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Chapter 1

Power Series

1.1 Limsup and Liminf

The limit superior of a sequence {xn} in R is defined by

lim
n→∞

xn = lim sup
n→∞

xn := lim
n→∞

(
sup
m≥n

xm

)
= inf
n≥0

(
sup
m≥n

xm

)

The limit inferior of a sequence {xn} in R is defined by

lim
n→∞

xn = lim inf
n→∞

xn := lim
n→∞

(
inf
m≥n

xm

)
= sup
n≥0

(
inf
m≥n

xm

)

When {xn} has no upper bound, we say limn→∞ xn = +∞; when {xn} has no lower bound, we say
limn→∞ xn = −∞.

Theorem 1.1.1. Let H = limxn. Then

(a) When H is finite, there are infinitely many xn falling in the interval (H − ε,H + ε) for any ε > 0, while
there are only finitely many (or even zero) xn falling in (H + ε,+∞).

(b) When H = +∞, for any N > 0, there are infinitely many xn such that xn > N .

(c) When H = −∞, limxn = −∞.

Proof.

(a) −∞ < H < +∞: the statement will be proved if we show that for any ε > 0 there are infinitely many
terms xn greater than H − ε and only finitely many terms xn greater than H + ε. We show the first
part: BWOC, suppose there is some ε0 > 0 s.t. there are only finitely many xn greater than H − ε0, say
xn1 , · · · , xnk

. Thus, xn ≤ H − ε0 for all n > nk. Therefore, for all n > nk, the supremums have

βn = sup
m≥n

xm = sup{xn, xn+1, · · · } ≤ H − ε0

Thus,
H = lim

n→∞
xn = lim

n→∞
βn ≤ H − ε0
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which is a contradiction. We show the second part: let βn = supm≥n xm. Since limn→∞ βn = H, ∀ε,
∃N ∈ N s.t. |βn −H| < ε, i.e., H − ε < βn < H + ε. Since βn is supremum of {xn, xn+1, · · · }, we see
when n > N ,

∀k ∈ N, xn+k ≤ βn ≤ H + ε

Thus, those xn with xn > H + ε must have n ≤ N , which shows that there are only finitely many xn
satisfying xn > H + ε.

(b) That’s because H = +∞ when {xn} has no upper bound by definition.

(c) When H = −∞, for any G > 0, there exists n0, when n > n0, xn+1 ≤ βn ≤ −G, so limxn = −∞.

We have a liminf counterpart of the above theorem:

Theorem 1.1.2. Let h = limxn. Then

(a) When h is finite, there are infinitely many xn falling in the interval (h − ε, h + ε) for any ε > 0, while
there are only finitely many (or even zero) xn falling in (−∞, h− ε).

(b) When h = −∞, for any N > 0, there are infinitely many xn such that xn < −N .

(c) When h = +∞, limxn = +∞.

Another useful theorem is

Theorem 1.1.3. For limsup H and liminf h of {xn}, there exists a subsequence {xnk
} with limit H and H is

the largest among all limits of convergent subsequences of {xn}; there also exists a subsequence {xnk
} with

limit h and h is the smallest among all limits of convergent subsequences of {xn};

Corollary 1.1.4. limxn = A (finite or infinite) iff limxn = limxn = A.

Example 1.1.5. an = n + (−1)nn (n = 1, 2, 3, · · · ). It only has two subsequences with limit (including ∞):
a2k and a2k+1(k = 1, 2, 3, · · · ). The limits are respectively +∞ and 0, so

lim
n→∞

an = +∞, lim
n→∞

an = 0

Example 1.1.6. an = cos n4π (n = 0, 1, 2, · · · ). Since −1 ⩽ cos n4π ⩽ 1, when n = 8k(k = 1, 2, · · · ),
a8k → 1(k →∞); when n = 4(2k + 1), (k = 1, 2, 3, · · · ), a4(2k+1) → −1(k →∞). Thus,

lim
n→∞

an = 1, lim
n→∞

an = −1

Proposition 1.1.7. suppose limn→∞ xn = x,−∞ < x < 0. Then

lim
n→∞

(xnyn) = lim
n→∞

xn · lim
n→∞

yn;

lim
n→∞

(xnyn) = lim
n→∞

xn · lim
n→∞

yn.

suppose limn→∞ xn = x, 0 < x <∞. Then

lim
n→∞

(xnyn) = lim
n→∞

xn · lim
n→∞

yn;

lim
n→∞

(xnyn) = lim
n→∞

xn · lim
n→∞

yn.
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Proof. We prove the first two equations. The others are similar. limxn = x,−∞ < x < 0, so for any given
ε(0 < ε < −x), there exists positive integer N1 such that for all n > N1,

x− ε < xn < x+ ε < 0.

Let lim yn = H, lim yn = h. Then for the above ε(0 < ε < −x), there exists N2 such that for all n > N2,

h− ε < yn < H + ε.

Let N = max {N1, N2}. Then for n > N ,

min{(x− ε)(H + ε), (x+ ε)(H + ε)} < xnyn < max{(x− ε)(h− ε), (x+ ε)(h− ε)},

Thus,
lim
n→∞

(xnyn) ⩾ min{(x− ε)(H + ε), (x+ ε)(H + ε)},

lim
n→∞

(xnyn) ⩽ max{(x− ε)(h− ε), (x+ ε)(h− ε)},

By arbitrariness of ε, we get
lim
n→∞

(xnyn) ⩾ xH = lim
n→∞

xn · lim
n→∞

yn,

lim
n→∞

(xnyn) ⩽ xh = lim
n→∞

xn · lim
n→∞

yn.

Since

lim
n→∞

yn = lim
n→∞

[
1

xn
· (xnyn)

]
⩾ lim
n→∞

1

xn
· lim
n→∞

(xnyn) ,

lim
n→∞

yn = lim
n→∞

[
1

xn
· (xnyn)

]
⩽ lim
n→∞

1

xn
· lim
n→∞

(xnyn) ,

we have
lim
n→∞

(xnyn) ⩽ lim
n→∞

xn · lim
n→∞

yn,

lim
n→∞

(xnyn) ⩾ lim
n→∞

xn · lim
n→∞

yn.

Combine the last four equations to get

lim
n→∞

(xn, yn) = lim
n→∞

xn · lim
n→∞

yn

lim
n→∞

(xnyn) = lim
n→∞

xn · lim
n→∞

yn.

Proposition 1.1.8.

lim
n→∞

(cxn) =

{
c limn→∞ xn c > 0

c limn→∞ xn c < 0

Similarly,

lim
n→∞

(cxn) =

{
c limn→∞ xn c > 0

c limn→∞ xn c < 0

In particular, c can be −1.
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Proof. This is due to the similar result from supremum and infimum. For example,

lim
n→∞

(cxn) = lim
n→∞

sup
m≥n

(cxm) =

{
limn→∞(c · supm≥n xm) = c limn→∞ supm≥n xm c > 0

limn→∞(c · infm≥n xm) = c limn→∞ infm≥n xm c < 0

In fact, once we have limxn = − lim(−xn), we only need to state limsup half in the following observations
(for 1.1.9 we have lim(xn + yn) ≥ limxn + lim yn; for 1.1.10 we have lim(xnyn) ≤ (limxn)(lim yn)). We
omit the proofs.

Proposition 1.1.9. If {xn} and {yn} are two sequences of real numbers, then

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn,

provided the sum on the right is well defined (i.e., excluding the case where one summand is ∞ and the
other is −∞ ). If one of the sequences converges then the equality holds (with the same proviso).

Proposition 1.1.10. If {xn} and {yn} are two sequences of positive real numbers, then

lim sup
n→∞

(xnyn) ≤
(
lim sup
n→∞

xn

)(
lim sup
n→∞

yn

)
,

provided the product on the right is well defined (i.e., excluding the case where one factor is 0 and the other
is∞ ). If one of the sequences converges then the equality holds (with the same proviso).

1.2 Series

1.2.1 Comparison Test

Suppose we have two nonngegative series
∑∞
n=0 un and

∑∞
n=0 vn, and they have the following relationship:

∃c > 0, s.t. un ≤ cvn n = k, k + 1, k + 2, · · ·

for some k, i.e., each term of the first series is dominated by the second after (k − 1)-th term. Since partial
sum sequence of nonnegative series converges iff the sequence is bounded, one observes

•
∑
vn converges⇒

∑
un converges;

•
∑
un diverges⇒

∑
vn diverges.

We have the functional version: for real functions 0 ≤ fn(x) ≤ gn(x),

•
∑
gn(x) pointwise/uniformly converges⇒

∑
fn(x) pointwise/uniformly converges;

•
∑
fn(x) diverges⇒

∑
gn(x) diverges.

where the pointwise one follows immediately from the number series version and the uniform one follows
from Cauchy criterion for uniform convergence Let ε > 0, then exists N ∈ N such that for any m,n ∈ N if
N ≤ m ≤ n then ∣∣∣∣∣

n∑
k=m

fk

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑

k=m

gk

∣∣∣∣∣ < ε

Then
∑
fn is uniformly convergent.
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1.2.2 Series of Complex Numbers

Let {zn}∞n=0 be a sequence in C, then the series
∑∞
n=0 zn converges to z iff the sequence of partial sums

{SN (zn)} =
{∑N

n=0 zn

}
converges to z, i.e.,

∀ε > 0, ∃K ∈ N, s.t.∀N > K : |SN (zn)− z| < ε.

We say the seires
∑
zn converges absolutely if

∑
|zn| converges. Note that {|zn|} is a nonnegative se-

quence and {SN (|zn|)} =
{∑N

n=0 |zn|
}

is a monotone (nonstrictly) increasing sequence, so boundedness of

{SN (|zn|)} is a sufficient condition for convergence of
∑
|zn|. Two basic facts are presented first:

Theorem 1.2.1. If the series
∑∞
n=0 zn converges, then zn → 0 as n→∞.

Proof. Since limN→∞ SN (zn) = z for some z, we get lim zn = lim(SN (zn)− SN−1(zn)) = z − z = 0.

Theorem 1.2.2. If
∑
zn converges absolutely,

∑
zn converges.

Proof.
∑
zn converges absolutely, so for any ε > 0 there is K s.t. M,N > K (WLOG, M > N) implies

ε > |SM (|zn|)− SN (|zn|)| = ||zM+1|+ · · ·+ |zN || ≥ |zM+1 + · · ·+ zN | = |SM (zn)− SN (zn)|

so {SN (zn)} is Cauchy and thus converges by completeness of C.

Complex series can relate to real series in one way:

Theorem 1.2.3. Let zn = an+ibn (n = 1, 2, · · · ), where an and bn are real numbers. Then the series
∑∞
n=0 zn

converges to z = a+ ib for real numbers a and b iff
∑∞
n=0 an = a and

∑∞
n=0 bn = b.

Proof. Apply [10] Proposition 3.5 to the sequence SN (zn) = An + iBN =
(∑N

n=0 an

)
+ i
(∑N

n=0 bn

)
.

Example 1.2.4. Consider the series
∑∞
n=1

(
1
n + i

2n

)
.
∑

1
n diverges. Thus, even though

∑
1
2n converges, the

whole series diverges.

1.2.3 Sequences of Complex Functions

Consider a series of functions {fn(z)}∞n=0 commonly defined on a set E ⊆ C. Several notions of convergence
are defined:

1. Pointwise convergence (PC): ∀ε > 0,∀z ∈ E,∃N(ε, z) ∈ N, s.t.∀n > N : |fn(z)− f(z)| < ε;

2. Uniform convergence (UC): ∀ε > 0,∃N(ε) ∈ N, s.t.∀z ∈ E,∀n > N : |fn(z)− f(z)| < ε;

2′. [Equivalent definition of uniform convergence]: sup{|fn(z)− f(z)| : z ∈ E} → 0 as n→∞.

3. Absolute convergence (AC): pointwise convergence of {|fn(z)|}∞n=0.

4. Local uniform convergence (LUC): ∀z ∈ E, there is a neighborhood U of z in E such that the
sequence {fn(z)}∞n=0 converges uniformly.

5. Compact convergence (CC): For each compact set K ⊆ E, the sequence {fn(z)}∞n=0 converges uni-
formly.

It turns out that for functions on C (and in fact on a large class of reasonably nice spaces), the last two
notions are equivalent.

Proposition 1.2.5. Let E be an open set in C. Then the sequence {fn(z)}∞n=0 converges locally uniformly in
E iff it converges compactly in E.

9
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Proposition 1.2.6. Sequence {fn(z)}∞n=0 converges compactly in B(a,R) iff it converges in B(a, r) for every
0 < r < R.

Proof. Each closed disk is compact. Each compact set is closed and bounded and is thus contained in some
closed disk in B(a,R).

Example 1.2.7. A simple example, with E the open unit disk, is provided by the sequence fn(z) = zn. We
notice that sup{|zn| : z ∈ B(0, 1)} = sup{|z|n : |z| ∈ [0, 1)} = sup[0, 1) = 1. Thus, {zn} does not uniformly
converge. However, if 0 < r0 < 1 then this sequence converges uniformly to 0 in the disk |z| < r0, and so it
converges locally uniformly to 0 in the disk |z| < 1.

1.2.4 Series of Complex Functions

Consider a series of functions {fn(z)}∞n=0 commonly defined on a set E ⊆ C and the sequence of partial sums
{SN (fn(z))}. We say the series converges pointwise/absolutely/uniformly/locally uniformly/compactly if
the sequence {SN (fn(z))} does so. We restate them:

1. Pointwise convergence (PC): ∀ε > 0,∀z ∈ E,∃K(ε, z) ∈ N, s.t.∀N > K : |SN (fn(z))(z)− f(z)| < ε;

2. Uniform convergence (UC): ∀ε > 0,∃K(ε) ∈ N, s.t.∀z ∈ E,∀N > K : |SN (fn(z))(z)− f(z)| < ε;

3. Absolute convergence (AC): pointwise convergence of
∑∞
n=0 |fn(z)|, i.e., {SN (|fn(z)|)}∞N=1.

4. Local uniform convergence (LUC): ∀z ∈ E, there is a neighborhood U of z in E such that the
sequence {SN (fn(z))}∞N=1 converges uniformly.

5. Compact convergence (CC): For each compact set K ⊆ E, the sequence {SN (fn(z))}∞N=1 converges
uniformly.

To prove uniform convergence, one usually strengthens the inequality by finding Pn(z) and Qn such that

|SN (fn(z))− f(z)| ≤ Pn(z) ≤ Qn

and then finding K for which it is true under N > K by Qn < ε. To show a series of functions is not uniform
convergent, one proves the negation, which is obtained by switching existential and universal quantifiers
and negating the statement:

∃ε > 0,∀K ∈ N,∃z0 ∈ E,∃N0 > K s.t. |SN0
(fn(z))− f(z0)| > ε

Just like pointwise Cauchy and uniform Cauchy for sequence of functions, we have pointwise Cauchy and
uniform Cauchy for complex series. We will use the last one.

Theorem 1.2.8. [Cauchy criterion for uniform convergence]

The series
∑∞
n=0 fn(z) converges uniformly on E iff ∀ε > 0, ∃N(ε) ∈ N, such that ∀z ∈ E,

|fn+1(z) + · · ·+ fn+p(z)| < ε (p = 1, 2, · · · )

Theorem 1.2.9. [Weierstrass M-test]

Suppose that {fn(z)}∞n=0 is a sequence of complex-valued functions defined on a set E, and that there is a
sequence of non-negative numbers Mn satisfying the conditions

• |fn(z)| ≤Mn for all n ≥ 0 and all z ∈ E;

•
∑∞
n=0Mn converges.

Then the series
∑∞
n=0 fn(z) converges absolutely and uniformly on E.

10
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Proof. Convergence is absolute by comparison test. It is also uniform by applying Cauchy criterion for
uniform convergence to the following

|fn(z) + · · ·+ fn+p(z)| ≤ |fn(z)|+ · · ·+ |fn+p(z)| ≤Mn + · · ·+Mn+p

Weierstrass M-test is often used in combination with the uniform limit theorem (see, e.g., [9] Theorem
21.6). Together they say that if, in addition to the above conditions, the functions fn are continuous on E,
then the series converges to a continuous function f(z). A natural question of concern is about the conver-
gence of the termwise differentiation and integration of the sum and that of the limit function. We showed
in [10] Corollary 5.33 for the integration of a convergent sequence of complex function, so SN (fn)(z) ⇒ f(z)
implies

∫
γ
f(z) dz = limN→∞

∫
γ
SN (fn)(z) dz. Counterpart for differentiation needs theorem 1.2.6, which

translates in terms of series as

Proposition 1.2.10. Series
∑∞
n=0 fn(z) converges compactly in B(a,R), i.e., converges uniformly for each

compact set in B(a,R), iff it converges in B(a, r) for every 0 < r < R.

Example 1.2.11. [Geometric series]
∑∞
n=0 z

n.

Consider
∑∞
n=0 |z|n. Since 1 − |z|N+1 = (1 − |z|)(1 + |z| + · · · + |z|N ), we have

∑N
n=0 |z|n = 1−|z|N+1

1−|z| . If
|z| < 1, then the series converges absolutely. Replacing |z| with z in the above argument, one obtains the
limit function 1

1−z . The convergence is also compact in the disk |z| < 1: for every closed disk B(0, r) with
0 < r < 1 the series converges uniformly by applying Weierstrass M-test to |zn| ≤ rn. If |z| > 1, then
lim |z|n =∞ and the series diverges.

However, the series does not converge uniformly on B(0, 1). This is a simple consequence of the fact that
each function SN (zn) =

∑N
n=0 z

n is bounded while the limit function f(z) = 1
1−z is not. Hence each function

SN − f is unbounded, that is, the sup-norm of Sk − S is infinite, in particular the sequence of the sup-norms
does not converge to zero. This last assertion is equivalent to the fact that {SN} does not converge uniformly
to f .

Theorem 1.2.12 (Termwize Differentiation of Series). Suppose we have

(a) a sequence of functions fn(z) (n = 1, 2, . . .) that are analytic in the region D;

(b) the series
∑∞
n=1 fn(z) converge compactly to the function f(z) inside D: f(z) =

∑∞
n=1 fn(z).

Then

(1) the function f(z) is analytic in the region D;

(2) for all z ∈ D and p = 1, 2, . . ., we have f (p)(z) =
∑∞
n=1 f

(p)
n (z).

(3) The series
∑∞
n=1 f

(p)
n (z) converges compactly to f (p)(z) in D.

Proof. The third is left as an exercise. We prove the other two.

(1) Let z0 be any point in D, then there exists ρ > 0, such that the closed disk K̄ : |z − z0| ⩽ ρ is completely
contained within D. If C is any contour within the disk K : |z − z0| < ρ, then by Cauchy’s integral theorem
we have ∫

C

fn(z)dz = 0, n = 1, 2, . . . ,

Since the series
∑∞
n=1 fn(z) converges uniformly on K̄, and fn(z) is continuous, by uniform limit theorem,

we know that f(z) is continuous on K̄. From [10] Corollary 5.33, we have∫
C

f(z)dz =

∞∑
n=1

∫
C

fn(z)dz = 0,

11
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Thus, by Morera’s theorem, we know that f(z) is analytic within K, that is, f(z) is analytic at the point z0.
Since z0 was arbitrary, f(z) is analytic in the region D.

(2) Let z0 be any point in D, then there exists ρ > 0, such that the closed disk K̄ : |z − z0| ⩽ ρ is completely
contained within D, and the boundary of K̄ is the circular path Γ : |z − z0| = ρ. Hence, by [10] Theorem
8.5, we have

f (p)(z0) =
p!

2πi

∫
Γ

f(ζ)

(ζ − z0)p+1
dζ, (p = 1, 2, . . .),

f (p)n (z0) =
p!

2πi

∫
Γ

fn(ζ)

(ζ − z0)p+1
dζ,

On Γ, by condition (b) we know the series

f(ζ)

(ζ − z0)p+1
=

∞∑
n=1

fn(ζ)

(ζ − z0)p+1

converges uniformly. Thus, by [10] Corollary 5.33, we get∫
Γ

f(ζ)

(ζ − z0)p+1
dζ =

∞∑
n=1

∫
Γ

fn(ζ)

(ζ − z0)p+1
dζ,

Multiplying both sides by p!
2πi , we obtain the desired result:

f (p) (z0) =

∞∑
n=1

f (p)n (z0) (p = 1, 2, · · · ).

The proofs above are almost the same as those for [14] Theorem 5.2 and 5.3 about sequence of any holo-
morphic functions (note that sequence of sums are also sequence of holomorphic functions).

Theorem 1.2.13. If {fn}∞n=1 is a sequence of holomorphic functions that converges uniformly to a function
f in every compact subset of Ω, then f is holomorphic in Ω.

Theorem 1.2.14. Under the hypotheses of the previous theorem, the sequence of derivatives {f ′n}
∞
n=1 con-

verges uniformly to f ′ on every compact subset of Ω.

Of course, there is nothing special about the first derivative, and in fact under the hypotheses of the last the-

orem, we may conclude (arguing as above) that for every k ≥ 0 the sequence of k-th derivatives
{
f
(k)
n

}∞

n=1

converges uniformly to f (k) on every compact subset of Ω.

In practice, one often uses Theorem 1.2.13 to construct holomorphic functions (say, with a prescribed prop-
erty) as a series

F (z) =

∞∑
n=1

fn(z). (1.1)

Indeed, if each fn is holomorphic in a given region Ω of the complex plane, and the series converges uni-
formly in compact subsets of Ω, then Theorem 1.2.13 guarantees that F is also holomorphic in Ω (this is
the first claim of 1.2.12) For instance, various special functions are often expressed in terms of a converging
series like (1.1). A specific example is the Riemann zeta function.

12
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1.3 Power Series

A power series about a is an infinite series of the form
∑∞
n=0 cn(z − a)n. If a power series converges to a

function f in a given region, we shall say that the series represents f in that region. It is important, however,
to distinguish the series from the function it represents. For example, as shown in the last section, the series∑∞
n=0 z

n represents the function 1
1−z in the disk |z| < 1. However, the series is not “equal” to the function,

in a formal sense, even though we can write
∑∞
n=0 z

n = 1
1−z for |z| < 1. The same function is represented

by other power series; for example, it is represented by the series
∑∞
n=0 2

−n−1(z + 1)n in the larger disk
|z + 1| < 2, as the reader will easily verify. A power series is best thought of as a formal sum, uniquely
determined once its center and its coefficients have been specified.

1.3.1 Power Series Representation of Analytic Function

Our final goal of this subsection is to show that a power series is analytic and that an analytic function can
be represented by power series. We first continue studying the convergence of series.

Proposition 1.3.1. [Abel’s Theorem] If the power series
∑∞
n=0 cn(z−a)n converges on a point z1( ̸= a), then

it converges absolutely and compactly in the open disk with center a and radius |z1 − a|, i.e., K : |z − a| <
|z1 − a|. The series diverges for |z − a| > |z1 − a| instead.

Proof. Let z be any point in K. Since
∑∞

0 cn (z1 − a)n converges, each of its term must be bounded: ∃M > 0
such that

|cn (z1 − a)n| ≤M (n = 0, 1, 2, · · · ),

Therefore,

|cn(z − a)n| =
∣∣∣∣cn (z1 − a)n( z − a

z1 − a

)n∣∣∣∣ ≤M ∣∣∣∣ z − az1 − a

∣∣∣∣n ,
Since ∀z ∈ K, |z − a| < |z1 − a| ⇒

∣∣∣ z−az1−a

∣∣∣ < 1⇒ the geometric series

∞∑
n=0

M

∣∣∣∣ z − az1 − a

∣∣∣∣n
converges for each z ∈ K. Thus

∑
cn(z − a)n converges absolutely in K. Besides, for any closed disk Kρ in

K, Kρ : |z − a| ≤ ρ (0 < ρ < |z1 − a|), we have

|cn(z − a)n| ≤M
∣∣∣∣ z − az1 − a

∣∣∣∣n ≤M (
ρ

|z1 − a|

)n
,

By convergence of the last geometric series, apply Weierstrass M-test to see
∑∞

0 cn(z − a)n converges uni-
formly in Kρ. Then use 1.2.10. The fact that The series diverges for |z − a| > |z1 − a| instead is proved by
way of contradiction.

If a power series has no such z1 ̸= a for which it converges, then the series only converges at z = a. For
example

1 + z + 22z2 + · · ·+ nnzn + · · ·

only converges at z = 0.

The power series can also converge (pointwise) for all z. For example

1 + z +
z2

22
+ · · ·+ zn

nn
+ · · · .

13
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For any fixed z, after some n, it has |z|
n < 1

2 . Thus,
∣∣ zn
nn

∣∣ < ( 12)n shows that it is dominated by a convergent
geometric series for every z. The convergence is absolute and compact.

By Abel’s theorem, if the power series does not fall into the above two cases, then the power series converges
for at least |z − a| < |z1 − a| for each z1 on which it converges (pointwise). Then we can let R be the
supremum of |z1− a| ranging over all z1 on which it converges (pointwise) and see that the series converges
for |z − a| < R and diverges for |z − a| > R. Obviously, a number R making the series “converge for
|z − a| < R and diverge for |z − a| > R” is unique.

Definition 1.3.2. Let
∑∞
n=0 cn (z − a)

n be a power series. We define the radius of convergence of the series
R as the unique number such that the series converges in |z − a| < R and diverges in |z − a| > R. If R > 0
then the series converges absolutely and compactly in the disk |z − a| < R; if R <∞ then the series diverges
at each point of the region |z − a| > R. R does not give information for situation on the circle |z − a| = R.

Presently we shall obtain a general expression for the radius of convergence of a power series in terms of its
coefficients.

Theorem 1.3.3 (Cauchy-Hadamard Theorem). Consider a power series
∑∞
n=0 cn(z − a)n. Then the radius

of convergence R is given by

R =

(
lim sup
n→∞

|cn|1/n
)−1

. (1.2)

That is, it satisfies

(a) The series converges absolutely for |z − a| < R;

(b) The series diverges for |z − a| > R;

(c) The series converges for every closed disk |z − a| < r where r < R.

Proof. Assume a = 0. Assume 0 < R <∞ (the edge cases R = 0 and R =∞ are left as an exercise). Due to
1.1.1 (a),

∀ε > 0, ∃N s.t. n > N ⇒ 1

R
− ε < |cn|1/n <

1

R
+ ε. (1.3)

So |cn| <
(
1
R + ε

)n
for n > N . Let z ∈ B(0, R), i.e., |z| < R, we have |z|

(
1
R + ε

)
< 1 for some fixed ε > 0

chosen small enough. That implies that for n > N (for some large enough N as a function of ε ),

∞∑
n=N

|cnzn| <
∞∑
n=N

[(
1

R
+ ε

)
|z|
]n
,

so the series is dominated by a convergent geometric series, and hence converges. For (b), when |z| > R, we
evoke the other side of (1.3): |cn| >

(
1
R − ε

)n
for n > N . Besides, |z|

(
1
R − ε

)
> 1 for some small enough

fixed ε > 0. Thus
∞∑
n=N

|cnzn| >
∞∑
n=N

[(
1

R
− ε
)
|z|
]n

Then (
1

R
− ε
)n

< |cn|

so the power series diverges as the geometric series diverges.

For (c), one chooses ρ between r and R and then evoke Weierstrass M-test for |cnzn| <
(
r
ρ

)n
.

14
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Theorem 1.3.4 (d’Alambert Test). If
∑
cn(z − a)n is a given power series with radius of convergence R,

then

R = lim
n→∞

∣∣∣∣ cncn+1

∣∣∣∣
if this limit exists.

Proof. See [2] proposition 1.4.

Example 1.3.5. Find radius of convergence of
∑∞
n=0(3 + 4i)n(z − i)2n

Solution. Notice that the coefficients of the odd terms are 0, so we cannot apply the formula directly. Let

fn(z) = (3 + 4i)n(z − i)2n

Then

lim
n→∞

∣∣∣∣fn+1(z)

fn(z)

∣∣∣∣ = lim
n→∞

∣∣∣∣ (3 + 4i)n+1(z − i)2n+2

(3 + 4i)n(z − i)2n

∣∣∣∣ = lim
n→∞

|(3 + 4i)(z − i)2| = 5|z − i|2

When 5|z − i|2 < 1, i.e., |z − i| <
√
5
5 , the power series is absolutely convergent. When 5|z − i|2 > 1, i.e.,

|z − i| >
√
5
5 , the power series diverges. Thus R =

√
5
5 .

Definition 1.3.6. Function f(z) is said to be representable by power series in U if ∀B(a, r) ⊆ U , there
corresponds some power series

∑∞
n=0 cn(z − a)n that converges in B(a, r) and equals f(z).

Theorem 1.3.7 (Power series is analytic and can be differentiated termwize). Power series
∑∞
n=0 cn(z−a)n,

denoted as f(z), is analytic on B(a,R) = {z : |z − a| < R}, where R = radius of convergence. Besides, for
z ∈ B(a,R),

f ′(z) =

∞∑
n=0

ncn(z − a)n−1

Thus, if f is representable by power series in an open set U ⊆ C, then f ∈ H(U) := the set of all analytic
functions on U and derivative is given above.

Proof. We can assume a = 0 becasue we can apply chain rule with g(z) = z − a to f(z) =
∑
cnz

n on each
z ∈ B(0, R), and R is defined regardless of a. We write

f(z) =

∞∑
n=0

cnz
n =

N∑
n=0

cnz
n

︸ ︷︷ ︸
SN (z)

+

∞∑
n=N+1

cnz
n

︸ ︷︷ ︸
EN (z)

, g(z) =

∞∑
n=1

ncnz
n−1.

The claim is that f is differentiable on B(0, R) and its derivative is the power series g. Since limn1/n =

lim elogn
1
n = 1, it is easy to see that f(z) and g(z) have the same radius of convergence by using 1.1.7. Fix

z0 with |z0| < r < R. We wish to show that f(z0+h)−f(z0)
h converges to g (z0) as h→ 0. Observe that

f (z0 + h)− f (z0)
h

− g (z0) =
(
SN (z0 + h)− SN (z0)

h
− S′

N (z0)

)
+

(
EN (z0 + h)− EN (z0)

h

)
+ (S′

N (z0)− g (z0))

The first term converges to 0 for h→ 0 for any fixed N , because SN (z) is a polynomial. To bound the second
term, fix some ε > 0, and note that, if we assume that not only |z0| < r but also |z0 + h| < r (an assumption

15
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that’s clearly satisfied for h close enough to 0) then∣∣∣∣EN (z0 + h)− EN (z0)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣ (z0 + h)

n − zn0
h

∣∣∣∣
=

∞∑
n=N+1

|an|

∣∣∣∣∣h
∑n−1
k=0 h

k (z0 + h)
n−1−k

h

∣∣∣∣∣
≤

∞∑
n=N+1

|an|nrn−1,

where we use the algebraic identity

an − bn = (a− b)
(
an−1 + an−2b+ . . .+ abn−2 + bn−1

)
.

The last expression in this chain of inequalities is the tail of an absolutely convergent series, so can be made
< ε be taking N large enough (before taking the limit as h→ 0 ).

Third, when choosing N also make sure it is chosen so that |S′
N (z0)− g (z0)| < ε, which of course is possible

since S′
N (z0)→ g (z0) as N →∞. Finally, having thus chosen N , we get that

lim sup
h→0

∣∣∣∣f (z0 + h)− f (z0)
h

− g (z0)
∣∣∣∣ ≤ 0 + ε+ ε = 2ε.

Since ε was an arbitrary positive number, this shows that f(z0+h)−f(z0)
h → g (z0) as h→ 0, as claimed.

Corollary 1.3.8. Let f(z) =
∑∞
n=0 cn(z − a)n have radius of convergence R > 0. Then by applying the

theorem to f ′, f ′′ = (f ′)′, · · · , the function f is infinitely differentiable on B(a,R) and its k-th derivative is
given by a power seires with the same radius of convergence

f (k)(z) =

∞∑
n=0

n(n− 1) · · · (n− k + 1)cn(z − a)n−k

for all k ≥ 1 and |z − a| < R. In particular, f (n)(a) = n!cn, or cn = 1
n!f

(n)(a).

We now show the converse.

Theorem 1.3.9. Let f ∈ H(U) where U ⊆ C is open. Then f is representable by power series in U . That is,
for any B(a, r0) ⊆ U , f has a power series expansion at a

f(z) =

∞∑
n=0

cn (z − a)n

that is convergent for all z ∈ B (a, r0), where cn = f (n) (a) /n!.

Proof. The idea is that Cauchy’s integral formula ( [10] Corollary 7.22) gives us a representation of f(z) as
a weighted ”sum” (=an integral, which is a limit of sums) of functions of the form z 7→ (ξ − z)−1. Each
such function has a power series expansion since it is, more or less, a geometric series, so the sum also has
a power series expansion. Note that analyticity is used in Cauchy’s integral formula. Let r < r0. Cauchy’s
integral formula gives

f(z) =
1

2πi

∫
∂B(a,r)

f(ξ)

ξ − z
dξ, z ∈ B(a, r)
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We write
1

ξ − z
=

1

(ξ − a)− (z − a)
=

1

ξ − a
· 1

1−
(
z−a
ξ−a

) =
1

ξ − a

∞∑
n=0

(
z − a
ξ − a

)n

where ξ ∈ ∂B(a, r0). Since z ∈ B(a, r), we see
∣∣∣ z−aξ−a

∣∣∣ = |z−a|
r0

< r
r0
< 1, so the geometric series converges

uniformly for ξ ∈ ∂B(a, r0). Now,

f(z) =
1

2πi

∫
∂B(a,r)

f(ξ)
1

ξ − a

∞∑
n=0

(
z − a
ξ − a

)n
dξ

=
1

2πi

∫
∂B(a,r)

lim
N→∞

N∑
n=0

f(ξ)

ξ − a

(
z − a
ξ − a

)n
dξ

unif conv.+linearity of int
================ lim

N→∞

1

2πi

N∑
n=0

∫
∂B(a,r)

f(ξ)

ξ − a

(
z − a
ξ − a

)n
dξ

=

∞∑
n=0

(
1

2πi

∫
∂B(a,r)

f(ξ)

(ξ − a)n+1
dξ

)
︸ ︷︷ ︸

only depends on a, called cn

(z − a)n

=

∞∑
n=0

cn(z − a)n, z ∈ B(a, r), r < r0

We can let r → r0 since cn does not depend on r (cn = f (n)(a)/n! by previous result).

Remark 1.3.10. We have a new proof showing that an analytic function is infinitely differentiable due to the
corollary 1.3.8. Above theorem also gives a new proof of the n-th derivative of analytic function aside [10]
Theorem 8.5.

1.3.2 Power Series on |z − a| = R

We have seen that for given point a in a region D where f(z) is analytic, as long as B(a, r0) ⊆ D, we can
uniquely expand f(z) on B(a, r), 0 < r < r0 in terms of power series

f(z) =

∞∑
n=0

cn(z − a)n (1.4)

where

cn =
1

2πi

∫
∂B(a,r)

f(ζ)

(ζ − a)n+1
dζ =

f (n)(a)

n!
, n = 0, 1, 2, · · · (1.5)

Hence, the radius can be maximized up to the point where the closure of the ball does not reach the nearest
singularity. In fact,

Theorem 1.3.11. If the power series
∑∞
n=0 cn(z − a)n has radius of convergence R > 0 and

f(z) =

∞∑
n=0

cn(z − a)n, z ∈ B(a,R),

Then f(z) has at least a singularity on the circle S : |z − a| = R. Namely, there exists no function F (z) such
that it is analytic on S and agrees with f(z) on B(a,R).
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Proof. Aiming for a contradiction, we suppose such F (z) exists. Then each point on S is the center of some
circle O, and F (z) is analytic in circle O. We by compactness choose finite number of circles to cover S.
These chosen circles form a region G. Denote ρ > 0 the distance between the boundary of G and C. Then,
F (z) is analytic in B(a,R+ ρ). Thus, F can be represented as a series in B(a,R+ ρ). However, F (z) ≡ f(z)
in B(a,R), so their derivatives are the same on z = a. Therefore,

∑
cn(z − a)n is just the series for F (z),

and their radius of convergence is no smaller than R+ ρ. Contradiction.

Corollary 1.3.12. If f(z) is analytic on point a, and point b is the closest singularity of f to a, and if we
define our series by (1.4) with coefficients given by (1.5), then R = |b − a| is the radius of convergence for
the series.

Proof. Suppose not. Then by definition of radius of convergence, it should be the case that there is a radius
R′ < R = |b−a| serving as the radius of convergence. We can choose the ball B(a, (R+R′)/2), whose closure
is inside the open set U = B(a,R). Since B(a, (R+R′)/2) ⊆ B(a,R), then 1.3.9 implies the series converge
to f(z) for every z ∈ B(a, (R + R′)/2) including every z ∈ ∂B(a,R′) = S(a,R′). This is a contradiction
to above theorem, becasue there should be at least one singularity on S(a,R′) for R′ to be the radius of
convergence.

Remark 1.3.13. Let R be the radius of convergence of a power series
∑
cn(z−a)n. Even if the power series

converges for every point on |z − a| = R, its pointwise-defined sum function f(z) :=
∑
cn(z − a)n still has

at least one singulairty on |z − a| = R. See the following example.

Example 1.3.14. Let

f(z) =
z

12
+
z2

22
+
z3

32
+ · · ·+ zn

n2
+ · · · .

Then

R = lim
n→∞

∣∣∣∣ cncn+1

∣∣∣∣ = lim
n→∞

(
n+ 1

n

)2

= 1 > 0.

On circle S : |z| = 1, the series
∞∑
n=1

∣∣∣∣znn2
∣∣∣∣ = ∞∑

n=1

1

n2

is convergent, so the original series
∑
zn/n2 absolutely converges everywhere on |z| = 1. Thus,

∑
zn/n2

converges absolutely and uniformly on B(0, 1). However,

f ′(z) = 1 +
z

2
+
z2

3
+ · · ·+ zn−1

n
+ · · · , (|z| ≤ 1).

When z approaches 1 along the real axis in the unit circle, f ′(z) goes to infinity. Therefore, z = 1 is a
singularity for f(z).

1.3.3 Operations of Power Series

Addition

Let
∑∞
n=0 an (z − z0)

n and
∑∞
n=0 bn (z − z0)

n be two power series with the same center. Suppose the series∑∞
n=0 an (z − z0)

n has a positive radius of convergence R1 and the series
∑∞
n=0 bn (z − z0)

n has a positive
radius of convergence R2.

Exercise 1.3.15. Show that
∑∞
n=0(an + bn)(z − z0)n has R ≥ min{R1, R2}.
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Multiplication

The Cauchy product of the two series is by definition the power series
∑∞
n=0 cn(z − z0)n whose n-th coeffi-

cient is given by cn =
∑n
k=0 akbn−k. It arises when one forms all products aj (z − z0)j bk (z − z0)k, adds for

each n the ones with j + k = n, and sums the resulting terms.

Proposition 1.3.16. Their Cauchy product converges in the disk |z − z0| < min {R1, R2} to the product of
the functions represented by the two original series.

Proof. We can assume without loss of generality that z0 = 0. Suppose |z| < min {R1, R2}. For N a positive
integer we have  N∑

j=0

ajz
j

( N∑
k=0

bkz
k

)
−

N∑
n=0

cnz
n

=
∑

0≤j,k≤N

ajbkz
j+k −

N∑
n=0

∑
j+k=n

ajbkz
j+k

=
∑

0≤j,k≤N
j+k>N

ajbkz
j+k.

It follows that ∣∣∣∣∣∣
 N∑
j=0

ajz
j

( N∑
k=0

bkz
k

)
−

N∑
n=0

cnz
n

∣∣∣∣∣∣
≤

∑
j≤j,k≤N
j+k>N

∣∣ajbkzj+k∣∣
≤

∑
N
2 <max{j,k}≤N

∣∣ajbkzj+k∣∣
≤

∑
j>N

2

∣∣ajzj∣∣
( N∑

k=0

∣∣bkzk∣∣)+

 N∑
j=0

∣∣ajzj∣∣
∑

k>N
2

∣∣bkzk∣∣


≤

∑
j>N

2

∣∣ajzj∣∣
( ∞∑

k=0

∣∣bkzk∣∣)+

 ∞∑
j=0

∣∣ajzj∣∣
∑

k>N
2

∣∣bkzk∣∣
 .

The last expression tends to 0 as N −→ ∞, because both series
∑∞
j=0

∣∣ajzj∣∣ and
∑∞
k=0

∣∣bkzk∣∣ converge. In
view of the preceding inequality, therefore, we can conclude that

∞∑
n=0

cnz
n =

 ∞∑
j=0

ajz
j

( ∞∑
k=0

bkz
k

)

as desired.

Division

Suppose the power series
∑∞
n=0 bn (z − z0)

n and
∑∞
n=0 cn (z − z0)

n have positive radii of convergence and
so represent holomorphic functions g and h, respectively, in disks with center z0. Suppose also that g (z0) =
b0 ̸= 0. The quotient f = h/g is then holomorphic in some disk with center z0. Then f is represented in that
disk by a power series

∑∞
n=0 an (z − z0)

n, how does one find the coefficients an in terms of the coefficients
bn and cn?
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A method that always works in principle uses the Cauchy product, according to which

cn =

n∑
k=0

akbn−k, n = 0, 1, . . .

From this we can conclude that a0 = c0/b0 and

an =
1

b0

(
cn −

n−1∑
k=0

akbn−k

)
, n = 1, 2, . . .

The last equality expresses an in terms of cn, b0, . . . , bn and a0, . . . , an−1, enabling one to determine the
coefficients an recursively starting from the initial value a0 = c0/b0.

Exercise 1.3.17. Use the scheme above to determine the power series with center 0 representing the function
f(z) = 1/

(
1 + z + z2

)
near 0 . What is the radius of convergence of the series?
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Chapter 2

Zeros and Residues

The fact that every holomorphic function is locally the sum of a convergent power series has a large number
of interesting consequences. A few of these are developed in this chapter.

2.1 Isolated Zeros

We will see that zeros of non-vanishing analytic functions are isolated and analytic functions that agree
locally actually agree globally. We recall that x ∈ X is a limit point of A if for ∀ε > 0, B(x, ε)∩(A−{x}) ̸= ∅,
and it is easy to show that for metric space (X, d), x is a limit point of A if and only if there exists a sequence
{xi} in A such that xi → x (⇐ is because each ball B(x, ε) of x contain infinitely many xi as along as
i > N(ε); for⇒, see [10] Remark 3.39 to find such sequence). We call a point x in A an isolated point if it
is not a limit point of A. Thus, x ∈ A is an isolated point if there is some B(x, ε) intersecting no other points
in A, or equivalently, there exists no sequence {xi} in A converging to x.

Theorem 2.1.1. Suppose U is a region (an open and connected subset), f ∈ H(U), and

Z(f) = {a ∈ U : f(a) = 0}

Then either

(i) Z(f) = U , or

(ii) Z(f) has no limit point in U .

In the latter case there corresponds to each a ∈ Z(f) a unique positive integer m = m(a) such that

f(z) = (z − a)mg(z) (z ∈ U), (2.1)

where g ∈ H(U) and g(a) ̸= 0; furthermore, Z(f) is at most countable.

Definition 2.1.2. The integer m is called the order or multiplicity of the zero which f has at the point a.
Clearly, Z(f) = U if and only if f is identically 0 in U . We call Z(f) the zero set of f . Analogous results
hold of course for the set of α-points of f (α-level set), i.e., the zero set of f − α, where α is any complex
number.

Proof. Let A = (Z(f))acc ∩ U be the set of all limit points of Z(f) in U . Since f is continuous and for each
a ∈ A, ∃{zi} ∈ Z(f) s.t. zi → a we have f(a) = f(lim zi) = lim f(zi) = lim 0 = 0. Thus, A ⊂ Z(f).
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Fix a ∈ Z(f), and choose r > 0 so that B(a, r) ⊂ U . By 1.3.9,

f(z) =

∞∑
n=0

cn(z − a)n (z ∈ B(a, r)) (2.2)

There are now two possibilities. Either

(a) all cn are 0 , in which case B(a, r) ⊂ A; or

(b) there is a smallest integer m (necessarily positive, since f(a) = c0 = 0) such that cm ̸= 0.

In case (b), define

g(z) =

{
(z − a)−mf(z), z ∈ U − {a},
cm, z = a.

Then (2.1) holds and g(a) = cm ̸= 0. We are left with showing g ∈ H(U) to complete the proof. It is clear
that g ∈ H(U − {a}), so we need to show it is complex differentiable at a. In fact,

g(z) = (z − a)−mf(z)

= (z − a)−m
∞∑
n=m

cn(z − a)n

=

∞∑
n=m

cn(z − a)n−m

=

∞∑
n=0

cn+m(z − a)n (z ∈ B(a, r) \ {a})

This is also true for z = a: g(a) = cm and
∑∞
n=0 cn+m(a− a)n = c0+m = cm. As g(z) =

∑∞
n=0 cn+m(z − a)n

is a power series representation for z ∈ B(a, r), it follows that g ∈ H(B(a, r)). In particular, g is analytic at
z = a, so g ∈ H(U). Moreover, since g(a) ̸= 0, the continuity of g shows that there is a neighborhood of a in
which g has no zero. f is nonzero in the same neighborhood by (2.1), so a is an isolated point of Z(f).

Therefore, if a ∈ A = (Z(f))acc ∩ U (recall a is point in Z(f)), then case (b) cannot occur. Thus a ∈ A ⇒
case (a):B(a, r) ⊂ A, which implies that A is open. If B = U −A, it is clear from the definition of A as a set
of limit points that B is open. Thus U is the union of the disjoint open sets A and B. Since U is connected,
we have either A = U , in which case Z(f) = U (so (i) and thus (a)), or A = ∅ (which is case (ii) and note
that A = ∅ implies that B(a, r) ⊂ A is impossible and thus (b) rather than (a) must be the case). Besides, in
case A = ∅, Z(f) has at most finitely many points in each compact subset of U , and since U is σ-compact,
Z(f) is at most countable.

Note: The theorem fails if we drop the assumption that U is connected: If U = U0 ∪ U1, and U0 and U1 are
disjoint open sets, put f = 0 in U0 and f = 1 in U1. Then Z(f) = U0 ̸= U . Each z ∈ U0 is a limit point of U0

and is in U .

Corollary 2.1.3. f and g are holomorphic functions in a region U . If there is some sequence {xi} in U s.t.
f(xi) = g(xi) and xi → x for a point x ∈ U , then f = g on U . Thus, if f(z) = g(z) for all z in some set A
which has a limit point x in U , then f = g on U . In particular, A can be an open set or the trace of a path in
U .

Proof. Apply previous theorem to f − g. Note that (f − g)(x) = (f − g)(limxi) = lim(f − g)(xi) = lim 0 = 0
implies that x ∈ Z(f − g). Since xi → x, x is a limit point. Previous theorem then says it has to be the case
that Z(f − g) = U .

This is the result we alluded to when we define ez: if we would have another g ∈ H(C) with g(x) = ex for
x ∈ R, then in fact g(z) = ez ∀z ∈ C.
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2.2 Isolated Singularities

2.2.1 Classification of Isolated Singularities

Definition 2.2.1. If a ∈ U and f ∈ H(U − {a}), then f is said to have an isolated singularity at the point
a. If f can be defined at a so that the extended function is holomorphic in U , the singularity is said to be
removable.

Theorem 2.2.2. [Criterion for removable singularity] Suppose f ∈ H(U − {a}) and f is bounded in
B′(a, r) := {z : 0 < |z − a| < r}, for some r > 0. Then f has a removable singularity at a.

Remark 2.2.3. We previously had a similar result, but there we assumed f is continuous in U instead of
being bounded.

Proof. Define

h(z) =

{
(z − a)2f(z), z ∈ U − {a},
0, z = a.

h is evidently differentiable at U − {a}, and

h(z)− h(a)
z − a

= (z − a)f(z)→ 0

as z → a due to boundedness of f near a. Thus h ∈ H(U) with h′(a) = 0. Thus we can represent h by a
power series in B(a, r) ⊂ U :

h(z) =

∞∑
n=2

cn(z − a)n (z ∈ B(a, r)).

Notice that the first two coefficients are zero becasue

cn =
h(n)(a)

n!
, and h(a) = h′(a) = 0

We obtain the desired holomorphic extension of f by setting f(a) = c2, for then

∞∑
n=0

cn+2(z − a)n (z ∈ B(a, r))

is a power series representation of f at a: 1. the power series has the same radius of convergence as the one
representing h; 2. the power series equals f for z ∈ B(a, r) because (z− a)−2h(z) agrees with this for z ̸= a,
and both sides equal c2 for z = a after setting f(a) = c2.

We note that boundedness of f is only used for showing that limz→a(z− a)f(z) = 0. Therefore, we have the
following criterion:

Theorem 2.2.4. [Riemann’s Criterion on Removable Singularity] Let U ⊂ C be an open subset of the
complex plane, a ∈ U a point of U and f holomorphic on U\{a}. The following are equivalent:

(a) f has a removable singularity at a, i.e., f is holomorphically extendable over a.

(b) f is continuously extendable over a.

(c) There exists a neighborhood of a on which f is bounded.

(d) limz→a(z − a)f(z) = 0.

Proof. The direction (a) ⇒ (b) ⇒ (c) ⇒ (d) is clear. (d) ⇒ (c) is shown in the proof of the above theorem
2.2.2. Also note that (b)⇒ (a) can be proved by [10] Corollary 8.16.
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We introduce two other isolated singularities and claim that together with removable singularity they are
the all isolated singularities.

Theorem 2.2.5. If a ∈ U and f ∈ H(U − {a}), then one of the following three cases must occur:

(i) f has a removable singularity at a.

(ii) There are complex numbers c1, . . . , cm, where m is a positive integer and cm ̸= 0, such that

f(z)−
m∑
k=1

ck
(z − a)k

has a removable singularity at a.

(iii) If r > 0 and B(a, r) ⊂ U , then f (B′(a, r)) is dense in the plane.

In case (ii), f is said to have a pole of order m at a. The function

m∑
k=1

ck(z − a)−k

a polynomial in (z − a)−1, is called the principal part of f at a. It is clear in this situation that |f(z)| → ∞
as z → a. Coefficient c−1 is called residue of f at a, denoted as Res(f ; a). In case (iii), f is said to have an
essential singularity at a. A statement equivalent to (iii) is that for any complex number w ∈ C there exists
a sequence {zn} such that zn → a and f (zn)→ w as n→∞.

Proof. Suppose (c) fails. Then we must have some w ∈ C and r > 0 such that w /∈ f(B′(a, r)); so there is a
neighborhood B(w, δ) of w such that B(w, δ) ∩ f(B′(a, r)) = ∅, i.e., |f(z) − w| > δ for z ∈ B′(a, r). Write
B = B(a, r), B′ = B′(a, r), and define

g(z) =
1

f(z)− w
, z ∈ B′

Clearly, g ∈ H(B′) and |g(z)| < 1
δ . By 2.2.2, g has a removable singularity at z = a, so g extends to g ∈ H(B).

If g(a) ̸= 0, then this means

0 ̸= |g(a)| = lim
z→a
z∈B′

|g(z)| = lim
z→a
z∈B′

1

|f(z)− w|

and thus |f(z) − w| has to stay bounded in B′, and so does |f |. Thus again by 2.2.2, f has a removable
singularity at a. (a) holds.

The other case is g(a) = 0. We will show that this implies (b). Obviously, g is not identically zero in the
connected open set B, so we may write

g(z) = (z − a)mg1(z), z ∈ B,

for some m ≥ 1 and g1 ∈ H(B) with g1(a) ̸= 0 by 2.1.1. Also, g1 has no zero in B′ as g(z) = 1
f(z)−w in B′.

We define h = 1/g1 in B and then h ∈ H(B) with h having no zero in B. Now

f(z)− w =
1

g(z)
= (z − a)−mh(z), z ∈ B′

We expand the holomorphic h into power series: h(z) =
∑∞
n=0 bn(z − a)n, z ∈ B with 0 ̸= h(a) = b0. Thus
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we get

f(z)− w = (z − a)−mh(z) =
∞∑
n=0

bn(z − a)n−m

=
b0

(z − a)m
+

b1
(z − a)m−1

+ · · ·+ bm−1

z − a
+

∞∑
n=0

bn+m(z − a)n

⇒f(z)− b0
(z − a)m

− b1
(z − a)m−1

− · · · − bm−1

z − a
= G(z) := w +

∞∑
n=0

bn+m(z − a)n

where G(z) is analytic in B. Thus (b) holds with c−m = b0, · · · , c−1 = bm−1.

We put following observations without proof.

Proposition 2.2.6.

(a) If both limz→a f(z) and limz→a
1

f(z) exist, then a is a removable singularity of both f and 1
f .

(b) If limz→a f(z) exists but limz→a
1

f(z) does not exist (in fact limz→a |1/f(z)| =∞ ), then a is a zero of f
and a pole of 1

f .

(c) if limz→a f(z) does not exist (in fact limz→a |f(z)| = ∞ ) but limz→a
1

f(z) exists, then a is a pole of f
and a zero of 1

f .

(d) If neither limz→a f(z) nor limz→a
1

f(z) exists, then a is an essential singularity of both f and 1
f .

2.2.2 Residue Theorem for One Pole

Suppose now U is open and convex and f ∈ H(U − {a}) has a pole at z = a. Then we can write

f(z) =

m∑
k=1

c−k(z − a)−k + g(z)

for some g ∈ H(U). Thus, if γ is a closed piecewise C1 curve in U − {a}, then

1

2πi

∫
γ

f(z) dz =
1

2πi

∫
γ

c−1

z − a
dz =

1

2πi

∫
γ

Res(f ; a)

z − a
dz = Res(f ; a)nγ(a)

where we used the fact that each z 7→ (z − a)−k, k > 1 has a primitive 1
1−k (z − a)

1−k in a neighborhood
of γ∗ (since dist(a, γ∗) > 0) and so their integrals over γ vanish. We also invoked the Cauchy theorem to
see g ∈ H(U) ⇒

∫
γ
g = 0. We will generalize this residue theorem later after we get to the “global Cauchy

theorem.”

Example 2.2.7. We calculate the integral∫ ∞

−∞

eax

1 + ex
dx 0 < a < 1

We will show that its value is π
sin(πa) .

Solution. Let
f(z) =

eaz

1 + ez

Step 1 (find poles): Notice that eaz is entire and that 1 + ez = 0 ⇔ eiθ = eiπ ⇔ θ = 2k′π + π (k =
0,±1, · · · ) = kπ (k = ±1, · · · ), so the poles are z = iθ = kπi = · · · ,−3πi,−πi, πi, 3πi, · · ·

25



Complex Analysis Anthony Hong

Step 2 (choose path and U): We consider the path γR in the picture, and we choose an open convex set UR
with γ∗R ⊆ U (for instance, UR can be a small flattening of the box).

Re

Im

3πi

πi

−πi

−R R

2πi
γR

UR

path = red
poles = blue

Step 3 (apply residue theorem): Now, f is analytic in UR \ {πi}. We apply our toy residue theorem given
just before this example to see ∫

γR

f(z) dz = 2πiRes(f ;πi)

where the winding number nγR(πi) is arguably just 1 as shown in the picture (we will develop tools to
systematically justify computation of winding numbers later). Heuristically, we guess the order of the pole
πi is 1 (so then it would be that f(z) = Res(f ;πi)(z − πi)−1 + g(z) for analytic g, so (z − πi)f(z) =
Res(f ;πi) + (z − πi)g(z)→ Res(f ;πi) as z → πi). We calculate

(z − πi)f(z) = (z − πi) eaz

1 + ez
= eaz

(
ez − eπi

z − πi

)−1

z→2πi−−−−→ eaπi
(
d

dz
ez
)
z=πi = eaπieπi = −eaπi

Thus, indeed, as the limit exists, we must have

Res(f ;πi) = −eaπi

Thus, ∫
γR

f(z) dz = −2πie2πi

Step 4 (calculate the original integral): We then relate this result to the original real integral. Let

I =

∫ ∞

−∞

eax

1 + ex
dx = lim

R→∞

∫ R

−R

eax

1 + ex
dx =: lim

R→∞
IR

The integral of f over the top line of the rectangle with orientation from right to left is along ηR(t) =
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−t+ 2πi, t ∈ [−R,R], so∫
ηR

f(z) dz =

∫ R

−R
f(ηR(t))η

′
R(t)dt

= −
∫ R

−R

ea(−t+2πi)

1 + e−t+2πi
dt

= −e2πia
∫ R

−R

e−at

1 + e−t
dt

x=−t
dx=−dt
======= −e2πia

∫ R

−R

eax

1 + ex
dx

(
−
∫ −R

R

=

∫ R

−R

)
= −e2πiaIR

Thus, ∫
γR

f = (1− e2πia)IR +

∫
left vertical

f +

∫
right vertical

f

Notice, for instance, right vertical is parametrized by t→ R+ it, t ∈ [0, 2π]. Then,∣∣∣∣∫
right vertical

f(z) dz

∣∣∣∣ = ∣∣∣∣∫ 2π

0

ea(R+it)

1 + eRtit
idt

∣∣∣∣
≤
∫ 2π

0

eaR

eR − 1
dt

(
eR − 1 ≥ eR

2
for large R

)
≤ Ce(a−1)R R→∞−−−−→ 0 (a < 1 so a− 1 < 0)

Similarly, ∣∣∣∣∫
left vertical

f(z) dz

∣∣∣∣ R→∞−−−−→ 0

Therefore, by noticing that sinx = eix−e−ix

2i , we have

− 2πie2πi = lim
R→∞

∫
γR

f(z) dz = (1− e2πiaI)

⇒I = −2πi eaπi

1− e2πia
=

2πi

eπia − e−πia
=

π

sin(πa)

We prove a useful formula to calculate residue of f at a pole.

Proposition 2.2.8. If f ∈ H(U \ {a}) has a pole of order n at a, then

Res(f ; a) = lim
z→a

1

(n− 1)!

( d
dz

)n−1

(z − a)nf(z).

Proof. For f ∈ H(U \ {a}) with a pole a of n-th order, we can write

f(z) =

n∑
k=1

c−k(z − a)−k + g(z)

for some g(z) ∈ H(U). Then g is representable by a power series in U . That is, for any B(a, r) ⊆ U , g has a
power series expansion at a

g(z) =

∞∑
k=0

ck (z − a)k
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that is convergent for all z ∈ B (a, r). Thus,

f(z) =

n∑
k=1

c−k(z − a)−k + g(z) =

n∑
k=1

c−k(z − a)−k +
∞∑
k=0

ck (z − a)k =

φ(z)︷ ︸︸ ︷
∞∑
k=0

ck−n (z − a)k

(z − a)n
(2.3)

where φ(z) is a power series with the same radius of convergence as g, i.e., r, since changing finitely many
elements of a sequence does not affect its limsup. Thus φ(z) is analytic on B(a, r) as shown in class, and its
(n− 1)-th derivative at a is given by

φ(n−1)(a) =
(n− 1)!

2πi

∫
∂B

φ(z)

(z − a)n
dz (2.4)

by noting that the winding number of ∂B(a, r) around a is 1. This computation is shown during the proof of
converse of analyticity of power series, but it can also be inferred from [10] Theorem 8.5. Now we note that
equation (2.3) gives φ(z) = f(z)(z − a)n whenever z ̸= a. Therefore,

φ(n−1)(a) = lim
z→a

φ(n−1)(z) = lim
z→a

(
d

dz

)n−1

(z − a)nf(z) (2.5)

The residue is computed as

Res(f ; a) =
1

2πi

∫
∂B

f(z) dz =
1

2πi

∫
∂B

φ(z)

(z − a)n
dz

(2.4)
====

1

2πi

(
2πi

(n− 1)!
φ(n−1)(a)

)
(2.5)
==== lim

z→a

1

(n− 1)!

(
d

dz

)n−1

(z − a)nf(z)

Example 2.2.9. Calculate Res(f ; 0) for

f(z) :=
sinh(z)ez

z5
,

where sinh(z) := (ez − e−z)/2.

Solution. We now apply this formula to f(z) = sinh(z)ez/z5. Since ez is entire, we see sinh(z) = ez−e−z

2 is
also entire. Therefore, a = 0 is a pole of order 5 for f . Thus,

Res(f ; 0) = lim
z→0

1

4!

(
d

dz

)4

z5f(z)
1

24
lim
z→0

(
d

dz

)4

sinh(z)ez

=
1

24
lim
z→0

d4
(
e2z

2 −
1
2

)
dz4

=
1

24
lim
z→0

8e2z =
1

3
· 1 =

1

3

There is a rather elementary way to see this, if we recall the power series expansions of sinh(z) and ez at 0:

sinh(z) =

∞∑
n=0

z2n+1

(2n+ 1)!
= z +

z3

3!
+
z5

5!
+
z7

7!
+ · · ·

ez =

∞∑
n=0

zn

n!
= 1 + z +

z2

2
+
z3

6
+ · · ·

Then,

Res(f ; 0) = c−1 = coeff([z(z3/3!) + z(z3/6)]/z5) =
1

3
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2.3 Global Cauchy Theorem

Let γ : [a, b] → U be a piecewise C1 closed path, where U is convex and open. Suppose z0 ∈ C\U . Now
f(z) := 1

z−z0 is analytic in U , and so by Cauchy theorem on convex set,

nγ (z0) =
1

2πi

∫
γ

dz

z − z0

=
1

2πi

∫
γ

f(z)dz = 0

Thus,
nγ(z0) ∀z0 ∈ C \ U

Could it be that the validity of Cauchy is not so much about the convexity of U , but rather about this property
of γ itself? Is it true that if γ : [a, b] → U is a closed piecewise C1 path with nγ(z) = 0 ∀z ∈ C\U , then for
all f ∈ H(U) we have

∫
γ
f = 0 even if U is just assumed open? Yes!

And even more is true: we can use formal sums of paths (called cycles) and not just individual paths. To this
end, we first quickly study the following concepts of chains and cycles.

2.3.1 Chains and Cycles

Suppose γ1, . . . , γn are paths in the plane, and put K = γ∗1 ∪ · · · ∪ γ∗n. Each γi induces a linear functional γ̃i
on the vector space C(K), by the formula

γ̃i(f) =

∫
γi

f(z)dz

Define
Γ̃ = γ̃1 + · · ·+ γ̃n.

Explicitly, Γ̃(f) = γ̃1(f) + · · · + γ̃n(f) for all f ∈ C(K). The above relation suggests that we introduce a
”formal sum”

Γ = γ1+̇ · · · +̇γn =

n∑
i=1

γi

and define ∫
Γ

f(z)dz = Γ̃(f)

Then Γ = γ1+̇ · · · +̇γn is merely an abbreviation for the statement∫
Γ

f(z)dz =

n∑
i=1

∫
γi

f(z)dz (f ∈ C(K)).

Note that this equation serves as the definition of its left side. The objects Γ so defined are called chains. If
each γj in Γ =

∑n
i=1 γi is a closed path, then Γ is called a cycle. If each γj in Γ =

∑n
i=1 γi is a path in some

open set U , we say that Γ is a chain in U . If Γ =
∑n
i=1 γi holds, we define

Γ∗ = γ∗1 ∪ · · · ∪ γ∗n

If Γ is a cycle and α /∈ Γ∗, we define the index of α with respect to Γ by

IndΓ(α) =
1

2πi

∫
Γ

dz

z − α
,
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Obviously, Γ =
∑n
i=1 γi implies

IndΓ(α) =

n∑
i=1

Indγi(α).

If each γi in Γ =
∑n
i=1 γi is replaced by its opposite path←−γi , the resulting chain will be denoted by −Γ. Then∫

−Γ

f(z)dz = −
∫
Γ

f(z)dz (f ∈ C (Γ∗)) .

In particular, Ind−Γ(α) = − IndΓ(α) if Γ is a cycle and α /∈ Γ∗. Chains can be added and subtracted in the
obvious way, by adding or subtracting the corresponding functionals: The statement Γ = Γ1 + Γ2 means∫

Γ

f(z)dz =

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz

for every f ∈ C (Γ∗
1 ∪ Γ∗

2). Finally, note that a chain may be represented as a sum of paths in many ways. To
say that

γ1+̇ · · · +̇γn = δ1+̇ · · · +̇δk

means simply that ∑
i

∫
γi

f(z)dz =
∑
j

∫
δj

f(z)dz

for every f that is continuous on γ∗1 ∪· · ·∪γ∗n∪δ∗1∪· · ·∪δ∗k. In particular, a cycle may very well be represented
as a sum of paths that are not closed.

2.3.2 Global Cauchy Theorem

We will use the following lemma for proof of the global Cauchy theorem.

Lemma 2.3.1. If f ∈ H(U) and g is defined in U × U by

g(z, w) =

{
f(z)−f(w)

z−w if w ̸= z,

f ′(z) if w = z,

then g is continuous in U × U .

Proof. The only points (z, w) ∈ U × U at which the continuity of g is possibly in doubt have z = w.

Fix a ∈ U . Fix ε > 0. There exists r > 0 such that B(a, r) ⊂ U and |f ′(ξ)− f ′(a)| < ε for all ξ ∈ B(a, r). If z
and w are in B(a, r) and if

γ(t) = [z, w](t) = (1− t)z + tw,

then γ(t) ∈ B(a, r) for 0 ≤ t ≤ 1. When (w, z) ̸= (a, a), by [10] Corollary 5.45,

g(z, w)− g(a, a) = f(z)− f(w)
z − w

− f ′(a) = − 1

z − w

∫
γ

f ′(ξ)dξ − f ′(a)

=
1

w − z

∫ 1

0

f ′(γ(t))γ′(t)dt− f ′(a) =
∫ 1

0

[f ′(γ(t))− f ′(a)]dt

and this equation is also true for the case (w, z) = (a, a) where γ(t) = a for 0 ≤ t ≤ 1. The absolute value of
the integrand is < ε, for every t. Thus |g(z, w)− g(a, a)| < ε. This proves that g is continuous at (a, a).
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Theorem 2.3.2. [Global Cauchy Theorem] Suppose f ∈ H(U), where U ⊆ C is an open set. If Γ is a cycle
in U that satisfies

IndΓ(α) = 0 for every α not in U, (2.6)

then

f(z) · IndΓ(z) =
1

2πi

∫
Γ

f(w)

w − z
dw for z ∈ U − Γ∗ (2.7)

and ∫
Γ

f(z)dz = 0. (2.8)

If Γ0 and Γ1 are cycles in U such that

IndΓ0(α) = IndΓ1(α) for every α not in U, (2.9)

then ∫
Γ0

f(z)dz =

∫
Γ1

f(z)dz (2.10)

Proof. The function g defined in U × U by

g(z, w) =

{
f(w)−f(z)

w−z if w ̸= z,

f ′(z) if w = z,

is continuous in U × U by the lemma, so h(z) defined by the integral

h(z) =
1

2πi

∫
Γ

g(z, w)dw (z ∈ U)

is well-defined. Since
∫
Γ
f ′(z)dw = 0 and 1

2πi

∫
Γ
f(w)−f(z)

w−z dw = 1
2πi

∫
Γ
f(w)dw
w−z − f(z) IndΓ(z), the formula

(2.7) is equivalent to the assertion that

h(z) = 0 (z ∈ U − Γ∗) (2.11)

To prove equation (2.11), let us first show h is continuous on U . Fix z0 ∈ U and an arbitrary sequence
{zn} ∈ U, zn → z0. As g : U × U → C is continuous, it is uniformly continues on compact sets of U × U .
Choose r s.t. B̄ (z0, r) ⊂ U . Fix ε > 0. Now, y is uniformly continuous on B̄ (z0, r) × Γ∗ ⇒ ∃δ < r s.t.
whenever (z1, w1) , (z2, w2) ∈ B̄ (z0, r) × Γ∗ satisfy |(z1, w1)− (z2, w2)| < δ then |g (z1, w1)− g (z2, w2)| < ε.
Now, choose N s.t. zn ∈ B (z0, δ) ∀n > N . Then ∀w ∈ Γ∗ we have for all n > N that

|g(zn, w)− g(z0, w)| < ε

as (zn, w), (z0, w) ∈ B(z0, δ)× Γ∗ ⊂ B(z, r)× Γ∗ and |(zn, w)− (z0, w)| = |zn − z0| < δ. Therefore,

gn(w) := g(zn, w) ⇒ g(z0, w)

uniformly for w ∈ Γ∗. Then

lim
n→∞

h(zn) =
1

2πi
lim
n→∞

∫
Γ

gn(w)dw =
1

2πi

∫
Γ

lim
n→∞

gn(w)dw =
1

2πi

∫
Γ

g(z0, w)dw = h(z0)

This shows that h is continuous at z0. Since z0 is an arbitrary point in U , h is continuous on U .

To further show that h ∈ H(U), we recall Morera’s theorem ( [10] Corollary 8.14) that a function U → C is
analytic on an open set U if its integral over any triangle ∂△ in U is zero. Now,∫

∂△
h(z) dz =

∫
∂△

(
1

2πi

∫
Γ

g(z, w)dw

)
dz

Fubini
=====

1

2πi

∫
Γ

(∫
∂△

g(z, w)dw

)
dw
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Now, with w ∈ Γ∗ fixed, the function z → g(z, w) is obviously analytic in U \ {w} and continuous in U .
Hence, we can either use Cauchy for triangles that allow a special point ( [10] Theorem 6.3), or conclude
that z → g(z, w) is in H(U) as the singularity at z = w must be removable by continuity. In either way, we
have

∫
∂△ g(z, w)dw = 0. Thus,

∫
∂△ h(z) dz = 0 and Morera’s theorem gives h ∈ H(U).

Next, we define function

p(z) =
1

2πi

∫
Γ

f(ξ)

ξ − z
dξ (z ∈ C \ Γ∗)

and show its analyticity. This is more straightforward than h. In fact, recall how we proved that an analytic
function can be developed into a power series by writing it via Cauchy’s integral formula and expanding 1

ξ−z
into a power series (see 1.3.9). The same strategy can be applied to p.

Fix z0 ∈ C \ Γ∗ and choose δ > 0 such that B(z0, 2δ) ⊆ C \ Γ∗. Write

1

ξ − z
=

1

ξ − z0
1

1− z−z0
ξ−z0

=
∞∑
n=0

(z − z0)n

(ξ − z0)n+1
.

which uniformly converges for ξ ∈ Γ∗ and z ∈ B(z0, δ) because B(z0, 2δ) ⊆ C \ Γ∗ ⇒ |ξ − z0| > 2δ and

z ∈ B(z0, δ)⇒ |z − z0| < δ, so
∣∣∣ z−z0ξ−z0

∣∣∣ ≤ δ
2δ = 1

2 . Then

p(z) =

∞∑
n=0

1

2πi

∫
Γ

f(ξ)

(ξ − z0)n+1
dξ︸ ︷︷ ︸

cn

(z − z0)n (z ∈ B(z0, δ))

Thus, p ∈ H(B(z0, δ)). Since z0 ∈ C \ Γ∗ was arbitrary, p is analytic in C \ Γ∗.

Now, we have analytic functions

h(z) =
1

2πi

∫
Γ

g(z, w)dw (z ∈ U)

p(z) =
1

2πi

∫
Γ

f(ξ)

ξ − z
dξ (z ∈ C \ Γ∗)

We glue them to get an entire function, which will exploit the assumption on Γ we still didn’t use, i.e.,
nΓ(α) = 0, ∀α ∈ C \ U .

Let Ω := {z ∈ C | Γ∗ : nΓ(z) = 0}. Our assumption on Γ implies that C \ U ⊂ Ω, and so C = U ∪ Ω.

If z ∈ U ∩ Ω, then both h and p are defined, and in fact, we have

h(z) =
1

2πi

∫
Γ

f(ξ)

ξ − z
dξ − f(z)

=0︷ ︸︸ ︷
nΓ(z) = p(z).

So we can define φ ∈ H(C) by setting

φ(z) :=

{
h(z), z ∈ U,
p(z), z ∈ Ω.

This is well-defined, since in U ∩ Ω we have h(z) = p(z).

Notice that Ω is open: Ω = n−1
Γ B(0, 1) as nγ : C \ Γ∗ → C is Z-valued and continuous. It is then clear that

φ ∈ H(C), as for each z ∈ C there is an open neighborhood in which φ equals to h or p.

Our final step is to show h ≡ 0.
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We will apply Liouville’s theorem to φ. Notice that Γ∗ is bounded and so Γ∗ ⊂ D for some closed disk D,
Thus C\D ⊂ C\Γ∗ and for big |z| we must be in the unbounded connected open set C \D where nΓ(z) = 0.
So for big |z| we have z ∈ Ω and so

|φ(z)| = |p(z)| =
∣∣∣∣ 1

2πi

∫
Γ

f(ξ)

ξ − z
dξ

∣∣∣∣ ≤ 1

2π

∥f∥∞
dist(z,Γ∗)(

ξ ∈ Γ⇒ dist(z,Γ∗) ≤ |ξ − z| ⇒ sup
ξ∈Γ∗

∣∣∣∣ f(ξ)ξ − z

∣∣∣∣ ≤ supξ∈Γ∗|f(ξ)|

dist(z,Γ∗)
=

∥f∥∞
dist(z,Γ∗)

)

This implies φ is bounded in C (compare to the argument in the proof of the fundamental theorem of
algebra) and

φ(z)→ 0 as |z| → ∞

By Liouville’s theorem ( [10] Corollary 8.10), φ is constant and the constant must be 0. So h(z) = φ(z) = 0
for z ∈ U , and h(z) = 0 for z ∈ U\Γ∗, so (2.7) is verified (notice that nΓ(z) only makes sense in U \ Γ∗,
not in whole U). To deduce (2.8) from (2.7), we pick z0 ∈ U\Γ∗ and define F (z) = (z − z0) f(z). Then
F ∈ H(U) and they apply to F to give

1

2πi

∫
Γ

f(z)dz =
1

2πi

∫
Γ

F (z)

z − z0
dz =

=0︷ ︸︸ ︷
F (z0)nΓ (z0) = 0.

Finally, the path deformation claim follows from applying (2.8) to Γ := Γ1 − Γ0.

Remark 2.3.3.
(a) If γ is a closed path in a convex region Ω and if α /∈ Ω, an application of Cauchy’s theorem on convex
set to f(z) = (z − α)−1 shows that Indγ(α) = 0. Assumption on Γ in global version is therefore satisfied by
every cycle in Ω if Ω is convex. This shows that global version generalizes Cauchy’s theorem and formula on
convex set.

(b) The path deformation part of the above theorem shows under what circumstances integration over one
cycle can be replaced by integration over another, without changing the value of the integral. For example,
let U be the plane with three disjoint closed discs Di removed, i.e., U = C \ (D1 ∪D2 ∪D3). If Γ, γ1, γ2, γ3
are positively oriented circles in Ω such that Γ surrounds D1 ∪D2 ∪D3 and γi surrounds Di but not Dj for
j ̸= i, then

∀α ∈ C \ U, IndΓ(α) = Indγ1+γ2+γ3(α).

and for every f ∈ H(Ω). ∫
Γ

f(z)dz =

3∑
i=1

∫
γi

f(z) dz

Γ

γ1 γ2

γ3
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(c) In order to apply global Cauchy, it is desirable to have a reasonably efficient method of finding the index
of a point with respect to a closed path. The following theorem does this for all paths that occur in practice.
It says, essentially, that the index increases by 1 when the path is crossed ”from right to left.” If we recall
that Indγ(α) = 0 if α is in the unbounded component of the complement W of γ∗, we can then successively
determine Indγ(α) in the other components of W , provided that W has only finitely many components and
that γ traverses no arc more than once.

Theorem 2.3.4. Suppose γ is a closed path in the plane, with parameter interval [α, β]. Suppose α < u <
v < β, a and b are complex numbers, |b| = r > 0, and

(i) γ(u) = a− b, γ(v) = a+ b,

(ii) |γ(s)− a| < r if and only if u < s < v,

(iii) |γ(s)− a| = r if and only if s = u or s = v.

Assume furthermore that D(a; r)−γ∗ is the union of two regions, D+and D−, labeled so that a+bi ∈ D̄+and
a− bi ∈ D̄−. Then

Indγ(z) = 1 + Indγ(w)

if x ∈ D+and w ∈ D−. As γ(t) traverses D(a; r) from a − b to a + b,D−is ”on the right” and D+is ”on the
left” of the path.

Proof. See [12] Theorem 10.37

2.3.3 Homotopy

We introduce a concept in algebraic topology that is also related to Cauchy’s theorem. First, to be clearer
on the terminology, we would say curves are continuous but not necessarily differentiable while paths are
assumed to be piecewise C1.

Suppose γ0, γ1 : I → U are closed curves in a topological space X. We say that γ0 and γ1 are U -homotopic
if there is a continuous map H : I × I → U such that

H(s, 0) = γ0(s), H(s, 1) = γ1(s), H(0, t) = H(1, t)

for all s ∈ I and t ∈ I. Put γt(s) = H(s, t). Then H defines a one-parameter family of closed curves γt in X,
which connects γ0 and γ1. Intuitively, this means that γ0 can be continuously deformed to γ1, within X.

If γ0 is U -homotopic to a constant mapping γ1 (i.e., if γ∗1 consists of just one point), we say that γ0 is null-
homotopic in U . If U is connected and if every closed curve in U is null-homotopic, U is said to be simply
connected.

For example, every convex region Ω is simply connected. To see this, let γ0 be a closed curve in Ω, fix z1 ∈ Ω,
and define straight-line homotopy

H(s, t) = (1− t)γ0(s) + tz1 (0 ≤ s ≤ 1, 0 ≤ t ≤ 1)

Theorem 2.3.6 will show that (2.9) in the global Cauchy holds whenever Γ0 and Γ1 are U -homotopic closed
paths. As a special case of this, note that condition (2.6) of 2.3.2 holds for every closed path Γ in U if U is
simply connected, since constant paths necessarily have zero index.

Lemma 2.3.5. Let γ0 and γ1 be closed paths with parameter interval [0, 1] and let α be a complex number.
If

|γ1(s)− γ0(s)| < |α− γ0(s)| (0 ≤ s ≤ 1) (2.12)

then
Indγ1(α) = Indγ0(α).
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Proof. Condition (2.12) implies that α /∈ γ∗0 and α /∈ γ∗1 . Hence one can define γ(t) = (γ1(t)− α) / (γ0(t)− α).
Since

|γ1(s)− γ0(s)| < |α− γ0(s)| ⇒
∣∣∣∣γ0 − γ1γ0 − α

∣∣∣∣ = ∣∣∣∣γ0 − α− (γ1 − α)
γ0 − α

∣∣∣∣ = |1− γ| < 1

we see γ∗ ∈ B(1, 1), which implies that Indγ(0) = 0. The following relationship between the paths and their
derivatives can also be easily calculated.

γ′

γ
=

γ′1
γ1 − α

− γ′0
γ0 − α

Integrating the above identity over [0, 1] and writing them in path integral forms will give the desired result:∫
γ

1

z
dz︸ ︷︷ ︸

Indγ(0)=0

=

∫
γ1

1

z − α
dz︸ ︷︷ ︸

Indγ1
(α)

−
∫
γ0

1

z − α
dz︸ ︷︷ ︸

Indγ0
(α)

Theorem 2.3.6. If Γ0 and Γ1 are U -homotopic closed paths in an open connected set U , and if α /∈ U , then

IndΓ1
(α) = IndΓ0

(α)

Proof. By definition, there is a continuous H : I2 → Ω such that

H(s, 0) = Γ0(s), H(s, 1) = Γ1(s), H(0, t) = H(1, t).

Since I2 is compact, so is H
(
I2
)
. Since α is not in the closed set H(I2), there exists ε > 0 such that

B(α, 2ε) ∩H(I2) = ∅, i.e.,
|α−H(s, t)| ≥ 2ε ∀(s, t) ∈ I2. (2.13)

Since H is continuous on compact set and is thus uniformly continuous, there is a positive integer n such
that:

|H(s, t)−H (s′, t′)| < ε if |s− s′|+ |t− t′| ≤ 1/n. (2.14)

(Note that
√
|s− s′|1/2 + |t− t′|1/2 ≤ |s− s′|+ |t− t′|)

Define polygonal closed paths γ0, . . . , γn by

k = 0, 1, · · · , n : γk(s) = H

(
i

n
,
k

n

)
(1− (i− ns)) +H

(
i− 1

n
,
k

n

)
(i− ns) (2.15)

if 0 ≤ i− ns ≤ 1
(
i.e., i−1

n ≤ s ≤
i
n

)
and i = 1, . . . , n. By (2.14) and (2.15), for k ∈ [n], s ∈ [0, 1],

(∗) :
∣∣∣∣γk(s)−H (s, kn

)∣∣∣∣ ≤ (ns+ 1− i)
∣∣∣∣H ( in , kn

)
−H

(
s,
k

n

)∣∣∣∣︸ ︷︷ ︸
<ε

+(i− ns)
∣∣∣∣H ( i− 1

n
,
k

n

)
−H

(
s,
k

n

)∣∣∣∣︸ ︷︷ ︸
<ε

< ε

(Note that (ns+ 1− i) + (i− ns) = 1 when using the triangle inequality)

In particular, taking k = 0 and k = n,

|γ0(s)− Γ0(s)| < ε, |γn(s)− Γ1(s)| < ε.

By (∗) and (2.13),
|α− γk(s)| > 2ε− ε = ε (k ∈ [n]; s ∈ [0, 1]).
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On the other hand, (2.14) and (2.15) also imply that for k ∈ [n]; s ∈ [0, 1],

|γk−1(s)− γk(s)| ≤ (ns+1−i)
∣∣∣∣H ( in , k − 1

n

)
−H

(
i

n
,
k

n

)∣∣∣∣︸ ︷︷ ︸
<ε

+(i−ns)
∣∣∣∣H ( i− 1

n
,
k − 1

n

)
−H

(
i− 1

n
,
k

n

)∣∣∣∣︸ ︷︷ ︸
<ε

< ε.

Now it follows from the last three inequalities, and n + 2 applications of Lemma 2.3.5 that α has the same
index with respect to each of the paths Γ0, γ0, γ1, . . . , γn, Γ1. This proves the theorem.

Remark 2.3.7.

1. If Γt(s) = H(s, t) in the preceding proof, then each Γt is a closed curve, but not necessarily a path,
since H is not assumed to be differentiable. The paths γk were introduced for this reason. Another
(and perhaps more satisfactory) way to circumvent this difficulty is to extend the definition of index to
closed curves.

2. As promised, this theorem of sufficiency of path deformation and global cauchy show that any integral
of analytic function along γ in a simply-connected set U is zero. We shall see the converse is also true,
i.e., this property can be used as definition of simply-connectedness (of a set in complex plane).

Theorem 2.3.8. Let U ⊂ C be open and connected. Then the following are equivalent.

(a) U is homeomorphic to B(0, 1) (i.e. there is a continuous bijection ψ : U → B(0, 1) s.t. ψ−1 is also
continuous).

(b) U is simply connected;

(c)
∫
γ
f(z)dz = 0 ∀f ∈ H(U) and every closed path γ : [a, b]→ U ;

(d) Every f ∈ H(U) has a primitive;

(e) If f, 1/f ∈ H(U) (i.e., f is analytic and non-vanishing), then f = eg for some g ∈ H(U) (“f has a
holomorphic logarithm g in U”);

(f) If f in a non-vanishing analytic function, then f = φ2 for some φ ∈ H(U) (“f has a holomorphic square
root φ in U”).

Proof.

(a) ⇒ (b): that’s basically becauseB(0, 1) is simply-connected and homeomorphism preserves null-homotopy
(in fact the whole fundamental group). Let ψ : U → B(0, 1) be the homeomorphism. For the closed
curve γ in U , the map H(s, t) = ψ−1((1− t)0+ tψ(γ(s))) = ψ−1(tψ(γ(s))) defines a homotopy between
constant map cψ−1(0) and curve γ(s).

(b) ⇒ (c): consequence of 2.3.6 and 2.3.2.

(c) ⇒ (d): The proof resembles that for Cauchy’s theorem in a convex set ( [10] Theorem 6.10). Fix a ∈ U
arbitrary, and set

g(z) :=

∫
γz

f(w)dw

where γz is any path (i.e., piecewise C1 curve) connecting a to z inside of U . Note: the fact that we can
always select a piecewise C1 curve is not guaranteed by the definition of connectness (which only gives
a continuous curve) - however, it is a well-known result from basic topology that in an open, connected
set we can always connect two points with a finite union of line segments (a polygonal path).
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Also note that g is well-defined: if γ̃z is some other path connecting a to z in U , then γz− γ̃z is a closed
path in U and by the given assumption (c),∫

γz−γ̃z
f(w)dw = 0⇒

∫
γz

f(w)dw =

∫
γ̃z

f(w)dw

Choose now r > 0 such that B(z, r) ⊂ U . Consider h ∈ C with |h| < r so that z + h ∈ B(z, r). Let
η = [z, z+h] be the line segment path connecting z to z+h inside of B(z, r) ⊂ U . Then γ+ η is a path
connecting a to z+h, and due to invariance of path in the definition of g(z+h) as we just showed, we
have

g(z + h) =

∫
γ+η

f(w)dw =

∫
γ

f(w)dw +

∫
η

f(w)dw

and so

g(z + h)− g(z) =
∫
η

f(w)dw.

Since
1

h

∫
η

f(z)dw =
1

(z + h)− z

∫
[z,z+h]

f(z)dw = f(z),

and length(η) = |z + h− z| = |h|, we apply [10] Corollary 5.31 to see∣∣∣∣g(z + h)− g(z)
h

− f(z)
∣∣∣∣ = ∣∣∣∣ 1h

∫
η

f(w)− f(z)dw
∣∣∣∣ ≤ ∥f − f(z)∥L∞([z,z+h]) ≤ ε

where the last inequality holds for sufficiently small |h| due to continuity of f . Thus,

g′(z) = lim
h→0

g(z + h)− g(z)
h

= f(z)

(d) ⇒ (e): The identity f = eg, if it were to hold for some g ∈ H(U), implies f ′(z) = g′(z)eg(z) = g′(z)f(z)
so that g′(z) = f ′(z)/f(z). So we want a primitive of the analytic function f ′/f (recall f has no zeros
in U by assumption). Let z0 ∈ U be a fixed point and c0 is a complex number with ec0 = f (z0) (recall
ez obtains all values except 0 and f(z0) ̸= 0). Since f ′ ∈ H(U) and 1/f ∈ H(U), assumption (d) gives
a primitive g of f ′/f . We can assume g (z0) = c0 (otherwise take g̃ = g + c0 − g(z0)).

We claim that g in turn satisfies f = eg. Motivated by the midterm Q2, we study G(z) := eg(z)/f(z).
Now, g′(z) = f ′(z)/f(z) gives

G′(z) = g′(z)eg(z)/f(z)− eg(z)f(z)−2f ′(z) = eg(z)f(z)−2f ′(z)− eg(z)f(z)−2f ′(z) = 0.

This implies, as U is connected, that G(z) = eg(z)/f(z) = C for some constant C, and so eg(z) = Cf(z)
in U . Now, as eg(z0) = ec0 = f (z0) we must have C = 1, and so we are done.

(e) ⇒ (f): Use (e) to write f = eg with g ∈ H(U). Define φ = eg/2. Then φ2 = eg = f .

(f) ⇒ (a): If U = C, the homeomorphism is just directly given (without using (f)) by z 7→ z
1+|z| . If

the open connected set U is not the whole C, there actually exists a holomorphic homeomorphism
U → B(0, 1) (a conformal mapping). This is the Riemann Mapping Theorem. This implication is thus
proved as soon as we later prove Riemann mapping theorem (using only (f) and nothing else about
simply connected domains).
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2.4 Residue Theorem

Definition 2.4.1. A function f is said to be meromorphic in an open set U if there is a set A ⊂ U such that

(a) A has no limit point in U ,

(b) f ∈ H(U −A),

(c) f has a pole at each point of A.

Note that the possibility A = ∅ is not excluded. Thus every f ∈ H(U) is meromorphic in U .

Note also that (a) implies that no compact subset of U contains infinitely many points of A, and that A is
therefore at most countable.

If f and A are as above, if a ∈ A, and if

Q(z) =

m∑
k=1

ck(z − a)−k

is the principal part of f at a, as defined in Theorem 2.2.5 (i.e., if f − Q has a removable singularity at a),
then the number c1 is called the residue of f at a :

c1 = Res(f ; a).

Theorem 2.4.2. [The Residue Theorem] Suppose f is a meromorphic function in U . Let A be the set of
points in U at which f has poles. If Γ is a cycle in U −A such that

IndΓ(α) = 0 for all α /∈ U

then
1

2πi

∫
Γ

f(z)dz =
∑
a∈A

Res(f ; a) IndΓ(a)

Proof. We will argue the sum on the RHS, though formally infinite, is actually finite. Let

B := {a ∈ A : nΓ(a) ̸= 0} .

Let Ω := C\Γ∗. Denote the components of Ω by F = ∪V . Each V is connected. The components are disjoint.
Every connected set E ⊂ Ω is containted in exactly one V ∈ F . Choose a disk D s.t. Γ∗ ⊂ D (possible as Γ∗

is compact) and notice C \D ⊂ Ω. So there exists a unique V0 ∈ F s.t. C \D ⊂ V0 (as C \D ⊂ Ω and C \D
is connected). So ∀V ∈ F∗ = F − {V0}, we have V ⊂ C \ V0 ⊂ D. Notice that nΓ(z) = 0 in V0 as V0 ⊂ Ω
unbounded, connected. Thus, B ⊂

⋃
V ∈F∗ V ⊂ D is bounded.

If |B| is not finite, we can choose a1, a2, . . . ∈ B s.t, ai ̸= aj (i ̸= j). As B̄ is compact, ∃ subseq. aik → a ∈ B̄.
Now a ∈ Aacc clearly, but also a ∈ U . Indeed, if a /∈ U then nΓ(a) = 0 bs assumption. But as nΓ is continuous
and Z-valued, this forces nΓ (aik) = 0 for k large, contradicting to aik ∈ B. So a ∈ U ∩Aacc, contradicting to
our assumption that U ∩Aacc = ∅. Thus |B| is finite and∑

a∈A
Res(f ; a)nΓ(a) =

∑
a∈B

Res(f ; a)nΓ(a) <∞

Write B = {a1, · · · , an}. Let Q1, · · · , Qn be the principal parts of f at a1, · · · , an. Set

g := f −
n∑
i=1

Qi.
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Put U0 := U\(A\B). As A has no accumulation point in U , this means ∀z ∈ U0, ∃r s.t. B(z, r) ∈ U contains
no other points of A than possibly z. Thus B(z, r) ⊂ U0 and U0 is open.

If z ∈ U0 ∩ A, then z ∈ B = {a1, . . . , an}, and g has a removable singularity at z. If z ∈ U0\A, g is obvious
complex differentiable, so g ∈ H (U0). We apply the Global Cauchy to g ∈ H(U0):∫

Γ

g(z) dz = 0

as Γ is a cycle in U0 with the property that

nΓ(z) = 0 ∀z ∈ C \ U0

Indeed, if z ∈ C \ U0, then either z ∈ C \ U and nΓ(z) = 0 by the assumption of the theorem, or z ∈ A \ B
where also nΓ(z) = 0 by the definition of B. Hence,

0 =

∫
Γ

f(z)dz −
n∑
i=1

∫
Γ

Qi(z)dz =

∫
Γ

f(z)dz −
n∑
i=1

Res (f ; ai) 2πi nΓ (ai)

yielding
1

2πi

∫
Γ

f(z) dz =

n∑
i=1

Res (f ; ai)nΓ (ai) =
∑
a∈A

Res(f ; a)nΓ(a)

as desired.

We will use L’Hôpital’s rule in the following example:

Proposition 2.4.3. [L’Hôpital’s rule] Let U ⊂ C be open, let z ∈ C, and let f, g : U → C be complex
differentiable at z, with g′(z) ̸= 0. Assume moreover that f(z) = 0 = g(z). Then

lim
w→z

w∈C\{z}

f(w)

g(w)
=
f ′(z)

g′(z)

Proof. By [10] Proposition 4.7, we may write

lim
w→z

w∈C\{z}

f(w)

g(w)
= lim

w→z
w∈C\{z}

f(z) + (f ′(z) + εf (w)) (w − z)
g(z) + (g′(z) + εg(w)) (w − z)

,

where εf (w) → 0 and εg(w) → 0 as w → z. Moreover, recalling that f(z) = 0 = g(z), the above limit
simplifies to

lim
w→z

w∈C\{z}

f(w)

g(w)
= lim

w→z
w∈C\{z}

f ′(z) + εf (w)

g′(z) + εg(w)
=
f ′(z)

g′(z)
,

as claimed. Notice that here diving with g′(z) makes sense as g′(z) ̸= 0. Moreover, notice that by (b) this
implies that in a small neighborhood of z we have g(w) ̸= g(z) = 0 for w ̸= z, so also the expression
f(w)/g(w) above makes sense for w ̸= z close to z.

Example 2.4.4. We calculate the integrals ∫ ∞

−∞

dx

1 + x4
.

Solution. We want to have a path γR such that above equals to

lim
R→∞

∫
γR

f(z) dz
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where f(z) = 1/(1 + z4). We let γR = [−R,R] ⋆ σR, σR(t) = Reit, t ∈ [0, π]. It works simply becasue of the
usual estimate ∣∣∣∣∫

σR

f(z) dz

∣∣∣∣ ≤ CR

R4
=

C

R3

R→∞−−−−→ 0.

Now 1 + z4 = 0 has solutions eiπ/4, ei3π/4, ei5π/4, ei7π/4, all with order 1. Only poles z1 = eiπ/4 and
z2 = ei3π/4 are inside γR. By the residue theorem and formula 2.2.8,

intγRf(z) dz = 2πi(Res(f ; z1) + Res(f ; z2))

= 2πi

(
lim
z→z1

(z − z1)f(z) + lim
z→z2

(z − z2)f(z)
)

Instead of writing z4 + 1 = (z − z1) · · · (z − z4), it is convenient to use L’Hôpital’s rule instead:

lim
z→z1

(z − z1)f(z) = lim
z→z1

z − z1
1 + z4

L’Hôpital
======= lim

z→z1

1

4z3
=

1

4(eiπ/4)3
=

1

4
e−i3π/4.

Similarly,

lim
z→z2

(z − z2)f(z) =
1

4
e−iπ/4.

Thus, ∫ ∞

−∞

dx

1 + x4
=

2πi

4

(
e−i3π/4 + e−iπ/4

)
=
πi

2

(
− 1√

2
− i√

2
+

1√
2
− i√

2

)
= −πi

2

2i√
2
=

π√
2

Example 2.4.5. Calculate the integral

I :=

∫ ∞

0

x1/3

1 + x2
dx.

Solution. We need a keyhole contour line γr,R := C1
r,R ⋆ σR ⋆ C

2
r,R ⋆ σr

σR ends

σR startsσR σr

C2
r,R

C1
r,R

We define a branch of argument Ãrgz ∈ (0, 2π) on C \ [0,∞) in the natural way, i.e., Ãrgv(z) defined in [10]
Theorem 2.57 with v = 1 here. Then we define

g(z) = |z|1/3eiÃrgz/3

and define

f(z) =
g(z)

1 + z2
, z ∈ C\[0,∞), z ̸= ±i.
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we first calculate
∫
γ
f(z)dz using residues.

Clearly, g is analytic in a neighborhood (fattening) of the area enclosed by γr,R, and nγr,R(z) = 0 for all z
outside of this fattening (as z will be in the unbounded component of C \ γ∗r,R). Residue theorem gives∫

γr,R

f(z) dz = 2πi(Res(f ; i) + Res(f ;−i))

where it is easy to see by an argument of homotopy that nγr,R(i) = nγr,R(−i) = 1. Now,

Res(f ; i) = lim
z→i

g(z)

z + i
=
ei

π
6

2i
=

1

2
ei(

π
6 −π

2 ) =
e−i

π
3

2

Res(f ;−i) = lim
2→−i

g(z)

z − i
=
ei

π
2

−2i
= −1

2

Then, ∫
γr,R

f(z) dz = 2πi · 1
2

(
e−i

π
3 − 1

)
= πi

(
1

2
−
√
3

2
i− 1

)

= πi

(
−1

2
−
√
3

2
i

)
= −πieiπ3

Now, we relate this complex integral to the original real integral∣∣∣∣∫
σR

f(z)dz

∣∣∣∣ ⩽ C
R1/3R

R2
= CR−2/3 → 0, R→∞∣∣∣∣∫

σr

f(z)dz

∣∣∣∣ ⩽ Cr → 0, r → 0∫
c1r,R

f(z)dz → I as r → 0, R→∞∫
c2r,R

f(z)dz → −ei 2π3 I, r → 0, R→∞

(Since Ãrgz → 2π here, and we travel with opposite direction.)

Then (
1− ei 2π3

)
I = lim

r→0
R→∞

∫
γr,R

f(z)dz = −πieiπ3

Thus,

I =
−πieiπ3
1− ei iπ3

=
πi

ei
π
3 − e−iπ3

=
πi

2i sin π
3

=
π

2

1

sin π
3

=
π

2

2√
3
=

π√
3
.

We conclude this chapter with Rouché’s theorem.
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Theorem 2.4.6. Suppose γ is a closed path in an open connected set U , such that Indγ(α) = 0 for every α
not in U . Suppose also that Indγ(α) = 0 or 1 for every α ∈ U − γ∗. Let U1 = {z ∈ C \ γ∗ : Indγ(α) = 1} ⊂ U .
For any f ∈ H(U) let Nf be the number of zeros of f in U1, counted according to their multiplicities.

(a) If f ∈ H(U) and f has no zeros on γ∗ then

Nf =
1

2πi

∫
γ

f ′(z)

f(z)
dz = IndΓ(0) (2.16)

where Γ = f ◦ γ.

(b) (Rouché’s theorem) If also g ∈ H(U) and

|f(z)− g(z)| < |f(z)| for all z ∈ γ∗ (2.17)

then Ng = Nf .

Part (b) is usually called Rouché’s theorem. It says that two holomorphic functions have the same number of
zeros in U1 if they are close together on the boundary of U1, as specified by (2.17).

Proof. Put φ = f ′/f . Due to Theorem 2.1.1, if a ∈ U and f has a zero of order m = m(a) at a, then
f(z) = (z − a)mh(z), where h and 1/h are holomorphic in some neighborhood V of a. In V − {a},

φ(z) =
f ′(z)

f(z)
=
m(z − a)m−1h(z) + (z − a)mh′(z)

(z − a)mh(z)
=

m

z − a
+
h′(z)

h(z)
.

The first term m
z−a corresponds to the c−1(z−a)−1 term of φ(z), and h′(z)

h(z) ∈ H(V ) corresponds to
∑∞
n=0 cn(z−

a)n for the remaining terms of φ(z). Thus φ is a meromorphic function in U (the set A in the definition of
meromorphic function is Zf which by Theorem 2.1.1 has not limit point in U and each a ∈ A is a first order
pole of φ). Besides,

Res(φ; a) = m(a)

Let A = {a ∈ U1 : f(a) = 0} = U1 ∩ Zf . Now apply Residue theorem to meromorphic function φ and γ, a
cycle in U \ Zf with nγ(z) = 0, ∀z ∈ C \ U . Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a∈Zf

Res(φ; a) Indγ(a) =
∑

a∈U1∩Zf

Res(φ; a) =
∑
a∈A

m(a) = Nf .

This proves one half of (2.16). The other half is a matter of direct computation: supposing γ : [a, b]→ C,

IndΓ(0) =
1

2πi

∫
Γ

dz

z
=

1

2πi

∫ b

a

Γ′(s)

Γ(s)
ds

=
1

2πi

∫ b

a

f ′(γ(s))

f(γ(s))
γ′(s)ds =

1

2πi

∫
γ

f ′(z)

f(z)
dz.

Next, (2.17) gives |g(z)| ≥ |f(z)|−|f(z)−g(z)| > 0, ∀z ∈ γ∗, so g has no zero on γ∗. Hence (2.16) holds with
g in place of f . Put Γ0 = g◦γ. In order to apply Lemma 2.3.5 to Γ0 and Γ1 = f ◦γ to get IndΓ0

(0) = IndΓ1
(0),

we need verify that

|Γ0(s)− Γ1(s)| = |g(γ(s))− f(γ(s))| < |f(γ(s))| = | 0︸︷︷︸
α in the lemma

−Γ1(s)|

where the inequality is due to (2.17). Then it follows from (2.16) that

Ng = IndΓ0
(0) = IndΓ1

(0) = Nf
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Remark 2.4.7. For a set of more complete results, see [2] p.123 Argument Principle

Example 2.4.8. How many roots does the polynomial z 7→ z5 + 3z2 + 1 have in the annulus A = {1 < |z| <
2}?

Solution. The strategy is to let g be the original function g(z) = z5+3z2+1 and choose f to be the dominant
part on the circle |z| = 1.

Define f1(z) = 3z2. Then, on the circle |z| = 1, we have

|f1(z)− g(z)| = |z5 + 1| < |z|5 + 1 = 2 < 3 = 3|z|2 = |f1(z)|

By Rouché’s theorem, we have

|{a ∈ B(0, 1) : g(a) = 0}| = |{a ∈ B(0, 1) : f1(a) = 0}| = 2

since z 7→ 3z2 has a zero of order 2 at the origin.

Define f2(z) = z5. For |z| = 2 we have

|f2(z)− g(z)| = |3z2 + 1| ≤ 3 · 22 + 1 = 13 < 32 = 25 = |z|5 = |f2(z)|

By Rouché’s theorem, we have

|{a ∈ B(0, 2) : g(a) = 0}| = |{a ∈ B(0, 2) : f2(a) = 0}| = 5

since z 7→ z5 has a zero of order 5 at the origin.

Therefore, there are 5− 2 = 3 zeros in annulus A.

Example 2.4.9. Use Rouche’s theorem to prove that all the zeros of the polynomial

zn + cn−1z
n−1 + · · ·+ c0

lie in the open ball with center 0 and radius√
1 + |cn−1|2 + · · ·+ |c0|2.

Solution. Let
P (z) := zn + cn−1z

n−1 + · · ·+ c0

and

R :=

√
1 + |cn−1|2 + · · ·+ |c0|2.

If all of the coefficients ci are zero, then R = 1, and the result is trivial as the only zero of P (z) = zn

is at z = 0 ∈ B(0, 1). So we may assume R > 1. We will apply Rouche, and the dominating term we
choose is f(z) := zn. In the notation of Rouche, let g(z) := P (z). For |z| = R by Cauchy-Schwarz (i.e.
|w1 · w2| ≤ |w1| |w2| , w1, w2 ∈ Rd, where w1 · w2 is the dot product in Rd ) we have

|f(z)− g(z)| =
∣∣cn−1z

n−1 + · · ·+ c0
∣∣

≤
n−1∑
k=0

|ck|Rk

≤

(
n−1∑
k=0

|ck|2
)1/2(n−1∑

k=0

R2k

)1/2

=
(
R2 − 1

)1/2(n−1∑
k=0

R2k

)1/2

.
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In the last identity we used the definition of R. By the formula for a geometric sum

n−1∑
k=0

tk =
1− tn

1− t
, t ̸= 1,

we have (as R2 > 1 ) that
n−1∑
k=0

R2k =
1−R2n

1−R2
=
R2n − 1

R2 − 1
.

Thus, we obtain
|f(z)− g(z)| ≤

(
R2n − 1

)1/2
< Rn = |f(z)|n

on |z| = R. By Rouche f and g = P have the same number of zeros inside B(0, R), which is clearly n for
f(z) = zn (a zero of multiplicity n at z = 0 ). But as P is a polynomial of order n, it has exactly n roots, and
so all of its roots are in B(0, R). We are done.

Example 2.4.10. We use Rouché’s theorem to prove the open mapping theorem:
Suppose f ∈ H(U) is non-constant and U ⊂ C is open and connected. Then f is open, that is, it maps open
sets to open sets.

Proof. Let V ⊂ U be open. Consider w0 ∈ fV , that is, w0 = f (z0) for z0 ∈ V . As f − w0 is an analytic
function that is not identically zero (as f is non-constant) in the open, connected U , we know that its zero
set in U , that is, the set {z ∈ U : f(z) = w0}, does not have accumulation points in U . Using this we choose
r > 0 so that B̄ (z0, r) ⊂ V and f(z) ̸= w0 for z ∈ B̄ (z0, r) \ {z0}, in particular, if |z − z0| = r. As the
continuous function |f − w0| attains its minimum on the compact set |z − z0| = r we find ϵ > 0 so that
|f(z)− w0| ≥ ϵ for all z with |z − z0| = r.

Consider w with |w − w0| < ϵ. We show that then w ∈ fV , showing that fV is open as desired. We do this
by showing that f − w has a zero in B (z0, r) ⊂ V . Indeed, we have

|f(z)− w − (f(z)− w0)| = |w − w0| < ϵ ≤ |f(z)− w0|

on the circle |z − z0| = r. By Rouche’s theorem f −w and f −w0 have the same number of zeros in B (z0, r),
and we know that f−w0 has exactly one zero in that ball, namely z0. So, indeed, f−w has a zero in B (z0, r)
and we are done.
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Chapter 3

Analytic Functions

3.1 Riemann Sphere

Let the symbol∞ be called the point at infinity and C := C∪ {∞} is called the extended complex plane and
is put with the topology of one-point compactification. We for r > 0 define

B′(∞, r) = {z ∈ C : |z| > 1/r}
B(∞, r) = B′(∞, r) ∪ {∞}

The topology is then defined as this: we declare U ⊆ C to be open iff U is a union of some B(a, r) with
a ∈ C and r > 0 on C \ {∞}. This gives the usual topology on C. We will show that C is homeomorphic to
the unit sphere S2, so C is also called Riemann sphere. First, think of C as the embedded set {(x1, x2, 0) :
x1, x2 ∈ R} = {x ∈ R3 : x3 = 0} ⊆ R3. Let S be {x ∈ R3 : x21 + x22 + (x3 − 1)2 = 1} = ∂B((0, 0, 1), 1).
Then S2 ≈ C = C ∪ {∞} where the homeomorphism is stereographic projection: in Cartesian coordinates
(x, y, z) on the sphere and (X,Y ) on the plane, the projection and its inverse are given by the formulas

(X,Y ) =

(
x

1− z
,

y

1− z

)
(x, y, z) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2

)
The name “projection” comes from this: if one picks a point on the sphere and draw a line passing through
the point and the North pole, then the line will intersect with a point on the plane. When the point one picks
is the North pole then the line intersects with the extended plane C at the infinity point∞.

Behavior of functions at∞: if f is holomorphic in B′(∞, r), we say f has an isolated singularity at∞. The
type of this singularity (removable/pole/essential) is by definition the same as that of

z 7→ f(1/z) z ∈ B′(0, 1/r)

at z = 0. In particular, if f is bounded in B′(∞, r), then ∃ limz→∞ f(z) ∈ C and setting f(∞) = limz→∞ f(z)
gives a function defined on B(∞, r), which we call holomorphic (apply known result to z 7→ f(1/z)).
Similarly for poles and essential singularities: f has a pole of order m at ∞ if z 7→ f(1/z) has a pole of
order m at 0.

3.2 Conformal Mappings

Stated loosely, a function is conformal at a point P ∈ C if the function ”preserves angles” at p and ”stretches
equally in all directions” at p. Both of these statements must be interpreted infinitesimally; we shall learn
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to do so in the discussion below. Holomorphic functions enjoy both properties: Let f be holomorphic in a
neighborhood of p ∈ C. Let w1, w2 be complex numbers of unit modulus. Consider the directional derivatives

Dw1f(p) ≡ lim
t→0

f (P + tw1)− f(P )
t

and

Dw2
f(p) ≡ lim

t→0

f (p+ tw2)− f(p)
t

.

Then

(I) : |Dw1
f(p)| = |Dw2

f(p)|.

(II) : If |f ′(p)| ̸= 0, then the directed angle from w1 to w2 equals the directed angle from Dw1
f(p) to

Dw2
f(p).

Statement (I) is the analytical formulation of ”stretching equally in all directions.” Statement (II) is the
analytical formulation of ”preserves angles.”

In fact let us now give a discursive description of why conformality works. Either of these two properties
actually characterizes holomorphic functions.

It is worthwhile to picture the matter in the following manner: Let f be holomorphic on the open set U ⊆ C.
Fix a point p ∈ U . Write f = u+ iv as usual. Thus we may write the mapping f as (x, y) 7→ (u, v). Then the
(real) Jacobian matrix of the mapping is

J(p) =

(
ux(p) uy(p)
vx(p) vy(p)

)
,

where subscripts denote derivatives. We may use the Cauchy-Riemann equations to rewrite this matrix as

J(p) =

(
ux(p) uy(p)
−uy(p) ux(p)

)
Factoring out a numerical coefficient, we finally write this two-dimensional derivative as

J(P ) =
√
ux(P )2 + uy(p)2 ·

 ux(p)√
ux(p)2+uy(p)2

uy(p)√
ux(p)2+uy(p)2

−uy(p)√
ux(P )2+uy(p)2

ux(p)√
ux(p)2+uy(p)2


≡ h(P ) · J (p).

The matrix J (p) is of course a special orthogonal matrix (that is, its rows form an orthonormal basis of
R2, and it is oriented positively-so it has determinant 1). Of course a special orthogonal matrix represents
a rotation. Thus we see that the derivative of our mapping is a rotation J (p) (which preserves angles)
followed by a positive ”stretching factor” h(p) (which also preserves angles). Of course a rotation stretches
equally in all directions (in fact it does not stretch at all); and our stretching factor, or dilation, stretches
equally in all directions (it simply multiplies by a positive factor). So we have established (I) and (II).

In fact the second characterization of conformality (in terms of preservation of directed angles) has an
important converse: If (II) holds at points near p, then f has a complex derivative at p. If (I) holds at points
near p, then either f or f̄ has a complex derivative at p. Thus a function that is conformal (in either sense)
at all points of an open set U must possess the complex derivative at each point of U .

Due to (II), we see a holomorphic function with nonzero derivative is conformal in the angle-preserving and
stretching sense, and we will stick to holomorphicity plus nonzero derivative as the definition of conformality
(as a stronger version than previous sense) from now on.
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Definition 3.2.1. Let f : U → C with U ⊆ C open be a holomorphic function. We say f is conformal at
z ∈ U if f ′(z) = 0, we say f is conformal in U if f ′(z) = 0 ∀z ∈ U .

We have discussed analytic formulation of angle-preservation and now look for a geometric interpretation
(in fact, directional derivative is just the velocity of a curve in differential-geometric sense).

Let w = f(z) be analytic in a region U , z0 ∈ U , and f ′(z0) ̸= 0, i.e., f is conformal at point z0. Let γ(t),
t ∈ [t0, t1], be a smooth curve passing through z0 with γ(t0) = z0. Then γ′(t0) ̸= 0 (why?). γ has tangent
line at z0 and γ′(z0) is the tangent vector with angle ψ = Arg(γ′(t0)). The image curve under w = f(z) is
γ̃(t) = f(γ(t)), t ∈ [t0, t1]. Since γ̃′(t0) = f ′(z0)γ

′(t0) ̸= 0, γ̃ has tangent line at f(z0) as well, with tangent
vector γ̃′(t0). Its angle is

ϕ = Arg(γ̃′(t0)) = Arg(f ′(z0)) + Arg(γ′(t0)) = ψ +Arg(f ′(z0)).

Suppose f ′(z0) = reiθ, then |f ′(z0)| = r, Arg(f ′(z0)) = θ. Then

θ = ϕ− ψ, r = |f ′(z0)|.

We continue our discussion of geometric interpretation of conformality. Let γ0 and γ1 be two paths that go
through z0 = γ0(t0) = γ1(t1) with γ′0(t0) ̸= 0 and γ′1(t1) ̸= 0.

Suppose

γ′0(t0) = r0e
iφ0γ′1(t0) = r1e

iφ1

Figure 3.1: Conformal mapping preserves the angle.

Let f be conformal, then by [10] Lemma 5.44 we see

(f ◦ γ0)′(t0) = f ′(z0)γ
′
0(t0) = ρeiωr0e

iφ0 = ρr0e
i(ω+φ0) = ρr0e

iψ0

(f ◦ γ1)′(t1) = f ′(z0)γ
′
1(t1) = ρeiωr1e

iφ1 = ρr1e
i(ω+φ1) = ρr1e

iψ1

Then we observe that multiplication by f ′(z0) = ρeiω stretches and rotates but preserves the original angle
between γ′0(t0) and γ′1(t1), that is φ1 − φ0 = ψ1 − ψ0. In particular, for any rays L′, L′′ starting at z0, the
angle between the images fL′, fL′′ at f(z0) is the same as that made by L′ and L′′.

The conformal mapping problem between two regions U, V ⊆ C is the problem on the existence and explicit
construction of a conformal bijection f : U → V . Riemann Mapping Theorem will tell us about the existence
and will be proved soon. First, however, we look at the relationship between f ′ ̸= 0 and injectivity and
then at the explicit constructions of cnformal bijections between geometrically simple regions (balls, sectors,
half-planes, · · · ).
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3.2.1 Relationship between nonzero derivative and injectivity

We will first show that an analytic injection automatically has nonzero derivative. Thus, looking for a
conformal bijection f : U → V between regions U and V is the same as finding an analytic bijection
f : U → V . We also see that f−1 : V → U is automatically analytic too (but the converse of “nonzero
derivative =⇒ injectivity” is not true: f(z) = ez satisfies f ′(z) = ez ̸= 0 for any z ∈ C, but f is not injective
in the whole C). Nonetheless, f ′(z) ̸= 0 implies local injectivity.

Theorem 3.2.2. Suppose U ⊆ C is open. z0 ∈ U , and f ∈ H(U), f ′(z0) ̸= 0. Then there is a neighborhood
V ⊆ U of z0 such that

(a) f is injective in V . (local injectivity)

(b) W = f(V ) is open. (Open Mapping Theorem (as a consequence))

(c) f−1 :W → V is analytic. (holomorphic inverse)

Proof. Recall from the Lemma 2.3.1 where we built a function g continuous on U × U ,

g(z, w) =

{
f(z)−f(w)

z−w if w ̸= z,

f ′(z) if w = z,

So there is a neighborhood V of z0 such that for z1, z2 ∈ V ,

g(z1, z2)− g(z0, z0)︸ ︷︷ ︸
f ′(z0)

<
1

2
|f ′(z0)|

Thus, for z1, z2 ∈ V ,

∣∣∣∣f(z1)− f(z2)z1 − z2

∣∣∣∣ ≥ |f ′(z0)| −
∣∣∣∣∣∣∣∣∣
f(z1)− f(z2)

z1 − z2︸ ︷︷ ︸
g(z1,z2)

− f ′(z0)︸ ︷︷ ︸
g(z0,z0)

∣∣∣∣∣∣∣∣∣ ≥
1

2
|f ′(z0)|

so
(∗) : |f(z1)− f(z2)| ≥

1

2
|f ′(z0)||z1 − z2| ∀z1, z2 ∈ V

In particular, z1 ̸= z2 ⇒ f(z1) ̸= f(z2), so (a) holds. We prove (b) in a manner similar to Example 2.4.10.
We note that (∗) implies f ′(z) ̸= 0 for any z ∈ V . Pick an arbitrary w0 = f(z) ∈ fV , a ∈ V . Then pick v > 0
such that B(a, 2r) ⊂ V (V open). Then (∗) gives that

|f(z)− w0︸︷︷︸
f(a)

| ≥ 1

2
|f ′(z0)|r =: ε ̸= 0 ∀z ∈ ∂B(a, r)

We claim that B(w0, ε) ⊂ fV ⇒ fV is open. Indeed, for any w ∈ B(w0, ε), we have

|(f(z)− w)− (f(z)− w0)| = |w − w0| < ε ≤ |f(z)− w0| ∀z ∈ ∂B(a, r)

Then Rouché’s theorem shows that f−w and f−w0 have the same number of zeros inside B(a, r). As f−w0

has one, there is some b ∈ B(a, r) such that w = f(b) ∈ f(B(a, r)︸ ︷︷ ︸
⊂V

) ⊂ fV . So fV is open. (b) is proved.

For (c), we consider f−1 : W → V where W := fV . Let w1 ∈ W where w1 = f(z1), z1 ∈ V . For
w = f(z) ∈ w we notice that

f−1(w)− f−1(w1)

w − w1
=

z − z1
f(z)− f(z1)

=
1

f(z)−f(z1)
z−z1

Here,
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• (∗)⇒ |z − z1| ≤ 2
f ′(z0)| |f(z)− f(z1)| =

2
f ′(z0)

|w − w1| ⇒ w → w1 implies z → z1.

• f ′(z1) ̸= 0 as z1 ∈ V . So

(f−1)′(w1) = lim
w→w1

f ′(w)− f ′(w1)

w − w1
=

1

f ′(z1)
=

1

f ′(f−1(w1))

After showing the following shaper form of Open Mapping Theorem, we will prove the converse that injec-
tivity implies f ′ ̸= 0.

Theorem 3.2.3. Suppose U is a region, f ∈ H(U), f is not constant, z0 ∈ U , and w0 = f (z0). Let m be the
order of the zero which the function f − w0 has at z0. Then there exists a neighborhood V of z0, V ⊂ U ,
and there exists φ ∈ H(V ), such that

(a) f(z) = w0 + [φ(z)]m for all z ∈ V ,

(b) φ′ has no zero in V and φ is an invertible mapping of V onto a disc B(0, r).

Proof. Let V0 = B(z0, r0) ⊂ U such that f(z) ̸= w0 for any z ∈ V0 \ {z0} (we can do this because zeros of
f − w0 are isolated). We write

f(z)− w0 = (z − z0)mg(z)

for g ∈ H(V0), g non-vanishing. Since V0 = B(z0, r0) is obviously homeomorphic to B(0, 1), we by Theorem
2.3.8 see that g has a holomorphic lagarithm h in V0, that is, we can write g = eh for some h ∈ H(V0). We
define φ(z) = (z − z0)eh(z)/m, z ∈ V0. Then

z ∈ V0 : w0 + [φ(z)]m = w0 + (z − z0)meh(z)

= w0 + (z − z0)mg(z)
= f(z)

Thus, (a) holds.

Now φ(z0) = 0, φ′(z) = eh(z)/m + (z − z0)eh(z)/m · h′(z)/m, so φ′(z0) = eh(z0)/m ̸= 0. By Theorem 3.2.2,
φ is injective on some neighborhood V1 of z0 contained in V0, φ′ ̸= 0 on V1, and 0 = φ(z0) ∈ φ(V1), where
φ(V1) is open. Thus, we choose r > 0 such that B(0, r) ⊂ φ(V1). Define V = φ−1(B(0, r)) ⊂ V1 ⊂ V0. Then
φ : V → B(0, r) in invertible.

Corollary 3.2.4. Suppose U is a region, f ∈ H(U), and f is injective on U . Then f ′(z) ̸= 0 for every z ∈ U ,
and the inverse f−1 is holomorphic.

Proof. If f ′(z0) ̸= 0 for some z0 ∈ U , write f(z) = f(z0) + [φ(z)]m for z ∈ V , where m,φ, V are the same
as in previous theorem. If m = 1, we would get f ′(z0) = φ′(z) and thus 0 = f ′(z0) = φ′(z0) (contradiction
since φ′(z0) ̸= 0 as a result of previous theorem). So m > 1, but then f is not injective (since each w ̸= 0
equals zm for precisely m distinct z). Therefore, f ′ ̸= 0. Analyticity of f−1 follows Theorem 3.2.2.

3.2.2 Möbius Mappings

Definition 3.2.5. Rational functions of the form

f(z) =
az + b

cz + d
,

where a, b, c, d are complex numbers satisfying ad−bc ̸= 0, are called Möbius mappings, or linear fractional
transformations.
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It is convenient to regard f as a mapping from C to C with

f

(
−d
c

)
:=∞

(notice that ad− bc ̸= 0 guarantees that z 7→ az + b does not vanish at z = −dc ) and

f(∞) =

{
a
c , if c ̸= 0

∞, if c = 0

Thus, f is meromorphic in C with a pole at z = −dc . Notice that f is analytic at∞ if c ̸= 0.

Lemma 3.2.6. A Möbius mapping is a bijection C→ C whose inverse is a Möbius mapping.

Proof. One can directly verify that the inverse is given by the following Möbius mapping:

g(z) =
dz − b
−cz + a

Lemma 3.2.7. The composition of Möbius mappings is Möbius. Möbius mappings are conformal in C. Here,

(1) When f(∞) ∈ C (i.e., f(∞) ̸= ∞), we say f is conformal at ∞ if z 7→ f(1/z) (with 0 7→ f(∞)) is
conformal at 0.

(2) When f(∞) =∞, we say f is conformal at∞ if z 7→ 1
f(1/z) (with 0 7→ 0) is conformal at 0.

(3) When f(z0) =∞, we say f is conformal at z0 if z 7→ 1
f(z) (with z0 7→ 0) is conformal at z0.

Proof. See Math 5022 Homework 1.

Our first explicit construction problem is to find a Möbius mapping that maps given three points as we want.

There is a particular invariance that all Möbius mappings have (they preserve the so-called cross ratio). Let

f(z) =
az + b

cz + d

We choose first z2 ∈ C. Now,

f(z)− f(z2) =
az + b

cz + d
− az2 + b

cz2 + d
=

(ad− bc)(z − z2)
(cz + d)(cz2 + d)

Let then z3 ∈ C\{z2}. Similarly,

f(z)− f(z3) =
(ad− bc)(z − z3)
(cz + d)(cz3 + d)

So,

(∗) : f(z)− f(z2)
f(z)− f(z3)

= λ
z − z2
z − z3

with

λ = λ (z2, z3) =
cz3 + d

cz2 + d
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Notic that λ is independent of z. Apply (∗) twith z = z4 to get

f (z4)− f (z2)
f (z4)− f (z3)

= λ
z4 − z2
z4 − z3

.

Therefore,
(f(z)− f (z2)) (f (z3)− f (z4))
(f(z)− f (z3)) (f (z2)− f (z4))

=
(z − z2)(z3 − z4)
(z − z3)(z2 − z4)

This gives an invariance (preservation of cross ratio, defined below) for all Möbius mappings.

Definition 3.2.8. For complex numbers a1, · · · , a4, where ai ̸= aj if i ̸= j, their cross ratio is

(a1, a2, a3, a4) =
(a1 − a2)(a3 − a4)
(a1 − a3)(a2 − a4)

(To help memorize: numerator have indices in order and in denominator the leftmost and rightmost indices
are the same as those of the numerator).

We thus have proved that

Lemma 3.2.9. f Möbius, then (f(z), f(z2), f(z3), f(z4)) = (z, z2, z3, z4).

Remark 3.2.10. If ai =∞ is in the cross ratio, we interpret it as a limit ai →∞. For example,

(∞, a2, a3, a4) := lim
a1→∞

(1− a2/a1)(a3 − a4)
(1− a3/a1)(a2 − a4)

=
a3 − a4
a2 − a4

The cross ratio is a practical tool to find a Möbius mapping that maps distinct points z2, z3, z4 to given
w2, w3, w4.

Example 3.2.11. Find the Möbius map that satisfies f(0) = 1, f(1) = 2, f(2) = 3. The answer is obvious,
f(z) = z + 1, but let’s still see how to obtain it via the cross ratio. We want to find f such that

(z, 0, 1, 2) = (f(z), 1, 2, 3)

This is the same as

−z
(z − 1)(−2)

=
(f(z)− 1)(−1)
(f(z)− 2)(−2)

⇐⇒ z

2(z − 1)
=

f(z)− 1

2(f(z)− 2)
⇐⇒ f(z) = z + 1

Our next explicit construction problem concerns finding the Möbius mapping that converts circles and lines.

Lemma 3.2.12. Let a > 0 and w1 ∈ C\{0}, and define

F :=

{
w ∈ C :

|w|
|w − w1|

= a

}
.

Then F is a line if a = 1, and is a circle otherwise. Conversely, every circle not centered at 0 and not going
through 0, or any line not going through 0, can be written in above form.

Proof. Exercise.

Corollary 3.2.13. Let w1, w2 ∈ C, w1 ̸= w2, and a > 0. Let

F :=

{
w ∈ C :

|w − w1|
|w − w2|

= a

}
.

Then F is a circle if a ̸= 1, and a line if a = 1. Conversely, every line and every circle is of this form.
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Remark 3.2.14. In our language, lines L contain∞.

Corollary 3.2.15. Every Möbius mapping f maps a circle to a circle or a line. The same holds for lines, i.e.,
Möbius mapping f maps a line to a line or a circle.

Proof. All circles and lines are of the form

F :=

{
z ∈ C :

|z − z1|
|z − z2|

= a

}
for some z1 ̸= z2, a > 0. Recall that

(∗) : f(z)− f(z1)
f(z)− f(z2)

= λ
z − z1
z − z2

for a constant λ depending on z1, z2. Thus,

f(F ) =

{
f(z) :

|z − z1|
|z − z2|

= a

}
(∗)
===

{
f(z) :

|f(z)− f(z1)|
|f(z)− f(z2)|

= a|λ|
}

=

{
w :
|w − f(z1)|
|w − f(z2)|

= a|λ|
}
.

is a line or a circle.

Remark 3.2.16. Note that a line in C can be seen as a circle since the “ends” of the line meet at infinity on
the ball from which the plane is stereographically projected.

Now, every line L can be mapped with a Moöbius mapping into a given circle S. Simply choose z1, z2, z3 ∈ L
(one can be ∞) and map them to some w1, w2, w3 ∈ S. Then f−1 maps S to L, where f−1 is still Möbius.
One finds f with the cross ratio.

Recall the following topological fact:

Lemma 3.2.17. Let E be connected in a topological space X and let A ⊂ X. If E meets A and X\A, then
it must meet ∂A.

We ask how Möbius mapping f maps balls and planes. For instance, suppose it maps |z| = 1 to the real
axis. Then f(B(0, 1)) is connected, and by above topological fact lies completely in H1 = {Im(z) > 0} or
H2 = {Im(z) < 0}. Same is true for f(C\B(0, 1)). Thus, as f is bijective, f(B(0, 1)) is either H1 or H2 (to
figure out which of them, just check where f(0) is mapped to). If one gets an f that maps to H2 and wants
to get H1 instead then just apply a rotation (multiplicaiton with −1).

If we are asked to find a map from half-plane to ball, we can do the inverse problem and then find inverse
of mobius mapping. Note that applying inversion (composition with 1/z) can map outside of the circle to its
inside and vice versa.

To solve more complicated problems, combine with ez, log z, zn, z1/n, · · · For instance, ez maps horizontal
strips to sectors or half planes (see [10]). zα maps sectors to sectors.

Example 3.2.18. Find a conformal bijection C\(−∞, 0]→ B(0, 1).

Solution. First use z = reiθ 7→ z1/2 = r1/2eiθ/2 to map C\(−∞, 0] to H = {Re(z) > 0}. Then find Möbius
mapping g for H → B(0, 1).

Choose for example i, 0,−i from {x = 0} and map them to 1, i,−1. We compute the cross ratio

(g(z), 1, i,−1) = (z, i, 0,−i)

(g(z)− 1)(i+ 1)

(g(z)− i)(1 + 1)
=

(z − i)(0 + 1)

(z − 0)(i+ i)
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⇐⇒ g(z) = i
1− z
1 + z

As g(1) = 0, it turns out that we are lucky and g works (it maps to the inside of the circle; if that’s not the
case, we need to rotate {Re(z) > 0} to {Re(z) < 0}).

Therefore, the composition is the desired conformal mapping

f(z) = g(e1/2) = i
1−
√
z

1 +
√
z

Example 3.2.19. Let
U := B(0, 1) ∩ {Re z > 0}.

Find a conformal bijection from U to to B(0, 1).

Solution. Consider the points ±i that are at the intersection of the arc and the line that form ∂U . Using
a Möbius mapping we want to map both the line part and the arc part to rays that go from 0 to ∞ (and
these image lines must be perpendicular by conformality as the arc and the line are) so that hopefully U gets
mapped to a quadrant. It should be easy from there.

So lets map i 7→ 0 and −i 7→ ∞, say. We also choose to map 1 7→ i (so that the arc part will go the positive
imaginary axis). We find the Möbius mapping f with the cross ratio

(f(z)︸︷︷︸
=w

, 0,∞, i) = (z, i,−i, 1).

This says

lim
a→∞

(w − 0)
(
1− i

a

)(
w
a − 1

)
(0− i)

=
w

i
=

(z − i)(−i− 1)

(z + i)(i− 1)
= i

z − i
z + i

from which we solve

f(z) = w = −z − i
z + i

.

So from the theory we know that the unit circle |z| = 1 gets mapped to either a circle or a line, and that
it must get mapped to a line as the image contains ∞. And this line must go through 0 and i so it is the
imaginary axis. Thus, the arc part of U gets mapped to the positive imaginary axis (as 1 7→ i ). Similarly,
as f(0) = 1 we argue that the line part of ∂U maps to the positive real axis. Notice that f(1/2) = 3

5 + 4
5 i

belongs to the upper right quadrant and, thus, f(U) is the upper right quadrant. We use z 7→ z2 to map this
to the upper half-space. So

z 7→ (z − i)2

(z + i)2

maps U to the upper half-space H := {Im z > 0}. We can then use the inverse of the mapping from Q2 to
map H to B(0, 1). The inverse of the said mapping, namely z 7→ 1−iz

z−i , is

z 7→ −iz − 1

−z − i
=
iz + 1

z + i

Thus, our final mapping is

z 7→
i (z−i)

2

(z+i)2 + 1

(z−i)2
(z+i)2 + i

=
z2 + 2z − 1

z2 − 2z − 1
.
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3.3 Schwarz Lemma and Automorphisms on Unit Disk

We do a review of Maximum modulus principle first.

Let Ω be any subset of C and suppose α is in the interior of Ω. We can, therefore, choose a positive number
ρ such that B(α; ρ) ⊂ Ω; it readily follows that there is a point ξ in Ω with |ξ| > |α|. To state this another
way, if α is a point in Ω with |α| ≥ |ξ| for each ξ in the set Ω (¬(∃ξ ∈ Ω) such that |ξ| > |α|), then α is not an
iterior point and belongs to ∂Ω.

Theorem 3.3.1 (Maximum Modulus Theorem-First Version). If f is analytic in a region G and a is a point
in G with |f(a)| ≥ |f(z)| for all z in G then f must be a constant function.

Proof. Let Ω = f(G) and put α = f(a). From the hypothesis we have that |α| ≥ |ξ| for each ξ in Ω; as in
the discussion preceding the theorem α is in ∂Ω ∩ Ω. In particular, the set Ω cannot be open (because then
Ω ∩ ∂Ω = ∅ ). Hence the Open Mapping Theorem says that f must be constant.

Theorem 3.3.2 (Maximum Modulus Theorem-Second Version). Let G be a bounded open set in C and
suppose f is a continuous function on G− which is analytic in G. Then

max
{
|f(z)| : z ∈ G−} = max{|f(z)| : z ∈ ∂G}.

Proof. Since G is bounded there is a point a ∈ G−such that |f(a)| ≥ |f(z)| for all z in G−. If f is a constant
function the conclusion is trivial; if f is not constant then the result follows from first version.

Note that in the second version we did not assume that G is connected as in the first version. Do you
understand how first version puts the finishing touches on the proof of the second? Or, could the assumption
of connectedness in first version be dropped?

Let G =
{
z = x+ iy : − 1

2π < y < 1
2π
}

and put f(z) = exp[exp z]. Then f is continuous on G−and analytic
on G. If z ∈ ∂G then z = x± 1

2πi so |f(z)| = |exp (±iex)| = 1. However, as x goes to infinity through the real
numbers, f(x)→∞. This does not contradict the Maximum Modulus Theorem because G is not bounded.

In light of the above example it is impossible to drop the assumption of the boundedness of G in the second
version.

The following theorem is stated without full proof in [10]. We complete it now.

Theorem 3.3.3 (Schwarz Lemma). Let D = {z | |z| < 1} be the unit disk and let f : D → D be an analytic
function on it, i.e., ∀z ∈ D, |f(z)| ≤ 1. Also suppose f(0) = 0. Then

(i) ∀z ∈ D, |f(z)| ≤ |z|.

(ii) If |f(z0)| = |z0| for some z0 ̸= 0 then f is a rotation, i.e., f(z) = eiθz for some θ ∈ R.

(iii) |f ′(0)| ≤ 1, and if the equality holds, then f is a rotation, i.e., f(z) = eiθz for some θ ∈ R.

Proof. Let

g(z) :=

{
f(z)/z, z ̸= 0,

f ′(0), z = 0,

Notice that this is analytic in D, since

lim
z→0

f(z)

z
= lim
z→0

f(z)−
=0︷︸︸︷
f(0)

z − 0
= f ′(0).

so z = 0 must be a removable singularity of f(z)z and assigning the value f ′(0) at z = 0 makes f(z)
z analytic.
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Now if r < 1 we have for |z| = r that

|g(z)| =

<1︷ ︸︸ ︷
|f(z)|
r
≤ 1

r
.

Applying the maximum modulus principle to g ∈ H(B̄(0, r)), where B(0, r) is open, connected and bounded,
we get

max
z∈B̄(0,r)

|g(z)| = max
|z|=r

|g(z)| ⩽ 1

r
.

Letting r → 1 gives |g(z)| ⩽ 1 and so ∀z ∈ D, |f(z)| ⩽ |z|. If we have equality for same 0 ̸= z0 ∈ D, then g
attains its maximum in the interior of D. Maximum modulus principle implies that g is constant, so f(z) = cz
for some constant c. Since |z0| = |f(z0)| = |c||z0| we see |c| = 1⇒ c = eiθ. (i) and (ii) are then proved.

Finally, if |f ′(0)| = 1 this means |g(0)| = 1 so again g reaches its maximum at the interior point 0 ∈ D, and is
so a constant. This proves (iii).

A conformal bijection U → U is called an automorphism of U .

What is in Aut(D) - the automorphism group of D? Obviously z 7→ z and all rotations z 7→ eiθz. But recall
also Q4 of 5021/HW1 that for α ∈ C, |α| < 1, the mapping

z 7→ α− z
1− ᾱz

maps D to D. It is clearly Möbius, so we can write its inverse

z 7→ z − α
ᾱz − 1

=
α− z
1− ᾱz

so it is its own inverse. Also, from formula of derivative in Q1 of 5022/HW1, one can easily check that

(ψα)
′(0) =

|α|2 − 1

(−ᾱz + 1)2
(0) = |α|2 − 1

(ψα)
′(α) =

|α|2 − 1

(−ᾱz + 1)2
(α) = (|α|2 − 1)−1

These mappings ψα(z) = α−z
1−ᾱz thus satisfy

• ψα ∈ Aut(D),

• ψα(α) = 0, ψα(0) = α,

• ψ−1
α = ψα.

• (ψα)
′(0) = |α|2 − 1, (ψα)

′(α) = (|α|2 − 1)−1.

What’s also interesting is that rotations of these Möbius mappings exhaust all of D:

Theorem 3.3.4. If f ∈ Aut(D), then f(z) = eiθψα(z) for θ ∈ R, α ∈ D.

Proof. ∃!α ∈ D s.t. f(α) = 0 as f ∈ Aut(D). Define g := f ◦ ψα ∈ Aut(D). Then g(0) = f(α) = 0 and
Schwarz lemma gives |g(z)| ≤ |z| ∀z ∈ D, Also g−1 = ψ−1

α ◦ f−1 ∈ Aut(D) satisfies g−1(0) = 0 so again∣∣g−1(2)
∣∣ ≤ |z| ∀z ∈ D. Thus

|z| = |g−1(g(z))| ≤ |g(z)| ≤ |z|
which implies that |g(z)| = |z| ∀z ∈ D. Schwarz lemma⇒ g(z) = eiθz. Then

f(z) = g
(
ψ−1
α (z)

)
= g (ψα(z)) = eiθψα(z)
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Corollary 3.3.5. If f ∈ Aut(D) with f(0) = 0, then f is a rotation.

Proof. f(z) = eiθψα(z) and 0 = f(0) = eiθα⇒ α = 0, so f(z) = eiθψ0(z) = −eiθz.

Remark 3.3.6. Notice that if you want f ∈ Aut(D) with f(α) = β for given α, β ∈ D, just set f = ψβ ◦ ψα.

Using this one can calculate

Aut(H+) =

{
az + b

cz + d

∣∣∣ad− bc = 1

}
for H+ = {z ∈ C | Re(z) > 0} by using a conformal mapping f : H → D. See other references for more
details.

3.4 Space of Continuous and Analytic Functions

This section belongs to classical results in a real analysis course. We proceed by [2].

If G is an open set in C and (Ω, d) is a complete metric space then designate by C (G,Ω) the set of all
continuous functions from G to Ω.

The set C (G,Ω) is never empty since it always contains the constant functions. However, it is possible that
C (G,Ω) contains only the constant functions. For example, suppose that G is connected and Ω = N = {1,
2, . . .}. If f is in C (G,Ω) then f(G) must be connected in Ω and, hence, must reduce to a point. However,
our principal concern will be when Ω is either C or C.

To put a metric on C (G,Ω) we must first prove a fact about open subsets of C.

Proposition 3.4.1. If G is open in C then there is a sequence {Kn} of compact subsets of G such that
G =

⋃∞
n=1Kn. Moreover, the sets Kn can be chosen to satisfy the following conditions:

(a) Kn ⊂ int Kn+1;

(b) K ⊂ G and K compact implies K ⊂ Kn for some n;

(c) Every component of C−Kn contains a component of C−G.

If G =
⋃∞
n=1Kn where each Kn is compact and Kn ⊂ int Kn+1, define

ρn(f, g) = sup {d(f(z), g(z)) : z ∈ Kn}

for all functions f and g in C (G,Ω). Also define

ρ(f, g) =

∞∑
n=1

(
1

2

)n
ρn(f, g)

1 + ρn(f, g)
; (3.1)

since t(1 + t)−1 ≤ 1 for all t ≥ 0, the series above is dominated by
∑(

1
2

)n
and must converge. It will be

shown that ρ is a metric for C (G,Ω). To do this the following lemma, whose proof is left as an exercise, is
needed.

Lemma 3.4.2. If (S, d) is a metric space then

µ(s, t) =
d(s, t)

1 + d(s, t)

is also a metric on S. A set is open in (S, d) iff it is open in (S, µ); a sequence is a Cauchy sequence in (S, d)
iff it is a Cauchy sequence in (S, µ).

Proposition 3.4.3. (C (G,Ω), ρ) is a metric space.
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Proof. It is clear that ρ(f, g) = ρ(g, f). Also, since each ρn satisfies the triangle inequality, the preceding
lemma can be used to show that ρ satisfies the triangle inequality. Finally, the fact that G =

⋃∞
n=1Kn gives

that f = g whenever ρ(f, g) = 0

The next lemma concerns subsets of C (G,Ω) × C (G,Ω) and is very useful because it gives insight into the
behavior of the metric ρ. Those who know the appropriate definitions will recognize that this lemma says
that two uniformities are equivalent.

Lemma 3.4.4. Let the metric ρ be defined as eq. (3.1). If ε > 0 is given then there is a δ > 0 and a compact
set K ⊂ G such that for f and g in C (G,Ω),

sup{d(f(z), g(z)) : z ∈ K} < δ ⇒ ρ(f, g) < ε.

Conversely, if δ > 0 and a compact set K are given, there is an ε > 0 such that for f and g in C (G,Ω),

ρ(f, g) < ε⇒ sup{d(f(z), g(z)) : z ∈ K} < δ.

Proposition 3.4.5.
(a) A set O ⊂ (C (G,Ω), ρ) is open iff for each f in O there is a compact set K and aδ > 0 such that

O ⊃ {g : d(f(z), g(z)) < δ, z ∈ K}

(b) A sequence {fn} in (C (G,Ω), ρ) converges to f iff {fn} converges to f uniformly on all compact subsets
of G.

Henceforward, whenever we consider C (G,Ω) as a metric space it will be assumed that the metric ρ is given
by formula (3.1) for some sequence {Kn} of compact sets such that Kn ⊂ int Kn+1 and G =

⋃∞
n=1Kn. Actu-

ally, the requirement that Kn ⊂ int Kn+1 can be dropped and the above results will remain valid. However,
to show this requires some extra effort (e.g., the Baire Category Theorem) which, though interesting, would
be a detour.

Nothing done so far has used the assumption that Ω is complete. However, if Ω is not complete then C (G,Ω)
is not complete. In fact, if {ωn} is a non-convergent Cauchy sequence in Ω and fn(z) = ωn for all z in G,
then {fn} is a non-convergent Cauchy sequence in C (G,Ω). However, we are assuming that Ω is complete
and this gives the following.

Proposition 3.4.6. C (G,Ω) is a complete metric space.

Definition 3.4.7. A set F ⊂ C (G,Ω) is normal if each sequence in F has a subsequence which converges
to a function f in C (G,Ω).

This of course looks like the definition of sequentially compact subsets, but the limit of the subsequence is
not required to be in the set F . The next proof is left to the reader.

Proposition 3.4.8. A set F ⊂ C (G,Ω) is normal iff its closure is compact.

Proposition 3.4.9. A set F ⊂ C (G,Ω) is normal iff for every compact set K ⊂ G and δ > 0 there are
functions f1, . . . , fn in F such that for f in F there is at least one k, 1 ≤ k ≤ n, with

sup {d (f(z), fk(z)) : z ∈ K} < δ.

This section concludes by presenting the Arzela-Ascoli Theorem. Although its proof is not overly complicated
it is a deep result which has proved extremely useful in many areas of analysis. Before stating the theorem
a few results of a more general nature are needed.
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Let (Xn, dn) be a metric space for each n ≥ 1 and let X =
∏∞
n=1Xn be their cartesian product. That is,

X = {ξ = {xn} : xn ∈ Xn for each n ≥ 1}. For ξ = {xn} and η = {yn} in X define

d(ξ, η) =

∞∑
n=1

(
1

2

)n
dn (xn, yn)

1 + dn (xn, yn)
.

Proposition 3.4.10. (
∏∞
n=1Xn, d), where d is defined above, is a metric space. If ξk =

{
xkn
}∞
n=1

is in
X =

∏∞
n=1Xn then ξk → ξ = {xn} iff xkn → xn for each n. Also, if each (Xn, dn) is compact then X is

compact.

The following definition plays a central role in the Arzela-Ascoli Theorem.

Definition 3.4.11. A set F ⊂ C (G,Ω) is equicontinuous at a point z0 in G iff for every ε > 0 there is a
δ > 0 such that for |z − z0| < δ,

d (f(z), f (z0)) < ε

for every f in F .F is equicontinuous over a set E ⊂ G if for every ε > 0 there is a δ > 0 such that for z
and z′ in E and |z − z′| < δ,

d (f(z), f (z′)) < ε

for all f in F .

Notice that if F consists of a single function f then the statement that F is equicontinuous at z0 is only the
statement that f is continuous at z0. The important thing about equicontinuity is that the same δ will work
for all the functions in F . Also, for F = {f} to be equicontinuous over E is to require that f is uniformly
continuous on E. For a larger family F to be equicontinuous there must be uniform uniform continuity.

Because of this analogy with continuity and uniform continuity the following proposition should not come
as a surprise.

Proposition 3.4.12. Suppose F ⊂ C (G,Ω) is equicontinuous at each point of G; then F is equicontinuous
over each compact subset of G.

Proof. Let K ⊂ G be compact and fix ε > 0. Then for each w in K there is a δw > 0 such that

d (f (w′) , f(w)) <
1

2
ε

for all f in F whenever |w − w′| < δw. Now {B (w; δw) : w ∈ K} forms an open cover of K; by Lebesgue’s
Covering Lemma there is a δ > 0 such that for each z in K,B(z; δ) is contained in one of the sets of this cover.
So if z and z′ are in K and |z − z′| < δ there is a w in K with z′ ∈ B(z; δ) ⊂ B (w; δw). That is, |z − w| < δw
and |z′ − w| < δw. This gives d(f(z), f(w)) < 1

2ε and d (f (z′) , f(w)) < 1
2ε; so that d (f(z), f (z′)) < ε and F

is equicontinuous over K.

Theorem 3.4.13 (Arzela-Ascoli Theorem). A set F ⊂ C (G,Ω) is normal iff the following two conditions
are satisfied:

(a) for each z in G, {f(z) : f ∈ F} has compact closure in Ω;

(b) F is equicontinuous at each point of G.

Proof. First assume that F is normal. Notice that for each z in G the map of C (G,Ω) → Ω defined by
f → f(z) is continuous; since F−is compact its image is compact in Ω and (a) follows. To show (b) fix a
point z0 in G and let ε > 0. If R > 0 is chosen so that K = B̄ (z0;R) ⊂ G then K is compact and Proposition
3.4.9 implies there are functions f1, . . . , fn in F such that for each f in F there is at least one fk with

(∗) : sup {d (f(z), fk(z)) : z ∈ K} <
ε

3
.
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But since each fk is continuous there is a δ, 0 < δ < R, such that |z − z0| < δ implies that

d (fk(z), fk (z0)) <
ε

3

for 1 ≤ k ≤ n. Therefore, if |z − z0| < δ, f ∈ F , and k is chosen so that (∗) holds, then

d (f(z), f (z0)) ≤ d (f(z), fk(z)) + d (fk(z), fk (z0)) + d (fk (z0) , f (z0)) < ε

That is, F is equicontinuous at z0. Now suppose F satisfies conditions (a) and (b); it must be shown that
F is normal. Let {zn} be the sequence of all points in G with rational real and imaginary parts (so for z in
G and δ > 0 there is a zn with |z − zn| < δ ). For each n ≥ 1 let

Xn = {f (zn) : f ∈ F}− ⊂ Ω;

from part (a), (Xn, d) is a compact metric space. Thus, by Proposition 3.4.10, X =
∏∞
n=1Xn is a compact

metric space. For f in F define f̃ in X by

f̃ = {f (z1) , f (z2) , . . .} .

Let {fk} be a sequence in F ; so
{
f̃k

}
is a sequence in the compact metric space X. Thus there is a ξ

in X and a subsequence of
{
f̃k

}
which converges to ξ. For the sake of convenient notation, assume that

ξ = lim f̃k. Again from Proposition 3.4.10,

(∗∗) : lim
k→∞

fk (zn) = ωn

where ξ = {ωn}. It will be shown that {fk} converges to a function f in C (G,Ω). By (∗∗) this function f will
have to satisfy f (zn) = ωn. The importance of (∗∗) is that it imposes control over the behavior of {fk} on a
dense subset of G. We will use the fact that {fk} is equicontinuous to spread this control to the rest of G.

To find the function f and show that {fk} converges to f it suffices to show that {fk} is a Cauchy sequence.
So let K be a compact set in G and let ε > 0; by Lemma 3.4.5(b) it suffices to find an integer J such that for
k, j ≥ J ,

(∗ ∗ ∗) : sup {d (fk(z), fj(z)) : z ∈ K} < ε.

Since K is compact R = d(K, ∂G) > 0. Let K1 =
{
z : d(z,K) ≤ 1

2R
}

; then K1 is compact and K ⊂ int
K1 ⊂ K1 ⊂ G. Since F is equicontinuous at each point of G it is equicontinuous on K1 by Proposition
3.4.11. So choose δ, 0 < δ < 1

2R, such that

(1) : d (f(z), f (z′)) <
ε

3

for all f in F whenever z and z′ are in K1 with |z − z′| < δ. Now let D be the collection of points in {zn}
which are also points in K1; that is

D = {zn : zn ∈ K1}

If z ∈ K then there is a zn with |z − zn| < δ; but δ < 1
2R gives that d (zn,K) < 1

2R, or that zn ∈ K1. Hence
{B(w; δ) : w ∈ D} is an open cover of K. Let w1, . . . , wn ∈ D such that

K ⊂
n⋃
i=1

B (wi; δ) .

Since limk→∞ fk (wi) exists for 1 ≤ i ≤ n (by (∗∗)) there is an integer J such that for j, k ≥ J

(2) : d (fk (wi) , fj (wi)) <
ε

3
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for i = 1, . . . , n. Let z be an arbitrary point in K and let wi be such that |wi − z| < δ. If k and j are larger
than J then (1) and (2) give

d (fk(z), fj(z)) ≤ d (fk(z), fk (wi)) + d (fk (wi) , fj (wi)) + d (fj (wi) , fj(z)) < ε.

Since z was arbitrary this establishes (∗ ∗ ∗).

Let G be an open subset of the complex plane. If H(G) is the collection of analytic functions on G, we can
consider H(G) as a subset of C (G,C). We use H(G) to denote the analytic functions on G rather than A(G)
because it is a universal practice to let A(G) denote the collection of continuous functions f : G− → C that
are analytic in G. Thus A(G) ̸= H(G).

The first question to ask about H(G) is: Is H(G) closed in C (G,C) ? The next result answers this question
positively and also says that the function f → f ′ is continuous from H(G) into H(G).

Theorem 3.4.14. If {fn} is a sequence in H(G) and f belongs to C (G,C) such that fn → f then f is analytic
and f (k)n → f (k) for each integer k ≥ 1.

Proof. We will show that f is analytic by applying Morera’s Theorem. So let T be a triangle contained inside
a disk D ⊂ G. Since T is compact, {fn} converges to f uniformly over T . Hence

∫
T
f = lim

∫
T
fn = 0 since

each fn is analytic. Thus f must be analytic in every disk D ⊂ G; but this gives that f is analytic in G.

To show that f (k)n → f (k), let D = B̄(a; r) ⊂ G; then there is a number R > r such that B̄(a;R) ⊂ G. If γ is
the circle |z − a| = R then Cauchy’s Integral Formula gives

f (k)n (z)− f (k)(z) = k!

2πi

∫
γ

fn(w)− f(w)
(w − z)k+1

dw.

for z in D. Using Cauchy’s Estimate,∣∣∣f (k)n (z)− f (k)(z)
∣∣∣ ≤ k!MnR

(R− r)k+1
for |z − a| ≤ r,

where Mn = sup {|fn(w)− f(w)| : |w − a| = R}. But since fn → f, limMn = 0. Hence, it follows from
above equation that f (k)n → f (k) uniformly on B̄(a; r). Now if K is an arbitrary compact subset of G and
0 < r < d(K, ∂G) then there are a1, . . . , an in K such that K ⊂

⋃n
j=1B (aj ; r). Since f (k)n → f (k) uniformly

on each B (aj ; r), the convergence is uniform on K.

We will always assume that the metric on H(G) is the metric which it inherits as a subset of C (G,C). The
next result follows because C (G,C) is complete.

Corollary 3.4.15. H(G) is a complete metric space.

Corollary 3.4.16. If fn : G → C is analytic and
∑∞
n=1 fn(z) converges uniformly on compact sets to f(z)

then

f (k)(z) =

∞∑
n=1

f (k)n (z).

It should be pointed out that the above theorem has no analogue in the theory of functions of a real vari-
able. For example it is easy to convince oneself by drawing pictures that the absolute value function can be
obtained as the uniform limit of a sequence of differentiable functions. Also, it can be shown (using a The-
orem of Weierstrass) that a continuous nowhere differentiable function on [0, 1] is the limit of a sequence of
polynomials. Surely this is the most emphatic contradiction of the corresponding theorem for Real Variables.
A contradiction in another direction is furnished by the following. Let fn(x) = 1

nx
n for 0 ≤ x ≤ 1. Then

0 = u− lim fn; however the sequence of derivatives {f ′n} does not converge uniformly on [0, 1].
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3.5 Riemman Mapping Theorem

Definition 3.5.1. A set F ⊂ H(G) is locally bounded if for each point a in G there are constants M and
r > 0 such that for all f in F ,

|f(z)| ≤M, for |z − a| < r.

Alternately, F is locally bounded if there is an r > 0 such that

sup{|f(z)| : |z − a| < r, f ∈ F} <∞.

That is, F is locally bounded if about each point a in G there is a disk on which F is uniformly bounded.
This immediately extends to the requirement that F be uniformly bounded on compact sets in G.

Lemma 3.5.2. A set F in H(G) is locally bounded iff for each compact set K ⊂ G there is a constant M
such that

|f(z)| ≤M

for all f in F and z in K.

Theorem 3.5.3 (Montel’s Theorem). A family F in H(G) is normal iff F is locally bounded.

Proof. Suppose F is normal but fails to be locally bounded; then there is a compact set K ⊂ G such that
sup{|f(z)| : z ∈ K, f ∈ F} =∞. That is, there is a sequence {fn} in F such that sup {|fn(z)| : z ∈ K} ≥ n.
Since F is normal there is a function f in H(G) and a subsequence {fnk

} such that fnk
→ f . But this gives

that sup {|fnk
(z)− f(z)| : z ∈ K} → 0 as k →∞. If |f(z)| ≤M for z in K,

nk ≤ sup {|fnk
(z)− f(z)| : z ∈ K}+M

since the right hand side converges to M , this is a contradiction. Now suppose F is locally bounded; the
Arzela-Ascoli Theorem will be used to show that F is normal. Since condition (a) of Arzela-Ascoli Theorem
is clearly satisfied, we must show that F is equicontinuous at each point of G. Fix a point a in G and ε > 0;
from the hypothesis there is an r > 0 and M > 0 such that B̄(a; r) ⊂ G and |f(z)| ≤ M for all z in B̄(a; r)
and for all f in F . Let |z−a| < 1

2r and f ∈ F ; then using Cauchy’s Formula with γ(t) = a+reit, 0 ≤ t ≤ 2π,

|f(a)− f(z)| = 1

2π

∣∣∣∣∫
γ

f(w)(a− z)
(w − a)(w − z)

dw

∣∣∣∣
≤ 2M

r
|a− z|

Letting δ < min
{

1
2r,

r
4M ε

}
it follows that |a− z| < δ gives |f(a)− f(z)| < ε for all f in F .

Corollary 3.5.4. A set F ⊂ H(G) is compact iff it is closed and locally bounded.

Lemma 3.5.5. If U ⊂ C is a region and fj ∈ H(U) are injective with fj → f uniformly on compact K ⊂ U ,
then f ∈ H(U) is either a constant or also injective.

Proof. Suppose f is not injective. Then exists z1, z2 ∈ U, z1 ̸= z2, s.t. f (z1) = f (z2). Define gj(z) :=
fj(z)− fj (z1). As each fj is injective, the only zero of gj is z1. Now gJ → g, g(z) := f(z)− f (z1), uniformly
on compact K ⊂ U . We want to show that g ≡ 0. Suppose not. Then z2 is an isolated zero of g, since
g ∈ H(U) and U is a region. So let B̄ (z2, r) ⊂ U s.t. the only zero of g on B := B̄ (z2, r) is z2. Now, by
Rouché

1 =
1

2πi

∫
∂B

g′(ξ)

g(ξ)
dξ
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Besides, for all ξ ∈ ∂B, ∣∣∣∣ 1

gj(ξ)
− 1

g(ξ)

∣∣∣∣ = |g(ξ)− gj(ξ)||g(ξ)| |gj(ξ)|
,

where
|gj(ξ)| ≥ |g(ξ)| − |g(ξ)− gj(ξ)|

≥ min
∂B
|g| − ∥g − gj∥L∞(∂B)

≥ min∂B |g|
2

> 0

for large j, and so ∥∥∥∥ 1

gj
− 1

g

∥∥∥∥
L∞(∂B)

≲g,∂B ∥g − gj∥L∞(∂B) → 0.

Thus, 1
gj
→ 1

g uniformly, and by previous result, g′j → g′ uniformly on ∂B. So
g′j
gj
→ g′

g uniformly on ∂B

giving

1 =
1

2πi

∫
∂B

g′

g
= lim
j→∞

1

2πi

∫
∂B

g′j
gj︸ ︷︷ ︸

=0 ∀j as only zero z1 of gj is not in B

= 0

Contradiction. So g ≡ 0 and f is a constant, as desired.

Theorem 3.5.6 (Riemann Mapping Theorem). U ⊂ C a simply connected set, U ̸= C. Then there is a
conformal bijeciton U → D := B(0, 1).

Proof. Let
Σ = {ψ : U → B(0, 1) | ψ ∈ H(U) injective}

We need to show that there is a surjective ψ ∈ Σ.

Step I: we claim that σ ̸= ∅.
Let w0 ∈ C \ U (As U ̸= C). Then z 7→ z − w0, z ∈ U , is a non-vanishing element of H(U), so by simply-
connectedness (Theorem 2.3.8) there is a ψ ∈ H(U) such that φ2(z) = z − w0, ∀z ∈ U . Notice that φ is
injective. Indeed, φ(z1) = φ(z2)→ z1 − w0 = φ(z1)

2 = φ(z2)
2 = z2 − w0. Also,

(∗) : φ(z1) = −φ(z2)⇒ z1 − w0 = φ(z1)
2 = (−φ(z2))2 = φ(z2)

2 = z2 − w0.

By open mapping theorem, φ is open, and so φ(U) ⊂ C is open. Choose a ball B(a, r) ⊂ φ(U), 0 < r < |a|.
Now φ(U) ∩ B(−a, r) = ∅: if there were some w = φ(z), z ∈ U , |w + a| ≤ r, then we would have
| −w− a| = |w+ a| ≤ r. This implies that −w ∈ B(a, r) ⊂ φ(U). Thus, −w = φ(z̃) for some z̃ ∈ U . But then
φ(z̃) = −φ(z)⇒ z̃ = z (by (∗))⇒ w = −w ⇒ w = 0. Contradiction (as 0 /∈ B(−a, r) by condition r < |a|.)

Define
ψ(z) :=

r

φ(z) + a
, z ∈ U.

By φ(U) ∩ B(−a, r) = ∅, we see that |φ(z) + a| > r for all a ∈ U , so ψ mapsto D. Also, ψ is injective:
ψ(z1) = ψ(z2)⇒ φ(z1) = φ(z2)⇒ z1 = z2. Therefore, ψ ∈ Σ.

Step II: Our second claim is that if we let z0 ∈ U be fixed and define

η := sup
ψ∈Σ
|ψ′(z0)|

Then η <∞ and there exsits ψ ∈ Σ such that |ψ′(z0)| = η.
To see η <∞, notice that by Cauchy estimate, if we choose some ball B(z0, r) ⊂ U , we get

|ψ′(z0)| ≤
∥ψ∥

L∞(B(z0,r))

r
≤ 1

r
∀ψ ∈ Σ
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simply becasue ψ : D → D. Thus, η ≤ 1
r ≤ ∞. By properties of supremum, there is ψn ∈ Σ such that

|ψ′
n(z0)| → η as n→∞. We hope that {ψn} has a limit in some sense. We use a normal family argument. By

Montel’s theorem, as {ψn} is clearly uniformly bounded (they map to D after all), {ψn} is a normal family.
For simplicity, define the subsequence that converges uniformly in compact subsets of U still by {ψn}. Let
h ∈ H(U) be the limit. Also, ψ′

n → h′ uniformly in compact subsets, so

|h′(z0)| = lim
n→∞

|ψ′
n(z0)| = η

h is injective by previous result, as it is not constant. It is not constant because η > 0 (Σ ̸= ∅ and injectivity
and analiticity imply nonzero derivative) and |h′(z0)| = η. Now, h also maps to D:

(1) |h(z)| = lim |ψn(z)|︸ ︷︷ ︸
≤1

≤ 1.

(2) if |h(z)| = 1 for some z ∈ U , then the fact that |h| obtains its maximum on the open connected U
implies h is a constant.

Therefore, h ∈ Σ and |h′(z0)| = η. Step II is then complete.

Step III: any h ∈ Σ with |h′(z0)| = η is always a surjection (This step will finish the proof due to Step II.)
We will show this by showing that if ψ ∈ Σ is not subjective (ie. ψU ̸= B(0, 1)), then ∃ψ1 ∈ Σ with
|ψ′

1 (z0)| > |ψ′ (z0)|. This obviously implies step III. So fix ψ ∈ Σ with ψU ̸= B(0, 1). Choose α ∈ B(0, 1)\ψU .
We use the automorphism of the disk D = B(0, 1)

φα(z) :=
α− z
1− ᾱz

,

t which has φα(α) = 0, φα(0) = α, and φ−1
α = φα. Notice that φα ◦ ψ ∈ Σ has no zero, so φα ◦ ψ = g2 for

some g ∈ H(U) due to simply-connectedness. Note that g is injecitve:

g(z1) = g(z2) =⇒ φα ◦ ψ(z1) = g2(z1) = g2(z2) = φα ◦ ψ(z2)
=⇒ z1 = z2 (becasue φα ◦ ψ injective)

In fact, g ∈ Σ as
|g(z)| = |g(z)2|1/2 = |φα ◦ ψ(z)|︸ ︷︷ ︸

<1

1/2
< 1.

Let β = g(z0) ∈ D, and let ψ1 := φβ ◦ g ∈ Σ. We use Schwarz’s lemma to prove that

|ψ′
1(z0)| > |ψ′(z0)|.

We figure out how to write the original ψ in terms of ψ1. Define s(z) = z2. Now,

ψ = φα ◦
g2=φα◦ψ︷︸︸︷
s ◦ g = φα ◦ s ◦ φβ︸ ︷︷ ︸

=:F

◦φβ ◦ g︸ ︷︷ ︸
=ψ1

= F ◦ ψ1.

where F : D→ D. We will show |F ′(0)| < 1 using Schwartz. Notice F : D→ D is analytic with

F (0) = φα
(
β2
)

= φα
(
g(z0)

2
)

= φα(φα (ψ (z0)))

= ψ(z0) =: γ

As we want 0 7→ 0 to be able to use Schwarz, we will use φα ◦F , since φγ(F (0)) = φγ(γ) = 0. Apply Schwarz
to φγ ◦ F to obtain

|(φγ ◦ F )′(0)| < 1
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as otherwise it would be a rotation, which is not possible as it is not injecitve due to s. Chain rule gives

(φγ ◦ F )′(0) = φ′
γ(γ)F

′(0)

where |φ′
γ(γ)| = 1

1−|γ|2 ≥ 1 and so |F ′(0)| < 1
|φ′

γ(γ)|
≤ 1. So this Schwartz trickery gave us |F ′(0)| < 1. Recall

ψ = F ◦ ψ1, and so
ψ′ (z0) = F ′ (ψ1 (z0))ψ

′
1 (z0)

= F ′(0)ψ′
1 (z0) ,

since ψ1 (z0) = φβ(β) = 0. So
|ψ′ (z0)| = |F ′(0)|︸ ︷︷ ︸

<1

|ψ′
1 (z0) | < |ψ′

1(z0)|.

Notice this requires us to know ψ′
1 (z0) ̸= 0, but this follows as ψ ∈ Σ is an analytic injection.

Notice that the proof only used that

In U we have: if f ∈ H(U) non-vanishing, f = g2 for some g ∈ H(U).

This then completes the proof of (f) =⇒ (a) part of the Theorem 2.3.8. But for U ̸= C, Riemann mapping
theorem is much stronger than (f) =⇒ (a).

3.6 The Phragmén-Lindelöff Type Results

We recall that the maximum modulus principle fails without assuming U to be bounded.

Example 3.6.1.
(1) U = {Re(z) > 0}, f(z) = ez. Then |f(z)| = eRe(z) = e0 = 1 on ∂U but |f(x)| = ex →∞ as x→∞ inside
the half-plane.

(2) U =
{
−π4 < Arg z < π

4

}
, f(z) = ez

2

. Then f
(
re±i

π
4

)
= er

2(±i) so |f | = 0 on the boundary ∂U of the
sector U . still f(x) = ex

2 →∞ as x→∞ inside the sector.

What if we impose some growth restriction on f?

Theorem 3.6.2. Let α ≥ 1
2 and put

U =
{
z : |Arg z| < π

2α

}
.

Suppose that f is analytic on U and continuous on U and there is a constant M such that |f(z)| ≤M on ∂U .
If there are positive constants C, c and β < α such that

(∗) : |f(z)| ≤ C exp
(
c|z|β

)
for all z ∈ U , then |f(z)| ≤M for all z in U .

Remark 3.6.3. If we suppose some reasonable growth condition inside U , then maximum modulus holds
even in the unbounded sector U . β < α cannot be dropped: in the examples above, α = β = 1 and α = β = 2
make them fail.

proof of the theorem. Fix ε > 0 and γ ∈ (β, α). Define Fε(z) = F (z) = exp (−εzγ) f(z). Here, zγ = rγeiγθ

when z = reiθ ∈ U ⇐⇒ r ≥ 0 and |θ| ≤ π
2α . Notice that |γθ| ≤ γ

α
π
2 < π

2 , so zγ is analytic, and also
cos(γθ) > 0. Now

|F (z)| = exp (Re(−εzγ)) |f(z)| = exp (−εrγ cos(γθ)) |f(z)| ≤ |f(z)| ∀z ∈ U
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In particular, |F (z)| ≤M on ∂U . For z ∈ U , we use the growth assumption (∗) and above equation to see

|F (z)| ≤ C exp(crβ − εrγ cos(γθ)) ≤ C exp
(
crβ − εrγ cos

(γπ
2α

))

= C exp

rγ
 c

rγ−β︸ ︷︷ ︸
r→∞−→ 0

−ε cos
(γπ
2α

)
︸ ︷︷ ︸

>0


 .

As γ > β, clearly, for |z| = r large enough uniformly on θ the negative power dominates and the whole term
goes very small, so |F (z)| ≤ M on U . By maximum modulus principle applied to F on a compact part K of
the sector (green area in Fig. 3.2)

Figure 3.2: A compact part of the sector.

Then since all of the boundary of K have |F | ≤M , we get

|F | ≤ max
z∈K
{|F (z)|} = max

z∈∂K
{|F (z)|} ≤M.

Evoking proposition 3.4.1, we have |F | ≤M on U . Finally,

|f(z)| ≤ | exp (εzγ)F (z)| ≤M exp (εrγ cos(γθ))
ε→0−→M

The idea of this Phragmén-Lindelöff type proof is to modify f by some hε, that is, to form Fε = hεf . And hε
is chosen so that,

(i) The boundary behavior moves to Fε, e.g., |Fε| ≤ |f |.

(ii) Function Fε vanishes fast enough as we go towards the unbounded parts of U . This allows one to apply
maximum modulus principle in a bounded set.

(iii) We can move the result obtained from Fε to f , e.g., 1/|hε(z)| → 1 as ε→ 0

Remark 3.6.4. The sector in the Phragmén-Lindelöff theorem can be rotated and U =
{
z : |Arg z| < π

2α

}
with α ≥ 1

2 is the maximal possible sector for which the theorem applies since we need the cosin of αθ to be

65



Complex Analysis Anthony Hong

positive (see the proof). In practice, one choose particular α or a range of α so that the associated sector is
no larger than this theorem assumes (see 3.6.5 for example). We will later in the next subsection apply to
the quadrants too.

The following version is used to show the Riesze-Thorin interpolation theorem later and is left as an exercise.

Proposition 3.6.5. Let U :=
{
− π

2α < Arg z < π
2α

}
, α > 1/2. Suppose f ∈ H(U) ∩ C (U) and |f | ≤ M on

∂U . Suppose we have the following a priori estimate: for all δ > 0 we have for all z ∈ U that

|f(z)| ≲δ eδ|z|
α

with the notation meaning that for some Cδ <∞ we have |f(z)| ≤ Cδeδ|z|
α

, z ∈ U . Then

|f(z)| ≤M, z ∈ U.

Proof. We define F : U → C as
F (z) = Fε(z) := e−εz

α

f(z)

Suppose t ≥ 0 and we choose δ such that 0 < δ < ε. Then there is a constant Cδ with

|F (t)| = |f(t)|e−εt
α

≤ Cδeδt
α

e−εt
α

= Cδe
tα(δ−ε) t→0−→ 0.

because α > 1/2 and δ−ε < 0. Thus there exists some point k to form a compact set [0, k] s.t. the continuous
function |F (t)|, t ≥ 0 assumes its maximum M1 = maxt≥0 |F (t)| on some point in K. Thus,

|F (z)| ≤M1, z ∈ [0,∞) (3.2)

Let M2 = max{M1,M} and we split the sector into halfs:

U+ = {z ∈ G : 0 < Arg z < π/2a}, U− = {z ∈ G : 0 > Arg z > −π/2a.}

For z = reiθ ∈ U (so − π
2α < θ < π

2α and cosαθ ∈ (0, 1)), we have

|F (z)| = |f(z)||e−εz
α

| = |f(z)|eRe(−εzα) = |f(z)|e

<0︷ ︸︸ ︷
−εrα cos(αθ) < |f(z)| ≤ Cδeδ|z|

α

If z ∈ ∂U , we by above equaton also have

|F (z)| < |f(z)| < M (3.3)

Therefore, by (3.2) and (3.3), we have |F (z)| ≤M2 for all z in ∂U+ and ∂U−.

To use Phragmén-Lindelöff theorem, we can for example get a looser bound on |F (z)| by picking δ = ε with

|F (z)| ≤ |f(z)| ≲ eε|z|
α

eε|z|
α

= e2ε|z|
α

Remark 3.6.4 now applies to U+ and U−, which both have size within π
4α , or π

2β with β = 2α, and therefore
the power of |z| is α < β = 2α, satisfying the condition (∗) in the Phragmén-Lindelöff theorem (where the
roles of α and β are switched in the theorem). The theorem then says |f(z)| ≤M2 on both U+ and U− and
thus on the whole U .

Lastly, we show that it is not possible that M1 > M . In fact, if M1 > M then M2 = M1. Since 0 ∈ ∂U ,
we see |F (0)| = |f(0)| ≤ M < M1 = maxt≥0 |F (t)|, which implies that the point by which |F | reaches it
maximum is not 0 but rather a point x ∈ R+ which thus lies inside U . Also note that for any z = reiθ ∈ U , we
have t < r(cos(αθ))1/α so that e−εt

α

> e−εr
α cos(αθ), which indicate that maxz∈U |F (z)| = maxz∈R+

|F (z)|.
Therefore, the point x makes |F | reach the max on whole U . Applying the Maximum modulus principle to
this open connected U gives us a constant F . Thus M = M1 = M2. Contradiction. Thus, M1 < M and
M2 =M . Then |F (z)| ≤M for all z in U . Then

|F (z)| = |f(z)||e−εr
α cos(αθ)| ≤M ⇒ |f(z)| ≤Meεr

α cos(αθ), ∀z ∈ U.

Since M is independent of ε, we can let ε→ 0 and get |f(z)| ≤M for all z in U .
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There are versions in other type of regions as well - in particular, in some strips.

Theorem 3.6.6 (Hadamard three-lines theorem). Let f(z) be a function on the strip

U = {x+ iy : a < x < b},

holomorphic in the strip and continuous on the closure of the strip. Suppose |f(z)| ≤ B ∀z ∈ U . If

M(x) = sup
y
|f(x+ iy)|

then logM(x) is a convex function on [a, b]. In other words, if x = (1− t)a+ tb with 0 ≤ t ≤ 1, then

logM(x) ≤ (1− t) logM(a) + t logM(b),

or
M(x) ≤M(a)1−tM(b)t.

or
M(x) ≤M(a)

b−x
b−aM(b)

x−a
b−a

In particular, |f | ≤ B can be replaced by |f | ≤ max(M(a),M(b))

Re(z) = 0 Re(z) = 1

t

Proof. After an affine transformation in the coordinate z, we can assume that a = 0, b = 1. Then x =
(1− t)a+ tb = t ∈ [0, 1] and we need to show

M(x) ≤M(0)1−xM(1)x, 0 < x < 1.

We do the special case B = 1 first: |f(z)| ≤ 1 on ∂U =⇒ |f | ≤ 1 on U .

This is the usual Phragmén-Lindelöff strategy. Given ε > 0, define

Fε(z) = F (z) =
f(z)

1 + εz
, z ∈ U

As |Re(z)| ≤ |z|, we have |1 + εz| ≥ |Re(1 + εz)| = 1 + εx ≥ 1, so |F (z)| ≤ |f(z)| for z ∈ U . In particular,
|F (z)| ≤ 1 on ∂U . As |1 + εz| ≥ | lm(1 + εz)| = ε|y|, we see

|F (z)| ≤ |f(z)|
ε|y|

⩽
1

ε|y|
.

Thus now |F | ≤ 1 for |y| larger then some number c uniformly on x. By maximum modulus principle applied
to the rectangular region bounded by ∂{|y| ≥ c} and ∂{x ∈ [0, 1]}, we see |F | ≤ 1 on U after letting c go to
infinity. Let ε→ 0 to get |f | ≤ 1 on U .

The general case reduces to this, but the reduction is non-trivial. First observe that we can assumeM(0),M(1) >
0 (note that M(x) = supy |f(x + yi)| ≥ 0) because suppose we have proved the statement for the case
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M(0),M(1) > 0 and now for some f we have say M(0) = 0, then we define g = f + ε and apply the
statment to g:

sup
y
|f | − ε ≤ sup

y
|g|

statement
≤ (M(0) + ε)1−x(M(1) + ε)x

where the last step is by noticing that for any x ∈ [0, 1],

sup
y
|g| = sup

y
|f(x+ yi) + ε| ≤ sup

y
|f(x+ yi)|+ ε =M(x) + ε.

Now M(0) = 0, so

sup
y
|f | ≤ ε+ ε1−x(M(1) + ε)x

ε→0−→ 0

implying that f = 0, which means the statement is trivially true.

Assume M(0),M(1) > 0. Define g(z) = M(0)1−zM(1)z for z ∈ C. Here for any M ̸= 0 a function of the
type z 7→Mz := ez logM is clearly entire, and so g is entire. We have

|g(z)| = |M(0)1−z||M(1)z|
= e(1−x) logM(0)ex logM(1)

=M(0)1−xM(1)x

= |g(x)|

is independent of y. In particular, |g| ≥ min{M(0),M(1)} > 0, implying 1/g is bounded. So f/g ∈ C (U) ∩
H(U) is bounded and when x = 0 we have |g(iy)| = g(0) = M(0) and when x = 1 we have |g(1 + iy)| =
g(1) = M(1). This implies |f/g| ≤ 1 on ∂U , and then our special case B = 1 above implies |f/g| ≤ 1 on U .
Thus,

|f(z)| ≤ |g(z)| =M(0)1−xM(1)x, z ∈ U.

3.7 The Riesz interpolation theorem

We copy the section 1 and 2 from second chapter of [14].

3.7.1 Motivation from Fourier Analysis

An initial problem considered was that of formulating an Lp analog of the basic L2 Parseval relation for
functions on [0, 2π]. This theorem states that if an = 1

2π

∫ 2π

0
f(θ)e−inθdθ denotes the Fourier coefficients of a

function f in L2([0, 2π]), usually written as

f(θ) ∼
∞∑

n=−∞
ane

inθ, (3.4)

then the following fundamental identity holds:

∞∑
n=−∞

|an|2 =
1

2π

∫ 2π

0

|f(θ)|2dθ. (3.5)

Conversely, if {an} is a sequence for which the left-hand side of (3.5) is finite, then there exists a unique
f in L2([0, 2π]) so that both (3.4) and (3.5) hold. Notice, in particular, if f ∈ L2([0, 2π]), then its Fourier
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coefficients {an} belong to L2(Z) = ℓ2(Z).1 The question that arose was: is there an analog of this result for
Lp when p ̸= 2 ?

Here an important dichotomy between the case p > 2 and p < 2 occurs. In the first case, when f ∈
Lp([0, 2π]), although f is automatically in L2([0, 2π]), examples show that no better conclusion than

∑
|an|2 <

∞ is possible. On the other hand, when p < 2 one can see that essentially there can be no better conclusion
than

∑
|an|q < ∞, with q the dual exponent of p. Analogous restrictions must be envisaged when the roles

of f and {an} are reversed. In fact, what does hold is the Hausdorff-Young inequality:

(∑
|an|q

)1/q
≤
(

1

2π

∫ 2π

0

|f(θ)|pdθ
)1/p

, (3.6)

and its ”dual” (
1

2π

∫ 2π

0

|f(θ)|qdθ
)1/q

≤
(∑

|an|p
)1/p

(3.7)

both valid when 1 ≤ p ≤ 2 and 1/p+ 1/q = 1. (The case q =∞ corresponds to the usual L∞ norm.) These
may be viewed as intermediate results, between the case p = 2 corresponding to Parseval’s theorem, and its
”trivial” case p = 1 and q =∞.

A few words about how the inequalities (3.6) and (3.7) were first attacked are in order, because they contain
a useful insight about Lp spaces: often, the simplest case arises when p (or its dual) is an even integer.
Indeed, when, for example q = 4, a function belonging to L4 is the same as its square belonging to L2, and
this sometimes allows reduction to the easier situation when p = 2. To see how this works in the present
situation, let us take q = 4 (and p = 4/3 ) in (3.6). With f given in Lp, we denote by F the convolution of f
with itself,

F(θ) = 1

2π

∫ 2π

0

f(θ − φ)f(φ)dφ

By the multiplicative property of Fourier coefficients of convolutions we have

F(θ) ∼
∞∑

n=−∞
a2ne

inθ,

with {an} the Fourier coefficients of f . Parseval’s identity applied to F then yields

∑
|an|4 =

1

2π

∫ 2π

0

|F(θ)|2dθ,

and Young’s inequality for convolutions gives

∥F∥L2 ≤ ∥f∥2L4/3 ,

proving (3.6) when p = 4/3 and q = 4. Once the case q = 4 has been established, the cases corresponding
to q = 2k, where k is a positive integer, can be handled in a similar way. However the general situation,
2 ≤ q ≤ ∞, corresponding to 1 ≤ p ≤ 2, involves further ideas.

In contrast to the above ingenious but special argument, in turns out that there is a general principle of great
interest that underlies such inequalities, which in fact leads to direct and abstract proofs of both (3.6) and
(3.7). This is the M. Riesz interpolation theorem. Stated succinctly, it asserts that whenever a linear operator
satisfies a pair of inequalities (like (3.6) for p = 2 and p = 1 ), then automatically the operator satisfies the
corresponding inequalities for the intermediate exponents: here all p for 1 ≤ p ≤ 2, and q with 1/p+1/q = 1.
The formulation and proof of this general theorem will be our first task in the next section.
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3.7.2 The Riesz interpolation theorem

Suppose (p0, q0) and (p1, q1) are two pairs of indices with 1 ≤ pj , qj ≤ ∞, and assume that{
∥T (f)∥Lq0 ≤M0∥f∥Lp0 , ∀f ∈ Lp0
∥T (f)∥Lq1 ≤M1∥f∥Lp1 , ∀f ∈ Lq0

where T is a linear operator. That is, T maps Lp0 → Lq0 and Lp1 → Lq1 boundedly in the above sense. Does
it follow that T : Lp → Lq for some intermediate p, q, i.e.,

∥T (f)∥Lq ≤M(M0,M1)∥f∥Lp , for other pairs (p, q)?

Yes, and the Marcinkiewicz interpolation theorem (see Math5051) applies but in the case where
(1) p0 = q0 and p1 = q1.
(2) T is sublinear instead of linear.
(3) there is an even weaker assumption than T mapping Lp0 → Lq0 and Lp1 → Lq1 boundedly to conclude
T : Lp → Lq.
(4) there isn’t a good bound resulted for M(M0,M1).

Thus, (2) and (3) are positive things while (1) and (4) are restrictions. We will give Riesz’s answer to the
question.

The precise statement of the theorem requires that we fix some notation. Let (X,µ) and (Y, ν) be a pair of
measure spaces. We shall abbreviate the Lp norm on (X,µ) by writing ∥f∥Lp = ∥f∥Lp(X,µ), and similarly for
the Lq norm for functions on (Y, dν). We will also consider the space Lp0 + Lp1 that consists of functions on
(X,µ) that can be written as f0 + f1, with fj ∈ Lpj (X,µ), with a similar definition for Lq0 + Lq1 .

Theorem 3.7.1 (Riesz interpolation theorem). Suppose T is a linear mapping from Lp0 + Lp1 to Lq0+ Lq1 .
Assume that T is bounded from Lp0 to Lq0 and from Lp1 to Lq1{

∥T (f)∥Lq0 ≤M0∥f∥Lp0 ,
∥T (f)∥Lq1 ≤M1∥f∥Lp1 .

Then T is bounded from Lp to Lq,
(∗) : ∥T (f)∥Lq ≤M∥f∥Lp ,

whenever the pair (p, q) can be written as

1

p
=

1− t
p0

+
t

p1
and

1

q
=

1− t
q0

+
t

q1

for some t with 0 ≤ t ≤ 1. Moreover, the bound M satisfies M ≤M1−t
0 M t

1.

Proof. We begin by establishing the inequality when f is a simple function, f =
∑
akχEk

where sets Ek are
disjoint and of finite measure. We can assume ∥f∥Lp = 1 because if we proved (∗) for this case, i.e.,

∥T (f)∥Lq ≤M,

we then apply the result to the function f/∥f∥Lp for any f ∈ Lp to get

∥T (f/∥f∥Lp) = ∥Lq ≤M,

Lemma 10.1.16 and remark 10.1.17 assert that

∥Tf∥Lq = sup
∥g∥

Lq′=1

g simple

∣∣∣∣∫ (Tf)gdν

∣∣∣∣
70



Complex Analysis Anthony Hong

so we only need to show for any g simple and ∥g∥Lq′ = 1,∣∣∣∣∫ (Tf)gdν

∣∣∣∣ ≤M∥f∥Lp∥g∥Lq′

For now, we also assume that p <∞ and q > 1. Suppose f ∈ Lp is simple with ∥f∥Lp = 1, and define

fz = |f |γ(z)
f

|f |
where γ(z) = p

(
1− z
p0

+
z

p1

)
,

and

gz = |g|δ(z)
g

|g|
where δ(z) = q′

(
1− z
q′0

+
z

q′1

)
,

with q′, q′0 and q′1 denoting the duals of q, q0, and q1 respectively. Then, we note that ft = f . We also observe
that if Re(z) = 0, i.e., z = yi, then

|fz|p0
∣∣∣|f |γ(z)∣∣∣p0 =

∣∣∣eγ(yi) log |f |
∣∣∣p0

=

∣∣∣∣ep( 1−yi
p0

+ yi
p1

)
log |f |

∣∣∣∣p0
=

∣∣∣∣ep( 1
p0

+i
(

yi
p1

− y
p0

))
log |f |

∣∣∣∣p0
= ep·

1
p0

·log |f |·p0 = |f |p

and consequently ∥f∥Lp = 1 implies that

∥fz∥Lp0 =

(∫
|fz|p0

)1/p0

=

(∫
|f |p

)1/p0

= (∥f∥Lp)p/p0 = 1

One can also compute that Re(z) = 1 results in ∥fz∥Lp1 = 1, and there are analogous results for gz. We
summarize them below.
- ft = f and {

∥fz∥Lp0 = 1 if Re(z) = 0

∥fz∥Lp1 = 1 if Re(z) = 1.

- gt = g and {
∥gz∥Lp′0

= 1 if Re(z) = 0

∥gz∥Lp′1
= 1 if Re(z) = 1.

The trick now is to consider

Φ(z) =

∫
(Tfz) gzdν

Since f is a finite sum, f =
∑
akχEk

where the sets Ek are disjoint and of finite measure, then fz is also
simple with

fz =
∑
|ak|γ(z)

ak
|ak|

χEk
.

Since g =
∑
bjχFj

is also simple, then

gz =
∑
|bj |δ(z)

bj
|bj |

χFj
.
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With the above notation, we find

Φ(z) =
∑
j,k

|ak|γ(z) |bj |δ(z)
ak
|ak|

bj
|bj |

(∫
T (χEk

)χFj
dν

)
,

so that the function Φ is a holomorphic function in the strip 0 < Re(z) < 1 that is bounded and continuous
in its closure. After an application of Hölder’s inequality and using the fact that T is bounded on Lp0 with
bound M0, we find that if Re(z) = 0, then

|Φ(z)| ≤ ∥Tfz∥Lq0 ∥gz∥Lq′0
≤M0 ∥fz∥Lp0 =M0.

Similarly we find |Φ(z)| ≤M1 on the line Re(z) = 1. Therefore, by the Hadamard three-lines theorem 3.6.6,
we conclude that Φ is bounded by M1−t

0 M t
1 on the line Re(z) = t. Since Φ(t) =

∫
(Tf)gdν, this gives the

desired result, at least when f is simple.

In general, when f ∈ Lp with 1 ≤ p <∞, we may choose a sequence {fn} of simple functions in Lp so that
∥fn − f∥Lp → 0 (as in Exercise 6 in Chapter 1 of [14]). Since ∥T (fn)∥Lq ≤M ∥fn∥Lp , we find that T (fn) is
a Cauchy sequence in Lq and if we can show that limn→∞ T (fn) = T (f) almost everywhere, it would follow
that we also have ∥T (f)∥Lq ≤M∥f∥Lp .

To do this, write f = fU + fL, where fU (x) = f(x) if |f(x)| ≥ 1 and 0 elsewhere, while fL(x) = f(x) if
|f(x)| < 1 and 0 elsewhere. Similarly, set fn = fUn + fLn . Now assume that p0 ≤ p1 (the case p0 ≥ p1 is
parallel). Then p0 ≤ p ≤ p1, and since f ∈ Lp, it follows that fU ∈ Lp0 and fL ∈ Lp1 . Moreover, since
fn → f in the Lp norm, then fUn → fU in the Lp0 norm and fLn → fL in the Lp1 norm. By hypothesis, then
T
(
fUn
)
→ T

(
fU
)

in Lq0 and T
(
fLn
)
→ T

(
fL
)

in Lq1 , and selecting appropriate subsequences we see that
T (fn) = T

(
fUn
)
+ T

(
fLn
)

converges to T (f) almost everywhere, which establishes the claim.

It remains to consider the cases q = 1 and p = ∞. In the latter case then necessarily p0 = p1 = ∞, and the
hypotheses ∥T (f)∥Lq0 ≤M0∥f∥L∞ and ∥T (f)∥Lq1 ≤M1∥f∥L∞ imply the conclusion

∥T (f)∥Lq ≤M1−t
0 M t

1∥f∥L∞

by Hölder’s inequality (as in Exercise 20 in Chapter 1 of [14]). Finally if p <∞ and q = 1, then q0 = q1 = 1,
then we may take gz = g for all z, and argue as in the case when q > 1. This completes the proof of the
theorem.

We shall now describe a slightly different but useful way of stating the essence of the theorem. Here we
assume that our linear operator T is initially defined on simple functions of X, mapping these to functions
on Y that are integrable on sets of finite measure. We then ask: for which (p, q) is the operator of type (p, q),
in the sense that there is a bound M so that

∥T (f)∥Lq ≤M∥f∥Lp , whenever f is simple? (3.8)

In this formulation of the question, the useful role of simple functions is that they are at once common to all
the Lp spaces. Moreover, if (3.8) holds then T has a unique extension to all of Lp, with the same bound M
in (3.8), as long as either p < ∞; or p = ∞ in the case X has finite measure. This is a consequence of the
density of the simple functions in Lp, and the extension argument in Proposition 5.4 of Chapter 1 of [14].

With these remarks in mind, we define the Riesz diagram of T to consist of all all points in the unit square
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} that arise when we set x = 1/p and y = 1/q whenever T is of type (p, q). We
then also define Mx,y as the least M for which (8) holds when x = 1/p and y = 1/q.

Corollary 3.7.2. With T as before:
(a) The Riesz diagram of T is a convex set.
(b) logMx,y is a convex function on this set.
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Conclusion (a) means that if (x0, y0) = (1/p0, 1/q0) and (x1, y1) = (1/p1, 1/q1) are points in the Riesz dia-
gram of T , then so is the line segment joining them. This is an immediate consequence of Riesz interpolation.
Similarly the convexity of the function logMx,y is its convexity on each line segment, and this follows from
the conclusion M ≤M1−t

0 M t
1 guaranteed also by Riesz interpolation.

In view of this corollary, the theorem is often referred to as the ”Riesz convexity theorem.”

Example 3.7.3. The first application of Riesz interpolation is the Hausdorff-Young inequality (3.6). Here X
is [0, 2π] with the normalized Lebesgue measure dθ/(2π), and Y = Z with its usual counting measure. The
mapping T is defined by T (f) = {an}, with

an =
1

2π

∫ 2π

0

f(θ)e−inθdθ.

Corollary 3.7.4. If 1 ≤ p ≤ 2 and 1/p+ 1/q = 1, then

∥T (f)∥Lq(Z) ≤ ∥f∥Lp([0,2π]).

Note that since L2([0, 2π]) ⊂ L1([0, 2π]) and L2(Z) ⊂ L∞(Z) we have L2([0, 2π]) + L1([0, 2π]) = L1([0, 2π]),
and also L2(Z) + L∞(Z) = L∞(Z).

The inequality for p0 = q0 = 2 is a consequence of Parseval’s identity, while the one for p1 = 1, q1 = ∞
follows from the observation that for all n,

|an| ≤
1

2π

∫ 2π

0

|f(θ)|dθ

Thus Riesz’s theorem guarantees the conclusion when 1/p = (1−t)
2 + t, 1/q = (1−t)

2 for any t with 0 ≤ t ≤ 1.
This gives all p with 1 ≤ p ≤ 2, and q related to p by 1/p+ 1/q = 1.

Example 3.7.5. We next come to the dual Hausdorff-Young inequality (3.7). Here we define the operator
T ′ mapping functions on Z to functions on [0, 2π] by

T ′ ({an}) =
∞∑

n=−∞
ane

inθ.

Notice that since Lp(Z) ⊂ L2(Z) when p ≤ 2, then the above is a welldefined function on L2([0, 2π]) when
{an} ∈ Lp(Z), by the unitary character of Parseval’s identity.

Corollary 3.7.6. If 1 ≤ p ≤ 2 and 1/p+ 1/q = 1, then

∥T ′ ({an})∥Lq([0,2π]) ≤ ∥{an}∥Lp(Z) .

The proof is parallel to that of the previous corollary. The case p0 = q0 = 2 is, as has already been mentioned,
a consequence of Parseval’s identity, while the case p1 = 1 and q1 =∞ follows directly from the fact that∣∣∣∣∣

∞∑
n=−∞

ane
inθ

∣∣∣∣∣ ≤
∞∑

n=−∞
|an|

73



Complex Analysis Anthony Hong

3.7.3 Fourier Transform and Paley-Wiener Theorem

We recall that the Fourier transform (FT) f̂ : Rd → C of a function f : Rd → C is defined as

f̂(ξ) :=

∫
Rd

f(x)e−2πix·ξdx, ξ ∈ Rd. (3.9)

The inversion is
f(x) =

∫
Rd

f̂(ξ)e2πix·ξdξ, x ∈ Rd. (3.10)

the most elegant and useful formulations of Fourier inversion are in terms of the L2 theory, or in its greatest
generality stated in the language of distributions. We are satisfied by the following results. See Stein’s third
book p.86 for proofs.

Proposition 3.7.7. Suppose f ∈ L1(Rd). Then f̂ defined by (3.9) is continuous and bounded in Rd.

Proposition 3.7.8. Suppose f ∈ L1(Rd) and assume also that f̂ ∈ L1(Rd). Then the inversion formula
(3.10) holds for almost every x.

Corollary 3.7.9. Suppose f̂(ξ) = 0 for all ξ. Then f = 0 a.e.

We consider the analog of Hausdorff-Young for the Fourier transform. Here the setting is Rd and the Lp

spaces are taken with respect to the usual Lebesgue measure. We initially define the Fourier transform
(denoted here by T ) on simple functions by

F(f)(ξ) =
∫
Rd

f(x)e−2πix·ξdx.

Then clearly, ∥F(f)∥L∞ ≤ ∥f∥L1 , and F has an extension (by Proposition 5.4 in Chapter 1 for instance)
to L1

(
Rd
)

for which this inequality continues to hold. Also, F has an extension to L2
(
Rd
)

as a unitary
mapping. (This is essentially the content of Plancherel’s theorem. See Section 1, Chapter 5 in Book III.)
Thus in particular ∥F(f)∥L2 ≤ ∥f∥L2 , for f simple. The same arguments as before then prove:

Corollary 3.7.10 (Hausdorff-Young). If 1 ≤ p ≤ 2 and 1/p + 1/q = 1, then the Fourier transform F defines
a linear mapping Lp(Rd) → Lq(Rd) has a unique extension to a bounded map Lp(Rd) → Lq(Rd), i.e., with
∥T (f)∥Lq ≤ ∥f∥Lp .

Proof. F : L1(Rd)→ L∞(Rd) with ∥f̂∥L∞(Rd) ≤ ∥f∥L1(Rd) becasue ∀ξ,

|f̂(ξ)| =
∣∣∣∣∫

Rd

f(x)e2πix·ξdx

∣∣∣∣ ≤ ∫ |f(x)e2πix·ξ|dx = ∥f∥L1(Rd)

Also, F : L2(Rd) → L2(Rd) with ∥f̂∥L2(R) = ∥f∥L2(Rd) by Plancherel. We will use Riesz interpolation
theorem with p0 = 1, q0 =∞, M0 = 1 and p1 = q1 = 2, M1 = 1.

Fix 1 ≤ p ≤ 2. Notice that then q ≥ 2 implying that 1/q ≤ 1/2 and thus t := 2/q ≤ 1. We deifne

pt =
1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1

as in Riesz’s theorem. With the t we defined, we have

1

pt
=

1− t
p0

+
t

p1
=

1− 2/q

1
+

2/q

2
= 1− 2

q
+

1

q
= 1− 1

q
=

1

p

so pt = p. Similar computation gives qt = q.

Riesz’s theorem gives
∥f̂∥Lq = ∥f̂∥Lqt ≤M1−t

0 M t
1∥f∥Lpt = ∥f∥Lp .
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Finishing the applications of Riesz’s interpolation theorem to Fourier transform, we now go to the main
theme of this subsection.

Lemma 3.7.11. Suppose a function f is entire and is bounded, i.e., f ∈ H(C) and |f(x)| ≤ A ∀x ∈ R for
some A > 0. If for any z ∈ C, |f(z)| ≤ Be2πM |z| for some B > 0 and M ∈ R, then we have

|f(z)| ≤ Ce2πM |y|, ∀z = x+ yi ∈ C

for some constant C.

Proof. Let U1 = {z = x+ yi : x > 0, y > 0} be the first quadrant. Define

F (z) = e2πiMzf(z).

Then |F (x)| = |f(x)| ≤ A for x ≥ 0 and |F (iy)| = e−2πMy|f(yi)| ≤ B for y ≥ 0. Thus, F is bounded on
∂U1 and satisfy the growth condition |F (z)| ≤ |f(z)| ≤ Be2πM |z| on U1. This growth restriction is sufficient,
Since U1 is a sector with angle π/2, α = 2 in first version of Phragmén-Lindelöff theorem, which gives

∀z ∈ U1 : e−2πMy|f(z)| = |F (z)| ≲ 1 =⇒ |f(z)| ≲ e2πMy

The same argument works in the second quadrant U2 = {x+ yi : x < 0, y > 0}. In the remaining quadrants,
where y < 0, this argument is applied to F̃ (z) := e−2πiMzf(z).

Lemma 3.7.12. Let F : U × [a, b] → C be continuous, where U ⊂ C is open and a < b. Assume also that
z 7→ F (z, s) is analytic for all s ∈ [a, b]. Then

f(z) :=

∫ b

a

F (z, s)ds, z ∈ U

is analytic in U (i.e. f ∈ H(U)).

Proof. Without loss of generality [a, b] = [0, 1]. Define fn as in the hint. Notice that these are analytic as
finite sums of analytic functions. It suffices to show that fn → f uniformly in all compact K ⊂ U . Let ε > 0.
Now F is uniformly continuous in the compact product set K × [0, 1]. Thus, there exists δ > 0 so that

|F (z, s1)− F (z, s2)| < ε

for all z ∈ K whenever s1, s2 ∈ [0, 1] satisfy |s1 − s2| < δ. So if n > 1/δ, then for all z ∈ K we have

|fn(z)− f(z)| ≤
n∑
k=1

∫ k/n

(k−1)/n

|F (z, k/n)− F (z, s)|ds ≤
n∑
k=1

ε

n
= ε,

and we are done.

The following characterizes, via complex analysis, when the support of f̂ is bounded.

Theorem 3.7.13 (Paley-Wiener Theorem). Let f ∈ L1(R) be bounded. Then

spt(f̂) = {ξ ∈ R : f̂ ̸= 0} ⊂ [−M,M ]

for some M > 0, if and only if f can be extended to an entire function satisfying |f(z)| ≲ e2πM |z| for z ∈ C.
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Proof. Suppose first that spt(f̂) ⊂ [−M,M ]. Then clearly, f̂ ∈ L1 and by Fourier inversion formula,

f(x) =

∫ M

−M
f̂(ξ)e2πixξdξ, x ∈ R.

We can actually now define f for z ∈ C via

f(z) =

∫ M

−M
f̂(ξ)e2πizξdξ

which extends f(x) on R to C. Now lemma 3.7.12 implies that f ∈ H(C), since F (z, ξ) := f̂(ξ)e2πizξ is
continuous (by DCT) and with fixed ξ the function z 7→ F (z, ξ) is clearly analytic. Moreover, notice that
f̂ ∈ L∞ because |f̂(ξ)| ≤

∫
|f | = ∥f∥1. Then

|f(z)| ≤
∫ M

−M
∥f̂∥∞e−2πyξdξ ≤ 2M∥f̂∥∞e2πM |y| ≤ 2M∥f̂∥∞e2πM |z|.

So it remains to prove the converse. We are assuming f ∈ L1(R) bounded has an extnesion to f ∈ H(C)
with |f(z)| ≲ e2πM |z|.

Lemma 3.7.11 implies the improved bound |f(z)| ≲ e2πM |y| for z = x + yi ∈ C. We still need some extra
control on the x-direction. Fix ξ > M . We want f̂(ξ) = 0. To prove this, define ∀ε > 0 the helper function

fε(z) :=
f(z)

(1 + iεz)2
, z ̸= i

ε

Notice that |1 + iε(x+ yi)|2 = (1− εy)2 + (εx)2 ≥ 1 + ε2x2 ≥ 1 if x ∈ R and y ≤ 0. Thus, |fε(z)| ≤ |f(z)| in
{z = x+ yi : y ≤ 0}. In particular, this is true on R, so fε ∈ L1(R) and f̂ε is defined. We now have

|f̂(ξ)− f̂ε(ξ)| ≤
∫ ∞

−∞
|f(x)|

∣∣∣∣ 1

(1 + iεx)2
− 1

∣∣∣∣ dx.
As 1

1+iεx − 1→ 0, we see that f̂ε → f̂(ξ). To be rigorous, one needs to show that

lim
ε→0

∫
|f(x)|

∣∣∣∣ 1

(1 + iεx)2
− 1

∣∣∣∣ dx =

∫
|f(x)| lim

ε→0

∣∣∣∣ 1

(1 + iεx)2
− 1

∣∣∣∣ dx.
by DCT and the fact that |f(x)|

∣∣∣ 1
(1+iεx)2 − 1

∣∣∣ ≤ 2|f(x)|.

Our goal is to show that f̂ε(ξ) = 0 for all ε (where ξ > M is fixed). This then implies f̂(ξ) = 0 as desired.
The good thing is that fε behaves better than f in x-direction:

|fε(x+ yi)| ≲ 22πM |y|

1 + ε2x2
≲ε

e2πM |y|

1 + x2
, x ∈ R, y ≤ 0.

We will “move” integration in f̂ε into some other horizontal line than R. To this end, define for y > 0 and
R > 0 then path

γ := [−R,R] ⋆ [R,R− yi] ⋆ [R− yi,−R− yi] ⋆ [−R− yi,−R.]

As fε ∈ H({Im(z) < 1
ε}) and γ is a path in the convex set {Im(z) < 1

ε}, Cauchy’s theorem says that∫
γ

fε(z)e
−2πizξdz = 0
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The integral over the vertical lines vanishes by, for instance,∣∣∣∣∣
∫ R−iy

R

fε(z)e
−2πizξdz

∣∣∣∣∣
=

∣∣∣∣∫ y

0

fε(R− it)e−2πi(R−it)ξ(−i)dt
∣∣∣∣

≲ε
ye2πMy

1 +R2

R→∞−→ 0

(notice how we critically needed the extra x-direction decay and the improved estimate of e2πM |z|!)Thus, we
have

f̂ε(ξ) = lim
R→∞

∫ R

−R
fε(x)e

−2πixξdx

= lim
R→∞

∫
[−R−iy,R+iy]

fε(z)e
−2πizξdz

= lim
R→∞

∫ R

−R
fε(x− iy)e−2πi(x−iy)ξdx

=

∫ ∞

−∞
fε(x− iy)e−2πi(x−iy)ξdx

=⇒
∣∣∣f̂ε(ξ)∣∣∣ ≲ε ∫ ∞

−∞

e2πMy

1 + x2
e−2πyξdx = e2πy(M−ξ)

∫ ∞

−∞

dx

1 + x2︸ ︷︷ ︸
<∞

≲ e2πy(M−ξ)

Recall we fixed ξ > M , so M − ξ < 0 above. The parameter y > 0 was arbitrary here, and we can let y →∞
to get fε(ξ) = 0. This holds with any ε > 0, and so f(ξ) = 0. To prove f̂(ξ) = 0 for ξ < −M we do almost
the same things: modify f as 1

(1−iεz)2 and work in the upper half-plane instead.

Remark 3.7.14. This is a more refined version of the principle that if f and f̂ both have compact support,
then f = 0. Indeed, if also f would have compact support on R, then the zeros of the extended version
f ∈ H(C) would accumulate and f = 0.

Fourier analysis is a rich subject. we end our treatment here, however. The idea was to simply demonstrate
that many problems of Fourier analysis can be fruitfully be attacked using complex techniques.
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Chapter 4

Harmonic Functions

Let U be a region (open connected set in C). A real-valued function f : U → R is said to be harmonic if,
considered as R2 → R, it is twice continuously differentiable (i.e., its second derivatives are continuous)
and satisfies the Laplace equation

∆f = ∇2f :=

(
∂2

∂x2
+

∂2

∂y2

)
f = fxx + fyy = 0

A complex-valued function f : U → C is said to be harmonic if and only if u = Ref and v = Imf are real
harmonic. The study of harmonic functions is called potential theory.

4.1 Harmonicity and Analyticity

Suppose f = u+ iv is an analytic function on region U . Then [10] Corollary 4.45 claims that

f ′(z) = ∂xu(z) + i∂xv(z) = ∂yv(z)− i∂yu(z). (4.1)

[10] Theorem 8.1 claims that f is infinitely differentiable. Thus, with Ref ′ = ∂xu, Imf ′ = ∂xv, we apply
above equation again to get

f ′′ = ∂x(∂xu) + i∂x(∂xv) = ∂y(∂xv)− i∂y(∂xu)
∂xxu+ i∂xxv = ∂yxv − i∂yxu

With Ref ′ = ∂yv, Imf ′ = −∂yu, we have

f ′′ = ∂x(∂yv) + i∂x(−∂yu) = ∂y(−∂yu)− i∂y(∂yv)
∂xyv − i∂xyu = −∂yyu− i∂yyv

Apply equation (4.1) repetitively to see that u and v are smooth functions on U , i.e., ∈ C∞(U). Therefore, f
being analytic makes u and v automatically twice continuously differentiable, and we shall also see they are
harmonic conjugates of each other as well.

Definition 4.1.1. Let U be a region. Two harmonic functions u : U → R, v : U → R are said to be
harmonic conjugates of each other if in U they satisfy the Cauchy Riemann equation (C.R. eq){

∂u
∂x = ∂v

∂y
∂u
∂y = − ∂v

∂x
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Proposition 4.1.2. Suppose f = u + iv is an analytic function on region U . Then u and v are harmonic
conjugates of each other.

Proof. Analytic function f satisfies the C.R. eq.{
∂xu = ∂yv

∂yu = −∂xv

so u and v satisfy C.R. eq. u and v are twice continuously differentiable as we noted above. Thus, we have
their mixed second partial derivatives equal, that is,

(∗) : ∂xyu = ∂yxu, ∂xyv = ∂yxv.

Now we take x-derivatives of C.R. eq. to get{
∂xxu = ∂xyv

∂yyu = −∂yxv

By (∗), we see
∂xxu = ∂yxv = −∂yyu

=⇒ ∆u = ∂xxu+ ∂yyu = 0.

Thus u is harmonic. Similarly, taking y-derivatives of C.R. eq. will show that v is also harmonic

∆v = ∂xxv + ∂yyv = 0.

We show that the converse is also true.

Proposition 4.1.3. Let U be a region. u and v are harmonic conjugates on U . Then f = u + iv is analytic
on U .

Proof. Let z = x+ iy ∈ U and let B(z; r) ⊂ U . If h = s+ it ∈ B(0, r) then

u(x+ s, y + t)− u(x, y) = [u(x+ s, y + t)− u(x, y + t)] + [u(x, y + t)− u(x, y)]

Applying the mean value theorem for the derivative of a function of one variable to each of these bracketed
expressions, yields for each s+ it in B(0, r) numbers s1 and t1 such that |s1| < |s| and |t1| < |t| and{

u(x+ s, y + t)− u(x, y + t) = ux (x+ s1, y + t) s
u(x, y + t)− u(x, y) = uy (x, y + t1) t

(4.2)

Letting
φ(s, t) := [u(x+ s, y + t)− u(x, y)]− [ux(x, y)s+ uy(x, y)t]

(4.2) gives that

φ(s, t)

s+ it
=

s

s+ it
[ux (x+ s1, y + t)− ux(x, y)] +

t

s+ it
[uy (x, y + t1)− uy(x, y)]

But |s| ≤ |s+ it|, |t| ≤ |s+ it|, |s1| < |s|, |t1| < |t|, and the fact that ux and uy are continuous gives that

lim
s+it→0

φ(s, t)

s+ it
= 0 (4.3)
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Hence
u(x+ s, y + t)− u(x, y) = ux(x, y)s+ uy(x, y)t+ φ(s, t)

where φ satisfies (4.3). Similarly

v(x+ s, y + t)− v(x, y) = vx(x, y)s+ vy(x, y)t+ ψ(s, t)

where ψ satisfies

lim
s+it→0

ψ(s, t)

s+ it
= 0 (4.4)

Using the fact that u and v satisfy the Cauchy-Riemann equations it is easy to see that

f(z + s+ it)− f(z)
s+ it

= ux(z) + ivx(z) +
φ(s, t) + iψ(x, t)

s+ it

In light of (4.3) and (4.4), f is differentiable and f ′(z) = ux(z) + ivx(z). Since ux and vx are continuous, f ′

is continuous and f is analytic.

Due to above two propositions, we see

Corollary 4.1.4. Two real-valued functions u and v are harmonic conjugates of each other on region U if
and only if f = u+ iv is analytic on U .

Now we ask: if we have a harmonic function u, how to find its harmonic conjugate v? If v1 and v2 are
two harmonic conjugates of u then i (v1 − v2) = (u+ iv1) − (u+ iv2) is analytic on U and only takes on
purely imaginary values. It follows that two harmonic conjugates of a harmonic function differ by a constant
(exercise).

Theorem 4.1.5. Let U be a simply connected region. If u : U → R is a harmonic function then u has a
harmonic conjugate.

Proof. Since u is a harmonic function, we have u ∈ C2(U) and

∂xxu+ ∂yyu = 0.

Thus, −∂yu and ∂xu have continuous partial derivatives in U and

∂y(−∂yu) = ∂x(∂xu).

From necessary and sufficient condition of exact equation (see ode note), we know that −∂yudx+ ∂xudy is
the total derivative of some function v. In fact, it is given by

v(x, y) =

∫ y

0

ux(x, t)dt−
∫ x

0

uy(s, 0)ds.

(See [2] p.43 Theorem 2.30). It can be checked that u and v satisfy C.R. eq. Simply-connectedness is used
for independence of path in integration.

Corollary 4.1.6. If u : G→ R is harmonic then u is infinitely differentiable.

Proof. Fix z0 = x0 + iy0 in U and let δ be chosen such that B (z0; δ) ⊂ U . Then u has a harmonic conjugate
v on B (z0, δ). That is, f = u + iv is analytic and hence infinitely differentiable on B (z0, δ). It now follows
that u is infinitely differentiable by our discussion right before definition 4.1.1.

In fact, we can show that the converse of the theorem is also true. Therefore, the existence of a harmonic
conjugate is another equivalent characterization of simply-connectedness apart from Theorem 2.3.8.
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Theorem 4.1.7. For a harmonic u we can find v s.t. f = u + iv is analytic on region U iff the region U is
simply-connected

Proof. We only need to show⇒ due to previous theorem. Due to Theorem 2.3.8, it suffices to show that for
any 0 ̸= f ∈ H(U) there is a function g ∈ H(U) such that f(z) = eg(z).

Let u = Ref , v = Imf . If ϕ : U → R is defined by ϕ(x, y) = log |f(x + iy)| = log
[
u(x, y)2 + v(x, y)2

] 1
2

then a computation shows that ϕ is harmonic. Let φ be a harmonic function on U such that g = ϕ + iφ

is analytic on U and let h(z) = exp g(z). Then h is analytic, never vanishes, and
∣∣∣ f(z)h(z)

∣∣∣ = 1 for all z in U .

That is, f/h is an analytic function whose range is not open. It follows that there is a constant c such that
f(z) = c h(z) = c exp g(z) = exp [g(z) + c1]. Thus, g(z) + c1 is a branch of log f(z).

4.2 Dirichlet Problem

Given some g ∈ C(∂D), consider the Dirichlet problem (Dir){
∆u = 0 in D
u = g on ∂D

we want to find u = ug ∈ C2(D) ∩ C(D) satisfying (Dir). We do it in a reverse way. Suppose u solves (Dir),
what does it look like? Two approaches will be presented to show that functions u satisfying (Dir) will be of
Poisson integral formula:

(P ) : u(reiθ) =
1

2π

∫ π

−π
g(eit)Pr(θ − t)dt (4.5)

4.2.1 (Dir) =⇒ (P) by separation of variables.

We first present the polar representation of (Dir): let u(r, θ) := u(r cos θ, r sin θ). Then the boundary condi-
tion becomes

u(1, θ) = u(cos θ, sin θ) = g(cos θ, sin θ) =: G(θ).

The Laplacian is specified by the following proposition.

Proposition 4.2.1. In C the Laplacian in the polar coordinates (r, θ) 7→ (r cos θ, r sin θ), r ≥ 0, θ ∈ [−π, π)
takes the form

∆u = urr +
1

r
ur +

1

r2
uθθ, r > 0, θ ∈ [−π, π)

if u is nice enough. More carefully stated, we are claiming that u(r, θ) := u(reiθ) = u(r cos θ, r sin θ) satisfies

Urr(r, θ) +
1

r
Ur(r, θ) +

1

r2
Uθθ(r, θ)

= uxx(r cos θ, r sin θ) + uyy(r cos θ, r sin θ).

Proof. See Math5022 HW4 Q1 (the same solution is hide as comment in latex.)

In (Dir), we seek u ∈ C(D) and g ∈ ∂D. In polar coordinates, they become u ∈ C([0, 1] × [−π, π]) and
G ∈ C[−π, π], both 2π-periodic on θ ∈ R.

We use method of separation of variables: look first for solutions to ∆U = 0 ot the special form u(r, θ) =
v(r)w(θ). By continuity, we look for bounded v, w with w 2π-periodic. Substituting this form into the polar
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Laplacian to get

v′′(r)w(θ) +
1

r
v′(r)w(θ) +

1

r2
v(r)w′′(θ) = 0

=⇒ r2v′′(r) + rv′(r)

v(r)︸ ︷︷ ︸
independent of θ

= −w
′′(θ)

w(θ)︸ ︷︷ ︸
independent of r

So both sides need to equal some common constant λ:

r2v′′(r) + rv′(r)

v(r)
= −w

′′(θ)

w(θ)
= λ

⇒
{
r2v′′(r) + rv′(r)− λv(r) = 0,
w′′(θ) + λw(θ) = 0.

We analyze first for which λ ∈ R the problem ω′′ = −λω has solutions. Here we use some basic results from
the theory of ODEs without proofs.

(1) λ < 0:
Solution would take the form w(θ) = C1e

√
−λθ +C2e

−
√
−λθ. The only possible 2π-periodic solution is w = 0.

(2) λ = 0:
Then w(θ) = C1 + C2θ. 2π-periodicity demands C2 = 0 and we get the solution w(θ) = K. However, for
λ = 0, the corresponding ODE for v is

r2v′′(r) + rv′(r) = 0.

This ODE is an example of Euler’s equation. Notice that one solution is a constant function. Another is ln r,
since

r2 ·
(
−r−2

)
+ r · 1

r
= −1 + 1 = 0.

Thus, the general solution is v(r) = C1 ln r + C2. For this to stay bounded, we need C1 = 0. Thus, λ = 0
gives u(r, θ) = C.

(3) λ > 0:
Now ω(θ) = C1e

i
√
λθ + C2e

−i
√
λθ. For this to be 2π-periodic, we need

√
λ to be an integer, i.e.,

√
λ = m,

m = 1, 2, · · · . That is, λ = m2, m = 1, 2 · · · . We get corresponding solutions

wm(θ) = C1e
imθ + C2e

−imθ.

For λ = m2, the corresponding problem for v is r2v′′(r) + rv′(r) − m2v(r) = 0. Again, this is an Euler’s
equation. By noticing that r±m are solutions, we have

v(r) = c1r
m + c2r

−m.

For this to be bounded, we need c2 = 0. Thus, we have the solution

um(r, θ) = rm(c1e
imθ + c2e

−imθ).

Previously, we fouond the constant solution. Of course, these do not have U as the boundary value. But the
following superposition of the solutions could

u(r, θ) :=
∑
m∈Z

amr
|m|eimθ.

Now, for this to satisfy u(1, θ) = G(θ), it must be the case that am satisfy

G(θ) =
∑
m∈Z

ame
imθ.
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Integration on both sides gives

1

2π

∫ π

−π
G(t)e−imtdt =

∑
k∈Z

ak
1

2π

∫ π

−π
ei(k−m)θdθ︸ ︷︷ ︸

=δk,m

= am.

(the Fourier coefficients of Fourier series). Mere continuity of U is insufficient for a Fourier series represen-
tation

G(θ) =
∑
m∈Z

ame
imθ, am =

1

2π

∫ π

−π
G(t)e−imt,

while C1 would suffice. We don’t worry about this subtlety: all we want at this point is to arrive at some
formula how u should look like if everything is nice, and then later prove this formula actually solves (Dir)
even for just a continuous U . We now simplify

u(r, θ) =
∑
m∈Z

amr
|m|eimθ

=
∑
m∈Z

(
1

2π

∫ π

−π
G(t)e−imtdt

)
r|m|eimθ

= lim
N→∞

∑
|m|≤N

(
1

2π

∫ π

−π
G(t)e−intdt

)
r|m|eimθ

= lim
N→∞

1

2π

∫ π

−π
G(t)

∑
|m|≤N

r|m|eim(θ−t)dt

The finite sum inside the integral is bounded by∣∣∣∣∣∣
∑

|m|≤N

r|m|eim(θ−t)

∣∣∣∣∣∣ ⩽
∞∑

m=−∞
r|m| <∞

where the latter is a geometric series with r < 1. We can interchange the limit and the integral (follows
Dominated Convergence Theorem). Thus,

u(r, θ) =
1

2π

∫ π

−π
G(t)

∑
m∈Z

r|m|eim(θ−t)dt =
1

2π

∫ π

−π
G(t)Pr(θ − t)dt,

where Pr(θ) :=
∑
m∈Z r

|m|eimθ is the Poisson kernel, 0 ⩽ r < 1, θ ∈ R. Now we have arrived at the Poisson
integral formula:

ug
(
reiθ

)
= u

(
reiθ

)
= u(r, θ)

=
1

2π

∫ π

−π
G(t)Pr(θ − t)dt.

=
1

2π

∫ π

−π
g
(
eit
)
Pr(θ − t)dt.

(4.6)

4.2.2 (Dir) =⇒ (P) by mean value property

We introduce the second approach to show solution of (Dir) is of the form (P). Let u(z) solve (Dir), then u(z)
has the mean value property

u(0) =
1

2π

∫ π

−π
g
(
eiθ
)
dθ. (4.7)
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Let z0 = reiθ0 be a point in D. Then there is a similar representation formula for u (z0), obtained by changing
variables through a Möbius transformation. Let τ(z) = (z − z0) / (1− z̄0z). The unit circle ∂D is invariant
under τ , and we may write τ

(
eiθ
)
= eiφ. From

d
dθ
τ(eiθ) =

deiφ(θ)

dθ
= ieiφ

dφ
dθ

= iτ(eiθ)
dφ
dθ
,

we see that

dφ
dθ

=
d

dθ τ(e
iθ)

iτ(eiθ)
=

d
dθ
τ(eiθ) · 1− ie

iθ z̄0
i(eiθ − z0)

=
d
dθ

(
eiθ − z0
1− z̄0eiθ

)
· 1− ie

iθ z̄0
i(eiθ − z0)

=
ieiθ − ie2iθ z̄0 + ie2iθ z̄0 − ieiθ|z0|2

(1− eiθ z̄0)2
· 1− ie

iθ z̄0
i(eiθ − z0)

=
ieiθ(1− |z0|2)

eiθ(e−iθ − z̄0)(1− eiθ z̄0)
· 1− ie

iθ z̄0
i(eiθ − z0)

=
1− |z0|2

|eiθ − z0|2
=

1− r2

1− 2r cos (θ0 − θ) + r2
= Pz0(θ).

This function Pz0(θ) is called the Poisson kernel for the point z0 ∈ D. Since u
(
τ−1(z)

)
is another function

continuous on D̄ and harmonic on D, the function u ◦ τ−1 solves (Dir) with h := u ◦ τ−1 on ∂D. The change
of variables yields

u (z0) = u
(
τ−1(0)

) (4.7)
====

1

2π

∫ π

−π
h(eiφ)dφ =

1

2π

∫ π

−π
u(τ−1)

(
eiφ
)

dφ

=
1

2π

∫ π

−π
u
(
eiθ
)
Pz0(θ)dθ

u=g on ∂D
========

1

2π

∫ π

−π
g(eiθ)Pz0(θ)dθ.

This is the same as the Poisson integral formula (4.6).

Remark 4.2.2. If we are given any u that is harmonic on D and continuous on ∂D (notice that harmonic on
D implies continuity on D), the formula

u(reiθ) =
1

2π

∫ π

−π
u(eiθ)Pr(θ − t)dt

holds for any r < 1 and should make no confusion with Proposition 4.2.5. Poisson integral formula is
obtained when assuming u is harmonic on D and continuous on ∂D, i.e., solves (Dir)u. If this is the case, we
have the Poisson integral formula and Proposition 4.2.5 reads as

lim
r→1−

u(reiθ) = u(eiθ).

The Poisson integral formula should be understood in the way that the values of a function harmonic on D
continuous on ∂D inside the unit disk is determined by its values on the unit circle.

4.2.3 Poisson Expression =⇒ (Dir)

Several properties of the Poisson kernel are given first.

Proposition 4.2.3 (Properties of Poisson kernel). Let r ∈ [0, 1). Then

(1)

Pr(θ) =
1− r2

sin2 θ + (cos θ − r)2
≥ 0.
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(2)
1

2π

∫ π

−π
Pr(θ)dθ = 1.

(3)

lim
r→1−

∫
δ≤|t|≤π

Pr(t)dt = 0 ∀δ ∈ (0, π).

Remark 4.2.4. Due to (2) and (3) and the fact that Pr(θ) is positive, Poisson kernel is a good kernel.

proof of the proposition.

N∑
m=−N

r|m|eimθ = 1 +

N∑
m=1

rmeimθ +

N∑
m=1

rme−imθ

=1 +

N∑
m=1

(reiθ)m +

N∑
m=1

(re−iθ)m = 1 +
ω − ωN+1

1− ω
+
ω − ωN+1

1− ω
, ω = reiθ

By letting N →∞, we have

Pr(θ) =1 +
ω

1− ω
+

ω

1− ω
, since 0 ≤ r < 1

=1 +
ω(1− ω + (1− ω))
(1− ω)(1− ω)

= 1 +
−2r2 + r(eiθ + e−iθ)

1− r(eiθ + e−iθ) + r2

=1 +
−2r2 + 2r cos θ

1− 2r cos θ + r2
=

1 + r2

1− 2r cos θ + r2
.

This proves (1).

To show (2), we note that the convergence for the series fN (θ) =
∑N
m=−N r

|m|eimθ is absolute and uniform
(observe that |fN | ≤

∑N
m=−N

∣∣r|m|eimθ
∣∣ =∑N

m=−N r
|m| which is a convergent geometric series since 0 ≤ r <

1. Then Weierstrass M-test concludes the absolute and uniform convergence). Uniform convergence ensures
the termwize integrations of fN converge to the integration of the limit function of the series. Namely,

1

2π

∫ π

−π
Pr(θ)dθ =

1

2π
lim
N→∞

N∑
m=−N

∫ π

−π
r|m|eimθdθ =

1

2π
lim
N→∞

N∑
m=−N

r|m|
∫ π

−π
eimθdθ︸ ︷︷ ︸= 0, m ̸= 0

= 2π, m = 0

=
1

2π
2π = 1.

To show (3), we note that
1− 2r cos θ + r2 = (1− r)2 + 2r(1− cos θ).

Thus, if 1
2 ≤ r ≤ 1 and δ ≤ |θ| ≤ π, then

1− 2r cos θ + r2 ≥ cδ > 0 =⇒ 0 ≤ Pr(θ) ≤ (1− r2)/cδ

Therefore,

0 ≤ lim
r→1−

∫
δ≤|t|≤π

Pr(t)dt ≤ lim
r→1−

∫
δ≤|t|≤π

1− r2

cδ
dt = 0,

which proves (3).
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Proposition 4.2.5. The boundary value g is obtained in the sense that

lim
r→1−

1

2π

∫ π

−π
g
(
eit
)
Pr(θ − t)dt = g(eiθ), −π ≤ θ ≤ π.

In fact, one can show the convergence is uniform.

Proof. See Math5022 HW4 Q3 and the remark following the solution.

We define the Poisson expression associated with g ∈ C(∂D) as the function

(P ) : u(reiθ) = ug(re
iθ) =

1

2π

∫ π

−π
g(eit)Pr(θ − t)dt, 0 ≤ r < 1 (4.8)

It is natural to ask the following question: if we directly define u as in (P ) by the given g ∈ C(∂D) can we
get ∆u = 0? The answer is yes by realizing it as the real part of an analytic function, as we shall see. One
step further, our final goal in this subsection is to show the function

z 7→

{
ug(z), z ∈ D
g(z), z ∈ ∂D

solves (Dir) uniquely.

Note that Pr(θ − t) in (P ) can be written as

Pr(θ − t) =
1− r2

1− 2r cos(θ − t) + r2
z=reiθ∈D
========
eit∈∂D

1− |z|2

|eit − z|2
(4.9)

by noting that

|eit − z|2 = (eit − z)(e−it − z) = 1− zeit − ze−it + |z|2 = 1− ze−it − ze−it + |z|2 = 1− 2Re(ze−it) + |z|2

So Pr(θ − t) can be also regarded as a function of z = reit ∈ D and eiθ ∈ ∂D. Then

Pr(θ − t) = P
(
z, eit

)
=

1− |z|2

|eit − z|2
= Re

(
eit + z

eit − z

)
Indeed,

Re

(
eit + z

eit − z

)
=

1

2

(
eit + 2

eit − 2
+
e−it + z

e−it − z

)
=

1

2

1− eitz + ze−it − |z|2 + 1 + eitz − ze−it − |z|2

|eit − z|2
=

1− |z|2

|eit − z|2
.

Suppose g ∈ C(∂D) is real-valued. Then

u(z) = u
(
reiθ

)
= Re

(
1

2π

∫ π

−π
g
(
eit
) eit + z

eit − z
dt

)
, (4.10)

where the function inside Re(·) is analytic in z ∈ D by Lemma 3.7.12. So ∆u = 0 as the real part of an
analytic function is always harmonic.

Note: Of course, u is then still harmonic even if g is C-valued.

Theorem 4.2.6. Let g ∈ C(∂D). Then

ug(z) = u(z) = u
(
reiθ

)
:=

1

2π

∫ π

−π
g
(
eit
)
Pr(θ − t)dt

is the real part of a function f ∈ H(D) given by (4.10) and is thus harmonic in D. Besides, ug = g on ∂D in
the sense that

lim
r→1−

u
(
reiθ

)
= g

(
eiθ
)
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Remark 4.2.7. The function

z 7→

{
ug(z), z ∈ D
g(z), z ∈ ∂D

is continuous on D, harmonic on D. We show the continuity now.

Proof. Define operator H as

(Hg)(reiθ) =

{
ug(re

iθ), 0 ≤ r < 1

g(eiθ), r = 1

Our task is to show Hg ∈ C(D). Notice, for 0 ≤ r < 1,∣∣(Hg) (reiθ)∣∣ = ∣∣ug (reiθ)∣∣
Pr≥0

≤ 1

2π

∫ π

−π

∣∣g (eit)∣∣Pr(θ − t)dt
≤∥g∥L∞(∂D)

1

2π

∫ π

−π
Pr(θ − t)dt

=∥g∥L∞(∂D)
1

2π

∫ θ+π

θ−π
Pr(u)du

=∥g∥L∞(∂D)
1

2π

∫ π

−π
Pr(u)du

=∥g∥L∞(∂D)

Thus
∥Hg∥L∞(D) = ∥g∥L∞(∂D).

It is known by Fourier analysis that every continuous function on ∂D is a uniform limit of trigonometric
polynomials:

∃gk(eiθ) =
∑

|n|≤Nk

cn,ke
inθ s.t. ∥gk − g∥L∞(∂D)

k→∞−→ 0.

But it is obvious that Hgk ∈ C(D), since

ugk
(
riθ
)
=

1

2π

∫ π

−π
gk
(
eit
)
Pr(θ − t)dt

=
1

2π

∫ π

−π

 ∑
|n|≤Nk

cn,ke
int

∑
m∈Z

r|m|eim(θ−t)dt

=

Nk∑
n=−Nk

cn,k

∞∑
n=−∞

r|m|einθ · 1

2π

∫ π

−π
ei(n−m)tdt︸ ︷︷ ︸

=δn,m

=

Nk∑
n=−Nk

cn,kr
|n|einθ

meaning that Hgk(reiθ) =
∑Nk

n=−Nk
cn,kr

|n|einθ, 0 ≤ r ≤ 1. But

∥Hg −Hgk∥L∞(D) = ∥H (g − gk)∥L∞(D) = ∥g − gk∥L∞(D) → 0

so Hg ∈ C(D) as a uniform limit of Hgk ∈ C(D).
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We have showed that

Hg =

{
ug on D
g on ∂D

is a solution to (Dir). Let’s show the uniqueness.

proof of uniqueness. Suppose we have two functions solving (Dir). Then their difference is still harmonic
and thus on ∂D their difference is zero. So the uniqueness problem can be alternatively formulated by the
following:

Suppose h ∈ C(D) is real-valued and {
∆h = 0 on D
h = 0 on ∂D

We show that this implies h = 0. Suppose h (z0) > 0 for some z0 ∈ D. Fix ε ∈ (0, h (z0)). Then define
g(z) := h(z) + ε|z|2, z ∈ D. Then g ∈ C(D), g (z0) ≥ h (z0) > ε and g(z) = ε on ∂D. This implies
maxD |g| must be obtained at some z1 ∈ D. But a local maximum at an interior point, essentially by the
elementary second derivative test implies, second derivatives at this point ≤ 0; in particular ∆g (z1) ≤ 0. But
∆g(z) = ∆h(z) + 4ε = 4ε in D. Then ∆g (z1) = 4ε > 0. Contradiction.

Thus, such z0 cannot exist and h ≤ 0. Similarly, h ≥ 0, so h = 0.

Theorem 4.2.8. Given g ∈ C(∂D), ∃!u ∈ C(D) such that ∆u = 0 on D and u = g on ∂D.

We can extend the theorem to arbitrarily disks. If R > 0 then substituting r/R for r in the middle of (4.9)
gives

R2 − r2

R2 − 2rR cos θ + r2
(4.11)

for 0 ≤ r < R and all θ. So if u is continuous on B(a;R) and harmonic in B(a,R) then

u
(
a+ reiθ

)
=

1

2π

∫ π

−π

[
R2 − r2

R2 − 2rR cos(θ − t) + r2

]
u
(
a+Reit

)
dt (4.12)

Now (4.11) can also be written
R2 − r2

|R− reiθ|2

and R− r ≤
∣∣Reit − reiθ∣∣ ≤ R+ r. Therefore

R− r
R+ r

≤ R2 − r2

R2 − 2rR cos(θ − t) + r2
≤ R+ r

R− r
.

If u ≥ 0 then equation (4.12) yields the following.

Theorem 4.2.9 (Harnack’s Inequality). If u : B(a;R) → R is continuous, harmonic in B(a,R), and u ≥ 0
then for 0 ≤ r < R and all θ

R− r
R+ r

u(a) ≤ u
(
a+ reiθ

)
≤ R+ r

R− r
u(a)

Remark 4.2.10. With conformal mappings, we can also explicitly solve in half-planes and strips. We skip
calculatioins for now. For more on this, see elliptic pde theory, and subharmonic functions and Perron’s
method in [2].
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Let u : U → R be a harmonic function on an open set U ⊆ C. Then we can choose a ball B so that B ⊂ U .
Since u is harmonic, clearly u ∈ C(∂B), and thus we can consider the problem{

∆v = 0 on B
v = u on ∂B

From Theorem 4.2.6, we know solution v is given inside of B by the Poisson expression and is the real part
of a function fB ∈ H(B). By uniquness,

u = v = Re(fB).

Since the ball is arbitrary, u is locally the real part of an analytic function. In particular, u ∈ C∞(U).

4.3 More Properties of Harmonic Functions

Another thing that follows from the Poisson integral is

Theorem 4.3.1 (Harnack’s theorem). Let U be a region.
(a) The metric space Har(U) is complete.
(b) If {un} is a sequence in Har(U) such that u1 ≤ u2 ≤ . . . then either un(z) → ∞ uniformly on compact
subsets of U or {un} converges in Har(U) to a harmonic function, where Har(U) is the space of harmonic
functions on U , inheriting the metric from C(U,R).

Proof.
(a) We notice that to show a subspace of a complete metric space is complete, it suffices to show it is closed
(every Cauchy sequence in that subspace already converges to some limit point in the complete metric
space, but now closedness makes that limit lies inside the subspace). Therefore, we let {un} be a sequence
in Har(U) such that un → u for some u ∈ C(U,R). By Proposition 3.4.5 (b), we see un → u uniformly on all
compact subsets of U .

Fix a ballB = B(a,R) such thatB ⊂ U . Write, using what we derive just before proving Harnack’s inequality,

un(a+ reiθ) =
1

2π

∫ π

−π

R2 − r2

r2 − 2Rr cos(θ − t) + r2
un(a+Reit)︸ ︷︷ ︸

−→ u(a+Reit) uni-
formly in t ∈ [−π, π]

dt, when r < R.

Thus, for r < R, letting n→∞ gives

u(a+ reiθ) =
1

2π

∫ π

−π

R2 − r2

r2 − 2Rr cos(θ − t) + r2
un(a+Reit)dt.

But this implies u is harmonic: if u is R-valued, it is the real part of an analytic function in B and is thus
harmonic.

(b) The proof is not central to the course, but for completeness, we copy it from [2].

We may assume that u1 ≥ 0 (if not, consider {un − u1} ). Let u(z) = sup {un(z) : n ≥ 1} for each z in U . So
for each z in U one of two possibilities occurs: u(z) =∞ or u(z) ∈ R and un(z)→ u(z). Define

A = {z ∈ U : u(z) =∞}
B = {z ∈ U : u(z) <∞}

then U = A ∪ B and A ∩ B = ∅. We will show that both A and B are open. If a ∈ U , let R be chosen such
that B(a,R) ⊂ U . By Harnack’s inequality

R− |z − a|
R+ |z − a|

un(a) ≤ un(z) ≤
R+ |z − a|
R− |z − a|

un(a) (4.13)
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for all z in B(a,R) and all n ≥ 1. If a ∈ A then un(a) → ∞ so that the left half of (4.13) gives that
un(z) → ∞ for all z in B(a,R). That is, B(a,R) ⊂ A and so A is open. In a similar fashion, if a ∈ B then
the right half of (4.13) gives that u(z) <∞ for |z − a| < R. That is B is open.

Since U is connected, either A = U or B = U . Suppose A = U ; that is u ≡ ∞. Again if B(a,R) ⊂ U and
0 < ρ < R then M = (R − ρ)(R + ρ)−1 > 0 and (4.13) gives that Mun(a) ≤ un(z) for |z − a| ≤ ρ. Hence
un(z) → ∞ uniformly for z in B(a; ρ). In other words, we have shown that for each a in U there is a ρ > 0
such that un(z)→∞ uniformly for |z − a| ≤ ρ. From this it is easy to deduce that un(z)→∞ uniformly for
z in any compact set.

Now suppose B = U , or that u(z) <∞ for all z in U . If ρ < R, then for m ≤ n Harnack’s Inequality applied
to the positive harmonic function un−um implies there is a constant C depending only on ρ and R such that

0 ≤ un(z)− um(z) ≤ C [un(a)− um(a)]

for |z − a| ≤ ρ. Thus, {un(z)} is a uniformly Cauchy sequence on B(a; ρ). It follows that {un} is a Cauchy
sequence in Har(G) and so, by part (a), must converge to a harmonic function. Since un(z)→ u(z), u is this
harmonic function.

We have seen that harmonic function u : U → R on region U is infinitely differentiable, a propoerty shared
with analytic functions as well. The next result is the analogue of the Cauchy integral formula.

Theorem 4.3.2 (Mean Value Property of harmonic function). If u : U → R is a harmonic function and
B(a, r) is a closed disk contained in U , then

u(a) =
1

2π

∫ π

−π
u(a+ reiθ)dθ.

Proof. Let D be a disk such that B(a, r) ⊂ D ⊂ U and let f be an analytic function on D such that u = Re f .
[10] Corollary 8.18 (mean value property of analytic function) states that

f(a) =
1

2π

∫ π

−π
f
(
a+ reiθ

)
dθ.

By taking the real part of each side of this equation we complete the proof.

In order to study this property of harmonic functions we isolate it.

Definition 4.3.3. A continuous function u : G→ R has the Mean Value Property (MVP) if ∀z ∈ U , ∃rn > 0,
rn

n→∞−→ 0 such that

u(z) =
1

2π

∫ π

−π
u
(
z + rne

iθ
)
dθ.

Remark 4.3.4. We note that this is weaker than the definition given in [2], where the above averaging
effect holds for every circles inside U . Our definition assumes for each z ∈ U , there is some sequence of
circles B(z, rn) where the averaging effect holds. Showing the converse of theorem 4.3.2 only needs our
weaker definition. [2] uses the stronger one to prove it in theorem 2.11, while isolating parts of the proof as
maximum principle for harmonic function.

Theorem 4.3.5 (MVP implies harmonicity). If a continuous function u has MVP in U , then u is harmonic in
U .

Proof. WLOG, we assume u is real-valued. Fix B = B(a,R) with B ⊂ U . Since u ∈ C(∂B), we let h ∈ C(U)
be the unique solution to the Dirichlet problem{

∆h = 0, on B
h = u, on ∂B

.
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Let v = u − h. We will show that v ≡ 0 in B, which ends the proof due to uniqueness of solution of (Dir).
Since h is harmonic, it by theorem 4.3.2 has MVP. Thus, u has MVP by assumption and v has MVP by linearity
of integral. Also, v = 0 on ∂B.

By compactness we let m := max{v(z) : z ∈ B}. Aiming for a contradiction, we assume m > 0. Notice that
v is uniformly continuous on B, and so ∃δ > 0 such that |v(w1) − v(w2)| < m/2 whenever w1, w2 ∈ B with
|w1−w2| < δ. It follows that if w ∈ ∂B and z ∈ B such that |z−w| < δ, we have |v(z)| = |v(z)−v(w)︸︷︷︸

=0

| < m/2.

This means the set E := {z ∈ B : v(z) = m} = v−1(m) stays a positive distance away from ∂B. Define
f := dist(·, ∂B) : E → R, which is continuous on compact set E = v−1(m)︸ ︷︷ ︸

closed,bounded

and thus attains its minimum

at some z0 ∈ E, i.e., dist(E, ∂B) = dist(z0, ∂B).

B

δ

a
E does not
touch this
red region

By definition of MVP, we let r be a small radius such that B(z0, r) ⊂ B and the averaging formula holds for
this r:

v(z0) =
1

2π

∫ π

−π
v(z0 + reit)dt

=⇒ 1

2π

∫ π

−π
(v(z0)− v(z0 + reit)︸ ︷︷ ︸

m−v(z0+reit)≥0

)dt = 0.

By continuity we must have that the non-negative function t 7→ v(z0) − v(z0 + reit) is in fact zero for
∀t ∈ [−π, π]. But we arranged so that even at least half of ∂B(z0, r) does not intersect E, and so v(z0+reit) <
m = v(z0) for some (in fact, many) t. Contradiction.

Therefore, we must have m ≤ 0, i.e., v ≤ 0 in B. The same argument applies to −v, resulting in −v ≤ 0 in
B. Thus, v = 0 in B.
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Chapter 5

Analytic Continuation and Riemann
Surfaces

Consider the following problem. Let f be an analytic function on a region G; when can f be extended to an
analytic function f1 on an open set G1 which properly contains G ? If G1 is obtained by adjoining to G a
disjoint open set so that G becomes a component of G1, f can be extended to G1 by defining it in any way
we wish on G1 − G so long as the result is analytic. So to eliminate such trivial cases it is required that G1

also be a region.

The first time we see the analytic continuation is from [10] 8.16, as a corollary of Morera’s theorem:

Proposition 5.0.1 (Analytic continuation to a point). Let U ⊂ C be open, and let w0 ∈ U . Assume that
f : U → C is continuous, and analytic in U\ {z0}. Then f is analytic in U .

We will see more general techniques in this chapter.

5.1 Reflection Principles

We will study another way to extend analyticity: the Schwarz reflection principle. The proof consists of two
parts. First we define the extension, and then check that the resulting function is still holomorphic. We begin
with this second point.

Let Ω be an open subset of C that is symmetric with respect to the real line, that is

z ∈ Ω if and only if z̄ ∈ Ω.

Let Ω+denote the part of Ω that lies in the upper half-plane and Ω− that part that lies in the lower half-plane.
Also, let I = Ω ∩ R so that I denotes the interior of that part of the boundary of Ω+and Ω−that lies on the
real axis. Then we have

Ω+ ∪ I ∪ Ω− = Ω
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R

z

z̄

I

Ω+

Ω−

Ω

and the only interesting case occurs, of course, when I is non-empty.

Theorem 5.1.1. Let u be harmonic in Ω+ with limn→∞ u(zn) = 0 for all sequences {zn} in Ω+ converging
to a point of I. Then the extended function

ũ(z) =


u(z) if z ∈ Ω+

0 if z ∈ I
−u(z̄) if z ∈ Ω−

is harmonic in Ω.

Proof. ũ is continuous by pasting lemma. We then observe that ũ is harmonic on Ω+ and Ω−. For (x, y) ∈ Ω−,
we have (∆u)(x,−y) = 0 and thus

∆(−u(x,−y)) = −∆(u(x,−y)) = −(uxx(x,−y) + (−(−uyy(x,−y)))) = −(∆u)(x,−y) = 0.

By theorem 4.3.2, we see ũ is harmonic on Ω+ ∪ Ω− and thus has MVP. We note that ũ may not be able to
be twice continuously differetiable on I even if the laplace equation is formally satisfied.

MVP also holds in points t ∈ I as ũ(z) = −ũ(z̄)⇒ ũ(t+ reiθ) = −ũ(t+ rei(−θ)) guarantees the integral of ũ
over small circles centered at t vanish. To be more precise,∫ π

0

ũ(t+ reiθ)dθ = −
∫ π

0

ũ(t+ rei(−θ))dθ =
∫ −π

0

ũ(t+ reiu)du = −
∫ 0

−π
ũ(t+ reiu)du.

(Note that ũ is zero on I but we don’t even need this as I ∩ ∂B(t, r) has measure zero.) Then we invoke
theorem 4.3.5 to conclude that ũ is harmonic.

Theorem 5.1.2 (Symmetry principle). If f+and f−are holomorphic functions in Ω+and Ω−respectively, that
extend continuously to I and

f+(x) = f−(x) for all x ∈ I,

then the function f defined on Ω by

f(z) =


f+(z) if z ∈ Ω+

f+(z) = f−(z) if z ∈ I
f−(z) if z ∈ Ω−

is holomorphic on all of Ω.
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Proof. One notes first that f is continuous throughout Ω due to pasting lemma. The only difficulty is to prove
that f is holomorphic at points of I. Suppose D is a disc centered at a point on I and entirely contained in
Ω. We prove that f is holomorphic in D by Morera’s theorem. Suppose T is a triangle in D (for a triangle
we mean both the boundary and its interior). If T does not intersect I, then∫

∂T

f(z)dz = 0

since f is holomorphic in the upper and lower half-discs.

(a) T Tε

(b)
T

T2 T3

T1

Figure 5.1: (a) Raising a vertex; (b) splitting a triangle

Suppose now that one side or vertex of T is contained in I, and the rest of T is in, say, the upper half-disc. If
Tε is the triangle obtained from T by slightly raising the edge or vertex which lies on I, we have

∫
∂Tε

f = 0
since Tε is entirely contained in the upper half-disc (an illustration of the case when an edge lies on I is
given in Figure 5.1 (a)). Intuitively, we then let ε→ 0, and by continuity we conclude that∫

∂T

f(z)dz = 0.

A complete argument of showing
∫
∂T
fdz = 0 where T touches I is shown below.

Since f is continuous on Ω+ ∪ I, f is uniformly continuous on T . So if ε > 0 there is a δ > 0 such that when
z and z′ ∈ T and |z − z′| < δ then |f(z)− f (z′)| < ε. We label the vertices of T as a, b, c as in Figure 5.1.
Now choose α and β on the line segments [c, a] and [b, c] respectively, so that |α− a| < δ and |β − b| < δ. Let
T1 be the triangle bounded by ∂T1 = [α, β, c, α] and Q be the trapezoid bounded by ∂Q = [a, b, β, α, a]. Then∫
∂T
f =

∫
∂T1

f +
∫
∂Q

f , but T1 is contained in Ω+ and f is analytic there; hence∫
∂T

fdz =
∫
∂Q

fdz. (5.1)

If 0 ≤ t ≤ 1 then
|[tβ + (1− t)α]− [tb+ (1− t)a]| < δ
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T1

I
a b

c

α β

Figure 5.2: Triangle T

so that
|f(tβ + (1− t)α)− f(tb+ (1− t)a)| < ε.

If M = max{|f(z)| : z ∈ T} and ℓ = the perimeter of T then∣∣∣∣∣
∫
[a,b]

f +

∫
[β,α]

f

∣∣∣∣∣ =
∣∣∣∣(b− a)∫ 1

0

f(tb+ (1− t)a)dt− (β − α)
∫ 1

0

f(tβ + (1− t)α)dt
∣∣∣∣

≤ |b− a|
∣∣∣∣∫ 1

0

[f(tb+ (1− t)a)− f(tβ + (1− t)α)]dt
∣∣∣∣

+ |(b− a)− (β − α)|
∣∣∣∣∫ 1

0

f(tβ + (1− t)α)dt
∣∣∣∣

≤ ε|b− a|+M |(b− β) + (α− a)|
≤ εℓ+ 2Mδ

Also ∣∣∣∣∣
∫
[α,a]

f

∣∣∣∣∣ ≤M |a− α| ≤Mδ

and ∣∣∣∣∣
∫
[b,β]

f

∣∣∣∣∣ ≤Mδ

Combining these last two inequalities with (5.1) gives that∣∣∣∣∫
∂T

f

∣∣∣∣ ≤ εℓ+ 4Mδ

Since it is possible to choose δ < ε and since ε is arbitrary, it follows that
∫
∂T
f = 0.

If the interior of T intersects I, we can reduce the situation to the previous one by writing T as the union
of triangles each of which has an edge or vertex on I as shown in Figure 5.1(b). By Morera’s theorem we
conclude that f is holomorphic in D, as was to be shown.
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Theorem 5.1.3 (Schwarz reflection principle; version I). Suppose that f is a holomorphic function in Ω+that
extends continuously to I and such that f is real-valued on I. Then

F (z) =

{
f(z) if z ∈ Ω+ ∪ I
f(z̄) if z ∈ Ω−

is analytic on Ω.

Proof. To prove that F is holomorphic in Ω−we note that if z, z0 ∈ Ω−, then z̄, z0 ∈ Ω+and hence, the power
series expansion of f near z0 gives

f(z̄) =
∑

an (z̄ − z0)n .

As a consequence we see that

F (z) =
∑

an (z − z0)n

and F is holomorphic in Ω−. Since f is real valued on I we have f(x) = f(x) whenever x ∈ I and hence F
extends continuously up to I. The proof is complete once we invoke the symmetry principle.

There is a weaker version of this, where f = u + iv ∈ H(Ω+) and we only assume v(zn) → 0 whenever
zn ∈ Ω+ is a sequence coverging to a point on I without assuming continuity of u = Re(f) on I. This form is
harder to prove: we do not right away even know how to assign real values to f on I. We will need harmonic
function theory.

Theorem 5.1.4 (Schwarz reflection principle; version II). Suppose f = u+ iv ∈ H(Ω+) with limn→∞ v(zn)
for all {zn} ∈ Ω+ converging to a point in I. Then there exists F ∈ H(Ω) such that F (z) = f(z) in Ω+ and
F (z̄) = F (z̄) ∀z ∈ Ω.

Proof. Extend v into a harmonic function in Ω by theorem 5.1.1 snd still denote it by v, so v(z) = 0 for z ∈ I
and v(z) = −v(z̄) for z ∈ Ω−.

For each t ∈ I consider a ball Bt that is centered at t and satisfies Bt ∩H+ ⊆ Ω+, Bt ⊆ Ω. As v is harmonic
and thus locally real part of an analytic function, then there is gt ∈ H(Bt) such that gt = vt + iut for some
ut and v = vt on Bt. Define ft = igt = −ut + ivt. Then ft ∈ H(Bt) by [10] 4.39 and 4.47. Then v = Im(ft).
Notice that if there is some other f̃t ∈ H(Bt) for which v = Im(f̃t), then Im(ft − f̃t) = 0 implies that
ft − f̃t ≡ c ∈ R due to [10] Corollary 4.50. Thus, ft is uniquely determined up to a real additive constant.

We shall strategically choose this constant. Fix z0 ∈ Bt ∩ H+ ⊂ Ω+. Then Im(ft(z0)) = vt(z0) = v(z0) =
Im(f(z0)) and we adjust ft with a real constant such that Re(ft(z0)) = Re(f(z0)), i.e., ft(z0) = f(z0). This
is z0-specific. However, Im(f − ft) = 0 in the region Bt ∩ H+ implies that f − ft is a real constant in
Bt ∩H+ by above argument again. This constant must be zero as f(z0)− ft(z0) = 0. Therefore, this actaully
guarantees ft(z) = f(z) for every z ∈ Bt ∩H+. In what follows, we assume ft is adjusted by the procedure
just mentioned.

Now, ft gives a natural way to define our extension on Bt, as long as we have ft(z) = fs(z) for z ∈ Bt ∩ Bs
for t, s ∈ I. We show it now: Define function ft − fs on Bt ∩ Bs (assumed to be nonempty). Then it have
zeros on the whole Bt ∩ Bs ∩H+ because ft = f = fs ∀z ∈ Bt ∩ Bs ∩H+. Then connectedness of Bt ∩ Bs
plus theorem 2.1.1 show that ft − fs ≡ 0 on Bt ∩Bs.

We claim that ft(z̄) = ft(z) for z ∈ Bt. Indeed, write

ft(z) =

∞∑
n=0

cn(z − t)n, z ∈ Bt,
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where cn = f
(n)
t (t)/n!. We know f

(n)
t (t) ∈ R, since Im(ft) = 0 on I ∩Bt. For instance,

f ′t(t) = lim
θ→t;θ∈I

f(θ)− f(t)
θ − t

∈ R.

Thus cn ∈ R, and so

ft(z̄) =

∞∑
n=0

cn(z̄ − t)n =

∞∑
n=0

cn(z − t)n = f(z), z ∈ Bt.

We are now ready to define our extension F via

F (z) =


f(z) if z ∈ Ω+

ft(z) if z ∈ Bt
f(z̄) if z ∈ Ω−

This is now a well-defined extension of f with the property that F (z̄) = F (z). We also know that F ∈ H(Ω)
by the same proof of F ∈ H(Ω−) in verison I of Schwarz reflection principle.

5.2 Riemann Surfaces

We will use [3] and Chapter IX of [2] as the main reference for Riemann surfaces.

5.3 Coverings

5.4 Uniformization Theorem

5.5 Sheaves

5.6 Analytic Continuation along a Path
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Chapter 6

Entire Functions

In this chapter, we will study functions that are holomorphic in the whole complex plane; these are called
entire functions. Our presentation will be organized around the following three questions:

1. What is the range of entire functions? We will do a review of Liouvelle’s theorem and talk about even
stronger results. For more on the range of analytic functions, see [2] Chapter XII.

2. Where can such functions vanish? We shall see that the obvious necessary condition is also sufficient: if
{zn} is any sequence of complex numbers having no limit point in C, then there exists an entire function
vanishing exactly at the points of this sequence. The construction of the desired function is inspired by Euler’s
product formula for sinπz (the prototypical case when {zn} is Z ), but requires an additional refinement:
the Weierstrass canonical factors.

3. How do these functions grow at infinity? Here, matters are controlled by an important principle: the
larger a function is, the more zeros it can have. This principle already manifests itself in the simple case of
polynomials. By the fundamental theorem of algebra, the number of zeros of a polynomial P of degree d is
precisely d, which is also the exponent in the order of (polynomial) growth of P , namely sup|z|=R |P (z)| ≈ Rd
as R→∞. A precise version of this general principle is contained in Jensen’s formula. This formula, central
to much of the theory developed in this chapter, exhibits a deep connection between the number of zeros of
a function in a disc and the (logarithmic) average of the function over the circle.

4. To what extent are these functions determined by their zeros? It turns out that if an entire function has
a finite (exponential) order of growth, then it can be specified by its zeros up to multiplication by a simple
factor. The precise version of this assertion is the Hadamard factorization theorem.

Before we start, here is a table of pronunciations of some symbols we may encounter.

Figure 6.1: Provided by Argon.
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6.1 More on Liouvelle’s Theorem

Liouville’s theorem states that a bounded entire function is constant.

Before showing this we mention some preliminary results.

• [10] Corollary 4.49. Assume that U ⊂ R2 is open and connected, and f : U → C is an analytic
function such that f ′(z) = 0 for all z ∈ U . Then f is constant on U .

• [10] Corollary 4.50. Let U ⊂ C be open and connected, and assume that f : U → C is analytic.
Assume that one of the following three functions is constant on U :

u = Re f, v = Im f, or |f |.

Then f is constant on U . The same conclusion is also true if f : U → C\{0}, and Arg(f) is constant on
U .

Now we recall [10] Theorem 8.5.

Theorem 6.1.1 (Cauchy’s integral formula for derivatives). Let U ⊂ C be a convex open set, and let f : U →
C be analytic. Let γ : [a, b]→ U be a closed piecewise C1-path. Then,

f (n)(z) · nγ(z) =
n!

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ, z ∈ U\γ∗, n ⩾ 0

By which we obtain [10] Corollary 8.8.

Corollary 6.1.2 (Cauchy’s estimates). Let D = D(z, r) ⊂ C be a disc, and let f : D → C be analytic. Then,∣∣∣f (n)(w)∣∣∣ ⩽ n! · r · ∥f∥L∞(∂D)

(r − |w − z|)n+1
, w ∈ D,n ⩾ 0.

In particular,
∣∣f (n)(z)∣∣ ⩽ n!∥f∥L∞(∂D)/r

n by letting w = z. Note that ∥f∥L∞(∂D) = sup{|f(z)| : z ∈ ∂D}.

[10] uses this to show Liouville’s theorem (Corollary 8.10).

Corollary 6.1.3. Let f : C→ C be analytic and bounded. Then f is constant.

Proof. Fix z ∈ C, and apply Cauchy’s estimates in a disc D(z, r) ⊂ C :

|f ′(z)| ⩽
∥f∥L∞(C)

r
, r > 0.

Letting r → ∞ (as f ’s domain is C) shows that f ′(z) = 0, and therefore f ′ ≡ 0. Since C is connected, f is
constant by [10] Corollary 4.49.

Remark 6.1.4. Geometrically, Liouville’s theorem is saying that the values of a non-constant entire function
cannot be entirely contained within a single circle. In fact, the values of a non-constant entire function
cannot be entirely contained outside a single circle either.

Liouville’s theorem is deep and surprising, but an even stronger result is true: if f : C → C is analytic, then
either f is constant, or then f takes all the values in C, except for possibly one. In other words, if an entire
function omits two values, then it is constant. This result is known as Picard’s little theorem. The example
f(z) = ez shows that Picard’s theorem is sharp, since ez ̸= 0 for all z ∈ C. There is also Picard’s great
theorem: if a holomorphic function f on open set U = B′(a, r) has an essential singularity at a, then for any
0 < s < r we have {f(z) : 0 < |z − a| < s} contains all complex numbers except possibly one value.

It should be clear that the great theorem is a generalization of the little theorem, since an entire function
that is not a polynomial has an essential singularity at infinity. If f(z) is a non-constant polynomial and α is
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a complex number, then the equation f(z) = α has a solution by fundamental theorem of algebra. Since α
is arbitrary, f(z) can take all complex values.

We give another proof of the Liouvelle’s theorem.

second proof. Let a, b be any two points in C, and within a circle of sufficiently large radius R, we have

f(a)− f(b) = 1

2πi

∫
|z|=R

(
1

z − a
− 1

z − b

)
f(z)dz

=
a− b
2πi

∫
|z|=R

f(z)dz

(z − a)(z − b)

Let the upper bound of f be M , we can estimate the above expression as

|f(a)− f(b)| ≤ |a− b|M
2π

∫
|z|=R

|dz|
|z − a||z − b|

≤ MR|a− b|
(R− |a|)(R− |b|)

As R→ +∞, the above expression tends to zero, thus f is a constant function.

Some more results are given.

Proposition 6.1.5. If f(z) is an entire function, and Re(f(z)) < M for some M , then f(z) is a constant.

Proof. This observation is trivial by Picard’s little theorem. Since we didn’t show that, we use Liouvelle’s
theorem instead. Let F (z) = ef(z). Then

|F (z)| = eRe(f(z)) < eM =⇒ entire function F (z) is bounded

Liouvelle’s theorem then concludes. In the geometrical sense as Remark 6.1.4, values of the entire function
ef(z) is encircled as the half-plane {z : Re(z) < M} is mapped to the disc D(0, eM ) by the exponential
function.

Proposition 6.1.6. Let f(z) be an entire function. Suppose

lim
z→∞

f(z)

zn
= 0.

Then f(z) is a polynomial of at most degree n− 1.

Proof. By [10] Corollary 4.49, we only need to show ∀z ∈ C, f (n)(z) = 0. Since

lim
z→∞

f(z)

zn
= 0,

We know, ∀ε > 0, ∃R > 0 such that
|z| > R =⇒ |f(z)| < ε|z|n.

Fix z0 ∈ C and let C : |z − z0| = r, C1 : |z| = R be contained inside C. Then |z0| < r and |ζ| > R for ζ ∈ C.
Thus,

|f(ζ)| < ε|ζ|n ≤ ε(|z0|+ r)n.
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Cauchy’s estimates gives

|f((n)z)| ≤ n!

rn
ε(|z0|+ r)n = n!ε

(
1 +
|z|
r

)n
≤ n!2nε.

Since ε > 0 is arbitrary, f (n)(z) = 0. Then note that the disk in theorem 1.3.9 can be chosen to be C and the
coefficients cn = f (n)/n! after n are all zero.

Proposition 6.1.7. If the function f(z) is entire, and limr→+∞
max|z|=r |f(z)|

rn < M , then f(z) is at most a
polynomial of degree n.

Proof. The Taylor series of f(z) at any a ∈ C is
∑∞
n=0 cn(z−a)n where cn = f (n)(a)/n!. Then choose a circle

B(a, r) and by Cauchy’s estimates,

|cn| =
∣∣∣∣f (n)(a)n!

∣∣∣∣ ≤ ∥f∥L∞(∂B(a,r))

rn
=

max|z−a|=r |f(z)|
rn

Letting a = 0 and r →∞ to get |cn| < M . Then |cn+k| < limr→∞
∥f∥∞
rn+k = 0 for any k = 1, 2, · · · . This shows

f , which agrees with the series that vanishes after n-th term on the disk whose radius goes to infinity, is at
most a polynomial of degree n on C.

Exercise 6.1.8. If f(z) is entire and does not take values on a simple arc, then f(z) is constant. [Hint:
Riemann Mapping Theorem.]

6.2 Jensen’s Formula

In this section, we denote by DR and CR the open disc and circle of radius R centered at the origin. We shall
also, in the rest of this chapter, exclude the trivial case of the function that vanishes identically.

Theorem 6.2.1 (Jensen’s formula). Let Ω be an open set that contains the closure of a disc DR and suppose
that f is holomorphic in Ω, f(0) ̸= 0, and f vanishes nowhere on the circle CR. If z1, . . . , zN denote the zeros
of f inside the disc (counted with multiplicities), then

log |f(0)| =
N∑
k=1

log

(
|zk|
R

)
+

1

2π

∫ 2π

0

log
∣∣f (Reiθ)∣∣ dθ. (6.1)

Proof. The proof of the theorem consists of several steps.

Step 1. First, we observe that if f1 and f2 are two functions satisfying the hypotheses and the conclusion
of the theorem, then the product f1f2 also satisfies the hypothesis of the theorem and formula (6.1). This
observation is a simple consequence of the fact that log xy = log x + log y whenever x and y are positive
numbers, and that the set of zeros of f1f2 is the union of the sets of zeros of f1 and f2.

Step 2. The function

g(z) =
f(z)

(z − z1) · · · (z − zN )

initially defined on Ω− {z1, . . . , zN}, is bounded near each zj . Therefore each zj is a removable singularity,
and hence we can write

f(z) = (z − z1) · · · (z − zN ) g(z)

where g is holomorphic in Ω and nowhere vanishing in the closure of DR in the sense that we can now define
g(zj)’s properly so that g is holomorphic. By Step 1, it suffices to prove Jensen’s formula for functions like g
that vanish nowhere, and for functions of the form z − zj .
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Step 3. We first prove (6.1) for a function g that vanishes nowhere in the closure of DR. More precisely, we
must establish the following identity:

log |g(0)| = 1

2π

∫ 2π

0

log
∣∣g (Reiθ)∣∣ dθ

In a slightly larger disc, we can write g(z) = eh(z) where h is holomorphic in that disc. This is possible since
discs are simply connected, and we can define h = log g (see Theorem 2.3.8 (e)). Now we observe that

|g(z)| =
∣∣∣eh(z)∣∣∣ = ∣∣∣eRe(h(z))+i Im(h(z))

∣∣∣ = eRe(h(z)),

so that log |g(z)| = Re(h(z)). The taking real part of both sides of the MVP formula in [10] Corollary 8.18
immediately implies the desired formula for g.

Step 4. The last step is to prove the formula for functions of the form f(z) = z − w, where w ∈ DR. That is,
we must show that

log |w| = log

(
|w|
R

)
+

1

2π

∫ 2π

0

log
∣∣Reiθ − w∣∣ dθ.

Since log(|w|/R) = log |w| − logR and log
∣∣Reiθ − w∣∣ = logR+ log

∣∣eiθ − w/R∣∣, it suffices to prove that∫ 2π

0

log
∣∣eiθ − a∣∣ dθ = 0, whenever |a| < 1.

This in turn is equivalent (after the change of variables θ 7→ −θ ) to∫ 2π

0

log
∣∣1− aeiθ∣∣ dθ = 0, whenever |a| < 1.

To prove this, we use the function F (z) = 1 − az, which vanishes nowhere in the closure of the unit disc.
As a consequence, there exists a holomorphic function G in a disc of radius greater than 1 such that F (z) =
eG(z). Then |F | = eRe(G), and therefore log |F | = Re(G). Since F (0) = 1 we have log |F (0)| = 0, and an
application of the mean value property (again, by taking the real parts) to the harmonic function log |F (z)|
concludes the proof of the theorem.

From Jensen’s formula we can derive an identity linking the growth of a holomorphic function with its
number of zeros inside a disc. If f is a holomorphic function on the closure of a disc DR, we denote by n(r)
(or nf (r) when it is necessary to keep track of the function in question) the number of zeros of f (counted
with their multiplicities) inside the disc Dr, with 0 < r < R. A simple but useful observation is that n(r) is a
non-decreasing function of r.

We claim that if f(0) ̸= 0, and f does not vanish on the circle CR, then∫ R

0

n(r)
dr

r
=

1

2π

∫ 2π

0

log
∣∣f (Reiθ)∣∣ dθ − log |f(0)|. (6.2)

This formula is immediate from Jensen’s equality and the next lemma.

Lemma 6.2.2. If z1, . . . , zN are the zeros of f inside the disc DR, then∫ R

0

n(r)
dr

r
=

N∑
k=1

log

∣∣∣∣Rzk
∣∣∣∣ .
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Proof. First we have
N∑
k=1

log

∣∣∣∣Rzk
∣∣∣∣ = N∑

k=1

∫ R

|zk|

dr

r
.

If we define the characteristic function

ηk(r) =

{
1 if r > |zk|
0 if r ≤ |zk|

then
∑N
k=1 ηk(r) = n(r), and the lemma is proved using

N∑
k=1

∫ R

|zk|

dr

r
=

N∑
k=1

∫ R

0

ηk(r)
dr

r
=

∫ R

0

(
N∑
k=1

ηk(r)

)
dr

r
=

∫ R

0

n(r)
dr

r

6.3 Functions of Finite Order

Let f be an entire function. If there exist a positive number ρ and constants A,B > 0 such that

|f(z)| ≤ AeB|z|ρ for all z ∈ C,

then we say that f has an order of growth ≤ ρ. We define the order of growth of f as

ρf = inf ρ,

where the infimum is over all ρ > 0 such that f has an order of growth ≤ ρ. For example, the order of
growth of the function ez

2

is 2 .

Theorem 6.3.1. If f is an entire function that has an order of growth ≤ ρ, then:

(i) n(r) ≤ Crρ for some C > 0 and all sufficiently large r.

(ii) If z1, z2, . . . denote the zeros of f , with zk ̸= 0, then for all s > ρ we have

∞∑
k=1

1

|zk|s
<∞

Proof. It suffices to prove the estimate for n(r) when f(0) ̸= 0. Indeed, consider the function F (z) = f(z)/zℓ

where ℓ is the order of the zero of f at the origin (so locally f = zℓg for holomorphic g nonzero at 0). Then
nf (r) and nF (r) differ only by a constant, and F also has an order of growth ≤ ρ.

If f(0) ̸= 0 we may use formula (6.2), namely∫ R

0

n(x)
dx

x
=

1

2π

∫ 2π

0

log
∣∣f (Reiθ)∣∣ dθ − log |f(0)|.

Choosing R = 2r, this formula implies∫ 2r

r

n(x)
dx

x
≤ 1

2π

∫ 2π

0

log
∣∣∣f (Reiθ)∣∣∣ dθ − log |f(0)|.
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On the one hand, since n(r) is increasing, we have∫ 2r

r

n(x)
dx

x
≥ n(r)

∫ 2r

r

dx

x
= n(r)[log 2r − log r] = n(r) log 2,

and on the other hand, the growth condition on f gives∫ 2π

0

log
∣∣f (Reiθ)∣∣ dθ ≤ ∫ 2π

0

log
∣∣∣AeBRρ

∣∣∣ dθ ≤ C ′rρ

for all large r. Consequently, n(r) ≤ Crρ for an appropriate C > 0 and all sufficiently large r. The following
estimates prove the second part of the theorem:

∑
|zk|≥1

|zk|−s =
∞∑
j=0

 ∑
2j≤|zk|<2j+1

|zk|−s
 ≤ ∞∑

j=0

 ∑
2j≤|zk|<2j+1

2−js


≤

∞∑
j=0

2−jsn
(
2j+1

)
≤ c

∞∑
j=0

2−js2(j+1)ρ

≤ c′
∞∑
j=0

(
2ρ−s

)j
<∞.

The last series converges because s > ρ.

Part (ii) of the theorem is a noteworthy fact, which we shall use in a later part of this chapter.

We give two simple examples of the theorem; each of these shows that the condition s > ρ cannot be
improved.

Example 6.3.2. Consider f(z) = sinπz. Recall Euler’s identity, namely

f(z) =
eiπz − e−iπz

2i
,

which implies that |f(z)| ≤ eπ|z|, and f has an order of growth ≤ 1. By taking z = ix, where x ∈ R, it is
clear that the order of growth of f is actually equal to 1 . However, f vanishes to order 1 at z = n for each
n ∈ Z, and

∑
n ̸=0 1/|n|s <∞ precisely when s > 1.

Example 6.3.3. Consider f(z) = cos z1/2, which we define by

cos z1/2 =

∞∑
n=0

(−1)n zn

(2n)!
.

Then f is entire, and it is easy to see that

|f(z)| ≤ e|z|
1/2

,

and the order of growth of f is 1/2. Moreover, f(z) vanishes when zn = ((n+1/2)π)2, while
∑
n 1/ |zn|

s
<∞

exactly when s > 1/2.
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6.4 Infinite Products

The notion of convergence in H(G) can be used to solve the following problem. Given any sequence of
complex numbers z1, z2, . . ., whether or not there exists an entire function f with zeros precisely at the
points of this sequence. A necessary condition is that z1, z2, . . . do not accumulate, in other words we must
have

lim
k→∞

|zk| =∞,

otherwise f would vanish identically. Weierstrass proved that this condition is also sufficient by explicitly
constructing a function with these prescribed zeros. A first guess is of course the product

(z − z1) (z − z2) · · · ,

which provides a solution in the special case when the sequence of zeros is finite. In general, Weierstrass
showed how to insert factors in this product so that the convergence is guaranteed, yet no new zeros are
introduced. To study this, we need first look at the theory of infinite products.

Clearly one should define an infinite product of numbers zn (denoted by
∏∞
n=1 zn) as the limit of the finite

products. Observe, however, that if one of the numbers zn is zero, then the limit is zero, regardless of the
behavior of the remaining terms of the sequence. This does not present a difficulty, but it shows that when
zeros appear, the existence of an infinite product is trivial. However, the limit of finite products being zero
does not imply one of the factors is evaluated as zero.

6.4.1 Generalities

Definition 6.4.1. If {zn} is a sequence of complex numbers and if z = lim
∏n
k=1 zk exists, then z is the

infinite product of the numbers zn and it is denoted by

z =

∞∏
n=1

zn.

Suppose that no one of the numbers zn is zero, and that z =
∏∞
n=1 zn exists and is also not zero. Let

pn =
∏n
k=1 zk for n ≥ 1; then no pn is zero and pn

pn−1
= zn. Since z ̸= 0 and pn → z we have that

lim zn = 1. So that except for the cases where zero appears, a necessary condition for the convergence of
an infinite product is that the n-th term must go to 1. On the other hand, note that for zn = a for all n and
|a| < 1,

∏
zn = 0 although lim zn = a ̸= 0.

Because of the fact that the exponential of a sum is the product of the exponentials of the individual terms,
it is possible to discuss the convergence of an infinite product (when zero is not involved) by discussing
the convergence of the series

∑
log zn, where log is the principal branch of the logarithm. However, before

this can be made meaningful the zn must be restricted so that log zn is meaningful. If the product is to be
non-zero, then zn → 1. So it is no restriction to suppose that Re zn > 0 for all n. Now suppose that the series∑

log zn converges. If sn =
∑n
k=1 log zk and sn → s then exp sn → exp s. But exp sn =

∏n
k=1 zk so that∏∞

n=1 zn is convergent to z = es ̸= 0.

Proposition 6.4.2. Let Re zn > 0 for all n ≥ 1. Then
∏∞
n=1 zn converges to a non zero number iff the series∑∞

n=1 log zn converges.

Proof. Let pn = (z1 · · · zn) , z = reiθ,−π < θ ≤ π, and ℓ (pn) = log |pn| + iθn where θ − π < θn ≤ θ + π. If
sn = log z1 + · · · + log zn then exp (sn) = pn so that sn = ℓ (pn) + 2πikn for some integer kn. Now suppose
that pn → z. Then sn − sn−1 = log zn → 0; also ℓ (pn) − ℓ (pn−1) → 0, Hence, (kn − kn−1) → 0 as n → ∞.
Since each kn is an integer this gives that there is an n0 and a k such that km = kn = k for m,n ≥ n0. So
sn → ℓ(z)+2πik; that is, the series

∑
log zn converges. Since the converse was proved above, this completes

the proof.
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Consider the power series expansion of log(1 + z) about z = 0:

log(1 + z) =

∞∑
n=1

(−1)n−1 z
n

n
= z − z2

2
+ . . . ,

which has radius of convergence 1. If |z| < 1 then∣∣∣∣1− log(1 + z)

z

∣∣∣∣ = ∣∣∣∣12z − 1

3
z2 + . . .

∣∣∣∣
≤ 1

2

(
|z|+ |z|2 + . . .

)
=

1

2

|z|
1− |z|

.

If we further require |z| < 1
2 then ∣∣∣∣1− log(1 + z)

z

∣∣∣∣ ≤ 1

2
.

This gives that for |z| < 1
2

1

2
|z| ≤ | log(1 + z)| ≤ 3

2
|z|. (6.3)

This will be used to prove the following result.

Proposition 6.4.3. Let Re zn > −1; then the series
∑

log (1 + zn) converges absolutely iff the series
∑
zn

converges absolutely.

Proof. If
∑
|zn| converges then zn → 0; so eventually |zn| < 1

2 . By (6.3)
∑
|log (1 + zn)| is dominated by a

convergent series, and it must converge also. If, conversely,
∑
|log (1 + zn)| converges, then it follows that

|zn| < 1
2 for sufficiently large n (why?). Again (6.3) allows us to conclude that

∑
|zn| converges.

There is also a useful necessary condition that guarantees the existence of a product.

Proposition 6.4.4. If (an) ∈ ℓ1, i.e., ∥(an)∥ℓ1 =
∑
n |an| < ∞, then the product

∏∞
n=1 (1 + an) converges.

Moreover, the product is 0 if and only if one of its factors is 0.

Proof. If
∑
|an| converges, then for all large n we must have |an| < 1/2. Disregarding if necessary finitely

many terms, we may assume that this inequality holds for all n. Recall the principal branch of the logarithm
z 7→ log z = log |z|+ iArg(z), z ∈ C \ (−∞, 0] has the power series expansion

log(1 + z) = −
∞∑
n=1

(−1)n z
n

n

for |z| < 1. The logarithm satisfies the property that 1+ z = elog(1+z) whenever |z| < 1. Hence we may write
the partial products as follows:

N∏
n=1

(1 + an) =

N∏
n=1

elog(1+an) = eBN ,

where BN =
∑N
n=1 bn with bn = log (1 + an). By the power series expansion we see that | log(1 + z)| ≤ 2|z|,

if |z| < 1/2. Hence |bn| ≤ 2 |an|, so BN converges as N → ∞ to a complex number, say B. Since the
exponential function is continuous, we conclude that eBN converges to eB as N → ∞, proving the first
assertion of the proposition.
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To show the second statement, suppose (an) ∈ ℓ1 and none of the factors is zero, 1 + an ̸= 0 ∀n. Let N0 be
such that |an| ≤ 1/2 for n ≥ N0. Then

∞∏
n=1

(1 + an) =

N0−1∏
n=1

(1 + an)︸ ︷︷ ︸
̸=0

∞∏
n=N0

(1 + an)︸ ︷︷ ︸
=eB ̸=0 for some B

̸= 0.

If one of the factor is zero, the product is of course zero.

We wish to define the absolute convergence of an infinite product. The first temptation should be avoided.
That is, we do not want to say that

∏
|zn| converges. Why? If

∏
|zn| converges it does not follow that

∏
zn

converges. In fact, let zn = −1 for all n; then |zn| = 1 for all n so that
∏
|zn| converges to 1 . However∏n

k=1 zk is ±1 depending on whether n is even or odd, so that
∏
zn does not converge. Thus, if absolute

convergence is to imply convergence, we must seek a different definition. On the basis of Proposition 6.4.2
the following definition is justified.

Definition 6.4.5. If Re zn > 0 for all n then the infinite product
∏
zn is said to converge absolutely if the

series
∑

log zn converges absolutely.

According to Proposition 6.4.2 and the fact that absolute convergence of a series implies convergence, we
have that absolute convergence of a product implies the convergence of the product. Similarly, if a product
converges absolutely then any rearrangement of the terms of the product results in a product which is
still absolutely convergent. If we combine Propositions 6.4.2 and 6.4.3 with the definition, the following
fundamental criterion for convergence of a infinite product is obtained.

Corollary 6.4.6. If Re zn > 0 then the product
∏
zn converges absolutely iff the series

∑
(zn − 1) converges

absolutely.

Although the preceding corollary gives a necessary and sufficient condition for the absolute convergence of
an infinite product phrased in terms with which we are familiar, it does not give a method for evaluating
infinite products in terms of the corresponding infinite series. To evaluate a particular product one must
often resort to trickery.

We now apply these results to the convergence of products of functions. A fundamental question to be
answered is the following. Suppose {fn} is a sequence of functions on a set X and fn(x)→ f(x) uniformly
for x in X; when will exp (fn(x)) → exp(f(x)) uniformly for x in X ? Below is a partial answer which is
sufficient to meet our needs.

Lemma 6.4.7. Let X be a set and let f, f1, f2, . . . be functions from X into C such that fn(x) → f(x)
uniformly for x in X. If there is a constant a such that Re f(x) ≤ a for all x in X then exp fn(x)→ exp f(x)
uniformly for x in X.

Proof. If ε > 0 is given then choose δ > 0 such that |ez − 1| < εe−a whenever |z| < δ. Now choose n0 such
that |fn(x)− f(x)| < δ for all x in X whenever n ≥ n0. Thus

εe−a > |exp [fn(x)− f(x)]− 1|

=

∣∣∣∣exp fn(x)exp f(x)
− 1

∣∣∣∣
It follows that for any x in X and for n ≥ n0,

|exp fn(x)− exp f(x)| < εe−a| exp f(x)| ≤ ε

108



Complex Analysis Anthony Hong

Lemma 6.4.8. Let (X, d) be a compact metric space and let {gn} be a sequence of continuous functions from
X into C such that

∑
gn(x) converges absolutely and uniformly for x in X. Then the product

f(x) =

∞∏
n=1

(1 + gn(x))

converges absolutely and uniformly for x in X. Also there is an integer n0 such that f(x) = 0 iff gn(x) = −1
for some n, 1 ≤ n ≤ n0.

Proof. Since
∑
gn(x) converges uniformly for x in X there is an integer n0 such that |gn(x)| < 1

2 for all x in
X and n > n0. This implies that Re [1 + gn(x)]> 0 and also, according to inequality (6.3), |log (1 + gn(x))| ≤
3
2 |gn(x)| for all n > n0 and x in X. Thus

h(x) =
∞∑

n=n0+1

log (1 + gn(x))

converges uniformly for x in X. Since h is continuous and X is compact it follows that h must be bounded;
in particular, there is a constant a such that Reh(x) < a for all x in X. Thus, Lemma 6.4.7 applies and gives
that

exph(x) =

∞∏
n=n0+1

(1 + gn(x))

converges uniformly for x in X. Finally,

f(x) = [1 + g1(x)] · · · [1 + gn0
(x)] exph(x)

and exph(x) ̸= 0 for any x in X. So if f(x) = 0 it must be that gn(x) = −1 for some n with 1 ≤ n ≤ n0.

We now leave this general situation to discuss analytic functions.

Theorem 6.4.9. LetG be a region in C and let {fn} be a sequence inH(G) such that no fn is identically zero.
If
∑

[fn(z)− 1] converges absolutely and uniformly on compact subsets of G then
∏∞
n=1 fn(z) converges in

H(G) to an analytic function f(z). If a is a zero of f then a is a zero of only a finite number of the functions
fn, and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the functions fn
at a.

Proof. Since
∑

[fn(z)− 1] converges uniformly and absolutely on compact subsets of G, it follows from the
preceding lemma that f(z) =

∏
fn(z) converges uniformly and absolutely on compact subsets of G. That is,

the infinite product converges in H(G).

Suppose f(a) = 0 and let r > 0 be chosen such that B̄(a; r) ⊂ G. By hypothesis,
∑

[fn(z)− 1] converges
uniformly on B̄(a; r). According to Lemma 6.4.8 there is an integer n such that f(z) = f1(z) . . . fn(z)g(z)
where g does not vanish in B̄(a; r). The proof of the remainder of the theorem now follows.

Proposition 6.4.10. Suppose {Fn} is a sequence of holomorphic functions on the open set Ω. If there exist
constants cn > 0 such that ∑

cn <∞ and |Fn(z)− 1| ≤ cn for all z ∈ Ω,

then:

(i) The product
∏∞
n=1 Fn(z) converges uniformly in Ω to a holomorphic function F (z).
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(ii) If Fn(z) does not vanish for any n, then

F ′(z)

F (z)
=

∞∑
n=1

F ′
n(z)

Fn(z)

Proof. To prove the first statement, note that for each z we may argue as in the previous proposition if we
write Fn(z) = 1 + an(z), with |an(z)| ≤ cn. Then, we observe that the estimates are actually uniform in z
because the cn ’s are constants. It follows from 1.2.13 that the product converges uniformly to a holomorphic
function, which we denote by F (z).

To establish the second part of the theorem, suppose that K is a compact subset of Ω, and let

GN (z) =

N∏
n=1

Fn(z).

be the partial products. We have just proved that GN → F uniformly in Ω, so by Theorem 1.2.14, the
sequence {G′

N} converges uniformly to F ′ in K. Besides, F is non-vanishing as is each Fn assumed to be
(see previous lemma). We claim that G′

N/GN → F ′/F uniformly on K. That’s becasue∣∣∣∣G′
N

GN
− F ′

F

∣∣∣∣ = |FG′
N − F ′GN |
|GN ||F |

and minK |F | > 0 implies (|GN |) is uniformly bounded from below. Notice that

(F1F2)
′

F1F2
=
F ′
1F2 + F1F

′
2

F1F2
=
F ′
1

F1
+
F ′
2

F2

which generalizes to
G′
N

GN
=

N∑
n=1

F ′
n

Fn
,

so part (ii) of the proposition is also proved.

Before proceeding with the general theory of Weierstrass products, we first consider some explicit product
formulae and a related technique to calculate series using residues.

6.4.2 Examples

In this section, we will prove that following product formula for the sine function.

sinπz

πz
=

∞∏
n=1

(
1− z2

n2
.

)
(6.4)

We need to first show that

π cotπz =

∞∑
n=−∞

1

z + n
= lim
N→∞

∑
|n|≤N

1

z + n
=

1

z
+

∞∑
n=1

2z

z2 − n2
. (6.5)

The first formula holds for all complex numbers z, and the second whenever z is not an integer. The sum∑∞
n=−∞ 1/(z+n) needs to be properly understood, because the separate halves corresponding to positive and

negative values of n do not converge. Only when interpreted symmetrically, as limN→∞
∑

|n|≤N 1/(z + n),
does the cancellation of terms lead to a convergent series as in (6.5) above.

The evalutation of the series (6.5) will be proved using residue theorem.
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Remark 6.4.11. Recall two things:
cotπz =

cosπz

sinπz
(1)

sinπz = 0 ⇐⇒ z = n ∈ Z (2)

The function F (z) := π cotπz has simple poles at z = n, n ∈ Z, with

Res(F ;n) = lim
z→n

π(z − n)cosπz
sinπz

= lim
z→n

π
cosπz

sinπz−sinπn
z−n

= π
cosπn

(sinπz)′|z=n
= π

cosπn

π cosπn
= 1

This will be a reason why this function can be used to calculate some series.

Let N ∈ N and γN be a rectangular contour going through ±(N + 1/2) and ±i(N + 1/2):

Re

Im

N + 1/2N − 1/2−N − 1/2 −N + 1/2

i(N + 1/2)

i(N − 1/2)

−i(N + 1/2)

−i(N − 1/2)

We need some estimates.

Lemma 6.4.12.
| cotπz| ≤ coth

π

2
∀z ∈ γN ,

where

coth z :=
cosh z

sinh z
=
e2z + 1

e2z − 1
.

Proof. This is a direct calculation using the identity

| cotπz|2 =
cos2 πx+ sinh2 πy

cosh2 πy − cos2 πx
, z = x+ iy.

For instance, on the vertical strips cos
(
π
2 +Nπ

)
= 0 and so | cotπz| = | tanhπy| ≤ 1.

Remark 6.4.13. The important part is not the explicit bound but the uniform estimate |F (z)| ≲ 1 ∀z ∈ γN
and ∀N .
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Example 6.4.14. To get an idea of this strategy, we prove the formula

∞∑
n=1

1

n2
=
π2

6
.

Notice ∣∣∣∣∫
γN

F (z)

z2
dz
∣∣∣∣ ≲ N · 1

N2
=

1

N

N→∞−→ 0.

where N comes from the length of γN , = Θ(N), and ≲ comes from |F (z)| ≲ 1. On the other hand, by
residue formula and remark 6.4.11,∫

γN

F (z)

z2
dz =

∫
γN

π cosπz

z2 sinπz
dz = 2πi

(
2

N∑
n=1

1

n2
+Res

( π cosπz
z2 sinπz

; 0
))

.

Here, we used

Res

(
F (z)

z2
;n

)
=

1

n2

for n ∈ Z \ {0} since Res(F ;n) = 1. We need to calculate this residue at 0 to continue. Recall for g with a
pole of order n at a, one has

Res(g; a) = lim
z→a

1

(n− 1)!

(
d
dz

)n−1

(z − a)ng(z)

here n = 3, a = 0, so we have

Res
( π cosπz
z2 sinπz

; 0
)
= lim
z→0

1

2

d2

dz2
πz cosπz

sinπz
.

Recall that

sinπz = πz − (πz)3

3!
+

(πz)5

5!
− · · ·

cosπz = 1− (πz)2

2!
+

(πz)4

4!
+ · · ·

Thus
πz cosπz

sinπz
=

cosπz
sinπz
πz

= (cosπz)/

(
πz − (πz)3

3! + (πz)5

5! − · · ·
πz

)
=

cosπz

1− (πz)2

3! + (πz)4

5! − · · ·
.

Now we use the geometric series
1

1− z
=

∞∑
n=0

zn, |z| < 1

to write

1

1−
(
(πz)2

3!
− (πz)4

5!
+ · · ·

)
︸ ︷︷ ︸

=:ω

= 1 + ω + ω2 + · · ·

= 1 +
π2

6
z2 +

 π4

(3!)2︸ ︷︷ ︸
from ω2

− π4

5!︸︷︷︸
from ω

 z4 + · · ·

= 1 +
π2

6
z2 +

7π4

360
+ · · ·
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Therefore,

πz cosπz

sinπz
=

cosπz︷ ︸︸ ︷(
1− π2

2
z2 +

π4

24
z4 + · · ·

)
·
(
1 +

π2

6
z2 +

7π4

360
z4 + · · ·

)
= 1− π2

2
z2 +

π2

6
z2 + · · · = 1− π2

3
z2 +O

(
z4
)
.

It follows that

lim
z→0

d2

dz2
πz cosπz

sinπz
=
−2π2

3
.

Then

Res
( π cosπz
z2 sinπz

; 0
)
= lim
z→0

1

2

d2

dz2
πz cosπz

sinπz
=
−π2

3
.

and

0 = lim
N→∞

∫
γN

F (z)

z2
dz = lim

N→∞
2πi

(
2

N∑
n=1

1

n2
− π2

3

)
= 2πi

(
2

∞∑
n=1

1

n2
− π2

3

)
.

We conclude that
∞∑
n=1

1

n2
=
π2

6

This particular series can be calculated in other ways, but this method is of interest to us.

Example 6.4.15. We will consider the same path γN above to show first that

∞∑
n=−∞

1

(z + n)2
=

π2

sin2(πz)
, z ̸∈ Z.

We consider the function
F (ξ) =

π cotπξ

(ξ + z)2

It has simple poles at z = n, n ∈ Z, with

Res(F ;n) = lim
ξ→n

π(ξ − n) cosπξ

(ξ + z)2 sinπξ

=
1

(z + n)2
lim
ξ→n

π
cosπz

sinπξ−sinπn
ξ−n

=
1

(z + n)2
π

cosπn

(sinπξ)′|ξ=n

=
1

(z + n)2

Thus, the path γN does not go through the poles, including −z, when N goes to∞.

Reusing the estimate we talked about in class that |π cotπξ| ≲ 1 ∀ξ ∈ γN and ∀N , we see |π cotπξ| ≲ 1
N2

∀ξ ∈ γN and ∀N . Thus, ∣∣∣∣∫
ΓN

F (z)dz

∣∣∣∣ ≲ N · 1

N2
=

1

N

N→∞−−−−→ 0.

where N comes from the length of γN . Residue theorem then tells us

0 =

∫
γN

F (z) dz = 2πi

(∑
n∈Z

1

(z + n)2
+Res

(
π cotπξ

(ξ + z)2
;−z

))
.
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Recall for g with a pole of order n at a, one has

Res(g; a) = lim
z→a

1

(n− 1)!

(
d

dz

)n−1

(z − a)ng(z)

here n = 2, a = −z, so we have

Res(F ;−z) = lim
ξ→−z

d

dξ
(ξ + z)2

π cotπξ

(ξ + z)2

= π lim
ξ→−z

d

dξ
cotπξ

= [−π2 csc2 πξ]ξ=−z

= − π2

sin(πz)2
.

Therefore, ∀z /∈ Z, ∑
n∈Z

1

(z + n)2
=

π2

sin(πz)2
(6.6)

To use it to derive the formula

z ̸∈ Z, π cot(πz) =

∞∑
n=−∞

1

z + n
,

we want to prove

Claim:

∀z /∈ Z,
d

dz

( ∞∑
n=−∞

1

z + n

)
=

∞∑
n=−∞

d

dz

1

z + n
=

∞∑
n=−∞

1

(z + n)2
.

The second equality is a direct computation. To show the first equality, we recall that if {fn}∞n=1 is a sequence
of holomorphic functions that converges uniformly to a function f in every compact subset of Ω, then f is
holomorphic in Ω, and the sequence of derivatives {f ′n}

∞
n=1 converges uniformly to f ′ on every compact

subset of Ω. It thus suffices to show that the partial sum SN =
∑N
n=−N

1
z+n uniformly converges for any

compact set K ⊆ Ω := C \ Z. |z| as a continuous function on K attains its maximum M somewhere. Now
we note that

SN =

N∑
n=−N

1

z + n
=

1

z
+

N∑
n=1

(
1

z + n
+

1

z − n

)
=

1

z
+

N∑
n=1

2z

z2 − n2
.

Note that ∣∣∣∣ 2z

z2 − n2

∣∣∣∣ ≤ 2|z|
|z|2 − n2

≤ C

n2 + 1

for some constnat C > 0, because for |Imz| ≤ 1, holomorphicity ensures bounedness, and for |Imz| > 1, one
can choose C > M . Since 1

n2+1 <
1
n2 for all n ≥ 1, the positive series

∞∑
n=1

C

n2 + 1
= C

∞∑
n=1

1

n2 + 1

is convergent. Thus, the series S∞ majorized by a series getting rid of z uniformly converges. The claim is
then proved.
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By the claim and equation (6.6), we have, for z ∈ Ω = C \ Z,

d

dz

( ∞∑
n=−∞

1

z + n

)
=

π2

sin(πz)2
=

d

dz
(π cotπz)

=⇒
∞∑

n=−∞

1

z + n
= π cotπz + C ′ for some constant C ′

where we evoked the fact that primitives only differ by a constant (See Math5021 Orponen lecture note
prop.6.4.30). Plugging in z = 1

2 results in

∞∑
n=−∞

1
1
2 + n

= C ′

We will explicitly show its partial sum is SN = 1
2N+1 by induction. For N = 0 and 1, the formula can be

easily verified. We then observe that

SN+1 =
1

−2(N + 1) + 1
+ SN +

1

2(N + 1) + 1

=
1

−2N − 1
+

1

2N + 1
+

1

2(N + 1) + 1

=
1

2(N + 1) + 1
.

Now
C ′ = lim

N→∞
SN = lim

N→∞

1

2N + 1
= 0.

Therefore,
∞∑

n=−∞

1

z + n
= π cotπz.

Remark 6.4.16. [14] uses another way to show (6.5).

To prove (6.4), we now let

G(z) =
sinπz

π
and P (z) = z

∞∏
n=1

(
1− z2

n2

)
.

Proposition 6.4.10 and the fact that
∑

1/n2 <∞ guarantee that the product P (z) converges, and that away
from the integers we have

P ′(z)

P (z)
=

∏∞
n=1

(
1− z2

n2

)
+ z

(∏∞
n=1

(
1− z2

n2

))′
z
∏∞
n=1

(
1− z2

n2

) =
1

z
+

∞∑
n=1

−2z/n2

1− z2/n2
=

1

z
+

∞∑
n=1

2z

z2 − n2
.

Since G′(z)/G(z) = π cotπz, the cotangent formula (6.5) gives(
P (z)

G(z)

)′

=
P (z)

G(z)

[
P ′(z)

P (z)
− G′(z)

G(z)

]
= 0,

and so P (z) = cG(z) for some constant c. Dividing this identity by z, and taking the limit as z → 0, we find
c = 1.
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Remark 6.4.17. Above example of pole expansion of meromorphic function belongs to a broader class of
result called Mittag-Leffler theorem, which asserts the existence of a meromorphic function with prescribed
sequence of poles and principal parts. For example

tan(z) =

∞∑
n=0

8z

(2n+ 1)2π2 − 4z2

csc2(z) =
∑
n∈Z

1

(z − nπ)2

csc(z) =
∑
n∈Z

(−1)n

z − nπ
=

1

z
+ 2z

∞∑
n=1

(−1)n 1

z2 − (nπ)2

One can find the proof of Mittag-Leffler theorem in [2] p.205 Theorem 3.2. It needs Runge’s theorem. For
more remarks on that, see the post.

Mittag-Leffler theorem is the sister of Weierstrass factorization theorem, which asserts existence of holomor-
phic functions with prescribed zeros. We then talk about it in next section.

6.5 Weierstrass infinite products

Given a sequence (an) for which {|an|} → ∞, we construct an entire function that vanishes at all z = an and
nowhere else. The product formula

sin(πz)

π
= z

∞∏
n=1

(
1− z2

n2

)
= z

∞∏
n=1

(
1− z

n

)(
1 +

z

n

)
suggests to try something like the product

∏
n (1− z/an). The obvious problem is that this product converges

only for suitable sequences (an). To fix this issue, we will insert certain exponentials factors, which will make
this product converge without adding new zeroes.

Definition 6.5.1. The canonical factors Ek, k ≥ 0, are defined by setting

E0(z) = 1− z and Ek(z) = (1− z)ez+z
2/2+···+zk/k, k ≥ 1.

The integer k is called the degree of the canonical factor.

Notice that these factors vanish when z = 1 and nowhere else. We will soon use them in the form En(z/a)
– such a factor vanishes for z = a. The decay given by the next lemma is the key to the usefulness of these
factors.

Lemma 6.5.2. If |z| ≤ 1/2, then |1− Ek(z)| ≤ 2e|z|k+1.

Proof. Recall that

log(1 + ξ) = −
∞∑
n=1

(−1)n ξ
n

n
, |ξ| < 1

so that here log(1− z) = −
∑∞
n=1 z

n/n (as |z| ≤ 1/2 by assumption). Thus, we have

Ek(z) = elog(1−z)+z+z
2/2+···+zk/k = ew,

where w = −
∑∞
n=k+1 z

n/n. We now have

|w| ≤ |z|k+1
∞∑

n=k+1

|z|n−k−1

n
≤ |z|k+1

∞∑
n=0

(
1

2

)n
= 2|z|k+1.
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In particular, |w| ≤ 1. Therefore, (using the power series eξ =
∑∞
n=0 ξ

n/n !) we have

|1− Ek(z)| = |1− ew| ≤
∞∑
n=1

|w|n

n!
= |w|

∞∑
n=0

|w|n

(n+ 1)!
≤ e|w| ≤ 2e|z|k+1

We are ready for the main construction of this section.

Theorem 6.5.3 (Weierstrass Infinite Product). Given any sequence ( an ) of complex numbers with |an| →
∞, there exists an entire function f with zeros z = an (counted with multiplicities, i.e., we assume the
sequence lists the repeated zeros repeatedly). Any other such entire function is of the form feg for some
entire g.

Proof. We begin by proving the second assertion first. Note that since we allow for repetitions in the sequence
(an), this theorem actually guarantees the existence of entire functions with prescribed zeros and with
desired multiplicities. Let now f1 and f2 be two entire functions that vanish at all z = an and nowhere else.
Then given one of their shared zeros a there exists m > 0 so that fi(z) = (z − a)mgi(z) for some gi that is
holomorphic and non-vanishing in a neighborhood of a. This implies that in that neighborhood we have

f1(z)

f2(z)
=
g1(z)

g2(z)

so that the singularity at z = a is removable. Therefore, f1/f2 is a non-vanishing entire function, which
implies that f1/f2 = eg for some entire g (as C is simply connected). This ends the proof of the second
assertion of the theorem.

To prove the first assertion, we relabel the setting so that we assume that we have a zero of order m at the
origin, and that a1, a2, . . . are all non-zero. Then, we define the Weierstrass product by setting

f(z) := zm
∞∏
n=1

En (z/an) .

Fix an arbitrary R > 0. We shall prove that f has the desired properties in the disc BR := B(0, R), and
because R is arbitrary, this will prove the theorem. We split

f(z) := zm
∏

n:|an|≤2R

En (z/an)
∏

n:|an|>2R

En (z/an)

There are only finitely many n for which |an| ≤ 2R becasue |an| → ∞. In the ball BR the finite product
zm
∏

|an|≤2REn (z/an) vanishes at all z = an with |an| < R and at z = 0, and nowhere else. Then we
need to argue that the remaining infinite product

∏
n:|an|>2REn (z/an) defines a non-vanishing holomorphic

function in BR. To see this, notice first that if |an| > 2R, we have |z/an| < 1/2 in BR. Thus, Lemma 6.5.2
implies that

|1− En (z/an)| ≤ 2e

∣∣∣∣ zan
∣∣∣∣n+1

≤ 2e

2n+1
=

e

2n
, z ∈ BR, |an| > 2R.

By Proposition 6.4.10 this implies that the product∏
|an|>2R

En (z/an)

defines a holomorphic function in BR - it is also non-vanishing in BR by Proposition 6.4.4.
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Weierstrass’ theorem states that if a non-trivial entire function f has non-zero zeros a1, a2, . . . (and a zero of
order m at the origin), it takes the form

eg(z)zm
∞∏
n=1

En (z/an) .

This is not always convenient to work with – the index n of the canonical factors En involved are unbounded,
and no information is provided about the entire function g. We aim to further refine this construction by
proving Hadamard’s factorization theorem, which basically states that in the case of functions of finite order
(we define this notion in the next section), the degree n of the canonical factors En can be taken to be a
constant, and that g is then a polynomial.

6.6 Hadamard’s Factorization Theorem

We will need several lemmas before being able to prove Hadamard’s factorization theorem. First, to have a
finer understanding of the canonical factors, we will bound them from below – such bounds are a critical
component of the proof of Hadamard’s factorization as we will later see.

Lemma 6.6.1. The canonical factors satisfy

|Ek(z)| ≥ e−2|z|k+1

if |z| ≤ 1/2

and
|Ek(z)| ≥ |1− z|e(1−2k)|z|k if |z| ≥ 1/2.

Proof. Assume first that |z| ≤ 1/2. Recall from the proof of Lemma 6.5.2 that we can write Ek(z) = ew,
where |w| ≤ 2|z|k+1. Note that

|ω| =
√
(Reω)2 + (Imω)2 ≥ |Reω| =⇒ −|ω| ≤ −|Reω| ≤ Reω, (6.7)

so
|Ek(z)| = eReω ≥ e−|w| ≥ e−2|z|k+1

.

(6.7) also implies ∣∣∣ez+z2/2+···+zk/k
∣∣∣ = eRe(z+z2/2+···+zk/k) ≥ e−|z+z2/2+···+zk/k|.

If |z| ≥ 1/2, we see

|Ek(z)| = |1− z|
∣∣∣ez+z2/2+···+zk/k

∣∣∣ ≥ |1− z|e−|z+z2/2+···+zk/k|,

where ∣∣z + z2/2 + · · ·+ zk/k
∣∣ ≤ ( k∑

n=1

1

2n−k

)
|z|k =

(
2k − 1

)
|z|k.

We thus completed the proof.

We now state the setting under which we will be working for the rest of this section. Suppose f is entire
and has an order of growth ρ0. Let k be the unique integer so that k ≤ ρ0 < k + 1. Let a1, a2, . . . denote the
non-zero zeros of f in C.
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Lemma 6.6.2. For any s with ρ0 < s < k + 1, we have∣∣∣∣∣
∞∏
n=1

Ek (z/an)

∣∣∣∣∣ ≥ e−c|z|s
except possibly when z belongs to the union of the discs centered at an of radius |an|−k−1, for n = 1, 2, . . .

Proof. Write
∞∏
n=1

Ek (z/an) =
∏

|an|≤2|z|

Ek (z/an)
∏

|an|>2|z|

Ek (z/an) .

For the second product, we have by the first part of Lemma 6.6.1 that∣∣∣∣∣∣
∏

|an|>2|z|

Ek (z/an)

∣∣∣∣∣∣ ≥
∏

|an|>2|z|

e−2|z/an|k+1

= e−2|z|k+1 ∑
|an|>2|z||an|

−k−1

.

As |an| > 2|z| and s < k + 1, we have s− k − 1 < 0 and

|an|−k−1
= |an|−s |an|s−k−1 ≤ 2s−k−1 |an|−s |z|s−k−1.

Therefore, we have ∣∣∣∣∣∣
∏

|an|>2|z|

Ek (z/an)

∣∣∣∣∣∣ ≥ e−2s−k|z|s
∑

|an|>2|z||an|
−s

≥ e−2s−k|z|s
∑

n|an|
−s

Recall that by Theorem 6.3.1 we have
∑
n |an|

−s
< ∞, since s > ρ0. Thus, we have proved that for some

c > 0 it holds ∣∣∣∣∣∣
∏

|an|>2|z|

Ek (z/an)

∣∣∣∣∣∣ ≥ e−c|z|s .
We now estimate the first product, where the product is over the finitely many n for which |an| ≤ 2|z|. Notice
first that using the second part of Lemma 6.6.1 we have∣∣∣∣∣∣

∏
|an|≤2|z|

Ek (z/an)

∣∣∣∣∣∣ ≥
∏

|an|≤2|z|

|an − z|
|an|

∏
|an|≤2|z|

e−c|z/an|
k

.

Now note that ∣∣∣∣∣∣
∏

|an|≤2|z|

e−c|z/an|
k

∣∣∣∣∣∣ = e−c|z|
k ∑

|an|≤2|z||an|
−k

,

and |an|−k = |an|−s |an|s−k ≤ 2s−k |an|−s |z|s−k. Thus, it holds (by Theorem 6.3.1 again)∣∣∣∣∣∣
∏

|an|≤2|z|

e−c|z/an|
k

∣∣∣∣∣∣ ≥ e−c|z|s
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Finally, we need to estimate ∏
|an|≤2|z|

|an − z|
|an|

.

Here we will, for the first time, employ the condition imposed on z. Indeed, whenever z does not belong to
a disc of radius |an|−k−1 centered at an, we have |an − z| ≥ |an|−k−1. Therefore, for such z we have∏

|an|≤2|z|

|an − z|
|an|

≥
∏

|an|≤2|z|

|an|−k−2
.

We take a log of the RHS to convert it into a sum (this is not strictly necessary but we find it convenient):

log

 ∏
|an|≤2|z|

|an|−k−2

 = −(k + 2)
∑

|an|≤2|z|

log |an| .

If we show ∑
|an|≤2|z|

log |an| ≲ |z|s (6.8)

it then follows that

log

 ∏
|an|≤2|z|

|an|−k−2

 ≳ −|z|s

and so ∏
|an|≤2|z|

|an|−k−2 ≥ e−c|z|
s

as desired. To end the proof, we then only need to show (6.8). Let s′ be such that ρ0 < s′ < s. By Theorem
6.3.1 we have n(r) ≲ rs

′
for all r ≳ 1. We first estimate∑

|an|≤2|z|

log |an| ≤ n(2|z|) log(2|z|).

If log(2|z|) < 0, obviously this is ≤ |z|s. Otherwise, |z| ≳ 1 and we use the size estimate on n(r) to get

n(2|z|) log(2|z|) ≲ |z|s
′
log(2|z|) ≲ |z|s.

Corollary 6.6.3. There exists a sequence of radii, r1, r2, . . ., with rm →∞, such that∣∣∣∣∣
∞∏
n=1

Ek (z/an)

∣∣∣∣∣ ≥ e−c|z|s
for |z| = rm.

Proof. Since k + 1 > ρ0, we have by Theorem 6.3.1 that
∑∞
n=N |an|

−k−1
< 1/2 for some integer N (as a tail

of a converging series). Consider any large integer L for which we have

[L,L+ 1] ∩
(
|an| − |an|−k−1

, |an|+ |an|−k−1
)
= ∅
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for all n < N . We claim that there exists r ∈ [L,L + 1] so that {|z| = r} does not intersect any of the disks

B
(
an, |an|−k−1

)
, n = 1, 2, . . . For otherwise, for every r ∈ [L,L+ 1] there exists nr ∈ N so that we have an

element zr ∈ {|z| = r} ∩B
(
anr

, |anr
|−k−1

)
. Now, we have

|r − |anr
|| = ||zr| − |anr

|| ≤ |zr − anr
| < |anr

|−k−1
.

Thus, it holds

[L,L+ 1] ⊂
∞⋃
n=N

(
|an| − |an|−k−1

, |an|+ |an|−k−1
)
,

and so

2

∞∑
n=N

|an|−k−1 ≥ 1

which is a contradiction. Employ the previous lemma to finish the proof.

One final lemma is needed before we can prove Hadamard’s factorization theorem.

Lemma 6.6.4. Suppose g is entire and u = Re(g) satisfies

u(z) ≤ Crs whenever |z| = r

for a sequence of positive real numbers r that tends to infinity. Then g is a polynomial of degree ≤ s.

Proof. Write g(z) =
∑∞
n=0 anz

n, and deduce that for all r > 0 we have (by a simple application of Cauchy’s
integral formula; see Math5022 HW6 Ex2)

1

2π

∫ 2π

0

g
(
reiθ

)
e−inθdθ =

{
anr

n if n ≥ 0,

0 if n < 0.

By taking complex conjugates we have

1

2π

∫ 2π

0

g (reiθ)einθdθ =

{
anr

n if n ≥ 0,

0 if n < 0.

Thus, for n > 0, or k = −n < 0

1

2π

∫ 2π

0

g (reiθ)eikθdθ =
1

2π

∫ 2π

0

g (reiθ)e−inθdθ = 0

Recall that u = (g + ḡ)/2, and sum the previous identities to obtain that for n > 0 we have

1

π

∫ 2π

0

u
(
reiθ

)
e−inθdθ = anr

n.

Also, we take real parts from both sides of the n = 0 formula to see

2Re (a0) =
1

π

∫ 2π

0

u
(
reiθ

)
dθ

Using the fact that
∫ 2π

0
e−inθ = 0 for all n ̸= 0, we infer that

an =
1

πrn

∫ 2π

0

[
u
(
reiθ

)
− Crs

]
e−inθdθ when n > 0,
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and consequently, for an r as in the hypothesis, we have

|an| ≤
1

πrn

∫ 2π

0

[
Crs − u

(
reiθ

)]
dθ ≤ 2Crs−n − 2Re (a0) r

−n.

Let r →∞ along the sequence given in the hypothesis of the lemma to obtain that an = 0 for n > s.

Remark 6.6.5. This lemma generalizes proposition 6.1.5.

We are now ready to prove Hadamard’s factorization theorem. We state it carefully with all of the underlying
assumptions on f .

Theorem 6.6.6 (Hadamard Factorization Theorem). Suppose f is entire and has growth order ≤ ρ0. Let k
be the integer so that k ≤ ρ0 < k + 1. If a1, a2, . . . denote the non-zero zeros of f and f has a zero of order
m at the origin, then

f(z) = ep(z)zm
∞∏
n=1

Ek (z/an) ,

where p is a polynomial of degree ≤ k.

Proof. The beginning of the proof is quite similar to that of Theorem 6.5.3. We set

E(z) := zm
∞∏
n=1

Ek (z/an) , z ∈ C.

Consider an arbitrary R > 0. We utilize Lemma 6.5.2 to note that

|1− Ek (z/an)| ≤ 2e

∣∣∣∣ zan
∣∣∣∣k+1

≤ 2eRk+1 |an|−k−1

for all large n (must have |an| > 2R) and for all z ∈ BR. Because the series
∑
|an|−k−1 converges (by

Theorem 6.3.1), we have by Theorem 6.4.10 that z 7→ E(z) is entire (as R was arbitrary), and has the
zeros of f (see Proposition 6.4.4). Therefore, as we have seen before, f/E is entire and nowhere vanishing.
Consequently, there exists an entire g such that f/E = eg. Since f has a growth order ≤ ρ0, we have by
Corollary 6.6.3 that for any s with ρ0 < s < k + 1 it holds

eRe(g(z)) =
∣∣∣eg(z)∣∣∣ = ∣∣∣∣ f(z)E(z)

∣∣∣∣ ≤ Cec|z|s
for |z| = rm, and for some C, c > 0. Lemma 6.6.4 finishes the proof.

Example 6.6.7. Let f(z) := sin(πz). We derive the already known product formula of sine from Hadamard.
We have already previously noted that the growth order of f is 1 , and so Hadamard tells us that

f(z) = ep(z)z
∏

n∈Z\{0}

E1(z/n) = ep(z)z
∏

n∈Z\{0}

(1− z/n)ez/n = ep(z)z

∞∏
n=1

(
1− z2/n2

)
,

where p(z) = az + b is some polynomial of degree at most 1 . We first show that a = 0. This follows from
the fact that

ep(z)z

∞∏
n=1

(
1− z2/n2

)
= f(z) = −f(−z) = ep(−z)z

∞∏
n=1

(
1− z2/n2

)
122



Complex Analysis Anthony Hong

implying that ep(z) = ep(−z) for z /∈ Z. Thus, for those z we have

1 = ep(z)−p(−z) = eaz+b−(−az+b) = e2az

forcing a = 0. It follows that

f(z) = ebz

∞∏
n=1

(
1− z2/n2

)
.

Divide both sides by πz and let z → 0 to conclude that eb/π = 1, i.e., eb = π. Thus, we have the formula for
sine:

sin(πz) = πz

∞∏
n=1

(
1− z2/n2

)
.

6.7 Blaschke Products

Blaschke products are bounded anologues in the disc D of the Weierstrass products for the entire functions.
In this section we quickly record, omitting some details of the proofs, their basic theory.

Definition 6.7.1. The space H∞ = H∞(D) consists of all bounded analytic functions f on D:

H∞ = H∞(D) := {f ∈ H(D) | ∥f∥∞ <∞},

where ∥f∥∞ is the sup-norm
∥f∥∞ := sup{|f(z)| : z ∈ D}.

Theorem 6.7.2. Assume that f ∈ H∞ is not identically zero and a1, a2, . . . ∈ D are its zeros. Then we have∑
n

(1− |an|) <∞.

Proof. We tacitly assume f has infinitely many zeros, otherwise there is nothing to prove. If f has a zero
of order m at the origin, set F (z) = f(z)/zm. Then F ∈ H∞ but now F (0) ̸= 0. Thus, without loss of
generality, we may assume f ∈ H∞ does not vanish at zero (so an ̸= 0 for all n ).

Let pN :=
∏N
i=1 |an|. Notice that as 0 < |an| < 1 we have p1 > p2 > · · · , and so the infinite product

∏∞
n=1 |an|

exists (a bounded decreasing sequence has a limit). It is non-trivial that
∏∞
n=1 |an| > 0, but a short argument

using Jensen’s formula (Math5022 HW7 Ex3) shows that

∞∏
n=1

|an| ≥
|f(0)|
∥f∥∞

> 0

This then implies (see Math5022 HW7 Ex1) that∑
n

(1− |an|) <∞.

So if f ∈ H∞ with
∑
n (1− |an|) = ∞, then f = 0 identically. A Blaschke product allows to do what the

Weirstrass product did in the entire case.
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Theorem 6.7.3. Let (an) satisfy an ∈ D\{0}. Define the Blaschke product

B(z) :=

∞∏
n=1

ψan(z)
|an|
an

,

where ψα, α ∈ D, is the following familiar automorphism of D (sometimes called a Blaschke factor):

ψα(z) :=
α− z
1− ᾱz

.

Then a necessary and sufficient condition for B to converge locally uniformly (i.e., uniformly for each
D(0, r) = {z : |z| ≤ r} (as the estimates above are uniform on such z) for any 0 ≤ r < 1) is that

∏
n |an| <∞,

or equivalently,
∑
n(1− |an|) <∞ (due to proposition 6.4.3)

If this is the case, then B ∈ H∞ with |B(z)| < 1 and B vanishes precisely at the points z = an.

Proof. Necessity is immediate; simply substitute z = 0. Conversely, assume that

∞∑
n=1

(1− |an|) <∞, (6.9)

which implies limn→∞(1 − |an|) = 0 =⇒ limn→∞ |an| = 1. Thus, there exists some integer N such that
|an| ≥ 1

2 , or 1/|an| ≤ 2, for n ≥ N . Then for z ∈ D(0, r) (0 ≤ r < 1), we have∣∣∣∣∣∣∣∣∣1−
=bn(z)︷ ︸︸ ︷

|an|
an
· an − z
1− anz

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣ (an + |an|z)(1− |an|)

an(1− anz)

∣∣∣∣
≤ 1 + r

1− r
|1− |an||
|an|

<
2

1− r
1− |an|
|an|

≤ 4

1− r
(1− |an|) = cn for all n ≥ N.

and our assumption (6.9) gives that
∑∞
N cn <∞. Thus, Theorem 6.4.9 concludes that the product

∞∏
n=1

bn(z) =

N−1∏
n=1

bn(z)

∞∏
n=N

bn(z)

converges uniformly to a holomorphic function B(z) for z ∈ D(0, r) (0 ≤ r < 1) and has exactly zeros
a1, a2, · · · since each Blaschke factor ψan has precisely one zero an.

Since Blaschke factors ψan(z) are automorphisms on D, we have ∀z ∈ D, |ψan(z)| < 1 and

sup
z∈D
|PK(z)| = sup

z∈D

∣∣∣∣∣
K∏
n=1

ψan(z)
|an|
an

∣∣∣∣∣ = sup
z∈D

K∏
n=1

|ψan(z)|
|an|
|an|

< 1.

Letting K →∞ shows |B(z)| < 1 and hence B(z) ∈ H∞ = H∞(D) := {f ∈ H(D) | ∥f∥∞ <∞}.
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Chapter 7

Cauchy Transform

7.1 Differential Calculus on Complex Domains

In order that we may be able to do calculus computations easily and efficiently in the context of complex
analysis, we recast some of the basic ideas in new notation.

Recall that the differential of a function u(z), considered as a function of (x, y) ∈ R2 (via z = x + iy), is a
differential one-form given by

du =
∂u

∂x
dx+

∂u

∂y
dy.

We define the complex-valued one-forms {
dz = dx+ idy

dz = dx− idy

dx

dy

dz = dx+ idy

dz̄ = dx− idy

Then by this change of basis, we can write du = Fdz +Gdz̄ with

F =
∂u

∂z
:=

1

2

(
∂u

∂x
− i∂u

∂y

)
G =

∂u

∂z̄
:=

1

2

(
∂u

∂x
+ i

∂u

∂y

)
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They are called Wirtinger derivatives.

Let f(z) = u(z)+ iv(z) be a complex-valued, real differentiable function on a planar domain Ω. Then, Notice
that

0 =
∂

∂z̄
f(z) =

1

2

(
∂

∂x
+ i

∂

∂y

)
[u(x, y) + iv(x, y)]

=
1

2

(
∂u

∂x
− ∂v

∂y

)
+
i

2

(
∂u

∂y
+
∂v

∂x

)
on Ω.

if and only if
∂

∂x
u =

∂

∂y
v and

∂

∂x
v = − ∂

∂y
u.

But these are just the Cauchy-Riemann equations. We conclude that

∂

∂z̄
f = 0 on Ω iff f is holomorphic on Ω.

Further notice that
∂

∂z
z = 1

∂

∂z
z̄ = 0

∂

∂z̄
z = 0

∂

∂z̄
z̄ = 1.

Thus ∂/∂z and ∂/∂z̄ fit in a natural way into complex function theory. Besides, when ∂z̄f(z) = 0∀z ∈ Ω,
i.e., C.R.eq is satisfied, ∂v∂y = ∂u

∂x and −∂u∂y = ∂v
∂x , we have

∂zf =
1

2

(
∂u

∂x
+
∂u

∂x

)
+
i

2

(
∂v

∂x
+
∂v

∂x

)
=
∂u

∂x
+ i

∂v

∂x

which is the first expression of f ′(z) given in [10] Corollary 4.45. Alternatively, one observes that if f is
holomorphic then

f ′(z) = lim
C∋h→0

f(z + h)− f(z)
h

= lim
R∋s→0

f(z + s)− f(z)
s

=
∂f

∂x
= −i∂f

∂y
=
∂f

∂z
.

To translate to Dirichlet problem, observe that the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2

may now be written as

∆ = 4
∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z
.

The following properties of these operators will be used routinely. The complex conjugate of ∂u/∂z is ∂ū/∂z̄
and the complex conjugate of ∂u/∂z̄ is ∂ū/∂z.

Proposition 7.1.1. If f and g are continuously differentiable functions, and if f ◦ g is well defined on some
open set U ⊆ C, then we have

∂

∂z
(f ◦ g)(z) = ∂f

∂z
(g(z))

∂g

∂z
(z) +

∂f

∂z̄
(g(z))

∂ḡ

∂z
(z)

and
∂

∂z̄
(f ◦ g)(z) = ∂f

∂z
(g(z))

∂g

∂z̄
(z) +

∂f

∂z̄
(g(z))

∂ḡ

∂z̄
(z).
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Proof. We will sketch the proof of the first identity and leave the second as an exercise. We have

∂

∂z
(f ◦ g) = 1

2

(
∂

∂x
− i ∂

∂y

)
(f ◦ g).

We write g(z) = α(z) + iβ(z), with α and β real-valued functions, and apply the usual calculus chain rule
for ∂/∂x and ∂/∂y. We obtain that the last line equals

1

2

(
∂f

∂x

∂α

∂x
+
∂f

∂y

∂β

∂x
− i∂f

∂x

∂α

∂y
− i∂f

∂y

∂β

∂y

)
.

Now, with the aid of the identities

∂

∂x
=

∂

∂z
+

∂

∂z̄
and

∂

∂y
= i

(
∂

∂z
− ∂

∂z̄

)
,

we may reduce the expression (∗) (after some tedious calculations) to the desired formula.

Corollary 7.1.2. If either f or g is holomorphic, then

∂

∂z
(f ◦ g)(z) = ∂f

∂z
(g(z))

∂g

∂z
(z).

Proof. Exercise.

Corollary 7.1.3. If f is harmonic and g is holomorphic, then f ◦ g is harmonic.

Proof. Exercise.

7.2 General Cauchy Integral Formula

We recall that, see e.g. Lee’s Introduction to Smooth Manifold Proposition 14.11 and Example 14.27, if we
let ζ be a complex variable and u and v : Ω → C are C1 functions where Ω ⊆ C is a domain bounded by a
piecewise C1 Jordan curve (∂Ω), then

d(udζ + vdζ̄)

=du ∧ dζ + dv ∧ dζ̄

=

(
∂u

∂ζ
dζ +

∂u

∂ζ̄
dζ̄
)
∧ dζ +

(
∂v

∂ζ
dζ +

∂v

∂ζ̄
dζ̄
)
∧ dζ̄

=

(
∂v

∂ζ
− ∂u

∂ζ̄
ζ

)
dζ ∧ dζ̄

and then Stokes’ Theorem gives∫
∂Ω

udζ + vdζ̄ =

∫∫
Ω

(
∂v

∂ζ
− ∂u

∂ζ̄
ζ

)
dζ ∧ dζ̄.

In particular, ∫
∂Ω

udζ =

∫∫
Ω

∂u

∂ζ̄
dζ̄ ∧ dζ.

and ∫
∂Ω

udζ̄ =

∫∫
Ω

∂u

∂ζ
dζ ∧ dζ̄.
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We shall call these two identities complex Green’s identities. We use the double integrals. That’s because
dζ = dx+ idy and dζ̄ = dx− idy give us dζ ∧ dζ̄ = −2idxdy, and hence the double integral in the formula
represents an integral with respect to Lebesgue area measure.

Theorem 7.2.1 (Green-Cauchy formula). If u is a function in C1(Ω̄), then

u(z) =
1

2πi

∫
∂Ω

u(ζ)

ζ − z
dζ +

1

2πi

∫∫
Ω

∂u/∂ζ̄

ζ − z
dζ ∧ dζ̄

for all z ∈ Ω.

Proof. Let B(z, ε) denote the disc of radius ε about the point z. To prove the Cauchy formula, let Ωε denote
the domain Ω − B(z, ε) for small ε > 0. Apply the complex Green’s identity on the domain Ωε using the
function U(ζ) = u(ζ)/(ζ − z). Note that ∂U/∂ζ̄ = (∂u/∂ζ̄)/(ζ − z). Thus, if we parameterize the boundary
of B(z, ε) in the counterclockwise sense, we may write∫

∂Ω

u(ζ)

ζ − z
dζ −

∫
∂B(z,ε)

u(ζ)

ζ − z
dζ =

∫∫
Ωε

∂u/∂ζ̄

ζ − z
dζ̄ ∧ dζ

We now let ε → 0. Because u is continuous, the integral over the boundary of B(z, ε) tends to 2πiu(z).
Finally, because the integrand in the double integral is in L1(Ω), the Cauchy formula follows. (To see that
this integrand is in L1, use polar coordinates centered at z in order to write dζ̄ ∧dζ = 2idxdy = 2irdrdθ and
|ζ − z|−1dζ̄ ∧ dζ = 2idrdθ.)

Note that if u is holomorphic, then the Green-Cauchy formula reduces to the classical Cauchy integral for-
mula.

We have seen that the Dirichlet problem for the Laplace operator is a very important tool in the study of
harmonic functions. Parallel to that, if we want to study holomorphic functions, we shall need to understand
solutions to the ∂̄-equation, that is, solutions to ∂u/∂z̄ = v.

Theorem 7.2.2. Suppose that v ∈ C∞(Ω̄). Then the function u defined via

u(z) =
1

2πi

∫∫
Ω

v(ζ)

ζ − z
dζ ∧ dζ̄

satisfies ∂u/∂z̄ = v and u ∈ C∞(Ω̄).

Proof. See [1] Theorem 2.2.

Remark 7.2.3. Since the complex conjugate of ∂u/∂z̄ is equal to ∂ū/∂z, the Theorem implies that the
equation ∂u/∂z = v can also be solved with u ∈ C∞(Ω̄) via an integral formula similar to the one in the
statement of the theorem.

7.3 Cauchy Transform

If u is a C∞ function defined on the boundary of a bounded domain Ω in the plane with C∞ smooth
boundary, then the Cauchy transform of u is a holomorphic function Cu on Ω given by

(Cu)(z) = 1

2πi

∫
∂Ω

u(ζ)

ζ − z
dζ.
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In the study of harmonic functions, the Poisson integral plays a very important role; the Poisson integral
establishes a one-to-one correspondence between continuous functions on the boundary and harmonic func-
tions on the interior that assume those functions as boundary values. In complex analysis, the Cauchy
transform plays a similar part; however, the interaction is more subtle because not all functions on the
boundary can be the boundary values of a holomorphic function. In this section, we shall spell out some
basic properties of the Cauchy transform.

Let A∞(Ω) denote the space of holomorphic functions on Ω that are in C∞(Ω̄).

Theorem 7.3.1. The Cauchy transform maps C∞(∂Ω) into A∞(Ω).

Proof. Let u ∈ C∞(∂Ω) and let U be a function in C∞(Ω̄) which is equal to u on ∂Ω. Theorem 7.2.1 allows
us to write

U = Cu+
1

2πi

∫∫
Ω

Uζ̄(ζ)

ζ − z
dζ ∧ dζ̄

and it follows from Theorem 7.2.2 that the function defined by the double integral is in C∞(Ω̄). The theorem
is proved.

Above theorem allows us the view the Cauchy transform as an operator which maps the space C∞(∂Ω) into
C∞(Ω̄), or even as an operator from C∞(∂Ω) into itself. The theorem also implies the following result.

Theorem 7.3.2. Suppose that h is a holomorphic function on Ω which extends to be a continuous function
on Ω̄. If the boundary values of h are in C∞(∂Ω), then h ∈ C∞(Ω̄).

The analogue of this theorem for harmonic functions is also true, but it is considerably harder to prove. It is
remarkable that this theorem can be proved so easily.

Add Appendix Distribution and test functions using [6] and [14] chapter 3; p.7-10 of Mathematical tools for
one-dimensional dynamics.
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Chapter 8

Hardy Spaces on D

8.1 Poisson Integrals Revisited

We recall that given z = reiθ0 ∈ D (so 0 ≤ r < 1), the Poisson kernel for unit disk D is defined for θ ∈ R,

Pz(θ) =
∑
m∈Z

r|m|eim(θ0−θ) =
1− r2

1− 2r cos(θ0 − θ) + r2
= Re

(
eiθ + z

eiθ − z

)
.

When z = 0, i.e., θ0 = 0, we often write Pz(θ) as Pr(θ). Note that Pz(θ) = Pr(θ0 − θ).

For fixed eiθ, Pz(θ) is a harmonic function of z ∈ D. Hence the function defined by

u(z) =
1

2π

∫ π

−π
Pz(θ)f(θ)dθ =

1

2π

∫ π

−π
Pr(θ0 − θ)f(θ)dθ = (Pr ∗ f)(θ0) (8.1)

is harmonic on D whenever f(θ) ∈ L1(∂D) (notice that C(∂D) ⊆ L1(∂D)). We have shown that the function
Hf which is u on D and f on ∂D uniquely solves (Dir)f for f ∈ C(∂D). Since Pz(θ) is also a continuous
function of θ, we get a harmonic function from above equation if we replace f(θ)dθ by a finite measure dµ(θ)
on ∂D.

We have seen in proposition 4.2.5 that for g ∈ C([−π, π]) we have G(θ) = g(eiθ) ∈ C([−π, π]) and uniformly,

lim
r→1−

|(Pr ∗G)(θ)−G(θ)| = 0

Namely,
lim
r→1−

∥(Pr ∗G)(θ)−G(θ)∥L∞(∂D) = 0

We now replace L∞ norm by Lp norm with 1 ≤ p <∞ and relax the class of g.

Proposition 8.1.1. Let 1 ≤ p ≤ ∞, f ∈ Lp(∂D), and define the function on unit circle

ur : ∂D→ C

eiθ 7→ P[f ](θ) := 1

2π

∫ π

−π
Pr(θ − t)f(eit)dt.

Then
∥ur∥Lp(∂D) ≤ ∥f∥Lp(∂D).

If 1 ≤ p <∞, then
lim
r→1−

∥ur − f∥Lp(∂D) = 0

(recall f ∈ C(∂D) is required for p =∞ case.)
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Proof. Using the notation −
∫ π
−π = 1

2π

∫ π
−π and freely employing the properties of the Poisson kernel, we note

that

|ur(eiθ)| ≤ −
∫ π

−π
|f(eit)|Pr(θ − t)dt

= −
∫ π

−π
|f(eit)|Pr(θ − t)1/pPr(θ − t)1/p

′
dt

Hölder
≤

(
−
∫ π

−π
|f(eit)|pPr(θ − t)dt

)1/p

−∫ π

−π
Pr(θ − t)dt︸ ︷︷ ︸

=1


1/p′

Thus,

|ur(eiθ)|p ≤ −
∫ π

−π
|f(eit)|pPr(θ − t)dt

and ∫ π

−π
|ur(eiθ)|pdθ ≤

∫ π

−π
−
∫ π

−π
|f(eit)|pPr(θ − t)dtdθ

Fubini
===== −

∫ π

−π
|f(eit)|p

∫ π

−π
Pr(θ − t)dθdt

= 2π−
∫ π

−π
|f(eit)|pdt =

∫ π

−π
|f(eit)|pdt

This implies that ∥ur∥Lp(∂D) ≤ ∥f∥Lp(∂D) (the p =∞ case is trivial.) We now show the second statement:

Since C(∂D) is dense in Lp(∂D) for 1 ≤ p < ∞ (see e.g. [7] p.245.), we can find g ∈ C(∂D) s.t. ∥f −
g∥Lp(∂D) < ε. Let v := P[g](θ). Then

∥ur − f∥Lp(∂D) ≤ ∥ur − vr∥Lp(∂D) + ∥vr − g∥Lp(∂D) + ∥g − f∥Lp(∂D)

where ∥ur − vr∥Lp(∂D) = ∥(u− v)r∥Lp(∂D) ≤ ∥f − g∥Lp(∂D) < ε by the first part of the theorem. so

∥ur − f∥Lp(∂D) < 2ε+ ∥vr − g∥Lp(∂D).

Now,

∥vr − g∥pLp(∂D) =

∫ π

−π
|vr(eiθ)− g(eiθ)|p︸ ︷︷ ︸

≤∥vr−g∥p
Lp(∂D)

dθ ≤ 2π∥vr − g∥pLp(∂D)

implying that ∥vr − g∥Lp(∂D) < ε for all r → 1−, as v = P[g] and g ∈ C(∂D).

The more difficult question is the pointwise convergence ur(eiθ)
r→1−−−→ f(eiθ) for u = P[f ] with mere as-

sumption f ∈ L1(∂D) (notice that Lp(∂D) ⊂ L1(∂D) by Hölder’s inequality if p > 1)

8.2 Approach Regions

Let 0 < α < 1. We first defne a non-tangential approach region related to z = 1. Let

Ωα = B(0, α) ∪
⋃

z∈B(0,α)

[z, 1].
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Figure 8.1: Region Ωα

This is the smallest convex set containing B(0, α) and having z = 1 in its boundary. Near z = 1, Ωα is a
sector bisected by the radius of D terminating at 1. Curves that approach 1 within Ωα cannot be tangent to
∂D, and so Ωα is called a non-tangential approach region with vertex 1. Rotated copies with vertex at
eit ∈ ∂D are denoted by eitΩα.

Definition 8.2.1. A function F , defined in D, is said to have a non-tangential limit λ at eiθ ∈ ∂D if, for each
0 < α < 1,

lim
j→∞

F (zj) = λ

for all sequences {zj} ∈ eiθΩα with {zj} → eiθ.

We want to show the following result.

Theorem 8.2.2. If F = P[f ] for f ∈ L1(∂D), then F has non-tangential limit f(eiθ) at every Lebesgue point
eiθ of f .

Recall that for a locally Lebesgue integrable function f on Rd, a point x in the domain of f is a Lebesgue
point if

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy = 0.

where µ is the Lebesgue measure. The Lebesgue points of f are thus points where f does not oscillate too
much, in an average sense. The Lebesgue differentiation theorem states that, given any f ∈ L1

Loc

(
Rd
)

(i.e., has finite Lp norm on every compact subset K of Rd), almost every x is a Lebesgue point of f . In our
case, it can also be written as

lim
I→eiθ

1

σ(I)

∫
I

|f(y)− f(eiθ)|dσ(y) = 0

where I → eiθ stands for the open arcs centered at eiθ shrinking to eiθ and σ is the normalized surface
measure on ∂D. That is, we essentially have dt/2π on [−π, π] if we think of f as a function on [−π, π] via
θ 7→ f(eiθ). So σ(∂D) = 1, σ(I) =length of the arc I.

If f is continuous, trivially every point is a Lebesgue point:

1

σ(I)

∫
I

<ε on I for sufficiently small I︷ ︸︸ ︷
|f − f(eiθ)| < ε

σ(I)

σ(I)
= ε.

Lebesgue differentiation theorem says that σ{eiθ ∈ ∂D | eiθ is not a Lebesgue point of f} = 0. Thus, if we
show that f ∈ L1(∂D) =⇒ F = P[f ] has non-tangential limit f(eiθ) at a.e. eiθ ∈ ∂D.
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proof of Theorem 8.2.2. Fix a Lebesgue point eiθ ∈ ∂D of f . Let g(z) := f(z)− f(eiθ). Then by definition of
Lebesgue point,

lim
I→eiθ

1

σ(I)

∫
I

|g|dσ = 0.

Pick ε > 0. Thus, we can pick a small enough arc I0 centered at eiθ such that

1

σ(I)

∫
I

|g|dσ < ε (8.2)

for all arcs I ⊆ I0 centered at eiθ.

We decompose g = g0 + g1, where g0 := g|I0 and g1 := g− g0 = g|∂D\I0 . Let F0 := P[g0] and F1 := P[g1]. We

want to show P[g](eiθ) NT−→ 0 for the Lebesgue point eiθ (NT means “nontangentially”; the notation reads as
function P[g] has nontangential limit 0 at point eiθ), because this gives P[f ](eiθ) NT−→ f(eiθ). To do so, we
will first show F1

NT−→ 0.

Fix {zj} converging to eiθ, where zj ∈ eiθΩα for some fixed 0 < α < 1. We recall from (4.8) and (4.9) that
We can write P[h] for a function h ∈ C(∂D) as

∀z = reiθ ∈ D : P[h](z) = 1

2π

∫ π

−π
h(eit)Pr(θ − t)dt

=
1

2π

∫ π

−π
h(eit)

1− |z|2

|eit − z|2
dt

=

∫
∂D
h(eit)P (z, eit)dσ(eit).

where P (z, eit) = Pr(θ − t) = (1− |z|2)/|eit − z|2 for z = reiθ (the Poisson kernel can be seen as a function
of r, θ, and t) and recall that σ is the normalized surface measure on ∂D. Now

F1(zj) =

∫
∂D\I0

P (zj , e
it)g(eit)dσ(eit) =

∫
∂D\I0

1− |zj |2

|eit − zj |2
g(eit)dσ(eit)

In this integral, zj stays away a positive distance from each eit ∈ ∂D \ I0, so |eit − zj | ≳ 1 (uniformly on
eit ∈ ∂D \ I0 and zj).
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Thus, ∣∣∣∣ 1− |zj |2|eit − zj |2
g(eit)

∣∣∣∣ ≲ (1− |zj |)|g(eit)|

=⇒ |F1(zj)| ≲ (1− |zj |)
∫
|g|dσ︸ ︷︷ ︸
<∞

j→∞−−−→ 0

=⇒ F1(zj)
j→∞−−−→ 0.

We will show |F0(zj)| ≲α ε ∀j. This implies |P[g](zj)| ≤ |F0(zj)|+ |F1(zj)| ≤ Cαε+ ε for all large j. Since

ε is arbitrary, this implies P[g](zj)
j→∞−−−→ 0. But

P[g](zj) = P[f − f(eiθ)](zj) = P[f ](zj)− f(eiθ)

implies that P[f ](zj)
j→∞−−−→ f(eiθ), as desired.

However, the proof of the fact |F0(zj)| ≲α ε ∀j needs us to introduce new tools utilizing the nontangential
approach of {zj} to eiθ, i.e., zj ∈ eiθΩα, ∀j. The idea is as follows: recall the the Hardy-Littlewood
maximal function of g0 is

Mg0(e
it) := sup

I arc centered at eit

1

σ(I)

∫
I

|g0|dσ

where ∂D is understood as an arc here as well. We want to use the fact that Mg0(e
iθ) ≤ ε, since∫

I

|g0|dσ =

∫
I∩I0
|g|dσ

(8.2)
< εσ(I ∩ I0) ≤ εσ(I)

for all arcs I ⊆ ∂D centered at eiθ.

We also define the nontangential maximal function Nαh for any function h in D by setting

Nαh(e
it) = sup

{
|h(z)| : z ∈ eitΩα

}
for all eit ∈ ∂D (so h defined in D but Nαh in ∂D.) Then ∀z ∈ eiθΩα, |F0(z)| ≤ NαF0

(
eiθ
)
. In particular,

|F0 (zj)| ≤ NαF0

(
eiθ
)
. Now if we assume the claim Nα (P[g0]) (eiθ) ≲α Mg0(e

iθ), then

NαF0(e
iθ) = Nα (P[g0]) (eiθ) ≲α Mg0(e

iθ) ≤ ε
=⇒ ∀j, |F0 (zj)| ≤ Cαε

ending the proof. We shall prove the strengthened form of the claim we assumed in theorem 8.3.2.

8.3 Maximal Functions

We first introduce a new variant of maximal function.

Definition 8.3.1. We define the radial maximal function as

Mradh(e
iθ) = sup{|h(reiθ)| : 0 ≤ r < 1}

for a function h on D.

We will then prove the promised estimates of maximal functions.
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Theorem 8.3.2. Assume 0 < α < 1. Then there is Cα > 0 with the following property: if f ∈ L1(∂D), f ≥ 0,
F := P[f ], then

∀eiθ ∈ ∂D, CαNαF (e
iθ) ≤MradF (e

iθ) ≤Mf(eiθ),

Remark 8.3.3. The set over which Mradh(e
itθ) takes the sup of |h| is much smaller than that for Nαh(eiθ),

as shown in the figure.

Therefore, we always have
Nαh(e

iθ) ≥Mradh(e
iθ).

The non-trivial direction Nαh(e
iθ) ≲α Mradh(e

iθ) works for functions h of the special form h = P[f ], f ∈
L1(∂D). Also the second inequality connecting Mrad(P[f ]) to Mf needs some work as well.

proof of the theorem. We will prove ∃Cα such that CαNαF (1) ≤ MradF (1) ≤ Mf(1); this is the case θ = 0.
The general case follows by a rotation.

1. NαF (1) ≲MradF (1).

We compute that

NαF (1) = sup
z∈Ωα

∣∣∣∣∣∣∣
∫
∂D
P (z, eit)︸ ︷︷ ︸

≥0

f(eit)︸ ︷︷ ︸
≥0

dσ(eit)

∣∣∣∣∣∣∣
= sup
z∈Ωα

∫
∂D
P (z, eit)︸ ︷︷ ︸ f(eit)dσ(eit)

will prove: ≲α P (|z|, eit), ∀z ∈ Ωα,∀eit ∈ ∂D

≲ sup
z∈Ωα

∫
∂D
P (|z|, eit)f(eit)dσ(eit)

= sup
0≤r<1

∫
∂D
P (r, eit)f(eit)dσ(eit)︸ ︷︷ ︸

=P[f ](r)

=MradF (1),
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provided we prove the pointwise estimate that for some Cα

CαP (z, e
it) ≤ P (|z|, eit), ∀z ∈ Ωα,∀eit ∈ ∂D.

As

P
(
z, eit

)
=

1− |z|2

|eit − z|2

P
(
|z|, eit

)
=

1− |z|2

|eit − |z||2

we must prove for r := |z|,
(∗) : Cα

∣∣eit − r∣∣ ≤ ∣∣eit − z∣∣
Now, we observe a geometric feature of Ωα that

|z − r|
1− r

=
|z − |z||
1− |z|

≲α 1, ∀z ∈ Ωα

Thus, ∣∣eit − r∣∣ ≤ ∣∣eit − z∣∣+ |z − r|
≤

∣∣eit − z∣∣︸ ︷︷ ︸
≥|eit|−|z|=1−r

+Cα(1− r)

≤ (1 + Cα)
∣∣eit − z∣∣

which shows (∗). We thus proved NαF (1) ≲α MradF (1).

2. MradF (1) ≤Mf(1).

This requires us to show∫
∂D
P (r, eit)f(eit)dσ(eit) ≤ sup

I arcs centered at 1
−
∫
I

fdσ, ∀0 ≤ r < 1,

Recall P (r, eit) = 1−r2
|eit−r|2 . We fix r and choose open arcs I1 ⊂ I2 ⊂ · · · ⊂ In−1 centered at 1 and set

In = ∂D (we will eventually choose thhis s.t. the end points of the arcs form a fine partition of ∂D.) Notice
that |eit − r| becomes larger as eit ∈ ∂D moves away from 1 ∈ ∂D. So the bigger the arc Ij , the bigger
|eit − r| can be as eit ∈ Ij; so P (r, eit) obtains smaller values on the bigger Ij (t 7→ P (r, eit) decreases as t
ranges from 0 to π.) Define λj := infeit∈Ij P (r, e

it) > 0 (recall r is fixed). Then λ1 > λ2 > · · · > λn and
P (r, eit) ≥ λj1Ij , ∀eit ∈ ∂D. We will approximate P (r, eit) with the step function

Kr = K :=

n∑
j=1

(λj − λj+1)1Ij .

Notice that if eit ∈ Ij \ Ij−1 with I0 = ∅ we have

K(eit) =

n∑
i=1

(λi − λi+1)1Ii(e
it)

=

n∑
i=j

(λi − λi+1)

bc. eit ∈ Ij \ Ij−1 =⇒ eit /∈ Ii ∀i ≤ j − 1 and eit ∈ Ii ∀i ≥ j
= (λj − λj+1) + (λj+1 − λj+2) + · · ·+ (λn−1 − λn) + (λn − λn+1)

= λj − λn+1︸ ︷︷ ︸
=0 by defn.

= λj
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Since ∀eit ∈ ∂D, P (r, eit) ≥ λj1Ij and we just showed ∀eit ∈ Ij \ Ij−1, K(eit) = λj , we see P
(
r, eit

)
≥

K
(
eit
)

for eit ∈ ∂D. Clearly, the fact that on Ij\Ij−1 we have

K
(
eit
)
= λj = inf

Ij
P
(
r, eit

)
= inf
Ij\Ij−1

P
(
r, eit

)
means that K = Kr → P (r, ·) uniformly on D if we make the partition Ij\Ij−1 finer and finer (the last
equality comes from the fact that P (r, eit) is lower bounded by a larger value λj−1 on Ij−1, compared to λj .)
So we essentially now estimate∫

∂D
K
(
eit
)
f
(
eit
)

dσ
(
eit
)

=

n∑
j=1

(λj − λj+1)

∫
Ij

f
(
eit
)

dσ
(
eit
)

︸ ︷︷ ︸
≤σ(Ij)Mf(1)

≤Mf(1)

n∑
j=1

(λj − λj+1)σ (Ij)

=Mf(1)

∫
∂D

 n∑
j=1

(λj − λj+1)1Ij
(
eit
)dσ

(
eit
)

=Mf(1)

∫
∂D

K
(
eit
)︸ ︷︷ ︸

≤P (r,eit)

dσ
(
eit
)

≤Mf(1)

∫
∂D

P
(
r, eit

)
dσ
(
eit
)

︸ ︷︷ ︸
=1 as Poisson kernel has 1

2π

∫ π
−π

Pr(θ)dθ=1, ∀r<1

=Mf(1).

The limit K = Kr → P (r, ·) gives∫
∂D
P
(
r, eit

)
f
(
eit
)

dσ
(
eit
)
≤Mf(1), ∀0 ≤ r < 1,

and so MradF (1) ≤Mf(1).

Recall that we proved earlier that ∥Fr∥Lp(∂D) ≤ ∥f∥Lp(∂D), 1 ≤ p ≤ ∞, 0 ≤ r < 1 if F = P[f ]. The above
gives a stronger result: if 1 < p ≤ ∞ (we emphasize that p ̸= 1), then

∥NαF∥Lp(∂D) ≲α ∥Mf∥Lp(∂D) ≲ ∥f∥Lp(∂D) (8.3)

using the fundamental Lp-to-Lp, 1 < p ≤ ∞, estimate of M :

Theorem 8.3.4. We have that M : L1
(
Rd
)
→ L1,∞ (Rd) boundedly - i.e.,

∥Mf∥L1,∞ ≲ ∥f∥1.

For all 1 < p ≤ ∞ and f ∈ Lp we have
∥Mf∥p ≲ ∥f∥p.

Proof. See Henri’s Math5051 note.
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Notice that (8.3) is a much improved Lp estimate. Indeed,∣∣Fr (eit)∣∣ = ∣∣F (reit)∣∣ ≤MradF
(
eit
)
≤ NαF

(
eit
)
.

Remark 8.3.5. For p = 1 there is a L1 → L1,∞ type estimate for NαF

σ (NαF > λ) ≤ σ (Mf > Cαλ) ≲α
1

λ

∫
|f |dσ, ∀λ > 0.

Recall that given f ∈ Lp(∂D) the function P[f ] is harmonic in D. How about the converse: given a harmonic
function F in D, how to tell if it is the case F = P [f ] for some f ∈ Lp(∂D)? Recall that if it is, then
∥Fr∥Lp(∂D) ≤ ∥f∥LP (∂D) so sup0≤r<1 ∥Fr∥Lp(∂D) <∞.

Theorem 8.3.6. Suppose F is harmonic in D, 1 < p ≤ ∞. If sup0≤r<1 ∥Fr∥Lp(∂D) < ∞, then ∃!f ∈ Lp(∂D)
s.t. F = P[f ].

Remark 8.3.7. For p = 1 there is a version where F = P[dµ] for a unique ”complex Borel measure” µ on
∂D. See [12] p.239-p.245.

To get a taste of the p = ∞ case on what can be said about existence of boundary values, we prove the
following result.

Theorem 8.3.8. To every f ∈ H∞ there corresponds a function f∗ ∈ L∞(∂D) defined at every Lebesgue
point of f by

f∗(eiθ) = lim
r→1

fr(e
iθ).

The equality ∥f∗∥L∞(∂D) = ∥f∥∞ := ∥f∥L∞(D) holds. Moreover, if f∗(eiθ) = 0 a.e. on some arc I ⊆ ∂D, then
f ≡ 0 in D.

Proof. As f ∈ H∞, we have f harmonic as analytic, and sup0≤r<1 ∥fr∥L∞(∂D) = ∥fr∥D < ∞, so by previous
theorem, there is a unique function g in L∞(∂D) such that f = P[g]. Then if we define f∗ = g, Theorem
8.2.2 and Lebesgue differentiation theorem imply that f = P[g] has nontangential limit g(eiθ) = f∗(eiθ) at
a.e. eiθ ∈ ∂D. To prove the first claim ∥f∗∥L∞(∂D) = ∥f∥∞, notice that |f∗| = limr→1 |fr| ≤ limr→1 ∥f∥∞ =
∥f∥∞. Thus, ∥f∗∥L∞(∂D) ≤ ∥f∥∞. But we also know

∥f∥∞ = sup
0≤r<1

∥fr∥L∞(∂D) = sup
0≤r<1

∥(P[g])r∥L∞(∂D)︸ ︷︷ ︸
≤∥g∥L∞(∂D)=∥f∗∥L∞(∂D), ∀r

≤∥f∗∥L∞(∂D) (recall ∥(P[h])r∥Lp(∂D) ≤ ∥h∥Lp(∂D), 1 ≤ p ≤ ∞)

Thus, ∥f∥∞ = ∥f∗∥L∞(∂D).

For the second claim, we note that if f∗(eiθ) = 0 a.e. on the whole circle ∂D, then ∥f∥∞ = ∥f∗∥L∞(∂D) = 0, so
f ≡ 0 (see [7] p.236 defn. of L∞ norm and Problem 12; continuous function has its infinity norm equivalent
to the one defined supremum but the original one applied to f∗ is defined by least a.e. upper bound.) We
left as an exercise to check the case f∗ only vanishes a.e. on some arc (use rotation argument.)

8.4 Hardy Space

Recall if f ∈ H(D) we have used the notation fr
(
eiθ
)
= f

(
reiθ

)
to have a family of functions fr, 0 ≤ r < 1,

defined on the boundary ∂D. As previously, we use the measure σ (normalized surface measure on ∂D ∼
dt/2π on [0, 2π]) on ∂D, and

∥fr∥p := ∥fr∥Lp(σ,∂D)

=

{(∫
∂D
|fr|p dσ

)1/p
, 0 < p <∞

supθ
∣∣f (reiθ)∣∣ , p =∞.
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In view of the Nevanlinna space N (see Math5022 HW7Q4), we also set

∥fr∥0 = exp

(∫
∂D

log+ |fr|dσ
)
,

where

log+ s = log s, s ≥ 1

log+ s = 0, s < 1.

Definition 8.4.1. If f ∈ H(D) and 0 ≤ p ≤ ∞, we set

∥f∥p := sup
0≤r<1

∥fr∥p

Then the Hardy space is
Hp := {f ∈ H(D) : ∥f∥p <∞}.

(notice that in the case p =∞ this agrees trivially with our previous definition of H∞.) Also, let

N := {f ∈ H(D) : ∥f∥0 <∞}

Lemma 8.4.2. We have H∞ ⊂ Hp ⊂ Hq ⊂ N if 0 < q < p <∞.

Proof. Proof. Math5022 HW8 (easy).

Remark 8.4.3. (1) Notice that for 1 ≤ p ≤ ∞, Hp is a normed space (by Minkowski inequality of the usual
Lp space.) It is also a Banach space (complete normed space; see Math5022 HW8).

(2) We want to record that actually

∥f∥p = lim
r→1
∥fr∥p , 0 ⩽ p <∞.

This follows since r 7→ ∥fr∥p is a nondecreasing function of r for every f ∈ H(D). Indeed, for p = ∞, this
follows from the maximum modulus principle. For p <∞ we must use the fact that log+ |f | (for p = 0) and
|f |p (for o < p < ∞) are so-culled subharmonic functions, weaker variant of harmonic functions, and for
such functions MVP holds in the following sense (see [12] Theorem 17.5.)

Theorem 8.4.4. Suppose u is a continuous subharmonic function in U , and

m(r) =
1

2π

∫ π

−π
u
(
reiθ

)
dθ (0 ≤ r < 1).

If r1 < r2, then m (r1) ≤ m (r2).

This theory of subharmonic functions is straightforward but we omit it for now. Just need to know that it
gives a nondecreasing function r 7→ ∥fr∥p for p <∞ as well.

Notice that the definition of Hardy spaces are tailored to directly give that if f ∈ Hp, 1 < p ≤ ∞, then f =
P[f∗] for some f∗ ∈ Lp(∂D) (by our previous theory since analytic functions are harmonic) and f → f∗

(
eiθ
)

non-tangentially for a.e. eiθ ∈ ∂D. We also know that then ∥Nαf∥Lp(∂D) ≲ ∥f∗∥Lp(∂D), so Nαf ∈ Lp(∂D).

But what about 0 < p ≤ 1? Turns out that still ∃f∗ ∈ Lp(∂D) such that f → f∗ non-tangentially and
Nαf ∈ Lp(∂D). But this is harder to prove and requires factorizations. We do this now.
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Theorem 8.4.5. If f ∈ H∞, f not identically zero, define for 0 < r < 1,

µr(f) := −
∫ π

−π
log
∣∣fr (eiθ)∣∣dθ;

µ∗(f) := −
∫
−π

log
∣∣f∗ (eiθ)∣∣dθ

Then,

(1) µr(f) ≤ µs(f), 0 < r < s < 1;

(2) µr(f)→ log |f(0)| as r → 0;

(3) µr(f) ≤ µ∗(f), 0 < r < 1.

Remark 8.4.6. The first inequality is true philosophically because also log |f | is subharmonic. However,
often the flow of logic goes so that this theorem is first proved independently (without any mention of
sobharmonicity) and then this theorem is used to show that log |f | is sobharmonic, which actually implies
the fact used previously that so are then logt |t| and |f |p, 0 < p <∞. Thus, we prove this the directly.

Proof. We use Jensen’s formula. Put g(z) = f(z)
zm where m ≥ 0 is the order of the zero of f at z = 0. Then

(∗) : |g(0)|
N∏
n=1

r

|an|
= exp (µr(g)) ,

where a1, . . . , an are the zeros of g in B(0, r) and we set r s.t. g ̸= 0 on ∂Br. Obviously the LHS of (∗) can
only increase as r increases, showing (1) for g. But µr(f) = µr(g) +m log r, so (1) is true for f as well.

For what follows we assume WLOG |f | ≤ 1. Notice that fr → f(0) as r → 0 and fr → f∗ as r → 1. Now,

−
∫ π

−π
lim
r→1

log
∣∣fr (eiθ)∣∣dθ = −−∫ π

−π
lim
r→1

log
1

|fr (eiθ)|︸ ︷︷ ︸
non-negative function
as 1/|fr| ≥ 1 (can be∞)

dθ

Recall Fatou’s lemma that for non-negative sequence of functions hn, n = 1, 2, · · · , we have∫
lim inf hn ≤ lim inf

∫
hn

Thus,

µ∗(f) =−
∫ π

−π
log
∣∣f∗ (eiθ)∣∣dθ = −∫ π

−π
lim
r→1

log
∣∣fr (eiθ)∣∣dθ

=−−
∫ π

−π
lim
r→1

log
1

|fr (eiθ)|︸ ︷︷ ︸
≥0

dθ
Fatou
≥ − lim

r→1

∫ π

−π
log

1

|fr (eiθ)|
dθ

= lim
r→1

µr(f)
(1)
=== sup

r<1
µr(f),

This shows (3). Similarly,

inf
r>0

µr(f) = lim
r→0

µr(f) = lim
r→0
−
∫ π

−π
log |fr(eiθ)|dθ

=− lim
r→0
−
∫ π

−π
log

1

|fr(eiθ)|
dθ

Fatou
≤ −−

∫ π

−π
lim
r→0

log
1

|fr(eiθ)|
dθ

= log |f(0)|
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How to see µr(f) ≥ log |f(0)| ∀r? If f(0) = 0 then trivial. If f(0) ̸= 0, then Jensen’s formula gives

log |f(0)| =
N∑
k=1

log
|an|
r︸ ︷︷ ︸

≤0

+µr(f) ≤ µr(f).

Thus, (2) holds.

We now have a much stronger uniqueness statement than the ”moreover,...” part in Theorem 8.3.8 (the
elementary proof of which is math5022 HW8Q1.) Indeed, notice that now there already is some (many) r0
such that |f | does not vanish on ∂B(0, r0). Then,

µ∗(f) ≥ sup
r>0

µr(f) ≥ µr0(f) > −∞

implying f∗(eiθ) ̸= 0 for a.e. eiθ ∈ ∂D. That us, for a non-trivial f ∈ H∞ we must in fact have f∗
(
eiθ
)
̸= 0

a.e. while previously we only knew f∗ cannot vanish a.e. on some arc!

We end this section with a theorem on Blaschke product for which we left as an exercise its proof (see
Math5022 HW8; using previous theorem).

Theorem 8.4.7. Consider the Blaschke product

B(z) = zm
∞∏
n=1

ψan(z)
|an|
an

where an ∈ D\{0} satisfy
∑

(1− |an|) < ∞. Then
∣∣B∗ (eiθ)∣∣ = 1 (B∗ ∈ L∞(∂D) exists as B ∈ H∞) almost

everywhere and

lim
r→1
−
∫ π

−π
log
∣∣B (reiθ)∣∣dθ = 0.

8.5 Factorizations of Functions in Hardy Spaces

The factorizations of functions in Hardy space uses results on Blaschke products in a critical way. In turn,
these factorizations are absolutely fundamental for Hardy space theory.

Recall the Nevanlinna space
N := {f ∈ H(D) : ∥f∥0 <∞}

where ∥fr∥0 = exp
(∫
∂D log+ |fr|dσ

)
and ∥f∥p := sup0≤r<1 ∥fr∥p for 0 ≤ p ≤ ∞. In Math5022 HW7Q4, we

showed that
f ∈ N =⇒

∑
(1− |an|) <∞ (∗)

(where (∗) is a necessary and sufficient condition for the Blaschke product to converge; see Theorem 6.7.3.)
Since H∞ ⊂ Hp ⊂ N ∀p, the condition (∗) is also satisfied in all Hardy spaces. In particular, we can
always construct, given f ∈ N , the Blaschke product B associated with the zeros (an) of f satisfying (∗).
The following shows we can divide out the zeros without increasing norm.

Theorem 8.5.1. Let f ∈ N , f ̸≡ 0, and let B be the Blaschke product with zeros of f . Put g := f/B. Then
g ∈ N with ∥g∥0 = ∥f∥0. Also, if f ∈ Hp then g ∈ Hp with ∥g∥p = ∥f∥p.

Proof. As |B(z)| ≤ 1 we have |g(z)| ≥ |f(z)| pointwise, so ∥g∥p ≥ ∥f∥p is always clear. For reverse inequality,
let p = 0 first. Notice that log+ xy ≤ log+ x+log+ y (the inequality comes from the case that x or y is smaller
than 1; otherwise equality holds). Thus,

log+ |g| ≤ log+ |f |+ log+
1

|B|
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and it implies

exp

(
−
∫ π

−π
log+

∣∣g (reiθ)∣∣dθ) ⩽ exp

(
−
∫ π

−π
log+

∣∣f (reiθ)∣∣dθ) · exp(∫ π

−π
log+

1

|B(reiθ)|
dθ
)
, 0 ≤ r < 1.

Recall from Theorem 8.4.7 that

lim
r→1
−
∫ π

−π
log |B(reiθ)|dθ = 0

Since the Blaschke product has |B| ≤ 1 we see log+(1/|B|) = log(1/|B|) and

−
∫ π

−π
log+

1

|B (riθ)|
dθ = −−

∫ π

−π
log
∣∣B (reiθ)∣∣dθ r→1−−−→ 0.

Then Remark 8.4.3 (2) gives
∥g∥0 = lim

r→1
∥gr∥0 ≤ lim

r→1
∥fr∥0 = ∥f∥0.

Let then p > 0. We let Bn be a finite Blaschke product formed with the first zeros in the sequence a1, a2, . . .
Put gn := f/Bn. Recall that |ψα(z)| = 1 if |z| = 1 and one can then check |Bn(reiθ)| → 1 uniformly as r → 1.
Thus if p <∞

∥gn∥p = lim
r→1

(
−
∫
∂D

∣∣∣∣∣ f
(
reiθ

)
Bn (reiθ)

∣∣∣∣∣
p

dσ

)1/p

= ∥f∥p

and, for p =∞,

∥gn∥∞ = lim
r→1

sup
θ

∣∣∣∣∣ f
(
reiθ

)
Bn (reiθ)

∣∣∣∣∣ = ∥f∥∞.
So ∥gn∥p = ∥f∥p ∀n, 0 < p ≤ ∞.

As |Bn| can only decrease as n increases, |g1| ≤ |g2| ≤ · · · . Recall g = f/B. Then, with fixed r, we use
monotone convergence theorem to see

∥gr∥p = lim
n→∞

∥(gn)r∥p

But ∥(gn)r∥p ⩽ ∥gn∥p = ∥f∥p, ∀r, so ∥gr∥p ≤ ∥f∥p, which implies ∥g∥p ≤ ∥f∥p.

The factorization is the key for p ≤ 1 since it allows to use the theory of H2 (e.g. existence of h∗ for h ∈ H2)
when proving results in Hp.

Theorem 8.5.2. Suppose 0 < p < ∞, f ∈ Hp, f ̸≡ 0, and B is the Blaschke product formed with the zeros
of f . Then there is a nonvanishing function h ∈ H2 such that

f = B · h2/p.

In particular, every f ∈ H1 is a product
f = gh

in which both factors are in H2.

Proof. By Theorem 8.5.1, f/B ∈ Hp; in fact, ∥f/B∥p = ∥f∥p. Since f/B has no zero in U (dividing B rules
out all zeros of f) and U is simply connected, there exists φ ∈ H(U) so that exp(φ) = f/B (Theorem 2.3.8).
Put h = exp(pφ/2). Then h ∈ H(U) and |h|2 = |f/B|p, hence h ∈ H2, and (1) holds. In fact, ∥h∥22 = ∥f∥pp.
Also, f = B f

B = Beφ = B
(
epφ/2

)2/p
= Bh2/p. For p = 1, we can write this in the form f = (Bh) · h, where

h ∈ H2 and Bh ∈ H2.
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Even it we would not care about Hp for p < 1, definately we want to understand H1 and for instance,
existence of boundary values in H1. Luckily this now works, since we can use ∃B∗ (as B ∈ H∞ and we even
know |B∗| = 1 a.e.) and ∃h∗ for h ∈ H2. These are some of the most important properties of Hp functions.

Theorem 8.5.3. If 0 < p <∞ and f ∈ Hp, then

(a) the nontangential maximal functions Nαf are in Lp(∂D), for all α < 1;

(b) the nontangential limits f∗
(
eiθ
)

exist a.e. on ∂D, and f∗ ∈ Lp(∂D);

(c) limr→1 ∥f∗ − fr∥p = 0, and

(d) ∥f∗∥p = ∥f∥p

Proof. Notice (a)-(b) hold clearly if p > 1 (as already discussed previously; f = P [f∗] for f∗ ∈ Lp(∂D),
f → f∗ nontangentially and ∥Nαf∥Lp = ∥NαP [f∗]∥Lp ≲ ∥f∗∥Lp .)

Now, if 0 < p ≤ 1, we use the factorization f = Bh2/p, where B is a Blaschke product and h ∈ H2 is
non-vanishing. Since |f | ≤ |h|2/p we get

[
Nαf

(
eiθ
)]p

= sup
z∈eiθΩα

≤|h(z)|2︷ ︸︸ ︷
|f(z)|p =

[
Nαh

(
eiθ
)]2

and so

∥Nαf∥Lp(∂D) ≤ ∥Nαh∥
2/p
L2(∂D) <∞

as Nαh ∈ L2(∂D) for h ∈ H2. Thus, Nαf ∈ Lp(∂D) and (a) holds. Similarly, ∃B∗ (as B ∈ H∞ and we even
know |B∗| = 1 a.e.) and ∃h∗ ∈ L2 (as h ∈ H2). So nontangential limits of f , say, f∗ = B∗h∗

2/p exist a.e.
Also f∗ ∈ Lp(∂D), since obviously |f∗| ≤ Nαf ∈ Lp(∂D), so (b) holds. Thus (a)-(b) hold ∀0 < p < ∞. For
(c), we compute

lim
r→1
∥f∗ − fr∥pp = lim

r→1

∫
∂D

∣∣f∗ (eiθ)− fr (eiθ)∣∣p dθ

?
==

∫
∂D

lim
r→1

∣∣f∗ (eiθ)− fr (eiθ)∣∣p︸ ︷︷ ︸
=0 by (b)

dθ

= 0.

“?” follows by dominated convergence theorem: the sequence (f∗ − fr)r has an integrable dominant:

|f∗ − fr| ≤ f∗ +Nαf ∈ Lp ∀r.

(c) holds. For p ≥ 1, (d) follows from (c) by triangle inequality:

|∥f∗∥p − ∥fr∥p| ≤ ∥f∗ − fr∥p
r→1−−−→
by (c)

0

For p < 1 it is easy to see that ∥h1−h2∥pp ≤ ∥h1∥pp+∥h2∥pp, ∀h1, h2. Thus, 0← ∥f∗− fr∥pp ≥
∣∣∥f∗∥pp − ∥fr∥pp∣∣.

Finally, for p > 1 we had the nice representation f = P [f∗]. What kind of representation for f holds if just
f ∈ H1? Let f ∈ H1, r < 1, and define f̃(z) = f(rz). Then f̃ is analytic in the larger disc B(0, 1/r) ⊃ D. So
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f̃ can de represented by the Cauchy formula, for z ∈ D, as

f(rz) = f̃(z) =
1

2πi

∫
∂D

f̃(ξ)

ξ − z
dξ

=
1

2πi

∫ π

−π

f̃
(
eit
)

eit − z
ieitdt

= −
∫ π

−π

fr
(
eit
)

1− e−itz
dt

Recall from prev. thm. that fr → f∗ in L1. Thus∣∣∣∣∣−
∫ π

−π

fr
(
eit
)

1− e−itz
dt−−

∫ π

−π

f∗
(
eit
)

1− e−itz
dt

∣∣∣∣∣
≤ 1

1− |z|
−
∫ π

−π
|fr
(
eit
)
− f∗

(
eit
)
|dt

−→ 0 as r → 1.

Also f (rz)→ f(z). So,

f(z) = −
∫ π

−π

f∗
(
eit
)

1− e−itz
dt

=
1

2πi

∫
∂D

f∗(ξ)

ξ − z
dξ.

Thus this Cauchy formula for f in terms of f∗ holds for f ∈ H1.

Is there a Poisson formula? Yes, actually, this still works in H1. We go through f̃ again.

By the uniqueness of the solution of the Dirichlet problem{
∆u = 0 in D
u = f̃ on ∂D

we must have, for z ∈ D,
f(rz) = f̃(z)

=
1

2π

∫ π

−π
P
(
z, eit

)
f̃
(
eit
)
dt

= −
∫ π

−π
P
(
z, eit

)
fr
(
eit
)
dt,

Again, use that with z ∈ D fixed, t 7→ P (z, eit) bounded, and fr → f∗ in L1 to get f(z) = −
∫ π
−π P (z, e

it)f∗(eit)dt.
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Chapter 9

More Topics (TBD)

9.1 Hardy Spaces on H
Chapter 2 of [4] introduce hardy space on D and H at the same time. Some of the preparatory work is on H
too in chapter 1 (below is a part of it)

The convolution (8.1) reflects the fact that the space of harmonic functions on D is invariant under rotations.

Map D to the upper half plane H by w → z(w) = i(1 − w)/(1 + w). Fix w0 ∈ D and let z0 = z (w0) be its
image in H. Our map sends ∂D to R ∪ {∞}, so that if w = eiθ ∈ ∂D, and w ̸= −1, then z(w) = t ∈ R.
Differentiation now gives

1

2π
Pw0(θ)

dθ

dt
=

1

π

y0

(x0 − t)2 + y20
= Pz0(t), z0 = x0 + iy0.

The right side of this equation is the Poisson kernel for the upper half plane H, Pz0(t) = Py0 (x0 − t). (The
notation is unambiguous because z0 ∈ H but y0 /∈ H.)

As in remark 4.2.2, we emphasize that we’re only defining u in (8.1). If u is harmonic on D and continuous
on ∂D, i.e., solves (Dir)u, then the Poisson integral formula holds for any r < 1:

u(reiθ) =
1

2π

∫ π

−π
Pr(θ − t)u(eiθ)dt

Proposition 4.2.5 takes care of the boundary case r = 1:

lim
r→1−

u(reiθ) = u(eiθ).

Now, to obtain an analog of Poisson integral formula for H, we assume u(z) is continuous on H ∪ {∞} and
harmonic on H. By corollary 7.1.3, we can apply the Poisson integral formula for D to u ◦ z on w0. Then the
change of variable yields

u(z) =

∫ ∞

−∞
Pz(t)u(t)dt =

∫ ∞

−∞
Py(x− t)u(t)dt. (9.1)

When t ∈ R is fixed, the Poisson kernel for the upper half plane is a harmonic function of z, because

Pz(t) =
1

π
Im

(
1

t− z

)
.
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From its defining formula we see that Pz(t) ≤ cz/
(
1 + t2

)
, where cz is a constant depending on z. Conse-

quently, if 1 ≤ q ≤ ∞, then Pz(t) ∈ L2(R), and the function

u(z) =

∫ ∞

−∞
Pz(t)f(t)dt (9.2)

is harmonic on H whenever f(t) ∈ Lp(R), 1 ≤ p ≤ ∞. Moreover, since Pz(t) is a continuous function of
t, (9.2) will still produce a harmonic function u(z) if f(t)dt is replaced by a finite measure dµ(t) or by a
positive measure dµ(t) such that ∫ ∞

−∞

1

1 + t2
dµ(t) <∞

(so that
∫
Pz(t)dµ(t) converges). Now let f(t) be the characteristic function of an interval (t1, t2). The

resulting harmonic function

ω(z) =

∫ t2

t1

Py(x− t)dt,

called the harmonic measure of the interval, can be explicitly calculated. We get

ω(z) =
1

π
arg

(
z − t2
z − t1

)
=
α

π
,

where α is the angle at z formed by t1 and t2. See Figure 9.1. This angle α is constant at points along the
circular arc passing through t1, z, and t2, and α is the angle between the real axis and the tangent of that
circular arc.

Figure 9.1: A level curve of ω(z).

The Poisson integral formula for the upper half plane can be written as a convolution

u(z) =

∫
Py(x− t)f(t)dt = (Py ∗ f) (x).

This follows from the formula defining the Poisson kernel, and reflects the fact that under the translations
z → z + x0, x0 real, the space of harmonic functions on H is invariant. The harmonic functions are also
invariant under the dilations z → az, a > 0, and accordingly we have

Py(t) = (1/y)P1(t/y),

which means Py is homogeneous of degree −1 in y. The Poisson kernel has the following properties:

(i) Py(t) ≥ 0,
∫
Py(t)dt = 1.

(ii) Py is even, Py(−t) = Py(t).

(iii) Py is decreasing in t > 0.

(iv) Py(t) ≤ 1/πy.
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For any δ > 0,

(v) sup|t|>δ Py(t)→ 0(y → 0).

(vi)
∫
|t|>δ Py(t)dt→ 0(y → 0).

Moreover, {Py} is a semigroup.

(vii) Py1 ∗ Py2 = Py1+y2 .

The first six properties are obvious from the definition of Py(t), and properties (iv)-(vi) also follow from the
homogeneity in y. Property (vii) means that if u(z) is a harmonic function given by (9.2), then u (z + iy1)
can be computed from u (t+ iy1) , t ∈ R, by convolution with Py. To prove (vii), consider the harmonic
function u(x+ iy) = Py1+y(x). This function extends continuously to H ∪ {∞}. Consequently by (9.1),

Py1+y2(x) =

∫
Py2(x− t)u(t)dt = (Py1 ∗ Py2) (x).

An important tool for studying integrals like (9.2) is the Minkowski inequality for integrals:

Proposition 9.1.1. If µ and ν are σ-finite measures, if 1 ≤ p <∞, and if F (x, t) is ν × µ measurable, then∥∥∥∥∫ F (x, t)dν(x)
∥∥∥∥
Lp(µ)

≤
∫
∥F (x, t)∥Lp(µ)dν(x).

Proof. This is formally the same as Minkowski’s inequality for sums of Lp(µ) functions and it has the same
proof. The case p = 1 is just Fubini’s theorem. For p > 1 we can suppose that F (x, t) ≥ 0 and that F (x, t) is
a simple function, so that both integrals converge. Set

G(t) =

(∫
F (x, t)dν(x)

)p−1

.

Then with q = p/(p− 1),

∥G∥Lq(µ) =

∥∥∥∥∫ F (x, t)dν(x)
∥∥∥∥p−1

Lp(µ)

,

and by Fubini’s theorem and Hölder’s inequality,∥∥∥∥∫ F (x, t)dν(x)
∥∥∥∥p
Lp(µ)

=

∫
G(t)

∫
F (x, t)dν(x)dµ(t)

=

∫∫
G(t)F (x, t)dµ(t)dν(x)

≤
∫
∥G∥Lq(µ)∥F (x, t)∥Lp(µ)dν(x)

= ∥G∥Lq(µ)

∫
∥F (x, t)∥Lp(µ)dν(x).

Canceling ∥G∥Lq(µ) from each side now gives the Minkowski inequality.

Using Minkowski’s inequality we obtain(∫
|u(x, y)|pdx

)1/p

≤ ∥f∥p, 1 ≤ p <∞, (9.3)
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if u(x, y) = Py ∗ f(x), f ∈ Lp; and ∫
|u(x, y)|dx ≤

∫
|dµ| (9.4)

if u(x, y) = Py ∗ µ =
∫
Py(x − t)dµ(t), where µ is a finite measure on R. For p = ∞ the analog of (9.3),

supx |u(x, y)| ≤ ∥f∥∞, is trivial from property (i) of Py(t).

Theorem 9.1.2.

(a) If 1 ≤ p <∞ and if f(x) ∈ Lp, then

∥Py ∗ f − f∥p → 0 (y → 0).

(b) When f(x) ∈ L∞, Py ∗ f(x) converges weak-star to f(x).

(c) If dµ is a finite measure on R, the measures (Py ∗ µ) (x)dx converge weak-star to dµ.

(d) When f(x) is bounded and uniformly continuous on R, Py ∗ f(x) converges uniformly to f(x).

9.2 Bergman Kernel

Readings: [5], [8], [1].
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Chapter 10

Appendix

To smoothen our discussion, we copy some sections from [14].

10.1 Lp Spaces and Banach Spaces

Let (X,A) be a measurable space and µ a measure on it. The measure µ is called a σ-finite measure, if it
satisfies one of the four following equivalent criteria:
1. the set X can be covered with at most countably many measurable sets with finite measure. This means
that there are sets A1, A2, . . . ∈ A with µ (An) <∞ for all n ∈ N that satisfy

⋃
n∈NAn = X.

2. the set X can be covered with at most countably many measurable disjoint sets with finite measure. This
means that there are sets B1, B2, . . . ∈ A with µ (Bn) < ∞ for all n ∈ N and Bi ∩ Bj = ∅ for i ̸= j that
satisfy

⋃
n∈NBn = X.

3. the set X can be covered with a monotone sequence of measurable sets with finite measure. This
means that there are sets C1, C2, . . . ∈ A with C1 ⊂ C2 ⊂ · · · and µ (Cn) < ∞ for all n ∈ N that satisfy⋃
n∈N Cn = X.

4. there exists a strictly positive measurable function f whose integral is finite. This means that f(x) > 0 for
all x ∈ X and

∫
f(x)µ(dx) <∞.

If µ is a σ-finite measure, the measure space (X,A, µ) is called a σ-finite measure space.

Throughout this section (X,F , µ) denotes a σ-finite measure space: X denotes the underlying space, F
the σ-algebra of measurable sets, and µ the measure. If 1 ≤ p < ∞, the space Lp(X,F , µ) consists of all
comple-xvalued measurable functions on X that satisfy∫

X

|f(x)|pdµ(x) <∞. (10.1)

To simplify the notation, we write Lp(X,µ), or Lp(X), or simply Lp when the underlying measure space has
been specified. Then, if f ∈ Lp(X,F , µ) we define the Lp norm of f by

∥f∥Lp(X,F,µ) =

(∫
X

|f(x)|pdµ(x)
)1/p

.

We also abbreviate this to ∥f∥Lp(X), ∥f∥Lp , or ∥f∥p. When p = 1 the space L1(X,F , µ) consists of all
integrable functions on X, and we have shown in Chapter 6 of Book III, that L1 together with ∥ · ∥L1 is a
complete normed vector space. Also, the case p = 2 warrants special attention: it is a Hilbert space.
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We note here that we encounter the same technical point that we already discussed in Book III. The problem
is that ∥f∥Lp = 0 does not imply that f = 0, but merely f = 0 almost everywhere (for the measure µ).
Therefore, the precise definition of Lp requires introducing the equivalence relation, in which f and g are
equivalent if f = g a.e. Then, Lp consists of all equivalence classes of functions which satisfy (10.1). How-
ever, in practice there is little risk of error by thinking of elements in Lp as functions rather than equivalence
classes of functions.

The following are some common examples of Lp spaces.
(a) The case X = Rd and µ equals Lebesgue measure is often used in practice. There, we have

∥f∥Lp =

(∫
Rd

|f(x)|pdx
)1/p

.

(b) Also, one can take X = Z, and µ equal to the counting measure. Then, we get the ”discrete” version of
the Lp spaces. Measurable functions are simply sequences f = {an}n∈Z of complex numbers, and

∥f∥Lp =

( ∞∑
n=−∞

|an|p
)1/p

.

When p = 2, we recover the familiar sequence space ℓ2(Z). The spaces Lp are examples of normed vector
spaces. The basic property satisfied by the norm is the triangle inequality, which we shall prove shortly.

The range of p which is of interest in most applications is 1 ≤ p < ∞, and later also p = ∞. There are at
least two reasons why we restrict our attention to these values of p : when 0 < p < 1, the function ∥ · ∥Lp

does not satisfy the triangle inequality, and moreover, for such p, the space Lp has no non-trivial bounded
linear functionals.

When p = 1 the norm ∥ · ∥L1 satisfies the triangle inequality, and L1 is a complete normed vector space.
When p = 2, this result continues to hold, although one needs the Cauchy-Schwarz inequality to prove it.
In the same way, for 1 ≤ p < ∞ the proof of the triangle inequality relies on a generalized version of the
Cauchy-Schwarz inequality. This is Hölder’s inequality, which is also the key in the duality of the Lp spaces,
as we will see in subsection 4.

The Hölder and Minkowski inequalities

If the two exponents p and q satisfy 1 ≤ p, q ≤ ∞, and the relation

1

p
+

1

q
= 1

holds, we say that p and q are conjugate or dual exponents. Here, we use the convention 1/∞ = 0. Later, we
shall sometimes use p′ to denote the conjugate exponent of p. Note that p = 2 is self-dual, that is, p = q = 2;
also p = 1,∞ corresponds to q =∞, 1 respectively.

Theorem 10.1.1 (Hölder). Suppose 1 < p < ∞ and 1 < q < ∞ are conjugate exponents. If f ∈ Lp and
g ∈ Lq, then fg ∈ L1 and

∥fg∥L1 ≤ ∥f∥Lp∥g∥Lq .

Note. Once we have defined L∞ the corresponding inequality for the exponents 1 and∞ will be seen to be
essentially trivial.

The proof of the theorem relies on a simple generalized form of the arithmetic-geometric mean inequality:
if A,B ≥ 0, and 0 ≤ θ ≤ 1, then

AθB1−θ ≤ θA+ (1− θ)B. (10.2)
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Note that when θ = 1/2, the inequality (10.2) states the familiar fact that the geometric mean of two
numbers is majorized by their arithmetic mean.

To see (10.2), we observe that we may assume B ̸= 0, and replacing A by AB, we see that it suffices to prove
that Aθ ≤ θA + (1− θ). If we let f(x) = xθ − θx − (1 − θ), then f ′(x) = θ

(
xθ−1 − 1

)
. Thus f(x) increases

when 0 ≤ x ≤ 1 and decreases when 1 ≤ x, and we see that the continuous function f attains a maximum
at x = 1, where f(1) = 0. Therefore f(A) ≤ 0, as desired.

To prove Hölder’s inequality we argue as follows. If either ∥f∥Lp = 0 or ∥f∥Lq = 0, then fg = 0 a.e. and
the inequality is obviously verified. Therefore, we may assume that neither of these norms vanish, and after
replacing f by f/∥f∥Lp and g by g/∥g∥Lq , we may further assume that ∥f∥Lp = ∥g∥Lq = 1. We now need to
prove that ∥fg∥L1 ≤ 1.

If we set A = |f(x)|p, B = |g(x)|q, and θ = 1/p so that 1− θ = 1/q, then (10.2) gives

|f(x)g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q.

Integrating this inequality yields ∥fg∥L1 ≤ 1, and the proof of the Hölder inequality is complete.

We are now ready to prove the triangle inequality for the Lp norm.

Theorem 10.1.2 (Minkowski). If 1 ≤ p <∞ and f, g ∈ Lp, then f + g ∈ Lp and ∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp .

Proof. The case p = 1 is obtained by integrating |f(x) + g(x)| ≤ |f(x)|+ |g(x)|. When p > 1, we may begin
by verifying that f + g ∈ Lp, when both f and g belong to Lp. Indeed,

|f(x) + g(x)|p ≤ 2p (|f(x)|p + |g(x)|p) ,

as can be seen by considering separately the cases |f(x)| ≤ |g(x)| and |g(x)| ≤ |f(x)|. Next we note that

|f(x) + g(x)|p ≤ |f(x)||f(x) + g(x)|p−1 + |g(x)||f(x) + g(x)|p−1.

If q denotes the conjugate exponent of p, then (p − 1)q = p, so we see that (f + g)p−1 belongs to Lq, and
therefore Hölder’s inequality applied to the two terms on the right-hand side of the above inequality gives

∥f + g∥pLp ≤ ∥f∥Lp

∥∥(f + g)p−1
∥∥
Lq + ∥g∥Lp

∥∥(f + g)p−1
∥∥
Lq . (10.3)

However, using once again (p− 1)q = p, we get∥∥(f + g)p−1
∥∥
Lq = ∥f + g∥p/qLp .

From (10.3), since p− p/q = 1, and because we may suppose that ∥f+ g∥Lp > 0, we find

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp

so the proof is finished.

We also see a simple corollary of Hölder’s inequality.

Corollary 10.1.3. Suppose 1
p = 1

p1
+ 1

p2
(so p1 > p and p2 > p if neither of them is∞, and thus 1 < p1

p ,
p2
p <

∞). Then 1 = p
p1

+ p
p2

= 1
p1/p

+ 1
p2/p

and Hölder’s inequality gives

∥fg∥Lp = ∥|f |p|g|p∥1/pL1 ≤ ∥|f |p∥1/pLp1/p∥|g|p∥
1/p

Lp2/p = ∥f∥Lp1 ∥g∥Lp2 ,

if f ∈ Lp1 and g ∈ Lp2 .
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Remark 10.1.4. The Lp and Lq spaces need in general not be contained in one another in any particular
way. There is one exception, where we have a clear rule. If µ(X) < ∞ and p < q we have by Hölder’s
inequality that with s = q/p > 1 that∫

X

|f |p dµ ≤
(∫

X

|f |ps dµ
) 1

s
(∫

X

1s
′
dµ

) 1
s′

=

(∫
X

|f |q dµ
) p

q

µ(X)1−
1
s

= ∥f∥pLq(µ)µ(X)1−
p
q

and so
∥f∥Lp(µ) ≤ ∥f∥Lq(µ)µ(X)

1
p−

1
q .

So we have the quantitative estimate from above - in particular, we have Lq(µ) ⊂ Lp(µ). It would be possible
to establish the inclusion with a more elementary argument as well.

Completeness of Lp

The triangle inequality makes Lp into a metric space with distance d(f, g) = ∥f − g∥Lp . The basic analytic
fact is that Lp is complete in the sense that every Cauchy sequence in the norm ∥ · ∥Lp converges to an
element in Lp. Taking limits is a necessity in many problems, and the Lp spaces would be of little use if they
were not complete. Fortunately, like L1 and L2, the general Lp space does satisfy this desirable property.

Theorem 10.1.5. The space Lp(X,F , µ) is complete in the norm ∥ · ∥Lp .

Proof. The argument is essentially the same as for L1 (or L2 ); see Section 2, Chapter 2 and Section 1,
Chapter 4 in Book III. Let {fn}∞n=1 be a Cauchy sequence in Lp, and consider a subsequence {fnk

}∞k=1 of
{fn} with the following property

∥∥fnk+1
− fnk

∥∥
Lp ≤ 2−k for all k ≥ 1. We now consider the series whose

convergence will be seen below

f(x) = fn1(x) +

∞∑
k=1

(
fnk+1

(x)− fnk
(x)
)

and

g(x) = |fn1
(x)|+

∞∑
k=1

∣∣fnk+1
(x)− fnk

(x)
∣∣ ,

and the corresponding partial sums

SK(f)(x) = fn1(x) +

K∑
k=1

(
fnk+1

(x)− fnk
(x)
)

and

SK(g)(x) = |fn1
(x)|+

K∑
k=1

∣∣fnk+1
(x)− fnk

(x)
∣∣ .

The triangle inequality for Lp implies

∥SK(g)∥Lp ≤ ∥fn1
∥Lp +

K∑
k=1

∥∥fnk+1
− fnk

∥∥
Lp

≤ ∥fn1∥Lp +

K∑
k=1

2−k.
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Letting K tend to infinity, and applying the monotone convergence theorem proves that
∫
gp < ∞, and

therefore the series defining g, and hence the series defining f converges almost everywhere, and f ∈ Lp.

We now show that f is the desired limit of the sequence {fn}. Since (by construction of the telescopic series)
the (K − 1)th partial sum of this series is precisely fnK

, we find that

fnK
(x)→ f(x) a.e. x.

To prove that fnK
→ f in Lp as well, we first observe that

|f(x)− SK(f)(x)|p ≤ [2max (|f(x)|, |SK(f)(x)|)]p

≤ 2p|f(x)|p + 2p |SK(f)(x)|p

≤ 2p+1|g(x)|p

for all K. Then, we may apply the dominated convergence theorem to get ∥fnK
− f∥Lp → 0 as K tends to

infinity.

Finally, the last step of the proof consists of recalling that {fn} is Cauchy. Given ϵ > 0, there exists N so that
for all n,m > N we have ∥fn − fm∥Lp < ϵ/2. If nK is chosen so that nK > N , and ∥fnK

− f∥Lp < ϵ/2, then
the triangle inequality implies

∥fn − f∥Lp ≤ ∥fn − fnK
∥Lp + ∥fnK

− f∥Lp < ϵ

whenever n > N . This concludes the proof of the theorem.

Further remarks

We begin by looking at some possible inclusion relations between the various Lp spaces. The matter is simple
if the underlying space has finite measure.

Proposition 10.1.6. If X has finite positive measure, and p0 ≤ p1, then Lp1(X) ⊂ Lp0(X) and

1

µ(X)1/p0
∥f∥Lp0 ≤

1

µ(X)1/p1
∥f∥Lp1 .

We may assume that p1 > p0. Suppose f ∈ Lp1 , and set F = |f |p0 , G = 1, p = p1/p0 > 1, and 1/p+ 1/q = 1,
in Hölder’s inequality applied to F and G. This yields

∥f∥p00Lp0 ≤
(∫
|f |p1

)p0/p1
· µ(X)1−p0/p1 .

In particular, we find that ∥f∥Lp0 <∞. Moreover, by taking the pth
0 root of both sides of the above equation,

we find that the inequality in the proposition holds.

However, as is easily seen, such inclusion does not hold when X has infinite measure. Yet, in an interesting
special case the opposite inclusion does hold.

Proposition 10.1.7. If X = Z is equipped with counting measure, then the reverse inclusion holds, namely
Lp0(Z) ⊂ Lp1(Z) if p0 ≤ p1. Moreover, ∥f∥Lp1 ≤ ∥f∥Lp0 .

Indeed, if f = {f(n)}n∈Z, then
∑
|f(n)|p0 = ∥f∥p0Lp0 , andsupn

|f(n)| ≤ ∥f∥Lp0 . However∑
|f(n)|p1 =

∑
|f(n)|p0 |f(n)|p1−p0(

≤ sup
n
|f(n)|

)p1−p0
∥f∥p0Lp0

≤ ∥f∥p1Lp0

Thus ∥f∥Lp1 ≤ ∥f∥Lp0 .
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The case p =∞
Finally, we also consider the limiting case p = ∞. The space L∞ will be defined as all functions that are
”essentially bounded” in the following sense. We take the space L∞(X,F , µ) to consist of all (equivalence
classes of) measurable functions on X, so that there exists a positive number 0 < M <∞, with

|f(x)| ≤M a.e. x.

Then, we define ∥f∥L∞(X,F,µ) to be the infimum of all possible values M satisfying the above inequality. The
quantity ∥f∥L∞ is sometimes called the essential-supremum of f .

We note that with this definition, we have |f(x)| ≤ ∥f∥L∞ for a.e. x. Indeed, if E = {x : |f(x)| > ∥f∥L∞},
and En = {x : |f(x)| > ∥f∥L∞ + 1/n}, then we have µ (En) = 0, and E =

⋃
En, hence µ(E) = 0.

Theorem 10.1.8. The vector space L∞ equipped with ∥ · ∥L∞ is a complete vector space.

This assertion is easy to verify and is left to the reader. Moreover, Hölder’s inequality continues to hold for
values of p and q in the larger range 1 ≤ p, q ≤ ∞, once we take p = 1 and q = ∞ as conjugate exponents,
as we mentioned before.

The fact that L∞ is a limiting case of Lp when p tends to∞ can be understood as follows.

Proposition 10.1.9. Suppose f ∈ L∞ is supported on a set of finite measure. Then f ∈ Lp for all p < ∞,
and

∥f∥Lp → ∥f∥L∞ as p→∞.

Proof. Let E be a measurable subset of X with µ(E) < ∞, and so that f vanishes in the complement of E.
If µ(E) = 0, then ∥f∥L∞ = ∥f∥Lp = 0 and there is nothing to prove. Otherwise

∥f∥Lp =

(∫
E

|f(x)|pdµ
)1/p

≤
(∫

E

∥f∥pL∞dµ

)1/p

≤ ∥f∥L∞µ(E)1/p.

Since µ(E)1/p → 1 as p→∞, we find that lim supp→∞ ∥f∥Lp ≤ ∥f∥L∞ . On the other hand, given ϵ > 0, we
have

µ ({x : |f(x)| ≥ ∥f∥L∞ − ϵ}) ≥ δ for some δ > 0,

hence ∫
X

|f |pdµ ≥ δ (∥f∥L∞ − ϵ)p .

Therefore lim inf infp→∞ ∥f∥Lp ≥ ∥f∥L∞ − ϵ, and since ϵ is arbitrary, we have lim infp→∞ ∥f∥Lp ≥ ∥f∥L∞ .
Hence the limit limp→∞ ∥f∥Lp exists, and equals ∥f∥L∞ .

Banach spaces

We introduce here a general notion which encompasses the Lp spaces as specific examples.

First, a normed vector space consists of an underlying vector space V over a field of scalars (the real or
complex numbers), together with a norm ∥ · ∥ : V → R+that satisfies:
- ∥v∥ = 0 if and only if v = 0.
- ∥αv∥ = |α|∥v∥, whenever α is a scalar and v ∈ V .
- ∥v + w∥ ≤ ∥v∥+ ∥w∥ for all v, w ∈ V .
The space V is said to be complete if whenever {vn} is a Cauchy sequence in V , that is, ∥vn − vm∥ → 0 as
n,m→∞, then there exists a v ∈ V such that ∥vn − v∥ → 0 as n→∞.

A complete normed vector space is called a Banach space. Here again, we stress the importance of the
fact that Cauchy sequences converge to a limit in the space itself, hence the space is ”closed” under limiting
operations.
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Examples

The real numbers R with the usual absolute value form an initial example of a Banach space. Other easy
examples are Rd, with the Euclidean norm, and more generally a Hilbert space with its norm given in terms
of its inner product. Several further relevant examples are as follows:

Example 10.1.10. The family of Lp spaces with 1 ≤ p ≤ ∞which we have just introduced are also important
examples of Banach spaces. Incidentally, L2 is the only Hilbert space in the family Lp, where 1 ≤ p ≤ ∞
(Exercise 25) and this in part accounts for the special flavor of the analysis carried out in L2 as opposed to
L1 or more generally Lp for p ̸= 2.

Finally, observe that since the triangle inequality fails in general when 0 < p < 1, ∥ · ∥Lp is not a norm on Lp

for this range of p, hence it is not a Banach space.

Example 10.1.11. Another example of a Banach space isC([0, 1]), or more generally C(X) withX a compact
set in a metric space. By definition, C(X) is the vector space of continuous functions on X equipped with the
sup-norm ∥f∥ = supx∈X |f(x)|. Completeness is guaranteed by the fact that the uniform limit of a sequence
of continuous functions is also continuous.

Example 10.1.12. The space Λα
(
Rd
)

of all continuous functions on Rd with the norm

∥f∥Λα(Rd) = sup
x∈Rd

|f(x)|+ sup
x ̸=y

|f(x)− f(y)|
|x− y|α

is a Banach space.

The space Lpk
(
Rd
)

is the subspace of Lp
(
Rd
)

of all functions that have weak derivatives up to order k. This
space is usually referred to as a Sobolev space. A norm that turns Lpk

(
Rd
)

into a Banach space is

∥f∥Lp
k(Rd) =

∑
|α|≤k

∥∂αx f∥Lp(Rd)

Linear functionals and the dual of a Banach space

For the sake of simplicity, we restrict ourselves in this and the following two sections to Banach spaces over
R; the reader will find in Section 6 the slight modifications necessary to extend the results to Banach spaces
over C.

Suppose that B is a Banach space over R equipped with a norm ∥ · ∥. A linear functional is a linear mapping
ℓ from B to R, that is, ℓ : B → R, which satisfies

ℓ(αf + βg) = αℓ(f) + βℓ(g), for all α, β ∈ R, and f, g ∈ B.

A linear functional ℓ is continuous if given ϵ > 0 there exists δ > 0 so that |ℓ(f) − ℓ(g)| ≤ ϵ whenever
∥f − g∥ ≤ δ. Also we say that a linear functional is bounded if there is M > 0 with |ℓ(f)| ≤ M∥f∥ for all
f ∈ B. The linearity of ℓ shows that these two notions are in fact equivalent.

Proposition 10.1.13. A linear functional on a Banach space is continuous, if and only if it is bounded.

Proof. The key is to observe that ℓ is continuous if and only if ℓ is continuous at the origin.

Indeed, if ℓ is continuous, we choose ϵ = 1 and g = 0 in the above definition so that |ℓ(f)| ≤ 1 whenever
∥f∥ ≤ δ, for some δ > 0. Hence, given any non-zero h, an element of B, we see that δh/∥h∥ has norm equal
to δ, and hence |ℓ(δh/∥h∥)| ≤ 1. Thus |ℓ(h)| ≤M∥h∥ with M = 1/δ.

Conversely, if ℓ is bounded it is clearly continuous at the origin, hence continuous.
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The significance of continuous linear functionals in terms of closed hyperplanes in B is a noteworthy geo-
metric point to which we return later on. Now we take up analytic aspects of linear functionals.

The set of all continuous linear functionals over B is a vector space since we may add linear functionals and
multiply them by scalars:

(ℓ1 + ℓ2) (f) = ℓ1(f) + ℓ2(f) and (αℓ)(f) = αℓ(f).

This vector space may be equipped with a norm as follows. The norm ∥ℓ∥ of a continuous linear functional ℓ
is the infimum of all values M for which |ℓ(f)| ≤ M∥f∥ for all f ∈ B. From this definition and the linearity
of ℓ it is clear that

∥ℓ∥ = sup
∥f∥≤1

|ℓ(f)| = sup
∥f∥=1

|ℓ(f)| = sup
f ̸=0

|ℓ(f)|
∥f∥

.

The vector space of all continuous linear functionals on B equipped with ∥ · ∥ is called the dual space of B,
and is denoted by B∗.

Theorem 10.1.14. The vector space B∗ is a Banach space with the norm ∥ · ∥.

In general, given a Banach space B, it is interesting and very useful to be able to describe its dual B∗. This
problem has an essentially complete answer in the case of the Lp spaces introduced before.

The dual space of Lp when 1 ≤ p <∞
Suppose that 1 ≤ p ≤ ∞ and q is the conjugate exponent of p, that is, 1/p + 1/q = 1. The key observation
to make is the following: Hölder’s inequality shows that every function g ∈ Lq gives rise to a bounded linear
functional on Lp by

ℓ(f) =

∫
X

f(x)g(x)dµ(x), (10.4)

and that ∥ℓ∥ ≤ ∥g∥Lq . Therefore, if we associate g to ℓ above, then we find that Lq ⊂ (Lp)
∗ when 1 ≤ p ≤ ∞.

The main result in this section is to prove that when 1 ≤ p <∞, every linear functional on Lp is of the form
(10.4) for some g ∈ Lq. This implies that (Lp)∗ = Lq whenever 1 ≤ p < ∞. We remark that this result is in
general not true when p =∞; the dual of L∞ contains L1, but it is larger.

Theorem 10.1.15. Suppose 1 ≤ p <∞, and 1/p+ 1/q = 1. Then, with B = Lp we have

B∗ = Lq,

in the following sense: For every bounded linear functional ℓ on Lp there is a unique g ∈ Lq so that

ℓ(f) =

∫
X

f(x)g(x)dµ(x), for all f ∈ Lp.

Moreover, ∥ℓ∥B∗ = ∥g∥Lq .

This theorem justifies the terminology whereby q is usually called the dual exponent of p.

The proof of the theorem is based on two ideas. The first, as already seen, is Hölder’s inequality; to which a
converse is also needed. The second is the fact that a linear functional ℓ on Lp, 1 ≤ p < ∞, leads naturally
to a (signed) measure ν. Because of the continuity of ℓ the measure ν is absolutely continuous with respect
to the underlying measure µ, and our desired function g is then the density function of ν in terms of µ. We
begin with:

Lemma 10.1.16. Suppose 1 ≤ p, q ≤ ∞, are conjugate exponents.

(i) If g ∈ Lq, then ∥g∥Lq = sup∥f∥Lp≤1

∣∣∫ fg∣∣.
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(ii) Suppose g is integrable on all sets of finite measure, and

sup
∥f∥Lp≤1
f simple

∣∣∣∣∫ fg

∣∣∣∣ =M <∞.

Then g ∈ Lq, and ∥g∥Lq =M .

For the proof of the lemma, we recall the signum of a real number defined by

sign(x) =


1 if x > 0

−1 if x < 0

0 if x = 0

Proof. We start with (i). If g = 0, there is nothing to prove, so we may assume that g is not 0 a.e., and hence
∥g∥Lq ̸= 0. By Hölder’s inequality, we have that

∥g∥Lq ≥ sup
∥f∥Lp≤1

∣∣∣∣∫ fg

∣∣∣∣ .
To prove the reverse inequality we consider several cases.

• First, if q = 1 and p = ∞, we may take f(x) = sign g(x). Then, we have ∥f∥L∞ = 1, and clearly,∫
fg = ∥g∥L1 .

• If 1 < p, q <∞, then we set f(x) = |g(x)|q−1 sign g(x)/∥g∥q−1
Lq . We observe that

∥f∥pLp =

∫
|g(x)|p(q−1)dµ/∥g∥p(q−1)

Lq = 1

since p(q− 1) = q, and that ∫
fg = ∥g∥Lq .

• Finally, if q =∞ and p = 1, let ϵ > 0, and E a set of finite positive measure, where |g(x)| ≥ ∥g∥L∞ − ϵ.
(Such a set exists by the definition of ∥g∥L∞ and the fact that the measure µ is σ-finite.) Then, if we
take f(x) = χE(x) sign g(x)/µ(E), where χE denotes the characteristic function of the set E, we see
that ∥f∥L1 = 1, and also ∣∣∣∣∫ fg

∣∣∣∣ = 1

µ(E)

∫
E

|g| ≥ ∥g∥∞ − ϵ.

This completes the proof of part (i). To prove (ii) we recall, e.g. see Section 2 in Chapter 6 of Book III,
that we can find a sequence {gn} of simple functions so that |gn(x)| ≤ |g(x)| while gn(x)→ g(x) for each x.
When p > 1 (so q <∞ ), we take fn(x) = |gn(x)|q−1

sign g(x)/ ∥gn∥q−1
Lq . As before, ∥fn∥Lp = 1. However∫

fng =

∫
|gn(x)|q

∥gn∥q−1
Lq

= ∥gn∥Lq ,

and this does not exceed M . By Fatou’s lemma it follows that
∫
|g|q ≤ Mq, so g ∈ Lq with ∥g∥Lq ≤ M . The

direction ∥g∥Lq ≥M is of course implied by Hölder’s inequality.

When p = 1 the argument is parallel with the above but simpler. Here we take fn(x) = (sign g(x))χEn(x),
where En is an increasing sequence of sets of finite measure whose union is X. The details may be left to
the reader.
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With the lemma established we turn to the proof of the theorem. It is simpler to consider first the case when
the underlying space has finite measure. In this case, with ℓ the given functional on Lp, we can then define
a set function ν by

ν(E) = ℓ (χE) ,

where E is any measurable set. This definition makes sense because χE is now automatically in Lp since the
space has finite measure. We observe that

|ν(E)| ≤ c(µ(E))1/p, (10.5)

where c is the norm of the linear functional, taking into account the fact that ∥χE∥Lp = (µ(E))1/p.

Now the linearity of ℓ clearly implies that ν is finitely-additive. Moreover, if {En} is a countable collection of
disjoint measurable sets, and we put E =

⋃∞
n=1En, E

∗
N =

⋃∞
n=N+1En, then obviously

χE = χE∗
N
+

N∑
n=1

χEn .

Thus ν(E) = ν (E∗
N )+

∑N
n=1 ν (En). However ν (E∗

N )→ 0, asN →∞, because of (10.5) and the assumption
p < ∞. This shows that ν is countably additive and, moreover, (10.5) also shows us that ν is absolutely
continuous with respect to µ.

We can now invoke the key result about absolutely continuous measures, the Lebesgue-Radon-Nykodim
theorem. (See for example Theorem 4.3, Chapter 6 in Book III.) It guarantees the existence of an integrable
function g so that ν(E) =

∫
E
gdµ for every measurable set E. Thus we have ℓ (χE) =

∫
χEgdµ. The

representation ℓ(f) =
∫
fgdµ then extends immediately to simple functions f , and by a passage to the limit,

to all f ∈ Lp since the simple functions are dense in Lp, 1 ≤ p < ∞. Also by Lemma 4.2, we see that
∥g∥Lq = ∥ℓ∥.

To pass from the situation where the measure ofX is finite to the general case, we use an increasing sequence
{En} of sets of finite measure that exhaust X, that is, X =

⋃∞
n=1En. According to what we have just proved,

for each n there is an integrable function gn on En (which we can set to be zero in Ecn ) so that

ℓ(f) =

∫
fgndµ

whenever f is supported in En and f ∈ Lp. Moreover by conclusion (ii) of the lemma ∥gn∥Lq ≤ ∥ℓ∥.

Now it is easy to see because of above displayed equation that gn = gm a.e. on Em, whenever n ≥ m. Thus
limn→∞ gn(x) = g(x) exists for almost every x, and by Fatou’s lemma, ∥g∥Lq ≤ ∥ℓ∥. As a result we have that
ℓ(f) =

∫
fgdµ for each f ∈ Lp supported in En, and then by a simple limiting argument, for all f ∈ Lp. The

fact that ∥ℓ∥ ≤ ∥g∥Lq , is already contained in Hölder’s inequality, and therefore the proof of the theorem is
complete.

Remark 10.1.17. For Lemma above, we note that

sup

{∣∣∣∣∫ fg

∣∣∣∣ : ∥f∥Lp ≤ 1

}
= sup

{∣∣∣∣∫ fg

∣∣∣∣ : ∥f∥Lp = 1

}
and similarly,

sup

{∣∣∣∣∫ fg

∣∣∣∣ : ∥f∥Lp ≤ 1, f simple
}

= sup

{∣∣∣∣∫ fg

∣∣∣∣ : ∥f∥Lp = 1, f simple
}

The ≥ direction is trivial. The other direction is because for any g with ∥f∥Lp ≤ 1, we have

(∗) : 1

∥f∥Lp

≥ 1⇒
∣∣∣∣∫ ( f

∥f∥Lp

)
g

∣∣∣∣ = | ∫ fg|∥f∥Lp

≥
∣∣∣∣∫ fg

∣∣∣∣ .
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Since ∥ f
∥f∥Lp

∥Lp = 1, we see

sup

{∣∣∣∣∫ fg

∣∣∣∣ : ∥f∥Lp = 1

}
≥
∣∣∣∣∫ f

∥f∥Lp

g

∣∣∣∣ (∗)≥ ∣∣∣∣∫ fg

∣∣∣∣ ,
establishing the reverse direction.

10.2 Distributions
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