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Chapter 1

Groups

1.1 Recap: Groups, Cosets, and Homomorphisms

Definition 1.1.1 (Group). We define a binary operation (multiplication) = : G x G — G on a nonempty set
G, and (G, ) is called a group if = satisfies the following rules.

(1) the multiplication is closed on G,
(2) associativity of multiplication: a % (b ¢) = (a * b) = ¢,Va,b,c € G;
(3) G has an identity element (i.e. e € Gs.t. Vge G:exg=g+*e = g);
(4) each element g € G has an inverse (i.e. 3g ' e Gst. gxg ' =g 1+ g=e).
Remark 1.1.2. Several remarks are in order:
1. We will denote ab = a = b and a™ * a™ = a"*™ = " * ¢™ and (a™)" = ™" = (a™)™.

2. A magma is a tuple (G, ) with (1) above; a semigroup is an associative magma, i.e. tuple (G, =) with
(1) and (2) above; a monoid is a semigroup with an identity element, i.e., tuple (G, ) with (1), (2),
and (3) above.

3. Let (R, +, *) be a ring with unity 1. That is, (R, *) is a monoid. An element z is called a unit or
invertible element if it has an inverse, so the set of all invertible elements U(R) is a group, called
group of units in R.

4. Rules (3) and (4) in definition 1.1.1 are equivalent to the following condition (proof of the equivalence
outlined in the exercise 1):

(5) Va,be G : equations ax = b, ya = b have solutions in G.
Definition 1.1.3 (Abelian Group). A group G is called Abelian if Va,b € G : ab = ba.
Definition 1.1.4 (Subgroup). A non-empty subset H < G is a subgroup, denoted as H < G, if
(1) aeH = aleH
(2) a,be H = abe H
Proposition 1.1.5.
1. H < G implies that H is a group with operation of G (see [9] Theorem 2.1);
2. Hc Gisasubgroupiffec H anda,be H =— ab~! € H (see [9] Theorem 2.2).
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3. G finite, then a nonempty subset H of G is a subgroup iff a,b € H = ab € H (see [9] Corollary 2.4).

Theorem 1.1.6. The inverse and the identity element of a group are both unique.

Proof. Suppose e, ¢’ € G and Vg € G we have

cg—goe— (1.1)
e/.g:g.elzg (1.2)

Putting g = e in (1.2) results in e = e - ¢’ and putting g = ¢’ in (1.1) results in e - ¢/ = ¢’. So e = ¢’. Suppose
h and k are inverses of g, so that in particular hg = e and gk = e. Then (hg)k = ek = k, but h(gk) = he = h.
But the associativity law tells us (hg)k = h(gk), which says k = h. O

Example 1.1.7. The trivial group G = {e} with = defined by e x e = e. (C, x) is not a group. What would
the inverse element of 0 be? But if we write C* for the set of nonzero complex numbers then (C*, x) is a
group. Equally the nonzero real numbers or rational numbers under multiplication are groups. Let GL(n, C)
be the set of n x n invertible matrices over the complex numbers. Then GL,,(C) with matrix multiplication
is a nonabelian group.

Definition 1.1.8 (group homomorphism). Let G,G’ be a group. ¢ : G — G’ is a homomorphism if
¢(ab) = ¢(a)p(b) for all a,b € G. f is an isomorphism if the homomorphism is bijective, denoted by
G ~ H. An injective homomorphism is called a monomorphism. A surjective homomorphism is called a
epimorophism. If G = G’, we say the homomorphism is an endomorphism. If furthermore that endomor-
phism is also bijective, we say it is an automorphism.

Remark 1.1.9 (Isomorphism is an equiv relation). If ¢ : G — G’ is a group isomorphism, i.e., a bijective
homomorphism, then its inverse is also an isomorphism. Therefore, if we find the inverse function of a
group homomorphism as a function, then that inverse function automatically becomes an isomorphism.
This means isomorphism is a symmetric relation on the set of all groups. Isomorphism is also reflexive and
transitive, so it’s an equivalence relation. The proof of these two are left as exercises. We show the symmetric
property: Since ¢ is bijective, there is an inverse function ¢! : G’ — G. Suppose a,b € G/, and we want
to show ¢~ 1(ab) = ¢~(a)p~1(b). Let x = ¢~(a) and y = ¢~ 1(b). Since ¢ is a homomorphism, we have
p(zy) = ¢(x)d(y) = ab, so ¢~ (ab) = xy.

Theorem 1.1.10. Let f : (G, *) — (G’, o) be a homomorphism.
1. f(e) = ¢/, where ¢’ is the identity in G';
2. Ifae G, then f (a7') = f(a)™};
3. Ifae G and n € Z, then f (a™) = f(a)™;
4. H<G= f(H)<G and H' < G' = f~1(H') <G,

Proof.
1. Applying f to the equation e = e = e gives f(e) = f(e=e) = f(e) o f(e). Now multiply each side of the
equation by f(e)~! to obtain ¢’ = f(e).
2. Applying f to the equations axa™' = e = a~' xa gives f(a) * f (a™') = €' = f (a™!) * f(a). It follows
from Theorem 1.10, the uniqueness of the inverse, that f (a™!) a)~!

(a)
3. Induction shows f (a”) = f(a)" foralln > 0, and then f (a™") = f ((a™!)") = f (a™)" = f(a)™

4. ¢ € f(H) by 1. Let a’,y' € f(H), then Jz,y € H s.t. f(x) =2/, f(y
f(ey™') € f(H). Now, e € f~Y(H') by 1. Let z,y € f~'(H'). Th
xy~te fFHH).

1, 1—1

y. Thusay ' e H= 2y~ ! =
flay™) = f(@)f(y) ' e H' =
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O

Example 1.1.11 (Klein-four group). For small groups (G, *) we can completely describe the group operation
by drawing a table called a group table or Cayley table. It is a n x n matrix whose i, j entry is the group
element g,¢;, where n = |G|. For example, one can show that V = {1, —1,¢,—i} < C with multiplication
of complex numbers - is a group, where the group table is given below. This is an abelian group. One

1 -1 —1
1 -1 —1
-1] -1 1 —1 1
? 1 - =1 1
-t | —1 1 1 -1

can also show that it is isomorphic to {1, (12)(34), (13)(24), (14)(23)} with composition of permutation as
multiplication (i.e., as a subgroup of S;) and also to Zy @ Zy =~ Do = {a,bla® = b* = (ab)? = ¢).

Example 1.1.12 (Quaternion group). The quaternion group, Qs, is defined by
Q8 = {la _17i7 _iaja _ja ka _k}
with product - computed as follows:

l-a=a-1=a, forallae Qg
(-)-(-1)=1, (-1)ra=a-(-1)=—-a, forallaecQs

ii=j-j=k-k=—1

ij=k j-i=—k

jok=i, k-j=—i

ki=j, i-k=—j.
It is tedious to check the associative law (it can be proven by a less computational mean), but the other
axioms are easily checked. Note that Qg is a non-abelian group of order 8.

Example 1.1.13. Consider the set of nonzero real numbers, R*, with the group operation of multiplication.
The identity of this group is 1 and the inverse of any element a € R* is just 1/a. We will show that

Q* = {p/q : p and q are nonzero integers }

is a subgroup of R*. The identity of R* is 1 ; however, 1 = 1/1 is the quotient of two nonzero integers.
Hence, the identity of R* is in Q*. Given two elements in Q*, say p/q and r/s, their product pr/gs is also in
Q*. The inverse of any element p/q € Q* is again in Q* since (p/q)~! = ¢/p. Since multiplication in R* is
associative, multiplication in Q* is associative.

Example 1.1.14. Let SLy(R) be the subset of GLy(R) consisting of matrices of determinant one; that is, a

matrix
a b
a=(00)

is in SLo(R) exactly when ad — bec = 1. To show that SL,(R) is a subgroup of the general linear group, we
must show that it is a group under matrix multiplication. The 2 x 2 identity matrix is in SLs(R), as is the
inverse of the matrix A :
()
—c a

It remains to show that multiplication is closed; that is, that the product of two matrices of determinant one
also has determinant one. We will leave this task as an exercise. The group SLy(R) is called the special
linear group.
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Example 1.1.15. It is important to realize that a subset H of a group G can be a group without being a
subgroup of G. For H to be a subgroup of G, it must inherit the binary operation of G. The set of all 2 x 2
matrices, M>(R), forms a group under the operation of addition. The 2 x 2 general linear group is a subset
of M>(R) and is a group under matrix multiplication, but it is not a subgroup of M>(R). If we add two
invertible matrices, we do not necessarily obtain another invertible matrix. Observe that

(s )+ (% %)=(0))

but the zero matrix is not in GLy(R).
Two subtleties regarding the binary operation need to be addressed:

Theorem 1.1.16 (associative invariance of bracketing). For each way of bracketing the multiplication of n
elements a,--- ,a, € A, we denote it as

ﬂ-i(afl'GQ""an)aZ‘:172a"'7N

where it can be proved that N = (2n — 2)!/[n!(n — 1)!]. For example, let n = 3 and we will have N = 2
ways to bracket the three elements: 7 (a1 - as - a3) = (a1 - az2) - az and 72 (ay - as - az) = ay - (az - az). We
now claim that these NV ways of bracketing are the same if associativity of order 3 holds for the set A (i.e.
T (a1 s a9 a3) = Ty (a1 s a9 a3), or (a1 . (Lz) a3 = ajp - (CLQ . G,g)), and then the notation ai - ag - Qp is
well-defined.

Proof. See exercise 1.1-7. O

Theorem 1.1.17 (commutative invariance of permutation). If both associativity and commutativity hold for
a binary operation -, then permutating the following multiplication in any order results the same

a/l'a/2""'a/N
Proof. See exercise 1.1-8. O

Definition 1.1.18. If G is a group and a € G, then the cyclic subgroup generated by a, denoted by (a), is
the set of all the powers of a. A group G is called cyclic if there is a € G with G = {a); that is, G consists of
all the powers of a.

It is plain that {a) is, indeed, a subgroup of GG. Notice that different elements can generate the same cyclic
subgroup. For example, (a) = (a™').

Example 1.1.19. Let C,, = {e*™**/": ke Z}, a subset of the complex numbers. This is a group under
multiplication: certainly multiplication is a binary operation on this set, for

27rz'k'/n627ril/n e27rz'(k'+l)/n

(&

which is an element of C,,. You can check the other group axioms. C,, is a cyclic group, because every
element is a power of ( = ¢2>™*/", and ¢ has order n so |C,,| = n. Any generator of C,, is called a primitive
n-th root of unity.

Definition 1.1.20. If G is a group and a € G, then the order of « is |[{a)|, the number of elements in {a).

Theorem 1.1.21. If G is a group and a € G has finite order m, then m is the smallest positive integer such
that o™ = 1.

10
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Proof. If a = 1, then m = 1. If a # 1, there is an integer k > 1 so that 1,a, a®,...,a" ! are distinct elements
of G while a* = a for some i with 0 < i < k — 1. We claim that «* = 1 = aY. If ¢* = @’ for some i > 1, then
k—1i < k—1and a** = 1, contradicting the original list 1, a,a?,...,a* ! having no repetitions. It follows
that k is the smallest positive integer with a* = 1.

It now suffices to prove that k = m; that is, that (a) = {1,a,d?,...,a*"1}. Clearly {a) > {1,a,a?,...,a""'}.
For the reverse inclusion, let a’ be a power of a. By the division algorithm, [ = ¢k + r, where 0 < r < k.
Hence, o' = a?**" = a9%q" = a” (because a* = 1), and so a' = a” € {1,a,a?,...,a""'}. O

Theorem 1.1.22. Every subgroup of a cyclic group is cyclic.

Proof. The main tools used in this proof are the division algorithm and the Principle of Well-Ordering. Let
G be a cyclic group generated by a and suppose that H is a subgroup of G. If H = {e}, then trivially H is
cyclic. Suppose that H contains some other element g distinct from the identity. Then g can be written as o™
for some integer n. Since H is a subgroup, g~ ! = a~" must also be in H. Since either n or —n is positive, we
can assume that H contains positive powers of a and n > 0. Let m be the smallest natural number such that
a™ € H. Such an m exists by the Principle of Well-Ordering. We claim that h = a™ is a generator for H. We
must show that every 4’ € H can be written as a power of h. Since b’ € H and H is a subgroup of G, h’ = a*
for some integer k. Using the division algorithm, we can find numbers ¢ and r such that k = mq + r where
0 < r < m; hence,
ak _ amq+r — (am)q a” = hia’.

So a” = a*h~9. Since a* and h~7 are in H,a" must also be in H. However, m was the smallest positive
number such that ¢™ was in H; consequently, » = 0 and so & = mgq. Therefore,

h =a* =a™ = p4

and H is generated by h. O
Corollary 1.1.23. The subgroups of Z are exactly nZ forn = 0,1,2,.. ...

Proof. First, nZ = {--- ,—2n,—n,0,n,2n,---} = (n). Then let H < Z. Since Z is cyclic, H = (n) for some
n € Z by above theorem. O

Proposition 1.1.24. Let G be a cyclic group of order n and suppose that a is a generator for G. Then a* = e
if and only if n divides k.
Proof. First suppose that a* = e. By the division algorithm, k = ng + r where 0 < r < n; hence,

k nqg+r

e=a"=a =a"a" =ea" =a".

Since the smallest positive integer m such that ™ = e is n, we have r = 0. Conversely, if n divides k, then
k = ns for some integer s. Consequently,

O

Proposition 1.1.25. An infinite cyclic group {a) =~ Z has exactly two generators a, —a. Let G be a cyclic
group of order n and suppose that a € G is a generator of the group. If b = a”, then the order of b is n/d,
where d = ged(k,n).

11
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Proof. The first statement is trivial. We show the second: we wish to find the smallest integer m such that
e = b™ = a*™. By above proposition, this is the smallest integer m such that n divides km or, equivalently,
n/d divides m(k/d). Since d is the greatest common divisor of n and k,n/d and k/d are relatively prime.
Hence, for n/d to divide m(k/d) it must divide m. The smallest such m is n/d. O

Theorem 1.1.26. The intersection of any family of subgroups of a group G is again a subgroup of G.

Proof. Let {S; : i € I} be a family of subgroups of G. Now 1 € S; for every i, and so 1 € [ S;. If a,b € (S},
then a, b € S, for every i, and so ab~! € S; for every i; hence, ab~! € () S;, and () S; < G. O

Corollary 1.1.27. If X is a subset of a group G, then subgroup generated by X, defined as
Xy= () H

XCH<G

is the smallest subgroup H of G containing X, that is, if X < S and S < G, then H < S.

Proof. There are subgroups of GG containing X ; for example, G itself contains X; define H as the intersection
of all the subgroups of G which contain X. Note that H is a subgroup, by Theorem 1.1.26, and X < H. If
S < Gand X < S, then S is one of the subgroups of G being intersected to form H; hence, H < S, and so
H is the smallest such subgroup. O

Definition 1.1.28. If X is a nonempty subset of a group G, then a word on X is an element w € G of the
form

€1 .€2

_ e
w=ax'xs’ ...y

n

where z; € X,e; = +1,and n > 1.

Theorem 1.1.29. Let X be a subset of a group G. If X = @, then (X) = 1; if X is nonempty, then (X is the
set of all the words on X:

Xy={w=a2?. ... a;"|v;e X,e; = £1,n = 1}

Proof. If X = &, then the subgroup 1 = {1} contains X, and so (X) = 1. If X is nonempty, let W denote
the set of all the words on X. It is easy to see that W is a subgroup of G containing X : 1 = z;'x; € W;
the inverse of a word is a word; the product of two words is a word. Since (X) is the smallest subgroup
containing X, we have (X) ¢ W. The reverse inclusion also holds, for every subgroup H containing X must
contain every word on X. Therefore, W < H, and W is the smallest subgroup containing X. O

Proposition 1.1.30. Let ¢ : G — G be a homomorphism. Then p({(X)) = (p(X)).
Proof. Routine. O

Definition 1.1.31. Let H < G, g € G. The right coset of H in G represented by g is Hg = {hg } h € H}.
Similarly, left coset is defined as gH = {gh|h € H}.

Example 1.1.32 ( [9] Example 2.3). Let G be the additive group of the plane R? : the elements of G
are vectors (z,y), and addition is given by the ”parallelogram law”: (z,y)+ (z/,v') = (z+ 2,y +¢'). A
line ¢ through the origin is the set of all scalar multiples of some nonzero vector v = (xg,yo); that is,
¢ = {rv :r e R}. It is easy to see that ¢ is a subgroup of G. If u = (a,b) is a vector, then the coset u + ¢ is
easily seen to be the line parallel to ¢ which contains u.

Example 1.1.33 ( [9] Example 2.4). If G is the additive group Z of all integers, if S is the set of all multiples
of an integer n(S = {(n), the cyclic subgroup generated by n), and if a € Z, then the coset a + S = {a + gn :
q€Z} = {keZ:k=amod n}; that is, the coset a + (n) is precisely the congruence class [a] of a mod n.

12
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Proposition 1.1.34. Two observations:
e Ho= Hb «— H = Hba™' — ba~'e H;
e oH=0VbH «— o 'bH=H < o 'be H.
Corollary 1.1.35. For two cosets, either Hg; = Hgs or Hg; n Hge = & (similar for left cosets).

PT”OOf. Leta:HglmHgg.Thena=hlgg=hggg andh;lhl =ggg;1 = gzgl’leH = Hg = Hgo. O

Example 1.1.36. A right coset is not necessarily a left coset. See [9] Example 2.5.

Proposition 1.1.37. There is a bijection between the set of distinct left cosets of H and distinct right cosets
of H: aH — Ha™'.

Proof. aH =bH <= a 'be H «— (a"'b)"'eH «— b lae H — Ha ' = Hb™! O

Definition 1.1.38. The index of subgroup H in G, [G : H], is the number of distinct right (left) cosets of H
in G.

Theorem 1.1.39 (Lagrange’s theorem). If G is a finite group and S < G, then |S| divides |G| and [G : S] =
G1/IS], or |G| = [G : S][S].

Proof. By Corollary 1.1.35, G is partitioned into its right cosets
G =S5t uStyu---U St,,

and so |G| = Y, |St;|. But it is easy to see that f; : S — St;, defined by f;(s) = st;, is a bijection, and so
|St;| = |S| for all i. Thus |G| = n|S|, where n = [G : S]. O

Corollary 1.1.40. The order of an element of a finite group divides the order of the group.

Proof. The order of an element a of a group G is equal to the order of the cyclic subgroup {a) generated by
a. Then apply Lagrange’s theorem. O

Corollary 1.1.41. If p is a prime and |G| = p, then G is a cyclic group.

Proof. Take a € G with a # 1. Then the cyclic subgroup {(a) has more than one element (it contains a and
1), and its order |{a)| > 1 is a divisor of p. Since p is prime, |[{a)| = p = |G|, and so {a) = G. O

1.1 EXERCISES

1. By steps i.-iv., prove the equivalence between 1.1.1(1)-(4) and 1.1.1(1),(2)+1.1.2(5):

i.  Suppose (1), (2), and (5) are true, show that there exists a left identity element e; such that e;a = a for
any a € G and show that there exists a left inverse gfl for any g € G such that g, lg = e

ii. If there is a left inverse element, then there is a right inverse element, and they are the same.

iii. If there is a left identity element, then there is a right identity element, and they are the same.

iv. Show that (1)-(4) imply (5).

2. [3][1.1ex9]LetG = {a+bv2eR | a,be Q).

13
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ii.

ii.

iii.

iv.

10.

ii.

11.

12.

13.

14.

ii.

15.
16.

Prove that G is a group under addition.
Prove that the nonzero elements of GG are a group under multiplication. (Hint: "Rationalize the denomi-
nators” to find multiplicative inverses.)

Prove that a finite group is abelian if and only if its group table is a symmetric matrix.

(Cancellation property): suppose - is an internal binary operation for the set A. We say that the operation
- is left-cancellative if Va,b € A : a-b = a-c = b = c and rightcancellative if Va,be A: b-a =c-a = b =c.
When the operation is both left and right cancellative we simply say it is cancellative. Show that:

The cross product of vectors does not obey cancellation law.

Determine when does matrix multiplication obey the cancellation law.

Given a finite set G with an operation ; prove that if - is right and left cancellative and associative and G
is closed under, then G is a group.

Observe that an operation - of a group (G, -) obeys left (right) cancellation law iff each row (column) of
its group table has elements of itself distinct.

Show that forzinagroup G, (1) [z| =1lex=¢ 22z =2 < 2% =c.

Show that for x in a group G, (1) |z| = |z~!

; (2) |z =n= }mk| =

n
)

(k,n)*
Prove Theorem 1.1.16.
Prove Theorem 1.1.17.
[9]1[p.27 ex2.11] Let a € G have order n = mk, where m, k > 1. Prove that * has order m.

[91[p.27 ex2.12] Show that

every group G of order 4 is isomorphic to either Z, or the Klein-four group V (see example 1.1.11).
If G is a group with |G| < 5, then G is abelian.

[9]1[p.27 ex2.13] If @ € G has order n and k is an integer with «* = 1, then n divides k. Indeed,
{k € Z : a¥ = 1} consists of all the multiplies of n.

[9]1[p.27 ex2.14] If a € G has finite order and f : G — H is a homomorphism, then the order of f(a)
divides the order of a.

[9]1[p.27 ex2.15] Prove that a group G of even order has an odd number of elements of order 2 (in
particular, it has at least one such element). (Hint. If a € G does not have order 2 , then a # a~'.)

[9][p.27 ex2.17]

If a,b € G commute and if a™ = 1 = b, then (ab)* = 1, where k = lem{m,n}. (The order of ab may be
smaller than k; for example, take b = a~'.) Conclude that if a and b have finite order, then ab also has
finite order.

Let G = GL(2,Q) and let A, B € G be given by

0 -1 0 1
A:[l O] and B:[_1 _1].
Show that A* = E = B3, but that AB has infinite order.

[9]1[p.27 ex2.19] Prove that two cyclic groups are isomorphic if and only if they have the same order.

If K < H < G with G not necessarily finite, and if [G : H],[H : K] < oo, then [G : K] < o and
[G:K]=[H:K]G: H].

14
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17. [9][p.27 ex2.16] If H < G has index 2,then a? € H for every a € G.
18. Suppose f : G — G’ is a homomorphism, show that f((X)) = {f(X)) for any subset X < G.

1.2 More Groups

We will present the following groups in this section: Z, Z,,, and Z); cyclic groups; symmetric group .S,, and
alternating group A, ; dihedral group D,,.

1.2.1 7, 7Z,, and Z*

Definition 1.2.1 (Congruence). Let n, a,b € Z. We say a is congruent to b modulo (or just mod) n if a — b is
divisible by n. In this case we write

a=b (modn)
Observe that a ~ b <> a = b(modn) is an equivalence relation. The equivalence class is denoted as [a],, [a],
or a, called the congruence class. We denote the collection of all equivalence classes [a],, under ~ as Z,,.

Theorem 1.2.2. Define a binary operation + on Z,, by [a],, + [b], = [a + b],. Then (Z,,, +) is a group.

Proof. First we need to check that this really does define a binary operation on Z,,. The potential problem
is that an eqivalence class [a],, can have lots of different representatives, e.g. [5]3 = [2]s, but our definition
of + seems to depend on a specific choice of representative. Couldn’t it be that [a], = [a/] and [b],, = [V],,
but [a + b],, # [a’ 4 b'],, ? If so our definition of + wouldn’t work - it would not be "welldefined.” We need
to check that if [a], = [¢/],, and [b],, = [V'],, then [a + b],, = [a' + V'],,. Because [a],, = [d'],,, a and a’ are
congruent modn so a = a’ + kn for some integer k, and similarly b = b’ + In for some integer I. Therefore

a+b=ad +kn+bt +In
=d +V+(k+n

soa+b=a + b modnand [a + b], = [a’ +V'],. The group axioms are easy to check. [0], is clearly an
identity element, [—a],, is inverse to [a],, and because + is associative on Z we have [a],, + ([b]. + [c]n) =
[a]n + [0+ ¢]n = [a+ b+ c], and ([a], + [b]n) + [¢]n = [@ + b]n + [¢]n = [a + b+ ¢, SO

[aln + ([b]n + [c]n) = ([aln + [b]n) + [c]n

and + is associative on Z,,. O

Theorem 1.2.3. Z, is a cyclic group and the generators of Z,, are the integers r such that 1 < r < n and
ged(r,n) = 1.

Proof. To show Z,, is cyclic, we only need to show that Z,, = {(z) := {e,z,--- ,2" "1} for some x € Z,. The
choice z = [1],, would work.

We note that r = 1+ --- + 1 (r times). Let b = r and @ = 1 in the prop. 1.1.25 and conclude that the order
of r is & where d = ged(k,n). Since the order of 7, a generator of Z,,, isn, we see ; =n = d = 1. O

Example 1.2.4. Let us examine the group Z;¢. The numbers 1,3,5,7,9,11, 13, and 15 are the elements of
714 that are relatively prime to 16 . Each of these elements generates Z;¢. For example,

1-9=9 2:9=2 3-9=11
4.-9=4 95:-9=13 6-9=6
7-9=15 8-9=28 9-9=1
10-9=10 11-9=3 12.-9=12
13-9=5 14:-9=14 15-9=7

15
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We can also use the usual multiplication as binary operation on Z,,:
la]n x [b]n = [ab]n (1.3)

Again, we should check that this really defines a binary operation on Z, : if [a], = [d'], and [b],, = [V'],,
then we need [ab],, = [a/V'],,. This is true because a = a’ + kn and b = b’ + In for some k, [ € Z so

ab = (a' + kn) (V' + In)
=db +n (kb’ +la’ + kln)
so ab = a'b'(modn) and therefore [ab],, = [a’],,. This does not make (Z,,, x) into a group, because 0 has
no inverse for the operation x.

We notice that (Z,,, x ) where multiplication x is given by eq. (1.3) is a monoid with identity [1],,. Therefore,
due to Remark 1.1.2, we define Z as the group of units in Z,,, i.e.,

Zy ={l€Zy|ged(l,n) =1}

(That’s because [Im], = [1], ©im=1modn) < IgeZs.t. Im—1=qgn < Ip(= —q) € Zs.t. Im+pn =1)
If n = p is a prime, then
Z; = {l € Zn‘ng(lap) = 1} = {[1]7 o a[p_ 1]}

where we note that The greatest common divisor of 0 and any non-zero number is the non-zero number
itself (0 is a multiple of every non-zero number).

Example 1.2.5. If G is a cyclic group of order n, i.e., G =~ Z,, then Aut(G) =~ Z}.

Proof. Let G = (x) and

¢o:G—>G

I*-’Il

for some 0 < I < n — 1. Thus ¢(z7) = 2. Every endomorphism (homomorphism with G — G) is of this
form, and we wonder what condition on [ can make it an automorphism, i.e., also an isomorphism. In fact,
¢ is an isomorphism iff z! is a generator of G. By theorem 1.2.3, we see this is the case iff gcd(n,l) = 1.
Since {l € Z,,| ged(n,l) = 1} = Z), we have an isomorphism:

O Aut(G) > Z)
¢ — | where ¢(z) = 2!

(Fori = 1,2, ¢; — l; = ¢i(x) = 2", 50 ¢1 0 do(x) = ¢y (z2) = zhl>) O

1.2.2 Cyclic Groups

We begin with definition of Euler ¢-function. ¢(n) is defined as the number of non-negative integers less
than n that are relatively prime to n. In other words,

(n) = 1 ifn=1
P TN ez s ged(n) = 1) = 12| ifn>1

Lemma 1.2.6. If G = {a) is cyclic of order n, then a* is also a generator of G if and only if (k,n) = 1. Thus
the number of generators of G is ¢(n).

Proof. This is just a restatement of Theorem 1.2.3. O

16
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Lemma 1.2.7. If G is a cyclic group of order n, then there exists a unique subgroup of order d for every
divisor d of n.

Proof. If G = {a), then {a™?) is a subgroup of order d, by Question 1.1-9. Assume that S = (b) is a subgroup
of order d ( S must be cyclic, by Theorem 1.1.22). Now b? = 1; moreover, b = a™ for some m. By Question
1.1-11, md = nk for some integer k, and b = a™ = (a"/ d)k. Therefore, (b) < (a™?), and this inclusion is
equality because both subgroups have order d. O

Theorem 1.2.8. If n is a positive integer, then

n =7 ¢d),

where the sum is over all divisors d of n with 1 < d < n.

Proof. If C is a cyclic subgroup of a group G, let gen(C') denote the set of all its generators. It is clear that G
is the disjoint union

G = Jeen(0),

where C ranges over all the cyclic subgroups of G. We have just seen, when G is cyclic of order n, that there
is a unique cyclic subgroup Cy of order d for every divisor d of n. Therefore, n = |G| = 3, [gen (Cy)|. In
Lemma 1.2.6, however, we saw that |gen (Cy)| = ¢(d); the result follows. O

We now characterize finite cyclic groups.

Theorem 1.2.9 (characterization of cyclic group). A group G of order n is cyclic if and only if, for each
divisor d of n, there is at most one cyclic subgroup of G having order d.

Proof. If G is cyclic, then the result is Lemma 1.2.7. For the converse, recall from the previous proof that
G is the disjoint union U gen(C'), where C ranges over all the cyclic subgroups of G. Hence, n = |G| =
2| gen(C)| < Xy, ¢(d) = n, by Theorem 1.2.8. We conclude that G must have a cyclic subgroup of order d
for every divisor d of n; in particular, G has a cyclic subgroup of order d = n, and so G is cyclic. O

Observe that the condition in Theorem 1.2.9 is satisfied if, for every divisor d of n, there are at most d
solutions = € G of the equation 2¢ = 1 (two cyclic subgroups of order d would contain more than d solutions).

1.2.3 S,and A4,

If X is a nonempty set, a permutation of X is a bijection o : X — X. We denote the set of all permutations
of X by Sx. We will focus on the special case X = 1,--- ,n, where Sx is denoted by S,,. Elements in it
is of the form a = (4, @, o, " &' o) where a; = a(i). S, is a group, called symmetric group, with
function composition as multiplication (and we keep the tradition of function composition that permutation
of elements is applied from left to right). For example, o = (4%%) and 8 = (132 $) are permutations of

{1,2,3}. The product a3 is (42 3). We compute the product by first applying 3 and then a:

aB(1) = a(B(1) = a(2) = 2,
aB(2) = a(B(2)) = a(3) = 1,
aB(3) = a(B(3)) = (1) = 3.

Note that Sa = (12 3), so that a8 # fa.

17
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Definition 1.2.10. Let iy, o, ..., 1, be distinct integers between 1 and n. If « € S, fixes the remaining n — r
integers and if

« (’L]) = ig, « (22) = ig, e (Z.r—l) = iT,a (’LT) = il,
then « is an r-cycle; one also says that « is a cycle of length r. Denote a by (i1 iz - 4p). Every 1-cycle fixes
every element of X, and so all 1-cycles are equal to the identity. A 2-cycle, which merely interchanges a pair
of elements, is called a transposition. Observe that (123 --- r—17)=(23 --- r1)=(r1 --- r—1), s0
there are exactly r such notations for this r-cycle.

Multiplication is easy when one uses the cycle notation. For example, let us compute v = o3, where a = (1 2)
and 8 = (1 3 4 2). Since multiplication is composition of functions, v(1) = a o (1) = a(5(1)) = «(3) = 3;
Next, v(3) = a(8(3)) = a(4) = 4, and y(4) = a(8(4)) = «(2) = 1. Having returned to 1, we now seek 7(2),
because 2 is the smallest integer for which « has not yet been evaluated. We end up with (1 2)(13425) =
(134)(25). The cycles on the right are disjoint as defined below.

Definition 1.2.11. Two permutations «, 8 € Sx are disjoint if every 2 moved by one is fixed by the other.
In symbols, if a(x) # =, then S(z) = x and if 8(y) # y, then a(y) = y (of course, it is possible that there
is z € X with a(z) = z = (2) ). A family of permutations a1, as, ..., ay, is disjoint if each pair of them
is disjoint. Observe that for a = (i1 io --- 4,) and 8 = (j1 j2 -+ Jjs), « and @ are disjoint if and only if
{in,i2, .. yip} 0 {j1, 2, .-+, ds} = @.

The identity of S, is 1, or (1). To find the inverse of a permutation just write it backwards. If 7 = (1243)(67)
then 7=1 = (76)(3421) which can then be rewritten as 7= = (1342)(67).

How does one prove this?
First consider a single cycle: o = (ajas...ax). If b ¢ {ai,...,ax}, then o(b) = b so o~ 1(b) = b. Thus b

shouldn’t appear in the inverse. Next o (a;) = a;11 $0 0! (a;11) = a;. Thusifo : a; = ag — az — -+ —

ay — ay, then 07! : ap — ap_1 — ag_a — .-+ — aj — a;. This is precisely the cycle (ag,ar_1...,a2,a1)

which is nothing more than o written backwards.

Now what about a list of cycles? Say o = o, ---0. Recall that ¢! = (0y---04) "' = 007! So we

reverse the list of cycles and then write each one backwards — thus the inverse is just the whole thing written
backwards.

One thing to note: This still works even if ¢ is not written in terms of disjoint cycles.

Proposition 1.2.12. If « and 3 are disjoint permutations, then o8 = Sa; that is, « and 5 commute.
Proof. See [5] Proposition 5.8. O

Now we present results for factorization or permuations.

Theorem 1.2.13. Every permutation « € .S, is either a cycle or a product of disjoint cycles.
Proof. see [9] Theorem 1.1. O
Theorem 1.2.14. Every permutation « € S, is a product of transpositions.

Proof. By Theorem 1.2.13, it is enough to factor cycles: for n > 1,
o=(ay ... an) = (a1 ap)(a1 an—1)...(a1 az2)

O

One can prove that the parity of the number of factors is the same for all factorizations of a permutation a
that is, the number of transpositions is always even or odd. We say that a permuation is even if it has even
parity and is odd if it has odd parity. See [9] p.8-9 for more of this.
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Corollary 1.2.15. Acycle 0 = (ay ... a,) is even if and only if n is odd.

One of the most important subgroups of .S,, is the set of all even permutations, A,,. The group A,, is called
the alternating group on n letters.

Theorem 1.2.16. The set A, is a subgroup of S,,.

Proof. Since the product of two even permutations must also be an even permutation, A,, is closed. The
identity is an even permutation and therefore is in A,,. If o is an even permutation, then

0O = 0102 :0p
where ¢; is a transposition and r is even. Since the inverse of any transposition is itself,
—1

o =0y0p_1"""01

is also in A4,,. O

Proposition 1.2.17. The number of even permutations in S,,,n > 2, is equal to the number of odd permu-
tations; hence, the order of A,, is n!/2.

Proof. Let A, be the set of even permutations in S,, and B,, be the set of odd permutations. If we can
show that there is a bijection between these sets, they must contain the same number of elements. Fix a
transposition o in S,,. Since n > 2, such a o exists. Define

Ao 1 A, — B,
by

Ao(T) =0T.
Suppose that \,(7) = Ay (u). Then o7 = op and so

T=0tor = ailo,u = U.
Therefore, )\, is one-to-one. The proof that ), is surjective is left as an exercise. O

Example 1.2.18 (Subgroups of A;). The group A, is the subgroup of S, consisting of even permutations.
There are twelve elements a;-aqo in A4: an identity o, three permutations written as products of two
disjoint cycles as-ay (each of them having order 2), and eight cycles as-ais fixing one element (each of
them having order 3). We have the Cayley table of A, below (In this table, an entry % inside the table
represents «y. For example, azag = ag.)

ap | Qg | Q3 | Qg | Q5 | Qg | Q7 | g | Qg | (10 | Q11 | (V12
(1) = Q1 1 2 3 4 5 6 7 8 9 10 11 12
(12)34)=as | 2 | 1T [ 4|36 |58 [7[10] 9 [12]11
(13)(24) = Q3 3 4 1 2 7 8 5 6 11 12 9 10
(14)23)=as | 4 |3 [ 21876 [5[12]11[10] 9
(123) = Q5 5 8 6 7 9 12 | 10 | 11 1 4 2 3
(243) = g 6 7 5 8 10 | 11 9 12 2 3 1 4
(142) = Q7 7 6 8 5 11 | 10 | 12 9 3 2 4 1
(134) = Qg 8 5 7 6 12 9 11 | 10 4 1 3 2
(132)=ag | 9 |11 |12][10[ 1T [ 3 |4 [ 2[5 7] 816
(143) = aqg 10|12 11| 9 2 4 3 1 6 8 7 5
234)=ay; |11 910123 [ 1| 24751618
(124)=a, |12 (10 9 [11 [ 4 [ 2|1 [3]|8] 6 |57
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We will find all subgroups of A4: since the order of H < A4 must divide the order of A4 and |A4] = 12 =
1x12=3x4=2x6,wesee H can have size 1,2, 3,4,6,12. H with |H| = 1 and 12 are just trivial subgroup
and A, itself. Thanks to Question 10, we already know the classification of all groups with size smaller than
6: subgroups H with |H| = 2, 3,5 are isomorphic to Zs, Zs, Zs and H with |H| = 4 is isomorphic either to Z,
or V. There is no subgroup of order 6 (proved in the following lemma).

By observations about ay-cy and as-a12 we made in the beginning, we see subgroups of order 2 are just

{aa), -+ ,{ayy; and subgroups of order 3 are just {as), - - ,{a12). Since there is no element with order 4 in
Ay, subgroup H of order 4 can only be V, which is contained in A4 as {«ay,- - ,a4}. Our classification is
complete.

Lemma 1.2.19. There is no subgroup of index 2 in A,.

Proof. Suppose a subgroup H of A, has index 2, i.e., |H| = 6. We will show for each g € A4 that g? € H. If
g € H then clearly g> € H. If g ¢ H then gH is a left coset of H different from H (since g € gH and g ¢ H ),
so from [G : H] = 2 the only left cosets of H are H and gH. Which one is g>H ? If g H = gH then g% € gH,
so g2 = gh for some h € H, and that implies g = h, so g € H, but that’s a contradiction. Therefore ¢>H = H,
so g> € H. Every 3-cycle (a b ¢) in Ay is a square: (abc) has order 3,50 (abc) = (abc)* = ((ab 0)2)2. Thus
H contains all 3-cycles in Ay, in total 8 of them, which thus contradicts to |H| = 6. O

1.24 D,

We from example 1.2.18 see that the Klein-four group V is a subgroup of A4 and is thus a subgroup of S;.
We remarked in example 1.1.11 that V is isomorphic to Dy. We call subgroups of S,, permuation groups.
In last subsection, we examined alternating groups A,,; now we examine another type of permuation groups,
the dihedral groups D,,. Such groups consist of the rigid motions of a regular n-sided polygon or n-gon. For
n = 3,4,..., we define the n-th dihedral group to be the group of rigid motions of a regular n-gon. We will
denote this group by D,,. We can number the vertices of a regular n-gon by 1,2, ..., n. Notice that there are
exactly n choices to replace the first vertex. If we replace the first vertex by k, then the second vertex must
be replaced either by vertex k + 1 or by vertex k — 1; hence, there are 2n possible rigid motions of the n-gon.
We summarize these results in the following theorem.

Theorem 1.2.20. The dihedral group, D,,, is a subgroup of .S,, of order 2n.

Theorem 1.2.21 (Dihedral group). The group D,,,n > 3, consists of all products of the two elements r and
s, where r has order n and s has order 2, and these two elements satisfy the relation (sr)? = 1.

Proof. The possible motions of a regular n-gon are either reflections or rotations (Figure 1.1).

There are exactly n possible rotations:

360° 360° 360°
id, ,2 - ey (n—1)- .
n n

n

We will denote the rotation 360°/n by r. The rotation r generates all of the other rotations. That is,

360°
n

rF =k

Label the n reflections s, so, . . ., s,, Where s, is the reflection that leaves vertex k fixed. There are two cases
of reflections, depending on whether n is even or odd. If there are an even number of vertices, then two
vertices are left fixed by a reflection, and s; = s,,/241,52 = Sp/242,- -+, 5n/2 = Sn. If there are an odd number
of vertices, then only a single vertex is left fixed by a reflection and sy, s, ..., s,, are distinct (Figure 1.2).

In either case, the order of each s;, is two. Let s = s;. Then s? = 1 and ™ = 1. Since any rigid motion ¢ of
the n-gon replaces the first vertex by the vertex k, the second vertex must be replaced by either & + 1 or by
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rotation

reflection
—_—

Figure 1.1: Rotations and reflections of a regular n-gon

"

1 1
6 2 2 6
5 3 3 5
4 4
1 1
2
) 2 0
"
4 3 3 4

Figure 1.2: Types of reflections of a regular n-gon

k — 1. If the second vertex is replaced by k + 1, then ¢t = r*. If the second vertex is replaced by k — 1, then
t = r*s. Hence, r and s generate D,,. That is, D,, consists of all finite products of 7 and s,

D, = {1,7“7 r2 s s r?s, r"_ls} .
We will leave the proof that (sr)? = 1 as an exercise. O
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Example 1.2.22. The group of rigid motions of a square, D,, consists of eight elements. With the vertices
numbered 1,2,3,4 (Figure 1.3), the rotations are

and the reflections are

=

4

r=(1234)

r? = (13)(24)

r3=(1432)

rt=(1)

S1 = )

S9 = 3
e
l 13

Figure 1.3: The group D,

The order of D, is 8. The remaining two elements are

A Supplementary Note

rsy = (12)(34)
r3s) = (14)(23).

One can also analyze group of symmetry of solids. For example, group of rigid motions of a cube is S
(Figure 1.4) (see [5] Theorem 5.27). For more on this, including the Planotic solids, see [1] section 6.12.

1.2 EXERCISES

2

,,,,,,,,,,,,,,,

Figure 1.4: cube
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ii.

ii.

iii.

ii.

iii.

10.

ii.

iii.

11.

If 1 < r < n, then there are (1/r)[n(n —1)...(n —r + 1)] r-cycles in S,,.
If a, 8 € S,, are disjoint and a8 = 1, then a =1 = 3.

Let « € S, for n > 3. If a8 = Ba for all g € S,,, prove that o must be the identity permutation; hence,
the center of S, is the trivial subgroup (the center of a group G is defined as Z(G) = {g € G : gz =
xzg for all x € G}.)

Ifoe A, and 7 €S, show that 7~ lo7 € A,,.

Let 7 = (a1, a9, .. .,ax) be a cycle of length k.

Prove that if ¢ is any permutation, then

is a cycle of length k.
Let i be a cycle of length k. Prove that there is a permutation ¢ such that oro~! = p.

[9][p.24 ex2.9]

Prove that .S,, can be generated by (1 2),(1 3),---, (1 n).
Prove that S,, can be generated by (12),(23),---,(i¢+1),---,(n—1n).
Prove that .S,, can be generated by the two elements (1 2) and (12 ---n).

Draw group tables of S5 and Ss.

[9]1[p.5 ex1.12]

Leta= (4 i ... i,—1 )beanr-cycle. Forevery j,k > 0, prove that o* (i;) = iy if subscripts are
read modulo r.

Prove that if « is an r-cycle, then o = 1, but that o # 1 for every positive integer k < .

If o = 3185 ... B is a product of disjoint r;-cycles 3;, then the smallest positive integer [ with ! = 1 is
the least common multiple of {r1,r9,...,r,}. Therefore, the order of a permutation o = f3; - - - 5, where
B; is an ry-cycle, is lem{ry, - -+ ,7¢}.

By previous question, deduce that each order-3 cycle is a product of 3-cycles.

Dihedral group.

Show that D,, = {(r,s|r",s?,(sr)?) = D, = {(r,s|r", s%, (rs)?), that is, v = 1,82 = 1,(sr)? = 1iff
rm=1,s2=1,(rs)? = 1.

Show that r*s = sr—* in D,

Prove that the order of r* € D,, is n/ ged(k,n).

Show that there is an index-2 subgroup of Dihedral group D,,.

1.3 Normal Subgroups and Quotient Groups

Definition 1.3.1. Subgroup H < G is normal, denoted as H < G, if Vge G, gHg™' € H.
Note that gHg™! = {ghg™'|h e H} < G, as ghg~ 1 (gh'g~ ')t e gHg™'.

Example 1.3.2.

* If G is an abelian group, then every subgroup of G is normal. The converse is false: see Question 1.3-4.
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* SL(n,R) is a normal subgroup of GL(n,R): for A € GL(n,R), B € SL(n, R) we have det(ABA~!) =
det(A) det(B) det(A™1) = det(A)det(A™1) = 1.

Proposition 1.3.3 (characterization of normal subgroup). If H < G, then the following are equivalent.

1. HLG;

2. Vge G, gHg ! = H;

3. Vge G, Hg = gH,;

4. Every right coset of H is a left coset;

5. Every left coset of H is a right coset.
Proof. 1 equiv to 2: the < direction is clear. Conversely, suppose Vg € G, gHg~ ' < H,so g 'H(g7)~! <
H — ¢ 'Hg < H. Multiply from left and right to cancel, so H < gHg~'. So gHg~ ' = H.

2equivto 3: Vge G, gHg ! = H < Vge G,h e H, there is some h/ € H such that »/ = ghg™! —
Vge G,he H,3h' € H s.t. g = gh.

We prove that 3,4,5 are equivalent.

3 implies 4: we note that 3 is directly stronger than 4, as 4 can be rephrased as: for a right coset Hg, there
is some ¢’ € G such that Hg = ¢'H.

4 implies 3: Suppose Hg = aH for some a. Butthenge Hg =aH,and g€ gH. SoaH = gH = Hg = gH.

3 implies 5 implies 3: similarly. O
Corollary 1.3.4. Any subgroup of index 2 in any group G is normal.

Proof. [G : H] = 2 = two distinct left cosets, H,aH where a ¢ H. Similarly, H and Ha are distinct right
cosets. This gives H naH = @, H n Ha = &, so by 4 in proposition 1.3.3, H is normal. O

If N < @, then the set of cosets of N in G, G/N, form a group under multiplication (aN)(bN) = abN. We
need to check that
* Well-defined: aN = a’N and DN = N = abN = d'b'N:
NaNb= Na(a 'Na)b (because N is normal)
=N (aa ") Nab= NNab= Nab (because N < G).
Thus, NaNb = Nab, and so the product of two cosets is a coset.

* Group properties easily follow from the group properties of G (associativity, identity N = N1 = 1N,
and inverse ¢~ ' N (= Na™=1) for aN (= Na).)

Proposition 1.3.5. If N <@, then the natural map, or canonical projection (i.e., the function¢: G — G/N
defined by ¢(a) = Na) is a surjective homomorphism with kernel N.

Proof. The equation ¢(a)q(b) = q(abd) is just the formula NaNb = Nab; hence, ¢ is a homomorphism. If
Na € G/N, then Na = ¢(a), and so v is surjective. Finally, ¢(a) = Na = N if and only if a € N, so that
N = Ker(q). O

We define conjugation v, : G — G, where ~,(z) = aza™!, and call v,(z) = ara™! a conjugate of z in a
group G, also denoted as xz*. Moreover, for g € G we set

HYI := gHg ™!
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and say that HY is a conjugate of H in G (more precisely, the conjugate of H by ¢). For any K < G set

H" :={H* | ke K}.

We have now shown in Proposition 1.3.5 that every normal subgroup is the kernel of some homomorphism.
Different homomorphisms can have the same kernel. For example, if « = (1 2) and b = (1 3), then ~,, :
S3 — S are distinct and Ker(y,) =1 = Ker(y).

The quotient group construction is a generalization of the construction of Z,, from Z. Recall that if n is
a fixed integer, then [a], the congruence class of a mod n, is the coset a + (n). Now (n) < Z, because
Z is abelian, and the quotient group Z/(n) has elements all cosets a + (n), where a € Z, and operation
(a+ {(n)) + (b+{(n)) = a + b+ {(n); in congruence class notation, [a] + [b] = [a + b]. Therefore, the quotient
group Z/{n) is equal to Z,, the group of integers modulo n. An arbitrary quotient group G/N is often called
G mod N because of this example.

1.3 EXERCISES

1. [9][p-31 ex2.29]

i. (H. B. Mann). Let G be a finite group, and let S and T be (not necessarily distinct) nonempty subsets.
Prove that either G = ST or |G| = |S| + |T.
ii. Prove that every element in a finite field F' is a sum of two squares.

2. [9][p.31ex2.32] If H < G, then H < G if and only if, for all z,y € G, zy € H if and only if yz € H.
3. [9]1[p.31ex2.33]If K < H < Gand K <G, then K < H.

4. Every subgroup of an abelian group is normal. This exercise shows that the converse is not true: Let G
be the subgroup of GL(2,C) generated by

i. Find the order of A and B in G.

ii. Show G has order 8 by listing all the elements of G. Show G is is not abelian.
iii. List all elements of oder 2 in G.

iv. Show that every subgroup of G is normal.

5. If N, Hy, H, are subgroups of a group G such that N < G and H; < Hs, then show NH; < NH,.
6. Prove that A, < S, for every n by showing that it is an index-2 subgroup (thus |4,| = 3nl).

7. [9]1[p.31 ex2.37]

i. The intersection of any family of normal subgroups of a group G is itself a normal subgroup of G.
Conclude that if X is a subset of G, then there is a smallest normal subgroup of G which contains X; it is
called the normal subgroup generated by X (or the normal closure of X; it is often denoted by (X)%).

ii. If X =@, then (X)® = 1. If X # @, then (X )Y is the set of all words on the conjugates of elements in
X

iii. If grg~' e X forallz € X and g € G, then (X) = (X)¢ < G.
8. [91[p.31 ex2.38] If H, K <G, then (H U K) < G.

9. Suppose f : G — G’ is a homomorphism. Show that N <G = f(N)<G’; N' <G = f~YN') <G.
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10. Finite product (see Definition 1.4.3) and finite intersection of normal subgroups of G are still normal.

11. Suppose H < G and N < G. Show that H n N < H but not necessarily H n N < G Also note that
H < N < G does not imply H < G; not even H < N < G implying H < G. Show such transitivity of
normality fails by the counterexample that K = {(1 2)(3 4)) <V and V < .5, while K is not a subgroup
of 54.

12. (Product formula) If S and T are subgroups of a finite group G, then |ST||S n T| = |S||T]|.

13. Show that conjugacy is an equivalence relation, thatis, z ~y <= 3g € G s.t. y = 29 := grg~ ' defines
an equivalence relation. We call the equivalence class with respect to this relation conjugacy class. Use
this definition to show that a subgroup H < G is normal if and only if it is a union of conjugacy classes
of G.

1.4 Isomorphism Theorems

Facts (proofs are left as exercises): for a group homomorphism ¢ : G — G/,
1. Ker(¢) :=={a€ Glp(a) =ec} IG
2. Im(¢) := {¢(a)lae G} < G

Theorem 1.4.1 (1st Isomorphism Theorem). If f : G — G’ is a group homomorphism and K = Ker(f) (so
K < @), then
G/K =~ Tm(f)

Proof. Define ¢ : G/K — Im(f) by ¢(aK) = f(a). ¢ is well-defined and injective: aK = bK <
a~'b e K = Ker(f) <= f(a™'b) = f(a)"'f(b) = e < f(b) = f(a). ¢ is a homomorphism:
p(aKer(f)bKer(f)) = ¢(abKer(f)) since kernel is normal group and that is f(ab). On the other side,
d(aKer(f))p(bKer(f)) = f(a)f(b), so this is homomorphism since f is homomorphism. Lastly, ¢ is surjec-
tive: if b € Im(f), then b = f(a) for some a. So ¢(aKer(f)) = b. O

Example 1.4.2. SL(n,R) < GL(n,R). Then GL(n,R)/SL(n,R) ~ (R — {0}, -).

Proof. f : GL(n,R) - R — {0}, A — det(A). This is a group homomorphism, f is surjective, Ker(f) =
SL(n,R) = GL(n,R)/SL(n,R) ~ R — {0}. O

Definition 1.4.3. For H, K < G, define product set
HK = {hklhe H,k e K}
and inverse set

H ' ={h ' heH}

Remark 1.4.4.

1. HK is not necessarily a subgroup of G. For example, consider G = S; and H = {e,(1 2)}, K =
{e, (1 3)}. We have Proposition 1.4.5 (same as [9] Lemma 2.25) instead.

2. Observe that (AB)~! = B~1AL,
Proposition 1.4.5. Let A and B be subgroups of G. Then AB is a subgroup of G if and only if AB = BA.
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Proof. From AB < G we get
(AB) = (AB)™' =B 'A™! = BA.

If AB = BA, then
(AB)(AB) = A(BA)B = A(AB)B = AABB = AB

and
(AB)™' =B 'A™!' = BA = AB.

Thus AB < G. O

Proposition 1.4.6. If H < G and N < G, then HN < G, HN = NH, and HN is the subgroup of G
generated by H u N.

Proof. HN < G :If a = hyni,b = hyny, then ab™! = hlnlnglhgl = hlhglhgnlnglhgl. Clearly, n1n2_1 eN
s0 hanin, ‘hy' € N. Thus, ab~' € HN.

HN = NH: We need to first show HN € NH. Let hne HN = hnh ™' =n'e N = hn=n'he NH,
so HN < N H. Similar for other direction.

Clearly, HHN € HN < G. And forany K < G, let H,N < K. Since K is a subgroup, Vne N,he H,hn e K.
Thus HN < K is the smallest subgroup. In particular, HN is the subgroup generated by H u N. O

Theorem 1.4.7 (2nd Isomorphism Theorem). Let H < G, N < G. Then H n N < H and
H/H AN ~ HN/N
Proof. H n N < H due to Question 1.3-11. Let ¢ : H —» HN/N be given by ¢(h) = hN. The result follows
from the first isomorphism theorem after showing the following three facts. We left them as exercises.
* Ker(¢) ={he HIhN =N} =Hn N.
* ¢ is surjective: hnN = hN = ¢(h).

* ¢ is homomorphism.

Suppose H, € Hy, H1, H> < G. Then we can define a surjective map called the enlargement of coset:

G E;CLHQ’_)GHl

* H, T

It is well-defined: if aHy = bHy < b~la e Hy € H; = b la € H; < aH; = bH», then ¢ (aHy) = ¢ (a/ Hs). It
is a homomorphism: ¢ (aHs) ¢ (bHz) = (aH) (bHy) = aHy = ¢ (abH3). It is surjective: for every aH; € H%,
we have ¢ (aHs) = aH;. Therefore, by 1st isomorphism theorem, H% /Ker(¢) =~ H%, so G/H, is a quotient
of G/H2

Remark 1.4.8.

(1) Now, let G be a group and N < G. Let f : G — G’ be a homomorphism whose kernel K = Ker(f)
contains N. Then we have a composition

G G
f*=z/10gb:N—>?—>G’;aNHaK'—>f(a)

where ¢ : G/K — G’ is the homomorphism from the 1st isomorphism theorem and ¢ : G/N — G/K

is the enlargement of coset. This composition g is the unique homomorphism f, : G/N — G’, said to
be induced by f, making the following diagram commutative:
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G ! el
G/N

As before, ¢ is the canonical projection.

(2) Now, let G again be a group. Let f : G — G’ be a homomorphism. Consider N/ <4 G’ and N :=
f~Y(N') < G instead (the normality is justified by Proposition 1.4.14). Consider the composition

;G
9g=qof: GG -5

in replace of the homomorphism f in the above commutative diagram, where ¢ : G’ — G'/N’ is
the canonical projection. Observe that K = Ker(g) = {x € G|f(z) € N’} = f~}(N’) = N, so the
enlargement ¢ : G/N — G/K degenerates to the identity homomorphism ¢ and the induced map

gs: & > € - & 4N aK — g(a) becomes the homomorphism in the first isomorphism theorem

"N T K N
gx =V % — %; aN — g(a). The map is then injective as 1) is injective.

Theorem 1.4.9 (3rd Isomorphism Theorem). Suppose K < N <G and K < G. Then

N/K 9G/K and (G/K)/(N/K)~ G/N

Proof. First part follows from definition. Application of the first isomorphism theorem to the enlargement of
coset map ¢ : G/K — G/N, ¢(¢9K) = gN will prove the second part (check that Ker(¢) = N/K and ¢ is
surjective). O

Restating the proof that ¢ : G/K — Im(f), defined in the first isomorphism theorem, is well-defined, we get

Proposition 1.4.10 ( [1] Proposition 2.7.1). Let K be the kernel of a homomorphism ¢ : G — G’. Let
be G, then ¢~ 1(b) is called a fiber. If a € ¢1(b), then =1 (b) = aK, the coset of K containing a. These
cosets partition the group G, and they correspond to elements of the image of ¢:

G/K «— Im(yp)
aK < ¢(a)

Since |G/K| = [G : K] for finite group G, and |G/K| = |Im(y)| by the above proposition, we immediately
have

Corollary 1.4.11 ( [1] Corollary 2.8.13). Let ¢ : G — G’ be a homomorphism of finite groups. Then
* |G| = [Ker(¢)] - | Tm);
* |Ker(p)| divides |G|;
* | Im(y)| divides both |G| and |G’|.

Proposition 1.4.12. Let ¢ : G — G’ be a homomorphism and H < G. Then the restriction |z : H — G’ is
also a homomorphism with Ker(p|y) = Ker(p) n H and Im(p|g) = o(H).

Remark 1.4.13. By Corollary 1.4.11, we see |Im ¢y | = |¢(H)| divides |H| and |G’|. Therefore, if |H| and
|G’| have no common factors, then |p(H)| = 1 = ¢(H) = eqv = ¢ is a trivial homomorphism. [1]
Example 2.10.3 gives an application of this observation on the sign homomorphism from S,, to {£1} = Z,.
This will require some readings in permutation matrices that define the sign homomorphism ( [1] handles
the sign of permutation in a neater way than [9] does).
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Proposition 1.4.14 ( [1] Proposition 2.10.4). Let ¢ : G — G be a homomorphism with kernel K and let
be a subgroup of G. Denote the inverse image () by H. Then H is a subgroup of G that contains K.
If H is a normal subgroup of G, then H is a normal subgroup of G. If ¢ is surjective and if H is a normal
subgroup of G, then H is a normal subgroup of G.

Theorem 1.4.15 (4th Isomorphism Theorem (Correspondence Theorem)). Let N < G, then ¢ : G —
G/N,¢(g) = gN induces a 1-1 correspondence ® : H — ¢(H) = H/N between subgroups of G which
contain N and subgroups of G/N:

S = {subgroups of G that contain N} «— &’ = {subgroups of G/N}
a subgroup H of G that contains N — its image ¢(H) = H/N in G/N
its inverse image ¢~ !(#) in G «— a subgroup H of G/N
Moreover, if we denote H/N by H*, then
» For H1,€ S, Hy < Hy ifand only if Hf < Hy, and then [H, : H1] = [Hf : H}];
* For Hy,€ S, Hy < H, if and only if H{* < H¥, and then Hy/H, ~ Hf/H}.

Remark 1.4.16. For the proof of the above theorem, see [9] Theorem 2.28. Also note that [1] Theorem
2.10.5 relaxes the assumption to surjective homomorphism ¢ while getting less interesting results than the
case ¢ being the canonical projection.

1.4 EXERCISES

1. [9][p-31 ex2.29] Prove that a homomorphism f : G — H is an injection if and only if Ker(f) = 1.

2. [9][p.37 ex2.48] (Modular Law). Let A, B, and C be subgroups of G with A< B.If AnC =BnC
and AC = BC (we do not assume that either AC or BC is a subgroup), then A = B.

3. [9][p.37 ex2.49] (Dedekind Law). Let H, K, and L be subgroups of G with H < L. Then HK n L =
H(K n L) (we do not assume that either HK or H(K n L) is a subgroup).

1.5 Simple and Solvable Groups

Definition 1.5.1. A group G is called simple if it has no normal subgroup other than {e} and G.

Example 1.5.2. Cyclic groups G of prime order are simple: |N| | |G|=p = |[N|=1orp = N =Gor
N = {e}.

Example 1.5.3. Consider the alternating group A,,. By Question 1.3-6, we see A,, < S,,.

Ay = {e} is simple. A3 = {e, (1 2 3),(1 3 2)} is cyclic of prime order 3 and is thus simple (apply previous
example). Ay is not simple: V is normal in A, because it is the union of conjugacy classes in A4 (see
Question 1.5-1 and Question 1.3-13).

Theorem 1.5.4. A, is simple if n > 5

Proof. The proof is made up of the following three facts:

(1) A,,n > 5 is generated by 3-cycles;

(2) Every two 3-cycles are conjugate with each other in A,,: 01,09 are 3-cycles, then 37 € A4,, : 7o 7' =

g92.,
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(3) every normal subgroup N # {e} in A,, has at least one 3-cycle.

Together they prove the statement: suppose N # {e}, and we want to show N = A,. (3) gives a 3-cycle
o1eN,soVr e A,, 7017 ' =09 € Nas N < A,. (2) then implies that all 3-cycles are in N. (1) states that
A,, = (3-cycles) is the smallest subgroup of A,, containing all 3-cycles, so N < A,, has to be equal to A,,.

We prove the three facts:
D:T={(abec) | 1<a<b<c<n}c A, then(T)c A,. If

e, if {a, b} = {¢,d}
o=(ab)(cd) =1 (acb)(acd), ifa,b,c,d alldistinct
(a db) ifa=c

Thenoe(T) = A, cT.

(2) is due to a more general theorem, namely Theorem permutations are conjugate iff they have the same
cycle structure.

(3): See Exercise 1.5-2. O
Theorem 1.5.5. Permutations «, 3 € S,, are conjugate if and only if they have the same cycle structure.
Proof. See [9] Theorem 3.5 or Math5031 HW3 Q4. O

Theorem 1.5.6. Jordan-Holder Theorem. If G is any finite group, then there is a unique tower of
subgroups
{fe} =NoIN; < <IN, <IN, =G

such that V;/N;_; is simple.

Definition 1.5.7. A tower of subgroups
Gn<Gpn1<--- <G <G =G

is subnormal if G;,; <G; and normal if furthermore G; <G for each i. A subnormal series is called abelian
if each G;/G, 11 is abelian. A group G is called solvable if there is an abelian series

{e} =Gm<Gpo1 < <G <Go=0G.

Example 1.5.8.
* Any abelian group is solvable.
e S3 is solvable.
* S, is solvable.
* S,,n > 5 is not solvable.

* D, is not simple and is solvable.

Proof.

* For an abelian group G, any N < G is normal and abelian, so N /{e} is abelian. The factor group G/N
is abelian because the natural homomorphism ¢ : G — G/N is surjective.

* {e} 9 A3 < S3. Question 1.3-6 gives |A3| = %3! = 3 which is prime, so A3 =~ Zjs is abelian. It is also
normal in S; with index 2, so S3/A3 >~ Z, is abelian.
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* Solvablility of Sy is due to {e} IV <A, 15,. A4 <5, and S4/A, abelian. V < A, (see example 1.5.3)
and V/{e} is abelian.

* Let N45,. Since A,, <5, by 2nd isomorphism theorem, N n A,, < A,,. Since A, for n > 5 is simple,
we see N n A, = {e} or A4,.

IfNnA, =A, then A, < N<S, = N = A, or N =8, because Question 1.1-16 implies
2=1[S,:A,] =[Sn: N][N : 4,].

If Nn A, ={e} and if N # {e}, then: 01,02 # €,01,02 € N, then o109 € N, and o102 = e because
o109 is even (so o109 is also in A4,). Thus N = {e,0,07'} and 0? = 0~!. ¢ has order 3, which by
Question 1.2-9 implies that it is a product of 3-cycles. But by parts (1) and (2) of theorem 1.5.4, we
see N = A,,. Therefore, N = {e¢}, N, or S,, = S,,,n > 5 is not solvable.

* The index-2 subgroup in Question 1.2-11 is the cyclic subgroup generated by the rotation {(r) and is
thus abelian and is also normal in D,, due to corollary 1.3.4. Then {e} <{r) < D,, is the desired abelian
subnormal series as D,,/{r) is a group of order 2, isomorphic to Z,.

O

1

Definition 1.5.9. Let z,y € G. The commutator of z,y := zyz~'y~! = [z,y]

Note that [z,y] = e < =y = yz, and [x,y]~! = [y, z]. This gives us a notion of how far a group is from
abelian.

Definition 1.5.10. G’, the commutator subgroup, is the subgroup generated by all the commutators [z, y],
where z,y € G. G’ = {[z1,y1][72, y2] - - - [k, Y] ‘ﬂ%yi € G}

Proposition 1.5.11.
* G' ={e} < (G isableian
- G'<G
* (/G is abelian
Proof. Insert gg—! between the elements: g[zylg~' = grg lgyg tgx g gy tg~ ! = [gzg~ !, gyg '] € G .
Similarly, g[z1,y1] - [wr, yelg ™" = (glz1,y1l97™") -+ (glzryelg™)
G/@' is abelian: we want to show that abG’ = baG’. a='b~tab = [a=1,b7] € G'. So it is true. O

Proposition 1.5.12. If N < G, then G/N is abelian < G' < N
Proof. = :Va,b e G,G/N abelian so a='b"'N = b~'a"!N. Then aba~'b"' € N = [a,b] e N =
G <N

—ia b tab=[a"b7 e S N = a ‘b tabe N O

Example 1.5.13. (S,,)’ = A,. See Question 1.5-3.
Let GO := G, G =@, .G = (GEDY, Gi+D 9 G and GO+ /G1) is abelian.

Proposition 1.5.14. G is solvable iff G("™) = {e} for some m > 1.

Proof. «<:{e} = Gm™ ... < GM Q@G is an abelian tower.

== If{e} = G,,<---<4G1 <Gy = G is abelian, then G ﬂGo,Go/Gl abelian — G’ < Gl,GgﬂGl,Gl/Gg
abelian — (G)’ < G, implies together that G(?) < G < Gy — G®?) < Gs.

By induction, G < G,Vi, G < G,, = {e}. O
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The following proposition is a good exercise (Math5031 HW2 Q4) for one to review all the isomorphism
theorems and various normality theorems.

Proposition 1.5.15. If N <G, then N,G/N are solvable <= G is solvable.

Proof. G solvable = N solvable:
Let
{e}szﬂGmflﬁ"'ﬂGO=G

be a subnormal series where GG;/G; 1 is abelian. Let N; = N n G;. We claim that
{e}=Nn{e}=Np,<INp19---Ng=NnG=N
is the desired subnormal series where N;/N,; is abelian.

We apply Question 1.3-11 three times: G; < G,N 4G = N; = G;n N 4G, and G;;1 < G; = N; n
Giy1 = N1 < Giqq. Similarly, N; < G; with the third application to N; < G;, N;11 < G;41, which implies
Nin N1 = Nigqr IN;.

Applying Remark 1.4.8 (2) with homomorphism the inclusion of N; in G;, f = ¢: N; — G;, N' = G;,1, and

N =17YG;11) = N; n Gi+1 = N;;1, we obtain an injective homomorphism g, : N;/N;;1 — G;/G;;1. Thus

G;/G;+1 being abelian implies N;/N;., being abelian (note that injectivity is necessary for this implication:
abelian codomain

p(zy) = p(z)p(y) =—————= p(y)p(z) = p(yz

G solvable = G/N solvable:
Let

injectivity
) = = ay=yx).

{e}:GmﬂGm—lﬂ"'ﬂGO:G
be a normal series where each G;/G; . is abelian. Let H; = NG;/N. Proposition 1.4.6 implies that NG, 1 =
Gi;11N,NG; = G;N. Notice that N € G; ;1N < G;N due to Question 1.3-5. Since N € G;,1 N <G;N,N <
G;N, the 3rd isomorphism theorem states that

NG 4 NG; _

Hi\ i =
+ N — N

H,
The remaining is to show HLL is abelian: first observe that

(*) : GZN = Gl (GZ+1N)

and then
H i L]\C; L 3

iso GiN (i) Gi (Gi+1N) 2niiso Gi

Hi+1 - % GZ‘+1N N G1;+1N o G, N Gi+1N

lle s

where each of the isomorphism theorem’s conditions are satisfied (the only nontrivial relationship is G; 1 N <
G;N and is proved above).
34 . N <G N <SG;N,N <G;N.
2nd : Gl < G1N7 Gi+1N Sl G7N
By enlargement of coset map and G;,1 € G; = G;;1 € G; n G; 11N, we see Gmgﬁ is isomorphic to a
quotient of Zi-, which is abelian, so 7—&
i+1 inm

ey is abelian (quotient of abelian group is abelian because the

canonical projection is a surjective homomorphism).

G/N solvable and N solvable —> G solvable:
N and G/N are solvable = @ is solvable. Suppose

{e}=NmﬂNm71§]"'§]NO=N

{eG/N}=HnS]Hn71S]"'S]HO=
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Then by 4th isomorphism theorem, for each H; which is a subgroup of %, we can find a unique subgroup
K; of G containing N such that £ ~ = H;. Then

{e}:NmS]Nm—lS]"'S]NO:N:KnS]Kn—lﬁ"'S]KOZG

The fact K1 <K is from properties of the 1 -1 correspondence @ : {K : A< K < G} < {A= % :
Recall that Ac B < A< Band A< G < A <G where A and B are two subgroups containing
two properties we see

2o
o]
<
~t
=
(@)

K, K, ,1S--CK,

Also note that p > ¢ = K, < K,. That’s because K, < K, and K, < G. Thus for each i = 1, Ky <
G, Ky € K1 <Ky =G = Ky = Ky n K; <K;. We set induction hypothesis that K;,; < K; then have
Kiio < Ki,Kij1o € Kiz1 9K; = K;19 = K;y2 n K;11 < K;,1. The induction establishes the series
as normal. We now show that K;/K;; is abelian due to the third isomorphism theorem (conditions are
satisfied: N = Koc K1 dK;,N=Ky<dK; ):

K;
K; ~ N _ H;
K K}"\/Tl Hip
Therefore, G is also solvable. O

Remark 1.5.16. The proof of a more general nature can be seen in [6] 6.1.1 and 6.1.2, but need an equiva-
lence proof (6.1.5) of their first definition of solvability and the definition we used in class (or used by Serge
Lang). 6.1.1 shows that subgroups and homomorphic images of solvable groups are solvable, which implies
the = direction of the above statement, because N is normal subgroup of G and G/N is the homomorphic
image of themap ¢ : G — Z;x+— xN.

1.5 EXERCISES

1. If G is a group, by a conjugacy class of G we mean all elements of G which are conjugate to a fixed
element (so it is an orbit of G for the action of G on G by conjugation).

i. Find all conjugacy classes of A,.
ii. Show thatif [G : Z(G)] = n, then every conjugacy class has at most n elements.

2. Use the following steps to show every normal subgroup N # {e} of A,,n > 5, contains a 3-cycle. This
finishes the proof of the fact that A,, is simple if n > 5.

i. Show that if N contains a permutation of the form o = (1 2 --- r)u (where p is a product of cycles
disjoint from {1,2,...,7}) with » > 4, then N contains a 3-cycle by letting p = (1 2 3) and computing
o tptap

ii. Show that if N contains a permutation of the form ¢ = (1 2 3)(4 5 6)u (where p is a product of cycles
disjoint from {1,2,...,6}), then N contains a 3-cycle by letting p = (1 2 4) and computing o~ p~top.

iii. Show that if N contains a permutation of the form ¢ = (1 2 3)u, where p is a product of 2-cycles a
product of 2-cycles which are mutually disjoint and are also disjoint form {1, 2,3}, then N contains a
3-cycle by computing 0.

iv. Show that if N contains a permutation of the form o = (1 2)(3 4)u, where u is a product of 2-cycles
which are mutually disjoint and are also disjoint from {1, 2, 3,4}, then N contains a 3-cycle by letting

—-1,-1

p=(123), computingn =oc"*p~topand ( = (152)n(1 25).
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Remark: This problem divides into three subcases: (1) the cycle has length > 4 (corresponded to i); (2)
the cycle has length < 3 (but with at least on of them being 3 ) (corresponded to ii and iii); (3) the cycle
has length < 2 (corresponded to iv). WLOG, each case can be converted to the considerations of the
explicit forms given in the above problem.

3. The commutator subgroup of S,, is A,, (Hint: show that every 3-cycle is a commutator, and use the fact
that A,, is generated by 2-cycles.)

4. (A simple group of infinite order) Let A, be defined in the following way: identify A,,_; with the
subgroup of A,, consisting of those permutations which fixes n, and let A, be the union | J, -, An.

i. Show that A, is a group.
ii. Prove A is a simple group.

1.6 Group Actions

Definition 1.6.1. Let G be a group and X be a set, an action of G on X is a function o : G x X —
X, (g,x) — g -« such that

* e x=ux,VreX.
* (9192) v =g1-(92-2),Vr1,22€ X, 9€ G

Note that Vg € X, ¢, : X — X, x — g -z is a permutation. ¢, is bijective, as g-z =g -2/ = g~ ' (9 -2) =
gl (g-2)) = e-x=e-2'. Besides, Vo e X,¢,(97" - 2)=g- (g7 - 2) ==z

A group action G —~ X gives rise to a homomorphism ¢ : G — Sx, g — ¢, (not necessarily injective):
Ggigs(®) = (9192) - @ = g1~ (92 - T) = Pg, © Py, ().
Example 1.6.2.

1. Trivial action. Vge G,z € X, g -z = .

2. Conjugation on elements of G. X = G, g-x = gxg~'.

3. Conjugation on subgroups of G. Let X be set of subgroupsof G, g€ G, H € X. Theng-H = gHg™ ' <G
(fora,be gHg ', a = ghg',b=gh'g~t = ab= g(hh')g~'.)

4. Translation on elements of G. X = G, g - x = gx.

Theorem 1.6.3 (Cayley’s Theorem). Every group is isomorphic to a permutation group.

Proof. Let the set X be G with action by translation (see example 1.6.2). The the homomorphism we
constructed above

¢:G— Sy
g'_’(bg

gives an isomorphism by restricting Sx to Im(¢): it is automatically surjective. Injectivity is becasue:
Gg=¢n <= YreG, ¢g(x) = pn(z) <= gr=hr < g=nh
where the last step is due to cancellation law of the group. O
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Definition 1.6.4. Suppose G acts on X,z € X. Then the stabilizer is defined as
Gy :={geG|gx=xa}

It is a subgroup of G because

e ec Gy

1 1

s geGytheng-z=2=2=g"' (g-2)=g ' 2=g'eq,.
* 9,9 €G. = (99') v =g(g'z) = gv = x.
Definition 1.6.5. We also define an orbit of X.

O,={gx|geG}c X

Note: = ~ y if y € O, so y = gx for some g. Thus, any two orbits are either equal or disjoint, and they form
a partition of X.

Example 1.6.6. For Example 1.6.2 above, the stabilizer and orbit are
1. Trivial action. O, = {z}. G, = G.

2. Conjugation on elements of G. O, = {grg~! | g € G}, the conjugacy class of x in G. G, = {g € G |
gr = zg} = N(z) < G, the normalizer of z.

3. Conjugation on subgroups of G. Oy = all subgroups conjugate to H, Gy = {g€ G | gHg ' = H} =
{9€ G| gH = Hg} = N¢(H), the normalizer of H in G. Note that H < Ng(H) < G and is the largest
subgroup of G in which H is normal. Also, H <G < Ng(H) =G

4. Translation on elements of G. O, = {gz | g€ G} = G. G, = {g€ G | gz = z} = {e}
Remark 1.6.7. For a subset S of group G, one can define its centralizer as
Ca(S)={9eG|VseS, gs=sg}
and its normalizer as
Na(S) ={ge G |gS = Sg}.

We note that the condition in the normalizer is weaker, so C¢(S) € Ng(S). If S = {x} is a singleton, then
the two definitions give the same set, as in Example 1.6.6 (2).

The proof of the following lemma is straightforward:
Lemma 1.6.8. Let N be a normal subgroup of G. Then
1. If N contains an element z, then it contains the conjugacy class C(z) of z.
2. N is a union of conjugacy classes.
3. The order of N is the sum of the orders of the conjugacy classes that it contains.

Definition 1.6.9. For group G, the center of G, Z(G), is the set of elements in G commuting with all
elements in G:
Z(G)={9eGlVg' € G, g9’ = ¢'g}

That is, Z(G) = Cg(Q).
Proposition 1.6.10.
* Observe that S; € So = C¢(S2) € Cg(S1), s0 VS € G, Z(G) = Cq(G) < Cg(S). In particular,
Z(G) € Ce({zr}) = Ng({z}) = N(x) for an element z € G.

35



Math 5031-32 Algebra Anthony Hong

* Z(G) = G < @ abelian
s Z(G)<G

Proof. The first and second statement are trivial.
Z(G)<G:e€Z(G). ge Z(G)=g '€ Z(G)as g'g~' =g "¢, and if g1, g2 € Z(G) then g1g29' = 919’92 =
9'(9192) 50 g192 € Z(G).

Z(G) 4 G: let g € Z(G) and h € G. We want to show that hgh~! € Z(G). hgh™tg' = hh~lgg’ = gg' but
g’@h’1 = g’@h’1 = ¢'g. Since hgh™'¢’ = g’hgh™! we see g¢' = ¢'g. O

Example 1.6.11. Z(S,,) = {e},n > 3. This is a nontrivial fact. Z(A,,) = {e},n > 4. That’s because for n > 5,
A,, is simple but Z(A,,) 9 Z(A,) = {e} or Z(A,,) = A,,. For n = 4, find an element not commuting with any
element in the Klein-four group V.

Theorem 1.6.12 (Orbit-Stabilizer Theorem). Let X be a G-set, then Vx € X,
|0s| =[G : Go], or |G| = |0,||Gal

where we note that G, < G as we showed when defining it.

Proof. For the point x, we define

¢: O, = {gz|g € G} — {all left cosets of G}
gz — gG,

Injective: ¢G, = ¢G, <= g ¢ €G, ={geCGlgr=12} < g o =2 < gz =42
Surjective: clear.

Therefore, [G : G| = {all left cosets of G,.}| = |O,| O

Example 1.6.13. If G acts on the set X of its subgroups, {H | H < G}, then by example 1.6.6, we have
Op = the set of all subgroups conjugate to H and Gy = Ng(H). Orbit-stabilizer theorem then says
|Ox| =[G : Ng(H)]. Also notice that |H| divides |N¢(H)|, and |Ng(H)| divides |G|.

Lemma 1.6.14. An observation: an element z of group G is in the center if and only if its centralizer Cg(x)
is the whole group G, and this happens if and only if the conjugacy class C'(z) consists of the element z
alone. In symbols,

2€Z(G) = Cg(x) =G < Cr)==x

Example 1.6.15. Class Formula is obtained by letting GG acts on G via conjugation. If x € X = G, by

example 1.6.6, we have stabilizer G, = N(z) and orbit O, = C(z). Since orbits O, give a partition of

orb-stab thm
X = G, we see |G| = D gictinct orbits | Oz == Ddistinct orbits |G : Gz]- Also, due to Lemma 1.6.14, we can

write that summing all distinct conjugacy classes with more than 1 element:

|Gl =Z(G)+ |Ci]+ -+ |Ckl 1.4
—_——

distinct conj classes with size>1
Corollary 1.6.16. If |G| = p", p prime, then Z(G) # {e}.
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Proof. By equation (1.4), we see, if Z(G) = {e}, we get

pr=1+ |Ci|+---+|Cy]
—_—

distinct conj classes with size>1

Each |C;| = |G|/|G.| is a divisor of |G| = p", i.e., powers of p, but excluding p° = 1 since the size of conjugacy
classes in above summation is greater than 1. This implies that

p" — sum of some multiples of p greater than 1 = 1,

so p|1, a contradiction. Thus, Z(G) # {e}. O

Corollary 1.6.17. If |G| = p", then G is not simple.
Proof. The center Z(G) is a nontrivial normal subgroup by corollary 1.6.16 and proposition 1.6.10. O
Corollary 1.6.18. If |G| = p?, then G is ableian.

Proof. If G is not abelian, then |Z(G)| = p, so Z(G) is proper subgroup of G. Pick a € G — Z(G), then
N(a) = {b|ab = ba} # G. However Z(G) is proper subgroup of N(a) and N(a) proper subgroup of G, a
contradiction (a in N(a) but not in Z(QG)).

[1] 7.3.4 claims that G with |G| = p? is either cyclic or a product of two cyclic groups of order p. O
Corollary 1.6.19. If |G| = p", then G is solvable.

Proof. Proof by induction on r, r = 1 true.

Suppose this holds for 1, ..., — 1. Consider Z(G) <G and Z(G) # {e}. Here |Z(G)| and |G/Z(G)| are powers
of p. So by hypothesis, Z(G) and G/Z(G) are solvable —> G also solvable. O

Definition 1.6.20. An action G —~ X is transitive if there is only one orbit, O, = X. Equivalently, Vz,y € X,
dgeGs.t.g-x =uy.

Definition 1.6.21. An action G —~ X is faithful or effective if there is only the identity e € G that fixes
all z € X (ie. Vo € X, g-2 = z implies g = e). This is equivalent of saying that the homomorphism
¢ : G — Sx;g9 — ¢4 is injective or that ¢ is a monomorphism. If X; and X, are left G-spaces, a mapping
f: X1 — Xs is called G-equivariant, or simply a mapping of left G-spaces, in case

flg-z)=g-(fz)

for any g € G and z € X;. A G-equivariant map f : X; — X» is called isomorphism of left G-spaces
in case there exists another G-equivariant map f’ : X — X; such that f'f = idx, and ff’ = idx,.
This is equivalent to the condition that f be one-to-one and onto. This definition of isomorphism is the
natural one in this context. The reader should note that it is sometimes possible for a group G to operate
in several different, nonisomorphic ways on a given set E. As usual, an automorphism of a G-space is a
self-isomorphism.

Theorem 1.6.22 (Burnside’s Lemma). If G, X finite, X is a G-set, then the number of orbits of the action
G~ Xis ﬁ 2gec [Fyl, where Fy is the set of elements of X fixed by g.

Proof. Consider S = {(g,z) |gz = x} ¢ G x X. We can count S in two different ways.
1. Vg € G, there are |Fy| elements fixed by g so [S| = X} . [Fyl-

2. Vx € X, there are |G| elements fixed in x, which equals |G|/[O.] by the orbit-stabilizer theorem.
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So

2,17l = 2, ||0Gx||

geG zeX
—e | A
10z, | 0z, |
the same
1
= |G| 5710w

distinct orbits Oy, ,0y, -,

= |G| x num distinct orbits

where for the third equality we notice that O, = O,, exactly when z and y are both in the same orbit. Thus
when going through all X, those in the same orbit will have the same 1/|0,| and there are in total |O,| of
them having this same 1/|0,|. O
Corollary 1.6.23. If G acts transitively on X, and |X| > 1, then there is g € G such that F, = @.

Proof. Burnside’s Lemma gives |G| = >} .o [Fo| = Fe + 2. |Fyl-
IfVg, |F,| = 1, then |G| = | X]| + ]

1.6 EXERCISES

1. [9][p.45 ex3.5] Prove that Z (G x --- x Gy) = Z (G1) x -+ x Z (Gp).

gee [Fgl = | X[ + (|G| = 1) = [X] < 1, a contradiction. O

2. [9][p.45 ex3.6]

i. Prove, for every a,z € G, that Cg (aza™)

= aCg(x)a™t.
ii. Provethatif H < G and h € H, then Cy(h) =

Ce(h) n H.

3. [9][p.45 ex3.9]

i. Prove that Ng (aHa™') = aNg(H)a .

ii. If H<K <G,then Nx(H) = Ng(H)nK.

iii. If H, K < G, prove that Ng(H) n Ng(K) < Ng(H n K). Give an example in which the inclusion is
proper.

1.7 Sylow Theorems

Definition 1.7.1. A group G is a p-group if |G| = p". Since ord(a) | p", we see Ve # a € G, a is some multiple
of p that is not 1, so p | ord(a). And if |G| = p"m, gcd(m,p) = 1, H < G, then H is a called a p-subgroup if
|H| = p®, and H is a Sylow p-subgroup if |H| = p".

Using number of elements to define a subgroup need to be justified by an existence proof, because usually
we define subgroup by some form like {g € G | p(¢g)} where p(-) is a statement. This existence proof is the
content of the first Sylow theorem.

Theorem 1.7.2 (First Sylow theorem). Suppose |G| = p"m, r > 1, ged(p,m) = 1. Then G has a subgroup of
size p® forany 0 < s < r.
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Lemma 1.7.3. If G is abelian and p ] |G|, then G has an element of order p and thus a subgroup of order p.

Proof. Induction on order of G. If |G| = p, there is nothing to prove. Suppose |G| > p, Lete # a € G,t =
ord(a). Then H = {a) = {e,a, - ,a'"'} < G, so p"m = |G| = |H|[G : H] =t - k. There are two cases:

1. pr’t, then ‘<a%>‘ =p.

2. Otherwise, let n = |G|,n = tn' sop |n' = |G/H| < n . So, by induction hypothesis, G/H has subgroup
of order p, so has an element b of order p. Consider the canonical projection ¢ : G — G/H, so if
¢(b) = b, then p ] ord(b). So we can apply case 1 to b and get a subgroup of order p due to the following
remark.

O

Remark 1.7.4. If ¢ : G — G’ is a group homomorphism and g € G and ord(¢(g)) | ord(g), so g™ = e —
——

m

#(g)™ =e. (a¥ = e = ord(a) | k)
Proof of theorem. Recall that class formula states that when G acts on G by conjugation, |G| = |Z(G)|+>[G :
G. ], summing over distinct orbits with more than 1 element.

Fix p induction on G. If |G| = p, we are done. Now, let’s have two cases where (1) p||Z(G)| and (2) p
doesn’t divide |Z(G)|.

In case 1, by lemma, Z(G) has subgroup H of order p. Since H < Z(G) and Z(G) <G, we get H JG so G/H
is a group of size p"~!m. So by induction hypothesis G/H has a subgroup of order s for all 0 < s < r — 1.
Any subgroup of G/H is K/H for H < K < G. So |H| = p,|K/H| = p* = |K| = p**!. So this holds for
I<s+1<r.

In case 2, G is not abelian, and we make two subcases.
1. Suppose Vz ¢ Z(G),p|[G : G,]. This case is not possible since p | |G| and p doesn’t divide Z(G)

2.3z € Z(G),p 1[G : Gz] = |G|/|G2| = p"||Ge|, and |G,| < |G|. By induction hypothesis, G, and
therefore G has a subgroup of p*,0 < s < 7.

O

Theorem 1.7.5 (Second Sylow theorem). If p| |G|, then
1. Every p subgroup is contained in a Sylow p-subgroup.

2. Any two Sylow p-subgroups are conjugate.

Proof. Assuming proposition 1.7.6, we can show the two claims.
Part 1: |gPg~!| = |P| (this is because gPg~! — P; k — g~ 'kg gives an inverse of the map P — gPg~'; k —
gkg™1), so the conjugate is also a Sylow p-subgroup.

Part 2: P, P’ Sylow p-subgroups, then 3g s.t. P’ < gPg~'. Then |gPg~!| = |P|=p" and |P'|=r = P' =
gPg~1. O

Proposition 1.7.6. If H is a p-subgroup and P is a Sylow p-subgroup, then H is contained in a conjugate of
P:3ge G, H < gP 1y
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Proof of the proposition. Let S be the set of conjugates of P and H acts on S by conjugation, so that h -
gPg™! := hgPg~'h™'. Then S = ¥ ince orbics |Os| = number of fixed points + Y. cince wy size=1 |Os|-

Now the goal is to show that there 3 a fixed point. Since |O| = [H : H,] and |H| = p®, then p||O,|.

Here, |S] = [G': No(P)] — |S| =zl Since P <A N(P) < G and p' | [NG(P)|, T get p { S| and so
p" | ING(P)I.

Let gPg~! be a fixed point. Then Vh € H hgPg~'h™! = gPg™! = P = g 'h 'gPg'hg — P =
g th~lgP(g7'h 1g)"! = g 'hlge Ng(P). SoVYhe H = g 'Hg < Ng(P).

Let K = g"'Hg, K, P < Ng(P) and P < Ng(P).

So by the second isomorphism theorem, KP/P ~ K/K n P = |KP| = N;‘f}g" and |[K P|||G|, and |P||K|

isapowerofp=>%=1=K§P=>g_1Hg§P=>Hgng_l. O

Theorem 1.7.7 (Third Sylow theorem). Suppose |G| = p"m and ged(p, m) = 1. If s = number of p-Sylow
subgroups, then s |m and s = 1(mod p).

Proof. By part 2 of the second Sylow theorem, s = number of all conjugates of P = [G : Ng(P)], and
[G - Na(P)]|IG].

To show s = 1(mod p), let H = P from proof of the proposition, so that s = number of fixed points + a
multiple of p

If gPg~! is a fixed point, then by the proof P < gPg~!, but |P| = |gPg~!| so P = gPg~!. So only one fixed
point => s = 1(mod p). O
Corollary 1.7.8. As a corollary of second Sylow theorem, we see a group G has only one Sylow p-subgroup
H if and only if that subgroup is normal. In symbols, s = 1 «— VYge G, gPg ' = P «— P<QG.
Corollary 1.7.9. If |G| = pq where p, g are distinct primes and p # 1(mod ¢) and ¢ # 1(mod p). Then G is
cyclic.

Proof. Let r; be the number of Sylow p-subgroups and r, be the number of Sylow g-subgroups. Then
T |pq,7"1 =1 mod p = 7, =1, and similarly r, = 1

If H,, Hy < G with |H;| = p and |Hs| = g, then by the note, Hy, Hy < G.

Hy = {e,a,...,a’"'} = (a),Hy = {e,b,....,09" 1} = (b). For aba=! € Hy and ba~'b~! € Hy, aba"'b~! €
Hy n Hy = {e} = ab=ba = ord(ab) € {1,p,q,pq}. So (ab)? = aPbP =P # ¢ = ord(ab) = pqg =
G = {ab). O

Example 1.7.10. |G| = 33 = 3 x 11. 3 — 1 = 2 is relatively prime with 11; 11 — 1 = 10 is relatively prime
with 3. Therefore, G =~ Z33 due to above corollary.
Several observations in summary:
1. Any abelian group is solvable.
2. group with prime order is cyclic, abelian, and thus solvable.
3. group with prime order is simple (see Example 1.5.2).
4. A simple group is solvable iff it is abelian.
Our goal is to show the following theorem:

Theorem 1.7.11. Any group of order < 60 is solvable (note that |A5| = 60).
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Our plan:

(1) G prime order ObS:@) we're done.

(2) G not prime order. We want to find a nontrivial N < G (which also gets us non-simplicity) such that
N,G/N are solvable, which then implies that G is solvable due to Proposition 1.5.15.

Proposition 1.7.12. If |G| = n and p is the smallest prime divisor of n and H < G has index p, then H < G.

Proof. If p = 2, this is proved before ([G : H| = 2 is the smallest prime and index-2 subgroup is normal).
Suppose H €9 G. Then thereisge G s.t. gHg ! # H. Let K = gHg™ ' < G.

By product formula, |H K| = |H| %ll{\’ where the latter fraction is an integer which divides | K| = [gHg™!| =
|H| = p and so divides |G| = pm. Then either ‘Hlfkl =1or ‘Hlfkl = p.

For the firstcase, Hn K = K — KCc H — gHg '€ H — ¢gHg ' = H, not true.

For second case, |[HK| = p|H| = |G| = HK = G = g ! e HK = HgHg™'. So for some
h,hW e Hhgh =e — g=h"'R'e H — gHg~ ' = H, a contradiction. So H < G. O

Corollary 1.7.13. If |G| = pq", and p, g are distinct prime and p < ¢. Then G has a nontrivial normal
subgroup.

Proof. By First Sylow theorem, there is a Sylow ¢-subgroup H, so [G : H| = p. H is normal from the previous
corollary. 0

Corollary 1.7.14. If |G| = pq, p # ¢, then G has a non-trivial normal subgroup.

Proposition 1.7.15. If |G| = pq?, and p, ¢ are distinct prime, then G has a non-trivial normal subgroup.

Proof. If p < ¢q, we are done by previous corollary.
So if p > ¢, let r be the number of Sylow p-subgroups and s be number of Sylow ¢ subgroups.
Goal is to show that » = 1 or s = 1 since the only Sylow subgroup is normal (corollary 1.7.8).

Since r =1 mod p,r||G| = pi® = r‘qQ. So either r = 1,7 = ¢,r = ¢%. If »r = 1, we are done. r = ¢ is
impossible since ¢ = 1(mod p) and p ] q—1butp > q. Thusr = ¢°.

Because s =1 mod q,s|\G\ :qu,wesees|p = s=1o0rs=p. If s =1, we are done. So assume s = p.

Then we have ¢? subgroups H; of order p and p subgroups K; of order ¢2. Consider H, n H,. It is a subgroup
of H, and H, and thus |H; n Ho| } |Hi|=p = |HinHs| =1orp,so H nHy = {e} or Hy = H,. Similarly,
|K1 n Hil[|Hi| =p = |Kin Hi|=1orpand |K, n Hi|||Ki| = ¢> = |Kin Hi|=1,q,o0r¢so
|Hy n Kq| =1and Hy; n K; = {e}. Then |G| > 1+ ¢*(p— 1) + (¢*> — 1) (element e, which contributes to 1, is
in the common intersection of the Sylow groups. We notice that while we know all the Sylow p-subgroups
only have trivial intersection, so each of them contributes p — 1 distinct elements. We also know that at
least one Sylow g-subgroup contributes ¢> — 1 elements distinct from those already contributed by those
p-subgroups. We don’t know, however, if Sylow g-subgroups intersection trivially, so we only add (¢* — 1)
instead of p(¢? — 1)). Accidentally, the RHSis 1 + ¢*(p— 1)+ (¢* — 1) =1+ ¢*p—* +¢* — 1 = ¢*p = |G|
attaining the equality to the LHS, so s = 1, and we are done. O

Proposition 1.7.16. If |G| = pgr where p,q,r are distinct prime numbers, then G has a normal Sylow
subgroup.
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Proof. We assume p < ¢ < r and let n, = # of p-Sylow subgroups; n, = # of ¢-Sylow subgroups; n, = # of
r-Sylow subgroups. Sylow’s theorem gives n,. | pg, n,, = 1(modr). If n,, = 1 then we’re done. n, cannot be p
or ¢ because ¢ < r and p < r, so n, = pq. Sylow’s theorem gives n, | pr,n, = 1(modg). If n, = 1 then we’re
done. n, cannotbepasp—1<g= ¢g{p— 1,50 ny = r or pr. Sylow’s theorem gives n,, | gr, n, = 1(modp).
If n, = 1 then we're done. n, = q,r, or gr.

We can count by separating the common identity e. Because intersection of subgroups of prime order is
a subgroup of each and divides both primes, we see the intersection can only be e if we assume the two
subgroups are not the same (to rule out the case that they have the same prime order). Then n, = pg,n, > r,
and n, > ¢ provide a lower bound of |G| :

G =14 n,(r—1) +ny(qg—1) +ny(p—1)
=1+pg(r—1)+r(g—1)+q(p—1)
=pqr+ (r—1)(g — 1) > pgr
which is a contradiction. Thus either n, # pg = n, = 1 (we’re done) or n, < r = n, = 1 (we’re done) or
ny < g = np, = 1 (we're done). O
Corollary 1.7.17. Group with order |G| = 30 = 2 x 3 x 5 has a normal Sylow subgroup.

Corollary 1.7.18. Every group of size n < 30 which is not of prime order is not simple.

Proof. We recall three rules: we have a nontrivial normal subgroup N < G if
1. |G| = pq with p # ¢ (due to Corollary 1.7.14);
2. |G = pq? (due to Proposition 1.7.15);
3. |G| = p" (due to Corollary 1.6.17).

Now apply rule 1 to the following group orders:
6=2%x3,10=2x514=2x7,15=3x521=3x7,22=2x11,26=13x2
Apply rule 2 to the following group orders:
12=22x3,18=2x3220=22x5,28=22x7
Apply rule 3 to the following group orders:
8=2%9=3%16=2% 271=3°

There are only two without being checked: |G| = 30 and |G| = 24. The |G| = 30 case is checked by Corollary
1.7.17. We show that group with order 24 has a non-trivial normal subgroup as well now:

Note that 24 = 23 x 3. Let r be the number of Sylow 2-subgroups and s be the number of Sylow 3-subgroups.

r = 1(mod 2) )= 1, so we have normal subgroup
r | 3 r=3

So assume r = 3, and we have Sylow 2-subgroups Hy, Ho, H3, |H;| = 8. Let S = {H;, Hs, H3} and G acts

on S by conjugation, i.e., g - H; = gH;g~".

So there is a homomorphism ¢ : G — Ss, the group of permuations of S.
Note that Ker(¢) < G and we calim that Ker(¢) # {e} or G, so Ker(¢) is the nontrivial normal subgroup

we want to find.
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* Kerg # {e}: |G| = 24, |S3] = 6 = ¢ not injective = Ker¢ # {e}

* Ker(¢) # G: Note that gH;G~! is still in S due to second Sylow theorem, so 3g € G s.t. gH19~ ! =
Hy = g-H; # H = ¢(g) # e, so there is some element in G that is not in the kernel of ¢.

O

We have finished half of proving that any group of order < 60 is non-simple and solvable. The remaining
orders are left as exercise below.

1.7 EXERCISES

1. Show that group of order 36 is non-simple by mimicing the proof for |G| = 24.

2. Show that group of order 48 is non-simple by mimicing the proof for |G| = 24.

3. Show that group of order 40 is non-simple by counting the number of Sylow 5-subgroups.
4

. Show that group of order 56 is non-simple by counting the contributions of distinct elements from each
Sylow subgroups.

i

Deduce that group of order < 60 is non-simple.

6. Deduce that group of order < 60 is solvable.

1.8 Products of Groups

1.8.1 Direct Product of Groups

Let G1, G be groups. Then Gy x G2 = {(g1,92) | g1 € G1, 92 € G2} with (g1,92) (g}, 9%) = (9191, 9295) is the
direct product of them. The identity element is (e;, e3) and the inverse of (g1,92) is (91,92) ™" = (97 %, 95 ).

Proposition 1.8.1. Let H and K be subgroups of a group G, and let f : H x K — G be the multiplication
map, defined by f(h, k) = hk. Its image is the set HK = {hk | he H, ke K}.

(a) f isinjective if and only if H n K = {1}.

(b) f is a homomorphism from the product group H x K to G if and only if elements of K commute with
elements of H : hk = kh.

(c) If H is a normal subgroup of GG, then H K is a subgroup of G.

(d) f is an isomorphism from the product group H x K to G if and only if H n K = {1}, HK = G, and
also H and K are normal subgroups of G.

It is important to note that the multiplication map may be bijective though it isn’t a group homomorphism.
This happens, for instance, when G = S5 and H = () and K = (yy where x = (12 3) and y = (1 2).

Proof.

(@) If H n K contains an element z # 1, then 27! isin H, and f (z7!,z) = 1 = f(1,1), so f is not
injective. Suppose that H n K = {1}. Let (hy,k1) and (ho, ko) be elements of H x K such that
hiky = hoks. We multiply both sides of this equation on the left by h;* and on the right by & *,
obtaining ki k; ' = hy 'hy. The left side is an element of K and the right side is an element of H. Since
HnK = {1},/{11]{151 = hflhg = 1. Then k; = ko, h1 = ha, and (hl, kl) = (hQ,kQ).
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(b) Let (h1,k1) and (hg, k2) be elements of the product group H x K. The product of these elements in
the product group H x K is (h1ho, k1ks), and f (hiha, ki1ks) = hihokike, while f (hy, k1) f (ho, ko) =
h1kihoks. These elements are equal if and only if hoky = ki hs.

(c) Suppose that H is a normal subgroup. We note that K H is a union of the left cosets kH with k in
K, and that HK is a union of the right cosets Hk. Since H is normal, kH = Hk, and therefore
HK = KH. Closure of HK under multiplication follows, because HKHK = HHKK = HK. Also,
(hk)~™t = k~'h~lisin KH = HK. This proves closure of HK under inverses.

(d) Suppose that H and K satisfy the conditions given. Then f is both injective and surjective, so it is
bijective. According to (b), it is an isomorphism if and only if hk = kh for all h in H and k in K.
Consider the commutator (hkh~1) k' = h (kh~'k~'). Since K is normal, the left side is in K, and
since H is normal, the right side is in H. Since H n K = {1}, hkh~'k~! = 1, and hk = kh. Conversely,
if f is an isomorphism, one may verify the conditions listed in the isomorphic group H x K instead of
in G.

O

Remark 1.8.2. In proof of (d), wesaw H n K = {1}, HL K <G <= Vhe H,ke K, hk = kh.
The condition Vh € H, k € K, hk = kh cannot be dropped. We give an example where G £ H x K.

Example 1.8.3. G = S35, H = {e,(1 23),(132)},K = {e,(12)}. HK = S3,H n K = {e}. But S5 »
Hx K ~ Zg X ZQ.

Example 1.8.4. One can use the above proposition to classify group of order 4 (a more elementary way is
to use the group table, as in Question 10). See [1] Proposition 2.11.5.

We generalize the proudct of two groups:

Let I be an index set. Let G;, ¢ € I be groups indexed by I. Then
nGi = {(Zi)ier ! z; € Gy}
iel

is the direct product of G;. It is a group with multiplicaiton («;);cs(y;i)ier = (ziyi)ier- For A;,i € I abelian,
we have the direct sum

@ A; = {(a;)ier | there are only finitely many non-zero a;} < 1_[ A;

el iel
which is an abelian group. For arbitrary groups G;, i € I, we can similarly define weak product as the set of
I-tuples of g; € G; with only finitely many non-identity entries.

Let I = {1,2,--- ,n},ie., I is finite, then P, ; G; = [ [,.; Gi. Obviously, for j = 1,...,n the embedding

el
Ej:ng’l_[Gi
iel
g—(1,...,1, g ,1,...,1).
——
j-th

is an isomorphism from G to
G7:={(91,.--,9n) | gi = 1 fori # j}.
For the subgroups G¥,...,G% of G :=[]
* GFdG,i=1,...,n

,c; Gii one has:
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Conversely, we have

* y —
j#Gj =1li=1,...,n.

Theorem 1.8.5. Let G be a group with subgroups G¥, ..., G} such that above three properties hold. Then

the mapping

n
a:[[GF—G; (91, .9n) > g1 gn
i=1

is an isomorphism.
Proof. See [6] 1.6.1.

Theorem 1.8.6. Let G = G x -+ x Gy,.
@ Z(G)=2Z(Gy) x - x Z(Gy).
®d) @ =G x---xG.

(c) Let N be a normal subgroup of G and N; = N n G;(i = 1,...,n). Suppose that N = Ny x --- x N,,.

Then the mapping
a:G=G x - xG, > Gy/Ny x--xG,/N,

given by
g=1(91,---:9n) = (91 N1,. .., gnNp)
is an epimorphism, with Ker o« = N. In particular

G/N =~ G1/Ny x -+ x Gp/N,
(d) If the factors Gy, ..., G, are characteristic subgroups of G, then
Aut G =~ AutGy x -+ x Aut G,,.
Proof. See [6] 1.6.2 for the rest.
Theorem 1.8.7. Let G be a group having normal subgroups Hy, - -- , H,. Then,

(@ IfG=<{J! ,H;yand, forall j,1=H; n (Uiz; Hi), then G = Hy x -+ x Hy,.

(b) If each a € G has a unique expression of the form a = hy ---h,, where each h; € H,;, then G

Hy x---x H,.
Proof. See [9] Exercise 2.75.

Here are two technical results about direct sums and products that will be useful.

I

Theorem 1.8.8 (Characteristic property of direct sum). Let G be an abelian group, let {A},_, be a family
of abelian groups, and let {ij, : Ay — G},_, be a family of homomorphisms. Then G =~ @, _, Ay if and only
if, given any abelian group H and any family of homomorphisms {fj : Ay — H : k € K}, then there exists a

unique homomorphism ¢ : G — H making the following diagrams commute (i, = f):

Ay — ™ @

Proof. See [9] Theorem 10.9.
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Theorem 1.8.9. Let G be an abelian group, let { A}, be a family of abelian groups, and let {i;, : A, — G},
be a family of homomorphisms. Then G = [ [, A if and only if, given any abelian group H and any family
of homomorphisms {f; : H — A, : k € K}, then there exists a unique homomorphism ¢ : H — G making
the following diagrams commute for all &:

Ay e— ™ @

P
///
T g

H
Proof. See [9] Theorem 10.10. O

Proposition 1.8.10.
(i) If G = @ A, prove that the maps iy : A, — G in Theorem 10.9 are injections.

(ii) If G =] A, prove that the maps pj, : G — Ay, in Theorem 10.10 are surjections.

Proof. See [9] Exercise 10.4. O

1.8.2 Semi-Direct Product of Groups

We proved in the second isomomorphism theorem that if K < G, H <G, then HK < G. Then K acts on H
by conjugation.
¢: K — Aut(H)
k= oy
where ¢, : h — H; h+— khk™!. It is easy to see that ¢ is a homomorphism.

Definition 1.8.11. Given two groups H and K and homomorphism ¢ : K — Aut(H), k — ¢;. Then
the set H x K with operation (h, k)(h', k") = (hor(h'), kk') is a group, denoted by H x K, the (external)
semi-direct product of H and K. The identity is (ey,ex), as (em,ex)(h, k) = (egde,(h), k) = (h, k).
(h,k)(em,ex) = (hon(er), kex) = (h, k). Inverse of (h, k) is (¢p-1 (R 1), k1), as (h, k) (-1 (h71),k71) =
(how(dr-1)(h~1),ex) = (em ex ).

Fact: If ¢ is the identity homomorphism ¢, = e on H, then H x K ~ H x K.

We have noted in last subsection that H x K contains copies H and K as normal subgroup. That is,
H x {e} 9 H x K,{e} x K < H x K. We show that this is also the case for semi-direct product:

Proposition 1.8.12. Let H and K be groups with ¢ : K — Aut(H) a homomorphism. Then the natural
function from H to H x K sending h to (h, e) is an injective group homomorphism and its image is a normal
subgroup of H x K.

Proof. Let f : H— HxK;h — (h,ex) be the function. We show that it is an injective group homomorphism.

It is a homomorphism: let a, b € H.
f(a)f(b) = (a,ex) (b ex) = (age, (b), exex) = (ab,ex) = f(ab)
It is injective: let f(h) = (en, ek ).
f(h) = (a,ex) = (en, ex) = h = en = Ker(f) = {en}
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The image of f is
Im(f) ={f(h) :he H} = {(h,ex),he H} = H x {ex}

We show that H x {ex} < H x K : let (a,b) € H x K. Then (a,b)™* = (¢p-1 (a™!),b7") and

(a,b) (h,ex) (a,b)~" = (a,b) (h,ex) (¢p-1 (a™'),071)
= (adp(h),b) (dp-1 (a™') ,07") = (agp(h)dp (dp-1 (™)), b0~ ")
= (agp(h)de, (a™') ex) = (_a_ ou(h) ex) € H x {ex}

which shows that Im(f) = H x {ex} <H x K. O

Proposition 1.8.13. If H, K < G,H < G,H n K = {e},G = HK, then we call G (internal) semi-direct
product of H and K, as we can prove that it is isomomorphic to the externel semi-direct product of H and
K with respect to conjugation as the homomorphism k — Aut(H),k +— ¢y, ¢r(h) = khk™!

Proposition Proof. f: H x K — G, (h,k) — hk. To show f injective, f(h,k) =e = hk=e = h,k =e.
Check that it’s a homomorphism. O

Corollary 1.8.14. G = S3, H = {e,(1 2 3),(1 32)} = Z3, K = {e,(1 2) = Zo}. S3 ~ Z3 x Zy. Z3 has two
automomorphisms, id and f : @ — a? (a is the generator). Z, has two elements [0], [1] and should be sent

to {id, f}. [0] — id, so [1] — f.

1.8.3 Wreath Product of Groups
see Rotman [9] p.172.

1.9 Free Groups, Free Products, and Group Presentations

We copy almost verbatim from RotmanGroup p.343-349. and p.388-391.

Definition 1.9.1 (Characteristic property of Free Group). If X is a subset of a group F, then F' is a free
group with basis X if, for every group G and every function f : X — G, there exists a unique homomorphism
¢ : F — G extending f.

N
NP
N
\\
N

XTG

We call this characteristic property of free group.
We shall see later that X must generate F.

Observe that a basis in a free group behaves precisely as does a basis B = {v1, ..., v,,} of a finite-dimensional
vector space V. The theorem of linear algebra showing that matrices correspond to linear transformations
rests on the fact that if W is any vector space and ws,...,w,, € W, then there exists a unique linear
transformation 7' : V. — W with T (v;) = w; for all 4.

The following construction will be used in proving that free groups exist. Let X be a set and let X! be a
set, disjoint from X, for which there is a bijection X — X !, which we denote by x — z~!. Let X’ be a
singleton set disjoint from X U X ~! whose only element is denoted by 1. If x € X, then x! may denote z
and 2° may denote 1.
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Definition 1.9.2. A word on X is a sequence w = (ay, as, . ..), where a; € X U X! U {1} for all 4, such that
all a; = 1 from some point on; that is, there is an integer n > 0 with a; = 1 for all i > n. In particular, the
constant sequence

(1,1,1,..))
is a word, called the empty word, and it is also denoted by 1.

Since words contain only a finite number of letters before they become constant, we use the more suggestive
notation for nonempty words:

w=axe?. ..,
where x; € X,¢;, = +1,—1,0r 0, and ¢, = 1. Observe that this spelling of a word is unique: two sequences
(a;) and (b;) are equal if and only if a; = b; for all i. The length of the empty word is defined to be 0 ; the
length of w = z7*z5* ... 2% is defined to be n.

—&1

Definition 1.9.3. If w = z7* ... 25" is a word, then its inverse is the word w™=! = z,,*" ... 2]

Definition 1.9.4. A word w on X is reduced if either w is empty or w = z{*25? ... 25", where all z; € X, all

g; = =1, and x and 27! are never adjacent. The empty word is reduced, and the inverse of a reduced word
is reduced.

Definition 1.9.5. Definition. A subword of w = z{'z5*... 25" is either the empty word or a word of the
form v = x5 ...azjj,where 1<i<j<n.

Thus, v is a subword of w if there are (possibly empty) subwords w’ and w” with w = w'vw”. A nonempty

word w is reduced if and only if it contains no subwords of the form x¢z~¢ or 2°.

There is a multiplication of words: if

_ .€1,.62 En _ ,01,02 §
w=2x7'25’ ..., u=Y7 Yy .y,

then wu = 25252 ... 257 y$y3? ... y®» . This multiplication does not define a product on the set of all reduced

words on X because wu need not be reduced (even when both w and u are). One can define a new
multiplication of reduced words w and u as the reduced word obtained from wu after cancellations. More
precisely, there is a (possibly empty) subword v of w with w = w'v such that v=! is a subword of v with

u = v~ 1u” and such that w'v” is reduced. Define a product of reduced words, called juxtaposition, by

wu = w'u”.

Theorem 1.9.6. Given a set X, there exists a free group F with basis X.
Proof. See [9] Theorem 11.1. O
Corollary 1.9.7. Every group G is a quotient of a free group.

Proof. Construct a set X = {z,: g€ G} so that f : z, — g is a bijection X — G. If F is free with basis
X, then there is a homomorphism ¢ : F' — G extending f, and ¢ is a surjection because f is. Therefore,
G = F/ker ¢. O

1.9.1 Group Presentations

Definition 1.9.8. Let X be a set and let A be a family of words on X. A group G has generators X and
relations A if G ~ F/R, where F is the free group with basis X and R is the normal subgroup of F' generated
by A. The presentation of G is denoted as (X | A).
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A relation r € A is often written as » = 1 to convey its significance in the quotient group G being presented.

There are two reasons forcing us to define R as the normal subgroup of F' generated by A : if r € A and
w e F, thenr = 1in G implies wrw~' = 1 in G; we wish to form a quotient group.

Example 1.9.9. G = Zg has generator z and relation #% = 1. A free group F' = (x) on one generator is
infinite cyclic, and (x)/(x%) ~ Zg. A presentation of G is (z | z°).

Another presentation of Zg is Zg = {(z,y | 2° = 1,4* = 1, zyx 1y~ !

the relator makes the group abelian.

= 1). The inclusion of a commutator as

Example 1.9.10. A free abelian group G with basis X has presentation
G=(X|ayz 'y ' =1forallz,ye X);
a free group F with basis X has presentation

F=(X|2)=(X).

Example 1.9.11. X = {z,y}, then F = {zFiy™ ... ghnym™

Ty kn € Z,n > 0}.

Proposition 1.9.12. Let GG be a free group generated by z,y. G is finitely generated, H < G generated by
{yzy~ ', y2xy=2,y2xy~3,...}. Then H is not finitely generated.

Theorem 1.9.13. Let F' and G be free groups with bases X and Y, respectively. Then F' = G if and only if
(X]=1Y].
Proof. See [9] Theorem 11.4. O

Definition 1.9.14. The rank of a free group F' is the number of elements in a basis of F'.
Above theorem says that the rank of ' does not depend on the choice of the basis.

Corollary 1.9.15. If F is free with basis X, then F is generated by X.
Proof. See [9] Corollary 11.5. O
Theorem 1.9.16 (Nielsen-Schreier). Every subgroup H of a free group F is itself free.

Proof. See [9] Theorem 11.44. O

1.9.2 Free Abelian Groups

Definition 1.9.17. A Free abelian group F is a direct sum of infinite cyclic groups. More precisely, there is
a subset X c F of elements of infinite order serving as its basis, i.e.,

F=®@x=P

zeX zeX

We allow the possibility X = &, in which case F' = 0.

It is easy to see that if X is a basis of a free abelian group F, then each u € F' has a unique expression of the
form u = >, m,x, where m,, € Z and m, = 0 for “almost all” z € X; that is, m, % 0 for only a finite number
of x.

The following theorem justifies “freeness” of the free abelian group (compare to characteristic property of
free group where G is arbitrary. G is instead abelian in the following proposition.)
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Proposition 1.9.18. Let F be a free abelian group with basis X, let G be any abelian group, and let f : X —
G be any function. Then there is a unique homomorphism ¢ : F' — G extending f; that is,

o(z) = f(z) forall zelX.

Indeed, if u = > m,x € F, then o(u) = > m, f(u).

Proof. If u € F, then uniqueness of the expression u = >, m, 2 shows that ¢ : u — > m, f(u) is a well defined
function. That ¢ is a homomorphism extending f is obvious; ¢ is unique because homomorphisms agreeing
on a set of generators must be equal. O

As analogs of Corollary 1.9.7 and theorem 1.9.13, we have

Corollary 1.9.19. Every abelian group G is a quotient of a free abelian group.
Proof. See [9] Corollary 10.12. O

Theorem 1.9.20. Too free groups F' = P, x(v) and G = @,y (y) are isomomorphic if and only if
(X|=1Y]. '

Proof. See [9] Theorem 10.14. O

Definition 1.9.21. The rank of a free abelian group is the cardinal of a basis.

It is clear that if F' and G are free abelian, then
rank(F @ G) = rank(F) + rank(G),

for a basis of F'@® G can be chosen as the union of a basis of ' and a basis of G.

Remark 1.9.22. Exercise 11.46 and Theorem 11.6 of Rotman show that a group is free iff it has the projective
property. This is the same case for the free abelian group. However, as we have noted, free abelian groups
are not free groups (The only free abelian groups that are free groups are the trivial group and the infinite
cyclic group). To see that the projective property for abelian group defines the free abelian group, we may
note that a free module is projective and free abelian group is a free Z-module. A projective module is free
when R is a principal ideal domain like Z.

As an analog of Theorem 1.9.16, we have

Theorem 1.9.23. Every subgroup H of a free abelian group F of rank n is itself free abelian; moreover,
rank(H) < rank(F).

Proof. See [9] Theorem 10.18. O
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1.9.3 Free Products

We now generalize the notion of free group to that of free product. As with free groups, free products will be
defined with a diagram; that is, they will be defined as solutions to a certain "universal mapping problem.”
Once existence and uniqueness are settled, then we shall give concrete descriptions of free products in terms
of their elements and in terms of presentations.

Definition 1.9.24. Let {4, : i € I} be a family of groups. A free product of the 4, is a group P and a family of
homomorphisms j; : A; — P such that, for every group G and every family of homomorphisms f; : 4; — G,
there exists a unique homomorphism ¢ : P — G with ¢j; = f; for all :.

P

Ai T> G
One should compare this with Theorem 1.8.8, the analogous property of direct sums of abelian groups.

Lemma 1.9.25. If P is a free product of {A4; : i € I}, then the homomorphisms j; are injections.

Proof. For fixed ¢ € I, consider the diagram in which G = A;, f; is the identity and, for k # 4, the maps
fr : A — A; are trivial.

P

j.
/9@

Ai #} Ai
Then ¢j; = 14,, and so j; is an injection. O

In light of this lemma, the maps j; : A; — P are called the imbeddings.

Example 1.9.26. A free group F is a free product of infinite cyclic groups. If X is a basis of F, then (z)
is infinite cyclic for each = € X; define j, : () — F to be the inclusion. If G is a group, then a function
f : X — G determines a family of homomorphisms f, : {(z) — G, namely, 2™ — f(x)". Also, the unique
homomorphism ¢ : F — G which extends the function f clearly extends each of the homomorphisms f;
that is, ¢j, = f, forall z € X.

Here is the uniqueness theorem.
Theorem 1.9.27. Let {A; : i € I} be a family of groups. If P and @ are each a free product of the A;, then
P=~Q.

Proof. Let j; : A; — P and k; : A; — @ be the embeddings. Since P is a free product of the A;, there is a
homomorphism ¢ : P — @ with ¢; = k; for all <. Similarly, there is a map v : Q — P with k; = j; for all .

P
27
A — Q

ki

Consider the new diagram.



Math 5031-32 Algebra Anthony Hong

Both ¢y and 1p are maps making this diagram commute. By hypothesis, there can only be one such map,
and so 1 = 1p. Similarly, ¢3) = 1¢, and so ¢ : P — @ is an isomomorphism. O

Because of Theorem 11.50, we may speak of the free product P of {4; : i € I'}; it is denoted by
P = skierA;
if there are only finitely many A; ’s, one usually denotes the free product by

Al**An

Theorem 1.9.28. Given a family {A; : i € I} of groups, a free product exists.
Proof. See [9] Theorem 11.51. O

For more theories, including the Van Kampen theorem, see Rotman [9] or an algebraic topology text.

1.9.4 Todd-Coxeter Algorithm
See RotmanGroup [9] p.351 or Artin [1] 7.11.

1.10 Abelian Groups

There are two remarks greatly facilitating the study of abelian groups. First, if a,b € G and n € Z, then
n(a + b) = na + nb (in multiplicative notation, (ab)” = a™b", for a and b commute). Second, if X is a
nonempty subset of GG, then (X) is the set of all linear combinations of elements in X having coefficients in
Z.

Definition 1.10.1. If G is an abelian p-group for some prime p, then G is called a p-primary group.

Theorem 1.10.2 (Primary decomposition). Every finite abelian group G is a direct sum of p-primary groups.

G= @ G,

p; prime
where G, is the set of all elements a in G such that ord(a) is a power of p, i.e., 3r > 1, p"a = 0.
Proof. One may see Rotman [9] Theorem 6.1 (which has many references to results in the book). We give a
proof here.
Let ¢ : ®p prime A(p) — A is homomorphism, (z,) — > x, € A.

¢ surjective: a € A,ord(a) = m = pi*---pi», p; distinct prime. Then proceed by induction on n. If n = 1,
then ord(a) = pi* = a € A(p) = a €Im(¢). Then for n, ord(a) = pi* ---pjr < api*---pi» =0. So
since pY - --p," ' and p'» coprime, 3s,t € Z s.t. sp ---p," | +tpln =1, aspl - p. "+ atplr = a. Since the
two numbers are in Im ¢, their sum is in Im(¢).

¢ injective: Suppose ¢((zo)) = 0, and 3¢, z4 # 0, then 3,2, =0 = g =—> _ Tp = Tg = —Tp, —...—
—zp,. ord(zp,) = pi' = pi' - Py (=wp, — o —@p,) =0 = q(py* - pir) =0 = ord(q) |py* - pir, @
contradiction. O
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= %, 50

Example 1.10.3. G = Q/Z, where G, = {$ + Z| ”TT“ € Z} for some r.Then ’DTT“ =c = =

={&+Z|ceZr =0}

SS]

Lemma 1.10.4. Let p be a prime. A group G of order p™ is cyclic if and only if it is an abelian group having
a unique subgroup of order p. Thus, If A is a finite abelian p-group which is not cyclic, then A has at least 2
subgroups of order p.

Proof. See Rotman [9] Theorem 2.19. O

Theorem 1.10.5 (Cyclic decomposition). A finite abelian p-group is a direct sum of cyclic groups (note that
subgroups of p-groups are necessarily p-groups due to Lagrange’s theorem, so these cyclic groups are also
primary).

Proof. Let a € A be an element of maximal order. We prove by induction on |A| that there is a B < A such
that A = {(a) ® B. This means that if By, By < A s.t. By n By = {0}.

If |A| = p, we are done.

Let ord(a) = p°. Then {(a) has a unique subgroup of order p. Let {(b) be another subgroup of order p in
A s.t. {a)y n {b) = {0}, which exists due to the previous lemma.

Consider A = A/{b), |A| = %‘ < |A|. Then there is @ = a + {b), an element of maximal order in A.

By the induction hypothesis, there is a B such that A = (@) ® B.
So B< A= A/a) = B = B/{a) for B < Awith{a) c By. Then 4 = {(a)® B. O

Corollary 1.10.6 (Basis Theorem). Due to Theorem 1.10.2 and Theorem 1.10.5, every finite abelian group
G can be written as

G~ Zp? (&) Zp;2 - Zpr"{n
We will only mention the following result. See its proof in [9] Theorem 6.13 and 6.14, with definitions of
elementary divisors, U, (n, G), and invariant factors.

Theorem 1.10.7 (Fundamental Theorem of Finite Abelian Groups). If G and H are finite abelian groups,
then G @ H <= for all primes p, they have the same elementary divisors <= they have the same
invariant factors.

We then come to the classification of finitely generated abelian groups. We first need a lemma to separate
the torsion and torsion-free parts of the abelian group. We have seen that for H, K < G, we have G x~
HxK < HKJG,Hn K = {1}, HK = G. For abelian gruoup G, H, K < G is automatic. Thus,
G2aH®K — HnK={0}, H+ K =G.

Lemma 1.10.8. If A is abelian and B < A such that A/B is a free abelian group, then there is a subgroup
C < Asuchthat A=B®Cand C =~ A/B.

Proof. Let {a; + B}ier be a basis for A/B. Let C = {(a;) < A, which is free and thus by Theorem 1.9.13 is
isomorphic to A/B. We claim that A = B® C"

(1). Bn C = {0} : Suppose >, .; \ia; € B, then }},_, \ia; + B = B. Thus, };
the 0 of A/B. Then, A\; = 0Vi.

(2). A=B+C: Ifae A thena+ B = },_;Ni(a+ B)in A/B, and a + B = },,_;(Nja;) + B. So
a—zx\iaieB:>aeB+C’. O]

el

Ai(a; + B) = B, where B is

iel

eC
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Another lemma will be used.

Lemma 1.10.9. Every subgroup of a finitely generated abelian group is finitely generated.

Proof. Let H < A, A = {aq, ..., an), and proceed by induction on n. If n = 1, this is cyclic so clearly true.

n—1 = n: Let B ={ay,...,an—1) < A. Then by induction hypothesis, H n B = {hq, ..., h,,_1) generated
by at most n — 1 elements.

Also, A/B =< a,, + B >.

H
HnB

Note that ££8 ~ H_ Since ZEB < 4 it is also cyclic, so

Heh == cyclic, generated by some (h,, + (H n
B)),hy, € H.

So H =< hy,..,h, >, | need to show that they actually generate H. If h € H, then h + (H n B) =
Ahin + (HAB) = h—Ahpe (HnB) = h—XAhy =37 Nhi = h=3" \hi. O
Definition 1.10.10. Let G be an ableian group. Then

* An element a € G is torsion if ord(a) is finite: In > 0,na = 0.

* tG is the set of torsion elements in G, tG < G since na = 0,mb =0 = nm(a +b) = 0.

* @ is torsion-free if tG = {0}.

* G is torsion if tG = G.
Example 1.10.11. Z is torsion-free. Z/m is torsion, and any finite abelian group is torsion.
Plan:

By applying Proposition 1.1.30 to the homomorphism ¢ : G — G/tG, we see G/tG = G/Ker(q) = Im(q)
is finitely generated if the abelian group G is finitely generated (note that G being abelian ensures ¢G is
normal). Now, Theorem 1.10.12 will show that G/tG is torsion-free. This has a series of consequences:

Theorem 1.10.13 then says G/tG is free abelian, thatis, G/tG ~ Z@®--- @ Z. Then Lemma 1.10.8 applies to
G to get

G=tG®F, F=G/tqG.

tG as a subgroup of finitely generated group G is finitely generated due to Lemma 1.10.9. This finitely
generated torsion group is then finite by Theorem 1.10.14. Therefore, Theorem 1.10.6 concludes that

tG == Zle @"‘@Zp%n.
Combine the two previous displayed equations to get

G%tG@F%ZpP @"'@Zp%n ~7@® - DZ.
Theorem 1.10.12. The quotient group G/tG is torsion-free.

Proof. If n(g + tG) = 0in G/tG for some n # 0, then ng € ¢tG, and so there is m # 0 with m(ng) = 0. Since
mn # 0, we see g € tG, and g + tG = 0 in G/tG. Thus, G/tG is torsion-free. O

Theorem 1.10.13. Every finitely generated torsion-free abelian group G is free abelian.
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Proof. We prove the theorem by induction on n, where G = (z1,...,z,). If n = 1 and G # 0, then G is
cyclic; G ~ Z because it is torsion-free.

Define H = {g € G : mg € (z,,) for some positive integer m}. Now H is a subgroup of G and G/H is torsion-
free: if x € G and k(z + H) = 0, then kx € H,m(kz) € {x,), and so z € H. Since G/H is a torsion-free
group that can be generated by fewer than n elements, it is free abelian, by induction. By Lemma 1.10.8,
G = F® H, where F ~ G/H, and so it suffices to prove that H is cyclic. Note that H is finitely generated,
being a summand (and hence a quotient) of the finitely generated group G.

If g€ H and g # 0, then mg = kz,, for some nonzero integers m and k. It is routine to check that the function
¢ : H— Q, given by g — k/m, is a well defined injective homomorphism; that is, H is (isomorphic to) a
finitely generated subgroup of Q, say, H = {a; /by, ..., a;/b;). It b = [[._, b;, then the map 1 : H — Z, given
by h — bh, is an injection (because H is torsion-free). Therefore, H is isomorphic to a nonzero subgroup of
7, and hence it is infinite cyclic. O

Theorem 1.10.14. Every finitely generated torsion abelian group is finite.

Proof. 1f ord(a;) = m;, and A = {ay, ...,ary = {n1a; + ... + npay |nl € Z} = {n1ay + ... + npay, | ny € 2,0 <
n; < m,;}, which is finite. O

Theorem 1.10.15 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely generated
abelian group G is a direct sum of primary and infinite cyclic groups, and the number of summands of each
kind depends only on G.

Proof. The first past is proved by our plan written before, i.e.,
G2tGOF ~ szl @ OLym 22D - DZL.

The uniqueness of the number of primary cyclic summands is precisely [9] Theorem 6.11; the number of
infinite cyclic summands is just rank(G/tG), and so it, too, depends only on G. O

Proposition 1.10.16. Free abelian groups are torsion-free

Proof. A = {a;). Suppose b # 0€ As.t. mb=0,b=>a; = mb=>Y(m\)a;, = mA=0 = b=0,
a contradiction. O

Example 1.10.17. Torsion-free abelian groups are not necessarily free. Consider Q as an example:

* Q is torsion-free: let 0 # p/q € Q. Suppose m(p/q) = 0. Then mp 2 om = 0. Thus, #m >
0 s.t. m(p/q) = 0. p/q is not torsion. tQ = {0}.

* QQ is not free: Any two nonzero rationals linearly independent, i.e., if a,b € Q, a # 0,b # 0, then
Im,n € Z — {0} s.t. na +mb = 0. So if Q were free, it would be free of rank 1 and hence cyclic.

1.11 Classification of Small Groups

For more on classification of small groups, see [9] Chapter4 p.82
By order,

2. Zy

3. Zs

4. L = Lo Do, 7Ly
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Ls

75 @ Zs3. Non-abelian: S3

L

78,2 @ Ly, Lo ® Zy @ Zo. Non-abelian: Dy, Qg

Lo, L3 ® Zs3

10. Z1¢ =~ Z5 @ Zy. Non-abelian: Ds

11. Z11

12, Zio 2 Zs ® Ly, 2 ® Lo = L3 ® Lo ® Zo. Non-abelian: Dg(= Zo x S3), Ag,Z3 x L4,

0 ® N o U

56



Math 5031-32 Algebra Anthony Hong

Chapter 2
Rings

2.1 Rings and Ring Homomorphisms

Definition 2.1.1. A non-empty set R is a ring if it is closed under multiplication(-) and addition (+) on R
such that

* (R, +) is an abelian group.
* (associativity) a- (b-¢) = (a-b) - ¢
* (distributivity) a- (b+¢) =a-b+a-¢c,(b+c)-a=b-a+c-a.
* Thereisaunity” 1€ Rs.t. Vae R, a-1=1-a = a.
Proposition 2.1.2.
* Unity is unique. (1=1-1"=1')
* Yae R, 0a=0.(0a=(0+0)a=0a+ 0a= 0a=0)
* Ya € R, a0 = 0. (Similarly)
* (—a)b =a(-b) = —(ab). (—a)b+ab = (—a+a)b=0b=0= (—a)b = —(ab); similarly, a(—b) = —(ab))
e —a=(-1a QA+ (-1)=0,a+(-a=a(l+(-1)) =a0=0= (-1)a = —a)

Example 2.1.3. (R, +,), (M,(R),+,"), (R[z], +, "), (R[[z]], +, -), which is the ring of formal power series

{ap + a1x + axz? + ... |a,» € R}.
Example 2.1.4. f:R — My(R),r — [6 8] does not satisfy f(1r) = 1g.

Let us see some more classes.
Definition 2.1.5. S < R is a subring if
* (S,4) < (R, +). (inherits additive group structure)
* 1€ Sand S is closed under multiplication. (inherits multiplicative structure)
Definition 2.1.6. An extension ring (or ring extension) of a ring R is any ring .S of which R is a subring.
For example, the field of rational numbers Q and the ring of Gaussian integers Z[i] are extension rings of the

ring of integers Z.
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For every ring R, the polynomial ring R|[z] is a ring extension of R. If S is a ring extension of R, and a € 5,

the set
Rla] = {f(a) | f(z) € R[z]},

is the smallest subring of S containing R and a, and is a ring extension of R. More generally, given finitely
many elements aq,...,a, of S, we can consider

Rlay,...,an] ={f(a1,...,a,) | f(x1...,2,) € R[z1,..., 2]},
which is the ring extension of R in S generated by a1, ..., a,.
Definition 2.1.7.

* R is a division ring if every 0 # a € R is a unit, i.e.,, has a multiplicative inverse a~! such that

e ta=aa"t =1.

* A commutative division ring is a field.

* Ifa,be R,a,b # 0but ab = 0, then a, b are called zero devisors. That is, a € R is a zero divisor if a # 0
and there is some b s 0 such that ab = 0.

* A nonzero commutative ring, i.e., # {0}, with no zero divisor is an integral domain. By the remark
below, we see R is an integral domain if Va,be R, ab=0=a=0o0rb = 0.

Remark 2.1.8.

* units cannot be zero divisors: a has a multiplicative inverse a~'. Then suppose 3b # 0 such that ab = 0.
Then a='ab = a0 = 0 = b = 0, contradiction.

* g is not a zero divisor <= —(3b # 0s.t. ab=0) < Vb # 0, ab # 0 (thatisb # 0 — ab # 0) <
(ab=0—-b=0).

Example 2.1.9.

* 7 is an integral domain

* Z, isafield <= n is prime.
Proof. We prove that Z,, is a field <= n is prime. We need to show that n is a prime <= every [a] # [0]
has a multiplicative inverse.

<: [a] # [0] a unit, so by Remark 2.1.8, [a] is not a zero divisor. Then we show that ged(a,n) = 1. Suppose
not, then d = ged(a,n) > 1 and [a] [2] = [9] ], which makes [a] a zero divisor. Contradiction.

d
[0]
=: Suppose gcd(a,n) = 1. Then ged(a,n) = ax + ny = 1. Since az + ny # ax (mod n), we see [az] =
[ax + ny] = [1]. Thus [a][z] = [1], [z] = [a] . O

Definition 2.1.10. Let R, S be rings, f : R — S is a ring homomorphism if

* f(a+b) = f(a)+ f(b). Ge., f: (R, +) — (S,+) is a group homomorphism)

o f(ab) = f(a)f(b), f(1r) = f(ls). (i.e., multiplicative structure is also preserved)
If f is a bijective ring homomorphism, then it is a ring isomorphism.

Remark 2.1.11. We notice that a ring homomorphism is just a group homomorphism (with respect to the
additive structure) plus a monoid homomorphism (with respect to the multiplicative structure). The inverse
of a group isomorphism is a group isomorphism, and the inverse of a monid isomorphism is a monoid
isomorphism. Thus, the inverse of a ring isomomorphism is a ring isomomorphism. In fact, just as in remark
1.1.9, it is an equivalence relation, and if we find an inverse function of a ring homomorphism as a function
between sets, the map and its inverse will both automatically be ring isomomorphisms.
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2.1.1 Matrix Rings !

Fix an arbitrary ring R and let n be a positive integer. Let M,,(R) be the set of all n x n matrices with entries
from R. The element (a;;) of M, (R) is an n x n square array of elements of R whose entry in row ¢ and
column j is a;; € R. The set of matrices becomes a ring under the usual rules by which matrices of real
numbers are added and multiplied. Addition is componentwise: the 4, j entry of the matrix (a;;) + (b;;) is
a;; + bij. The i, j entry of the matrix product (a;;) x (b;;) is >, _, airbg; (note that these matrices need to
be square in order that multiplication of any two elements be defined). It is a straightforward calculation to
check that these operations make M, (R) into a ring. When R is a field we shall prove that M, (R) is a ring
by less computational means in Part III.

Note that if R is any nontrivial ring (even a commutative one) and n > 2 then M, (R) is not commutative:
if ab # 0 in R let A be the matrix with « in position 1,1 and zeros elsewhere and let B be the matrix with b
in position 1,2 and zeros elsewhere; then ab is the (nonzero) entry in position 1,2 of AB whereas BA is the
zero matrix.

These two matrices also show that M, (R) has zero divisors for all nonzero rings R whenever n > 2.

An element (a;;) of M, (R) is called a scalar matrix if for some ¢ € R,a;; = aforallie {1,...,n}and a;; =0
for all i # j (i.e., all diagonal entries equal a and all off-diagonal entries are 0 ). The set of scalar matrices is
a subring of M, (R). This subring is a copy of R (i.e., is ”isomorphic” to R ): if the matrix A has the element
a along the main diagonal and the matrix B has the element b along the main diagonal then the matrix
A + B has a + b along the diagonal and AB has ab along the diagonal (and all other entries 0 ). If R is
commutative, the scalar matrices commute with all elements of M,,(R). If R has a 1, then the scalar matrix
with I’'s down the diagonal (the n x n identity matrix) is the 1 of M,,(R). In this case the units in M,,(R) are
the invertible n x n matrices and the group of units is denoted GL, (R), the general linear group of degree
n over R.

If S is a subring of R then M, (S) is a subring of M, (R). For instance M, (Z) is a subring of M, (Q) and
M, (2Z) is a subring of both of these. Another example of a subring of M,,(R) is the set of upper triangular
matrices: {(a;;) | ap, = 0 whenever p > ¢} (the set of matrices all of whose entries below the main diagonal
are zero) - one easily checks that the sum and product of upper triangular matrices is upper triangular.

2.1.2 Group Rings ?

Fix a commutative ring R with identity 1 # 0 and let G = {g1, ¢92,...,9,} be any finite group with group
operation written multiplicatively. Define the group ring, RG, of G with coefficients in R to be the set of all
formal sums

a1g1 + asge + -+ angn a;€R, 1<1<n.

If gy is the identity of G we shall write a1g; simply as a;. Similarly, we shall write the element 1¢g for g € G
simply as g. Addition is defined "componentwise”

(a191 + asgs + -+ + a”gn) + (b191 + bggg + -+ bngn)
= (a1+b1)gl+(02+b2)92+"'+(an+bn)gn-

Multiplication is performed by first defining (ag;) (bg;) = (ab)gx, where the product ab is taken in R and
9:9j = gi is the product in the group G. This product is then extended to all formal sums by the distributive
laws so that the coefficient of g5 in the product (a1g1 + - + angn) % (b1g1 + -+ + bpgn) is Zgigj:gk a;b;.
It is straightforward to check that these operations make RG into a ring (again, commutativity of R is not
needed). The associativity of multiplication follows from the associativity of the group operation in G. The
ring RG is commutative if and only if G is a commutative group.

1Taken from [3] sec 7.2
2Taken from [3] sec 7.2
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Example 2.1.12. Let G = Dg be the dihedral group of order 8 with the usual generators r,s (r! = s = 1
and rs = sr~! ) and let R = Z. The elements a = r + 72 — 2s and 3 = —3r? + rs are typical members of
Z.Dg. Their sum and product are then

a+B=r—2r"—2s+rs
af (r + 72— 25) (—3r2 + rs)
r (—37”2 + rs) + 72 (—37"2 + rs) —2s (—3r2 + rs)
—3r + 1% =3 4+ 135 + 6r2s — 23
—3 —5r% + 7 + 135

The ring R appears in RG as the ”constant” formal sums i.e., the R-multiples of the identity of G (note
that the definition of the addition and multiplication in RG restricted to these elements is just the addition
and multiplication in R ). These elements of R commute with all elements of RG. The identity of R is the
identity of RG.

The group G also appears in RG (the element g; appears as 1g; - for example, r,s € Dy are also elements
of the group ring ZDs above) - multiplication in the ring RG restricted to G is just the group operation. In
particular, each element of G has a multiplicative inverse in the ring RG (namely, its inverse in G ). This
says that G is a subgroup of the group of units of RG.

If |G| > 1 then RG always has zero divisors. For example, let g be any element of G of order m > 1. Then
l-g)(1+g+-+g" ) =1-¢g"=1-1=0

so 1 — g is a zero divisor (note that by definition of RG neither of the formal sums in the above product is
Z€ero).

If S is a subring of R then SG is a subring of RG. For instance, ZG (called the integral group ring of G ) is a
subring of QG (the rational group ring of G ). Furthermore, if H is a subgroup of G then RH is a subring of
RG. The set of all elements of RG whose coefficients sum to zero is a subring (without identity). If |G| > 1,
the set of elements with zero ”constant term” (i.e., the coefficient of the identity of G is zero) is not a subring
(it is not closed under multiplication).

2.1 EXERCISES

1. [3] 7.1.13. An element z in R is called nilpotent if ™ = 0 for some m € Z™.

i. Show that if n = a*b for some integers a and b then ab is a nilpotent element of Z/nZ.

ii. If a € Z is an integer, show that the element a € Z/nZ is nilpotent if and only if every prime divisor of n
is also a divisor of a. In particular, determine the nilpotent elements of Z/727Z explicitly.

iii. Let R be the ring of functions from a nonempty set X to a field F'. Prove that R contains no nonzero
nilpotent elements.

2. [3] 7.1.14. Let x be a nilpotent element of the commutative ring R (cf. the preceding exercise).

i. Prove that z is either zero or a zero divisor.

ii. Prove that rx is nilpotent for all r € R.

iii. Prove that 1 + z is a unit in R.

iv. Deduce that the sum of a nilpotent element and a unit is a unit.
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2.2 Ideals and Quotient Rings

Definition 2.2.1. I < R is a left ideal if
e (I,+) < (R,+)
* Vre R,a€l,wehaverael.
A right ideal is similarly defined:
e (I,+) < (R,+)
* Vre R,a€l,wehavear e I.
I c Ris an ideal if it is both a left ideal and a right ideal.

We note that since a € I and 0 € R we have 0a = a0 = 0 in ideal I. Also, 1 may not be in the ideal. If 1 € I,
then I is the whole ring R, and we will give it a name soon.

Remark 2.2.2. We will assume that all rings R are commutative rings in this course if not specified, that is,
Ya,be R, ab = ba.

Due to this remark, left and ring ideals are just ideals.

Definition 2.2.3. In any ring R, the multiples of a particular element a form an ideal called the principal
ideal generated by a. An element b of R is in this ideal if and only if b is a multiple pf a, which is to say, if
and only if a divides b in R, denoted by a ] b. There are several notations for this principal ideal:

(a) =aR = Ra={ra|reR}

Example 2.2.4. The ring R itself is the principal ideal (1), and because of this it is called the unit ideal. It is
the only ideal that contains a unit of the ring. The set consisting of zero alone is the principal ideal (0), and
is called the zero ideal. An ideal I is proper if it is neither the zero ideal nor the unit ideal.

Definition 2.2.5. The ideal I generated by a set of elements X — R is the smallest ideal that contains
those elements. It is defined as

(XY ={rmz1+ gz | k>1,r,€ R,z; € X}.
In particular, for an ideal I and an element a € R, we have

la, Iy ={ria+ryi|ri,roe Ryiel} ={ra+i|reR,iel}

Proposition 2.2.6. If f : R — S is a ring homomorphism, then
(1) Ker(f) is an ideal of R.

(2) If I’ is an ideal of S, then f~!(I’) is an ideal (as the kernel of R — S — S/I); however, f(I) for ideal
I < R may not be an ideal. When f is surjective, f([) is an ideal.

(3) Im(f) is a subring of S.

(4) If P is a subring of R, then f(P) is a subring; If P’ is a subring of S, then f~!(P’) is a subring.
Proof. We leave the last two statements as exercises and prove the first two and give an example illustrating
when f(I) is not an ideal.

(1) Clearly, (Ker(f),+) < (R,+). Then consider a € Ker(f), i.e., f(a) =0, and r € R. Now,

=
=)
3
S~—
I
~
—
S
~
—
2
I

0
0.
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(2) Let I = f~1(I'). We know that the preimage of a group homomorphism is a subgroup, so I is an
additive subgroup of R. We need to show for » € R and a € I, we have ra € I. Since I’ is an ideal,
f(ra) = f(r)f(a) € I', thus ra € f~1(S) = I. Thus I is an ideal of R. This proved that the preimage
of an ideal under a ring homomorphism is an ideal. We now show that the image of an ideal under
a surjective ring homomorphism is an ideal. As I is an additive subgroup of R and f is also a group
homomorphism, f(I) is an additive subgroup of S. We need to show for s € S and f(a) € f(I), we
have sf(a) € f(I). For s € S, because f is surjective, there exists r € R such that f(r) = s. Thenra € I,
o)

sf(a) = f(r)f(a) = f(ra) e £(I)
Thus f(I) is an ideal.

O
Example 2.2.7. Let i : Z — Q be inclusion. Since Q is a field, ideal I in Q is either (0) or (1) = Q. We take
an ideal nZ in Z with n # 0. Since i(nZ) = nZ is not (0) or (1) we see that it is not an ideal.
Let I © R be an ideal, then we define R/I := {r + I |r € R}, with (r + I) + (s + I) :== (r + s) + I and
(r+ID)(s+1I)=rs+1.
Proof of Well-defined Multiplication. Want to checkthatr+7 =+'+Tands+I=¢+1 = rs+1=1's'+1.
r —1',s — s € I. On the other side, rs — r's’ = r(s — ') + (r —r')s’ € I, which is true. O
R/I is aring, called quotient ring, with unity 1 + R and zero 0 + R. The canonical homomorphism is given

by
¢:R—>R/I, r—r+1

where f is clearly surjective and Ker(¢) = I.

Proposition 2.2.8 (Mapping property). Suppose f : R — R’ is a ring homomorphism with K = Ker(f) and
I ¢ K anideal. Then 3! homomorphism f : R = R/I — R’ such that f¢ = f:

We say f factors through ¢.

2.2.1 Ring Isomorphism Theorems

If I and J are two ideals in R, we define

I+J={i+jliel jeJ}

n
1J = {Zaibi|n>1,aiel,bieJ}
=1

Proposition 2.2.9. If I and J are two ideals of R, then their sum I + J, intersection I n .J, and product I.J
are still ideals. Besides, IJ < I n J.

Proof. Exercise. O
We state the isomomorphism theorems for rings without proof (see [1] or [10] if one needs).
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Theorem 2.2.10 (First [somorphism Theorem for Rings). If f : R — S is a ring homomorphism, then

R/ Ker(f) =~ Im(f)
—_———— ——
an ideal a subring

Theorem 2.2.11 (Second Isomorphism Theorem for Rings). Let R be a ring, and let S be a subring of R, J
be an ideal of R.

Then:
* S + Jis asubring of R;
e Jisanideal of S + J;

* S Jisanideal of S;

e _S S+J
SnJ J

Theorem 2.2.12 (Third Isomorphism Theorem for Rings). If I « J < R, and I, J are ideals in R, then

lle

JII={j+1I|jeJ}

is an ideal of R/I and
BT

771 ~ R/J.

Theorem 2.2.13 (Fourth Isomorphism Theorem (Correspondance Theorem) for Rings). Let ¢ : R — R be
a surjective ring homomorphism with kernel K. There is a bijective correspondence between the set of all
ideals of R and the set of ideals of R that contain K:

{ideals of R that contain K} «— {ideals of R}.

This correspondence is defined as follows:

» If I is a ideal of R and if K c I, the corresponding ideal of R is ¢(I).

* If 7 is a ideal of R, the corresponding ideal of R is o~ *(Z).
If the ideal I of R corresponds to the ideal Z of R, the quotient rings R/I and R/Z are naturally isomorphic.
Note that the inclusion K c I is the reverse of the one in the mapping property.

Remark 2.2.14. A more common version is to let the surjective ring homomorphism in the above statement
be ¢ : R — R/J where J is an ideal of R.

2.2 EXERCISES

1. Let I and J be ideals of R.

i. Prove that I + J is the smallest ideal of R containing both I and J.
ii. Prove IJ is an ideal contained in I n J

iii. Give and example where I.J # I n J.

iv. Proveif I+ J=R,thelJ=1nJ.

2. For an ideal I of R, let
VI={zeR|z"cIforsomen>1}.

/T is called the radical of I.
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i.  Show that +/T is an ideal of R which contains I.
ii. Show that+/IJ = +/I n J for any two ideals I and J.

For more on radicals of rings, see [2] Chap.8.

3. [3] Ex7.3-6. Decide which of the following are ring homomorphisms from M (Z) to Z:

i
ii. (
iii. (

4. [3] Ex7.3-7. Let R = {(

Prove that the map

Z ) — a (projection onto the 1,1 entry)

Z ) — a+d (the trace of the matrix)

O O o

IZZ ) — ad — bc  (the determinant of the matrix).

a b

0 d > ‘ a,b,d e Z} be the subring of M>(Z) of upper triangular matrices.

0: R— 7 x Z defined by ¢ : (8 Z)H(a,d)

is a surjective homomorphism and describe its kemel.

5. [3] Ex7.3-8. Decide which of the following are ideals of the ring Z x Z:

{(a,a) | a e Z}
ii. {(2a,20) | a,beZ}
iii. {(2a,0) |a€Z}
{(

iv. {(a,—a)|acZ}.

2.3 Maximal Ideals and Prime Ideals

We will first present Zorn’s Lemma using a well-written document, which is widely used in many proofs, and
then talk about two important ideals, maximal ideals and prime ideals.

2.3.1 Zorn’s Lemma

Theorem 2.3.1 (Zorn’s lemma). Let S be a partially ordered set. If every totally ordered subset of S has an
upper bound, then S contains a maximal element.

To understand Zorn’s Lemma, we need to know four terms: partially ordered set, totally ordered subset,
upper bound, and maximal element.

A partial ordering on a (nonempty) set S is a binary relation on S, denoted <, which satisfies the following
properties:

* reflexive: forall s€ S, s < s,
* antisymmetric: if s < s’ and s’ < sthen s = ¢/,
* transitive: if s < s’ and s’ < s” then s < s”.

When we fix a partial ordering < on .S, we refer to S (or, more precisely, to the pair (5, <)) as a partially
ordered set, also abbreviated as poset.
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It is important to notice that we do not assume all pairs of elements in S are comparable under < : for some
s and s’ we may have neither s < s’ nor s’ < s. If all pairs of elements can be compared (that is, for all s
and s’ in S either s < s’ or s’ < s ) then we say S is totally ordered with respect to <.

Example 2.3.2. The usual ordering relation < on R or on Z* is a partial ordering of these sets. In fact it is
a total ordering on either set. This ordering on Z* is the basis for proofs by induction.

Example 2.3.3. On Z", declare a < bif a | b. This partial ordering on Z* is different from the one in previous
example and is called ordering by divisibility. It is one of the central relations in number theory. (Proofs about
77" in number theory sometimes work not by induction, but by starting on primes, then extending to prime
powers, and then extending to all positive integers using prime factorization. Such proofs view Z* through
the divisibility relation rather than through the usual ordering relation.) Unlike the ordering on Z* in
previous example, Z™ is not totally ordered by divisibility: most pairs of integers are not comparable under
the divisibility relation. For instance, 3 doesn’t divide 5 and 5 doesn’t divide 3 . The subset {1, 2,4, 8, 16, ...}
of powers of 2 is totally ordered under divisibility.

Example 2.3.4. Let S be the set of all subgroups of a given group G. For H, K € S (that is, H and K
are subgroups of G ), declare H < K if H is a subset of K. This is a partial ordering, called ordering by
inclusion. It is not a total ordering: for most subgroups H and K neither H ¢ K nor K < H.

One can similarly partially order the subspaces of a vector space or the ideals (or subrings or all subsets) of
a commutative ring by inclusion. We shall see this in the next section.

Example 2.3.5. If S is a partially ordered set for the relation < and T' c S, then the relation < provides a
partial ordering on 7. Thus T is a new partially ordered set under <. For instance, the partial ordering by
inclusion on the subgroups of a group restricts to a partial ordering on the cyclic subgroups of a group.

Lemma 2.3.6. Let S be a partially ordered set. If {si,...,s,} is a finite totally ordered subset of S then
there is an s; such that s; < s, forall j =1,...,n.

Proof. The s; ’s are all comparable to each other; that’s what being totally ordered means. Since we’re
dealing with a finite set of pairwise comparable elements, there will be one that is greater than or equal to
them all in the partial ordering on S. The reader can formalize this with a proof by induction on n, or think
about the bubble sort algorithm. O

An upper bound on a subset T of a partially ordered set S is an s € S such that¢ < sforallt e T. It is
important to notice that when we say 7" has an upper bound in S, we do not assume the upper bound is in
T itself; it is just in S.

Example 2.3.7. In R with its natural ordering, the subset Z has no upper bound while the subset of negative
real numbers has the upper bound 0 (or any positive real). No upper bound on the negative real numbers is
a negative real number.

Example 2.3.8. In the proper subgroups of Z ordered by inclusion, an upper bound on {47, 6Z,8Z} is 27
since 47,67, and 87 all consist entirely of even numbers. (Note 4Z — 2Z, not 27 c 47.)

A maximal element m of a partially ordered set S is an element that is not below any element to which it
is comparable: for all s € S to which m is comparable, s < m. Equivalently, m is maximal when the only
s € S satisfying m < s is s = m. This does not mean s < m for all s in S since we don’t insist that maximal
elements are actually comparable to every element of S. A partially ordered set could have many maximal
elements.

We now return to the statement of Zorn’s lemma: If every totally ordered subset of a partially ordered set S
has an upper bound, then S contains a maximal element.

All the terms being used here have now been defined. Of course this doesn’t mean the statement should be
any clearer!
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Zorn’s lemma is not intuitive, but it turns out to be logically equivalent to more readily appreciated state-
ments from set theory like the Axiom of Choice (which says the Cartesian product of any family of nonempty
sets is nonempty) and Well-Ordering Principle (which says every nonempty set has a well-ordering: that
means a total ordering in which every nonempty subset has a least element).

2.3.2 Maximal Ideals

The ideals in a commutative ring can be partially ordered by inclusion. The whole ring, which is the unit
ideal (1), is obviously maximal for this ordering. But this is boring and useless. Proper ideals that are
maximal for inclusion among the proper ideals are called the maximal ideals in the ring. (That is, a maximal
ideal is understood to mean a maximal proper ideal.)

Definition 2.3.9 (Maximal Ideals). An ideal M < R is called a maximal ideal if for any I < R with
M cIc R,thenI = M or I = R. That is, the only ideals containing M are M and R.

Proposition 2.3.10. Every nonzero commutative ring contains a maximal ideal.

Proof. Let S be the set of proper ideals in a commutative ring R # 0. Since the zero ideal (0) is a proper
ideal, S # (. We partially order S by inclusion.

Let {I,} .4 be a totally ordered set of proper ideals in R. To write down an upper bound for these ideals in
S, it is natural to try their union I =  J,_ 4 I». As a set, I certainly contains all the I, ’s, but is I an ideal? We
may be hesitant about this, since a union of ideals is not usually an ideal: try 2Z u 3Z. But we are dealing
with a union of a totally ordered set of ideals, and the total ordering of the ideals will be handy!

If x and y are in I then = € I, and y € I3 for two of the ideals I, and /3. Since this set of ideals is
totally ordered, I, — Ig or Ig — I,. Without loss of generality, I, < Ig. Therefore x and y are in Ig, so
x +ye Iz < I. Hence [ is an additive subgroup of R. The reader can check rz € [ forre Randx e I, so ]
is an ideal in R.

Because I contains every /,, I is an upper bound on the totally ordered subset {/,} ., provided it is actually
in S : is I a proper ideal? Well, if I is not a proper ideal then 1 € I. Since I is the union of the I, ’s, we must
have 1 € I,, for some «, but then I, is not a proper ideal. That is a contradiction, so 1 ¢ I. Thus I € S and
we have shown every totally ordered subset of S has an upper bound in S.

By Zorn’s lemma S contains a maximal element. This maximal element is a proper ideal of R that is maximal
for inclusion among all proper ideals (not properly contained in any other proper ideal of R ). That means
it is a maximal ideal of R. O

Corollary 2.3.11. Every proper ideal in a nonzero commutative ring is contained in a maximal ideal.

Proof. Let R be the ring and I be a proper ideal in R. The quotient ring R/I is nonzero, so it contains
a maximal ideal by previous theorem. The inverse image of this ideal under the natural reduction map
R — R/I is a maximal ideal of R that contains I. O

Proposition 2.3.12. I is maximal ideal <= R/I is a field.

Proof. = :Assumer +1 # I,sor ¢ I. Let J = (r,I) < R (see Definition 2.2.5). Clearly, I < J < R.
Since J an ideal and I a maximal ideal, we have I = Jor J = R. Sincere J—I,soJ =R = 1€ J =
{r,]y = 1=7rr+i Thusl—rr' el = (1+1)= (r+1I)(r'+1I), where (r' + I) is the inverse of (r + I).

<= If R/I is afield and I < J < R, then J/I is an ideal of R/I. The only proper ideals of a field is {0} or
itself. Therefore, J/I is (0) or R/I,so J =1 or J = R. O

While the trick above worth remembering, we have an easier proof of the fact.

66



Math 5031-32 Algebra Anthony Hong

Proposition 2.3.13.

(a) Let ¢ : R — R’ be a surjective ring homomorphism, with kernel 7. The image R’ is a field if and only
if I is a maximal ideal.

(b) Anideal I of a ring R is maximal if and only if R = R/I is a field.
(c) The zero ideal of a ring R is maximal if and only if R is a field.
Proof. (a): Aring is a field if it contains precisely two ideals,so the Correspondence Theorem asserts that the

image of ¢ is a field if and only if there are two precisely ideals that contain its kernel 7. This will be true if
and only if I is a maximal ideal.

(b) and (c) follow from (a) by applying to the map R — R/I. O

Corollary 2.3.14. [ = {0} is a maximal ideal «—= R = R/{0} is a field.

2.3.3 Some Terminologies
We review some concepts and also give others. Let R be a commutative ring with unity 1.

1. wis aunit < Ju!s.t uu?

=utlu=1 < (u)=(1).
2. a dividesb < a|b « b=aqforsomege R < be (a) < (b)  (a).

3. a and b are associates <= each divides the other <= b = ua with v a unit (for b = ua = v~ 'b =
a;a=ub=u"la=b) < (a)=(b) (fora|b= (b) < (a); b|a — (a) < (b).)

4. 0 # a is irreducible < q is not a unit, and ¢ = xy = z = unit or y = unit.

5. 0 # a is prime <= the principal ideal (a) generated by this nonzero a is a prime ideal (an ideal I < R is
prime if ab € I impliesa € I or be [.) <= a is not a unit and a‘bc implies a}b ora!c <= q is not a unit
and bc € (a) implies b € (a) or c € (a).

Remark 2.3.15. We want to emphasize that zero cannot be a prime element but (0) is a prime ideal iff R is
an integral domain (see Corollary 2.3.19).

2.3.4 Prime Ideals

Definition 2.3.16. If I ¢ R is an ideal, we say I is prime ifabe I = aclorbelfora,be R.

Example 2.3.17. R = Z. Since subgroups of Z are all of the form mZ, and an ideal is first an additive
subgroup of Z, we see that ideals in Z are of the form mZ (since each mZ has Vz € Z,a € mZ, za € mZ).
Now, we also claim that for positive m, mZ is a prime ideal iff m is a prime number. Since mZ = (—m)Z, we
then see that each prime ideal in Z is of the form (+p)Z or (0) (it will be proved at the end of this subsection
that the zero ideal is prime iff the ring is an integral domain).

Proof. Let m be positive.

= :If m = ab, and a,b > 1, then ab = m € mZ, but a, b ¢ mZ. Contradiction.

«<=: To show mZ is prime, we suppose ab € mZ = (m), then subsection 2.3.3 2 shows that m ‘ ab. m being
prime number then implies m | a or m | b. O
Proposition 2.3.18.

1. Every maximal ideal is prime.

2. I ¢ Risprime <= R/I is an integral domain.
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3. Pisaprimeideal «< IJ < P implies ] < Por J < P forideals I, J < R.

Proof (1): If M is maximal and ab € M and a ¢ M, then the ideal generated by a, M, (a, M) := {ra+m,m €
M,r € R} is an ideal where M < {(a, M) c R. Then {a, M) = R since M maximal, so 1 = ra + m for some
re RmeM = b=rab+mb,sobe M. O

Proof (2): = :1f (a+I)(b+1I)=0,thenab+I=0,s0abe ] => aclorbel,soa+I=0o0rb+1=0,
where 0 is the zero of R/I.

«=:Ifabe I, then (a+I)(b+1)=0,s0a+=00rb+I=0,s0aclorbel. O
Proof (3): If P is prime and [J < Pbut I ¢ P and J & P, then pick a € I\P and b € J\P, then ab € I.J but
ab ¢ P, a contradiction.

Conversely, assume I.J < P implies ] € Por J < P forideals I,J < R. Let [ = (a) = {ra | r € R} and
J = (b) = {rb| r € R}. Then IJ = (ab) (check this). So IJ € P,soae I < Porbe J< P,soa€ P or
be P. O
Corollary 2.3.19. {0} is a prime ideal <= R is an integral domain.

Example 2.3.20. mZ < Z is prime <= mZ is maximal <= m is prime.

Proof. Due to Proposition 2.3.18 and Example 2.3.17, we only need to show that mZ prime implies mZ
maximal.

To show mZ is maximal, we suppose mZ < nZ, i.e., (m) < (n). By subsection 2.3.3, this is equivalent to
n ] m. But m is prime so either n = 1 or n = m. O

2.3 EXERCISES

1. Show that in every finite commutative ring, every prime ideal is maximal.

2. A proper ideal I of R is said the be a primary ideal if ab € I implies a € I or b™ € I for some positive
integer n.

i. Find all the primary ideals of Z.
ii. Show that if I is a primary ideal, then /T is a prime ideal.

2.4 Product of Rings

Theorem 2.4.1 (Chinese Remainder Theorem). For 0 < my,...,m, € Z,gcd(m;,m;) = 1, then for any
r1,...,7n € Z, the system of equations

z =711 (modmy)

x =1y, (modmy)
has a solution.

Theorem 2.4.2 ((Generalized) Chinese Remainder Theorem). R commutaitve ring. Let I1,...,I,, n = 2 be
ideals in R such that I; + I; = R for every ¢, j,i¢ # j. Then for any r4,...,r, € R, thereisx € Rs.t. x —r; €
;) Vi<i<n.
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Remark 2.4.3. We first see it is indeed a generalization:

ged(mi,mj) =1 < 1=am; +ym, forz,yeZ
= le(mi)+{my)
= Z={mi)+<{my)

proof of the Generalized Chinese Remainder Theorem.
Proceed with induction on n: If n = 2,11 + Is = R = 3da; € I; s.t. a1 + az = 1. Then let x = rya; + r2aq,
then z — r = 7“1(&2 — ].) + roay = —riay + reaq € I. Similar for z — T9.

n—1 = n:Forl,.. I, letJ=1y---1, Claim: I + J = R.

Sofor Iy + I; = RVi > 2,3a; € I1,b; € ;s.t.a; +b; =1 = 1 =[][",(a; +b;) = I + J. By case 2 of
the theorem, 3y; € Rs.t. y; — 1 eh,yy—0eJ = y1€lr---I,. In a similar way, V1 < 7 < n, we find
yi€eRst.y,—leljandy, =1,---I,- I, © I;Vj # 4. Notethat I n J < IJ.

Letx = my1 + ... + ruyn. Then z —r; = ryy1 + - -ri(y; — 1) + -+ - rpyn. Every y; is in I;, so this entire

expression is in I;. O

Definition 2.4.4. Let R, S be rings, then product of R and S is
RxS={(r,s)|reR,seS}

where (r1,s1) + (r2,82) = (r1 + 12,51 + s2). and (rq, s1)(r2, s2) = (r172, s5152). Its additive identity is (0, 0).
Its unity is (1, 1). One can define more general product of rings just like that for groups.

Corollary 2.4.5. If I1, ..., I,, are ideals of R such that I; + I; = R for i # j. Then

=11
ﬂ In 1

i=1 i=

as isomorphism of rings.

Proof. Define ¢ : R — [[;_, R/I; by ¢(r) = (r+I1,...,r + I,,). ¢ is a ring homomorphism. Ker(¢) = N, I;.

¢ surjective: V(r1+ 11, ....,rn+1,) € ]_[?:1 R/I;, by the Chinese remainder theorem, 3z € R s.t. +1I; = r;+ 1,
so by the first isomorphism theorem, we get the result. O

Example 2.4.6. If R = Z, and prime factorization m = pi* - - - pj», I, = p;'Z. Then note that I, = p;‘Z, I, +

I; = 7Z because p;* and p;’ coprimes, which implies 1 = zp]* + yp;’ € I; + I;. Also, (\;_, I; = mZ because
a€(i_, I, = aisamultiple of all p]’ <= a is a multiple of m. So,

ZJm7Z ~ ﬁZ/p;”iZ

i=1

as rings. That is,
n
Zm =[] 2;;
i=1

as rings. This is a stronger result than the group version.

2.4 EXERCISES
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1. [3] Ex7.6-3. Let R and S be rings with identities. Prove that every ideal of R x S is of the form I x J
where I is an ideal of R and J is an ideal of S.

2. [3] Ex7.6-6. Let fi(z), fa(x),..., fr(x) be polynomials with integer coefficients of the same degree d.
Let ny,ns,...,n; be integers which are relatively prime in pairs (i.e., (n;,n;) = 1 for all ¢ # j ). Use
the Chinese Remainder Theorem to prove there exists a polynomial f(x) with integer coefficients and of
degree d with

f@) = fi(z) mod ny, f(x)= fao(z) modng, ..., f(z)= fr(z)modny

i.e., the coefficients of f(x) agree with the coefficients of f;(x) mod n;. Show that if all the f;(z) are
monic, then f(z) may also be chosen monic. [Apply the Chinese Remainder Theorem in Z to each of the
coefficients separately.]

3. [1] p.378 Ex1.5. Let a and b be relatively prime integers. Prove that there are integers m and n such th
a™ + b" = 1 modulo ab.

2.5 Localization
Suppose R is an integral domain. Consider the equivalence relation § ~ § <= ad = bc. Then, we can mod
out by equivalence relationship to get the set of all equivalence classes
a

{g|a,beR,b7é0}/~
Then we define the ring structure such that for b,d # 0, ¢ + § = “dbfibc, 29 = §5. There are well-defined.
The unity is 1, and the zero is 9. This is a commutative ring as R is commutaitve. Any non-zero element %
(e, a,b # 0be. ¢ = 9 < ¢ = 0) has a multiplicative inverse g Thus we get a field, namely the field of
fraction, or Quotient field of R. We will generalize this construction below.

Definition 2.5.1. Suppose R is a commutative ring. Then S ¢ R is a multiplicative subsetif 1 € S, 0 ¢ S,
and a,be S = abe S.

Example 2.5.2.
e ForO#reR, S={1,rr..}
* P < Rbe aprime ideal and S = R\P. Then a,b¢ P = ab ¢ P. Observe that
P prime < (abe P=a€ Porbe P)
<~ (a,b¢ P=ab¢ P)
< (a,be S—P=abe S—P)
1€ S— Pbecasue P R(if1¢S — P,thenle P and P = R).

Definition 2.5.3. Define S™'R = {(r,s) |7“ € R,s € S}/ ~ with the equivalence relationship (r,s) ~
(r',¢) < 3s" e Ss.t. s"(rs’ —sr’) =0.

If 0 € S, then (r, s) ~ (0,0), and everything is in a single equivalence class. That’s the reason why we assume
0¢sS.
Proposition 2.5.4. S~ R is a commutaitve ring with the operations

r N r rs' +r's ror’ !
s s ss' 7 ss ss'

. O . . 1
Zero is 7. Unity is 7.
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Proof. Addition is well-defined: if Z = 2, then 3s”, s"(rso — ros) = 0. Want to check that £ + & = 2 + I,
Equivalently,
rs' +1's  ros’ +1'sg

= —— =0 < 5"(so8'(rs'+1's)—s5'(ros'+1'sq)) = 8" (s (sor — s70) + 508'r"5 — 55'1"s9) = 0.
SpS

ss’

~
=0 =0

Multiplication’s well-definedness is easy to prove. The remaining is left as an exercise. O

There is a natural ring homomorphism defined by

¢:R—>S_1R;r»—>%

In particular if R is an integral domain, then ¢ is injective:

/
gz%c)ﬂs”eSs.t. s"(r-1—=1-7")=5"(r—1")=0

R int. dom., 0¢S , ,
— r—r =0,r=r

We now see how S~! R generalizes K = field of fractions of R:

r /

. /
r Rint. dom., 0¢S r r
—~gap— 3" eSst (rs —sr')=5"(r—1")=0 =

S S

! / / /
rs —sr' =0,rs =sr' & — ~g —
s s’

Thus, S~!' R is a subring of the field of fractions of R, which we can write as R — S~'R c K, where the first
is by the injection » — r/1 and the second is by the inclusion above.

Note that ¢ : R — S~'R also has the property that ¢(s) is invertible for any s € S. Namely Vs € S, ¢(s) = £,
so 21 = 1 Andif+ : R — R'is a ring homomorphism such that (s) invertible in R/, then 3!f : S7'R — R’
such that f o ¢ = ¢

R—Y R

N A

1= f(1/1) = f(6(s)(1/5)) = »(1) f(1/s) = ()™ = f(1/s)
Example 2.5.5. Assume R is an integral domain.

* If S = R\{0}, then S~! R is the field of fractions of R.
« IfS={1,f,f?..,} where f € Rs.t. Vn, f* # 0. Then

Ry =S"'R= {Jiﬂ‘aeR,r}O}.

* If P < Ris a prime ideal and S = R\P. Then

Rp=S57'R={3

abe R,b¢ P}
Rp is alocal ring. i.e. it has a unique maximal ideal, which is

a

I={f

b

It is easy to see I is an ideal. We show it is maximal. Notice that for ¢ + I € Rp/I, we have (£ +1)(2 +

I)=1Taslongasa¢ P. Whena € P, § + I = I. Thus, every nonzero element of Rp/I is a unit. By
Corollary 2.3.12, I is maximal.

a,beR,bgéP,aeP}.
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2.5 EXERCISES

Some useful sources: link.

1. Prove the following claims:

i. The preimage of a prime ideal under a ring homomorphism is a prime ideal.
ii. The preimage of a proper ideal under a surjective ring homomoprhism is a proper ideal.

2. (Correspondence theorem for localization of rings) Let S a multiplicative subset of R not containing O ,
and let ¢ : R — S~'R be the map ¢(r) = . For an ideal I in R, let

S~ = {’
S

i. Show that S—!7 is an ideal of S7!'R, and S~'¢~1(J) = J for any ideal J of S7!R.
ii. Show the map P — S~!P gives a one-to-one correspondence between prime ideals of R whose intersec-
tion with S is empty and prime ideals of S™!R.

ie[,seS} c S7IR.

3. Let R be a PID and S a multiplicative subset not containing 0 . Show S~! R is a PID.

2.6 PIDs

Definition 2.6.1. Recall from definition 2.2.3 of principal ideal. We say an integral domain R in which every
ideal is principal ideal is called a principal ideal domain.

Example 2.6.2.
* Zis PID. Every ideal in Z is of the form nZ = (n).

* R[z] is a PID. If I # {0} is an ideal and 0 # f(z) € I has the smallest degree, then I = (f). If
g € I, dividing g by f gives that g(z) = ¢(z)f(z) + r(z). So r(x) = 0 or deg(r) < deg(f). Since
r(z) = g(x) — q(z)f(x) € I and f is chosen to have smallest degree, we see degr(z) = deg f(z) =
r=0 = ge(f).

* R[z,y] is not a PID. (z,y) = {f(z,y)| f(0,0) = 0} not principal.

* Z[z] is not a PID. (,2) = {f(«)| f(0) is even} not principal: 2 € (x,2). Thus, if (z,2) = (a), then
Ir € Z[z] s.t. ra = 2. Eitherr = 1,a = 2 or r = 2, a = 1 since the RHS already has the smallest possible
degree. 1 ¢ (x,2), so a = 2. Contradiction.

Definition 2.6.3. Recall from subsection 2.3.3 that

* a € Ris prime if (a) is a prime ideal. Equivalently, a |bc = a|bora|c.

* 0 # a € R is irreducible if it is not a unit and if a = xy, then x is a unit or y is a unit.
Proposition 2.6.4. If R is an integral domain, a prime element is irreducible.

Proof. If a is prime (so a # 0) anda=my,thena|zora‘y,sox=ax’ory:ay’ = a = az'yora=zxay

R int. dom. . . . .
— a(l—a:’y):00ra(1—xy’)zo-L—ori>1:x’yorl:xy’,soylsaumtoraslsaumt. O

Example 2.6.5. Let
R=7Z[V-5] ={a+bV/=5|a,beZ} = C

. It is clear that this is a ring. We claim that
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* units of R are +1.
* 2.3,1++/-5,2++/—5 are all irreducibles.
* 3 € Ris not prime, so R is not a principal ideal domain due to proposition 2.6.6.

* Ris not a unique factorization domain (defn. 2.7.2).

Proof. We first show that the units of R are +1. Suppose
(a + bv/=5)(c + dv/—5) = 1 = unity
Then
square it = (w)(w) =1.

€Z €Z
— b and d must be 0 because in Z unites are + 1.

= a,c= *1.

We use the following way to show irredciblility:
We show 3 is irredciblle for example. Suppose not, then

3=ay = (a+bV/=5)(c+dvV-5) = 9= (a®+5b*)(c* + 5d*)

We note that a? + 50, ¢2 + 5d? € {0,1,4,5,9, 16, - - - } and their multiplicaiton belongs to {0, 1,4,5,9,16, -},
where we note that 0 is obtained by 0 x 0 or 0 x other, 1,4,5,9 are obtained by multiplication of 1 with
1,4,5,9 (so it has to be the case that a + by/—5 or ¢ + dv/—5 is a unit), and 16 is obtained by either 1 x 16,
16 x 1, or 4 x 4. Therefore, 3 is irreducible. In fact, we also proved that 2 is irreducible as 22 = 4.

We show that 3 is not prime:

9=(2++/=5)(2—+/=5)isinI = (3),but 31 (2 ++/=5) and 312 — /=5 since 2 + /5 # 3(a + by/—5), for
a,beZ.

R is not UFD:
That is to say, there are some elements of R that can be written in products that are irreducibles that are not

associates. 6 and 9 do:
2-3=6=(1++v=5)(1 —v=5)
3-3=9=(2++-5)(2—+-5)
They are not associates simply because the units are +1. O

Proposition 2.6.6. If R is a PID, then irreducible = prime.

Proof. Suppose a € R is irreducible, then it suffices to show that « is a prime ideal. Then the ideal generated
by a, (a) # R since a is not a unit. So there is a maximal ideal M where (a) € M < R.

Since R is a PID, M = (b) for some b = (a) < (b) = a = bc for some C. (b) # R so b is not a unit. Since
a irreducible, C has to be a unit. Sob = ¢ 'a = be (a) = (b) < (a), so (a) = (b), so (a) maximal and
therefore prime. O
Proposition 2.6.7. Every prime ideal is maximal in a PID.

Proof. If I = (a) prime, then (a) € M < R where M is maximal, then let M = (b)) = a € (b)) = a = be.

a is prime so it is irreducible, so C is a unit. So b€ (a) = (a) = (b)) = (a) maximal. O

73



Math 5031-32 Algebra Anthony Hong

2.6 EXERCISES

1. Show that Z[+/—5] is not a PID by finding a non-principal ideal.

2. Show the subring Z[2i] = {a + 2bi | a,b € Z} of the Guassian integers Z[¢] is not a UFD by showing
4 =2-2=(—2i)-(2¢) gives two factorization of 4 into product of irreducible elements.

2.7 UFDs and GCDs

We collect some obvious observations and talk about UFDs and GCDs.
Theorem 2.7.1. Let the elements a, b, c € R. Then,

@8] a|0,1|a,a|a;

(2) a| 1if and only if a is invertible;

(3) ifa | b, then ac | be;

(4) ifa|bandb|c, thena| ¢

(5) ifc|aand c|b, then ¢ | (ax + by) for every z,y € R.

Definition 2.7.2. A unique factorization domain (UFD) is defined to be an integral domain R in which
every non-zero element z of R can be written as a product of a unit « and zero or more irreducible elements
p; of R :

T =upips - pp, wWithn =0

and this representation is “unique up to associates and units” in the following sense: if ¢1, ..., q,, are irre-
ducible elements of R and w is a unit such that

T =wqqe - qm With m = 0,

then m = n, and there exists a bijective map ¢ : {1,...,n} — {1,...,m} such that p; is associated to g, ;) for
i € {1,...,n}. We note that if there are multiple units in the decomposition, they are first combined to give
a single unit by commutativity. We will later in our writing assume that the decomposition into irreducibles
p1 - - - py already include a unit in it if any.

Remark 2.7.3. The condition
upy -+ pn = wqi - qr = k = n, and p;, g; associate
is equivalent to the condition
Pi1- - Pn =@ q = k =n, and p;, ¢; associate

Proof.
One should first notice that an irreducible is not a unit by definition. = direction is direct.
—

UpL©Pn =T = WL G
PL Pm = xu71 = (wa...qk)w71 = [wuflql] Q2 qk

—
irreducible
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where wu "¢, is irreducible becasue

wu 'y =zy= @ = [wulz]y = wu 'z aunitoryaunit = 2 unit or y unit
——

irreducible

We will use this second condition for UFD for now on.
Example 2.7.4. For Z, the units are +1. Prime elements are {+p | p prime} (see example 2.3.17). Z is UFD.
Example 2.7.5. Z[/—5] is not a UFD (see example 2.6.5).
Proposition 2.7.6. Integral Domain R is a UFD if and only if
(1) Every irreducible element is prime.

(2) Ascedning chain condition on principal ideals (AACP): R satisfies the ascending chain condition for
principle ideals. Namely, if we have

(al)C(GQ)g”’g(am,)g"',

then In s.t. (a,) = (any1) = ---. Thatis, R does not contain an infinite strictly increasing chain of
principal ideals.

Proof.
= : First assume R is a UFD.

(1). If a € R irreducible and a | be, so for bc = ax, write b, c, x as a product of irreducible elements, where
b=q - q,c=y1- -y, r =21 xp. Sobc=ar = @ - -Qy1---Y+ = axy - k. Since R UFD, Jg; or y;
associate to a. Assume WLOG ug; = a for a unitu, sou™'a = ¢;|b = b=0bu"'a = al|b.

(2). (a) = (b) < bl|a. If (a) < (b), then a = be, where C is a non-unit. So the number of irreducible
factors of b < the number of irreducible factors of a, so there cannot be infinitely many strict inclusion in the
chain.

«<=: Assume (1) and (2) holds. Suppose an element a factors in two ways into irreducible elements, say
D1 Pm =G =q1 " qn, Where m < n. If n = 1, then m = 1 and p; = ¢;. Suppose that n > 1. Since p; is
prime, it divides one of the factors ¢, . .., ¢, say ¢1. Since ¢ is irreducible and since p; is not a unit, ¢; and
p1 are associates, say p; = uq;, where u is a unit. We move the unit factor over to ¢, replacing q; by ug; and
g2 by u!go. The result is that now p; = ¢q;. Then we cancel p; and use induction on n.

Uniqueness: Suppose a = x1---&p = Y1---Ym, Where z;,y; irreducible. Then y, ]xl -z, and y; prime
= 1 }xz for some i. So, x; = uy; and x; irreducible = wu is a unit, so ¥, z; associates. O

Theorem 2.7.7. Every PID is a UFD.

Proof. (1) It is proved that every irreducible element is prime in proposition 2.6.6.
@) If (a1) < (ag) = ---. Let I =|J(a;), then it is easy to see I is an ideal. Since R is a PID, we have I = (b).
Since b e I,3is.t. b e (a;), so (b) < (a;). But (a;) < (b), so (a;) = (b), s0 (a;) = (a;+1) = (ai4+1) = ... O
Definition 2.7.8. If R is an integral domain and a, b € R. Then d is the greatest common divisor of a, b if
* d|aandd|b.
* Ifd'|aand d|b, then d' |d
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Any two greatest common divisors d and d’ are associate elements. The first condition tells us that both d
and d’ divide a and b, and then the second one tells us that d’ divides d and also that d divides d'.

However, a greatest common divisor may not exist. There will often be a common divisor m that is maximal,
meaning that a/m and b/m have no proper divisor in common. But this element may fail to satisfy condition
(b). For instance, in the ring Z[+/—5] considered above (12.2.3), the elements a = 6 and b = 2 + 2,/—5 are
divisible both by 2 and by 1 + 1/—5. These are maximal elements among common divisors, but neither one
divides the other.

One case in which a greatest common divisor does exist is that a and b have no common factors except units.
Then 1 is a greatest common divisor. When this is so, a and b are said to be relatively prime.

We call an integral domain in which any two non-zero elements have a greatest common divisor a GCD domain.
We show that UFDs are GCDs:

Proposition 2.7.9 (UFD is GCD). Let z,y € R\{0} for UFD R. Factor « and y into pairwise non-associated
irreducible elements:

v = pl,
y=pl"pl.

Then one can check that the product pi* - - - p[» with r; := min {e;, f;} is a greatest common divisor of x and
Y.

We can generalize the notion of gcd for more elements:

Definition 2.7.10. Let a,as,...,a, be nonzero elements of the ring R. An element d € R is a greatest
common divisor of a1, as, ..., a, if it possesses the properties
(1) d]a;fori=1,2,...,n (disacommon divisor),

(2) ¢|a;fori=1,2,...,nimplies that ¢ | d.

Remark 2.7.11. GCDs can be safely deifned as the rings where any finite number of nonzero elements of R
admit a greatest common divisor. Just notice that ged(a, -+ ,ar+1) = ged(ged(aq, - -+, ak), ag—1)-

Remark 2.7.12 (gcd unique up to associates). A natural question to ask is whether the elements a1, as, ..., a, €
R can possess two different greatest common divisors. For an answer, suppose that there are two elements

d and d’ in R satisfying the conditions of Definition refgcd defn.. Then, by (2), we must have d | d’ as well
as d’ | d; according to subsection 2.3.3, this implies that d and d’ are associates. Thus, the greatest common
divisor of ay,as, ..., a, is unique, whenever it exists, up to arbitrary invertible factors.

We shall find it convenient to denote any greatest common divisor of a1, as, ...,a, by ged (a1, as, ..., ay).
The next theorem will prove that greatest common divisor of any finite set of nonzero elements can be
exprssed as a linear combination. We will first give an example where this fails in UFD:

Example 2.7.13. We give an example of gcd of two elements in a UFD that is not expressible into a linear
combination. Let’s consider R[z,y]. The ged of 2%y and zy? is 2y so we are looking for a,b € R[x,y] such
that az?y + bxy? = 2y = ax + by = 1. But the constant term of both ax and by is 0 , so the constant term of
their sum is also zero. Contradiction.

Theorem 2.7.14. Let ay,as,...,a, be nonzero elements of the ring R. Then ay,as,...,a, have a greatest
common divisor d, expressible in the form

d=riay +reas+ - +rpa, (r;€R),

if and only if the ideal (a4, as, ..., a,) is principal.
Proof. Suppose that d = ged (a1, as, .. ., a,) exists and can be written in the form d = ria1 +r2a2+- - -+ 7rp0n,
with r; € R. Then the element d lies in the ideal (a1, as, ..., a,), which implies that (d) < (a1, az,...,a,).

76



Math 5031-32 Algebra Anthony Hong

To obtain the reverse inclusion, observe that since d = ged (aq,aq,...,a,), each a; is a multiple of d; say,
a; = x;d, where x; € R. Thus, for an arbitrary member y;a; + y2a2 + - - - + yna, of the ideal (ay,as, ..., a,),
we must have

y1a1 + Y202 + - + Ypan = (Y121 + yoxo + - 4 Ynxy) d € (d).

This fact shows that (a1, as,...,a,) € (d), and equality follows. For the converse, let (aj,asz,...,a,) be a
principal ideal of R :

(alaa23"'aan):(d) (dER)

Our aim, of course, is to prove that d = ged (a1, as, . .. ,ay). Since each a; € (d), there exist elements b; in R
for which a; = b;d, whence d | a; for i = 1,2,...,n. It remains only to establish that any common divisor C
of the g, also divides d. Now, a; = s;c for suitable s; € R. As an element of (a1, as,...,a,),d must have the
form d = r1a1 + reas + - -+ + rpa,, with r; in R. This means that

d=(r1s1 + 71282+ - +71p8n)c,

which is to say that ¢ | d. Thus, d is a greatest common divisor of a4, as, . .., a,, and has the desired represen-
tation. [
When (aq,as,...,a,) = R, the elements ay, as, ..., a, must have a common divisor which is an invertible
element of R; in this case, we say that aq, as, . .., a, are relatively prime and shall write gcd (a1, as, ..., a,) =
1.

If a1, as,...,a, are nonzero elements of a principal ideal ring R, then the theorem tells us that a1, as, ..., a,
are relatively prime if and only if there exist r1,ro,...,r, € R such that

ria1 +reag + - -+ rpa, =1 (Bezout’s Identity).

Proposition 2.7.15. Let a,b,c be elements of the principal ideal ring R. ¢ | ab, with a and C relatively
prime, then ¢ | b.

Proof. Since a and C are relatively prime, so that gcd(a,c) = 1, there exint elements r,s € R satisfying
1 = ra + sc; hence,
b = 1b = rab + scb.

As ¢ | aband ¢ | ¢, Theorem 2.7.1 (5) guarantees that ¢ | (rab + scb), or rather, ¢ | b. O

Dual to the notion of greatest common divisor there is the idea of a least common multiple, defined below.

Definition 2.7.16. Let ay,as, ..., a, be nonzero elements of a ring R. An element d € R is a least common
multiple of ay, as, ..., a, if

(1) a; |dfori=1,2,...,n (dis a common multiple),
(2) a;|cfori=1,2,...,nimpliesd | c.

In brief, an element d € R is a least common multiple of aq,as,...,a; if it is a common multiple of
ai,as,...,a, which divides any other common multiple. The reader should note that a least common mul-
tiple, in case it exists, is unique apart from the distinction between associates; indeed, if d and d’ are both
least common multiples of a;, as, ..., a,, then d | d’ and d’ | d; hence, d and d’' are associates. We hereafter
adopt the standard notation lem (a1, ag, . .., a,) to represent any least common multiple of a1, as, ..., a,. It
can be shown that nonzero elements a1, as, .. ., a, in any ring R have a least common multiple if and only if
the ideal n (a;) is principal (see [2] Theorem 6-5). It can also be shown that GCDs are exactly LCMs.
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2.7 EXERCISES

1. [1] p.379 EX2.1. Factor the following polynomials into irreducible factors in F,[z].

i B+l +r+1,p=2,

ii. 22-3z—-3,p=>5,

i, 22+ 1,p=7

2. [1] p.379 EX2.2. Compute the greatest common divisor of the polynomials z6 + 2* 4+ 2% + 2? + 2 + 1
and z° + 223 + 2% + x + 1 in Q[z].

3. [1] p.379 EX2.3. How many roots does the polynomial 2 — 2 have, modulo 8?

2.8 Noetherian Rings®

We have seen in the proof of PID implying UFD that PIDs has the ascending chain condition:

Definition 2.8.1. A ring R is said to satisfy the ascending chain condition (ACC) if any ascending chain of
ideals I} Iy < - - - eventually terminates.

Lemma 2.8.2. A ring R satisfies ACC iff all ideals I € R are finitely generated.
Proof. Trivial. O

Definition 2.8.3. A ring R is called Noetherian if it satisfies ACC. Note that apart from above lemma, ACC
is also equivalent to the condition that every non-empty set of ideals in A has a maximal element.

Theorem 2.8.4 (Hilbert’s Basis Theorem). If R is Noetherian, then R[X] is also Noetherian.

Proof. Start with an ideal J < R[X]. Pick f; € J with minimal degree. If J = (f;), we are done. Otherwise
we can pick fy € J\(f1) with minimal degree. Continuing this, if J is not finitely generated, then there is a
nested sequence

(fi) < (fi,fa) S+ ,deg f1 < deg fa < ---

Let a; be the leading coefficient of f;, then consider a chain of ideals (a;) < (a1,a2) - --. R is Noetherian, so
this sequence must eventually terminates, so in particular there is some m € N such that a,,11 € (a1,...,am).
SO a1 = Aay + -+ + Anay,. Now consider

m
§(X) = 3 Ao s
=1

So g, fm+1 has the same degree and leading coefficient, so deg(f+1 — 9) < deg fm+1. But frnp1 —g € J,
so since we chose f,,;1 to have the minimal degree in J\(f1,--., fm)> fm+1 —9 € (f1----, fm)> SO fmi1 €
(f1,---, fm), contradiction. O

Corollary 2.8.5. R[Xj,...,X,] is Noetherian whenever R is.
In particular, Z[ X4, ..., X,],F[X1, ..., X,] are Noetherian (where F is a field).

Proof. Apply the preceding theorem recursively. O

3Taken from David
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Example 2.8.6. Let R = C[X1,...,X,]. Let V < C" be of the form
V(F)={(a1,...,a,) €C": f(a1,...,a,) =0,Yf € F}

for some (possibly infinite) subset 7 ¢ R. Let

I—{E)\ifi:meN,)\ieR,fie}"}

i=1

Then I < R and V(I) = V(F), but R is Noetherian by the preceding corollary, so [ is finitely generated and
thus V(F) can be defined by only finitely many polynomials.

Lemma 2.8.7. Any quotient ring of a Noetherian ring is again Noetherian.

Proof. Suppose R is Noetherian and I < R is an ideal. Consider a chain of ideals J; ¢ J; < --- in R/I.
But we know the correspondence between the ideals in R/I and the ideals of R containing I, so there are
ideals Iy, I, ... all containing [ with J; = I;/I. But then I; < I, c ..., so there is N € N such that for any

m > N, I, = Iy, hence J,, = I,,/I = In/I = Jy, hence the sequence eventually terminates, thus R/I is
Noetherian. O

Example 2.8.8. 1. The Gaussian integers can be written as Z[i] =~ Z[X]/(X? + 1) hence is Noetherian.
2. If R[X] is Noetherian, then R is Noetherian since R =~ R[X]/(X), so Hilbert’s Basis Theorem is actually
an “if and only if”.

Example 2.8.9 (Non-example). We shall give examples of a non-Noetherian rings.
1. We consider the ring as the upper limit

R=7[X,X5,...] = UZ[Xl,...,Xn]

neN

Then (X;) < (X31,X32) < -+, so R is not Noetherian.
2. Consider the ring R < Q[X] by collecting R = {f € Q[X] : f(0) € Z}, then R is obviously a ring with

(X) ¢ @7'X) ¢ (272X) ¢ -

3. Consider the ring R of infinitely differentiable functions [—1,1] — R under pointwise operations, this is
also not Noetherian (exercise).

2.8 EXERCISES

We list some results from Atiyah and MacDonald’s Introduction to Commutative Algebra (AM) regarding
primary decomposition of Neotherian rings. First, an ideal I is called irreducible iff I = J n K = (I =
Jorl =K).

1. AM Lemma 7.11. In a Noetherian ring A, every ideal is a finite intersection of irreducible ideals.
2. AM Lemma 7.12. In a Noetherian ring A, every irreducible ideal is primary.

3. AM Theorem 7.13. In a Noetherian ring A, every ideal has a primary decomposition.

2.9 Euclidean Domains and Euclid’s Algorithms

Remark: rings > commutative rings o integral domains > GCD domains > UFDs > PIDs o Euclidean do-
mains O fields > algebraically closed fields.
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Definition 2.9.1. An integral domain R is a Euclidean domain if there is a map d : R\{0} — Z, with the
following division-with-remainder property:

* Let a and b be elements of R, and suppose that a is not zero. There are elements ¢ and r in R such that
b = aq + r, and either r = 0 or else d(r) < d(a).

Example 2.9.2.
(1) R = Z with d(a) = |a| is a Euclidean domain.
(2) If R = F[z] where F is a field, then d(f(z))= deg(f). R with d is a Euclidean domain.
(3) For any field F', we define Va € F\{0}, d(a) = 0. Then it is a Euclidean domain.

Proposition 2.9.3. Euclidean domains are PIDs.

Proof. We mimic the proof that the ring of integers is a principal ideal domain once more. Let R be a
Euclidean domain with size function o, and let A be an ideal of R. We must show that A is principal. The
zero ideal is principal, so we may assume that A is not the zero ideal. Then A contains a nonzero element.
We choose a nonzero element a of A such that d(a) is as small as possible, and we show that A is the principal
ideal (a) of multiples of a.

Because A is an ideal and a is in A, any multiple ag with ¢ in R is in A. So (a) < A. To show that A c (a),
we take an arbitrary element b of A. We use division with remainder to write b = aq + r, where either r = 0,
or d(r) < d(a). Then b and aq are in A, so r = b — aq is in A too. Since d(a) is minimal, we can’t have
d(r) < d(a), and it follows that » = 0. This shows that a divides b, and hence that b is in the principal ideal
(a). Since b is arbitrary, A c (a), and therefore A = (a). O

Theorem 2.9.4 (Euclid’s division lemma). Given two integers a and b, with b # 0, there exist unique integers
g and r such that
a=bg+710<r<|b.

In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called
the divisor, ¢ is called the quotient and r is called the remainder.

Theorem 2.9.5 (Euclid’s division lemma (half remainder version)). For every pair of integers a,b where

b # 0, there exist unique integers ¢, r such that a = ¢b + r and —@ <r< @ :

b b
Va,beZ,b;«éO:EI!q,reZ:a:qb—H”,—%<r<|—2|

We show that the Gauss integers form a Euclidean domain too and provide the division algorithm for Gauss
integers.
Example 2.9.6. Z[i] = {a + bi |a,b € Z} is an Euclidean domain with
d:Z[i] — {0} — Zy; a+ bi— |a + bi| = a® + b*.
Proof. d is multiplicative: d((a + bi)(a’ + b'i)) = d((aa’ — bb') + (ab’ + a'b)i) = (a? + b?)(a? + V?) =
d(a + bi)d(a' + b'1).
(1): If a = be, where a,b, ¢ # 0, then d(a) = d(b)d(c) > d(b).
(2): Suppose z,y € Z[i] and we want to divide x by y.

case 1: if y = n € Z,, x = a + bi. Then a and b are both integers now. We can write by Theorem 2.9.5

a=nq4‘7"ar=001‘\7“|<%andb=nq’+r,r’=00r|7j’|<%. Thenz =a+bi = (ng+7r)+i(ng +1') =

n(q+iq) + (r +ir'), and d(r +ir') =2 +r'"? < %24—"% = "72 <n? =d(n).

80



Math 5031-32 Algebra Anthony Hong

case 2: Now suppose we are dividing = by an arbitary y, and we use the previous result by letting n = yy =
d(y) > 0. So we can divide zy by n where

xy =qn+r, d(r) <d(n) = zy=qyy+r
Then claim that z = qy + (x — qy), where d(z — qy) < d(y). Notice that
d(x — qy)d(y) = d(z7 — qyy) = d(r) < d(n) = d(y)* = d(z — qy) < d(y)
Thus, this result holds. O
Example 2.9.7. This is not unique. 3 = (1 +¢)(1 — ) + 1,d(1) < d(1 —4). Also 3 = (2 —¢)(1 — 1) — 1,
d(—i) < d(1—1)

Theorem 2.9.8 (Euclid’s Algorithm). If R is a Euclidean Domain, and a,b € R # 0, we can find the ged
using the following algorithm

a=bgy+ 1o ged(a, b) = ged(b, ro)
ifrg #0, by = roq1 + 71 ged(b, o) = ged(ro, 1)
ro = T1q2 + T2 ged(ro,m1) = ged(r1,72)
Tn = Tn+1qn+2 + Tnt2 ng(Tn, Tn+1) = ng(rn-&-la Tn+2)
Tntl = Tni2qns3 + 0 ng(rn+1; Tn+2) = ng(rn+2; Tn+3) = Tn+2

where the remainder will eventually go to zero as the degree keeps decreasing.

Proof. For example, to verify ged(a, b) = ged(b, 7o) = ged(b, r — qo) is to show

* ged(a,b) | b, ged(a,b) | a — bgo.
o d'|b,d |a—bgy = d'| ged(a,b).
That’s direct computation. O

2.9 EXERCISES

1. Let R = Z[i] and d(a + bi) = a®> + b*. Let « = 11 + 3i and 3 = 1 + 8i.

i. Write a = 8¢ + r in R with d(r) < d(f8) using the method we discussed in class.
ii. Find the gcd of « and 3 by using the Euclidean algorithm.

2. [1] p.379 Ex2.6. Prove that the following rings are Euclidean domains.
i Zw],w=e2/3

i. Z[V-2).

3. F5 ={0,1,2,3,4} is the field of five elements, with addition and multiplication modulo 5 , isomorphic to
Z/5Z. Find polynomials ¢(X), r(X) in F5[X] such that

XT+2X0+3X° +4X + X? +2X + 3 =¢(X) - (X* +4) +r(X)

where r(X) has degree at most 1.
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2.10 Rings of Formal Power Series

- We will extensively copy from [2] chap.7 and [1]’s section “Factoring Integer Polynomial” for the last four
sections of this chapter.

To begin with simpler things, given an arbitrary ring R, let seq R denote the totality of all infinite sequences
f = (CL()7CL17CL27.. .7ak,...)

of elements a; € R. Such sequences are called formal power series, or merely power series, over R. (Our
choice of terminology will be justified shortly.)

We intend to introduce suitable operations in the set seq R so that the resulting system forms a ring contain-
ing R as a subring. At the outset, it should be made perfectly clear that two power series

f=(a0,a17a27...) and g=(b0,b1,bg7...)
are considered to be equal if and only if they are equal term by term:

f =g if and only if a, = by for all k& > 0.

Now, power series may themselves be added and multiplied as follows:
f+g: (a0+b()7a1 +bla"')a
fg = (co,c1,¢2,...)
where, for each k > 0, ¢, is given by
Cr = Z aib]- = aobr + a1bp_1 + -+ - + ax_1b1 + axbo.
itj=k
(It is understood that the above summation runs over all integers 4,5 > 0 subject to the restriction that
i+j5=Fk)

A routine check establishes that with these two definitions seq R becomes a ring. To verify a distributive law,
for instance, take

f:(ao,al,...), g:(bo,bl,...), h:(CQ,Cl,...).

One finds quickly that
f(g+h) = (a07a13'--) (bO +CO7b1 +Cla"') = (d07d11"')a
where
di = Z a; (b] + Cj) = Z (aibj + aicj)
iti=k itj=k
= Z aibj + Z a;Cyj.
i+j=k i+j=k

A similar calculation of fg + fh leads to the same general term, so that f(g + h) = fg + fh. The rest of
the details are left to the reader’s care. We simply point out that the sequence (0, 0,0, ...) serves as the zero
element of this ring, while the additive inverse of an arbitrary member (ag, a1, as, . ..) of seq R is, of course,
(—ao, —ay, —as,...). To summarize what we know so far:

Theorem 2.10.1. The system seq R forms a ring, known as the ring of (formal) power series over R.
Furthermore, the ring seq R is commutative with unity if and only if the given ring R has these properties.
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If S represents the subset of all sequences having 0 for every term beyond the first, that is, the set
S ={(a,0,0,...) | a € R},

then it is not particularly difficult to show that S constitutes a subring of seq R which is isomorphic to R;
one need only consider the mapping that sends the sequence («, 0,0, ...) to the element a. In this sense, seq
R contains the original ring R as a subring.

Having reached this stage, we shall no longer distinguish between an element a € R and the special sequence
(a,0,0,...) of seq R. The elements of R, regarded as power series, are hereafter called constant series, or
just constants.

With the aid of some additional notation, it is possible to represent power series the way we would like them
to look. As a first step in this direction, we let ax designate the sequence

(0,a,0,0,...).
That is, az is the specific member of seq R which has the element « for its second term and O for all other
terms. More generally, the symbol ax?, n > 1, will denote the sequence
(0,...,0,a,0,...),
where the element a appears as the (n + 1) st term in this sequence; for example, we have and
az? = (0,0,a,0,...)
az® = (0,0,0,a,0,...).
By use of these definitions, each power series
f=(ag,a1,az2,...,ay,...)
may be uniquely expressed in the form

f =1(ap,0,0,...) + (0,a1,0,...)+---+(0,...,0,a,,0,...) + - -

= a9+ ax +agx® + - 4 apz™ + - -

with the obvious identification of ay with the sequence (ag,0,0,...). Thus there is no loss in regarding the
power series ring seq R as consisting of all formal expressions

f=ao+ax+axx®+- +apa" +--,

where the elements ag, a1, ..., a,,... (the coefficients of f ) lie in R. As a notational device, we shall often
write this as f = >, arpz® (the summation symbol is not an actual sum and convergence is not at issue here).

Using sigma notation, the definitions of addition and multiplication of power series assume the form where

Zakxk + Zbkmk = Z (ag + by) 2",
(Z akxk) (Z bkxk) = chxk,

k
Cr = Z aibj = Z aibk_i.
itj=k i=0
We should emphasize that, according to our definition, z is simply a new symbol, or indeterminant, totally
unrelated to the ring R and in no sense represents an element of R. To indicate the indeterminant z, it is
common practice to write R[[z]] for the set seq R, and f(x) for any member of the same. From now on, we
shall make exclusive use of this notation.
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Remark 2.10.2. If the ring R happens to have a multiplicative identity 1 , many authors will identify the
power series 0 + 1o + 022 + 023 + - - - with x thereby treating x itself as a special member of R[[z]]; namely,
the sequence = = (0,1, 0,0, ...). From this view, ax becomes an actual product of members of R[[z]] :

ar = (a,0,0,...)(0,1,0,0,...).

Concerning the notation of power series, it is customary to omit terms with zero coefficients and to replace
(—ax) z* by —agz®. Although z is not to be considered as an element of R[[z]], we shall nonetheless take
the liberty of writing the term 12* as 2% (k > 1). With these conventions, one should view, for example, the
power series

L+a?+at + -+ 2® e Z[[x]]

as representing the sequence (1,0, 1,0,...). An important definition in connection with power series is that
of order, given below.

Definition 2.10.3. If f(x) = Y a;z* is a nonzero power series (that is, if not all the a; = 0) in R[[z]],
then the smallest integer n such that a,, # 0 is called the order of f(z) and denoted by ord f(x). Suppose
f(z),g(x) € R[[z]], with ord f(z) = n and ord g(z) = m, so that

f(@) = ana™ + appaz™™ + - (an #0),
g(x) =bpz™ + bm-ﬁ-lxm-"_1 + .- (bm #* O) .

From the definition of multiplication in R[[z]], the reader may easily check that all coefficients of f(z)g(z)
up to the (n + m) th are zero, whence

f(x)g(x) = anbmxn+m + (an+1bm + anbm+1) gttt

If we assume that one of a,, or b,,, is not a divisor of zero in R, then a,b,, # 0 and

ord(f(x)g(z)) =n +m = ord f(z) + ord g(x).

This certainly holds if R is taken to be an integral domain, or again if R has an identity and one of a,, or b,,
is the identity element.

The foregoing argument serves to establish the first part of the next theorem; the proof of the second asser-
tion is left as an exercise.

Theorem 2.10.4. If f(x) and g(z) are nonzero power series in R[[z]], then
(1) either f(x)g(z) = 0 or ord (f(x)g(x)) = ord f(x)+ ord g(z), with equality if R is an integral domain;
(2) either f(z) + g(xz) =0 or

ord(f(z) + g(x)) = min{ord f(x),ord g(x)}.
The notation of order can be used to prove the following corollary.

Corollary 2.10.5. If the ring R is an integral domain, then so also is its power series ring R[[x]].

Proof. We observed earlier that whenever R is a commutative ring with identity, these properties carry over
to R[[x]]. To see that R[[«]] has no zero divisors, select f(x) # 0,g(x) # 0 in R[[z]]. Then,

ord (f(x)g(x)) = ord f(x) + ord g(x) > 0;

hence, the product f(x)g(z) cannot be the zero series. O
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Although arbitrary power series rings are of some interest, the most important consequences arise on spe-
cializing the discussion to power series whose coefficients are taken from a field. These will be seen to form
principal ideal domains and, in consequence, unique factorization domains. The following intermediate
result is directed towards establishing this fact.

Lemma 2.10.6. Let R be a commutative ring with identity. A formal power series f(z) = . aya* is invertible
in R[[z]] if and only if the constant term ¢ has an inverse in R.

Proof. If f(x)g(x) = 1, where g(x) = Y biyz*, then the definition of multiplication in R[[x]] shows that
agbg = 1; hence, ag is invertible as an element of R.

For the converse, suppose that the element ag has an inverse in R. We proceed inductively to define the
coefficients of a power series > byz* in R[[z]] which is the inverse of f(x). To do this, simply take by = a*
and, assuming by, b, . . ., by_1 have already been defined, let

b = —agl (albk_l + agbg_o + -+ akbo) .

Then agby = 1, while, for k > 1,

cp = Z a;bj = apbg + arbg—1 + -+ + agby = 0.
it+j=k

By our choice of the by ’s, we evidently must have (3]a,z*) (Y bra®) = 1, and so Y] a,z* possesses an
inverse in R[[z]]. O

Corollary 2.10.7. A power series f(z) = Y. axz* € F[[z]], where F is a field, has an inverse in F[[z]] if
and only if its constant term ay # 0. Having dealt with these preliminaries, we are now ready to proceed to
describe the ideal structure of F[[x]].

Theorem 2.10.8. For any field F’, the power series ring F'[[x]] is a principal ideal domain; in fact, the
nontrivial ideals of F[[z]] are of the form (2*), where k € Z,..

Proof. Let I be any proper ideal of F[[z]]. Either I = {0}, in which case I is just the principal ideal (0), or
else I contains nonzero elements. In the batter event, choose a nonzero power series f(x) € I of minimal
order. Suppose that f(z) is of order k, so that

k

Rl =2 (a4 appiz + ).

fz) = apx® + api1x

Since the coefficient a; # 0, the previous lemma insures that the power series ay +ay,1x+- - - is an invertible
element of F[[x]]; in other words, f(z) = 2*g(z), where g(z) has an inverse in F[[z]]. But, then,

which leads to the inclusion (z*) < I. On the other hand, take (z) to be any nonzero power series in I, say
of order n. Since f(x) is assumed to have least order among all members of I, it is clear that k¥ < n; thus,
h(zx) can be written in the form

h(z) = ¥ (bpa™ % + bypr2" FH - ) € (2F).
This implies that I < (z¥), and the equality I = (2*) follows. O
Corollary 2.10.9. The ring F[[z]] is a local ring with (z) as its maximal ideal.
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Proof. Inasmuch as the ideals of F'[[z]] form a chain
Fl[z]] = (z) > (2*) o --- 2 {0},

the conclusion is obvious. O

Corollary 2.10.10. Any nonzero element f(z) € F[[z]] can be written in the form f(z) = g(x)z*, where
g(x) is invertible and & > 0.

To this we add, for future reference, the following assertion regarding the maximal ideals of a power series
ring over a commutative ring with identity.

Theorem 2.10.11. Let R be a commutative ring with identity. There is a one-to-one correspondence between
the maximal ideals M of the ring R and the maximal ideals M’ of R[[z]] in such a way that M’ corresponds
to M if and only if M’ is generated by M and «; that is, M’ = (M, x).

Proof. See [2] Theorem 7-4. O

The ring of formal Laurent series in = with coefficients in R is denoted by R((x)), and is defined as follows.
The elements of R((x)) are infinite expressions of the form

f(z) =aa" + 1T a0 4

in which r € Z and a,, € R for all n > r. That is, a formal Laurent series is a generalization of a formal power
series in which finitely many negative exponents are permitted. Addition and multiplication are defined just
as for the ring R[[z]] of formal power series, and R((z)) is commutative because R is. (I encourage you to
check that when multiplying two formal Laurent series the coefficients of the product really are polynomial
functions of the coefficients of the factors, and hence are in the ring R. This ensures that the multiplication
in R((z)) is well-defined.) Note that the ring R[[«]] is a subset of the ring R((z)), and that the algebraic
operations of these rings agree on the subset R[[x]]. If f(z) € R((x)) and f(z) # 0, then there is a smallest
integer n such that [z"] f(x) # 0; this is called the index of f(x) and is denoted by I(f). By convention,
the index of 0 is I(0) := +co0. Concerning the existence of multiplicative inverses in R((x)), we have the
following proposition.

Proposition 2.10.12. Let R be a commutative ring. If R is a field then R((z)) is a field.

Proof. Consider a nonzero f(z) = >, 1(5) @™ in R((z)). Then as(y) # 0 so that it is invertible in R, since
R is a field. We may write f(z) = 2!(Dg(z) with g(z) = Y a,1 15", so that g(z) is a formal power
series in R[[x]]. The coefficient of 2° in g(z) is a;(s) and, by Lemma 2.10.6, it follows that g(z) is invertible
in R[[x]], and hence in R((x)). Let h(z) := 2~ ()g=1(2). Then

f@)h(z) = 2" Dg(x)a™ "D g™ (2) = 1,

so that h(z) = f~!(x) and f(x) is invertible in R((z)). Therefore, R((z)) is a field. O

The inclusions R[z] < R[[x]] < R((z)) and R[z] < R(z) have been remarked upon already. In fact, if R is a
field then R(x) c R((z)) as well. Also, the rings R[[x]] and R(x) have a nontrivial intersection, but neither
one contains the other. Since we have no pressing need for these facts we will not pause to prove them, but
instead relegate them to exercises.

The usual rules of arithmetic hold for all of the rings constructed above, but there are other operations on
these rings that have no analogues in Z. Care must be taken with these operations to ensure that they
produce well-defined power series. In other words, these operations are not universally defined.
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The first of the new operations are formal differentiation and formal integration. Since R((x)) contains all
the other rings above (if R is a field) we will just define these operations on a typical formal Laurent series
flx) =37 1(f) an®". The formal derivative is always defined as

f(z) = %f(x) = n_zlgf) na,z" L.

The formal integral is defined only if Q € R and a_; = 0, in which case

Jf(x)dx:z 3 a,LS+1.

n=I(f)n#-1

In particular, the formal integral is defined on all of R[[x]] when Q < R. One can show algebraically from
the definitions that the familiar rules of calculus (the Product Rule, Quotient Rule, Chain Rule, Integration
by Parts, and so on) continue to hold when all the integrals involved are defined. Concepts of onvergence,
sequence, and limit etc. can also be considered in new context. We direct one with further interest to the
link.

1. Let R be a commutative ring. For a € R consider the function u, : R — R defined by p,(r) := ar for all
re R.

i. Show that if R is an integral domain and a # 0, then u, : R — R is an injection.
ii. Show that if R is a finite integral domain then R is a field. (The ring Z of integers is an integral domain
which is not a field. Thus, finiteness of R is essential for this problem.)

2. Let R be a commutative ring.

i. Show that if R is an integral domain, then R[z] is an integral domain.
ii. Show that neither of R[[z]] nor R(x) contains the other.

iii. Show that if R is a field then R(z) is a proper subset of R((z)).

iv. Find an element of Z(x) which is not in Z((z)).

v. Show that R[[z]][y] is a proper subset of R[y][[x]].

3. Let f(z) and g(x) be in R((x)). Show that

%(f(w)g(fﬂ)) = f'(x)g(x) + f(2)g'(2).

2.11 Polynomial Rings

Power series have so far received all the attention, but our primary concern is with polynomials.

Definition 2.11.1. Let R[z] denote the set of all power series in R[[z]] whose coefficients are zero from
some index onward (the particular index varies from series to series):

R[z] = {ap + a1+ -+ + apz™ | ar, € R;n > 0}.

An element of R[z] is called a polynomial (in z) over the ring R.
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In essence, we are defining a polynomial to be a finitely nonzero sequence of elements of R. Thus, the
sequence (1,1,1,0,0,...) would be a polynomial over Z,, but (1,0,1,0,...,1,0,...) would not.

It is easily verified that R[z] constitutes a subring of R[[x]], the socalled ring of polynomials over R (in an
indeterminant ); indeed, if f(z) = Y axz®, g(z) = > byz* are in R[z], with ay, = 0 forall k > n and b, = 0
for all k = m, then

ar + by = 0 for k = max{m,n}

Z aibj=0fork:>m+n

itj=k
so that both the sum f(z) + g(z) and product f(z)g(x) belong to R[x]. Running parallel to the idea of the
order of a power series is that of the degree of a polynomial, which we introduce at this time.

Definition 2.11.2. Given a nonzero polynomial
f(x) =ao +arx+---+ a2 (a, #0)

in R[z], we call a,, the leading coefficient of f(z); and the integer n, the degree of the polynomial. The
degree of any nonzero polynomial is therefore a nonnegative integer; no degree is assigned to the zero
polynomial. Notice that the polynomials of degree O are precisely the nonzero constant polynomials. If R is
a ring with identity, a polynomial whose leading coefficient is 1 is said to be a monic polynomial.

As a matter of notation, we shall hereafter write deg f(x) for the degree of any nonzero polynomial f(z) €
R[z].

The result below is similar to that given for power series and its proof is left for the reader to provide; the
only change of consequence is that we now use the notion of degree rather than order.

Theorem 2.11.3. If f(x) and g(z) are nonzero polynomials in R[z], then

(1) either f(z)g(x) = 0 or deg(f(x)g(z)) < deg f(x) + deg g(z), with equality whenever R is an integral
domain;

(2) either f(z) + g(xz) =0or

deg(f(x) + g(v)) < max{deg f(z),deg g(z)}.

Knowing this, one could proceed along the lines of the corollary 2.10.5 to establish
Corollary 2.11.4. If the ring R is an integral domain, then so is its polynomial ring R[x].

Example 2.11.5. As an illustration of what might happen if R has zero divisors, consider Zg, the ring of
integers modulo 8 . Taking
f(x)=1+22, g(z)=4+x+42?

we obtain f(z)g(z) = 4 + = + 622, so that

deg(f(z)g(z)) =2 <1+ 2=deg f(z) + degg(z).

Although many properties of the ring R carry over to the associated polynomial ring R[z], it should be
pointed out that for no ring R does R[z] form a field. In fact, when R is a field (or, for that matter, an
integral domain), no element of R[x] which has positive degree can possess a multiplicative inverse. For,
suppose that f(z) € R[z], with deg f(z) > 0; if f(z)g(x) = 1 for some g(z) in R[x], we could obtain the
contradiction

0 = degl = deg(f(x)g(x)) = deg f(x) + deg g(x) # 0.

The degree of a polynomial is used in the factorization theory of R[x] in much the same way as the absolute
value is employed in Z. Fory, it is through the degree concept that induction can be utilized in R[z] to develop
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a polynomial counterpart of the familiar division algorithm. One can subsequently establish that the ring
F[«] with coefficients in a field forms a Euclidean domain in which the degree function is taken to be the
Euclidean valuation.

Before embarking on this program, we wish to introduce several new ideas. To this purpose, let R be a ring
with identity; assume further that R’ is any ring containing R as a subring (that is, R’ is an extension of R )
and let r be an arbitrary element of R’. For each polynomial

f(x)=ao+ a1z + - +apz"
in R[z], we may define f(r) € R’ by taking

f(r)=ap+ar+- -+ apr".

The element f(r) is said to be the result of substituting r for = in f(x). Suffice it to say, the addition and
multiplication used in defining f(r) are those of the ring R’, not those of R[z].

Now, suppose that f(z),g(z) are polynomials in R[z] and r € center(R’) (that’s bc. [2] does not assume
commutativity of the ring here). We leave the reader to prove that if then

This being so, it may be concluded that the mapping ¢, : R[z] — R’ which sends f(x) to f(r) is a homomor-
phism of R[z] into R’. Such a homomorphism will be called the substitution homomorphism determined
by r and its image denoted by the symbol R[] :

Rlr] = {f(r) | f(x) € R[z]}

={ap+ar+- - +a,r" | ax € R;n = 0}.

It is a simple matter to show that R[r] constitutes a subring of R’; in fact, R[r] is the subring of R’ generated
by the set R u {r}. (Since R has an identity element 1,12 = x € R[z], and so r € R[r].) Notice also that
R[r] = R if and only if r € R. The foregoing remarks justify part of the next theorem.

Theorem 2.11.6. Let R be a ring with identity, R’ an extension ring of R, and the element r € cent R’. Then
there is a unique homomorphism ¢, : R[z] — R’ such that ¢, (x) = r,¢.(a) = aforall a € R.

Proof. We need only verify that ¢, is unique. Suppose, then, that there is another homomorphism 7 : R[z] —
R satisfy in the indicated conditions and consider any polynomial f(x) = ag + a1z + -+ + a,2™ € R[x]. By
assumption, 7 (aj) = ay, for each coefficient ay, while 7 (z*) = 7(z)* = r*. Taking stock of the fact that 7 is
a homomorphism,
7(f(x)) = 7 (ao) + 7 (a1) 7(x) + -+ + 7 (an) 7(z)"
=ag+arr+ - +a,r" = f(r) = ¢(f(2)).

This proves that T = ¢,., yielding the uniqueness conclusion. Without some commutativity assumption, the
above remarks need not hold. For, if we let then

h(z) = (x —a)(z —b) = 2% — (a + b)x + ab,
h(r) =r* — (a + b)r + ab.
Lacking the hypothesis that r € cent R’, it cannot be concluded that
(r—a)(r—b)=7*>—ar —rb+ab
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will equal A(r); in other words, h(z) = f(x)g(x) does not always imply h(r) = f(r)g(r).

Whenever f(r) = 0, we call the element r a root or zero of the polynomial f(x). Of course, a given
polynomial f(x) € R[x] may not have a root in R; we shall see later that when R is a field, there always
exists an extension field R’ of R in which f(x) possesses a root. It is perhaps appropriate to point out at this
time that the problem of obtaining all roots of a polynomial f(z) € R[z] is equivalent to that of finding all
elements r € R’ for which f(z) € ker ¢,. O
After this brief digression, let us now state and prove the division algorithm for polynomials.

Theorem 2.11.7 (Division Algorithm (Polynomials)). Let R be a commutative ring with identity and f, g be
nonzero polynomials in R[z], with the leading coefficient of g an invertible element. Then there exist unique
polynomials ¢, € R[z] such that

f(@) = q(x)g(z) + r(x),
where either r(z) = 0 or degr(z) < deg g(x).

Proof. The proof is by induction on the degree of f(x). First, notice that if f(z) = 0 or f(x) # 0 and
deg f(x) < degg(z), a representation meeting the requirements of the theorem exists on taking ¢(z) =
0,r(x) = f(x). Furthermore, if deg f(x) = degg(x) = 0, f(z) and g(x) are both elements of the ring R, and
it suffices to let q(x) = f(z)g(z)~1,r(z) = 0.

This being so, assume that the theorem is true for polynomials of degree less than n (the induction hypoth-
esis) and let deg f(x) = n,deg g(x) = m, where n > m > 1; that is,

f@)=as+a1x+ - +apz™, ap#0,
g(x) =bo + b1z + - +bpx™, by #0 (n=m).
Now, the polynomial
filz) = f(@) = (andy,') 2" "g(x)

lies in R[z] and, since the coefficient of 2" is a,, — (anb;;') by = 0, has degree less than n. By supposition,
there are polynomials ¢; (x), r(x) € R[«] such that

(@) = qu(@)g(x) + r(x),
where r(z) = 0 or deg r(z) < deg g(x). Substituting, we obtain the equation
f@) = (au(@) + (andy') 2"7™) (@) + 7(2)
= q(x)g(x) + r(z),
which shows that the desired representation also exists when deg f(z) = n As for uniqueness, suppose that
f@) = q(z)g(x) + r(z) = ¢'(2)g(z) + r'(2),

where r(z) and r’(x) satisfy the requirements of the theorem. Subtracting we obtain
r(z) —r'(2) = (¢'() — q(2)) g(x).

Since the leading coefficient of g(x) is invertible, it follows that ¢’(z) —¢(z) = 0 if and only if r(x) —7'(z) = 0.
With this in mind, let ¢/(z) — ¢(z) # 0. Knowing that b,, is not a zero divisor of R,

deg (¢'(z) — q(2)) g(x) = deg (¢(x) — q(x)) + deg g(x)
> deg g(x) > deg (r(z) —r'(x))

a contradiction; the last inequality relies on the fact that the degrees of r(x) and 7’'(z) are both less than the
degree of g(z). Thus, ¢'(z) = ¢(x), which in turn implies that r'(z) = r(x). O
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The polynomials ¢(x) and r(z) appearing in the division algorithm are called, respectively, the quotient and
remainder on dividing f(x) by g(z). In this connection, it is important to observe that if g(z) is a monic
polynomial, or if R is taken to be a field, one need not assume that the leading coefficient of g(x) is invertible.

We now come to a series of theorems concerning the factorization properties of R[x].
Theorem 2.11.8 (Remainder Theorem). Let R be a commutative ring with identity. If f(z) € R[z] and
a € R, then there exists a unique polynomial ¢(x) in R[x] such that f(x) = (z — a)q(z) + f(a).

Proof. All this is scarcely more than an application of the division algorithm to the polynomials f(x) and
2 — a. We then obtain

f(@) = (z = a)q(x) + r(2),

where r(z) = 0 or degr(z) < deg(x — a) = 1. It follows in either case that r(x) is a constant polynomial, say
r(x) = r € R. Substitution of a for x leads to

as desired. O
Corollary 2.11.9. The polynomial f(x) € R[z] is divisible by z — « if and only if « is a root of f(x). Let us
next show that a polynomial cannot have more roots in an integral domain than its degree.

We give some results without proof:

Theorem 2.11.10 ( [2] Theorem 7-9). Let R be an integral domain and f(x) € R[x] be a nonzero polynomial
of degree n. Then f(x) can have at most n distinct roots in R.

Corollary 2.11.11. Let f(z) and g(x) be two nonzero polynomials of degree n over the integral domain R.
If there exist n + 1 distinct elements a;, € R(k = 1,2,...,n + 1) such that f (a;) = g (ar), then f(x) = g(x).

Corollary 2.11.12. Let f(x) € R[z], where R is an integral domain, and let S be any infinite subset of R. If
f(a) =0forall a € S, then f(z) is the zero polynomial.

Example 2.11.13. Consider the polynomial 2 — = € Z,[z], where p is a prime number. Now, the nonzero
elements of Z,, form a abelian group under multiplication of order p — 1. Hence, we have a?~! = 1, ora? = a
for every a # 0. This is equally true if = 0. Our example shows that it may very well happen that every
element of the underlying ring is a root of a polynomial, yet the polynomial is not zero.

With the Division Algorithm at our disposal, we can prove that the ring F'[«] is rich in structure.
Theorem 2.11.14. The polynomial ring F'[x], where F'is a field, forms a Euclidean domain.
Proof. As has been noted in Corollary 2.11.4, F[z] is an integral domain. Moreover, the function ¢ defined

by 6(f(z)) = deg f(x) for any nonzero f(x) € F[z] is a suitable Euclidean valuation. If f(x) and g(z) are
two nonzero polynomials in F[z] Theorem 2.11.3 implies that

5(f(x)g(x)) = deg(f(z)g(x))
= deg f(x) + deg g(x) > deg f(x) = 6(f(x)),
since deg g(x) = 0. Thus, the function ¢ satisfies the requisite properties of a Euclidean valuation. O
The reader is no doubt anticipating the corollary below.

Corollary 2.11.15. F[z] with F a field is a principal ideal domain; hence, a unique factorization domain.

Since a field is trivially a unique factorization domain, part of the last corollary could be regarded as a special
case of the coming theorem.
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Theorem 2.11.16. If R is a unique factorization domain, then so is R[z].

Proof. Suppose that R[z] is not a unique factorization domain and let S be the set of all nonconstant poly-
nomials in R[x] which do not have a unique factorization into irreducible elements. Select f(x) € S to be of
minimal degree. We may assume that

f(@) = p1(@)p2(x) - pr(2) = q1(2)g2(2) - -~ gs(2),
where the p;(z) and ¢;(z) are all irreducible and
m = degpi(z) = degpa(x) = --- = degp, (),
n =degqi(z) = degqa(x) = -+ = degqs(w),

with n > m > 0; it is further evident that no p;(z) = ug;(x) for any invertible element « (otherwise, the
polynomial obtained on dividing f(z) by ¢;(x) will have unique factorization; this implies that f(z) can also
be factored uniquely). Let a, b be the leading coefficients of p;(z), ¢1 (), respectively, and define

9(z) = af(z) — bp1(x)z" " q2(2) - - - s ().
On one hand, we have

n—m

g(x) = ap1(z)p2(z) - - - pr(x) — bp1(z)2" " qa(x) - - - s ()
= p1(a) (ap2(z) - - - pp(x) — bz " ga(z) - - - g5 (2))

and, on the other hand,

9(z) = aqi(z)q2(x) - - - gs(x) — bp1(x)2" " q2(2) - - - g5 (2)
= (aq1 () — bpy (m)x""”) q2(x) - - qs(x).

Now, either g(x) = 0, which forces ag;(x) = bp1(z)a™ ™, or else deg g(x) < deg f(x). In the latter event,
g(x) must possess a unique factorization into irreducibles, some of which are ¢2(x), ..., ¢s(z) and p;(z). The
net result of this is that p; (z) | g(z), but py(x) 1 ¢;(z) for i > 1, so that

p1(z) | (aqi(z) — bpy (x)a™ ™)

and therefore p; (z) | aqi(z). In either of the two cases considered, we are able to conclude that p; (x) divides
the product ag; (z); this being so, aqi(x) = p1(z)h(x) for some polynomial h(z) € R[z]. Since R is taken to
be a unique factorization domain, ¢ has a unique factorization as a product of irreducible elements of R -
hence, of R[z]-say, a = cica - - - ¢k, where each ¢; is irreducible in R[z]. (The only factorizations of ¢ as an
element of R[x] are those it had as an element of R.) Arguing from the representation

ciez -+ epq(x) = p1(z)h(z)
with p; (z) an irreducible, it follows that each ¢; and, in consequence, the element a divides h(x). But, then,
aqi(z) = p1(z)ahi(z)
for some hy(z) in R[z] or, upon canceling, ¢;(z) = pi(x)hi(z); in other words, pi(z) | ¢1(x). Using the
X

irreducibility of ¢; (z) as a member of R[z], p1(z) must be an associate of ¢; (z). However, this conflicts with
our original assumptions. Thus, we see that R[z] is indeed a unique factorization domain. O

Coming back to the corollary 2.11.15, there is an interesting converse which deserves mention: namely, if R
is an integral domain such that the polynomial ring R[z] forms a principal ideal domain, then R is necessarily
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a field. In verifying this, the main point to be proved is that any nonzero element a € R is invertible in R. By
virtue of our hypothesis, the ideal generated by = and a must be principal; for instance,

(z,a) = (f(2)), 0# f(z) € R[z].
Since both z,a € (f(x)), it follows that

a=g(z)f(x), and z = h(z) f(z)

for suitable g(z), h(z) in R[z]. The first of these relations signifies that deg f(z) = 0, say f(z) = ao, and as a
result deg h(z) = 1, say h(z) = bo+ biz (by # 0). We thus obtain x = ag (b + b1z). But this means that the
product agb; = 1, thereby making ag (or, equivalently, f(x)) an invertible element of R. The implication is
that the ideal (, a) is the entire ring R[z]. It is therefore possible to write the identity element in the form

1 = zki(x) + aka(z),

with the two polynomials k1 (z), k2(x) € R[z]. This can only happen if acy = 1, where ¢y # 0 is the constant
term of k2 (z). In consequence, the element « has a multiplicative inverse in R, which settles the whole affair.

iq. Prove that the three additive groups Z x Z, Z[i], and Z[z]/ (x?) are all isomorphic to each other.
ii. Prove that no two of the rings Z x Z, Z[i], and Z[z]/ (x?) are isomorphic to each other.

2. Which of the following ideals of Z[x, y] are prime? Which are maximal? Justify your answer.

(z,y), (z,3y), (2* + 1,9) , (2* + 1.3,y) , (2® + 1,5, y)

3. Determine the maximal ideals of the following rings.

i. Qz]/(2? -5z +6),
ii. Q[z]/(2? + 4z +6).

2.12 Irreducibility

At the heart of all the interesting questions on factorization in R[x] lies the idea of an irreducible polynomial.
Unwrapping the definition of irreducible element, we have

Definition 2.12.1. Let R be an integral domain. A nonconstant polynomial f(z) € R[z] is said to be
irreducible over R, or is an irreducible polynomial in R[z], if f(x) cannot be expressed as the product of
two polynomials (in R[x]) of positive degree. Otherwise, f(x) is termed reducible in R[x].

In the case of the principal ideal domain F[z], where F is a field, the irreducible polynomials are precisely
the irreducible elements of F[x] (recall that the invertible elements of the polynomial ring F[x] are just the
nonzero constant polynomials); by Theorem 5 — 9, these coincide with the prime elements of F[z]. Of the
equivalent notions, irreducible polynomial, irreducible element, and prime element, the term ”irreducible
polynomial” is the one customarily preferred for F[z].

Perhaps we should emphasize that Definition 2.12.1 applies only to polynomials of positive degree; the
constant polynomials are neither reducible nor irreducible. Thus, the factorization theory of F[z] concerns
only polynomials of degree > 1.
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The dependence of Definition 2.12.1 upon the polynomial domain R[z] is essential. It may very well happen
that a given polynomial is irreducible when viewed as an element of one domain, yet reducible in another.
One such example is the polynomial z2 + 1; it is irreducible in R[z], but reducible in both C[z], where
22 +1= (z+i)(xz —1), and Zy[z], where 2% + 1 = (z + 1)(z + 1). Thus, to ask merely whether a polynomial
is irreducible, without specifying the coefficient ring involved, is incomplete and meaningless.

More often than not, it is a formidable task to decide when a given polynomial is irreducible over a specific
ring. If F' is a finite field, say one of the fields of integers modulo a prime, we may actually examine all of
the possible roots. To cite a simple illustration, the polynomial f(z) = 2* + z + 1 is irreducible in Zs[z]. If
there are any factors of this polynomial, at least one must be linear. But the only possible roots for f(x) are
Oand 1, yet f(0) = f(1) =1 # 0, showing that no roots exist in Z.

Example 2.12.2. Any linear polynomial ax + b, a # 0, is irreducible in R[x], where R is an integral domain.
Indeed, since the degree of a product of two polynomials is the sum of the degree of the factors, it follows
that a representation

az +b = g(a)h(z), g(x),h(x) € R[],

with 1 < degg(z),1 < degh(x) is impossible. This signifies that every reducible polynomial has degree at
least 2.

Example 2.12.3. The polynomial 2% — 2 is irreducible in Q[z], where Q as usual is the field of rational
numbers. Otherwise, we would have

2? —2 = (ax + b)(cx + d)
= (ac)z* + (ad + be)x + bd,

with the coefficients a, b, ¢, d € Q. Accordingly,
ac=1, ad+bc=0, bd=-2,
whence ¢ = 1/a,d = —2/b. Substituting in the relation ad + bc = 0, we obtain

0= —2a/b+b/a = (—2a* + b%) /ab.

Thus, —2a? + b = 0, or (b/a)? = 2, which is impossible because /2 is not a rational number. Although
irreducible in Q[z], the polynomial 2 — 2 is nonetheless reducible in R[z]; in this case, 22 — 2 = (v —
v/2)(z + +/2) and both factors are in R[z].

For ease of reference more than to present new concepts, let us summarize in the next theorem some of the
results of previous sections as applied to the principal ideal domain F[z].

Theorem 2.12.4. If F is a field, the following statements are equivalent:
(1) f(z) is an irreducible polynomial in F[z];
(2) the principal ideal (f(z)) is a maximal (prime) ideal of F[x];
(3) the quotient ring F[z]/(f(x)) forms a field.

The theorem on prime factorization of polynomials is stated now.

Theorem 2.12.5 (Unique factorization in polynomial ring of a field). Each polynomial f(xz) € F[xz] of
positive degree is the product of a nonzero element of F' and irreducible monic polynomials of F[x]. Apart
from the order of the factors, this factorization is unique.

Suffice it to say, this theorem can be made more explicit for particular polynomial domains. When we deal
with polynomials over the complex numbers, the crucial tool is the Fundamental Theorem of Algebra.
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Theorem 2.12.6 (The Fundamental Theorem of Algebra). Let C be the field of complex numbers. If f(z) €
C[z] is a polynomial of positive degree, then f(z) has at least one root in C.

Although many proofs of the result are available, none is strictly algebraic in nature; thus, we shall as-
sume the validity of above theorem without proof. The reader will experience little difficulty, however, in
establishing the following corollary.

Corollary 2.12.7. If f(z) € C[x] is a polynomial of degree n > 0, then f(z) can be expressed in C[z] as a
product of n (not necessarily distinct) linear factors.

Another way of stating the corollary above is that the only irreducible polynomials in C[z] are the linear
polynomials. Directing our attention now to the real field, we can obtain the form of the prime factorization
in R[z] (bear in mind that polynomials with coefficients from R are polynomials in C[x] and therefore have
roots in C).

Corollary 2.12.8. If f(x) € R[z] is of positive degree, then f(x) can be factored into linear and irreducible
quadratic factors.

Proof. Since f(x) also belongs to C[z], f(x) factors in C[z] into a product of linear polynomials z —cy, ¢;, € C.
If ¢, € R, then  — ¢;, € R[z]. Otherwise, ¢;, = a + bi, where a,b € R and b # 0. But the complex roots of real
polynomials occur in conjugate pairs (exercise), so that ¢; = a — bi is also a root of f(x). Thus,

(x —cx) (x — &) = 2% — 2az + (a® + b%) € R[z]

is a factor of f(z). The quadratic polynomial % —2ax+ (a® + b?) is irreducible in R[z], since any factorization
in R[] is also valid in C[z] and (« — ¢x) (z — &) is its unique factorization in C|[z]. O

An interesting remark, to be recorded without proof, is that if F is a finite field, the polynomial ring F[x]
contains irreducible polynomials of every degree.

This may be a convenient place to introduce the notion of a primitive polynomial.

Definition 2.12.9. Let R be a unique factorization domain. The content of a nonconstant polynomial
f(z) =ag+a1x+ -+ a,z™ € R[z], denoted by the symbol cont f(x), is defined to be the greatest common
divisor of its coefficients :

cont f(x) = ged (ag, a1, ..., a,) .

We call f(x) a primitive polynomial if cont f(z) = 1.

Viewed otherwise, Definition 2.12.9 asserts that a polynomial f(x) € R[z] is primitive if and only if there
is no irreducible element of R which divides all of its coefficients. In this connection, it may be noted
that in the domain F[z] of polynomials with coefficients from a field F, every nonconstant polynomial is
primitive (indeed, there are no primes in F). The reader should also take care to remember that the notion
of greatest common divisor and, in consequence, the content of a polynomial is not determined uniquely,
but determined only to within associates.

Given a polynomial f(z) € R[z] of positive degree, it is possible to write f(z) = cfi(x), where ¢ € R and
f1(x) is primitive; simply let ¢ = cont f(z). To a certain extent this reduces the question of factorization
in R[x] (at least, when R is a unique factorization domain) to that of primitive polynomials. By way of
specific illustrations, we observe that f(x) = 323 — 4z + 35 is a primitive polynomial in Z[z], while g(x) =
122% + 62 — 3 = 3 (42? + 2z — 1) is not a primitive element of the same, since g(z) has content 3.

Here is another new concept: Suppose that I is a (proper) ideal of R, a commutative ring with identity.
There is an obvious mapping v : R[z] — (R/I)[z]; for any polynomial f(z) € R[z] simply apply nat; to the
coefficients of f(x), so that

o(f(x))=(ao+ )+ (a1 +Dax+ -+ (an+I1)a",
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or, more briefly, v(f(z)) = 3 (nats a;,) z*. The reader will encounter no difficulty in verifying that v, defined
in this way, is a homomorphism of R[z] onto (R/I)[z], the so-called reduction homomorphism modulo /.
The polynomial v(f(z)) is said to be the reduction of f(x) modulo I.

In another view, we can derive it from the substitution homomorphism. Let ) : R — S be a ring homo-
morphism. Composing ¢ with the inclusion of S as a subring of the polynomial ring S[z], we obtain a
homomorphism ¢ : R — S[z]. The substitution principle asserts that there is a unique extension of ¢ to a
homomorphism ® : R[z] — S[x] that sends = ~~ z. This map operates on the coefficients of a polynomial,
while leaving the variable z fixed. If we denote ¢ (a) by o/, then it sends a polynomial a,z" + - - - + a2 + ag
toalx™ + -+ ajx + ajf.

A particularly interesting case is that ¢ is the homomorphism Z — [, that sends an integer « to its residue a
modulo p. This map extends to a homomorphism ® : Z[z] — F,[z], defined by

O Zz] - Fplx]

f(x)=anx"+..-+a0»—>dnmn+...+@0:f(x) 2.1

—

where a; is the residue class of a; modulo p. It is natural to call the polynomial f(z) the residue of f(x)
modulo p.

Another example: Let R be any ring, and let P denote the polynomial ring R[z]. One can use the substitution
principle to construct an isomorphism

Rlz,y] — Ply] = (R[z])[y].

This is stated and proved below in Proposition 2.12.10. The domain is the ring of polynomials in two
variables = and y, and the range is the ring of polynomials in y whose coefficients are polynomials in .
The statement that these rings are isomorphic is a formalization of the procedure of collecting terms of like
degree in y in a polynomial f(z,y). For example,

gty +a2® =32y + P +2 =97 + (2* = 32%) y + (2® +2).

This procedure can be useful. For one thing, one may end up with a polynomial that is monic in the variable
y, as happens in the example above. If so, one can do division with remainder (see Corollary 2.12.11).

Proposition 2.12.10. Let x = (z1,...,2,,) and y = (y1,...,yn) denote sets of variables. There is a unique
isomorphism R[z,y] — R[x][y], which is the identity on R and which sends the variables to themselves.

This is very elementary, but it would be boring to verify compatibility of multiplication in the two rings
directly.

Proof. We note that since R is a subring of R[z] and R[] is a subring of R[z][y], R is also a subring of
R[z][y]. Let ¢ be the inclusion of R into R[x][y]. The substitution principle tells us that there is a unique
homomorphism & : R[z,y] — R[z][y], which extends ¢ and sends the variables z, and y, wherever we
want. So we can send the variables to themselves. The map ® thus constructed is the required isomorphism.
It isn’t difficult to see that @ is bijective. One way to show this would be to use the substitution principle
again, to define the inverse map. O

Corollary 2.12.11. Let f(z,y) and g(z, y) be polynomials in two variables, elements of R[z, y]. Suppose that,
when regarded as a polynomial in y, f is a monic polynomial of degree m. There are uniquely determined
polynomials ¢(x,y) and r(z,y) such that ¢ = fq + r, and such that if r(z,y) is not zero, its degree in the
variable y is less than m.

Although it might seem to be rather special, the reduction homomorphism will serve us in good stead on
several occasions. We make immediate use of it to characterize primitive polynomials.
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Theorem 2.12.12. Let R be a unique factorization domain and let f(z) = ag + a1z + -+ + an,z™ € R[x],
with deg f(z) > 0. Then f(z) is a primitive polynomial in R[z] if and only if, for each prime element p € R,
the reduction of f(x) modulo the principal ideal (p) is nonzero.

Proof. By definition, the reduction of f(z) modulo (p) is

v(f(z)) = (a0 + (p)) + (a1 + (p)) z + -+ + (an + (p)) 2"

Thus, to say that v(f(x)) = 0 for some prime p € R is equivalent to asserting that a;, € (p), or rather, p | ax
for all k. But the latter condition signifies that cont f(x) # 1; hence, f(z) is not primitive. O

One of the most crucial facts concerning primitive polynomials is Gauss’s Lemma, which we prove next.

Theorem 2.12.13 (Gauss’s Lemma). Let R be a unique factorization domain. If f(z), g(z) are both primitive
polynomials in R[z], then their product f(x)g(x) is also primitive in R[x].

Proof. Given a prime element p € R, (p) is a prime ideal of R, whence the quotient ring R' = R/(p) forms
an integral domain. We next consider the reduction homomorphism v modulo the principal ideal (p). Since
R'[z] is an integral domain, it follows that the reduction of f(x)g(x) cannot be the zero polynomial:

o(f(z)g(x)) = v(f(x))v(g(x)) # 0.
The assertion of the theorem is now a direct consequence of our last result. O

Corollary 2.12.14 (Content is multiplicative). If R is a unique factorization domain and f(z), g(z) € R[x],
then

cont (f(z)g(x)) = cont f(z) cont g(z).

Proof. As noted earlier, we can write f(x) = afi(x),g(x) = bgi(x), where a = cont f(z),b = cont g(z) and
where fi(x), g1(x) are primitive in R[xz]. Therefore, f(x)g(z) = abfi(x)g1(x). According to the theorem, the
product fi(x)g;(x) is a primitive polynomial of R[z]. This entails that the content of f(x)g(x) is simply ab,
or, what amounts to the same thing, cont f(z) cont g(z). O

Any unique factorization domain R, being an integral domain, possesses a field of quotients (field of frac-
tions) K = Q.(R) and we may consider the ring of polynomials R[x] as imbedded in the polynomial ring
K|[z]. The next theorem deals with the relation between the irreducibility of a polynomial in R[z] as com-
pared to its irreducibility when considered as an element of the larger ring K[z]. (The classic example of
this situation is, of course, the polynomial domain Z[z] < Q[z].) Before concentrating our efforts on this
relationship, we require a preliminary lemma.

Lemma 2.12.15. Let R be a unique factorization domain, with field of quotients K. Given a nonconstant
polynomial f(z) € K[z], there exist (nonzero) elements a,b € R and a primitive polynomial f;(x) in R[z]
such that

fl@) = ab™ fi(x).
Furthermore, f;(z) is unique up to invertible elements of R as factors.
Proof. Inasmuch as K is the field of quotients of R, f(z) can be written in the form
flx) = (aobal) + (albfl) T+ -+ (anb;l) ",
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where a;,b; € R and b; # 0. Take b to be any common multiple of the b;; for instance, b = byb; - - - b,. Then
b # 0 and, since the coefficients of bf(x) all lie in R, we have bf(x) = g(x) € R[z]. Accordingly,

fla) =b""g(x) = ab™" fi(x),

where fi(x) € R[z] is a primitive polynomial and a = cont g(x). We emphasize that f;(z) is of the same
degree as f(z), so cannot be invertible in R[z].

As for uniqueness, suppose that f(x) = ab~!fi(z) = cd~'fo(x) are two representations that satisfy the
conditions of the theorem. Then,

adfy(z) = befa ().

Since f1(z) and f2(x) are both primitive, the corollary to Gauss’s Lemma implies that we must have ad = ubc
for some invertible element u € R. In consequence, fi(z) = ufs(z), showing that f(x) is unique to within
invertible factors in R. O

Corollary 2.12.16.

(a) Let fo be a primitive polynomial, and let g € R[x]. If f; divides g in K[z], then f, divides g in R[x].
The converse is also true (obviously).

(b) If two polynomials f and g in R[z] have a common nonconstant factor in K|[z], they have a common
nonconstant factor in R|z].

Proof.

(a) fo divides g in K[z], then g = foq where ¢ € K[z]. We want to show that ¢ € R[x]. We write g = cg;, and
q = ' q1, with g; and ¢; primitives by above theorem. Then cg; = ¢’ f1q1. Gauss’s Lemma tells us that fq;
is primitive. Therefore by the uniqueness assertion of above theorem, ¢ = ¢’ and g1 = f1¢1. Since g € R[z],
c € R, we see q = cq; € R[z].

(b) If the two polynomials f and g in R[x] have a common factor 4 in K[z] and if we write h = chy, where
hy is primitive, then h, also divides f and ¢ in K[z], and by (a), h; divides both f and ¢ in R[x]. O

Theorem 2.12.17. Let R be a unique factorization domain, with field of quotients K. If f(z) € R[«] is an
irreducible primitive polynomial, then it is also irreducible as an element of K[z].

Proof. Assume to the contrary that f(z) is reducible over K. Then, f(z) = g(z)h(z), where the polynomials
g(x),h(zx) are in K[z] and are of positive degree. By virtue of the lemma just proven,

g(x) = ab tgi(x), h(z)=cd 'hi(z),
with a,b,¢,d € R and g¢1(x), hy1(z) primitive in R[z]. Thus,

bf () = acg, (2)ha (@),

Now, Gauss’s Lemma asserts that the product g; (x)h; (z) is a primitive polynomial in R[x], whence f(z) and
g1(x)hy(z) differ by an invertible element of R :

f(z) = ugr (x)hy(x).

Since deg g1 (z) = deg g(x) > 0,deg hy (z) = deg h(x) > 0, the outcome is a nontrivial factorization of f(z) in
RJ[x], contrary to hypothesis. O
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Remark 2.12.18. There is an obvious converse to above theorem viz.: if the primitive polynomial f(z) €
R[x] is irreducible as an element of K[z], it is also irreducible in R[x]. This is justified by the fact that R[z]
(or an isomorphic copy thereof) appears naturally as a subring of K[z]; thus, if f(x) were reducible in R[z],
it would obviously be reducible in the larger ring K|z].

Our remarks lead to the following conclusion:

Theorem 2.12.19. Given a primitive polynomial f(x) € R[z], R a unique factorization domain, f(z) is
irreducible in R[z] if and only if f(x) is irreducible in K[z]. The irredciblle elements of R[x] are of two
types: irreducible elements of R, and primitive elements of R[z] that are irreducible in K[z].

Proposition 2.12.20. If f € Z[X] is monic, then every monic factor of f in Q[X] lies in Z[X].
Proof. Let g be a monic factor of f in Q[X], so that f = gh with h € Q[X] also monic. Let m,n be the
positive integers with the fewest prime factors such that mg, nh € Z[X]. As in the proof of Gauss’s Lemma,

if a prime p divides mn, then it divides all the coefficients of at least one of the polynomials mg, nh, say mg,
in which case it divides m because g is monic. Now g € Z[X], which contradicts the definition of m. [

Theorem 2.12.21. Let R be an integral domain and the nonconstant polynomial f(z) = ag + a1z + --- +
anx™ € R[z]. Suppose that there exists a prime ideal P of R such that

(1) an ¢ P,

(2) ape PforO<k<mn,

(3) ap ¢ P2.
Then f(x) is irreducible in R[x].
Proof. Assume that, contrary to assertion, f(z) is reducible in R[z]; say, f(z) = g(z)h(x) for polynomials
g(x), h(z) € R[x], where

g(x) =bo +brw + -+ bpa”
hz)=co+crz+- - +cx® (r+s=mn;r,s>0)

Now consider the reduction of f(z) modulo the ideal P. Invoking hypothesis (2), it can be inferred that
v(g())v(h(z)) = v(f(2)) = (an + P)z".

Since the polynomial ring (R/P)[z] comprises an integral domain, the only possible factorizations of (a,, + P) 2™
are into linear factors. This being so, a moment’s reflection shows that

v(g(z)) = (b + P)a”,
v(h(z)) = (cs + P)x®.

This means that the constant terms of these reductions are zero; that is,

b+ P=co+P =P

Altogether we have proved that both by, cq € P, revealing at the same time that ag = bycy € P2, which is
untenable by (3). Accordingly, no such factorization of f(z) can occur, and f(x) is indeed irreducible in
R[x]. O

Immediately follows is that
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Theorem 2.12.22 (Eisenstein Criterion). Let R be a unique factorization domain and K be its field of
quotients. Let f(x) = ap + a1z + - - - + a,2™ be a nonconstant polynomial in R[z]. Suppose further that for
some prime p € R,

(1) pfan,
(2) plagfor0<k <n,
(3) p*tao.
Then, f(z) is irreducible in K[z].

Proof. We already know that (p) is a prime ideal of R. Taking stock of the theorem, f(z) is an irreducible
polynomial of R[z]; hence, of K[x] (at this point a direct appeal is made to Theorem 2.12.17). O

This is probably a good time at which to examine some examples.

Example 2.12.23. 22 + y? + 1 is irreducible in C[z, y].

Proof. Let R = C[z], which is UFD. We then use Eisenstein’s criterion to show that 42 + (22 + 1) = y? + aq
where ag = 2% + 1 is irreducible in K[y] where K is the field of fractions of R, which then implies that it is
irreducible in R[y] due to remark 2.12.18. as = 1,a; = 0,09 = 22 + 1. Let p = v + i € R, then y? + ag is
irredciblle as

1) z+itl,
) pl0=0(x+1i),p|z*+1=(z+i)(z—1),

(3) p*=(z+i)%fao = (z+i)(x —i)as (v +14) | (x —i).

Example 2.12.24. Consider the monic polynomial
flx)=2"+aeZlx] (n>1),

where a # +1 is a nonzero square-free integer. For any prime p dividing a, p is certainly a factor of all
the coefficients except the leading one, and our hypothesis ensures that p? { a. Thus, f(z) fulfils Eisenstein’s
criterion, and so is irreducible over Q. Incidentally, this example shows that there are irreducible polynomials
in Q[z] of every degree.

On the other hand, notice that z* +4 = (22 + 2z + 2) (2% — 2z + 2); one should not expect Theorem 2.12.21
to lead to a decision in this case, since, of course, 4 fails to be a square-free integer.

Example 2.12.25. Eisenstein’s test is not directly applicable to the cyclotonic polynomial

P—1
f(z) = L . =aP 4 2P"2 ¢ ...+ 2+ 1€ Z[x], p prime.
T —

because no suitable prime is available. This problem is resolved by the observation that f(x) is irreducible in
Z|«x] if and only if f(x + 1) is irreducible. That's because f reducible = f(z) = h(x)g(z) = f(x +1) =
hz+ Dg(z +1) = u(x)v(r) = f(z+ 1) reducible; f(z + 1) = u(z)v(z) = f(z) = f((x—1)+1) =
u(x — 1)v(z — 1). Now, a simple computation yields

Fle+1) :pil(x—i- 1) _,,2:;0 (;)xa _2 (21 @) o

i=0
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. .. . ; +1 —1 /i |
By combinatorial identity () +---+ (7) = (7/1). ¢ = X2 (5) = ;Y1) = groe—mr- Thus p|¢; for
0<j<p-—1 Also,pfc, 1 = (2:}) = land p?  ¢o = (}) = 1. Eisenstein criterion then concludes that

f(z + 1) is irreducible, so f(x) irreducible.

1. [1] p.379 Ex3.1. Let ¢ denote the homomorphism Z[z] — R defined by

i op@) =1+v2,
il o(z) =1 +V2.

Is the kernel of ¢ a principal ideal? If so, find a generator.

2. [1] p.379 Ex3.2. Prove that two integer polynomials are relatively prime elements of Q[z] if and only if
the ideal they generate in Z[z] contains an integer.

3. [1] p.379 Ex3.4. Let z,y, 2z, w be variables. Prove that zy — zw, the determinant of a variable 2 x 2
matrix, is an irreducible element of the polynomial ring C[z, y, 2z, w].

2.13 Factoring Rational and Integer Polynomials

Every monic polynomial f(z) with rational coefficients can be expressed uniquely in the form p; - - - p, where
p; are monic polynomials that are irreducible elements in the ring Q[«].

Example 2.13.1. Here are some examples of irreducible elements in Q[z]:

* Linear Polynomials: Any linear polynomial ax + b (with a # 0) is irreducible in Q[z] because it cannot
be factored further into non-constant polynomials with rational coefficients. For example 2z + 3 is
irreducible.

* Quadratic Polynomials: A quadratic polynomial ax? + bz + c is irreducible in Q[z] if its discriminant
b? — 4ac is not a perfect square in Q. For example, 22 + z + 1 is irreducible in Q[x] because its
discriminant 12 — 4 - 1 -1 = —3 is not a perfect square.

* Cubic Polynomials: A cubic polynomial az?® + bxz? + cx + d may be irreducible if it does not have a
rational root (which can be checked using the Rational Root Theorem) and cannot be factored into a
product of a linear and a quadratic polynomial with rational coefficients. For example, 23 + 2z + 1 is
irreducible in Q[x].

Algorithm for factoring a polynomial in Q[z]: To see this, consider f € Q[x]. Multiply f(x) by a rational
number so that it is monic, and then replace it by Ddee(f) f (%), with D equal to a common denominator
for the coefficients of f, to obtain a monic polynomial with integer coefficients. Thus we need consider only
polynomials

f(z)=2a™ +a 2™+ 4 ay,, a;€Z

From the fundamental theorem of algebra, we know that f splits completely in C[x] :

m

f(x):n(x—ai), o; € C.

i=1

From the equation
0=f(o)=a"+a ™+ +ap,

i
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it follows that |« is less than some bound depending only on the degree and coefficients of f; in fact,

|a;| < max{l,mB}, B = max|a;|.

Now if g(z) is a monic factor of f(z), then its roots in C are certain of the «;, and its coefficients are
symmetric polynomials in its roots. Therefore, the absolute values of the coefficients of g(x) are bounded in
terms of the degree and coefficients of f. Since they are also integers (by proposition2.12.20), we see that
there are only finitely many possibilities for g(x). Thus, to find the factors of f(z) we (better PARI) have to
do only a finite amount of checking.

Therefore, we need not concern ourselves with the problem of factoring polynomials in the rings Q[X] or
F,[X] since PARI knows how to do it. For example, typing content (6*¥X~2+18xX-24) in PARI returns 6, and
factor (6*xX"2+18+X-24) returns X — 1 and X + 4, showing that

6X2 +18X —24 = 6(X — 1)(X +4)
in Q[X]. Typing factormod (X~2+3*X+3,7) returns X + 4 and X + 6, showing that
X2 +3X +3=(X+4)(X +6)
in F’r [X]
sage: R.<x> = PolynomialRing(ZZ)

sage: (2%xA2 - 4*x24 + 14*xA7) .content()
2

Figure 2.1: SageMath example. See manual.

sage: R.<x> = ZZ[]

sage: f = x¢ - 1

sage: f.factor()

x-1* @+1 * x*2+1

Figure 2.2: SageMath example. See manual.

More examples can be seen in the link.

We have shown that The polynomial ring Z[z] is also a unique factorization domain. That is, nonzero
polynomial f(x) € Z[x] that is not +1 can be written as a product

f(@) =£p1- pmr(z) - qn(),

where p; are integer primes and ¢; (z) are primitive irreducible polynomials. This expression is unique except
for the order of the factors.

We have two main tools for studying factoring in Z[z]. The first is the inclusion of the integer polynomial
ring into the ring of polynomials with rational coefficients:

Z|z] = Q[z].

This can be useful because algebra in the ring Q[z] is simpler. The second tool is reduction modulo some
integer prime p, the homomorphism

Vp : Z[x] — Fplz]

that sends » v~ z. We'll often denote the image v, (f) of an integer polynomial by f, though this notation
is ambiguous because it doesn’t mention p. The next lemma should be clear.
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Lemma 2.13.2. Let f(z) = a,z™ + -+ + a12 + ao be an integer polynomial, and let p be an integer prime.
The following are equivalent:

* p divides every coefficient a; of f in Z,
* pdivides f in Z[z],
* fis in the kernel of 1.

The lemma shows that the kernel of 1, can be interpreted easily without mentioning the map. But the facts
that ¢, is a homomorphism and that its image F,[z] is an integral domain make the interpretation as a
kernel useful.

We pose the problem of factoring an integer polynomial
f(x) = apa™ + -+ a1z + ag,

with a,, # 0. Linear factors can be found fairly easily.
Lemma 2.13.3.
(a) If an integer polynomial b,z + by divides f in Z[z], then b; divides a,, and b, divides ag.

(b) A primitive polynomial by 2 + by divides f in Z[z] if and only if the rational number —b, /b, is a root of

1.

(c) A rational root of a monic integer polynomial f is an integer.

Proof. (a) The constant coefficient of a product (b1z + by) (gn—12""" + -+ + qo) is bogo, and if ¢,y # 0, the
leading coefficient is b1q,,_1.

(b) According to Corollary 2.12.16, byz + by divides f in Z[z] if and only if it divides f in Q[z], and this is
true if and only if = + by /by divides f, i.e., —bg/b; is a root.

(c) If & = a/b is a root, written with b > 0, and if ged(a,b) = 1, then bz — a is a primitive polynomial that
divides the monic polynomial f, so b = 1 and « is an integer. O

Corollary 2.13.4 (Rational Root Theorem). Suppose we have a rational —by/b; written in lowest terms so
that b, and by are relatively prime (i.e., by« + by primitive). Thus it is a root of f € Z[z] iff by« + by divides f
due to (b), which by (a) implies that b, divides a,, and bg divides ag.

The homomorphism ¢, : Z[z] — Fp[x] (eq. (2.1)) is useful for explicit factoring, one reason being that there
are only finitely many polynomials in F,,[x] of each degree.

Proposition 2.13.5. Let f(z) = a,2" + - -+ + ag be an integer polynomial, and let p be a prime integer that
does not divide the leading coefficient a,,. If the residue f of f modulo p is an irreducible element of F[x],
then f is an irreducible element of Q[x].

Proof. We prove the contrapositive, that if f is reducible, then f is reducible. Suppose that f = gh is
a proper factorization of f in Q[z]. We may assume that g and h are in Z[z] (cor 2.12.16). Since the
factorization in Q[z] is proper, both g and h have positive degree, and, if deg f denotes the degree of f, then
deg f = deg g + degh.

Since ¢, is a homomorphism, f = gh, so deg f = deg g + deg h. For any integer polynomial p, deg p < degp.
Our assumption on the leading coefficient of f tells us that deg f = deg f. This being so we must have
deg g- = deg g and deg h = deg h. Therefore the factorization f = gh is proper. O
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If p divides the leading coefficient of f, then f has lower degree, and using reduction modulo p becomes
harder.

If we suspect that an integer polynomial is irreducible, we can try reduction modulo p for a small prime,
p = 2 or 3 for instance, and hope that f turns out to be irreducible and of the same degree as f. If so, f will
be irreducible too. Unfortunately, there exist irreducible integer polynomials that can be factored modulo
every prime p. The polynomial z* — 1022 + 1 is an example. So the method of reduction modulo p may not
work. But it does work quite often.

The irreducible polynomials in F,[z] can be found by the "sieve” method. The sieve of Eratosthenes is the
name given to the following method of determining the prime integers less than a given number n. We list
the integers from 2 to n. The first one, 2, is prime because any proper factor of 2 must be smaller than 2, and
there is no smaller integer on our list. We note that 2 is prime, and we cross out the multiples of 2 from our
list. Except for 2 itself, they are not prime. The first integer that is left, 3, is a prime because it isn’t divisible
by any smaller prime. We note that 3 is a prime and then cross out the multiples of 3 from our list. Again,
the smallest remaining integer, 5, is a prime, and so on.

The same method will determine the irreducible polynomials in [F,,[x]. We list the monic polynomials, degree
by degree, and cross out products. For example, the linear polynomials in F5[z] are « and « + 1. They are
irreducible. The polynomials of degree 2 are 22, 22 + z,2? + 1, and 2 + z + 1. The first three have roots
in 5, so they are divisible by z or by = + 1. The last one, 22 + z + 1, is the only irreducible polynomial of
degree 2 in Fy[z]. The irreducible polynomials of degree < 4 in Fo[z]:

r, x+1; x2+x+1; x3+m2+1, J;3+x+1;

P+ Lt o+ Lt b2 2t o+ 1
By trying the polynomials on this list, we can factor polynomials of degree at most 9 in Fy[x]. For example,
let’s factor f(z) = 2° + 2 + 1 in Fy[z]. If it factors, there must be an irreducible factor of degree at most
2. Neither 0 nor 1 is a root, so f has no linear factor. There is only one irreducible polynomial of degree 2,

namely p = 22 + z + 1. We carry out division with remainder: f(z) = p(z) (23 + 2> + z) + (z + 1). So p
doesn’t divide f, and therefore f is irreducible.

Consequently, the integer polynomial z° — 642* + 12723 — 200z + 99 is irreducible in Q[x], because its residue
in Fy[z] is the irreducible polynomial 2% + 2® + 1. The monic irreducible polynomials of degree 2 in F3[z] :

x2+1, x2+x—1, 22—z —1.

1. [1] p.380 Ex4.1. (a) Factor 2 — z and 2% — 1 in F3[z]. (b) Factor 21 — z in Fa[x].

2. [1] p.380 Ex4.2. Prove that the following polynomials are irreducible:

i. 224 1,inFq[z],
ii. 3;‘3 — 9, in ]F31[.’L‘].

3. [1] p.380 Ex4.3. Decide whether or not the polynomial 2* + 62® + 92 + 3 generates a maximal ideal in

Q[z].
4. [1] p.380 Ex4.4. Factor the integer polynomial 2% + 22 + 32 + 32 + 5 modulo 2 , modulo 3, and in Q.

5. Which of the following polynomials are irreducible in Q[z]?
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i 2%+ 27z + 213,
ii. 8a3 —6x+1,
iii. 23 +622+1
iv. 2®—3z*+3.

6. [1] p.380 Ex4.5. Factor z° + 5x + 5 into irreducible factors in Q[z] and in Fy[z].

7. [1] p.380 Ex4.10. Factor the following polynomials in Q[z]. (a) #2 + 2351z + 125 (b) 23 + 222 + 3z + 1,
@z*+203 4222 +20+2, () z*+ 223+ 322+ 2z + 1, (@ z* + 223 + 22 + 2 + 1, () 2* + 222 + x + 1,
(@ 2®+ 28+t +22+1, (h) 2% — 225 — 322+ 92— 3, () 2* + 22 + 1, (k) 32° 4+ 62* + 923 + 322 — 1, (1)
2+t 42?2
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Chapter 3

Modules

We will extensively copy from [10] for modules.

3.1 Categories and Functors

Definition 3.1.1. A category C consists of three ingredients: a class obj(C) of objects, a set of mor-
phisms Hom(A, B) for every ordered pair (A, B) of objects, and composition Hom(A, B) x Hom(B,C) —
Hom(A, C), denoted by

(f.9)—gf

for every ordered triple A, B, C of objects. [We often write f : A — Bor A 7, Binstead of f € Hom(A, B).]
These ingredients are subject to the following axioms:

(i) the Hom sets are pairwise disjoint; that is, each f € Hom(A, B) has a unique domain A and a unique
target B;

(ii) for each object A, there is an identity morphism 1,4 € Hom(A, A) such that f14 = fand 15f = f for
all f: A — B;

(iii) composition is associative: given morphisms A Lol D, then
hgf) = (hg)f.

Example 3.1.2.

1. Sets. The objects in this category are sets (not proper classes), morphisms are functions, and composi-
tion is the usual composition of functions.

It is an axiom of set theory that if A and B are sets, then the class Hom(A, B) of all functions from A
to B is also a set. That Hom sets are pairwise disjoint is just a reflection of the definition of equality of
functions, which says that two functions are equal if they have the same domains and the same targets
(as well as having the same graphs). For example, if U < X is a proper subset of a set X, then the
inclusion function U — X is distinct from the identity function 1y, for they have different targets. If
f:A— Bandg:C — D are functions, we define their composite gf : A — D if B = C. In contrast,
in Analysis, one often says gf is defined when B < C. We do not recognize this; for us, gf is not
defined, but gif is defined, where i : B — (' is the inclusion.

2. Groups. Objects are groups, morphisms are homomorphisms, and composition is the usual compo-
sition (homomorphisms are functions). Part of the verification that Groups is a category involves
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10.

checking that identity functions are homomorphisms and that the composite of two homomorphisms
is itself a homomorphism [one needs to know that if f € Hom(A, B) and ¢ € Hom(B, (), then
gf € Hom(A, C)].

A partially ordered set X can be regarded as the category whose objects are the elements of X, whose
Hom sets are either empty or have only one element:

onte) - {0 0%

{i} ifz<y
(the symbol ¢ is the unique element in the Hom set when = < y ), and whose composition is given
by 41y = 1. Note that 1, = (g, by reflexivity, while composition makes sense because < is transitive.
The converse is false: if C is a category with | Hom(z,y)| < 1 for every z,y € obj(C), define x < y if
Hom(z,y) # @. Then C may not be partially ordered because < need not be antisymmetric. The two-
point category e < e having only two nonidentity morphisms is such an example that is not partially
ordered.

We insisted, in the definition of category, that each Hom(A, B) be a set, but we did not say it was
nonempty. The category X, where X is a partially ordered set, is an example in which this possibility
occurs. [Not every Hom set in a category C can be empty, for 1 4 € Hom(A, A) for every A € obj(C).]

Let X be a topological space, and let &/ denote its topology; that is, U is the family of all the open
subsets of X. Then U/ is a partially ordered set under ordinary inclusion, and so it is a category as in
part 3. In this case, we can realize the morphism (!, when U < V, as the inclusion i{, : U — V.

View a natural number n > 1 as the partially ordered set whose elements are 0,1,...,n — 1 and
0<1<--<n-1 Asinpart3, thereis a category n with obj(n) = {0,1,...,n — 1} and with
morphisms i — jforall0 <i<j<n—1.

Let S be a set with a relation ~ that is reflexive and transitive, and C is a category 0bj(C). Home(a, b) =
¢ ifa » band {(a,b)} if a ~ b.

a € obj(C),1, = (a,a) with composition (a,b) € Hom(a,b), (b,¢) € Hom(b, c) therefore (b,c)(a,b) =
(a,c).

Let C be a category, A € obj(C) and C4 be a new catory, where objects are morphism from any object
of C to A.

HOIHCA(f,g) = {UEHomC(B>C> |ga = f}

and Home, (f,g) x Home,(g,h) — Home, (f,h),(0,a) — ao. So h(ac) = (ha)o = go = f, and
Ipf =/

Top. Objects are all topological spaces, morphisms are continuous functions, and composition is the
usual composition of functions. In checking that Top is a category, one must note that identity func-
tions are continuous and that composites of continuous functions are continuous.

Ab. Objects are abelian groups, morphisms are homomorphisms, and composition is the usual compo-
sition.

Rings. Objects are rings, morphisms are ring homomorphisms, and composition is the usual compo-
sition. We assume that all rings R have a unit element 1, but we do not assume that 1 # 0. (Should
1 = 0, however, the equation 1r = r for all » € R shows that R = {0}, because 0r = 0. In this case, we
call R the zero ring.) We agree, as part of the definition, that ¢(1) = 1 for every ring homomorphism
. Since the inclusion map S — R of a subring should be a homomorphism, it follows that the unit
element 1 in a subring S must be the same as the unit element 1 in R. Category C with obj(C) the
commutative rings is termed ComRings
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Definition 3.1.3. Let C be a category, f € Hom¢(A, B). Then f is an isomorphism if it has a two-sided
inverse under composition with g € Hom(B, A) so that gf = 14, fg = 1p. This inverse is unique, and is
denoted by f~!. This has the properties that

* (1a)™'=1a
* (fg) =g f
s (=1

Example 3.1.4.
» If C is a set, then isomorphism are bijections.
* ~onS: (a,b) is an isomorphism <= b~ a

Definition 3.1.5. f € Hom¢ (A, B) is a monomorphism if VC' € obj(C) and g¢1,92 € Hom¢(A4,C) with
fag1, for, we have g1 = go. f is an epimorophism if VC € obj(C), h1, he € Home (B, C) with hy f = hof, we
have hl = h2

Example 3.1.6.
* For C a set, a monomorphism is injective and epimorphism is surjective.
* For S, ~, all morphisms are monomorphism and epimorphism.
Definition 3.1.7. A category S is a subcategory of a category C if
(D) obj(8) < obj(C),
(ii) Homg(A, B) < Hom¢ (A4, B) for all A, B € obj(S), where we denote Hom sets in S by Homg (o, o),

(iii) if f € Homg(A, B) and g € Homg (B, C), then the composite g f € Homgs(A, C) is equal to the composite
gf € Home (A, C),

(iv) if A € obj(S), then the identity 14 € Homgs(A4, A) is equal to the identity 14 € Hom¢ (A4, A).
A subcategory S of C is a full subcategory if, for all A, B € obj(S), we have Homgs(A, B) = Hom¢ (A, B).

Example 3.1.8. For example, Ab is a full subcategory of Groups. Call a category discrete if its only mor-
phisms are identity morphisms. If S is the discrete category with obj(S) = obj(Sets), then S is a subcategory
of Sets that is not a full subcategory. On the other hand, the homotopy category Htp is not a subcategory of
Top, even though obj(Htp) = obj(Top), for morphisms in Htp are not continuous functions.

If C is any category and S < obj(C), then the full subcategory generated by S, also denoted by S, is the
subcategory with obj(S) = S and with Homgs(A, B) = Hom¢ (A4, B) for all A, B € obj(S). For example, we
define the category Top, to be the full subcategory of Top generated by all Hausdorff spaces.

Functors are homomorphisms of categories.
Definition 3.1.9. If C and D are categories, then a functor T': C — D is a function such that
(i) if A € obj(C), then T(A) € obj(D),
(i) iff: A—> A'inC, thenT(f): T(A) > T (A") in D,
(i) if A 5> A’ % A7 in ¢, then T(A) “Y% 7 (4) B9 7 (A7) in D and T(gf) = T()T(f),
(iv) T'(14) = 174 for every A € obj(C).
Example 3.1.10.

(i) If S is a subcategory of a category C, then the definition of subcategory may be restated to say that the
inclusion I : S — C is a functor [this is one reason for the presence of Axiom (iv)].
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(i)

(iii)

If C is a category, then the identity functor 1¢ : C — C is defined by 1¢(A) = A for all objects A and
1¢(f) = f for all morphisms f.

If C is a category and A € obj(C), then the Hom functor T4 : C — Sets, usually denoted by Hom(A4, o),
is defined by
T4(B) = Hom(A, B) for all B € obj(C),

andif f: B — B'inC, then T4(f) : Hom(A4, B) — Hom (A, B’) is given by

Ta(f) :h— fh.

We call T4 (f) = Hom(A, f) the induced map, and we denote it by f; thus,
fe:h— fh.
Suppose now that g : B’ — B”. Let us compare the functions

(gf)*,g*f* : HOIII(A7 B) — Hom (A, B//) )

If h e Hom(A4, B), i.e.,if h : A — B, then
(9f)x :h = (9f)h;
on the other hand, associativity of composition gives
gufs :h fhoo g(fh) = (gf)h,
as desired. Finally, if f is the identity map 15 : B — B, then
(1), :h—1ph="h

for all h e Hom(A, B), so that (15),, = lxom(4,B)-

(iv) A functor T : Z — C, where Z is the category obtained from Z viewed as a partially ordered set [as in

4]

Example 1.3(vi)], is a sequence

e n+1_’Cn_)Cn71_’"'

Define the forgetful functor U : Groups — Sets as follows: U(G) is the underlying set of a group G
and U(f) is a homomorphism f regarded as a mere function. Strictly speaking, a group is an ordered
pair (G, ) [where G is its (underlying) set and i : G x G — @ is its operation], and U((G, u)) = G;
the functor U "forgets” the operation and remembers only the set. There are many variants. For
example, a ring is an ordered triple (R, a, ) [where @ : R x R — Ris additionand u: Rx R —» R
is multiplication], and there are forgetful functors U’ : Rings — Ab with U'(R,a,u) = (R, ), the
additive group of R, and U"Rings — Sets with U”(R, a, 1) = R, the underlying set.

Definition 3.1.11. A contravariant functor 7' : C — D, where C and D are categories, is a function such

that
®
(ii)
(i)

if C € obj(C), then T'(C) € obj(D),
iff:C—>C'inC,thenT(f): T (C") — T(C) in D (note the reversal of arrows),

ifc Lo % oine then T (") 2 7 (') ZY% 7(C) in D and
T(gf) =T(f)T(9),
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(iv) T'(1a) = 174 for every A € obj(C).
To distinguish them from contravariant functors, the functors defined earlier are called covariant functors.

Example 3.1.12. If C is a category and B € obj(C), then the contravariant Hom functor 77 : C — Sets,
usually denoted by Hom(z, B), is defined, for all C' € obj(C), by

TB(C) = Hom(C, B),
and if f : C — O’ in C, then T®(f) : Hom (C’, B) — Hom(C, B) is given by

TE(f): h hf.

We also call TP(f) = Hom(f, B) the induced map, and we denote it by f*; thus,

f*:hw hf.

Because of the importance of this example, we verify the axioms, showing that Hom(o, B) is a (contravariant)
functor.

Given homomorphisms
cLc s
let us compare the functions
(9f)*, f*¢* : Hom (C”, B) — Hom(C, B).
If h € Hom (C”, B), i.e., if h : C” — B, then

(9f)* + h— h(gf)
on the other hand,
9" v h— hg — (hg)f = h(gf) = (hg)f,
as desired. Finally, if f is the identity map 1¢ : C' — C, then
(lc)* ch— hlc =h
for all h e Hom(C, B), so that (1¢)* = lyom(c,p)-

Definition 3.1.13. For category C, I € obj(C) is initial if for any A € obj(C), Hom¢ (I, A) has one element.
F € obj(C) is final if for any A € obj(C), then Hom¢ (A, F') has one element.

Example 3.1.14.
* For C a set, & is the initial object, any singleton set is a final object.
* For (S, ~) with (Z, <), there is no initial or final object.
Note: Initial and final objects are unique up to isomorphism.
Example 3.1.15.
* For category of sets, initial object is @ and final object is singleton set.
* For category of groups, initial object is {e} and final is also {e}.
* For category of rings, intial object is Z, final object is {0}.
* For category of R-modules, initial element is {0} and final is {0}.

* For category of fields, there are no initial and final objects
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Definition 3.1.16. A category C is a groupoid if every morphism is an isomorphism.
Example 3.1.17. If ~ on S is an equivalence relation,

(ab)

a’ b

_—
(ba)

Definition 3.1.18. If A € obj(C) isomorphisms € Hom(A, A) are automorphism, they form a group denoted
by Aut(A)
Fact: A group is a groupoid of 1 object!

3.2 Modules

Definition 3.2.1. Suppose we have arbitrary ring R and abelian group M such that there is R x M — M,
(r,m) — rm with distributivity. This is a left module, and satisfies the distributivity below:

* (r+s)ym=rm+sm
* r(my +mg) = rmy + rms
* (rs)m =r(sm)
e lpm=m
Modules also satisfy the following properties:
* 700 = O,
* Orm = Opy,
o (—r)m = —(rm).

Definition 3.2.2. Let M be an R-module, a subset N < M is called a R-submodule of M, written as
N < M,if (N,+) < (M,+) and for any r € R,n € N, we haver-n € N.

Example 3.2.3. 1. If R is a field, then an R-module M is a vector space over R.

2. Let R be a ring and R be a module over R. Submodules are (left) ideals in this case.

3. A Z-module is precisely the same as an abelian group as the scalar multiplication can be uniquely defined
byn-a=a+ -+ afor n many copies of a.

4. Consider the ring R = F[X] for a field F and V a vector space over F. Consider o« : V — V an
endomorphism. We can make V an R-module over the scalar multiplication F[X] x V' — V by (f,v) —
f(a)(v). Note that different choice of « makes V' a different module. We sometimes write this as V,.

There are some general construction methods to produce a module.

Example 3.2.4. 1. For any ring R, R" is an R-module by r - (r1,...,r,) = (rr1,...,rr,) for r,r; € R. In
particular, when n = 1, R itself is an R-module.

2. If I is an ideal, then I is an R-module by r - i = ri for r € R,i € I.

3. If I is an ideal, then R/I is an R-module by r- (s + I) =rs+ I forr,s € R.

4.If ¢ : R — S is a ring homomorphism, then any S-module M is also an M-module by r - m = ¢(r) - m for
r € R,m € M. In particular, if R < S, then any S-module can be viewed as an R-module.

Example 3.2.5. 1. Any R-submodule of R is an ideal.
2. When R is a field, then an R-module is a vector space, then a submodule is a vector subspace.

Definition 3.2.6. If N is a R-submodule of M, we can form the quotient M /N by taking the quotient group
under addition. We can make it as an R-module by specifying the scalar multiplication r-(m+N) = r-m+N.
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We can check easily that the scalar multiplication defined in this way is well-defined and makes M /N an
R-module.

Definition 3.2.7. Let M, N be R-modules, then a function f : M — N is a homomorphism of R-modules (or
R-module map) if f is a homomorphism of groups under addition and Vr € R,m e M, f(r-m) =r - f(m).
A bijective homomorphism is called an isomorphism, and two R-modules M, N are called isomorphic (writ-
ten as M =~ N) if there is an isomorphism between them.

Example 3.2.8. When R is a field, a homomorphism of R-modules is a linear map.
Isomomorphism Theorems

If N € M is a submodule, then M /N has the structure of a R-module.
r(m+ N):=rm+ N

well-defined: Does m+ N = m'+ N — r(m+ N) = r(m' + N)?. yes, because m —m' € N and
r(m—m')e N

Isomorphism Theorem 1: If f : M — N is a R-homomorphism, then

M/Ker(f) ~ Im(f) as R-modules

Isomorphism Theorem 2: If N;, N, are submodules of M, then N7 + Ny := {z + y ‘ x € N1,y € Na}tisa
submodule of M, and N; n N5 is also a submodule of M, and

Ny N1+ Ny N1+ Ny
~ L fiNy >
NlﬁNQ N1 Nl

s f(ng) =ng9 + N;

Isomorphism Theorem 3: If N € M and K < N are submodules, then N/K is a submodule of M /K, and

M /K

NK ~ M/N

Isomorphism Theorem 4: If N € M is a submodule, the canonical map M — M /N, m — m + N induces
a 1-1 correspondence between submodules of M /N and submodules of M containing N

3.3 Finitely Generated Modules

Definition 3.3.1. Let M be an R-module, and m € M, then the submodule Rm generated by m is the
smallest R-submodule of M containing m, i.e. Rm = {r-m:r € R}.

Definition 3.3.2. Let M be an R-module. M is called cyclic if M = Rm for some m € M. M is finitely
generated if 3my,...,m, € M such that Rm; + --- Rm,, = M.

Lemma 3.3.3. An R-module M is cyclic iff M is isomorphic as an R-module to R/I for some I < R.

Proof. If M is cyclic, write M = Rm, then there is a surjective R-module homomorphism R — M by r — r-m
so the claim follows by the First Isomorphism Theorem.
Conversely If M ~ R/I, then M =~ R/I = R(1 + I). O

Lemma 3.3.4. An R-module M is finitely generated iff there exists a surjective R-module homomorphism
from f : R™ — M for some n.
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Proof. If M is finitely generated, then M = Rm; + - - - + Rm,, where m; € M, so we can take f(r1,...,r,) =
remy + -+ rpmy.

Conversely, if such a map f exists, then M = Rf(e;) + --- + Rf(e,), then ¢; has 1 in i*" entry and 0 in j*"
entry for any j # . O

Corollary 3.3.5. The quotient of a finitely generated R-module is a finitely generated R-module.
Proof. Obvious from the preceding lemma. O

Remark 3.3.6. A submodule of a finitely generated R-module needs not be finitely generated. For example,
we can take a non-Noetherian ring R itself as an R-module and consider a non-finitely generated ideal of it.

Lemma 3.3.7. Let R be an integral domain, then every R-submodule of a cyclic R-module is cyclic iff R is
a PID.

Proof. R itselfis a cyclic R-module, so if all R-submodules of it are cyclic, then all of its ideals are generated
by one element, so R is a PID.

Conversely, if R is a PID and M is a cyclic R-module, so M ~ R/I for I < R, so the R-submodules of M are
in the form J/I for I < J < R. Now since R is a PID, J is principal, so J/I is cyclic. O

Theorem 3.3.8. Let R be a PID, and M an R-module. Suppose M is generated by n elements, then any
R-submodule N of M can also be generated by at most n elements.

Proof. n =1 is the preceding lemma. For general n, we proceed by induction. Suppose M = Rxy + - - - Rx,,.
Let M; = Rz +---Rx;and 0 = My < My < --- < M,, = M. So we have

O0=MynN<MinN<---<M,nN=N
Then the R-module map M; n N — M;/M;_ by m — m + M,_ has kernel M;_; n N. Hence
(M; A N)/(Mi_y A N) = M’ < M;/M;_,
But M;/M;_; is cyclic by hypothesis, so by preceding lemma, (M; n N)/(M;_; n N) is also cyclic and is
generated by y; + M;_1 n N where y; € M; n N. Therefore M; = M, 1 n N + Ry,. It follows that

M; nN = Ry; + -+ + Ry;. In particulay, N = M, n N = Ry; + --- + Ry, so N is generated by n
elements. O

Example 3.3.9. Take R = Z, then we know that any subgroup of Z" can be generated by n elements.

3.4 Exact Sequences

Definition 3.4.1. Let R be a ring and M, M’, M" be R-modules. A sequence of R-homomorphism M’ N
M -5 M" is called exact if Im(f) = ker(g). More generally, sequence M ELN M, LN Mjs is exact if

Im(f;) = ker(fit1).
Example 3.4.2. The sequence 0 — M’ LM , is exact if and only if f is injective.

Example 3.4.3. The sequence M - M" — 0 is exact if and only if g is surjective

Definition 3.4.4. If 0 — M’ 1> M %5 M” — 0 is an exact sequence, then it is called a short exact
sequence

Example 3.4.5. If N < M is a submodule, 0 — N — M — M /N — 0.

114



Math 5031-32 Algebra Anthony Hong

Proposition 3.4.6. Let 0 — M’ L M L M7 — 0 be a short exact sequence of R-modules. Then the
following conditions are equivalent.w ’

1. 3 R-homomorphism ¢ : M" — M s.t. go ¢ = idpn

2. 3 R-homomorphism ¢ : M — M’ s.t. ¥ o f = idyp
and they imply M ~ M’ @ M”. In this case, we say the sequence splits

Example 3.4.7. R = Zy,M = Z4, N = {0,2}. Then 0 > N — Z4 — Z4/N — 0. Notice that /(1) = 0 =
¥(2) =0and ¢(1) =2 = ¢(2) = 0. Therefore this does not split.

Proof of Proposition. (1) = (2) : If m € M, then g((;ﬁ(g( ) = g(m) = gim—¢(g(m))) =0 =
m —¢(g(m)) € ker(g) = Im(f) = we M’ st f(z) = d(g(m)).

Let ¢»(m) = x. We need to check that ¢ is a R-homomorphism (exercise), and ¢ o f = idyy : if y € M, let
m = f(y). Thenm—g¢(g(m)) = f(y)—¢(g(f(y))) = f(y). By definition of ¢ : ¥:(m) =y = ¥ (f(y)) =y Vy

=0
(2) = (1): Suppose z € M”, then Jy € M s.t. g(y) = =. Then let p(z) =y — f(Y(y)).

This is well-defined: If y' € M such that g(y') = z. I want to check that y — f(¢¥(y)) = v — f(¥(v')), or
y—y' = f(W(y—y')). But g(y—y') = 0. Since Ker(g) =Im(f),Ize M's.t. y—y = f(z) = f(¢(y—y’)) =
FW(f(2)) = f(z) =y —v'. So ¢ well-defined.

Also go ¢ = idpy: f x € M7, ¢(x) = y — f(¢(y)) for some y € M with g(y) = x, so g(¢(x)) = g(y) —
9(f(¥(y))) = g(y) = x, since go f = 0. Also ¢ is a R-homomorphism, since Vr,s € R, x1,x2 € M", (rx

swe) = ro(x + so(x2)).

Direct Sum: Define
M @M" = M, (z,y) — f(x) + ¢(x)

M2 M @ M m — ((m), g(m))
Then S o a(z,y) = B(f(x) + #(y)) = (z,y), since ¢ o ¢ = 0 (Show this as an exercise:) O

3.5 Hom Functors

Definition 3.5.1. Let M, N be R-module, with Hompy (M, N) being the set of R-homomorphism f : M/ —
N, and Hompg (M, N) has the structure of an R-module.

Let f,g € Homg(M, N) if f + g € Homg(M, N). Note (rf)(m) = rf(m), (f +g)(m) = f(m)+ g(m). We have
Homp (M, N) =2 Homp(M’, N)

Hompg(N, M’) —>H0mR(N M)

M—r sp
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Lemma 3.5.2. If0 — M’ 5> M % M” - 0 is a short exact sequence of R-modules and N is a R-module,
then
(1). 0 — Homp(N, M') % Homp(N, M) % Homp (N, M”) exact

(2). 0— Homg(M",N) — Hom(M, N) — Hom(M’, N) exact

M’ ! M g M

2 -
Proof. OW foa=p " gop 77

N~
Homp(N, M') —»r Hom(N, M) injective: If f o a = 0 for some o € Homp(N, M’), then since f injective,
a=0.
poty =0(= Im(y) c ker(¢)) : If « € Hompg(N, M’), then ¢ o () = go f o = 0, where g o f = 0 since
it is exact.

If 8 € Ker(¢), then go 8 =0, so for any x € N, g(B(x)) = 0, so B(x) € Im(f) = there is a unique y € M’
such that f(y) = B(x). Let « : N — M’ be defined by a(z) = y, then « is a R-homomorphism (Exercise).
And clearly 3 = foa, so € Im(z)) O

Remark: If M’ < M is a submodule, then 0 — M’ — M — M /M’ is a short exact sequence. If g : M — M"
is a surjective R homomorphism, then 0 — ker(g) - M — M” — 0 is a short exact sequence.

= (2,0) € Im(k) = {(—f (m/) ,i (m)) }

-0 :i(m,) 4 inclusion m/ — 0= 1 = —f(m/) =0
We then by exactness get R-homomorphism ¢ : P — @ such that goa = 1g. If we let h = g o 3, then
the desired relationship f = h o ¢ is obtained from ¢ by composing f on both sides of g o & = 1g, i,
hoi=gqgofoi=gqoaof=1gof = fif foi=aof,ie., the square diagram is commutative, which

is immediate: (Bi — af)(xz) = [(0,i(z)) + Im(k)] — [(f(2),0) + Im(k)] = (0,i(x)) — (f(x),0) + Im(k) =
(=f(@),i(x)) + +Im(k) = k(z) +Im(k) = 0in the quotient. Thus, the map h = ¢q o 8 concludes.

elm(k)

3.6 Direct Sums and Free Modules

Definition 3.6.1. If My, ..., M,, are R-modules, then their direct sum M; ®- - -® M,, is the set My x - - - x M,
with entry-wise addition and scalar multiplications.

Example 3.6.2. 1. R"™ is simply R&® - - - @ R of n copies of R.
2. If My, M> < M, then the R-module homomorphism M; @ My — M by (mq,mz2) — my + mg is an
isomorphism iff My n My = @ and My + M, = M.

Lemma 3.6.3. If M = @', M,,, and N; < M,. Take N = @], N;, then

n
i=1

Proof. Apply the first isomorphism theorem to the surjective R-module map ¢ : M — @, M;/N; by
(ma,...,myp) — (M1 + N1,...,m, + N,). O
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Example 3.6.4. Taking R = Z then Z? = Z ® Z, then we have (Z® Z)/(mZ ® nZ) = (Z/mZ) & (Z/nZ).

Definition 3.6.5. Let mq,...,m, € M. The set {my,...,m,} is independent if rym; +--- + r,m, =0 =
Vi, r; = 0.

Definition 3.6.6. A subset S of an R-module M generates M freely if S generates M and any function
1 : S — N for another R-module N extends to an R-module homomorphism M — N.

Note that if such an extension exists then it is necessarily unique.

Definition 3.6.7. A freely-generated R-module is called a free R-module. The corresponding S is called the
free basis.

Proposition 3.6.8. For an R-module M and a subset S = {m1,...,m,} c M, the followings are equivalent:
1. S generates M freely.

2. S generates M and S is independent.

3. Every m € M can be written uniquely in the form m = rym; +--- + r,my, forr1,...,r, € R.

4. The R-module homomorphism R" — M by (r1,...,7r,) — r1mq + ..., my, is an isomorphism.

Proof. 1 = 2: We already knows that S generates M, so it suffices to show that S is independent. Suppose
for sake of contradiction that rym; + ... + r,m, = 0 for some r; € R and some r; is nonzero. Consider
the function ¢ : S — R by m; — 1 and m; — 0 for any ¢ # j. Suppose this extends to an R-module map
6:M — R,then0=0(0) = (rymq + --- + r,my,) = r;, contradiction.

Remaining implications 2 = 3 = 1 and 3 <= 4 are just as easy if not easier. O

Sadly not all R-modules are free. Even if it is, the free basis does not behave like what we expect from a
vector space.

Example 3.6.9 (non-example). 1. Suppose we have a nontrivial finite abelian group A, then A is not free
as a Z-module since it is not isomorphic to Z™ which is infinite.

2. The set {2,3} — Z generates Z as a Z-module, but it is not independent and no subset of it gives a free
basis.

Proposition 3.6.10 (Theorem on Invariant of Dimension). Let R be a nonzero ring. If R"™ ~ R" as R-
modules, then m = n.

We introduce the following general construction: Let R be a ring and I < R and M is an R-module. We
write IM = {im :i€ I,me M} < M. Then the quotient M /(IM) is an R/I module by (r + I)(m + IM) =
rm + IM. Also by Zorn’s Lemma, for any proper ideal I in a ring R, there is a maximal ideal containing
(this is obvious when R is Noetherian). !

Proof. Return to our proof, suppose R™ =~ R™. Choose I < R maximal, then we have
(R/I)™ = R™/(IR™) = R"/(IR") =~ (R/I)"
But R/I is a field, so m = n. O

3.7 Projective Module and Injective Module

Definition 3.7.1. If M is a R-module, and S < M is a basis if Ym € M, m = ry1s; + ... + rpsy in a unique
way with r € R, s € S. Equivalently, if 0 = 151 + ... + sy, then ry = ... = v, = 0. If {s;};e7 is a basis for M,
then M ~ @,_; R. Then, M is free is it has a basis.

Definition 3.7.2. If R is a ring and P is a R-module, then P is a projective module if it satisfies the
following:

11 think we can prove the proposition without using AC (or equivalence)
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1. If g, ¢ are R homomorphism, 3¢ : P — M, R-homomorphism s.t. go = ¢

P
///Elw Jfﬁ
g

M -2 M 0

2. If0 > M’ - M — P — 0 is exact, then it splits.
3. There is a R-module N such that N @ P is a free module.
4, If0 - M’ — M — M" is exact, then
0 — Hom(P, M') — Hom(P, M) — Hom(P,M") — 0
is exact.

(1) = (2). f0 > M - M — P — 0is exact, then by (1) 3¢ : P —> M s.t. g o ¢ = idp, so the sequence
splits

O

(2) = (3). Let {z;};cr be a generating subset of P as a R-module. Then, g : @,.; R — P, (ri)icr —

ey Ti%;- is surjective. Then, 0 — ker(g) — @,.; R — P — 0 is a short exact sequence. By (2) this splits,
so free R-module P,_; R ~ ker(g) @ P. O
(3) = (4). It is enough to show that Hom(P, M) — Hom(P, M") is surjective. If P is free and (z;);cs is a
basis for P and let y; = ¢(z;) and z; € m s.t. g(2;) = y;. Then let o(x;) = z; and (> rx;) = >, 7i2;. Then
goy = ¢. If N@ P is free, then é(r,p) = ¢(p) is a R homomorphism, 3¢y : N @® P — M such that go¢) = ¢.
Define ¢ : P — M,v¢(p) = ¢(n,p), then g o ¢) = ¢.

P Q=No®P
e — l
Y l /,/w, ¢
g " k g "
M — M M — M

O

(4) = (1). The surjective map g : M — M’ gives a short exact sequence 0 — ker(g) > M — M"” — 0. So
by (4) there is a surjective map Hom(P, M") — Hom(P, M). This is exactly 1. O

Example 3.7.3. R = Zg. Let Zg be a Zg-module and I; = {0,3},I> = {0,2,4}. Then I; n I = {0} and
I+ 1, =7¢ = Z¢ = I1 + I3. So by 3, I, I> are projective modules but not free.
We introduce injective module.

Theorem 3.7.4. Let R be a commutative ring and ¢ a module over R. We show that the following are
equivalent:

(a) If M is an R-module, if M’ is a submodule of M, and if f : M’ — @ is a R homomorphism, then there
is an extension of f to a R-homomorphism M — @, i.e., there is a R-homomorphism 4 : M — @ such
that the following diagram is commutative
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(b) For any short exact sequence 0 - M’ — M — M"” — 0, the sequence
0 — Homg (M”, Q) — Homg (M, Q) — Homg (M, Q) — 0

is exact.

(c) Every short exact sequence 0 — Q — M — M"” — 0 splits.

Proof. These are contents of Rotman’s An Introduction to Homological Algebra e2 Proposition 3.25 and
3.26and 3.40. Note that the ring R is commutative.

(a) = (b) : We have shown in class that exactness of M’ 4 M 2 M7 - 0 gives the exactness of

0 — Homp (M”, Q) »=0cp, Hompg (M, Q) Hompg (M/, Q)

Therefore, to show exactness of
(x) 0>M 5ME M -0

implies

i*=()os

(#x) 0 — Hompg (M",Q) mHomR(J\LQ) Homp (M',Q) — 0

we only need to show injectivity of ¢ implies surjectivity of i*, given @) is an injective module, i.e., (a) is
satisfied. Let f € Hompg (M',Q), ie., f : M' — @ is an R-homomorphism. Since i is an injective R-
homomorphism, ¢ (M) € M is a submodule, then ¢ = i|i(M/) denoting the restriction of ¢ on its codomain
1 (M) is an R-isomorphism. Let | be the inclusion of the submodule of M. Let f’ : i (M’') — @ be equal to
fo¢L. By (a), there is an R homomorphism % : M — @ making the following diagram commutative:

¢:i|1(nl’)
M"—— (M) —— M

\ , 1 ,//
f f " h

=fo¢™"!
Q

)%e

Sincei =lo¢and f' = hol,weseei*(h) =hoi=ho(log)= (hol)ogp=fop=foptogp=Ff,s0
there is h € Homp (M, Q) such that i*(h) = f, proving that ¢* is surjective.

(b) = (¢) : "(b) = (c) ” is like "Im ¢ < ker p ” part of the last exercise we proved: given that (=) is exact,
which implies i*p* = (pi)* = 0, we ;et Q = M’ in (x=) and consider the identity homomorphism f = 1,
in Hompg (M’, M'). Then there is some h € Hompg (M, M’) such that i*(h) = hoi = f = 1. Then by the
definition/proposition of split, (x) is exact (there is an R-homo h : M — M’ such that h o i is the identity).
(¢c) = (a) : Leti : M’ — M be the inclusion and f : M’ — @ be the given R-homomorphism. We want to
show that there is an R-homomorphism h : M — @ making the following diagram commutative:

0 —— M —> M

e
Q

Define
E:M -QdM

z = (= f(x),i(z))
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which is clearly an R-homomorphism since f and ¢ are. To obtain an R-homomorphism h : M — @, we
consider using exactness of a sequence of the form 0 - Q@ — P — g — 0 to induce a map P — @

descendingto h: M — Q. Let P = ?m@(% be the quotient of Q @ M over submodule Im(k) and define

a:Q - P
x — (x,0) + Im(k)
and
B:M— P
y — (0,y) + Im(k)

Consider the following diagram:

M M

| s
Q24P

Y s Pla(Q) —— 0

Toshow0 > Q % P & ﬁ — 0 is exact (where p is the canonical projection), we need to show that « is
injective:
a(z) = (z,0) +Im(k) =0
= (2,0) € Im(k) = {(=f (m') ,i (m) )}

20=i(m’) 4 inclusion m'=0:x=ff(m’) -0

We then by exactness get R-homomorphism ¢ : P — @ such that goa = 1g. If we let h = g o 3, then
the desired relationship f = h o ¢ is obtained from ¢ by composing f on both sides of g o @ = 1g, i,
hoi=gqgofoi=gqoaof=1gof = fif foi=aof,ie., the square diagram is commutative, which
is immediate: (Bi — af)(xz) = [(0,i(z)) + Im(k)] — [(f(z),0) + Im(k)] = (0,i(x)) — (f(x),0) + Im(k) =
(=f(@),i(x)) + +Im(k) = k(z) +Im(k) = 0in the quotient. Thus, the map h = ¢q o 8 concludes. O

elm(k)

Example 3.7.5. Let R be a commutative ring and [ an ideal of R. By considering the exact sequence
0 —>1— R — R/I — 0, show that if R/I is a projective R-module, then I is a principal ideal generated by
an element a such that a? = a.

Solution. R is a commutaitve ring. I € R is an ideal. If R/I is a projective R-module, then I = (a) with

a2:a.

We look at the SES
0I5 R—>R/II—0
Then projective module R/ gives ¢ : R — I such that ¢ o p = id;. Leta = ¢(1),soa € I. Forany i € I,
é( p(i) ) =1i. Theni = ¢(i) = ip(1) =ia = i€ (a) Vie I = I = (a). Let i = a, then we get a® = a.
~——
eR

Example 3.7.6. Let R be a commutative ring, and let M be a R-module. Let S be a multiplicative subset
of R such that 1 € S and 0 ¢ S. Consider the set of all {(m, s),m € M,s € S}, and show that the relation
(m1,s1) ~ (ma, s9) if there is s € S such that s (som; — syms) = 0 is an equivalence relation. Denote the
class of (m, s) by , and set

S™IM = {(m,s),me M,se S}/ ~

(i) Show that S~'M is a module over S~'R.
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(i) If0 — M’ — M — M" — 0 is an exact sequence of R-modules, show that 0 — S~'M’' — S~'M —
S~1M" — 0 is an exact sequence of S~!M-modules.

Solution. (i): S~!M is an abelian group with addition

mq n mo Somy + S1 Mo

S1 52 8152

The definition is commutative: somj +s1me = s1ma+ Samy, $182 = $281. It is also well-defined: let =T
then s (som1 — s1mg) = 0 for some s € S. Then

s (8082 (samq + s1ma) — $182 (samp + Soma2))

=S (sosgml + Sp9S251Mo — slsgmo - 818280’ITL2)

=35 (S% (som1 — slmo)) =0

. . ’ . . / /
Thus $27utsimz — samoetsemz hy element s € S. Similarly, 2 = 2 will give $27utsimz — smitsim  Thyg
S182 S0S2 S S92 S182 818

w/ 3 / 3 3 3 3 . .o, . ., . . .
STIUESm = samudiime — sametiemz The definition of addition is then regardless of representatives of the

equivalence classes chosen. S~'M is a S~!R-module with the scalar multiplication * : S™!R x S™1M —
S~1M defined by

r om rm
s s ss’

This is well defined: let 5 = 7 then s” (som — s'mg) = 0 for some s” € S. Then

s" (ssorm — ss'rmg) = " (sr (som — s'myg)) = 0

Thus 22 = 0 by element s” € S. Similar argument as for addition implies that the definition of scalar

ss’ EEN

multiplication is regardless of representatives of the equivalence classes chosen.
(i)
We are given the exact sequence
0 M LM -0

with R-homomorphisms f and g. Then f is injective, g is surjective and Im( f) = ker(g). Naturally, we define
S~1! R-homomorphisms p : S~'M' — S~'M; m?l — @ andg: S™'M — STIM"; 2 — @. Consider the
following sequence

0—S'M 5 SIMLSTIM -0

Note that gof = 0 = gop (’%’) _sUl) o 0 = qop = 0. To show it is a short exact sequence, we need

S S =
to show p injective, ¢ surjective, and Im(p) = ker(q) : - p injective: Let %ﬁtl) =p (m—,l) =p (ﬂ) = M

Then ds € S s.t. ’
s (sof (m'l) —s1f(my)) =0 SR homo f (s (ngll — slmé)) =0

/ li

m m

S(SQm'—slm')z():—l: 2
1 2

S1 52

finjective

- ¢ surjective: Since g is surjective, we see for m” € M"” we have g(m) = m” for some m € M, then
q (m) _gm) _ m”

S =

- Im(p) = ker(qg):
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ker(q) =

% . q(T) = g(m) = 0} = {T 135’ € Ss.t. s'g(m) = 0}

S 1 S

=Im(f)
/ / /
m:EIs’eS,m’eM’s.t. fm) _ sm} = {p<m> :s/eS,m'eM'}
s

s's s's

= {p <7Tf,) :s"e S m e M'} = Im(p)
S

= {m 135" € Ssit. s'm = ker(g) p = {@ 13 e S,m' e M st f(m) = s’m}
s — s

§'S

3.8 Tensor Products

Let Rbe aring and M, N be R-modules. Let F be a free module generated by elements (m,n),m € M,n € N.
F ={ri(my,n)+ ... + rp(mg, ng) |r,~ € R,m; € M,n; € N}. D is the submodule of F' generated by elements
of the forms below
® (ml + ma,n ) (m17n) - (m27n)5
* (m,n1 + n2) — (m,ny) — (m, no)
» (rm,n) = r(m,n)

* (m,rn) —r(m,n)
withr € R,m,mi,ms € M,n,ny,no € N.

Let T := F/D be an R-module. Note thereisamap o : M x N — T,«a(m,n) = (m,n) + D. This map is
bilinear: a(rymy + rome,n) = ria(mi, n) + roa(me,n) and a(m, ring + rong) = ria(m,ny) + rea(m,ng)

Proof of above requires us to show (rymq + roma,n) — r1(m1,n) — ro(ma,n) € D. Rewrite expression into
((rimq + rama,n) — (rimy,n) — (rama,n)) + ((rima,n) — ri(my,n)) + ((rama,n) — ro(ma,n))

MxN—*% @

N

T has the following universal property: If ) is a R-module and ¢ : M x N — (@ is a bilinear map, then there
is a unique R-homomorphism ¢ : T — Q with ¢ = ¢ o, and define ¢ ((ri(my1,n1) + ... + (Mg, ng)) + D) =
rig(my, na) + ... + rd(my, ng).

We need to check that ¢ is well-defined and is a R-homomorphism. For well-defined, it suffices to show that
elements € D.

We denote tensor product of M and N as M ®g N =T = F/D. Any element is of the form

ri(my,ny) + ... + rg(me,ng) + D = (rima,n1) + ... + (reme, ng) + D

=rimi@nat.. A+ remEp@ng

Proposition 3.8.1. The following properties are satisfied:
1. m®(n1+n2) =m@ny + m no
2. (m1+me)@®n=m1 @n+mo®®n
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3. rm)®@n=r(m®n) =m® (rn)
4. 0@n=0=mQ®O0
Example 3.8.2. . Zp®zQ={0}:a®%=a®z—§=pa®%20®&=
© Zo®7Zs;={0}:0Q@2=0,1®0,2=0.Finally 1® 1 =1®(2+2) =2®1+2®1=0+0=0.
e ged(m,n) =1, %, ®gz Zn = {0}
Proposition 3.8.3. If M, N, P are R-modules, then
* MrN>=N®rM
* M®rN)®r P ~MQ®r (N®rP)
* MRr(N®P)~M®&rNPMQgP
* MrR~RQrM~M

Proposition 1 Proof. M x N %> N ® M is clearly bilinear, (m,n) — n®m

M x N = N®M
\ o
M®N
By the universal property, we have R-homomorphism ¢¥(m ® n) = a(m,n) = n ® m. Conversely, IR-

homomorphism ¢ : N® M — M ® N, and n ® m — m ®n, and ¢ o ¢ and i o ¢ are identity maps. O

Proposition 2 Proof. Fix m € M and define a,;, : N x P > (M ® N)® P, (n,p) — (m ®n) ® p. Then, a,,

is bilinear: ., (n,p1 + p2) = am(n,p1) + am(n, p2). am(n1 + n2,p) = am(n1,p) + Am(ne,p). am(m,p) =
T (N, p). am (N, rp)—ram, (n, p). Together, this implies that 3R-homomorphism ¢, : NQP — (MQN)QP.

Now, we have a bilinear map ¢ : M x (N® P) - (M ® N) ® P,¥)(m,z) = 1,,,(x) and show that this is
bilinear.

o Y(m,xy + x2) = Y(m, 1) + Y(m, z2)

o G(m,ra) = ri(m, )
So 1, is a R-homomorphism. Also ¢(m1 + me,z) = ¥(m1,z) + Y (me,z) and Y(rm,z) = ry(m,x) so
Ymi+my = Umy + Vs
Since there is a bilinear map, 3R-homomorphism v : M (N®P) > (MR N)QP, m® (n®p) = (m®n)Rp.
Similarly, there is a R—homomorphism 5: (M @ N)QP =M (NQ®P),(m®n)®p —» mQ (n®p). v,

are inverse maps, so they are isomorphisms. O

Proposition 4 Proof. There is a binear map M x R %> M, (m,r) — rm bilinear. So there is an R-homomorphism
Y : M®R — M,m®r — rm. Also there is an R-homomorphism ¢ : M - M ® R,m — m & 1.
Yop=id,poy(m®r)=¢(rm)=rm@ Ll =mr = ¢pot =id = ¢ isomorphism. O
Example 3.8.4. Consider R[z]®rg R[z], where R is a commutative ring, we claim that R[z]QR[z] ~ R[z,y].

Let ¢ : R[z] ®g r[r] — R[xz,y| be the R-homomorphism induced by the bilinear map R[z] x R[z] —
Rlz,y], (f(2),9(x)) = f(2)g(y).

To define 1), note that R[z, y] is a free module over R with basis z'y?,0 < 4,j. Let ¢ : R[xz,y] — R[z]®r R[]
be such that ¢ (z'y’) = 2* ® 27.
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¢, are inverse maps: 'y % 2 @ xJ 2, 'y’ fa)®@gla) =3, ;cijr' @), ' @7 2, wiyd Y 2l @ad.

Proposition 3.8.5. Let 0 - M’ — M — M"” — 0 be a short exact sequence of R-modules, and let N be an
R module, then
M @& N—->M®rgrN—>M'®rN —0

is exact. Here, M’ 4, M induces M QN Joid, M®N, > m,®@n; — >, f(m)) ®n,.
Lemma 3.8.6. Let M, N, @ be R modules, then Homgr(M ®g N, Q) ~ Homg(M,Homg(N, Q)).
Corollary 3.8.7. If Q = R, (M ®g N)¥ ~ Hompgr(M,N").

Example 3.8.8. Let k be a field, R = k[z,y]/(z,y), M = R/(z), N = R/(y). Then, M®x N = R/(z)®R(y)
R/(x,y). Also, (M ®r N)¥ ~ (R/(z,y))" = Homp(R/(z,y), R) = {0}.

Also, MV = Hom(R/(z),R) ~ M, N = Hom(R/(y), R) ~ N. Consider ¢ : R/(x) - R,1+— f,0 =% —
So MY@NY ~ M®N ~ R/(z,y) # {0}.

10

Proposition Proof using Lemma. If M’ — M — M” — 0 is exact, then let Q) be an arbitrary R-module and
take Hom(—, Hompg(N, @Q)). Then we have exact sequence

0 — Hom(M",Homg(M",Q)) — Homg(M,Homg(N, Q)) — HomR(Mf Hom(N, Q))
So we have an exact sequence
0 — Homg(M” ® N, Q) — Homg(M ® N, Q) — Homgr(M' ® N, Q)

So by homework 9 question, M’ ® g N - M ®r N — M"” ®r N — 0 is exact. O

Example 3.8.9. Let 0 —> Z R/ 7o be a short exact sequence of Z-modules and tensored with Z,, where
fia— 2a.

Then, Z ® Zo — Z ® Zs. [fill in from notes]
~—
~7o
Proof of Lemma. Define ¢ : Homg(M ®g N, Q) — Homp(M,Homg(N, Q)), where (a: MQN — P) — (8 :
M — Hompg(N, Q)). B:m — By, B(n) = a(m@n) € Q.
I need to show that § is R-homomorphism, ¢ is R-homomorphism.

£ homomorphism: 8 € Homg (M, Hompg(N, Q)) : Show that B,y +rams = T18my +728ms- SO, Brimy +rams (M) =
a((rimy +ram2) ®n) = a(ri(mi ®n) + ra(me®n)), and (11 8m, +120m,)(n) = ria(mi ®n) + rea(ma ®n),
which is true

¢ homomorphism shown similarly.

Also define ¢ : Homp (M, Homg (N, Q)) — Homg(M ®g N, Q) with § : M — Hompg(N, Q) given. Define
bilinear map M x N — @, (m,n) — B(m)(n), this givesamap a: M ®g N — Q.

So ¢, are inverse maps. O
Definition 3.8.10. A module F is flat if for any short exact sequence 0 — M’ EINY VRSV (N 0, the
following sequence is exact:

0->MeF &% ver 2% u"eF -0

Equivalently, F is flat if for any R-homomorphism f: M’ - M, M’ ® F — M ® N is injective.
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Example 3.8.11. Z, is not a flat Z-module. Consider Z — Z,n — 2n. ZQ Zs — Z® Z2,a ®b — 2a ® b =
a ® 2b = 0. Not injective, so this is not flat.

Example 3.8.12. Suppose R is an integral domain:

* Free modules are flat. If F' is a free R-module, F' ~ &P
the following injectivity.

1 R, f+ M" — M is an injective map that gives

M®F M ® (D, ) @®,MOR @, M’
lf@d = lf@id = l@ f®id = l@f
M®F M® (@, R) ®,MR @, M

* More generally, projective modules are flat. If P is projective, 3P’ s.t. for a free module F, F' = P®P’.
Then if M/ — M is injective, then M'® F — M ®F by the previous example. So M'QP P M'Q P —
M ® P@® M ® P’ is an injective map = M’ ® P — M ® P is injective.

* Flat module does not necessarily imply projective modules. Q as a Z-module is flat. [Check 11/29
minute 30 for proof] But Q is not projective. Suppose Q @ P’ is free, then pick a basis and write
(1,0) = Mzq + ... + \yyy, 21, ..., T, part of a basis and Ay, ..., A, € Z. Pick N where N > |Aq|, ..., | \s|-

Then write (%, 0) as a combination of basis elements, where (%7 0) = c1x1+...+ ¢y, Where ey, ..., ¢, €

Z may be 0. So (1,0) = Ncy1z1 + ... + Nepay,. If ¢; # 0, then |[N¢;| > |Ai|, so they cannot be equal.

e If I is a flat R-module, then it is torsion-free. We need to show that if 0 # z € ' and 0 # r € R, then
rz # 0. Let R > R, s — rs be multiplication by r. Then f is injective since R is an integral domain.
So, RQ F J&id, R® Fisinjective. 0 # 1®z — rQ®x =1®rz. So1Q®rx # 0,rz #0

Note: Free = Projective = Flat = Torsion-free

Let R L Sbea ring homomorphism.
* Any S-module M has the structure of an R-module, rm : f(r)m

* Now, suppose N is a module over R. N ®pg S is a R-module which has the structure of S-module,
s(n1 ®s1) :=n1 ® ss1

If  : Ny —» Ny is a R-homomorphism, ¢ ® id : N1 ® S — Ny ®p S is a S-homomorphism.
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Chapter 4

Fields

We will extensively use J.S. Milne’s tex file for field theory and Galois theory.

4.1 Basic Definitions

Note: we will use R[X] instead of R[x] now to emphasize the indeterminant X in the polynomial ring.
Definition 4.1.1. A field is a set F' with two composition laws + and - such that

1. (F,+) is a commutative group;

2. (F*,-), where F* = F ~ {0}, is a commutative group;

3. the distributive law holds.

Thus, a field is a nonzero commutative ring such that every nonzero element has an inverse. In particular, it
is an integral domain. A field contains at least two distinct elements, 0 and 1. The smallest, and one of the
most important, fields is Fo = Z/2Z = {0, 1}.

A subfield S of a field F is a subring that is closed under passage to the inverse. It inherits the structure of
a field from that on F.

We have shown
Lemma 4.1.2. A nonzero commutative ring R is a field if and only if it has no ideals other than (0) and R.
Example 4.1.3. The following are fields: Q, R, C, F,, = Z/pZ (p prime).

Definition 4.1.4. A homomorphism of fields is simply a homomorphism of rings. Such a homomorphism
is always injective, because its kernel is a proper ideal (it doesn’t contain 1), which must therefore be zero.

Let F be a field. An F-algebra (or algebra over F) is a ring R containing F' as a subring (so the inclusion
map is a homomorphism). A homomorphism of F-algebras a.: R — R’ is a homomorphism of rings such
that a(c) = cforevery ce F.

Remark 4.1.5. Let F' be a field.

The ring F[X] of polynomials in the symbol (or “indeterminate” or "variable”) X with coefficients in F' is an
F-vector space with basis 1, X,..., X™, ..., and with the multiplication
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The F-algebra F[X] has the following universal property: for any F-algebra R and element r of R, there is
a unique homomorphism of F-algebras a: F[X] — R such that a(X) = r.

4.1.1 Generated Subrings and Subfields

An intersection of subrings of a ring is again a ring (this is easy to prove). Let F' be a subfield of a field
E, and let S be a subset of E. The intersection of all the subrings of E containing F' and S is obviously
the smallest subring of E containing both F' and S. We call it the subring of £ generated by F' and S (or
generated over F by S), and we denote it by F[S]. When S = {ay, ..., a, }, we write F[ayq, ..., ay,] for F[S].
For example, C = R[y/—1].

Lemma 4.1.6. The ring F'[S] consists of the elements of F that can be expressed as finite sums of the form

Zail...i"a’f s a:{l, Ay ..nq,, € F, «;€ S, ij e N. 4.1)

Proof. Let R be the set of all such elements. Obviously, R is a subring of E containing F' and S and contained
in every other such subring. Therefore it equals F[S]. O

Example 4.1.7. The ring Q[r], 7 = 3.14159..., consists of the real numbers that can be expressed as a finite
sum

ap + a1 + agm? + - + a,m™,  a; € Q.
The ring Q[7] consists of the complex numbers of the form a + b3, a,b € Q.

Note that the expression of an element in the form (4.1) will not be unique in general. This is so already in
R[%].

Lemma 4.1.8. Let R be an integral domain containing a subfield F' (as a subring). If R is finite-dimensional
when regarded as an F'-vector space, then it is a field.

Proof. Let o be a nonzero element of R — we have to show that « has an inverse in R. The map R —
R: x — ax is an injective linear map of finite-dimensional F'-vector spaces, and is therefore surjective. In
particular, there is an element 3 € R such that a8 = 1. O

Note that the lemma applies to every subring containing F' of a finite extension of F.

An intersection of subfields of a field is again a field. Let F' be a subfield of a field F, and let S be a
subset of E. The intersection of all the subfields of E containing F' and S is obviously the smallest subfield
of F containing both F and S. We call it the subfield of E generated by F and S (or generated over
F by S), and we denote it F'(S). It is the field of fractions of F[S] in E because this is a subfield of E
containing F' and S and contained in every other such field. When S = {a, ..., @, }, we write F(aq, ..., ay)

for F(S). Thus, F[ay,...,a,] consists of all elements of E that can be expressed as polynomials in the «;
with coefficients in F', and F(ayq, ..., a,) consists of all elements of £ that can be expressed as a quotient of
two such polynomials.
If ay,...,ar € E, then

F(ay,...,ar) = subfield of E generated by F, a1, ..., ax

S —

a finitely generated extension

:{f(al,...,ak) f,geF[xl,...,:ck]}
glay,...,op) |glai,...;op) #0

Note that
FcF(a)cF(a,an)c--c F(ay,...,ay)c E

F(ay,...,ar) = F(a,...,a5—1) (ag)
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Remark 4.1.9. Lemma 4.1.8 shows that F[S] is already a field if it is finite-dimensional over F, in which
case F'(S) = F[S].

Example 4.1.10. (a) The field Q(x), 7 = 3.14. . ., consists of the complex numbers that can be expressed as
a quotient

g(m)/h(m), ¢(X),h(X) e Q[X], h(X)#0.

(b) The ring Q[¢] is already a field.

Example 4.1.11. Suppose E/F is a field extension. o € E. Above definitions of generated subrings and
subfields give

F[a] = {bma77l+~-'+b10[+b0|bi€F}
and
bpa™ + -+ bra+ by
G’ + -+ cia+ ¢

F(O‘)—{ :bi,cjeFandcTof+---+c0;é0}

4.1.2 The Characteristic of a Field

One checks easily that the map
Z—F nonlpip+lp+---+1p (n copies of 1),
is a homomorphism of rings. For example,

(lp+-+1lp)+(lp+-+1p)=1lp+ - +1f

m n m-+n

because of the associativity of addition. Therefore its kernel is an ideal in Z.

CASE 1: The kernel of the map is (0), so that
n-lp=0 (nF) = n=0 (inZ).

Nonzero integers map to invertible elements of F under n — n - 1p: Z — F, and so this map extends to a
homomorphism

Q= F: % = (m-1p)(n-1p)"L
In this case, F' contains a copy of Q, and we say that it has characteristic zero.

Thus characteristic of a field F' is the order of 1, as an element of the additive group F'*, provided that the
order is finite. It is the smallest positive integer n such that the sum 1 + --- + 1 of n copies of 1 evaluates to
0. If the order is infinite, that is, 1 + - - - + 1 is never 0 in F', the field is then said to have characteristic zero.
We denote the characteristic of a field by char(F).

CASE 2: The kernel of the map is # (0), so that n - 1 = 0 for some n # 0. The smallest positive such n will
be a prime p (otherwise there will be two nonzero elements in ' whose product is zero), and p generates
the kernel. Thus, the map n — n - 1p: Z — F defines an isomorphism from Z/pZ onto the subring

{m-1F|mEZ}

of F'. In this case, I contains a copy of [F,,, and we say that it has characteristic p.

A field isomorphic to one of the fields Fy,F3,F5,...,Q is called a prime field. Every field contains exactly
one prime field (as a subfield).
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More generally, a commutative ring R is said to have characteristic p (resp. 0) if it contains a prime field (as
a subring) of characteristic p (resp. 0).! Then the prime field is unique and, by definition, contains 1. Thus,
if R has characteristic p # 0, then 1z +--- + 1z = 0 (p terms).

Let R be a nonzero commutative ring. If R has characteristic p # 0, then

pa€a+---+a=(gr+---+1lg)a=0a=0
— —

p terms p terms

for all a € R. Conversely, if pa = 0 for all « € R, then R has characteristic p.

Let R be a nonzero commutative ring. The usual proof by induction shows that the binomial theorem

(a+0)" =a™+ (Ma™ o+ (F)a™ 20> + - + 0™

(i) . 7"!(19]9i r)!

for all » with 1 < r < p — 1 because it divides the numerator but not the denominator. Therefore, when R
has characteristic p,

holds in R. If p is prime, then it divides

(a+b)P =aP + 0" foralla,be R,

and so the map R — R: a — a? is a homomorphism of rings (even of F,,-algebras). It is called the Frobenius
endomorphism of R. The map R — R:a ~ a?", n > 1, is the composite of n copies of the Frobenius
endomorphism, and so it also is a homomorphism. Therefore,

n

ar+ -t an)? =d - tal
1

for all a; € R.
When F is a field, the Frobenius endomorphism is injective, and hence an automorphism if F is finite.

The characteristic exponent of a field F' is 1 if I has characteristic 0, and p if F' has characteristic p # 0.
Thus, if ¢ is the characteristic exponent of F and n > 1, then z — z¢" is an isomorphism of F onto a subfield
of F (denoted F41").

Example 4.1.12. The polynomial ring in one variable R[ X | over an integral domain R is an integral domain.
The field of rational fractions in one variable R(X) is the field of fractions of R[X].

Example 4.1.13. Subfields F' of C have char(F") = 0. char(Q) = 0. char(Z,) = p with p prime.

Proposition 4.1.14. The characteristic of any field F' is either zero or a prime number.

Proof. To avoid confusion, we let 0 and 1 denote the additive and the multiplicative identities in the field
F, respectively, and if k is a positive integer, we let k& denote the sum of k copies of 1. Suppose that the
characteristic m is not zero. Then 1 generates a cyclic subgroup H of F'*of order m, and m = 0. The distinct
elements of the cyclic subgroup H generated by 1 are the elements k£ with &k = 0,1,...,m — 1. Suppose that
m isn’t prime, say m = rs, with 1 < r,s < m. Then 7 and 5 are in the multiplicative group F’* = F — {0},
but the product 75, which is equal to 0, is not in F'*. This contradicts the fact that F'*is a group. Therefore
m must be prime. O

1A commutative ring has a characteristic if and only if it contains a field as a subring. For example, neither Z nor Fo x F3 has a
characteristic.
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4.2 Field Extensions

Definition 4.2.1. If F' is a subfield of E, then F is a called a field extension of F'. The notation E/F will
indicate that E is a field extension of F'. We note that a field extension E of F' can always be regarded as
an F'-vector space. Addition is the addition law in E, and scalar multiplication of an element of £ by an
element of F' is obtained by multiplying these two elements in E. The dimension of E, when regarded as an
F-vector space, is called the degree of the field extension. [F : F] := deg(E/F) = dim of E as a v.s. over F.
An example of finite [E : F] is C/R with basis 1, ¢; of an infinite one is R/Q. A field extension E/F is a finite
extension if its degree is finite. Extensions of degree 2 are quadratic extensions, those of degree 3 are cubic
extensions, and so on.

Example 4.2.2. The field of Gaussian numbers
Qi) ¥{a+bieC|a,beQ}

has degree 2 over Q (basis {1,4}).

The field of rational fractions in one variable F(X) has infinite degree over F'; in fact, even its subspace
F[X] has infinite dimension over F (basis 1, X, X?,...).

Definition 4.2.3. If E/F is an extension. « € E. « is algebraic over F if there is a non-zero polynomial
0 # f(X) € F[X] such that f(«) = 0. Elements of F that are not algebraic over F’ are called transcendental.
E/F is called an algebraic extension if every « € E is algebraic over F.

Proposition 4.2.4. If [E : F]| < oo, then F is algebraic over F.

Proof. If a« € Eand [E : F] =n, then 1,q,--- ,a™ are linearly independent, so there are ¢y, - , ¢, € F such
that

ottt =0

soif f(X)=co+ca1 X+ - +¢, X" e F[X], then f(a) =0. O
Example 4.2.5. C/R is algebraic. Let z = a + ib. Let Z = a — ib be the complex conjugate of z. Note that
2Z2=a>+V, z4+zZ=2
This reminds us of the Viete’s Formulas. Consider the polynomial
X? —2aX + (a® + %)

Its roots are
2a + /4a? —4(a® +b%) 20 £ 2bi
2 2

Thus both z and z are roots of the polynomial.

X172= =atbi=22

The converse of the proposition is incorrect: Q < R. Those of the form ,/p with p prime are algebraic over
Q. (\/15)2 —p = 0. We will later show that Q = Q(v/2,+/3,4/5, - -) = R gives a non-finite extension.

Proposition 4.2.6 (multiplicativity of degrees). If F ¢ E < K and [E : F| = n and [K : E] = m, then
[K : F] =mn.

Proof. Letxq,--- ,x, be abasis for E/F and y1,--- ,y., be abasis of K/E. Then z;y;, 1 <i<n,1<j<m
is a basis for K/F"
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* linear independency: if 3}, ; Aijz;y; = 0 for A;; € F', then

0= Z)\ijxiyj = i (i )\le> Yj = i )\ijmi =0 V] = )\ij =0 VZ,]
S

i j=1 \i=1 i=1

eE

* span: if ze K, then z = Zlgjgm C;Y;j for cj € E. cj = Zléién bijl‘i. bij e F, so

z = Z Z bijl‘iyj

j=14=1
O
An extension E of F is said to be simple if £ = F(a) some « € E. For example, Q(r) and Q[] are simple

extensions of Q.

Let F and F’ be subfields of a field F. The intersection of the subfields of F containing both F' and F” is
obviously the smallest subfield of F containing both F' and F’. We call it the composite of F' and F”’ in F,
and we denote it by F' - F’. It can also be described as the subfield of E generated over F' by F”, or the
subfield generated over F’ by F:

F(F')=F-F = F'(F).

Let f(X) € F[X] be a monic polynomial of degree m, and let (f) be the ideal generated by f. Consider the
quotient ring F[X]/(f(X)), and write « for the image of X in F[X]/(f(X)), i.e., x is the coset X + (f(X)).
(a) The map
F[X] = Flz] = F[IX]/(f(X))
P(X) = P(z) = P(X + (f(X))) = D ai(X + f(X))’
= D a(X + (f(X)) = D a: X" + (f(X)) = P(X) + (f(X))
is a homomorphism sending f(X) to f(X) + (f(X)) = (f(X)) = Op[4). Therefore, f(x) = 0.

(b) The division algorithm shows that every element g(x) of F[X]/(f) is represented by a unique polynomial
r of degree < m (g is of the form P(X) + (f(X)). By division algorithm, P(X) = ¢(X)f(X) + r(X). Thus
g=7r(X)+q¢X)f(X)+ (f(X)) =r(X) + (f(X))). Hence each element of F'[x] can be expressed uniquely
as a sum

ap+ a1z + -+ apo1x™ L, a; € F. 4.2)

(c) To add two elements, expressed in the form (4.2), simply add the corresponding coefficients.

(d) To multiply two elements expressed in the form (4.2), multiply in the usual way, and use the relation
f(z) = 0 to express the monomials of degree > m in z in terms of lower degree monomials.

(e) Now assume that f(X) is irreducible. Then every nonzero « € F'[x] has an inverse, which can be found as
follows. Use (b) to write « = g(x) with g(X) a polynomial of degree < m — 1, and apply Euclid’s algorithm
in F[X] to find polynomials a(X) and b(X) such that

a(X)f(X) + b(X)g(X) = d(X)

with d(X) the gcd of f and g. In our case, d(X) is 1 because f(X) is irreducible and deg g(X) < deg f(X).
When we replace X with x, the equality becomes

b(x)g(x) = 1.
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Hence b(x) is the inverse of g(z).

We have proved the following statement.

Claim 4.2.7. For a monic irreducible polynomial f(X) of degree m in F[X],
Flz] = F[X]/(f(X))

is a field of degree m over F'. Computations in F'[x] come down to computations in F.

Note that, because F|[z] is a field, F(z) = F[xz].2

Example 4.2.8. Let f(X) = X2 + 1 € R[X]. Then R[z] has

elements: a + bx, a,b € R;

addition: (a + bx) + (¢/ +b'z) = (a+ a') + (b + V)x;

multiplication: (a + bx)(a’ + b'z) = (aa’ — bb') + (ab’ + a’b)x;

inverses: in this case, it is possible write down the inverse of a + bx directly.

We usually write ¢ for z and C for R[x].

Example 4.2.9. Let f(X) = X? —3X — 1 € Q[X]. The polynomial is irreducible because its only possible
roots in QQ are +1 by rational root theorem (or directly by lemma 2.13.3 (c)), but f(1) # 0 # f(—1). Then
Q[z] is a field. It has basis {1, z, 2%} as a Q-vector space. Let

B =x*+22% +3eQ[z].

Then using that 23 — 3z — 1 = 0, we find that 3 = 322 + 7z + 5. This is done by commands below.

sage: R.<x> = PolynomialRing(QQ)

sage: £ = x"4 + 2*x"3 +3
sage: g = x"3 - 3*x - 1
sage: f.quo_rem(g)

(x + 2, 3*x”2 + 7*x + 5)

Because X3 — 3X — 1 is irreducible,
ged(X3 —3X —1,3X% 47X +5) = 1.
Euclid’s algorithm gives

(X3-3X-1)(FX+2)+BX?+7X +5) ({5 X - 2BX + 2)=1.

Hence
(322 + 7x +5) (%xQ — %x + %) =1,
and we have found the inverse of .
We can also do this in PARI: b=Mod (X~4+2%X~3+3,X~3-3*X-1) reveals that 3 = 3z% + 7z + 5 in Q[z], and
b~ (-1) reveals that S~ = 22 — 2o+ 28

Let f be a monic irreducible polynomial in F[X]. A pair (F,«) consisting of an extension E of F' and
an o € F is called® a stem field for f if E = F[a] and f(a) = 0. For example, the pair (E,«) with

2Thus, we can denote it by F(z) or by F[z]. The former is more common, but I use F[xz] to emphasize the fact that its elements are
polynomials in z.
3Following A.A. Albert (Modern Higher Algebra, 1937) who calls the splitting field of a polynomial its root field.
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E = F[X]/(f) = F[z] and « = z is a stem field for f. Let (E, «) be a stem field, and consider the surjective
homomorphism of F-algebras
F[X] = E: g(X) = g(a).

Its kernel is generated by a nonzero monic polynomial, which divides f, and so must equal it. Therefore the
homomorphism defines an F-isomorphism

Flz] - E: z — «, where F[z] = F[X]/(f)-

In other words, the stem field (F, «) of f is F-isomorphic to the standard stem field (F[X]/(f), z). It follows
that every element of a stem field (F, ) for f can be written uniquely in the form

ag +ara+ -+ am 0™, a;e F, m=deg(f),

and that arithmetic in F[a] can be performed using the same rules as in F[z]. If (E’, ') is a second stem
field for f, then there is a unique F-isomorphism F — E’ sending « to o’. We sometimes abbreviate “stem
field (F[a], «)” to “stem field F[«]”.

4.3 Algebraic and Transcendental Elements

Let F' be a field. We view the algebraic and transcendental elements in another way. Recall from the
substitution principle that an element « of an extension F of F' defines a homomorphism

o:F[X]|>F
f(X) = f(a).
There are two possibilities.

CASE 1: The kernel of the map is (0), so that, for f € F[X],
f@)=0 = f=0({n F[X]).

In this case, we say that « transcendental over F. The homomorphism F[X]| — F[a]: X — « is an
isomorphism, and it extends to an isomorphism F'(X) — F'(«) of the fields of fractions.

CASE 2: The kernel is # (0), so that g(a) = 0 for some nonzero g € F[X]. In this case, we say that « is
algebraic over F. The polynomials g such that g(a) = 0 form a nonzero ideal in F[X] (the kernel of the
substitution homomorphism),

I = {g(X) € FIX] | g(a) = 0} < FIX].

Then there is some f generating I as F being a field makes F[X] PID. This f is the monic polynomial of
least degree such f(a) = 0. We call f the minimal (or minimum) polynomial of o over F.*

f is irreducible: suppose not then f(X) = p(X)q(X). f being monic by definition implies that 0 <
deg(p),deg(q) < deg(f). f having least degree in I implies that = p,q ¢ I so p(a) # 0 # g(«), which
contradicts to the fact that 0 = f(«a) = p(«a)g(«) because two nonzero elements in field (thus an integral
domain) F cannot multiply to get 0.

The minimal polynomial is characterized as an element of F[X] by each of the following conditions,

* fis monic, f(a) = 0, and f divides every other g in F[X] such that g(a)) = 0 (that’s because g =
qf +r=0=g(a) = q(a)f(a) + r(a) = r(a) = r € I, but it cannot be the case tht deg(r) < deg(f) so
r has to be 0);

4When we order the polynomials by degree, f is a minimal element of the set of polynomials having « as a root. It is also the unique
minimal (hence least or minimum) element of the set of monic polynomials having « as a root. See Wikipedia: partially ordered set.
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* f is the monic polynomial of least degree such that f(«) = 0 (this is the first definition we used above);
* f is monic, irreducible, and f(«) = 0.

Since f is the generator of the kernel of ® : F[X] — FE, the first isomorphism theorem implies that F[z] =
F[X]/(f) = Im(®) = F[«]. Explicitly, this map sends g(z) = g(X) + (f) to g(«). Since F[z] is a field due to
claim 4.2.7, so also is F[«],

Thus, F[a] is a stem field for f.

Example 4.3.1.
1. R c C. a = i. The minimal polynomial is p = 2% + 1. C = R[i] = {a + bi : a,b € R}.
2. Q c R. a = {/2. The minimal polynomial is z° — 2. Q(a) = {aa® + ba + c|a, b, c € Q}.

Example 4.3.2. Let a € C be such that o® — 3o — 1 = 0. Then X2 — 3X — 1 is monic, irreducible, and has «
as a root, and so it is the minimal polynomial of « over Q. The set {1, a, o} is a basis for Q[a] over Q. The
calculations in Example 4.2.9 show that if 3 is the element a* + 2a® + 3 of Q[a], then 8 = 3a? + 7a + 5, and

-1_ 7 2 _ 26 28
B = o Tt T

Remark 4.3.3. PARI knows how to compute in Q[a]. For example, factor (X~4+4) returns the factorization
X4 4=(X?-2X +2)(X? +2X +2)

in Q[X]. Now type F=nfinit(a~2+2xa+2) to define a number field “F” generated over Q by a root a of
X2 42X + 2. Then nffactor (F,x"4+4) returns the factorization

Xt4d4=X-a-2)(X-a)(X +a)(X +a+2),

in Q[a].

A extension E of F is said to be algebraic (and F is said to be algebraic over F), if all elements of E are
algebraic over F), i.e., each element of F has some polynomial over F' vanishing it; otherwise it is said to be
transcendental (and E is said to be transcendental over F). Thus, E/F is transcendental if at least one
element of F is transcendental over F.

Proposition 4.3.4. Let E o F be fields. If E/F is finite, then E is algebraic and finitely generated (as a
field) over F'; conversely, if F is generated over F by a finite set of algebraic elements, then it is finite (and
hence algebraic) over F.

Proof.

—: To say that an element « of E is transcendental over F' amounts to saying that its powers 1, a, o2, ...
are linearly independent over F'. Thus, if F is finite over F', then every element of E is algebraic over F.
It remains to show that F is finitely generated over F'. If F = F, then it is generated by the empty set.
Otherwise, there exists an «; € E \ F. If E # F|[a1], then there exists an as € E \ F[a;], and so on. Since

[Floa]: F] < [Flag,az]: F] < - < [E: F]

this process terminates with F = F[ay, ag, ..., ay].

«: Let £ = F(ay,...,a,) With a1, as, . .. o, algebraic over F. The extension F'(«;)/F is finite because ay
is algebraic over F, and the extension F'(aj,as2)/F(aq) is finite because «ay is algebraic over F and hence
over F(ay). Thus, by (4.2.6), F(«a1, as) is finite over F. Now repeat the argument. O
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Corollary 4.3.5.
(a) If E is algebraic over F, then every subring R of E containing F' is a field.

(b) Consider fields L o E o F. If L is algebraic over F and F is algebraic over F, then L is algebraic over
F.

Proof.
(a) If « € R, then F[a] = R. But F|[a] is a field because « is algebraic (see p. 135), and so R contains o~ *.

(b) By assumption, every « € L is a root of a monic polynomial
X™ 4 @y XM 4 4 ap € E[X].

Each of the extensions

Flag,...,am-1,a] D Flag,...,am-1] 2 Flag,...,am—2] > - D F
is generated by a single algebraic element, and so is finite. Therefore FJay, ..., am—1, ] is finite over F' (see
4.2.6), which implies that « is algebraic over F. O
Example 4.3.6.
QcQ (21/27 Q13 ol/4 .. ol/n .. ) cR
E
Note that

Q c Q(21/2) c Q(21/2’21/3) c Q(21/2,21/3’21/4) . C R
E = UQ(21/2’21/3’ 2V« R
n subfield
We claim that F is algebraic over Q but [E : Q] = .
e ae E: Then3n s.t. a e Q(2Y/2,... 21/7), 21/m is algebraic over Q: (2!/™)™ —2 = 0, so 2™ —2 vanishes
at 2'/™. By Lemma 4.3.5, we see [Q(2'/2,--- ,21/" : Q)] < oo and « is algebraic over Q.

* [E : Q] = oo: suppose to the contrary [E : Q] = r < co. Now look at « —7+7. Then f(a) = 0 where

r+1
= 9
f(x) z € Q[z]
irreducible by Eisenstein
Thus the degree of minimal polynomial of « is  + 1. Then [Q(2'/2,--- ,2$) : Q] = r + 1. Contradic-
tion.

4.3.1 Applications

See [4] sections “transcendental numbers” and “constructions with straight-edge and compass” for some
interesting discussions.

4.4 Algebraically Closed Fields

Let F be a field. A polynomial is said to split in F[X] if it is a product of polynomials of degree at most 1 in
F[X].

Proposition 4.4.1. For a field (2, the following statements are equivalent:

(a) Every nonconstant polynomial in Q[X] splits in Q[X].
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(b) Every nonconstant polynomial in Q[ X] has at least one root in .
(c) The irreducible polynomials in 2[X] are those of degree 1.
(d) Every field of finite degree over 2 equals Q.

Proof. The implications (a)=-(b)=>(c) are obvious.
(c)=>(a). This follows from the fact that Q[ X] is a unique factorization domain.

(c)=(d). Let FE be a finite extension of ), and let « € E. The minimal polynomial of a, being irreducible,
has degree 1 by (c), and, being monic by definition of min poly, thus has the form f(X) = X + a with a € Q.
Then f(a) =0=a=—-a €, soace

(d)=>(c). Let f be an irreducible polynomial in Q[X]. Then Q[X]/(f) is an extension of Q2 of degree deg(f)
(see 4.3.4), and so deg(f) = 1. O
Definition 4.4.2.

(a) A field Q is algebraically closed if it satisfies the equivalent statements of Proposition 4.4.1.

(b) A field € is an algebraic closure of a subfield F if it is algebraically closed and algebraic over F.

Example 4.4.3. For example, the fundamental theorem of algebra says that C is algebraically closed (by
characterization (b)). It is an algebraic closure of R.

Proposition 4.4.4. If Q is algebraic over F' and every polynomial f € F[X] splits in Q[X], then  is
algebraically closed (hence an algebraic closure of F').

Proof. Let f be a nonconstant polynomial in 2[X]. We have to show that f has a root in 2. We know (see
4.2.7) that f has a root « in some finite extension {2’ of (2. Set

f=a X"+ +ao, a;€Q,

and consider the fields
F < Flaog,...,a,] € Flag,...,an,a].

Each extension generated by a finite set of algebraic elements, and hence is finite (4.3.4). Therefore « lies
in a finite extension of F' (see 4.2.6), and so is algebraic over F' (see 4.2.4) — it is a root of a polynomial g
with coefficients in F. By assumption, g splits in Q[X], and so the roots of g in ' all lie in Q. In particular,
a € (. O

Proposition 4.4.5. Let ) © F’; then
{a € Q| « algebraic over F'}
is a field.

Proof. If o and § are algebraic over F', then F[«, 3] is a field (see 4.3.5) of finite degree over F' (see 4.3.4).
Thus, every element of F'[«, (] is algebraic over F (see 4.2.4). In particular, « + 3, o/, and o are algebraic
over F. O
The field constructed in the proposition is called the algebraic closure of F in Q.

Corollary 4.4.6. Let Q) be an algebraically closed field. For any subfield F of ), the algebraic closure E of F
in Q is an algebraic closure of F.

Proof. It is algebraic over F' by definition. Every polynomial in F[X] splits in Q[X] and has its roots in E,
and so splits in E[X]. Now apply Proposition 4.4.4. O
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Thus, when we admit the fundamental theorem of algebra, every subfield of C has an algebraic closure (in
fact, a canonical algebraic closure).

Theorem 4.4.7. Every field F has an algebraic closure.
Proof. (Emil Artin.) Consider the polynomial ring F'[...,zy,...] in a family of symbols z; indexed by the

nonconstant monic polynomials f € F[X]. If 1 lies in the ideal I of F[...,xzy,...] generated by the polyno-
mials f(z¢), then

Gifi(@p)+ - Hgafalrp)=1  (nF[..,zs,...])

for some g, € F[...,zy,...] and some nonconstant monic f; € F[X]. Let E be an extension of F' such that
each f;,7=1,...,n, hasaroot o; in E. Under the F-homomorphism F|...,zy,...] — E sending

{ m,y—»ai
xp—0, fé{fi,..., fn}

the above relation becomes 0 = 1. From this contradiction, we deduce that 1 does not lie in I, and so
corollary 2.3.11 applied to F'[...,xy,...]/I shows that I is contained in a maximal ideal M of F[..., zy,...].
LetQ = F[...,zy,...]/M. Then Q is a field containing (a copy of) F in which every nonconstant polynomial
in F[X] has at least one root. Repeat the process starting with F; instead of F' to obtain a field F5. Continue
in this fashion to obtain a sequence of fields

P’=E‘0Cf01CE}2C--~7

and let £ = | J, E;. Then FE is algebraically closed because the coefficients of any nonconstant polynomial g
in E[X] lie in F; for some i, and so g has a root in F;,;. Therefore, the algebraic closure of F in E is an
algebraic closure of F' (4.4.6). O

4.5 Homomorphisms from simple extensions.

Let F be a field, and let F and E’ be fields containing F'. Recall that an F-homomorphism is a homomorphism
¢: E — E’such that ¢(a) = a for all a € F. Thus an F-homomorphism ¢ maps a polynomial

i1 %
Zail...imal QG Gy, € F, «o; € E‘7

m

to ' .
Z Wiy -y, 30(041)21 e (p(am)lm-
An F-isomorphism is a bijective F-homomorphism.

An F-homomorphism E — E’ of fields is, in particular, an injective F-linear map of F-vector spaces, and so
it is an F-isomorphism if £ and E’ have the same finite degree over F.

Proposition 4.5.1. Let F(«) be a simple extension of F' and 2 a second extension of F.

1. Let « be transcendental over F'. For every F-homomorphism ¢: F(a) — Q, ¢(«a) is transcendental
over F, and the map ¢ — ¢(«) defines a one-to-one correspondence

{F-homomorphisms F(a) — Q} < {elements of 2 transcendental over F'}.

2. Let « be algebraic over F with minimal polynomial f(X). For every F-homomorphism ¢: F[a] — €,
¢(a) is a root of f(X) in 2, and the map ¢ — ¢(«a) defines a one-to-one correspondence

{ F-homomorphisms ¢: F[a] — Q} < {roots of f in Q}.

In particular, the number of such maps is the number of distinct roots of f in .
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Proof. (a) To say that « is transcendental over F means that F[«] is isomorphic to the polynomial ring in the
symbol «. Therefore, for every v € , there is a unique F-homomorphism ¢: F[a] — Q such that p(a) = v
(see ??). This ¢ extends (uniquely) to the field of fractions F'(«) of F[«] if and only if nonzero elements of
F[a] are sent to nonzero elements of (2, which is the case if and only if v is transcendental over F. Thus
we see that there are one-to-one correspondences between (a) the F-homomorphisms F(«) — €, (b) the
F-homomorphisms ¢: F[a] — € such that p(«) is transcendental, (c) the transcendental elements of .

(b) Let f(X) = Yl a; X', and consider an F-homomorphism ¢: F[a] — €. On applying ¢ to the equality
M a;at = 0, we obtain the equality " a;ip(a)® = 0, which shows that p(«) is a root of f(X) in Q. Conversely,
if v € Qis aroot of f(X), then the map F[X] — Q, g(X) — g(v), factors through F[X]/(f(X)). When com-
posed with the inverse of the canonical isomorphism F[X]/(f(X)) — F[a], this becomes a homomorphism
F[a] — Q sending « to 7. O
We shall need a slight generalization of this result.

Proposition 4.5.2. Let F'(«) be a simple extension of F' and ¢p: F — 2 a homomorphism from F into a
second field (2.

1. If « is transcendental over F, then the map ¢ — ¢(«a) defines a one-to-one correspondence

{extensions ¢: F(a) — Q of pg} < {elements of Q) transcendental over o (F)}.

2. If « is algebraic over F', with minimal polynomial f(X), then the map ¢ — ¢(«) defines a one-to-one
correspondence
{extensions ¢: F[a] — Q of ¢g} < {roots of pyf in 2}.

In particular, the number of such maps is the number of distinct roots of g f in €.

By o f we mean the polynomial obtained by applying (g to the coefficients of f. By an extension of ¢q to
F(«) we mean a homomorphism ¢: F'(«) — Q whose restriction to F is . The proof of the proposition is
essentially the same as that of the preceding proposition (indeed, it is essentially the same proposition).

4.6 Splitting Fields
Let f be a polynomial with coefficients in F. A field E containing F is said to splitf if f splits in E[X], i.e.,
F(X)=a]]” (X —a;) withall a; € E.
If E splits f and is generated by the roots of f,
E = Floag,...,an],

then it is called a splitting or root field for f.

Note that [ f;(X)™ (m; = 1) and [ ] fi(X) have the same splitting fields. Note also that f splits in F if it
has deg(f) — 1 roots in E because the sum of the roots of f lies in F' (if f = aX™ + a; X™ ™! + ---, then
Vieta’s formula gives > a; = —ay/a).

Example 4.6.1. (a) Let f(X) = aX? + bX + c € Q[X], and let &« = /b2 — 4ac. The subfield Q[a] of C is a
splitting field for f.

(b) Let f(X) = X3 + aX? 4+ bX + ¢ € Q[X] be irreducible, and let oy, s, a3 be its roots in C. Then
Q[aa, ag, as] = Q[aa, az] is a splitting field for f(X). Note that [Q[a1]: Q] = 3 and that [Q[a1, az2]: Qaq]] =
1 or 2, and so [Q[a1, az]: Q] = 3 or 6. We'll see later that the degree is 3 if and only if the discriminant of
f(X) is a square in Q. For example, the discriminant of X3 +bX + ¢ is —4b% — 27¢?, and so the splitting field
of X3 + 10X + 1 (discriminant —4027) has degree 6 over Q.
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Proposition 4.6.2. Every polynomial f € F[X] has a splitting field E, and

[Ef: F] < (deg f)! (factorial deg f).

Proof. Let Fi = F[a;] be a stem field for some monic irreducible factor of f in F[X]. Then f(a1) = 0,
and we let F» = Fj[az] be a stem field for some monic irreducible factor of f(X)/(X — aq) in Fy[X].
Continuing in this fashion, we arrive at a splitting field E;. Let n = deg f. Then [Fi: F| = degg1 < n,
[Fo: 1] <n—1,..,andso [Ef: F] <nl. O

Remark 4.6.3. Let F be a field. For a given integer n, there may or may not exist polynomials of degree n
in F[X] whose splitting field has degree n! — this depends on F'.

Example 4.6.4. (a) Let f(X) = (X?—1)/(X —1) € Q[X], p prime. If { is one root of f, then the remaining
roots are ¢2,¢3,...,¢P71, and so the splitting field of f is Q[(].

(b) Let F have characteristic p # 0, and let f = X? — X — a € F[X]. If « is one root of f in some extension
of F, then the remaining roots are « + 1, ..., + p — 1, and so the splitting field of f is F[a].

(c) If « is one root of X™ — a, then the remaining roots are all of the form («, where (" = 1. Therefore, F[«]
is a splitting field for X™ — « if and only if F’ contains all the nth roots of 1 (by which we mean that X" — 1
splits in F[X]). Note that if p is the characteristic of F, then X? — 1 = (X — 1)P, and so F' automatically
contains all the pth roots of 1.

Proposition 4.6.5. Let f € F[X]. Let E be an extension of F' generated by the roots of f in F, and let 2 be
an extension of F splitting f.

1. There exists an F-homomorphism ¢: E — ); the number of such homomorphisms is at most [E: F1],
and equals [E: F] if f has distinct roots in ).

2. If F and Q are both splitting fields for f, then every F-homomorphism E —  is an isomorphism. In
particular, any two splitting fields for f are F-isomorphic.

As f splits in Q[ X ], f(X) = aH?:gi(f)(X—ﬁi) with 81, 52, ... € Q. To say that f has distinct roots in {2 means
that 3; # /Bj ifi # 75.

Proof. We may suppose that f is monic.

We begin with an observation: let F, f, and ) be as in the statement of the proposition, let L be a subfield
of ) containing F, and let g be a monic factor of f in L[ X]; as g divides f in Q[X], it is a product of certain
number of the factors X — ; of f in Q[X]; in particular, we see that g splits in (2, and that it has distinct
roots in € if f does..

(a) By hypothesis, E = F[ay, ..., a,,] with each «; a root of f(X) in E. The minimal polynomial of «; is
an irreducible polynomial f; dividing f. From the initial observation with I = F', we see that f; splits in
Q, and that its roots are distinct if the roots of f are distinct. According to Proposition 4.5.1, there exists
an F-homomorphism ¢;: F[a;] — €, and the number of such homomorphisms is at most [F[a;]: F], with
equality holding when f has distinct roots in €.

The minimal polynomial of o over F[ay] is an irreducible factor f, of f in F[a1][X]. On applying the
initial observation with L = ¢1F[a;] and g = o1 f2, we see that o5 fo splits in ), and that its roots are
distinct if the roots of f are distinct. According to Proposition 4.5.2, each ¢; extends to a homomorphism
w2 Flag, as] — Q, and the number of extensions is at most [F'[«1, as]: F[a1]], with equality holding when
f has distinct roots in 2.

On combining these statements we conclude that there exists an F-homomorphism

¢: Flag,as] — Q,
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and that the number of such homomorphisms is at most [F[«a1, 2] F], with equality holding if f has distinct
roots in 2.

After repeating the argument m times, we obtain (a).

(b) Every F-homomorphism E — (2 is injective, and so, if there exists such a homomorphism, then [E: F] <
[Q2: F]. If E and Q) are both splitting fields for f, then (a) shows that there exist homomorphisms F < (),
and so [E: F]| = [Q: F]. It follows that every F-homomorphism E — 2 is an F-isomorphism. O

Corollary 4.6.6. Let E and L be extensions of F, with F finite over F.
1. The number of F-homomorphisms E — L is at most [E: F'.

2. There exists a finite extension /L and an F-homomorphism E — (2.

Proof. Write E = F[ay,...,an,], and let f € F[X] be the product of the minimal polynomials of the «;; thus
E is generated over F by roots of f. Let  be a splitting field for f regarded as an element of L[X]. The
proposition shows that there exists an F-homomorphism E — (2, and the number of such homomorphisms is
< [E: F]. This proves (b), and since an F-homomorphism F — L can be regarded as an F-homomorphism
E — Q, it also proves (a). O

Remark 4.6.7. (a) Let Eq, Es, ..., E,, be finite extensions of F, and let L be an extension of F. From
the corollary we see that there exists a finite extension L;/L such that L; contains an isomorphic image
of F; then that there exists a finite extension Lo/L; such that L, contains an isomorphic image of E5. On
continuing in this fashion, we find that there exists a finite extension /L such that 2 contains an isomorphic
copy of every E;.

(b) Let f € F[X]. If E and E’ are both splitting fields of f, then we know there exists an F-isomorphism
E — F’, but there will in general be no preferred such isomorphism. Error and confusion can result if the
fields are simply identified. Also, it makes no sense to speak of “the field F[«] generated by a root of f”
unless f is irreducible (the fields generated by the roots of two different factors are unrelated). Even when
f is irreducible, it makes no sense to speak of “the field F[«, 3] generated by two roots «, 3 of f” (the
extensions of F[a] generated by the roots of two different factors of f in F[a][X] may be very different).

4.7 Multiple roots

Even when polynomials in F[X] have no common factor in F[X], one might expect that they could acquire
a common factor in Q[X] for some Q o F'. In fact, this doesn’t happen — greatest common divisors don’t
change when the field is extended.

Proposition 4.7.1. Let f and ¢ be polynomials in F[X], and let 2 be an extension of F. If r(X) is the gcd of
f and g computed in F[X], then it is also the gcd of f and g in Q[X]. In particular, distinct monic irreducible
polynomials in F[X] do not acquire a common root in any extension of F.

Proof. Let rr(X) and rq(X) be the greatest common divisors of f and g in F[X] and Q[X] respectively.
Certainly rr(X)|rq(X) in Q[X], but Euclid’s algorithm shows that there are polynomials ¢ and b in F[X]
such that

a(X)f(X) + b(X)g(X) = rr(X),
and so rqo(X) divides rr(X) in Q[X].

For the second statement, note that the hypotheses imply that ged(f, g) = 1 (in F[X]), and so f and g can’t
acquire a common factor in any extension field. O
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The proposition allows us to speak of the greatest common divisor of f and g without reference to a field.

Let f € F[X]. Then f splits into linear factors

F(X) =a] [(X = i)™, a; distinct, m; > 1, Y m; = deg(f), (4.3)
=1

i=1

in E[X] for some extension E of F' (see 4.6.2). We say that «; is a root of f of multiplicity m, in E. If
m; > 1, then o is said to be a multiple root of f, and otherwise it is a simple root.

I claim that the unordered sequence of integers mg,...,m, in (4.3) is independent of the extension F
chosen to split f. Certainly, it is unchanged when FE is replaced with its subfield F|a;,...,«,], and so
we may suppose that E is a splitting field for f. Let E and E’ be splitting fields for F, and suppose that
F(X) = a[[/_y(X — ay)™ in E[X] and f(X) = o' [[|_,(X — o)™ in E'[X]. Let ¢: E — E’ be an F-
isomorphism, which exists by (4.6.5b), and extend it to an isomorphism E[X] — E’[X] by sending X to X.
Then ¢ maps the factorization of f in E[X] onto a factorization

T

F(X) = p(a) [ [(X = p(ai)™
i=1
in E'[X]. By unique factorization, this coincides with the earlier factorization in E’[ X] up to a renumbering
of the «;. Therefore r = r/, and

{my,....,mz} = {m},...,m.}.

We say that f has a multiple root when at least one of the m; > 1, and that f has only simple roots when
all m; = 1. Thus “f has a multiple root” means “f has a multiple root in one, hence every, extension of F’
splitting f”, and similarly for “f has only simple roots”.

We wish to determine when a polynomial has a multiple root. If f has a multiple factor in F[X], say
f = T1]/f:(X)™ with some m; > 1, then obviously it will have a multiple root. If f = [] f; with the f;
distinct monic irreducible polynomials, then Proposition 4.7.1 shows that f has a multiple root if and only if
at least one of the f; has a multiple root. Thus, it suffices to determine when an irreducible polynomial has a
multiple root.

Example 4.7.2. Let F be of characteristic p # 0, and assume that F contains an element « that is not a
pth-power, for example, a = T in the field F,(T). Then X? — ¢ is irreducible in F[X], but by 4.1.2 we have
XP —a = (X — )P in its splitting field. Thus an irreducible polynomial can have multiple roots.

The derivative of a polynomial f(X) = . a;X* is defined to be f'(X) = >lia;X*~!. The usual rules for
differentiating sums and products still hold, but note that in characteristic p the derivative of X? is zero.

Proposition 4.7.3. For a nonconstant irreducible polynomial f in F[X], the following statements are equiv-
alent:

1. f has a multiple root;

2. ged(f, f') # 1;

3. F has nonzero characteristic p and f is a polynomial in X7, i.e., of the form
FX) = an (XP)" + an_y (XP)" 7'+ + a1 X + ag
4. all the roots of f are multiple.
Proof. (a) = (b). Let a be a multiple root of f, and write f = (X — a)™g(X), m > 1, in some extension
field. Then
F(X) =m(X —a)"g(X) + (X — a)"g'(X). (4.4)
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Hence f and f’ have X — o as a common factor.
(b) = (). As f is irreducible and deg(f’) < deg(f),
ged(f, f)#1 = [ =0.
Let f=ag+---+agX%d>1.Then f =a; +---+ia; X" "' +--- + dagX?!, which is the zero polynomial
if only if F' has characteristic p # 0 and a; = 0 for all 7 not divisible by p.
(c) = (d). By hypothesis, f(X) = g(X?) with g(X) € F[X]. Let g(X) = [[,(X — ;)™ in some extension

field. Then each a; becomes a pth power, say, a; = of, in some possibly larger extension field. Now

f(X) — g(XP) — HZ(XP _ ai)"“' _ n,(X _ ai)p””

which shows that every root of f(X) has multiplicity at least p.
(d) = (a). Obvious. O

Proposition 4.7.4. The following conditions on a nonzero polynomial f € F[X] are equivalent:

1. ged(f, f') =1in F[X];

2. f has only simple roots.
Proof. Let €2 be an extension of F splitting f. From (4.4), p. 142, we see that a root « of f in 2 is multiple if
and only if it is also a root of f”.

If ged(f, f') = 1, then f and f’ have no common factor in Q[X] (see 4.7.1). In particular, they have no
common root, and so f has only simple roots.

If f has only simple roots, then ged(f, f/) must be the constant polynomial, because otherwise it would have
a root in ) which would then be a common root of f and f’. O
Definition 4.7.5. A polynomial is separable if it is nonzero and satisfies the equivalent conditions on

(4.7.4).°

Remark 4.7.6. Thus a nonconstant irreducible polynomial f is not separable if and only if F' has characteris-
ticp # 0 and f is a polynomial in X? (see 4.7.3). Let f = [] f; with f and the f; monic and the f; irreducible;
then f is separable if and only if the f; are distinct and separable. If f is separable as a polynomial in F[X],
then it is separable as a polynomial in F[X] for every extension E of F.

Definition 4.7.7. A field F' is perfect if it has characteristic zero or it has characteristic p and every element
of F' is a p-th power.

Thus, F is perfect if and only if ' = F'9, where ¢ is the characteristic exponent of F.

Proposition 4.7.8. A field F' is perfect if and only if every irreducible polynomial in F[X] is separable.
Proof. If F has characteristic zero, the statement is obvious, and so we may suppose F' has characteristic
p # 0. If F contains an element a that is not a pth power, then X? — ¢ is irreducible in F[X] but not

separable (see 4.7.2). Conversely, if every element of F' is a pth power, then every polynomial in X? with
coefficients in F' is a pth power in F[X],

ZaiXip = (Z lel)p if a; = b;ln,

and so it is not irreducible. O

5This is Bourbaki’s definition. Often (e.g., in the books of Jacobson and in earlier versions of these notes) a polynomial f is said to
be separable if each of its irreducible factors has only simple roots.
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Example 4.7.9. 1. A finite field F' is perfect, because the Frobenius endomorphism a — a?: F' — F'is
injective and therefore surjective (by counting).

2. A field that can be written as a union of perfect fields is perfect. Therefore, every field algebraic over
F, is perfect.

3. Every algebraically closed field is perfect.
4. If Fy has characteristic p # 0, then F' = Fy(X) is not perfect, because X is not a pth power.

Remark 4.7.10. Let F be a perfect field. We'll see later that every finite extension E/F is simple, i.e.,
E = F[a] with « a root of a (separable) polynomial f € F[X] of degree [E: F]. Thus it follows directly
from (4.5.2b) that, for any extension {2 of F, the number of F-homomorphisms £ — Q is < [E: F], with
equality if and only if f splits in 2. We can’t use this argument here because it would make the exposition
circular.

4.1 EXERCISES

1. Let I be a field of characteristic # 2.

1. Let E be quadratic extension of F'; show that
S(F)=1{a€e F* |aisasquarein E}

is a subgroup of F* containing F'*2.

2. Let F and E’ be quadratic extensions of F'; show that there exists an F-isomorphism ¢: £ — E’ if
and only if S(E) = S(F').

3. Show that there is an infinite sequence of fields F1, Fs, ... with F; a quadratic extension of Q such
that F; is not isomorphic to E; for ¢ # j.

4. Let p be an odd prime. Show that, up to isomorphism, there is exactly one field with p? elements.

2. (@) Let F be a field of characteristic p. Show that if X? — X — qa is reducible in F[X], then it splits into
distinct factors in F[X].

(b) For every prime p, show that X? — X — 1 is irreducible in Q[X].
3. Construct a splitting field for X — 2 over Q. What is its degree over Q?
4. Find a splitting field of X?" — 1 € F,[X]. What is its degree over F,?

5. Let f € F[X], where F is a field of characteristic 0. Let d(X) = gcd(f, f’). Show that g(X) =
f(X)d(X)~! has the same roots as f(X), and these are all simple roots of g(X).

6. Let f(X) be an irreducible polynomial in F[X], where F has characteristic p. Show that f(X) can be
written f(X) = g(X?") where g(X) is irreducible and separable. Deduce that every root of f(X) has the
same multiplicity p¢ in any splitting field.
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Chapter 5

Galois Theory

In this chapter, we prove the fundamental theorem of Galois theory, which classifies the subfields of the
splitting field of a separable polynomial f in terms of the Galois group of f. We also investigate general
methods for computing Galois groups.

5.1 Groups of Automorphisms of Fields

Consider fields £ o F. An F-isomorphism F — F is called an F-automorphism of F. The F-automorphisms
of E form a group, which we denote Aut(E/F).

Claim 5.1.1. If F c F and f(X) € F[X] and a € E is a root of f, then ¢ € Aut(E/F) sends « to a root of
f(X), becasue

f(X)=a, X"+ - +aX +ay=a,a"+ - -+aa+ay=0
:>¢(an,06n—|—---+aaa+a)=0
= and(a)” + -+ a1¢(a) + ap = 0.

Example 5.1.2.

* RcC.ieCisarootof v*1 e R[X]. Let ¢ € Aut(C/R). Then ¢(i) also a root of 2% + 1, so ¢(i) = +i.
If (i) = 4, then it is the identity; if ¢(i) = —i, then ¢ is conjugator, i.e., ¢(a + ib) = a — ib.

Therefore, Aut(C/R) =~ Zs.

* Q < Q(4/2). We compute Aut(Q(4/2)/Q). « is a root of x> — 2 € Q[X]. Other roots are wa and w?a,
where w is the third root of unity. So wa, w?«a are not in Q(«). Any ¢ € Aut(Q(a)/Q) fixes a., so ¢
fixes Q(a). So $ fixes Q(a) = | Aut(Q(a)/Q)| = 1

Example 5.1.3.
(a) There are two obvious automorphisms of C, namely, the identity map and complex conjugation. We'll
see later that by using the Axiom of Choice we can construct uncountably many more.

(b) Let E = C(X). A C-automorphism of F sends X to another generator of E over C. It follows from

(??) below that these are exactly the elements g)}gj_’g, ad — be # 0. Therefore Aut(E/C) consists of the maps

fX)— f (ngis), ad — be # 0, and so

Aut(E/C) ~ PGLy(C),
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the group of invertible 2 x 2 matrices with complex coefficients modulo its centre. Analysts will note that
this is the same as the automorphism group of the Riemann sphere. Here is the explanation. The field F of
meromorphic functions on the Riemann sphere Pl consists of the rational functions in z, i.e., E = C(z) ~
C(X), and the natural map Aut(P:) — Aut(E/C) is an isomorphism.

(c) The group Aut(C(X1, X2)/C) is quite complicated — there is a map
PGL3(C) = Aut(PZ) — Aut(C(X1, X2)/C),

but this is very far from being surjective. When there are even more variables X, the group is not known.
The group Aut(C(Xjy,..., X, )/C) is the group of birational automorphisms of projective n-space P¢, and is
called the Cremona group. Its study is part of algebraic geometry (Wikipedia: Cremona group).

In this section, we’ll be concerned with the groups Aut(E/F) when E is a finite extension of F'.
Proposition 5.1.4. If E/F is a finite extension, then |[Aut(E/F)| < [E : F].
Proof. Induction on r = [E : F]. We show if o : F — F’ is an F-isomorphism of fields. F' c F, F' c E’ are

fleld extansions with
[E:F]=[E:F]=r,

then there are < r ways to extend o to an isomorphism & : F — E’. r = 1 case is trivial. We show
1,---,r—=1 = r. Pick @ € E\F and let f(X) € F(X) be the minimal polynomial of «. Let g = o(f) €
F'[X]. Then any ¢ : E — E’ extending o sends « to a root of g by observation 5.1.1.

deg(g) = deg(f) = [F(a): F] =:m
so there are < m choices for o(«). Fix such a choice 5. Consider
Vi Fla) > F'(B)
with ¢(«) = § and
F(a) ={am_10™ '+ +a1a+ag | a; € F}
V(am_10™ - ara+ag) = 0(am_ 1)+ -+ olar)B + ao
Then the extension E\F(«) has degree r/m. By induction hypothesis, there are < r/m ways to extend v to

an isomomorphism £ — E’. m - (r/m) = r. O

Proposition 5.1.5. Let E be a splitting field of a separable polynomial f in F[X]; then |Aut(E/F)| =
[E: F].

Proof. As f is separable, it has deg f distinct roots in E. Therefore Proposition 4.6.5 shows that the number of
F-homomorphisms E — Eis [E: F'|. Because E is finite over F, all such homomorphisms are isomorphisms.
O

Example 5.1.6. Consider a simple extension F = F[a], and let f be a polynomial in F[X] having « as a
root. If o is the only root of f in E, then Aut(E/F) = 1 by (4.5.1b). For example, if /2 is the real cube root
of 2, then Aut(Q[+/2]/Q) = 1. As another example, let F be a field of characteristic p # 0, and let a be an
element of F' that is not a pth power. Let F be a splitting field of f = X? — a. Then f has only one root in £
(see 4.7.2), and so Aut(E/F) = 1.

These examples show that, in the statement of the proposition, is necessary that E be a splitting field of a
separable polynomial.

146



Math 5031-32 Algebra Anthony Hong

When G is a group of automorphisms of a field E, we set
E€¢ =Iw(G) = {a€E|oa=aq,alloeG}.
It is a subfield of E, called the subfield of G-invariants of E or the fixed field of G.

In this section, we’ll show that, when FE is the splitting field of a separable polynomial in F[X] and G =
Aut(E/F), then the maps
M — Aut(E/M), H~— Inv(H)

give a one-to-one correspondence between the set of intermediate fields M, F <« M < E, and the set of
subgroups H of G.

Facts: M < EAE/M): [7 < Aut(E/ET).
Theorem 5.1.7 (E. Artin). Let G be a finite group of automorphisms of a field £, then
[E: E€] < (G: 1).
Proof. Let F = E€, and let G = {04,...,0,,} with o, the identity map. It suffices to show that every set

{aq,...,a,} of elements of E with n > m is linearly dependent over F'. For such a set, consider the system
of linear equations

0'1(051)X1 + .- +0'1(0471,)Xn =0

: (5.1
om(a1) X1+ + om(an) X, =0

with coefficients in E. There are m equations and n > m unknowns, and hence there are nontrivial solutions
in E. We choose one (cy,...,c,) having the fewest possible nonzero elements. After renumbering the «;,
we may suppose that ¢; # 0, and then, after multiplying by a scalar, that ¢; € F. With these normalizations,
we’ll show that all ¢; € F', and so the first equation

aicl + -+ apey =0
(recall that o is the identity map) is a linear relation on the «;.

If not all ¢; are in F, then ox(c;) # ¢; for some k # 1 and i # 1. On applying o to the system of linear
equations

oi1(ar)er + -+ o1(ap)c, =0

om(a1)er + -+ om(an)en, =0
and using that {oy01,...,0p0m} = {01,...,0m} (0 merely permutes the o;), we find that
(Cl, O'k(CQ), e ,(Tk(CZ'), .. )

is also a solution to the system of equations (5.1). On subtracting it from the first solution, we obtain a
solution (0, ...,¢; — ok(c),...), which is nonzero (look at the ith entry), but has more zeros than the first
solution (look at the first entry) — contradiction. O

Corollary 5.1.8. Let G be a finite group of automorphisms of a field F; then
G = Aut(E/E®).

Proof. As G = Aut(E/E®), we have inequalities

5.1.7 46.6
[E: ES]°< (@1 1) < (Aut(E/EC): 1) "< [E: EY]
All the inequalities must be equalities, and so G = Aut(E/E%). O
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5.2 Separable, normal, and Galois extensions
Definition 5.2.1. An algebraic extension E/F is separable if the minimal polynomial of every element of £
is separable; otherwise, it is inseparable.

Thus, an algebraic extension E/F is separable if every irreducible polynomial in F[X] having at least one
root in F is separable, and it is inseparable if

» F'is nonperfect, and in particular has characteristic p # 0, and
* there is an element « of E whose minimal polynomial is of the form ¢(X?), g € F[X].

See 4.7.5 et seq. For example, the extension F,,(T) of F,,(1T7) is inseparable extension because 7" has minimal
polynomial X? — TP,

Definition 5.2.2. An extension E/F is normal’ if it is algebraic and the minimal polynomial of every element
of E splits in E[X].

In other words, an algebraic extension E/F is normal if and only if every irreducible polynomial f € F[X]
having at least one root in E splits in E[X].

Let f be a monic irreducible polynomial of degree m in F[X], and let E be an algebraic extension of F. If f
has a root in F, so that it is the minimal polynomial of an element of E, then

E/F bl h ly simpl t
/T separable  — f a.s 0? ysmperoots { f has m distinct roots in E.
E/F normal = fsplitsin F

It follows that E/F is separable and normal if and only if the minimal polynomial of every element « of F
has [F[«a]: F] distinct roots in E.

Example 5.2.3. (a) The polynomial X* — 2 has one real root /2 and two nonreal roots in C. Therefore the
extension Q[+/2]/Q (which is separable) is not normal.

(b) The extension F,(7T")/F,(T?) (which is normal) is not separable because the minimal polynomial of T" is
not separable.

Theorem 5.2.4. For an extension F/F, the following statements are equivalent:
1. E is the splitting field of a separable polynomial f € F[X];
2. F is finite over F and F = EAw(E/F),
3. F = EC for some finite group G of automorphisms of £;
4. FE is normal, separable, and finite over F.
Proof. (a) = (b). Certainly, F is finite over F. Let I’ = EAWE/F) 5 F We have to show that F/ = F.

Note that F is also the splitting field of f regarded as a polynomial with coefficients in F’, and that f is still
separable when it is regarded in this way. Hence

5.1.5

|Aut(E/F')| °2° [E: F'] < [E: F]°2° |Awt(E/F)| .
According to Corollary 5.1.8, Aut(E/F) = Aut(E/F’),and so [E: F'] = [E: F]and F' = F.

(b) = (¢). Let G = Aut(E/F). We are given that F = E“, and G is finite because F is finite over F' (apply
4.6.6a).

(c) = (d). According to Theorem 5.1.7, [E: F] < (G: 1); in particular, E/F is finite. Let « € E, and
let f be the minimal polynomial of «; we have to show that f splits into distinct factors in E[X]. Let

1Bourbaki says “quasi-galoisienne”.
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{an = o, ag, ..., a, } be the orbit of o under the action of G on E (so the «; are distinct elements of £), and
let -
g(X) =] (X =) = X"+ a X"+ + ap.

The coefficients a; are symmetric polynomials in the «;, and each ¢ € G permutes the «;, and so ca; = q;
for all j. Thus g(X) € F[X]. As it is monic and g(«) = 0, it is divisible by f (see the definition of minimal
polynomial, p. 134). Let o; = o«; on applying o to the equation f(«) = 0 we find that f(«;) = 0. Therefore
every «; is a root of f, and so g divides f. Hence f = g, and we conclude that f(X) splits into distinct factors
in E.

(d) = (a). Because F has finite degree over F, it is generated over F' by a finite number of elements, say,
E = Flay,...,an], a; € E, ; algebraic over F. Let f; be the minimal polynomial of a; over F, and let f be
the product of the distinct f;. Because E is normal over F', each f; splits in F, and so F is the splitting field
of f. Because E is separable over F, each f; is separable, and so f is separable. O

Definition 5.2.5. An extension E/F of fields is Galois if it satisfies the equivalent conditions of (5.2.4).
When E/F is Galois, Aut(E/F) is called the Galois group of E over F, and it is denoted by Gal(E/F).

Remark 5.2.6. (a) Let E' be Galois over F' with Galois group G, and let « € E. The elements oy, as, ..., @y,
of the orbit of & under G are called the conjugates of «. In the course of proving the theorem we showed
that the minimal polynomial of « is [ [(X — «;), i.e., the conjugates of « are exactly the roots of its minimal
polynomial in F.

(b) Let G be a finite group of automorphisms of a field £, and let F = E€. By definition, F is Galois over
F. Moreover, Gal(E/F) = G (apply 5.1.8) and [E: F| = |Gal(E/F)| (apply 5.1.5).

Corollary 5.2.7. Every finite separable extension F of F' is contained in a Galois extension.

Proof. Let E = Flay, ..., au,], and let f; be the minimal polynomial of «; over F'. The product of the distinct
fi is a separable polynomial in F'[X] whose splitting field is a Galois extension of F' containing F. O

Corollary 5.2.8. Let E o M o F; if E is Galois over F, then it is Galois over M.

Proof. We know FE is the splitting field of some separable f € F[X]; it is also the splitting field of f regarded
as an element of M[X]. O

Remark 5.2.9. An element « of an algebraic extension of F' is said to be separable over F' if its minimal
polynomial over F is separable. The proof of Corollary 5.2.7 shows that every finite extension generated
by separable elements is separable. Therefore, the elements of an algebraic extension F of F' that are
separable over F' form a subfield Fg, of E that is separable over F'. When F is finite over F, we let
[E: Flsep = [Esep: F'] and call it the separable degree of E over F.

An algebraic extension E is purely inseparable over F if the only elements of E separable over F' are the
elements of F. If E is a finite extension of F, then E is purely inseparable over Eq.,. See Jacobson 1964,
Chap. I, Section 10, for more on this topic.

Definition 5.2.10. An extension F of F' is cyclic (resp. abelian, resp. solvable, etc.) if it is Galois with cyclic
(resp. abelian, resp. solvable, etc.) Galois group.

5.3 The fundamental theorem of Galois theory

Let F be an extension of F'. A subextension of E/F is an extension M /F with M c FE, i.e., a field M with

F c M c E. When E is Galois over F, the subextensions of E/F are in one-to-one correspondence with the
subgroups of Gal(E/F). More precisely, there is the following statement.
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Theorem 5.3.1 (Fundamental theorem of Galois theory). Let F be a Galois extension of F' with Galois group
G. The map H — E* is a bijection from the set of subgroups of G to the set of subextensions of E/F,

{subgroups H of G} R {subextensions F' c M c E},

with inverse M — Gal(E/M). Moreovet,
1. the correspondence is inclusion-reversing: H, > Hy <= FEf < EHz;
2. indexes equal degrees: (H,: Hy) = [EH2: BH1];

3. cHo ! - oM, ie, E°H° =g(ER); Gal(E/oM) = o Gal(E/M)o L.

4. Hisnormalin G <= E¥ is normal (hence Galois) over F, in which case
Gal(E" /F) ~ G/H.

Proof. For the first statement, we have to show that H — Ef and M — Gal(E/M) are inverse maps. Let H
be a subgroup of G. Then, Corollary 5.1.8 shows that Gal(E/E*) = H. Let M/F be a subextension. Then
FE is Galois over M by (5.2.8), which means that EG2(E/M) — Mf

(a) We have the obvious implications,
H, > H, = E"' c B2 — Gal(E/E"*) > Gal(E/E™?).

As Gal(E/E*i) = H;, this proves (a).

(b) Let H be a subgroup of G. According to 5.2.6b,

(Gal(E/Ef): 1) = [E: ET].
This proves (b) in the case H, = 1, and the general case follows, using that
(Hi:1) = (Hi: Ha)(H2: 1)
[E: B *2° [B: EH2|[EH2. BF).

(c)ForreGanda € E,
Ta=a < o710 '(ca) = oa.

Therefore, 7 fixes M if and only if o70~! fixes oM , and so o Gal(E/M)o~1 = Gal(E/oM). This shows that
o Gal(E/M)o~* corresponds to oM.

(d) Let H be a normal subgroup of G. Because c Ho~! = H for all o € G, we must have c E¥f = E¥ for all
o € G, i.e., the action of G on FE stabilizes E¥. We therefore have a homomorphism

o olE": G — Aut(E¥ /F)

whose kernel is H. As (Ef)/H — F, we see that E is Galois over F' (by Theorem 5.2.4) and that
G/H ~ Gal(EY /F) (by 5.2.6b).

Conversely, suppose that M is normal over F, and let a;,...,«,, generate M over F. For ¢ € G, oq; is
a root of the minimal polynomial of «; over F, and so lies in M. Hence oM = M, and this implies that
cHo™ ' = H (by (0)). O

Remark 5.3.2. Let F/F be a Galois extension, so that there is an order reversing bijection between the
subextensions of £/F and the subgroups of G. From this, we can read off the following results.
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(a) Let My, M>, ..., M, be subextensions of E/F, and let H; be the subgroup corresponding to M; (i.e.,
H; = Gal(E/M;)). Then (by definition) M; M, --- M, is the smallest field containing all M;; hence it must
correspond to the largest subgroup contained in all H;, which is (") H;. Therefore

Gal(E/My---M,)=Hy n..n H,.

(b) Let H be a subgroup of G and let M = E¥. The largest normal subgroup contained in H is N =
Noe cHo™! (see GT, 4.1), and so EN is the smallest normal extension of F' containing M. Note that, by
(a), BV is the composite of the fields oM. It is called the normal, or Galois, closure of M in E.

Proposition 5.3.3. Let F and L be extensions of F' contained in some common field. If E/F is Galois, then
EL/L and E/E n L are Galois, and the map

o~ o|lE: Gal(EL/L) —» Gal(E/E n L)

is an isomorphism.

Proof. Because F is Galois over F, it is the splitting field of a separable polynomial

f € F[X]. Then EL is the splitting field of f over L, and E is the splitting field of

fover En L. Hence EL/L and E/E n L are Galois. Every automorphism ¢ of EL EL
fixing the elements of L maps roots of f to roots of f, and so ¢F = E. There is / \:
therefore a homomorphism . I

o — o|E: Gal(EL/L) — Gal(E/E n L). e S
If o0 € Gal(FL/L) fixes the elements of FE, then it fixes the elements of EL, and EnL
hence is the identity map. Thus, o — ol|FE is injective. If o € E is fixed by all ‘
o€ Gal(EL/L), then o € E n L. By Corollary 5.1.8, F

this implies that the image of o — o|E is Gal(E/E n L). O

Corollary 5.3.4. Suppose, in the proposition, that L is finite over F'. Then

Proof. According to Proposition 4.2.6,
[EL: F]| = |[EL: L][L: F],
but
¢ [E:F]

71533 1. 4.2,
[EL: L] *2* [E: E~L]'2 AL F

O

Proposition 5.3.5. Let F; and E5 be extensions of F' contained in some common field. If £; and F, are
Galois over F, then F; F5 and E; n E, are Galois over F', and the map

o (o|E1,0|E2): Gal(E1Ey/F) — Gal(E,/F) xGal(Ey/F)
is an isomorphism of Gal(E; E»/F') onto the subgroup
H = {(01,02) | 01|E1 n E2 = 03|E1 N Es}
of Gal(F1/F) x Gal(E»/F).
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PROOF: Let a € E1 n Es, and let f be its minimal polynomial over F. Then f has

deg f distinct roots in £; and deg f distinct roots in Es. Since f can have at most

deg f roots in Fj F», it follows that it has deg f distinct roots in F; n Es. This E,Fy
shows that 1 n E» is normal and separable over F', and hence Galois (5.2.4). As / \
E; and E, are Galois over F, they are splitting fields for separable polynomials

fi,f2 € F[X]. Now E)Es is a splitting field for lcm(fi, f2), and hence it also is B 2%
Galois over F. The map o — (o|Ey,c|E») is clearly an injective homomorphism, \ /
and its image is contained in H. We’ll prove that the image is the whole of H by By N By
counting. ‘

F

From the fundamental theorem,

Gal(E»/F)
Gal(Eg/El M EQ)

st Gal(E1 N EQ/F),

and so, for each 01 € Gal(E,/F), 01|F1nE3 has exactly [E2: E1n E»] extensions to an element of Gal(E»/F).
Therefore,
[E1: F] . [EQI F]

[E1 N E2 : F] ’

(HZ ].) = [Eli F][EQ E1 ﬁEQ] =
which equals [F; Ey: F] by (5.3.4). o
Example 5.3.6. We analyse the extension Q[¢]/Q, where ( is a primitive 7th root of 1, say ¢ = *>7%/7,

Note that Q[(] is the splitting field of the polynomial X7 —1, and
that ¢ has minimal polynomial

Q[¢]
X0+ X+ X 4+ X3+ X2+ X +1 <3>/ \<2>
(see ??). Therefore, Q[(] is Galois of degree 6 over Q. For any - N
o € Gal(Q[¢]/Q), o¢ = (%, some i, 1 < i < 6, and the map o + i ¢+ Qlv=T]
defines an isomorphism Gal(Q[¢]/Q) — (Z/7Z)*. Let o be the N\ . 2/
element of Gal(Q[¢]/Q) such that o¢ = (3. Then o generates NSRS
Gal(Q[¢]/Q) because the class of 3 in (Z/7Z)* generates it (the N Q 4

powers of 3 mod 7 are 3,2,6,4,5,1). We investigate the subfields
of Q[(] corresponding to the subgroups (o*) and {(c?).

Note that ¢®¢ = (¢ = ( (complex conjugate of ¢), and so ¢ + { = 2cos 2= is fixed by ¢*. Now Q[¢] >

Q¢ 5 Q[¢ +¢] # Q, and so Q[¢]¢" = Q[¢ + (] (look at degrees). As (s*) is a normal subgroup of
(o), Q[¢ + (] is Galois over Q, with Galois group {(c)/{c3). The conjugates of a; & ¢ + ( are a3 = (3 + (73,
as = (% 4 (2. Direct calculation shows that

6

ap +ag +ag = Zilei =-1,
ai1ag + apasg + asaz = —2,
aragag = (¢ + ) (¢* + ) (¢ +¢Y
=+ ¢+ OGN
="+ CH1I+C+C 1+
= 1.
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Hence the minimal polynomial? of ¢ + ( is
g(X) =X+ X?-2X — 1.

The minimal polynomial of cos 2* = < is therefore

9(2X)
8

= X3+ X%2-X/2-1/8.

The subfield of Q[(] corresponding to {o?) is generated by 3 = ¢ +(?+(*. Let 8’ = 03. Then (B—f')? = —T.
Hence the field fixed by (o?) is Q[/—T7].

Example 5.3.7. We compute the Galois group of a splitting field £ of X® — 2 € Q[X].

Recall from Exercise 3 that E = Q[(, o] where ( is a primitive 5th root of 1, and

« is a root of X® — 2. For example, we could take E to be the splitting field of Q[¢, o
X5 —2in C, with ¢ = ¢2™/> and «a equal to the real 5th root of 2. We have the N 7N "
picture at right, and v N
(6%
[QIC1: Q1 - 4, [Qla]: ] 5. el el
G/N
Because 4 and 5 are relatively prime, N 0 /

[QI¢, o] : Q] = 20.
Hence G = Gal(Q[({, a]/Q) has order 20, and the subgroups N and H fixing Q[¢] and Q[«] have orders 5

and 4 respectively. Because Q[(] is normal over Q (it is the splitting field of X® — 1), N is normal in G.
Because Q[(] - Q[a] = Q[{,a], we have H n N =1, and so G = N x4y H. Moreover, H ~ G/N ~ (Z/5Z)*,
which is cyclic, being generated by the class of 2. Let 7 be the generator of H corresponding to 2 under this
isomorphism, and let o be a generator of N. Thus o(«) is another root of X® — 2, which we can take to be
Ca (after possibly replacing o by a power). Hence:

{T<=<2{a<=<
T4 =« ca = (a.

1

Note that 70771 (a) = Toa = 7(Ca) = (%« and it fixes (; therefore 707! = o2, Thus G has generators o

and 7 and defining relations

c’=1, 1™ =1, ror ! =02,

The subgroup H has five conjugates, which correspond to the five fields Q[¢’a],

o'Ho™' < o'Q[a] = Q[¢"al, 1<i<5.

5.4 The Galois group of a polynomial

If a polynomial f € F[X] is separable, then its splitting field F is Galois over F', and we call Gal(F}/F') the
Galois group G of f.

Let f(X) = [/, (X — ;) in a splitting field F;. We know that the elements of Gal(F;/F) map roots of f to
roots of f, i.e., they map the set {a1,aq,...,a,} into itself. Being automorphisms, they act as permutations
on {ai,s,...,an}. As the o; generate F; over F, an element of Gal(Fy/F) is uniquely determined by the
permutation it defines. Thus G can be identified with a subset of Sym({a1, as,...,a,}) ~ S, (symmetric

2More directly, on setting X = ¢ + ¢ in
(X3 —3X) 4+ (X% -2)+ X +1

oneobtains 1 + ¢ +¢2+---+¢f =0.
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group on n symbols). In fact, G consists exactly of the permutations o of {ay,as,...,®,} such that, for
PeF[Xy,..., X,
P(ay,...,an) =0 = P(oay,...,oa,) =0. (5.2)

To see this, note that the kernel of the map
F[Xl,...,Xn] _)Ff’ Xi>—>04i7 (53)

consists of the polynomials P(X;,...,X,) such that P(ay,...,a,) = 0. Let o be a permutation of the «;
satisfying the condition (5.2). Then the map

F[Xl,...,Xn]ﬁF'f, Xi'—>O'Oéi,

factors through the map (5.3), and defines an F-isomorphism Fy — FY, i.e., an element of the Galois group.
This shows that every permutation satisfying the condition (5.2) extends uniquely to an element of G, and
it is obvious that every element of G arises in this way.

This gives a description of Gy not mentioning fields or abstract groups, neither of which were available to
Galois. Note that it shows again that (Gy: 1), hence [F: F], divides deg(f)!.

5.5 Solvability of equations

For a polynomial f € F[X], we say that f(X) = 0 is solvable in radicals if its solutions can be obtained by
the algebraic operations of addition, subtraction, multiplication, division, and the extraction of mth roots,
or, more precisely, if there exists a tower of fields

F:F()CFlCFQC'”CFm

such that
1. F; = Fi_1|o], o]"" € Fi_1;
2. F,, contains a splitting field for f.

Theorem 5.5.1 (Galois, 1832). Let F' be a field of characteristic zero, and let f € F[X]. The equation
f(X) = 0is solvable in radicals if and only if the Galois group of f is solvable.

We'll prove this later (??). Also we'll exhibit polynomials f(X) € Q[X] with Galois group S,,, which are
therefore not solvable when n > 5 by GT, 4.37.

Remark 5.5.2. When F has characteristic p, the theorem fails for two reasons,
1. f need not be separable, and so not have a Galois group;

2. X? — X — a = 0 need not be solvable in radicals even though it is separable with abelian Galois group
(cf. Exercise 2).

If the definition of solvable is changed to allow extensions defined by polynomials of the type in (b) in the
chain, then the theorem holds for fields F' of characteristic p # 0 and separable f € F[X].

5.6 Whenis Gy c A,?

Let o be a permutation of the set {1,2,...,n}. The pairs (¢,j) with i < j but (i) > o(j) are called the
inversions of o, and o is said to be even or odd according as the number of inversions is even or odd.
The signature of o, sign(o), is +1 or —1 according as ¢ is even or odd. We can define the signature of
a permutation o of any set S of n elements by choosing a numbering of the set and identifying o with a
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permutation of {1,...,n}. Then sign is the unique homomorphism Sym(S) — {+1} such that sign(c) = —1
for every transposition. In particular, it is independent of the choice of the numbering. See GT, 4.25.

Now consider a monic polynomial
fX)=X"+a X" '+ +a,
and let f(X) =[]\, (X — «;) in some splitting field. Set
I<i<gi<sn I<i<gy<sn

The discriminant of f is defined to be D(f). Note that D(f) is nonzero if and only if f has only simple roots,
i.e., is separable. Let G be the Galois group of f, and identify it with a subgroup of Sym({a1, ..., a,}) (as
on p. 153).

Proposition 5.6.1. Let f € F[X] be a separable polynomial, and let o € G.
1. o A(f) = sign(o)A(f), where sign(o) is the signature of o.
2. oD(f) = D(f).

Proof. Each inversion of ¢ introduces a negative sign into o A(f), and so (a) follows from the definition of
sign(o). The equation in (b) is obtained by squaring that in (a). O
While A(f) depends on the choice of the numbering of the roots of f, D(f) does not.

Corollary 5.6.2. Let f(X) € F[X] be separable of degree n. Let F; be a splitting field for f and let
Gf = Gal(Ff/F).

1. The discriminant D(f) € F.
2. Assume that F' has characteristic # 2. The subfield of Fy corresponding to A,, n G is F[A(f)]. Hence

Gfc A, < A(f)e F < D(f)isasquarein F.

Proof. (a) The discriminant of f is an element of F; fixed by G; & Gal(F;/F'), and hence lies in F' (by the
fundamental theorem).

(b) Because f has simple roots, A(f) # 0, and so the formula cA(f) = sign(o)A(f) shows that an element
of G fixes A(f) if and only if it lies in A,,. Thus, under the Galois correspondence,

G(f N An <« F[A(f)]

Hence,
GynA, =Gy < F[A(f)]=F.

The roots of X2 + bX + c are =t5"=4¢ and so
A(X? +bX +¢) = Vb2 —4c (or — /b2 —40),
D(X?* +bX +c¢) =b* —de.

Similarly,
D(X? +bX +¢) = —4b> — 272

By completing the cube, one can put any cubic polynomial in this form (in characteristic # 3).
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Although there is a not a universal formula for the roots of f in terms of its coefficients when the deg(f) > 4,
there is for its discriminant. However, the formulas for the discriminant rapidly become very complicated,
for example, that for X5 + aX* + bX3 + cX? + dX + e has 59 terms. Fortunately, PARI knows them. For
example, typing poldisc(X~3+a*X~2+b*X+c,X) returns the discriminant of X3 + aX? + bX + ¢, namely,

—4ca® + b*a® + 18cha + (—4b® — 27¢2).
Remark 5.6.3. Suppose F' — R. Then D(f) will not be a square if it is negative. It is known that the sign of
D(f) is (—1)® where 2s is the number of nonreal roots of f in C (see ANT 2.40). Thus if s is odd, then G is

not contained in A,. This can be proved more directly by noting that complex conjugation acts on the roots
as the product of s disjoint transpositions.

The converse is not true: when s is even, Gy is not necessarily contained in A,,.

5.7 When does G act transitively on the roots?

Proposition 5.7.1. Let f(X) € F[X] be separable. Then f(X) is irreducible if and only if G; permutes the
roots of f transitively.

Proof. — : If a and f3 are two roots of f(X) in a splitting field F}; for f, then they both have f(X) as their
minimal polynomial, and so F[«] and F[3] are both stem fields for f. Hence, there is an F-isomorphism

Fla] ~ F[3], a <~ f.

Write Fy = Flai, o, ...] with oy = o and as, a3, . .. the other roots of f(X). Then the F-homomorphism
a — fB: Fla] — Fy extends (step by step) to an F-homomorphism F;y — Fy (use 4.5.2b), which is an
F-isomorphism sending « to .

<= : Let g(X) € F[X] be an irreducible factor of f, and let « be one of its roots. If 3 is a second root of f,
then (by assumption) 8 = o« for some o € Gy. Now, because g has coefficients in F,

g(oa) = og(a) =0,
and so f is also a root of g. Therefore, every root of f is also a root of g, and so f(X) = g(X). O

Note that when f(X) is irreducible of degree n, n|(Gy: 1) because [F[a]: F| = n and [F|[«]: F]| divides
[F¢: F] = (Gy: 1). Thus Gy is a transitive subgroup of .S,, whose order is divisible by n.

5.8 Polynomials of degree at most three

Example 5.8.1. Let f(X) € F[X] be a polynomial of degree 2. Then f is inseparable <= F has charac-
teristic 2 and f(X) = X2 — a for some a € F ~ F2. If f is separable, then G; = 1(= A,) or S, according as
D(f) is a square in F' or not.

Example 5.8.2. Let f(X) € F[X] be a polynomial of degree 3. We can assume f to be irreducible, for
otherwise we are essentially back in the previous case. Then f is inseparable if and only if F' has characteristic
3and f(X) = X® — a for some a € F . F3. If f is separable, then G} is a transitive subgroup of S3 whose
order is divisible by 3. There are only two possibilities: Gy = A3 or S3 according as D(f) is a square in F or
not. Note that Aj is generated by the cycle (123).

For example, X? —3X + 1 is irreducible in Q[X] by rational root theorem. Its discriminant is —4(—3) — 27 =
81 = 92, and so its Galois group is As.

On the other hand, X3 + 3X + 1 € Q[X] is also irreducible (apply ??), but its discriminant is —135 which is
not a square in Q, and so its Galois group is Ss.
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5.9 Quartic polynomials
Let f(X) be a separable quartic polynomial. In order to determine Gy we’ll exploit the fact that S, has
V= {1,(12)(34), (13)(24), (14)(23)}

as a normal subgroup — it is normal because it contains all elements of type 2 + 2 (GT, 4.29). Let F be a
splitting field of f, and let f(X) = [[(X — «;) in E. We identify the Galois group G of f with a subgroup
of the symmetric group Sym({«;, a2, a3, ays}). Consider the partially symmetric elements

o = 12 + 30
B = aras + azoy

Y = Q1o + a0,
They are distinct because the «; are distinct; for example,
a—pF=aoa1(as —az) +as(ag —az) = (01 — o) (ag — as).

The group Sym({«a1, as, ag, as}) permutes {«, 3,~} transitively. The stabilizer of each of «, 5,y must there-
fore be a subgroup of index 3 in S, and hence has order 8. For example, the stabilizer of 5 is ((1234), (13)).
Groups of order 8 in S, are Sylow 2-subgroups. There are three of them, all isomorphic to D,. By the Sylow
theorems, V' is contained in a Sylow 2-subgroup; in fact, because the Sylow 2-subgroups are conjugate and
V is normal, it is contained in all three. It follows that V is the intersection of the three Sylow 2-subgroups.
Each Sylow 2-subgroup fixes exactly one of a, 3, or v, and therefore their intersection V is the subgroup of
Sym({ay, as, as, as}) fixing «, £, and .

Lemma 5.9.1. The fixed field of G; n V is F|a, 3,7]. Hence F[a, 3,~] is Galois E

over F' with Galois group G;/Gs n'V. ‘ .
0

Proof. The above discussion shows that the subgroup of G of elements fixing

Fla, B,7] is Gy nV, and so B9V = F[a,,v] by the fundamental theorem Fla, §,7]

of Galois theory. The remaining statements follow from the fundamental theorem ‘ Gy/Gy AV

using that V' is normal. O 2

Let M = F[o, 8,7], and let g(X) = (X — a)(X — B)(X — ) € M[X] — it is called the resolvent cubic of
f. Every permutation of the «; (a fortiori, every element of G ;) merely permutes «, 3, v, and so fixes g(X).
Therefore (by the fundamental theorem) g(X) has coefficients in F'. More explicitly, we have:

Lemma 5.9.2. The resolvent cubic of f = X* + bX?® 4+ cX? + dX + e is
g=X?—cX?+ (bd - 4e) X — b%e + 4ce — d°.

The discriminants of f and g are equal.

sketch of proof. Expand f = (X —a1)(X —ag)(X — a3)(X — a4) to express b, ¢, d, e in terms of ay, s, a3, ay.
Expand g = (X — a)(X — 8)(X — ~) to express the coefficients of g in terms of o, e, a3, g, and substitute
to express them in terms of b, ¢, d, e. O

Now let f be an irreducible separable quartic. Then G = Gy is a transitive subgroup of S, whose order is
divisible by 4. There are the following possibilities for G:

157



Math 5031-32 Algebra Anthony Hong

G | (GnV:1) | (G:VnG)

Sa 4 6

Ay 4 3 (GnV:1)=[E: M]
14 4 1 (G:VnG)=[M: F]
D, A 2

Cy 2 2

The groups of type D, are the Sylow 2-subgroups discussed above, and the groups of type C, are those
generated by cycles of length 4.

We can compute (G: V nG) from the resolvent cubic g, because G/V nG = Gal(M/F) and M is the splitting
field of g. Once we know (G: V n G), we can deduce G except in the case that itis 2. If [M: F] = 2, then
G n'V =V or Cy. Only the first group acts transitively on the roots of f, and so (from 5.7.1) we see that in
this case G = D, or C, according as f is irreducible or not in M[X].

Example 5.9.3. Consider f(X) = X*—4X +2 e Q[X]. It is irreducible by Eisenstein’s criterion (??), and its
resolvent cubic is g(X) = X3 — 8X — 16, which is irreducible because it has no roots in F5. The discriminant
of g(X) is —4864, which is not a square, and so the Galois group of g(X) is Ss. From the table, we see that
the Galois group of f(X) is Sy.

Example 5.9.4. Consider f(X) = X4 +4X? + 2 € Q[X]. It is irreducible by Eisenstein’s criterion (??), and
its resolvent cubic is (X — 4)(X2 — 8); thus M = Q[+/2]. From the table we see that G is of type D, or Cy,
but f factors over M (even as a polynomial in X?), and hence G is of type Cj.

Example 5.9.5. Consider f(X) = X* —10X? + 4 € Q[X]. It is irreducible in Q[X] because (by inspection)
it is irreducible in Z[X]. Its resolvent cubic is (X + 10)(X + 4)(X — 4), and so Gy is of type V.

Example 5.9.6. Consider f(X) = X* — 2 € Q[X]. It is irreducible by Eisenstein’s criterion (??), and its
resolvent cubic is g(X) = X® + 8X. Hence M = Q[iv/2]. One can check that f is irreducible over M, and
Gy is of type Dy.

Alternatively, analyse the equation as in (5.3.7).
As we explained in (4.3.3), PARI knows how to factor polynomials with coefficients in Q[«].

Example 5.9.7. (From the web, sci.math.research, search for “final analysis”.) Consider f(X) = X* —
2¢X? — dX? + 2cdX — dc* € Z[X]| witha > 0,b>0,¢>0,a > band d = a®> — b%. Letr = d/c? and let w
be the unique positive real number such that » = w3/(w? + 4). Let m be the number of roots of f(X) in Z
(counted with multiplicities). The Galois group of f is as follows:

e If m = 0 and w not rational, then G is S,.
e If m = 1 and w not rational then G is Ss.
* If w is rational and w? + 4 is not a square then G = D,.
e If wis rational and w? + 4 is a square then G = V = Cy x Cs.
This covers all possible cases. The hard part was to establish that m = 2 could never happen.

For a discussion of whether the method of solving a quartic by reducing to a cubic generalizes to other even
degrees, see mo149099.

5.10 Examples of polynomials with S, as Galois group over Q

The next lemma gives a criterion for a subgroup of S, to be the whole of S,,.

Lemma 5.10.1. For p prime, the symmetric group S, is generated by any transposition and any p-cycle.
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Proof. After renumbering, we may assume that the transposition is 7 = (12), and we may write the p-cycle o
so that 1 occurs in the first position, o = (14 - - - i,,). Now some power of o will map 1 to 2 and will still be a
p-cycle (here is where we use that p is prime). After replacing o with the power, we have o = (1273 ... jj,),
and after renumbering again, we have o = (123...p). Now

(ii+1)=0c"(12)0""

(see GT, 4.29) and so lies in the subgroup generated by ¢ and 7. These transpositions generate 5,,. O

Proposition 5.10.2. Let f be an irreducible polynomial of prime degree p in Q[ X]. If f splits in C and has
exactly two nonreal roots, then Gy = S),.

Proof. Let E be the splitting field of f in C, and let « € F be aroot of f. Because f is irreducible, [Q[a]: Q] =
deg f = p,and so p|[E: Q] = (G¢: 1). Therefore G contains an element of order p (Cauchy’s theorem, GT,
4.13), but the only elements of order p in S, are p-cycles (here we use that p is prime again).

Let o be complex conjugation on C. Then o transposes the two nonreal roots of f(X) and fixes the rest.
Therefore G — S, and contains a transposition and a p-cycle, and so is the whole of 5,,. O

It remains to construct polynomials satisfying the conditions of the Proposition.

Example 5.10.3. Let p> 5 be a prime number. Choose a positive even integer m and even integers
nyp <ng <--- <Np_2,

and let
g(X) = (X?+m)(X —ny1)..(X — np_s).
The graph of g crosses the z-axis exactly at the points ny, ..., n,_2, and it doesn’t have a local maximum or

minimum at any of those points (because the n; are simple roots). Thus e = ming ()¢ [g(z)| > 0, and we
can choose an odd positive integer n such that % <e.

Consider

2
f(X) =9(X) ——.
n
As 2 < ¢, the graph of f also crosses the z-axis at exactly p — 2 points, and so f has exactly two nonreal
roots. On the other hand, when we write

nf(X)=nX?+a; X’ ' + .- +ap,

the a; are all even and a, is not divisible by 22, and so Eisenstein’s criterion implies that f is irreducible.
Over R, f has p — 2 linear factors and one irreducible quadratic factor, and so it certainly splits over C (high
school algebra). Therefore, the proposition applies to f.

Example 5.10.4. The reader shouldn’t think that, in order to have Galois group .S, a polynomial must have
exactly two nonreal roots. For example, the polynomial X® — 5X3 + 4X — 1 has Galois group S5 but all of
its roots are real.

31f m is taken sufficiently large, then g(X) — 2 will have exactly two nonreal roots, i.e., we can take n = 1, but the proof is longer
(see Jacobson 1964, p. 107, who credits the example to Brauer). The shorter argument in the text was suggested to me by Martin Ward.
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5.11 Finite fields

Let F, = Z/pZ, the field of p elements. As we noted in §1, every field E of characteristic p contains a copy of
F,, namely, {m1lg | m € Z}. No harm results if we identify F,, with this subfield of E.

Let E be a field of degree n over F,,. Then E has ¢ = p™ elements, and so E* is a group of order ¢ — 1.
Therefore the nonzero elements of E are roots of X9~ — 1, and all elements of E are roots of X?— X . Hence
E is a splitting field for X? — X, and so any two fields with ¢ elements are isomorphic.

Proposition 5.11.1. Every extension of finite fields is simple.

Proof. Consider E o F. Then E* is a finite subgroup of the multiplicative group of a field, and hence is
cyclic (see Exercise ??). If { generates £* as a multiplicative group, then certainly F = F[(]. O

Now let E be a splitting field of f(X) = X9 — X, ¢ = p™. The derivative f/(X) = —1, which is relatively
prime to f(X) (in fact, to every polynomial), and so f(X) has ¢ distinct roots in E. Let S be the set of its
roots. Then S is obviously closed under multiplication and the formation of inverses, but it is also closed
under subtraction: if a? = a and b2 = b, then

(a—b)=a?=bl=a—0b.

Hence S is a field, and so S = E. In particular, F has p™ elements.

Proposition 5.11.2. For each power ¢ = p” of p there exists a field F, with ¢ elements. Every such field is a
splitting field for X7 — X, and so any two are isomorphic. Moreover, F, is Galois over F, with cyclic Galois
group generated by the Frobenius automorphism o (a) = a”.

Proof. Only the final statement remains to be proved. The field IF,, is Galois over F,, because it is the splitting
field of a separable polynomial. We noted in 4.1.2 that x +>> 2? is an automorphism of F,. An element a of
I, is fixed by o if and only if a? = a, but F,, consists exactly of such elements, and so the fixed field of (o) is
F,. This proves that F, is Galois over F,, and that {¢) = Gal(F,/F,) (see 5.2.6b). O

Corollary 5.11.3. Let F be a field with p™ elements. For each divisor m of n, m > 0, E contains exactly one
field with p™ elements.

Proof. We know that E is Galois over F,, and that Gal(E/F,) is the cyclic group of order n generated by o.
The group (o) has one subgroup of order n/m for each m dividing n, namely, (¢"), and so E has exactly
one subfield of degree m over F, for each m dividing n, namely, F<°". Because it has degree m over F,,
EX°™) has p™ elements. O

Corollary 5.11.4. Each monic irreducible polynomial f of degree d|n in F,[X] occurs exactly once as a
factor of X?" — X; hence, the degree of the splitting field of f is < d.

Proof. First, the factors of X?" — X are distinct because it has no common factor with its derivative. If f(X)
is irreducible of degree d, then f(X) has a root in a field of degree d over F,. But the splitting field of
XP" — X contains a copy of every field of degree d over F, with d|n. Hence some root of X?" — X is also
a root of f(X), and therefore f(X)|X?" — X. In particular, f divides X »" — X, and therefore it splits in its
splitting field, which has degree d over F),. O

Proposition 5.11.5. Let F be an algebraic closure of F,. Then F contains exactly one field F,» with p”
elements for each integer n > 1, and F,» consists of the roots of X P" _ X . Moreover,

F,

pm  Fpn <= mjn.
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The partially ordered set of finite subfields of F is isomorphic to the set of integers n > 1 partially ordered
by divisibility.

Proof. In fact, the set of roots of X" — X is a field (see above), with p" elements, and is the only such
subfield. If Fjm < Fpn, say, [Fyn: Fpm] = d, then p™ = (p™)¢ = p™9, and so m|n; the converse follows from
the first statement. The final statement follows from the second statement. O

Proposition 5.11.6. The field F, has an algebraic closure F.

Proof. Choose a sequence of integers 1 = n; < ny < ng < --- such that n;|n;,; for all 4, and every integer
n divides some n;. For example, let n; = i!. Define the fields F,-; inductively as follows: Fyn, = F; Fpn; is
the splitting field of X?"* — X over F,n: 1. Then, Fyri < Fpno < Fpns < -+, and we define F = JF,n. As a
union of a chain of fields algebraic over F,, it is again a field algebraic over F,,. Moreover, every polynomial
in F,,[X] splits in F, and so it is an algebraic closure of F (by 4.4.4). O

Remark 5.11.7. Since the F,» are not subsets of a fixed set, forming the union requires explanation. Let .S
be the disjoint union of the F». For a,b € S, set a ~ bif a = b in one of the F,.. Then ~ is an equivalence
relation, and we let F = S/ ~.

Any two fields with ¢ elements are isomorphic, but not necessarily canonically isomorphic. However, once
we have chosen an algebraic closure I of I, there is a unique subfield of F with ¢ elements.

PARI factors polynomials modulo p very quickly. Recall that the syntax is
factormod (f (X),p). For example, to obtain a list of all monic polynomials of degree 1,2, or 4 over Fj, ask
PARI to factor X%2° — X modulo 5 (note that 625 = 5%).

In one of the few papers published during his lifetime, Galois defined finite fields of arbitrary prime power
order and established their basic properties, for example, the existence of a primitive element (Notices
A.M.S., Feb. 2003, p. 198). For this reason finite fields are often called Galois fields and the field with ¢
elements is often denoted by GF(q).

5.12 Computing Galois groups over Q

In the remainder of this chapter, I describe a practical method for computing Galois groups over QQ and
similar fields. Recall that for a separable polynomial f € F[X], F; denotes a splitting field for ¥, and
Gy = Gal(Fy/F) denotes the Galois group of f. Moreover, G; permutes the roots a1, ..., a,, m = deg f, of
fin Fy:

G c Sym{aq, ..., qn}.

The first result generalizes Proposition 5.7.1.

Proposition 5.12.1. Let f(X) be a separable polynomial in F'[X], and suppose that the orbits of Gy acting
on the roots of f have m;, ..., m, elements respectively. Then f factors as f = f; --- f, with f; irreducible
of degree m;.

Proof. We may suppose that f is monic. Let oy, ..., oy, be the roots of f(X) in F;. The monic factors of
f(X) in F;[X] correspond to subsets S of {a1, ..., an},

Sofs=]](X-a),
a€eS

and fs is fixed under the action of G (and hence has coefficients in F") if and only if S is stable under G.
Therefore the irreducible factors of f in F[X] are the polynomials fs corresponding to minimal subsets S of
{ai,...,a,,} stable under G, but these subsets S are precisely the orbits of G in {c, ..., am}. O
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Remark 5.12.2. Note that the proof shows the following: let {1, ..., a,,} = |JO; be the decomposition of

{a1,...,an} into a disjoint union of orbits for the group G; then
f= Hf"’ where f; = H (X — ),
[e%] €O,

is the decomposition of f into a product of irreducible polynomials in F'[ X].

Now suppose that F' is finite, with p" elements say. Then G is a cyclic group generated by the Frobenius
automorphism o: z — 2P . When we regard o as a permutation of the roots of f, then the orbits of
o correspond to the factors in its cycle decomposition (GT, 4.26). Hence, if the degrees of the distinct
irreducible factors of f are my,ms, ..., m,, then o has a cycle decomposition of type

my + -+ m, =deg f.

Proposition 5.12.3. Let R be a unique factorization domain with field of fractions F', and let f be a monic
polynomial in R[X]. Let P be a prime ideal in R, let F = R/P, and let f be the image of f in F[X]. Assume
that f is separable. Then f is separable, and its roots a1, ..., a,, lie in some finite extension R’ of R. Their
reductions &; modulo PR’ are the roots of f, and G 7 < Gy when both are identified with subgroups of
Sym{ai,...,an} = Sym{as,...,a&mn}.

We defer the proof to the end of this section.
On combining these results, we obtain the following theorem.

Theorem 5.12.4 (Dedekind). Let f(X) € Z[X] be a monic polynomial of degree m, and let p be a prime
such that f mod p has simple roots (equivalently, D(f) is not divisible by p). Suppose that f = ] f; with f;
irreducible of degree m; in IF,,[ X|. Then G contains an element whose cycle decomposition is of type

m=my+---+my.

Example 5.12.5. Consider X® — X — 1. Modulo 2, this factors as
(X2 + X +D)(X3+ X2 +1),
and modulo 3 it is irreducible. The theorem shows that G, contains permutations (ik)(Imn) and (12345),
and so also ((ik)(Imn))® = (ik). Therefore Gy = S5 by (5.10.1).
Lemma 5.12.6. A transitive subgroup of H c S,, containing a transposition and an (n — 1)-cycle is equal to

Sh.

Proof. After renumbering, we may suppose that the (n—1)-cycle is (123...n—1). Because of the transitivity,
the transposition can be transformed into (in), some 1 < ¢ < n — 1. Conjugating (in) by (123...n — 1) and
its powers will transform it into (1n), (2n), ..., (n — 1n), and these elements obviously generate .S,,. O

Example 5.12.7. Select separable monic polynomials of degree n, fi, f2, f3 with coefficients in Z with the
following factorizations:

1. f is irreducible modulo 2;

2. fy = (degree 1)(irreducible of degree n — 1) mod 3;

3. f3 = (irreducible of degree 2) (product of 1 or 2 irreducible polynomials of odd degree) mod 5.

Take
f = —15f1 + 10f2 + 6f3

Then
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(i) Gy is transitive (it contains an n-cycle because f = f; mod 2);
(i) Gy contains a cycle of length n — 1 (because f = f, mod 3);

(iii) Gy contains a transposition (because f = f; mod 5, and so it contains the product of a transposition
with a commuting element of odd order; on raising this to an appropriate odd power, we are left with
the transposition). Hence G is S,,.

The above results give the following strategy for computing the Galois group of an irreducible polynomial
f € Q[X]. Factor f modulo a sequence of primes p not dividing D(f) to determine the cycle types of the
elements in Gy — a difficult theorem in number theory, the effective Chebotarev density theorem, says that
if a cycle type occurs in Gy, then this will be seen by looking modulo a set of prime numbers of positive
density, and will occur for a prime less than some bound. Now look up a table of transitive subgroups of S,
with order divisible by n and their cycle types. If this doesn’t suffice to determine the group, then look at its
action on the set of subsets of r roots for some 7.

See, Butler and McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), 863-911.
This lists all transitive subgroups of S,,, n < 11, and gives the cycle types of their elements and the orbit
lengths of the subgroup acting on the r-sets of roots. With few exceptions, these invariants are sufficient to
determine the subgroup up to isomorphism.

PARI can compute Galois groups for polynomials of degree < 11 over Q. The syntax is polgalois(f)
where f is an irreducible polynomial of degree < 11 (or < 7 depending on your setup), and the output is
(n, s, k,name) where n is the order of the group, s is +1 or —1 according as the group is a subgroup of the
alternating group or not, and “name” is the name of the group. For example, polgalois (X~5-5*X"3+4*X-1)
(see 5.10.4) returns the symmetric group S5, which has order 120, polgalois(X~11-5*X"3+4*X-1) returns
the symmetric group .S11, which has order 39916800, and

polgalois(X~12-5*X"3+4*X-1) returns an apology. The reader should use PARI to check the examples
5.9.3-5.9.6.

See also, Soicher and McKay, Computing Galois groups over the rationals, J. Number Theory, 20 (1985)
273-281.

5.12.1 Proof of Proposition 5.12.3

We follow the elegant argument in van der Waerden, Modern Algebra, I, §61.

Let f(X) be a separable polynomial in F[X] and «q,...,,, its roots. Let Ti,...,T,, be symbols. For
a permutation o of {1,...,m}, we let o, and o7 respectively denote the corresponding permutations of
{alw..,and»and{]ﬁ,“.,Tﬁ}.

Let
0=To1+ -+ Thom,

and

fX,T) = T (X —or0).

oESm
Clearly f(X,T) is symmetric in the «;, and so its coefficients lie in F. Let
f()(,]ﬁ ::jl()(ﬁr)"'j}()(vjj (5'4)

be the factorization of f(X, T) into a product of irreducible monic polynomials. Here we use that F[ X, T1,...,Tx]
is a unique factorization domain (CA 4.10). The permutations o such that o carries any one of the factors,
say f1(X,T), into itself form a subgroup G of S,,.

Lemma 5.12.8. The map o — o, is an isomorphism from G onto G.
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Proof. In any F-algebra containing the roots of f, the polynomial f;(X,T) is a product of factors of the form
X — of. After possibly renumbering the roots of f, we may suppose that f;(X,T') contains the factor X — 6.
Note that srs,, leaves # invariant, i.e., s;s,0 = 6, and so

sal = s7'0. (5.5)

Let o be a permutation of {1,...,m}. If oy leaves f; (X, T) invariant, then it permutes its roots. Therefore, it
maps X — 6 into a linear factor of f;(X,T'). Conversely, if o maps X —6 into a linear factor of f;(X,T), then
this linear factor will be a common factor of f;(X,7) and the image of f;(X,T) under o, which implies
that the two are equal, and so o7 leaves f;(X,T) invariant. We conclude that o leaves f;(X,T) invariant
if and only if o maps X — 6 into a linear factor of f;(X,T).

!!In the third paragraph of the proof of Lemma 4.34, 6 is algebraic over the field F(T') =q.5 F(T4,...,Tn)
with minimal polynomial equal to f(X,7T) (regarded as a polynomial in X with coefficients in the field
F(T).MN

Again, let o be a permutation of {1,...,m}. Then o, € Gy if and only if it maps F'(T")[#] isomorphically onto
F(T)[oa9], i.e., if and only if § and 0,0 have the same minimal polynomial. The minimal polynomial of 6 is
fi(X,T), and so this shows that s, lies in G if and only if o, leaves f;(X,T) invariant, i.e., if and only if
o, maps X — 6 into a linear factor of f;(X,T).

From the last two paragraphs and (5.5), we see that the condition for ¢ to lie in G is the same as the
condition for o, to lie in Gy, which concludes the proof. O

After these preliminaries, we prove Lemma 5.12.3. With the notation of the lemma, let R’ = R[ay, ..., an]-
Then R’ is generated by a finite number of elements, each integral over R, and so it is finite as an R-algebra
(CA 6.2). Clearly, the map a — a: R’ — R'/PR’ sends the roots of f onto the roots of f. As the latter are
distinct, so are the former, and the mabp is bijective.

A general form of Proposition ?? shows that, in the factorization (5.4), the f; lie in R[X,T]. Hence (5.4)
gives a factorization

f(X»T) = fl(XvT) T fT(XvT)
in F[X,T]. Let f1(X,T); be an irreducible factor of f;(X,T). According to Lemma 5.12.8, G is the set of

permutations o,, such that o7 leaves f;(X,T') invariant, and G is the set of permutations o,, such that o7
leaves f1(X,T); invariant. Clearly G ¢ Gy.

For a monic polynomial f of degree n with bounded integers as coefficients, it is expected that the Galois
group of f equals S,, with probability 1 as n — oo. See Bary-Soroker, Kozma, and Gady, Duke Math. J. 169
(2020), 579-598, for precise statements.

5.13 Exercises

Exercise 5.13.1. Let F be a field of characteristic 0. Show that F(X?) n F(X? — X) = F (intersection
inside F(X)). [Hint: Find automorphisms o and 7 of F/(X), each of order 2, fixing F(X?) and F(X? — X)
respectively, and show that o7 has infinite order.]

Exercise 5.13.2. * Let p be an odd prime, and let ¢ be a primitive pth root of 1 in C. Let £ = Q[(], and
let G = Gal(E/Q); thus G = (Z/(p))*. Let H be the subgroup of index 2 in G. Put a = ), _, (" and

B =2iccn ¢ Show:
1. « and f are fixed by H;

4This problem shows that every quadratic extension of Q is contained in a cyclotomic extension of Q. The Kronecker-Weber theorem
says that every abelian extension of Q is contained in a cyclotomic extension.
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2. ifc e G\H, thenoa = 3, 03 = «.

Thus « and 3 are roots of the polynomial X2 + X + a3 € Q[X]. Compute® o3 and show that the fixed field
of H is Q[,/p] whenp =1 mod 4 and Q[/—p] when p =3 mod 4.

Exercise 5.13.3. Let M = Q[+/2,+/3] and E = M[\/(\/ﬁ +2)(+/3 + 3)] (subfields of R).

1. Show that M is Galois over Q with Galois group the 4-group Cs x Cs.
2. Show that E is Galois over Q with Galois group the quaternion group.

Exercise 5.13.4. Let E be a Galois extension of F' with Galois group G, and let L be the fixed field of a
subgroup H of G. Show that the automomorphism group of L/F is N/H where N is the normalizer of H in
G.

Exercise 5.13.5. Let F be a finite extension of F'. Show that the order of Aut(E/F) divides the degree
[E: F].

Exercise 5.13.6. Find the splitting field of X™ — 1 € F,[X].
Exercise 5.13.7. Find the Galois group of X* — 2X? — 8X — 3 over Q.
Exercise 5.13.8. Find the degree of the splitting field of X® — 2 over Q.

Exercise 5.13.9. Give an example of a field extension F/F of degree 4 such that there does not exist a field
MwithFc M cE,[M: F]=2.

Exercise 5.13.10. List all irreducible polynomials of degree 3 over F; in 10 seconds or less (there are 112).

Exercise 5.13.11. “It is a thought-provoking question that few graduate students would know how to ap-
proach the question of determining the Galois group of, say,

X0 +92X5 +3X* +4X3+5X2+6X + 7.7

[over Q].
1. Can you find it?
2. Can you find it without using the “polgalois” command in PARI?
Exercise 5.13.12. Let f(X) = X° + aX + b, a,b € Q. Show that G; ~ D5 (dihedral group) if and only if
1. f(X) is irreducible in Q[X], and
2. the discriminant D(f) = 4%*a® + 5°b* of f(X) is a square, and
3. the equation f(X) = 0 is solvable by radicals.

Exercise 5.13.13. Show that a polynomial f of degree n = Hle p;* (the p; are distinct primes) is irreducible
over F, if and only if (a) ged(f(X), X P _X) =1foralll <i < kand (b) f divides XP" — X (Rabin
irreducibility test®).

Exercise 5.13.14. Let f(X) be an irreducible polynomial in Q[X] with both real and nonreal roots. Show
that its Galois group is nonabelian. Can the condition that f is irreducible be dropped?

Exercise 5.13.15. Let F be a Galois extension of Q, and let o be an element of F such that aF*? is not
fixed by the action of Gal(F/Q) on F*/F*%. Let a = a4, ..., o, be the orbit of o under Gal(F/Q). Show:

1. F[\/aq,...,+/a,]/F is Galois with commutative Galois group contained in (Z/27)".

5Schoof suggests computing o — /3 instead.
®Rabin, Michael O. Probabilistic algorithms in finite fields. SIAM J. Comput. 9 (1980), no. 2, 273-280.
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2. F[y/aq,...,4/a,]/Q is Galois with noncommutative Galois group contained in (Z/2Z)™ x Gal(F'/Q).
(Cf. mo113794.)
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Chapter 6

Linear Algebra and Representation
Theory

We refer to Artin’s [1] Chapter10 for a short introduction to group representation, Lang’s [7] for a compre-
hensive one, and also Steinberg’s [11] for the finite case
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Chapter 7

Commutative Ring Theory
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Chapter 8

Affine Algebraic Geometry
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Chapter 9

Category Theory

9.1 Product and Coproduct

Definition 9.1.1. Let C be a category with A, B € obj(C). Z is a product of A, B if 3f € Hom(Z, A), g
Hom(Z, B) such that VC € obj(C), 01 € Hom(C, A), 02 € Hom(C, D), 3¢ € Hom(C, Z) s.t. fo¢p =o01,g0¢
02

€

If product (coproduct) of A, B then it is unique up to isomorphism. If Z, Z’ coproduct vy : Z — Z', ¢ : Z — Z
(replace C with Z’ from above). Then ¢ o o5 = g,1 0 g = 0.

Example 9.1.3. For set A, B, A x B is the product and the coproduct is the disjoint union A u B. By
definition, {1, 2} L {2,3} = {1,2,2/,3}.

Example 9.1.4. For groups G1, G, the product is G; x G2 and the coproduct is free product G; * G, (Note
that G; x Gy is only coproduct when it is abelian.)
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9.2 Limits

Definition 9.2.1.
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Chapter 10

Homological Algebra
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Answer to Selected Problems

ii.

iii.

iv.

ii.

Exercises 1.1

. Exercise 1.1-1

Let a € G. By (5), ya = a has a solution yg € G.
We need that for other b € GG, the equation yob = b
also holds. This is true because ax = b has a solu-
tion zg € G, s0 b = axg = yoaxo = yo(axo) = yob.
This shows the existence of a left identity e; = yq.
The existence of a left inverse directly follows
from the fact that there is a solution y € G for
Yyg = €.

Let ¢! be the left inverse of ¢ € G. Let &’ be
the left inverse of a='. Thus, a 'a = ¢ and
d’a”! = ¢;. On the one hand, (¢/a™!) (aa™!) =
e (aa™') = (ea)a™! = aa™' on the other hand
(d'a™) (aa™t) = d'[(a7ta)a™] = d (eia™?) =
adal'=¢e soaat =e¢.

On the one hand, (aa™')a = ¢a = a. On the
other hand, (aa‘l)a = a(a_la) = ae;. Thus,
ae; = a, which shows that e; is also the right
identity. Therefore, ¢; = e, = ¢, and this in turn
elevates “a la = ¢, = aa~! = ¢;” to become
“"lg=e=aa"t =e”

For the eq. ax = b, just take = a~'b which is
in G asa~! € G and G is closed under multipli-
cation. Similarly, for the eq. ya = b, just take
y=bated.

Exercise 1.1-6

Trivial.
Follows immediately from prop. 1.1.25.

Exercise 1.1-7: Let the statement be p(n). We use
the strong induction. First we see that n = 2,3
the claim is true. Now assume that forn < N —1

177

the proposition p(n) is true. To show p(N) is
true, we only need to show that for any brack-
eting w (ay -ag -+ -+ ay,) we have

ﬂ(al.a2.....an):a1.(a2 ..... an)

where the bracket on the RHS is well-defined
by our induction hypothesis. any bracketing
m(ay-ag----- ap), its last step of computation
has to be of the form b; - by where

bl:al'aQ."'a'l,bQ:az+1'a1+2 oooooo an
Since i,n—i < N — 1, we by induction hypothesis
have them well-defined. To show
ﬂ-(a’l ..... an) = (al .a2... .al) . (a2+1 Y .an)
—a(ag - an)

we see for i = 1 there is nothing to prove, so we
assume ¢ > 1 and observe

7r(a1 'a2""an)
= (al ag e CL,L‘) . (CL,L'+1 CQiy an)
TH(i)
(G;l . (GQ al)) . (0,7;+1 C Qg2 an)
IH(3)
a - (az i) (@ip1 - Qigg -+ an)
TH(N-1)
ay (a2 ...... ai.ai+1.ai+2....an)
=ay - (az an)
We’re done.

. Exercise 1.1-8: We proceed by weak induction.

For n = 1,2 the statement is true. Suppose the
statement is true when n = N — 1. We want to
show that permutating a; - as--- - an, which is
aj, - @, -+ - aiy, won't change the result. Sup-
pose the permutation sends N to i. Let C stand
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. Exercise 1.1-15:

for commutativity and A stand for associativity.
Then

all . ai2 ...... a’iN
= (ail ...... aik*l) . [aik . (aik+1 e aZN)]
—(as, - an ) an - (@i, - aiy)]
c2)
(ail e aik—l) . [(aik+1 ...... alN) &N]
A2)
[(ail ...... a’ik—l) . (aik+1 ...... aZN)] -an
Thm1.1.16,A(N—1)
(ail aik 1 aik+1 a“LN) an
IH
EL IR an_1) - ay
A(N)
ap:-cccee aN_1-anN
. Exercise 1.1-9: let [ = |a*| := min{m : (a*)™ =

1}. Then: (1) a* = (a*)! =1 =kl > |a| = n =
Em =1 > m; (2) m = 1 (because 1 = ¢ =
(a*)™). They combine to show [ = m

. Exercise 1.1-10: When n = 1, GG is automatically
abelian. For n = 2,3,5 which are primes, G is
cyclic and thus abelian. For n = 4, one can use
Cayley table to do the classification to see that G
is isomorphic to either Z, or the Klein-four group
V, both abelian.

. Exercise 1.1-11: n = min{m : a = 1} = k >
n,k=np+q=1=a"=a"r = (a")Pal = al.
Since ¢ < n = min{m : a™ = 1}, we see ¢ = 0.

the isomorphism is given by
¢(x) = y and note that isomorphism is bijection.

. Exercise 1.1-16: We write the distinct cosets of K

in G as {g;K},.;. Thus G = 1lic;g; K. Similarly,
we write K = e sk H. We claim that g;k; H are
all distinct cosets of H in G. Then, as left cosets
form a partition, [G : H| = {giij}Z.eLjeJ’ =
[I||J| = [G : K][K : H], where we used the fact
that [G : H],[H : K] < o. The claim consists of
two parts: (1) every left coset xH of H in G is
in {g;k;H},; ;. ; because it is already clear that
each g;k;H is a coset of H in G. (2) each g;k; H
is distinct.

proof of (1): For any left coset zK of K in G,
Jgi € G : 2K = ¢g;K < g;'vz € H. Then
g; 'zH is a left coset of subgroup H in K and
is one of {k;H}: 3k; € K : g;'aH = k;H =
dh e H : kj'gi'z = h Thus z = gik;h and

11.
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H = gzk]hH = ngJH

proof of (2): Suppose not. g¢;k;H = gik;H for
some g;, kj, g, ki <= (gik;)"" (giky) € H <
K = gkiK = goky K = g, K = gy K = g; = gv

by distinctiveness in {g; K'},_;. Thus

9i=9;/

gi (k;jH) = gy (kyH) — kjH = kyH = k; = kjy

by distinctiveness in {k; H},_;.
Exercise 1.1-17: H has index 2, so there are two
left cosets H,aH for some a € G such that aH #
H,ie.,a+# H. Thus,a ' ¢ H=0a"'H # H=>
a'H =aH < (a—1)"'a = a®> € H. Ifa € H,
then clearly a? € H. Therefore, Va € G, a? € H.

Exercise 1.1-18: use theorem 1.1.29.
Exercises 1.2
Exercise 1.2-6: Since every permutation can

be written as product of transpositions, it
suffices to show that transpositions can be

generated in each of the case. Then note

that (m k) = (1 m)(1 k)(1 m), and

(m, k) =(m,m+ d)
=k-1k)...0m+1,m+2)(m,m+1)
m+1,m+2)" . (k—1,k)7*
=(k—1,k). (m+17m+2)(m,m+1)
(m+1,m+2)...(k—1,k)

Thus each of (4, 7+ 1) in the generating set of .S, is
further generated by (12) and (12 - - n), proving
the result. For the third claim, just observe that

(ii+1)=(12---n)~1(12)(12 - n)~th
Exercise 1.2-7: Sy = {(1),(1 2)} = Z,. Group
table of S3: let op = (1),0’1 = (1 2 3),0’2 =
(132),0’3:(23),0'4—(1 3) 0'5—(1 2)
Lo l[oo]oi]os]os][os]os]

g0 || 00 | 01 | 02 | 03 | 04 | O5

01 01 | 02 | Og | O4 | O5 | O3

02 02 | 0o | 01 | 05 | 03 | O4

03 || 03 | 05 | 04 | Op | O2 | O1

04 04 | O3 | O5 | O1 | 00 | 02

(%1 05 g4 g3 g2 01 (o)

Exercise 1.2-9: The permutation p has a decom-
position as a product of disjoint, hence commut-
ing, (non-trivial) cycles: p = 71 ---v.. By Ques-
tion 1.2-iii., The order of p is the l.c.m. of the
orders of the cycles, so each v; has order 3. As



Math 5031-32 Algebra

Anthony Hong

ii.

iii.

the order of a cycle is its length, this means each
~; is a 3-cycle.

Exercise 1.2-10:

(s7)2 =1 = (sr)7! =r7ts7!t = s
sTlr7lsTl=r = syl =rs = (rs)7! =
rs. Vice versa.
rks = srF: start with (15)? = rsrs = 1 <
2_
rs = s ir7l °=° sr~! we see for any k €
(0, ,n—1},
ko _
r*s=r--rrs=r---7 T8
——
#=k #=k—1
_ -1 _ ~1
=gr-rsr o =r-r(rs)r
—— —
#=k—1 #=k—2
=7r...r S’I’_l’f'_l —_ .. = sr_k
——
#=k—2

immediately follows from Proposition 1.1.25.

Exercise 1.2-11: Let
D, = {e,r, v s s 57“”71}

where r is the rotation and s is the reflection
(s> =e,7" =e,(rs)> =€). We note that H =
{e,r,7?, 1%, ... ,r"71} = (r) is a cyclic subgroup
contained in D,, with order n. The complement
of itis H® = {s,sr,sr? sr®,...sr"~1}, which has
order n as well. Since H¢ = sH is the coset of
H, H is itself a right coset, and there are no other
cosets since they fill the whole group, then the

index of H in D,, is 2.

Exercises 1.2
Exercise 1.3-4:

A2 = ], A3 = —A A =T

so the orderof AinGis 4.
B*=—-1 B*=-B, B*=1

so the order of B in G is 4.

ii.

iii.

iv.
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We already have six distinct elements
I,—1,A,B,A? B3 above. G is nonabelian with
following two additional elements

o[ 2]

By the calculation in i, it is obvious that
I, A, B, A%, B3 don’t have order 2, while —I has
order 2 as (—I)? = I? = I. We check the rest of

-t 0

AB_[ 0 i

the eight:
o | =i 0 - 0| _
P |
s [i 0 i 0]
(BA) [0 _Z_HO _i] 14T

Thus, the only element with order 2 is —1.

By Lagrange’s theorem 8 = |G| = |H|[G : H] for
subgroup H in G. Hence, except for subgroup
{e} and G, which are trivial subgroups that are
also normal, we only have factorization 8 = 2 x 4
or 8 =4 x 2, ie, |[H = 2with [G: H] =4 or
|H| = 4 with [G : H] = 2. By an example in class
that “every subgroup of index 2 in any group is
normal” we see subgroup H; with |H;| = 4 is
normal. The remaining is Ho with |Hs| = 2. Sub-
groups Hy with |Hs| = 2 must include an identity
I and another element z. Counting formula tells
us that 2 = |Hy| = [{a)|[Hs : {x)] where {(z) is
the cyclic subgroup generated by x and the order
of it is just the order of the element z. The only
possible factorization is 2 = 2 x 1, so z is an ele-
ment of order 2 and Hs = {z). For this problem,
x = —1 = A? = B? by part i and part iii. Thus,
Hy = (—I) = {I,—I}. To show H, is normal in
G, we take any M € G and see that MIM ! =
I € Hy; M(—I)M~! = —MM~ = —J € H,
Therefore, all subgroups of G are normal.

Exercise 1.3-5: We want to show that Vz €
NH,,y € NHy,yzy~' € NH,. Thus, z = nih;
for some n; € N and h; € Hy, and y = nyhs for
some ny € N and hy € Hy. Then

-1

yzy !

= n2h2n1h1h2_1712_

Since honi; € NH,, we have hgnlhz_l e N =
3”3 eN: hinhgl =n3 = h2n1 = nghQ. We call
this step exchanging trick, since it gives a new el-
ement in the normal subgroup to switch the mul-
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tiplication. Thus, ii.

= Tlg’ﬂghghlh;lﬂ;l
h2h1h2_1 ns
—_—

=n2n3€N =pieH; n;'eN

yry

= m = nyh!ins

By the above exchanging trick, we see hins; €
NH, = Wnsh,™' € N = 3ng e N : hinsh[' =
ng = hins = ngh’. Thus,

—1 / /
T =n4hins = nang h7; € NH
yry 4 M5 4Mg g 1

eN

3. Exercise 1.3-6: A,, «—— S, —A,,, the set of all odd
permuations, by ¢ — o(1 2). Thus, [S,, : A,] =2,
A, 48,,and |4,| = inl

4. Exercise 1.3-12: see [9] Theorem 2.20.

5. Exercise 1.3-13: The relation z ~ y <= 3dg €

Gs.t.y = 29 := gxg~! is reflexive (z¢ = x); is

transitive (z9 = y,y" = z = 2" = 2); and is

symmetric (z9 = y = y-‘f1 =u1x). Let H < Gbe 2.

a subgroup. It is normal iff Vg € G, gHg™* < H,
i.e.,, Vhe H, Vg € G, h¥ € H, which is just saying
that for each h € H, the conjugacy class contain-
ing h is contained in H.

Exercises 1.4

Exercises 1.5

1. Exercise 1.5-1.

i. Theclass equation of Gis |G| =12 = 1+3+4+4.
The four classes are {e},{(1 2)(3 4), (1 3)(2 4),
(14)(23)},{(123),(142),(243),134},{(13
2),(143),(234),(124)}. For a direct derivation
without first knowing the result, see Math5031
HWS3 Q1 (a).
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Let z € G. We first observe a fact: since Z(G) is
the set of elements that commute with every el-
ement of G and N(z) is the set of elements that
commute with z, we get Z(G) < N(z). Now the
center of the group Z(G) is a normal subgroup of
G, and we by the counting formula have

Gl = 1Z(G)]IG: 2(G)] = |Z(G)|n

As explained in the first part we by the orbit-
stabilizer theorem have

|G| = [N (@)[|C(2)]

for each = € G. above two equations combine
to give |N(z)||C(x)| = |Z(G)|n Suppose there is
some conjugacy class C'(x) with |C(x)| > n. Then

n|Z(G)| = [N(@)[|C(z)| > [N(z)|n = |Z(G)] > |N(2)]

which is impossible because Z(G) < N(z) =
|Z(GQ)| < |N(z)|. Therefore, each conjugacy class
has at most n elements.

Exercise 1.5-2.

We first note that o~ 'p~lop € N because o €
N<A, = plope Nand o ! € N. We
compute

oty top =Tt (12 )TN (132)(12 L. r)p(123)
MASOMETEAS (19 )M 132)(12 ... #)(123)
=(1r...2)132)(12 ... r)(123)
=(1r...2)(132)(13245 ... 7)
=(1r...2)(31245 ... 7)
=(237r)

Thus N contains a 3-cycle (2 3 r).
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ii.

iii.

iv.

Similar to the reasoning in i, + = o !p~!

N < A,,. We compute

op €

o top=pTt(456)71(123) 7 (124)7 !
(123)(456)u(124)

1 disjoint

(465)(132)[(142)(123)]
[(456)(124)]

465)(132)(234)(12564)
465)(341)(12564)
36541)(12564)
12436)

I
—~ e~~~

Then consider p’ = (1 2 4) and apply a similar
process as i to x:
a7ty = (16342)(142)
(12436)(124) = (246)

whichisin Nasze N <A, = o 'zp' € N and
p~leN.

In this case u=! = pu, so up = 1. Noticing
o € N < A, for the last step, we have
o =(123)u(123)u 4.

o disjoint

(123)(123)pp
—(123)(123)=(132)eN

We compute
n=o"tp"lop

— 1T (B 4)(12)132)(12)(349)u(123)

p disjoint (1 4) (2 3)
and ¢ = (15 2)p(1 25) = (1 3)(4 5). Simi-
lar to the reasoning in i, we see n € N as o €
N <A, = plope Nando ! e N. Besides,
C=0152m125 =(152)n152)~teN.
Lastly, we observe that n{ = (1 2 3 4 5). This then
converts to case i for r = 5. Thus (23 r) = (23 5)
isin N.
Exercise 1.5-3. We first see two facts: (1) every 3
-cycle (i, j, k) with ¢ < j < k is a commutator in
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2 -cycles:

(i7ja k) :(i’ k)(%])
=(’L,j)(l, k‘)(l,])(’b, k)
:[(ivj)v (i’ k)]

(2) A,, is generated by 3-cycles (proved in Exam-
ple 1.5.3). Immediately from (1) and (2), we see
every element of A, is a product of commutators.
We then only need to show that every product of
commutators is some element in A,: each com-
mutator is of the form [z, y] where z € S,,,y € S,
can be written as product of transpositions, i.e.,
T = 0109 0,y = T1T2 -7 for some integers
k,l. We then compute:

—-1,,—1
[$7y]=$y$ Yy S =0102 - 0pT1T2 T

(010 - - gk)*l (1173 - .Tl)*l

= 01092 OKT1T2 " T|Of *++0901T]***T2T1

There are in total 2(k + [) transpositions. Since
2(k+1) is even and products of even permutations
are still even permutations, making products of
commutators belong to A,,.

Exercise 1.5-4. Part one is trivial. Part two: First
of all, Ay = Unz14n = U,>5 An simply be-
cause A; € Ay € --- € A5 € Ag---. To show
that Ay is simple, we need to show that each
N < A, has to be trivial or the whole A,,. First
notice that each A,, is a group and thus a sub-
group of the group A, i.e., A, < Ax. Then
N n A, < A, due to the 2™ isomorphism theo-
rem. When n > 5, this normal subgroup N n A4,
must be {e} or A, due to the simplicity, i.e., 4,
is simple for all n > 5. We analyze the two cases:
If NnA, = A, forsome n > 5, then A, < N.
Thenforallm >n, A, S NnA, = NnA, #
fe} = Nn A, = A, = Ay = U4 =
Ui)'n Al = UiZnN n A’ = Nn (Ui)n Ai) =
Ay S NBut N<dA, = NC Ay,,s0 Ay, = N.
If Nn A, = {e} for some n > 5. Then for all
m = n, N n A, cannot be A,, as forif A,, = Nn
A,, then A, € A, = NnA4,, = A, € N =
N n A, = A, # {e} which is a contradiction.
Thus, for all m > n, N n A,,, = {e}. Thus, N =
NﬁAw =Nn (Ui>5Ai) =NnNnNn (UiZnAi) =
UisnlV N A; = Uisn{e} = {e}. Thus, N is either
trivial or the whole group, proving the simplicity
of Ay.

Exercises 1.7
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1. Exercise 1.7-1. 36 = 32 x 22.

Let r = # of Sylow 3-subgroup; s = # of Sylow
2-subgroup. Then Ttird Sylow theorem implies
that 7 [22,3|r — 1, so r = 1 (we're done) or r = 4;
s]32,2|s — 1,50 s = 1 (we’re done) or s = 3. For
r =4 welet X = {Hy, Hy, H3, H,} be the set of
Sylow 3-subgroups, each of which has order 3% =
9. Consider the action of G on X by conjugation,
which gives rise to a homomorphism ¢ : G — Sx
by sending each g to the permutation defined by
multiplication by g. We claim that Ker(¢) is a
nontrivial normal subgroup of G. It is normal. It
does not equal to G : second Sylow Theorem im-

plies that G 2’ X is transitive = Ker(¢) # G.
It does not equal to {e}: first Isomorphism the-
orem implies that 7z = Im(¢) < Sx Since
the order of the permutation group of a set with

4 elements |Sx| is 4! = 24, we see )%@‘ =
[G: Ker(¢)] <24 < 36 = |G| = Ker(¢) # {e}.

. Exercise 1.7-2. 48 = 2* x 3.

Let r = # of Sylow 2-subgroup; s = # of Sylow
3-subgroup. Then third Sylow theorem implies
that r|3,2|r — 1, so r = 1 (we’re done) or r = 3;
s]2%,3|s — 1, so r = 1 (we're done) or s = 4 or
s = 16. Sylow 3-subgroups have prime order and
trivial intersection. Sylow 2 -subgroups have or-
der 16 with at most 8 elements in common. Then
if s = 16 we get, by a similar argument of distinct
element counting used before,

|G| =48> 1+16(3—1) + (16 — 1) + 8 = 56

Contradiction, so s # 16. Suppose s = 4. Then
we will have a similar argument used for |G| = 24
and |G| = 36. G X' X = {Hy, H,, Hs, H,} gives
rise to a homomorphism ¢ : G — Sx. Second
Sylow Theorem shows that G “*’ X is transitive,
so Ker(¢) # G, and \%@\ = [Im(¢)| < |Sx| =

24 = |Ker(¢)| # {e}. Thus, Ker(¢) is a proper
normal subgroup of G.

. Exercise 1.7-3. 40 = 23 x 5.

Let r = # of Sylow 2-subgroup; s = # of Sylow
5-subgroup. Then third Sylow theorem implies
that r|5,2|r — 1, so r = 1 (we’re done) or r = 5;
s]23,5| s — 1, but then among 1,2,4,8, only s = 1
satisfies 5 | s — 1.s = 1 implies that we have only
one Sylow 5-subgroup which is then normal.
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4. Exercise 1.7-4. 56 = 23 x 7.

Let r = # of Sylow 2-subgroup; s = # of Sy-
low 7-subgroup. Then third Sylow theorem im-
plies that |7,2|r — 1, so r = 1 (we’re done) or
r =T, s|2%,7s — 1, so r = 1 (were done)
or s = 8. Among the two Sylow subgroups,
we have one of them only having a prime or-
der, which is the Sylow 7-subgroups H; ’s, so
we can apply the observation that subgroup of
prime orders have only trivial intersection to get
H, n H; = {e}. However, Sylow 2-subgroups K;
’s have order 8 which is not a prime number. In-
stead |Kz N K7| HKZ‘ =8 = ‘Kz N Kf | is at most
4 (including e ) for distinct 7 and j. Besides, 7 and
8 are coprime, so K ’s and H ’s intersect trivially.
We take two of the K’ ’s, say K; and K, they in
total add at least (8 — 1) + 4 elements to G :

56 = |G| =>1+8(7T—1)+(8—1)+4 =60

A contradiction. Thus, either r # 7 = r = 1
(we’re done) or s # 8 = s = 1 (we’re done).

. Exercise 1.7-5. We recall the following rules:

1. |G| = pq with p and ¢ distinct primes is not
simple (see Corollary 1.7.14);

2. |G| = pq® with p and ¢ distinct primes is not
simple (see Proposition 1.7.15);

3. |G| = pgr with p, ¢, r distinct primes is not
simple (see Proposition 1.7.16);

4. |G| = p" with p prime and integer r > 1 is
not simple (see Corollary 1.6.17);

5. |G| = pq" with p < ¢ distinct primes is not
simple (see Corollary 1.7.13).

It can be easily checked by prime factor decom-
position of the orders that only G with |G| =
36, 40, 48, 56 cannot be proved to be non-simple
using above rules, but we already proved them
separately in previous exercises.

. Exercise 1.7-6. We review our five criteria in the

Exercise 1.7-5: (4): |G| = p" with p prime and
integer r > 1 is solvable (see Corollary 1.6.19);
(5): |G| = pg" with p < ¢ distinct primes: the
proper normal subgroup N we found in Corol-
lary 1.7.13 is a Sylow ¢-subgroup. N has order
g™ so by (4) it is solvable. Since G/N has order
p which is prime we see G/N is cyclic, abelian,
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(9]

(d)

2.

and solvable. Then G is solvable due to Propo-
sition 1.5.15. (1): |G| = pq with p and ¢ dis-
tinct primes: special case of (5); (2): |G| = pqg?
with p and ¢ distinct primes: when p < ¢ this is a
special case of (5); when p > ¢, the proper nor-
mal subgroup N we found in Proposition 1.7.15
is a Sylow g-subgroup. N is solvable by (4) and
G/N is cyclic, abelian, and solvable, so G is solv-
able. (3): |G| = pgr with p, ¢, r distinct primes:
again, by Proposition 1.7.16, we get a Sylow sub-
group N of p, ¢, or r, which is a prime group and
is solvable. || is a product of two primes, so
% is solvable by (1). Proposition 1.5.15 then
concludes that G is solvable. Therefore, all the
groups checked to be non-simple by these rules
are solvable. We again only need to check G
with |G| = 36, 40, 48, 56, but this is straightfor-
ward: their normal subgroups and factor groups
we found when proving their non-simplicity have
orders smaller than theirs and are thus shown to
be solvable.

Exercises 2.2

Ex2.2-1. First two questions are trivial. Last two:

Inspired by part (d), we can let I = J so that
the sufficient condition is at least unsatisfied. Let
R = Z. All the ideals in Z are mZ, so let I =
J =5Z. Then IJ = {Z?Zl 0,71)z a; € I,bz € J} =
InJ=1=57Z%25Z. (d)

By part (b), it suffices to show I n J < IJ. Since
I +J = R, in particular 1 = ¢ + j for some
iel,je J. Thenleta € I n J and by com-
mutativity of R see that a = la = ie% + €OLIj ellJ.

Ex2.2-2.

ii.
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/T contains I as z! = x € I. We show that /T is
anideal of R. - (VI,+) < (R, +) :

Let © € v/1, so 2™ € I for some n > 1. Then
—z" € (I,+) < (R,+) and thus (—z)", which is
either 2™ or —z™, is in I. Thus —x € +/I. Let
z,y € VI, so ™, y" € I for some n,m > 1. Ob-

serve that
n+m
n+m __ 7 m+n—i, i
=0
n+m
_ m+n—i ’L er’ﬂ*i t
- m+n y
i=n+1

m+nx
T m—1 n+z

m+n—i z n+i
m—+n Z Cm+n

0
Z
=
Z
= m

\_:g:‘_/gcﬁﬁn eyt

—_
eR

_ m n 7 z
- m+n

\ J el
€ER
is in the ideal I because each binomial coefficient
is an integer, so z + y € V1. - Vr € R,a € /I we
have ar € /T :
This is because ¢ € VI = In > 1,a" € I =

R commutative . . .

(ra)" === r"a" € [ since I is an ideal.
Thus, ra € v/I. Therefore, v/ is an ideal contain-
ing I in R.

Let I and J be two ideals in R. VIJ € VI J :
suppose x € v/I.J, then z" € I.J for some n > 1.
We proved in part (b) of last exercise that IJ <
InJ,soxz"elInJ. ThenzeInJ. VInJC
V1J : suppose = € \/I n J, then 2" € I n J for
some n > 1. Then z2” = 2" 2™ € IJ, so

S

el eJ

z2" e IJand x € VIJ.

Exercises 2.3

Ex2.4-1. Let the finite commutative ring be R and
the prime ideal be /. let I € M < R where M is
anideal. If I # M, that is there is some x € M not
in I, then we want to show that M = R, which
proves that [ is a maximal ideal by definition. Let
J ={x,I) ={rz+i|reR,ie I}, whichis an
ideal as we have shown in class sol < J < R.
Consider the set S = {1,z,22,---}, which as a
subset of R should be finite. Thus elements in S
cannot be all distinct, i.e., there are z™ for
some n < m. Then observe that

xn (1 _ Im7n>

=M

" =0€el

=" —
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ii.

Since [ is a prime ideal in R, we see z™ is in [
or 1 — 2™ ™ isin I. We claim that 2™ cannot be
in I : since ¢ I, we see 22 ¢ I because for if
2?2 € I then z € I (or z € I, which is a dupli-
cate), and z° ¢ I because for if z3 € I then z € I
or #2 € I. Thus inductively we can show that
x™ ¢ I. Therefore, we are left with 1 — 2™ " € I.
Thus, 1 = 2™ " 12 +1— 2™ " is an element in
ER el
J. Then 1€ J = J = R. Note that J is the small-

est ideal containing I and an element z not in 1.
Therefore. xeM7IgM=>J§MgM=R.

Ex2.4-2.

Ideals in Z are of the form mZ for integer m.
Since primary ideal needs to be proper, we have
m # 1. Next, we claim that mZ is primary iff
m = p" for some prime number p and some pos-
itive integer n. <« : let ab € mZ = p"Z, then
p" | ab. Thus p | a or p | b. There are three
cases: (1) p does not divide a, then p™ | b, so
b € p"Z; (2) p does not divide b, then p™ | a, so
a€p"Z; 3)p| aandp | b, then p" | a™ and
p™ | b". Therefore ab € mZ = p"7Z = a € p"Z or
bk e pnZ for some positive integer k. = : Sup-
pose mZ is primary. Suppose m is not of the form
p™. Then the prime decomposition of m has at
least a ¢* as a factor where ¢ is another prime
and k is also a positive integer. We will first dela
with the case that m = p™¢* and then see that
the general case is similar to the two-factor case.
Now just let a = p"¢*~! and b = ¢q. Then

ab=p"¢" g =p"¢"* =memZ2

Since m = p"¢* does not divide p"¢*~' = a, so
a ¢ mZ. We show it also happens that any power
of b is also not in mZ too, which then gives a con-
tradiction to the fact that mZ is a primary ideal.
Let this power be [ and observe that m = p"¢”
does not divide ¢! = ¥, i.e., b’ cannot be a multi-
ple of m and thus does not belong to mZ.

The general case where m = p"plfl - pPr is simi-
lar: let a = pand b = p"~1pkt ... phr
Letabe VI ={zxe R|3In>1,s.t " e I}. Thus
(ab)™ € I for some n > 1. (ab)™ = a™b™ by com-
mutativity of R we assumed in this hw. I being
primary implies that either a” € I or b"% € [
for some positive integer k. We have a € /T or

be/I.
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Exercises 2.4

Exercises 2.5

1. Ex2.5-1. (1): Let f : A — A’ be a ring homo-

morphism and I be a prime ideal of A’. Sup-
pose that zy € f~1(I). Then f(xy) = f(z)f(y) €
f(f~*(I)) < I. Since I is prime, f(z) € I or
fly) e I, thus x € f~%(I) or y € f~1(I). Hence
f~L(I) is prime.

(2): Let f A — A’ be a surjective ring
homomorphism and let I be a proper ideal of
A’. We know that f~!(I) is an ideal by the
above. Suppose that f~!(I) is not proper, that
is, f71(I) = A. Then f (f7'(I)) = f(A) = 4,
but f(f~*(I)) = I (this equality follows from
surjectivity of f ), so this is a contradiction as we
assumed [ is proper.

. Ex2.5-3. Let J be an ideal of S™'R. We have

shown in Ex2 that J = S~ 1¢~1(J) for the map
¢ : r — L. Since ¢ is a ring homomorphism,
¢~1(J) is an ideal in R, so S~1¢~1(J) is an ideal
by exercise 1 . Since R is PID, ¢—*(J) = (a) for
some a € R,s0.J = S71¢~!(J) = (%) because

- For any ar € ¢~ 1(J) = (a) and s € S we have
@ =2 and L e STIR;

- and for any £ € ST'R we have ¢ = % ¢
S~Le=1(J).

Exercises 2.6

. Ex2.7-1. Consider the ideal I = (3,2 + +/-5).

Define
d:Z[v-5] - Z+

a + bv/—=5 — a® + 5b°

The function is multiplicative:

d((a + bvV/=5)(c + dv—5))

=d(ac — 5bd + (bc + ad)v/=5)

—(ac — 5bd)? + 5(be + ad)?

= (a® + 5b%) (¢ + 5d°)

=d(a + by/=5)d(c + dv/=5)
If I = (z) = (a+by/=5) for some a, b € Z, we have
3 = rz,2 + +/=5 = tx for some r,t € Z[/-5].

Then d(3) = d(rz) = d(r)d(z) = d(z) | 9 = d(3)
and d(2 + /=5) = d(tz) = d(t)d(z) = d(x) | 9 =
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d(2 + +/=5). Thus, d(z) | 9 = d(z) = 1,3, or Exercises 2.9
9 . Since z is an element in R, we suppose = =

Ty + x94/—5 for ¥y, x5 € Z. Then d(x) = 22 + 522. 1. Ex2.9-1.

As 22 and 23 are 0,1,4---, so z? + 523 can be
0,1,4,5,9,---. Thus, d(z) = 3 is impossible.
d(x) = 9 happens when x; = +2 and z, = +1
or when z; = +3 and 25 = 0. When d(z) = 9,

i. The general algorithm is provided in class by two
steps: divided by integer and divided by arbitrary
x € Z[i]. To divide « by 8 we first set n = d(3) =
65 and divide o8 = (11+ 3i)(1—8i) = 35—85i by

3=rx
we see 9 = d(r)d(z) = d(r) = 1,7: = +1 — n, which by the algorithm is just dividing real and
r = +3 = 2 + /=5 = £3t, which is impossible imaginary parts by n separately (35 = 65-1 — 30
because 2++/—5 is indivisible by 3 and -3 . There- with [-30| = 30 < & = 32.5; -85 = 65-(—1)—20

fore, d(z) = 1 = = = £1 = (3,24 v—5) = (2) with | —20] =20 < &) to get aff = ng + s =
is the whole Z[v/—5]. Then 1 € Z[v/-5] = there 65(1+i(—1)) + (35 +i(—20)). Thus, ¢ = 1 —i and
are «, 8 € Z[v/—5] s.t.

a=qB+ (a—qpb)
Ba+ B2+ V=5) =1 =(1—4)(1+8)+ (11 +3i — (1 —14)(1 + 8i))
(2—vV=5)Ba+ B(2++v=5)) =2—/=5 = (i) (1+8i) + (2 —4i)
32+ vV—B)a+ 98 =2~ /5 = —

3[(2+vV=5)a+38] =2 — V=5 .
with 20 = d(r) < d(B) = 65.
It then follows that 2 — +/—5 is divisible by 3 ,
which is a contradiction. Therefore, I = (3,2 +
+/—5) is not principal.

2. We show Z[2:] is not UFD by giving the coun-
terexample hinted above:

4=2-2=(=2i)-(2i)

while - 2, 2¢, —2 are irreducible elements. - 2 and
2¢ are not associates; 2 and 2¢ are not associates.

Let d be the map similarly defined in the last
problem:

d:Z[2i] = Z[V—4] —» Z,

a + 2bi — a® + 4b*

Similar to the proof given in last problem, d is
multiplicative. We observe that d(2) = d(2i) =
d(—2i) = 4, so we show that all elements a with
d(a) = 4 are all irreducible. Suppose a = bc and
a is not a unit and d(a) = 4. Then 4 = d(a) =
d(b)d(c) =1 x 4or4 x 1or2 x 2. Since a? + 4b*
can only be 0, 1,4 or greater than 4 we see 2 x 2
is impossible, so either 1 x 4 or4 x 1 = d(b) = 1
ord(c) =1=b=+lisaunitor ¢ = +1isa unit.

Note that a and b associate iff a = bu for a unit u.
Since v = +1 in Z[2i] (we have shown this fact
for Z[+/—5] and this is similarly true for Z[2i]),
we see only ¢ and —a are associate (if not equal).
Thus, 2 and 27 are not associates; 2 and 27 are not
associates.
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ii.
a=(1—1)(1+8i)+ (2 — 4i)
—_—— — —
q0 B8 0

with ged(a, 8) = ged(1 — 4, 3 + 44).

B=q2—4)+n

To compute ¢; and r; we divide 875 = (1 +
8i)(2 + 4i) = —30 + 20i by d(2 — 4i) = 20
: =30 = 20 (—1) — 10 with 10 < Z and
20 =20-1+0with0 < 2. So, ¢ = -1+ .

ry=1+8i—(2—4i)(—1+14) = —1 + 2i.

B=(—14+1)(2—4i)+ (—1+ 27)
) — —_——
q1 T0 71

with ged (8, 70) = ged (19,71)
rg = QQ(—l + 22) + 7o

To compute ¢» and ry we divide ror;7 = (2 —
4i) (=1 —2i) = =10 by d(—1+2i) = 5: —10 =
5-(—2)+0. S0, g2 = —2. 73 = 2—4i — (=2)(—1 +
2i) = 0.

ro= (=2) (-1+2)+_0

—_— —
q2 T 2

with ng (’/‘0, 7’1) = ng (’/‘1, 7"2). ThUS,

ged(a, B) = ged (ro, 1) = ged (r1,72)
—ged(—1 4 2i,0) = —1 + 2i
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