 for
some n2 P N and h2 P H2. Then

yxy´1 “ n2h2n1h1h
´1
2 n´1

2

Since h2n1 P NH2, we have h2n1h
´1
2 P N ñ

Dn3 P N : h2n1h
´1
2 “ n3 ñ h2n1 “ n3h2. We call

this step exchanging trick, since it gives a new el-
ement in the normal subgroup to switch the mul-
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tiplication. Thus,

yxy´1 “ n2n3h2h1h
´1
2 n´1

2

“ n4
loomoon

“n2n3PN

h2h1h
´1
2

looomooon

“h1
1PH1

n5
loomoon

n´1
2 PN

“ n4h
1
1n5

By the above exchanging trick, we see h1
1n5 P

NH1 ñ h1
1n5h

1´1
1 P N ñ Dn6 P N : h1

1n5h
1´1
1 “

n6 ñ h1
1n5 “ n6h

1
1. Thus,

yxy´1 “ n4h
1
1n5 “ n4n6

loomoon

PN

h1
1 P NH1

3. Exercise 1.3-6: An ÐÑ Sn´An, the set of all odd
permuations, by σ ÞÑ σp1 2q. Thus, rSn : Ans “ 2,
An ⊴ Sn, and |An| “ 1

2n!.

4. Exercise 1.3-12: see [9] Theorem 2.20.

5. Exercise 1.3-13: The relation x „ y ðñ Dg P
G s.t. y “ xg :“ gxg´1 is reflexive (xe “ x); is
transitive (xg “ y, yh “ z ñ xhg “ z); and is
symmetric (xg “ y ñ yg

´1

“ x). Let H ď G be
a subgroup. It is normal iff @g P G, gHg´1 Ď H,
i.e., @h P H, @g P G, hg P H, which is just saying
that for each h P H, the conjugacy class contain-
ing h is contained in H.

Exercises 1.4

Exercises 1.5

1. Exercise 1.5-1.

The class equation of G is |G| “ 12 “ 1`3`4`4.
The four classes are {e},{(1 2)(3 4), (1 3)(2 4),
(1 4)(2 3)},{(1 2 3),(1 4 2),(2 4 3),(1 3 4)},{(1 3
2),(1 4 3),(2 3 4),(1 2 4)}. For a direct derivation
without first knowing the result, see Math5031
HW3 Q1 (a).

i.

Let x P G. We first observe a fact: since ZpGq is
the set of elements that commute with every el-
ement of G and Npxq is the set of elements that
commute with x, we get ZpGq Ď Npxq. Now the
center of the group ZpGq is a normal subgroup of
G, and we by the counting formula have

|G| “ |ZpGq|rG : ZpGqs “ |ZpGq|n

As explained in the first part we by the orbit-
stabilizer theorem have

|G| “ |Npxq||Cpxq|

for each x P G. above two equations combine
to give |Npxq||Cpxq| “ |ZpGq|n Suppose there is
some conjugacy class Cpxq with |Cpxq| ą n. Then

n|ZpGq| “ |Npxq||Cpxq| ą |Npxq|nñ |ZpGq| ą |Npxq|

which is impossible because ZpGq Ď Npxq ñ
|ZpGq| ď |Npxq|. Therefore, each conjugacy class
has at most n elements.

ii.

2. Exercise 1.5-2.

We first note that σ´1ρ´1σρ P N because σ P

N ⊴ An ùñ ρ´1σρ P N and σ´1 P N . We
compute

σ´1ρ´1σρ “µ´1p1 2 . . . rq´1p1 3 2qp1 2 . . . rqµp1 2 3q

µ disjoint; rě4ą3
ùùùùùùùùùùùùp1 2 . . . rq´1p1 3 2qp1 2 . . . rqp1 2 3q

“p1 r . . . 2qp1 3 2qp1 2 . . . rqp1 2 3q

“p1 r . . . 2qp1 3 2qp1 3 2 4 5 . . . rq

“p1 r . . . 2qp3 1 2 4 5 . . . rq

“p2 3 rq

Thus N contains a 3-cycle p2 3 rq.

i.
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Similar to the reasoning in i, x “ σ´1ρ´1σρ P
N ⊴An. We compute

σ´1ρ´1σρ “µ´1p4 5 6q´1p1 2 3q´1p1 2 4q´1

p1 2 3qp4 5 6qµp1 2 4q

µ disjoint
ùùùùùùùp4 6 5qp1 3 2q rp1 4 2qp1 2 3qs

rp4 5 6qp1 2 4qs

“p4 6 5qp1 3 2qp2 3 4qp1 2 5 6 4q

“p4 6 5qp3 4 1qp1 2 5 6 4q

“p3 6 5 4 1qp1 2 5 6 4q

“p1 2 4 3 6q

Then consider ρ1 “ p1 2 4q and apply a similar
process as i to x:

x´1ρ1´1xρ1 “ p1 6 3 4 2qp1 4 2q

p1 2 4 3 6qp1 2 4q “ p2 4 6q

which is in N as x P N ⊴ An ñ ρ1´1xρ1 P N and
ρ1´1 P N .

ii.

In this case µ´1 “ µ, so µµ “ 1. Noticing
σ P N ď An for the last step, we have

σ2 “ p1 2 3qµp1 2 3qµ

µ disjoint
ùùùùùùù p1 2 3qp1 2 3qµµ

“ p1 2 3qp1 2 3q “ p1 3 2q P N

iii.

We compute

η “ σ´1ρ´1σρ

“ µ´1p3 4qp1 2qp1 3 2qp1 2qp3 4qµp1 2 3q

µ disjoint
ùùùùùùù p1 4qp2 3q

and ζ “ p1 5 2qηp1 2 5q “ p1 3qp4 5q. Simi-
lar to the reasoning in i, we see η P N as σ P
N ⊴ An ùñ ρ´1σρ P N and σ´1 P N . Besides,
ζ “ p1 5 2qηp1 2 5q “ p1 5 2qηp1 5 2q´1 P N .
Lastly, we observe that ηζ “ p1 2 3 4 5q. This then
converts to case i for r “ 5. Thus p2 3 rq “ p2 3 5q
is in N .

iv.

3. Exercise 1.5-3. We first see two facts: (1) every 3
-cycle pi, j, kq with i ď j ď k is a commutator in

2 -cycles:

pi, j, kq “pi, kqpi, jq

“pi, jqpi, kqpi, jqpi, kq

“rpi, jq, pi, kqs

(2) An is generated by 3-cycles (proved in Exam-
ple 1.5.3). Immediately from (1) and (2), we see
every element of An is a product of commutators.
We then only need to show that every product of
commutators is some element in An: each com-
mutator is of the form rx, ys where x P Sn, y P Sn
can be written as product of transpositions, i.e.,
x “ σ1σ2 ¨ ¨ ¨σk, y “ τ1τ2 ¨ ¨ ¨ τl for some integers
k, l. We then compute:

rx, ys “ xyx´1y´1 “ σ1σ2 ¨ ¨ ¨σkτ1τ2 ¨ ¨ ¨ τl

pσ1σ2 ¨ ¨ ¨σkq
´1
pτ1τ2 ¨ ¨ ¨ τlq

´1

“ σ1σ2 ¨ ¨ ¨σkτ1τ2 ¨ ¨ ¨ τlσk ¨ ¨ ¨σ2σ1τl ¨ ¨ ¨ τ2τ1

There are in total 2pk ` lq transpositions. Since
2pk`lq is even and products of even permutations
are still even permutations, making products of
commutators belong to An.

4. Exercise 1.5-4. Part one is trivial. Part two: First
of all, A8 “ Yně1An “

Ť

ně5An simply be-
cause A1 Ď A2 Ď ¨ ¨ ¨ Ď A5 Ď A6 ¨ ¨ ¨ . To show
that A8 is simple, we need to show that each
N ⊴ A8 has to be trivial or the whole A8. First
notice that each An is a group and thus a sub-
group of the group A8, i.e., An ď A8. Then
N X An ⊴ An due to the 2nd isomorphism theo-
rem. When n ě 5, this normal subgroup N X An
must be teu or An due to the simplicity, i.e., An
is simple for all n ě 5. We analyze the two cases:
If N X An “ An for some n ě 5, then An Ď N .
Then for all m ě n,An Ď N X Am ñ N X Am ‰
teu ñ N X Am “ Am ñ A8 “

Ť

iě5Ai “
Ť

iěnAi “
Ť

iěnN X Ai “ N X
`
Ť

iěnAi
˘

ñ

A8 Ď N But N ⊴ A8 ñ N Ď A8, so A8 “ N .
If N X An “ teu for some n ě 5. Then for all
m ě n,N XAm cannot be Am as for if Am “ NX
Am then An Ď Am “ N X Am ñ An Ď N ñ

N X An “ An ‰ teu which is a contradiction.
Thus, for all m ě n,N X Am “ teu. Thus, N “

N XA8 “ N XpYiě5Aiq “ N XN XpYiěnAiq “
YiěnN X Ai “ Yiěnteu “ teu. Thus, N is either
trivial or the whole group, proving the simplicity
of A8.

Exercises 1.7
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1. Exercise 1.7-1. 36 “ 32 ˆ 22.

Let r “ # of Sylow 3-subgroup; s “ # of Sylow
2-subgroup. Then Ttird Sylow theorem implies
that r

ˇ

ˇ22, 3
ˇ

ˇ r´ 1, so r “ 1 (we’re done) or r “ 4;
s
ˇ

ˇ32, 2
ˇ

ˇ s´ 1, so s “ 1 (we’re done) or s “ 3. For
r “ 4 we let X “ tH1, H2, H3, H4u be the set of
Sylow 3-subgroups, each of which has order 32 “
9. Consider the action of G on X by conjugation,
which gives rise to a homomorphism ϕ : GÑ SX
by sending each g to the permutation defined by
multiplication by g. We claim that Kerpϕq is a
nontrivial normal subgroup of G. It is normal. It
does not equal to G : second Sylow Theorem im-
plies that G

conj
ñ X is transitive ñ Kerpϕq ‰ G.

It does not equal to teu: first Isomorphism the-
orem implies that G

Kerpϕq
– Impϕq ď SX Since

the order of the permutation group of a set with
4 elements |SX | is 4! “ 24, we see

ˇ

ˇ

ˇ

G
Kerpϕq

ˇ

ˇ

ˇ
“

rG : Kerpϕqs ď 24 ă 36 “ |G| ñ Kerpϕq ‰ teu.

2. Exercise 1.7-2. 48 “ 24 ˆ 3.

Let r “ # of Sylow 2-subgroup; s “ # of Sylow
3-subgroup. Then third Sylow theorem implies
that r|3, 2|r ´ 1, so r “ 1 (we’re done) or r “ 3;
s
ˇ

ˇ24, 3
ˇ

ˇ s ´ 1, so r “ 1 (we’re done) or s “ 4 or
s “ 16. Sylow 3-subgroups have prime order and
trivial intersection. Sylow 2 -subgroups have or-
der 16 with at most 8 elements in common. Then
if s “ 16 we get, by a similar argument of distinct
element counting used before,

|G| “ 48 ě 1` 16p3´ 1q ` p16´ 1q ` 8 “ 56

Contradiction, so s ‰ 16. Suppose s “ 4. Then
we will have a similar argument used for |G| “ 24

and |G| “ 36. G
conj
ñ X “ tH1, H2, H3, H4u gives

rise to a homomorphism ϕ : G Ñ SX . Second
Sylow Theorem shows that G

conj
ñ X is transitive,

so Kerpϕq ‰ G, and
ˇ

ˇ

ˇ

G
Kerpϕq

ˇ

ˇ

ˇ
“ | Impϕq| ď |SX | “

24 ñ |Kerpϕq| ‰ teu. Thus, Kerpϕq is a proper
normal subgroup of G.

3. Exercise 1.7-3. 40 “ 23 ˆ 5.

Let r “ # of Sylow 2-subgroup; s “ # of Sylow
5-subgroup. Then third Sylow theorem implies
that r|5, 2|r ´ 1, so r “ 1 (we’re done) or r “ 5;
s
ˇ

ˇ23, 5
ˇ

ˇ s´ 1, but then among 1, 2, 4, 8, only s “ 1
satisfies 5 | s´ 1.s “ 1 implies that we have only
one Sylow 5-subgroup which is then normal.

4. Exercise 1.7-4. 56 “ 23 ˆ 7.

Let r “ # of Sylow 2-subgroup; s “ # of Sy-
low 7-subgroup. Then third Sylow theorem im-
plies that r|7, 2|r ´ 1, so r “ 1 (we’re done) or
r “ 7; s

ˇ

ˇ23, 7
ˇ

ˇ s ´ 1, so r “ 1 (we’re done)
or s “ 8. Among the two Sylow subgroups,
we have one of them only having a prime or-
der, which is the Sylow 7-subgroups Hi ’s, so
we can apply the observation that subgroup of
prime orders have only trivial intersection to get
Hi XHj “ teu. However, Sylow 2-subgroups Ki

’s have order 8 which is not a prime number. In-
stead |Ki XKj | ||Ki| “ 8ñ |Ki XKj | is at most
4 (including e ) for distinct i and j. Besides, 7 and
8 are coprime, so K ’s and H ’s intersect trivially.
We take two of the K 1 ’s, say K1 and K2, they in
total add at least p8´ 1q ` 4 elements to G :

56 “ |G| ě 1` 8p7´ 1q ` p8´ 1q ` 4 “ 60

A contradiction. Thus, either r ‰ 7 ñ r “ 1
(we’re done) or s ‰ 8ñ s “ 1 (we’re done).

5. Exercise 1.7-5. We recall the following rules:

1. |G| “ pq with p and q distinct primes is not
simple (see Corollary 1.7.14);

2. |G| “ pq2 with p and q distinct primes is not
simple (see Proposition 1.7.15);

3. |G| “ pqr with p, q, r distinct primes is not
simple (see Proposition 1.7.16);

4. |G| “ pr with p prime and integer r ě 1 is
not simple (see Corollary 1.6.17);

5. |G| “ pqr with p ă q distinct primes is not
simple (see Corollary 1.7.13).

It can be easily checked by prime factor decom-
position of the orders that only G with |G| “
36, 40, 48, 56 cannot be proved to be non-simple
using above rules, but we already proved them
separately in previous exercises.

6. Exercise 1.7-6. We review our five criteria in the
Exercise 1.7-5: (4): |G| “ pr with p prime and
integer r ě 1 is solvable (see Corollary 1.6.19);
(5): |G| “ pqr with p ă q distinct primes: the
proper normal subgroup N we found in Corol-
lary 1.7.13 is a Sylow q-subgroup. N has order
qn so by (4) it is solvable. Since G{N has order
p which is prime we see G{N is cyclic, abelian,
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and solvable. Then G is solvable due to Propo-
sition 1.5.15. (1): |G| “ pq with p and q dis-
tinct primes: special case of (5); (2): |G| “ pq2

with p and q distinct primes: when p ă q this is a
special case of (5); when p ą q, the proper nor-
mal subgroup N we found in Proposition 1.7.15
is a Sylow q-subgroup. N is solvable by (4) and
G{N is cyclic, abelian, and solvable, so G is solv-
able. (3): |G| “ pqr with p, q, r distinct primes:
again, by Proposition 1.7.16, we get a Sylow sub-
group N of p, q, or r, which is a prime group and
is solvable.

ˇ

ˇ

G
N

ˇ

ˇ is a product of two primes, so
G
N is solvable by (1). Proposition 1.5.15 then
concludes that G is solvable. Therefore, all the
groups checked to be non-simple by these rules
are solvable. We again only need to check G
with |G| “ 36, 40, 48, 56, but this is straightfor-
ward: their normal subgroups and factor groups
we found when proving their non-simplicity have
orders smaller than theirs and are thus shown to
be solvable.

Exercises 2.2

1. Ex2.2-1. First two questions are trivial. Last two:

Inspired by part (d), we can let I “ J so that
the sufficient condition is at least unsatisfied. Let
R “ Z. All the ideals in Z are mZ, so let I “
J “ 5Z. Then IJ “ t

řn
i“1 aibi : ai P I, bi P Ju “

t
řn
i“1 p5kiq p5liq “ 25

řn
i kili : ki, li P Zu “ 25Z.

I X J “ I “ 5Z ‰ 25Z. (d)

(c)

By part (b), it suffices to show I X J Ď IJ . Since
I ` J “ R, in particular 1 “ i ` j for some
i P I, j P J . Then let a P I X J and by com-
mutativity of R see that a “ 1a “ i a

PJ
` a

PI
j P IJ .

(d)

2. Ex2.2-2.

?
I contains I as x1 “ x P I. We show that

?
I is

an ideal of R. - p
?
I,`q ď pR,`q :

Let x P
?
I, so xn P I for some n ě 1. Then

´xn P pI,`q ď pR,`q and thus p´xqn, which is
either xn or ´xn, is in I. Thus ´x P

?
I. Let

x, y P
?
I, so xm, yn P I for some n,m ě 1. Ob-

serve that

px` yqn`m “

n`m
ÿ

i“0

Cim`nx
m`n´iyi

“

n
ÿ

i“0

Cim`nx
m`n´iyi `

n`m
ÿ

i“n`1

Cim`nx
m`n´iyi

“

n
ÿ

i“0

Cim`nx
m`n´iyi `

m
ÿ

i“1

Cn`i
m`nx

m´iyn`i

“ xm
loomoon

PI

n
ÿ

i“0

Cim`nx
n´iyi

looooooooomooooooooon

PR

` yn
loomoon

PI

m
ÿ

i“1

Cn`i
m`nx

m´iyi

looooooooomooooooooon

PR

is in the ideal I because each binomial coefficient
is an integer, so x ` y P

?
I. - @r P R, a P

?
I we

have ar P
?
I :

This is because a P
?
I ñ Dn ě 1, an P I ñ

praqn
R commutative
ùùùùùùùùùùù rnan P I since I is an ideal.

Thus, ra P
?
I. Therefore,

?
I is an ideal contain-

ing I in R.

i.

Let I and J be two ideals in R.
?
IJ Ď

?
I X J :

suppose x P
?
IJ , then xn P IJ for some n ě 1.

We proved in part (b) of last exercise that IJ Ď
I X J , so xn P I X J . Then x P

?
I X J .

?
I X J Ď?

IJ : suppose x P
?
I X J , then xn P I X J for

some n ě 1. Then x2n “ xn
loomoon

PI

xn
loomoon

PJ

P IJ , so

x2n P IJ and x P
?
IJ .

ii.

Exercises 2.3

1. Ex2.4-1. Let the finite commutative ring beR and
the prime ideal be I. let I Ď M Ď R where M is
an ideal. If I ‰M , that is there is some x PM not
in I, then we want to show that M “ R, which
proves that I is a maximal ideal by definition. Let
J “ xx, Iy “ trx ` i | r P R, i P Iu, which is an
ideal as we have shown in class, so I Ď J Ď R.
Consider the set S “

␣

1, x, x2, ¨ ¨ ¨
(

, which as a
subset of R should be finite. Thus, elements in S
cannot be all distinct, i.e., there are xn “ xm for
some n ă m. Then observe that

xn
`

1´ xm´n
˘

“ xn ´ xm “ 0 P I
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Since I is a prime ideal in R, we see xn is in I
or 1 ´ xm´n is in I. We claim that xn cannot be
in I : since x R I, we see x2 R I because for if
x2 P I then x P I (or x P I, which is a dupli-
cate), and x3 R I because for if x3 P I then x P I
or x2 P I. Thus inductively we can show that
xn R I. Therefore, we are left with 1´ xm´n P I.
Thus, 1 “ xm´n´1

looomooon

PR

x` 1´ xm´n
loooomoooon

PI

is an element in

J . Then 1 P J ñ J “ R. Note that J is the small-
est ideal containing I and an element x not in I.

Therefore. x PM, I ĎM ñ J ĎM
J“R
ùñ M “ R.

2. Ex2.4-2.

Ideals in Z are of the form mZ for integer m.
Since primary ideal needs to be proper, we have
m ‰ 1. Next, we claim that mZ is primary iff
m “ pn for some prime number p and some pos-
itive integer n. ð : let ab P mZ “ pnZ, then
pn | ab. Thus p | a or p | b. There are three
cases: (1) p does not divide a, then pn | b, so
b P pnZ; (2) p does not divide b, then pn | a, so
a P pnZ; (3) p | a and p | b, then pn | an and
pn | bn. Therefore ab P mZ “ pnZ ñ a P pnZ or
bk P pnZ for some positive integer k. ñ : Sup-
pose mZ is primary. Suppose m is not of the form
pn. Then the prime decomposition of m has at
least a qk as a factor where q is another prime
and k is also a positive integer. We will first dela
with the case that m “ pnqk and then see that
the general case is similar to the two-factor case.
Now just let a “ pnqk´1 and b “ q. Then

ab “ pnqk´1q “ pnqk “ m P mZ

Since m “ pnqk does not divide pnqk´1 “ a, so
a R mZ. We show it also happens that any power
of b is also not in mZ too, which then gives a con-
tradiction to the fact that mZ is a primary ideal.
Let this power be l and observe that m “ pnqk

does not divide ql “ bl, i.e., bl cannot be a multi-
ple of m and thus does not belong to mZ.
The general case where m “ pnpk11 ¨ ¨ ¨ p

kr
r is simi-

lar: let a “ p and b “ pn´1pk11 ¨ ¨ ¨ p
kr
r

i.

Let ab P
?
I “ tx P R | Dn ě 1 , s.t. xn P Iu. Thus

pabqn P I for some n ě 1. pabqn “ anbn by com-
mutativity of R we assumed in this hw. I being
primary implies that either an P I or bnk P I
for some positive integer k. We have a P

?
I or

b P
?
I.

ii.

Exercises 2.4

Exercises 2.5

1. Ex2.5-1. (1): Let f : A Ñ A1 be a ring homo-
morphism and I be a prime ideal of A1. Sup-
pose that xy P f´1pIq. Then fpxyq “ fpxqfpyq P
f
`

f´1pIq
˘

Ă I. Since I is prime, fpxq P I or
fpyq P I, thus x P f´1pIq or y P f´1pIq. Hence
f´1pIq is prime.

(2): Let f : A Ñ A1 be a surjective ring
homomorphism and let I be a proper ideal of
A1. We know that f´1pIq is an ideal by the
above. Suppose that f´1pIq is not proper, that
is, f´1pIq “ A. Then f

`

f´1pIq
˘

“ fpAq “ A1,
but f

`

f´1pIq
˘

“ I (this equality follows from
surjectivity of f ), so this is a contradiction as we
assumed I is proper.

2. Ex2.5-3. Let J be an ideal of S´1R. We have
shown in Ex2 that J “ S´1ϕ´1pJq for the map
ϕ : r ÞÑ r

1 . Since ϕ is a ring homomorphism,
ϕ´1pJq is an ideal in R, so S´1ϕ´1pJq is an ideal
by exercise 1 . Since R is PID, ϕ´1pJq “ paq for
some a P R, so J “ S´1ϕ´1pJq “

`

a
1

˘

because

- For any ar P ϕ´1pJq “ paq and s P S we have
ar
s “

a
1
r
s and r

s P S
´1R;

- and for any r
s P S

´1R we have a
1
r
s “

ar
s P

S´1ϕ´1pJq.

Exercises 2.6

1. Ex2.7-1. Consider the ideal I “ p3, 2 `
?
´5q.

Define
d : Zr

?
´5s Ñ Z`

a` b
?
´5 ÞÑ a2 ` 5b2

The function is multiplicative:

dppa` b
?
´5qpc` d

?
´5qq

“dpac´ 5bd` pbc` adq
?
´5q

“pac´ 5bdq2 ` 5pbc` adq2

“
`

a2 ` 5b2
˘ `

c2 ` 5d2
˘

“dpa` b
?
´5qdpc` d

?
´5q

If I “ pxq “ pa`b
?
´5q for some a, b P Z, we have

3 “ rx, 2 `
?
´5 “ tx for some r, t P Zr

?
´5s.

Then dp3q “ dprxq “ dprqdpxq ñ dpxq | 9 “ dp3q
and dp2`

?
´5q “ dptxq “ dptqdpxq ñ dpxq | 9 “
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dp2 `
?
´5q. Thus, dpxq | 9 ñ dpxq “ 1, 3, or

9 . Since x is an element in R, we suppose x “
x1`x2

?
´5 for x1, x2 P Z. Then dpxq “ x21`5x22.

As x21 and x22 are 0, 1, 4 ¨ ¨ ¨ , so x21 ` 5x22 can be
0, 1, 4, 5, 9, ¨ ¨ ¨ . Thus, dpxq “ 3 is impossible.
dpxq “ 9 happens when x1 “ ˘2 and x2 “ ˘1
or when x1 “ ˘3 and x2 “ 0. When dpxq “ 9,

we see 9 “ dprqdpxq ñ dprq “ 1, r “ ˘1
3“rx
ùñ

x “ ˘3 ñ 2 `
?
´5 “ ˘3t, which is impossible

because 2`
?
´5 is indivisible by 3 and -3 . There-

fore, dpxq “ 1 ñ x “ ˘1 ñ p3, 2`
?
´5q “ pxq

is the whole Zr
?
´5s. Then 1 P Zr

?
´5s ñ there

are α, β P Zr
?
´5s s.t.

3α` βp2`
?
´5q “ 1

p2´
?
´5qp3α` βp2`

?
´5qq “ 2´

?
´5

3p2`
?
´5qα` 9β “ 2´

?
´5

3rp2`
?
´5qα` 3βs “ 2´

?
´5

It then follows that 2 ´
?
´5 is divisible by 3 ,

which is a contradiction. Therefore, I “ p3, 2 `?
´5q is not principal.

2. We show Zr2is is not UFD by giving the coun-
terexample hinted above:

4 “ 2 ¨ 2 “ p´2iq ¨ p2iq

while - 2, 2i,´2i are irreducible elements. - 2 and
2i are not associates; 2 and 2i are not associates.

Let d be the map similarly defined in the last
problem:

d : Zr2is “ Zr
?
´4s Ñ Z`

a` 2bi ÞÑ a2 ` 4b2

Similar to the proof given in last problem, d is
multiplicative. We observe that dp2q “ dp2iq “
dp´2iq “ 4, so we show that all elements a with
dpaq “ 4 are all irreducible. Suppose a “ bc and
a is not a unit and dpaq “ 4. Then 4 “ dpaq “
dpbqdpcq “ 1ˆ 4 or 4ˆ 1 or 2ˆ 2. Since a2 ` 4b2

can only be 0, 1, 4 or greater than 4 we see 2 ˆ 2
is impossible, so either 1ˆ 4 or 4ˆ 1ñ dpbq “ 1
or dpcq “ 1ñ b “ ˘1 is a unit or c “ ˘1 is a unit.

Note that a and b associate iff a “ bu for a unit u.
Since u “ ˘1 in Zr2is (we have shown this fact
for Zr

?
´5s and this is similarly true for Zr2isq,

we see only a and ´a are associate (if not equal).
Thus, 2 and 2i are not associates; 2 and 2i are not
associates.

Exercises 2.9

1. Ex2.9-1.

The general algorithm is provided in class by two
steps: divided by integer and divided by arbitrary
x P Zris. To divide α by β we first set n “ dpβq “
65 and divide αβ̄ “ p11` 3iqp1´8iq “ 35´85i by
n, which by the algorithm is just dividing real and
imaginary parts by n separately p35 “ 65 ¨ 1´ 30
with |´30| “ 30 ă 65

2 “ 32.5;´85 “ 65¨p´1q´20
with | ´ 20| “ 20 ă 65

2

˘

to get αβ̄ “ nq ` s “
65p1` ip´1qq`p35` ip´20qq. Thus, q “ 1´ i and

α “ qβ ` pα´ qβq

“ p1´ iqp1` 8iq ` p11` 3i´ p1´ iqp1` 8iqq

“ p´iq
loomoon

q

p1` 8iq ` p2´ 4iq
looomooon

r

with 20 “ dprq ă dpβq “ 65.

i.
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α “ p1´ iq
loomoon

q0

p1` 8iq
looomooon

β

`p2´ 4iq
looomooon

r0

with gcdpα, βq “ gcdp1´ i, 3` 4iq.

β “ q1p2´ 4iq ` r1

To compute q1 and r1 we divide βr0 “ p1 `
8iqp2 ` 4iq “ ´30 ` 20i by dp2 ´ 4iq “ 20
: ´30 “ 20 ¨ p´1q ´ 10 with 10 ď 20

2 and
20 “ 20 ¨ 1 ` 0 with 0 ď 20

2 . So, q1 “ ´1 ` i.
r1 “ 1` 8i´ p2´ 4iqp´1` iq “ ´1` 2i.

β “ p´1` iq
looomooon

q1

p2´ 4iq
looomooon

r0

`p´1` 2iq
loooomoooon

r1

with gcd pβ, r0q “ gcd pr0, r1q

r0 “ q2p´1` 2iq ` r2

To compute q2 and r2 we divide r0r1 “ p2 ´
4iqp´1 ´ 2iq “ ´10 by dp´1 ` 2iq “ 5 : ´10 “
5 ¨ p´2q`0. So, q2 “ ´2. r2 “ 2´4i´p´2qp´1`
2iq “ 0.

r0 “ p´2q
loomoon

q2

p´1` 2iq
loooomoooon

r1

` 0
loomoon

r2

with gcd pr0, r1q “ gcd pr1, r2q. Thus,

gcdpα, βq “ gcd pr0, r1q “ gcd pr1, r2q

“ gcdp´1` 2i, 0q “ ´1` 2i

ii.
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