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1 Introduction

The paper The Game of Hex and The Brouwer Fixed-Point Theorem by David Gale mainly
goes with two purposes:

• The first one is to show the equivalence between the Hex Theorem with two players
and the Brouwer fixed point theorem on a unit square.

• The second part of the paper gives a generalized version of the Hex Theorem into higher
dimension, which sheds light upon multiplayer game theory problem in mathematical
economics.

The author notes that the equivalence proof, given its simplicity compared with n dimen-
sional case, has other versions, while the generalization has more newness and originality by
offering an algorithm for computation of fixed points.
Section 2 gives relevant facts about Hex Theorem, section 3 proves the equivalence, and
section 4 generalizes it.
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2 Hex

1. The rule of the Hex Game
Two players are given a board that typically contains 11 × 11 hexagons. Each player
moves alternately by occupying a hexagon with a stone with different color (typically
black and white) representing each player. Note that in Gale’s paper, stones of different
colors are replaced by x and o as in tic-tac-toe game as another way of showing the
occupancy of the hexagon (or tile in Gale’s paper). When one uses stones to draw a
connected path from one side to its opposite side, the game is over and that one wins.
The author gives the definition of being connected as:

Definition 2.1. A set S of hexagons is said to be connected if any two members h
and h′ of S can be joined by a path P = (h = h1, h2, · · · , hm = h′) where hi and hi+1

are adjacent.

Put vividly, a connected set of hexagons in one color (for example, white) means that
there exits a lane made up of white stones placed over this set of hexagons allowing
one to walk on stones just next to each other from one side to the opposite side of the
board. The following shows a real-life example of the hex game board.

Figure 1: Hex game board (in the above figure, the white player wins the game by cre-
ating a connected path starting at one side and reaching the opposite side). Source:
https://www.ams.org/publicoutreach/feature-column/fcarc-partizan2

2. Hex Theorem
To be consistent with mathematical language, we shall continue using object repre-
sentation described by Gale (x and o instead of the visual way, black and white) to
present the following theorem.

Theorem 2.1 (Hex theorem). If every hexagon of the Hex board is occupied by either
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x or o, then there is either a black (x-) connected path beginning at one side of the
board and ending at the opposite side or a white (o-) connected path behaving similarly
on the other pair of sides.

There is a strengthening of this theorem, by replacing the inclusive “or” with an
exclusive one that rules out a scenario of “both”, however, this is not of primary
purpose of this paper.

3. Geometric intuition behind the proof of Hex Theorem
Back to the analogy of black and white stones. Imagine there is water all over the
board, and the winning rubric of constructing a connected path from one side to the
opposite is can be naturally translated as putting stones each one just next to the
other over the water to let a person walk step by step on the stone bridge to cross the
river and reach the other bank. While building this bridge, it is intuitively clear that
it prohibits the other player building his bridge to connect the other pair of banks to
cross the river.

Now, we want to prove it in a more informal but rigorous way. Suppose we have a
board filled with x and o, like the one in figure 2. We give a notation of each hexagon
by numbering them in rows (the letters A to M) and columns (the numbers 1 to 13)
(note that it’s still a 11× 11 board but with a circle of o and x just around it to make
it easier to visualize. Another notation is about the six vertices of the hexagon, see
the figure 3. The A1 hexagon has 6 vertices, upper vertex (u), bottom vertex (d), left
upper vertex (l), left bottom vertex (L), right upper vertex (r), and right bottom vertex
(R). We also use edges a, b, c, d to separate the banks (see figure 3). Lastly, when we
say X-face, we mean either hexagon marked by x or the X region (and its opposite
region X’), and the same for O-face. For this purpose, we augmented the 11×11 board
to be an 13× 13 board with extra 4 banks each filled solely with x and o.
We give a touring rule for how we will draw edges and then show that the fact that
we can always draw a path by edges connecting the ends a, b, c, or d according to
this touring rule is equivalent of saying that we can always draw a connected path by
hexagons from one bank to the opposite.
The touring rule is given by: starting from starting from the edge a, which separates
bank X and O apart, keeping drawing along the edges which is a common boundary
of an X-face and an O-face.
We then have three observations about the path by edges, and we will show the equiv-
alence of existence of the edge-path and the hexagon-path.

(a) Uniqueness of the edge-path and unchanging orientation
Suppose one is at some edge and moves from its one endpoint to the other.
According to our touring rule, for an edge to be drawn, it must be the common
boundary between an X-face and an O-face, which means that it must be between
an X-hexagon and an O-hexagon if we use the augmented board (figure 2). Notice
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that we will not have any edges drawn within the augmented part (but possibly
between the augmented part and the original board, which then serve as the
boundary between the bank and the original board), because they are banks with
the same type while an edge to be drawn should have different hexagons on its
two sides. Continue with the edge we are at. Since two sides of it need to be
X-hexagon and O-hexagon, we see X can be on its left and O the right and the
other order (X right O left) can run through the same argument. See figure 3
case 1 and case 2. the edge we at are, respectively, B8Rr and H2Ll, sided by B8
& C7 and H2 & G3. the next hexagon one will meet will be either an O-hexagon
(B7 in case 1) or an X-hexagon (G2 in case 2). In case 1, we draw the edge B7dL
according the touring rule, and we observe that we arrive at a new edge (B7dL)
which has X-hexagon of its left and O-hexagon on its right again. In case 2, we
draw the edge G2dR according to the touring rule, and again we has a new edge
with X left and O right. Thus, in both cases, we will deterministically draw only
one edge further and arrives at the exactly same situation with the orientation
(defined as X left and O right). Whenever one is at an edge and follows the
touring rule, if the three hexagons incident to the edge are fixed, there will be no
more than one options to draw a new edge because we have shown that the rule
determines the next single on edge, which gives the uniqueness of the path.

(b) Never revisiting the vertex
First, be revisiting, we mean that there is a vertex with three drawn edges attached
to it. Note that it is possible to have a loop but without any other edges protruding
to connect the loop to some other paths. We will then prove the property (b) in
a generic example without loss of generality. See figure 3, where one is now at the
edge J5dL and then goes into a loop running counterclockwise to go back to revisit
where it starts. We want to ridicule such situation. Let us keep what we used in
showing property (a), setting J6 and J5 to be X and O. By the property (a), we
see that the loop has to enclose a circle of X to make one runs counterclockwise
and revisit. However, this results in I6 and I7 being X and J6 being X too. Again,
note that it is possible to form a loop (if one draws the edges J6Ld J6dR, J6Rr),
but that’s not revisiting by definition.

(c) Always terminate
The hex game board is finite, so there are finitely many edges one can draw. By
property (b), one can never revisit a vertex and thus never revisit an edge. By
property (a), we see that for each time we arrive at a place sided by two different
hexagons, according to the touring rule, we have exactly one option to do, which is
to draw an edge between them (we do not draw zero edges or 2 edges). Therefore,
keeping following the touring rule and using property (a) and (b) will make these
finitely edges one by one decreasing. The path drawn then has to terminate at
least when all edges are used (it’s not possible to use all the edges, but that suffices
for us to show the property).
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Now we present a theorem from graph theory, which we want to briefly prove in our
case.

Theorem 2.2 (Graph lemma). A finite graph whose vertices have degree at most two
is the union of disjoint subgraphs, each of which is either (i) an isolated vertex, (ii) a
simple cycle (loop), (iii) a simple path.

By property (b), we have shown that the edge graph of the hex board is indeed a finite
graph whose vertices have degree at most two. Then we classify these vertices into
several cases:

case 1 vertex of degree 0: then just an isolated vertex.

case 2 all vertices are of degree 1: then it will just be a single edge. However, by property
(a), we see that’s impossible in our 11× 11 board if we follow the touring rule.

case 3 all vertices are of degree 2: it is a simple cycle (loop). That’s a possible scenario
in our edge graph.

case 4 vertices of degree 1 and degree 2 combined: this should a simple path which can
be shown by induction. It’s easy to see that three vertices with two 1-degree
endpoints and a single 2-degree middle point form a simple path connecting two
endpoints. Afterwards we append another vertex with one edge to the former
path and we will get another simple path with the old endpoint being a middle
one with degree of 2 and the new appended vertex as the new endpoint.

So, if we put this last case into our hex board. We observe that there are four edges
of degree one: a, b, c, d. Therefore, starting from one of them, say a, one follows the
touring rule and end up appending edges of degree of two and finally terminating (by
property (c)) with a vertex of degree of one, which has to be one of b, c, d. In other
words, if one starts with a, then one will gets a simple path connecting a to one of
b, c, d.

Finally, we need to see that such a simple edge-path allows us to find a hexagon-path that
makes on win the hex game! The main idea is to use property (a), where we show that for
every edge on the simple path, if we start with a’s orientation (X left and O right), then will
will keep that orientation along the whole path. Then, this path has one side with all O and
the other all X. They are connected because the edges of them form a connected simple path
(a separation of two hexagons need another hexagon to be added, which result in another
edge added to disrupt the connectedness of the simple path). In figure 2, if the player puts
the stones on these uniformly O hexagons on the right side of the orange path, he/she will
get a connected hexagon-path. Since it starts at a, the first piece of this hexagon-path is O
in the 13 × 13 augmented circle, and the last piece is on the right of b, which is O in the
13× 13 augmented circle. We have then finished creating this winning set.
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3 Hex ⇒ Brouwer

3.1 Preliminary notations

We first introduce Nash’s representation of the Hex board. A square taken from the Z× Z
lattice where two squares are considered adjacent if they are next to each other horizontally,
vertically, or along the diagonal of slope of 1. This is equivalent to the Hex board. Take a
hexagon in figure 3, say A1 for an example. Imagine shrinking the side A1br and A1Ld into
a single point, which deforms the hexagon to be a parallelogram. Grouping hexagons A1,
A2, A3, B1, B2, and C1, and we see in figure 3 that they are deformed into blue patterns
in Nash’s representation. Before we give a more precise definition of the Hex board, we first
define an order for which the elements (vertices) can be compared and the norm we based
on.

Definition 3.1. We define the maximum norm ∥ · ∥ in the space R2 as:

∥z∥ = max
i=1,2

zi

for some z = (z1, z2) ∈ Z2. And the induced inner product is | · |

Definition 3.2. ∀x, y ∈ Z2, s.t.x ̸= y (x < y) is defined as ∀i = 1, 2 xi ⩽ yi). Let > be
similarly defined. The two points x and y in Z2 are comparable if x < y or y < x.

We then give the formal definition of Nash’s representation of the Hex board and shows that
they match.

Definition 3.3. A Hex board Bk of size k is a graph whose vertices are {v ∈ Z×Z|(0, 0) ⩽
v ⩽ (k, k)}.

Definition 3.4. Two vertices z and z′ are said to be adjacent in a Hex board Bk if:

• |z − z′| = 1

• z and z′ are comparable.

We want to see how this definition of being comparable is equivalent to Nash’s setting. We
notice that |z− z′| = 1 does not use the Euclidean norm one usually encounters to draw the
circle. The following picture gives an example of the unit circle |z − 0| = 1.

In fact, for a point z = (z1, z2) ∈ Z2, |z − z′| = 1 is the set

{z′ = (x, y)|x = z1 + k1, y = z2 + k2, ki ∈ {−1, 0, 1}}\{z}

The second condition is that the two points are comparable. The definition of being com-
parable rules out the possibility where the two pair of coordinates have different directions
in comparison by simple order in R. Namely, for x, y ∈ Z2, x and y are not comparable if
x1 ⩾ y1 but x2 ⩽ y2 or x1 ⩽ y1 but x2 ⩾ y2. Thus, among the eight points on the circle
|z−z′| = 1, the upper left and lower right points are not comparable to z. The left six points
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Figure 4: The maximum norm. The figure shows the unit circle in an R2 space with the
maximum norm.

lie on the horizontal, vertical, and positively sloping diagonal near z, which are exactly those
comparable to z both by the above definition and by Nash’s definition.

Figure 5 continues the deformation we did in Figure 3. The Orange area shaded with black is
the same of the grouped six hexagons in Figure 3, and we add three others (orange hexagons
shaded with blue) to form a Hex board of size 3. A deformation shows that it is the same as
a lattice ([1, 4]× [1, 4]) ∩ Z2. Figure 6 gives an example of Hex board B5, and we label each
bank with N, S, E, and W on the compass. The horizontal (vertical) player wins by draw a
path connecting E and W (N and S).

3.2 Stating Theorems

We now restate Theorem 2.1. Notice that Theorem 2.1 says that if we cover all the hexagons
with x and o, then one will have a connected path connecting two opposite sides. By the
last part (begins with “finally”) in the Section 2, we see that this connected path made up of
hexagons is equivalent to a connected path by vertices. Thus, the Hex board Bk is like the
edge graph of the original Hex board whose basic elements are regarded as hexagons rather
than vertices. We then have

Theorem 3.1 (Hex Theorem*). Let H and V be two sets partitioning a Hex board Bk, then
there will be a connected path joined by edges in H that meets E and W or one in V that
meets N and S.

And we have the classical Brouwer fixed-point theorem in a unit square I2 = [0, 1]× [0, 1]:

Theorem 3.2 (Brouwer Fixed-Point Theorem). For a continuous mapping f : I2 → I2,
there exists a fixed point x ∈ I2 such that f(x) = x.

3.3 proof of Hex ⇒ Brouwer

We will use theorem from Munkres’s (denoted as [M]) to build up our proof.

We first observe some topological properties of the map f and prove a lemma. Since I2 =
[0, 1]× [0, 1] is clearlty closed and bounded in the Euclidean space R2, by [M] Theorem 27.3
we know that I2 is compact. Besides, by [M] Theorem 28.2, in a metric space like R2 and
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its subspace I2 which is consequently metrizable, compactness is equivalent to sequential
compactness.

Lemma 3.3. The statement that ∀ε > 0, ∃x ∈ I2, s.t.|f(x)− x| < ε implies the existence of
a fixed point (i.e. ∃a ∈ I2s.t.f(a) = a)

Proof. Since ∀ε > 0, ∃x ∈ I2, s.t.|f(x) − x| < ε, we can then define sets Ai such that
they are nonempty. Let Ai := {x ∈ I2||f(x) − x| < εi} where we can randomly pick
ε1 > ε2 > ε3 > · · · > 0, i ∈ Z+. Clearly, we have A1 ⊇ A2 ⊇ A3 ⊇ · · · .
Since the sets {Ai}i∈Z+ are all nonempty, we can take xi ∈ Ai from each of them and obtain
the sequence {xi}i∈Z+ . By the sequential compactness, this sequence has a subsequence {xik}
that converges to some a ∈ I2. By definition of the convergence in a metric space, we have:

∀ϵ > 0,∃n ∈ Z+ s.t. ik > n implies |xik − a| < ϵ

In particular |xl − a| < ϵ for some xl ∈ {xik} such that l > n.

By [M] Theorem 21.3 and the continuity of the function f , we see that

{xik} → a ⇒ {f(xik)} → f(a)

Again, by the definition of convergence, we have:

∀ϵ′ > 0,∃m ∈ Z+ s.t. ik > m implies |f(xik)− f(a)| < ϵ′;

In particular |f(xl′)− f(a)| < ϵ′ for some xl′ ∈ {xik} such that l′ > m.

Let L = max l, l′. Since xl, xl′ ∈ {xik}, xL is also in the subsequence.
For the last inequality, we choose ϵ′ = δ

3
for some δ > 0. We then have |f(a) − f(xL)| =

|f(xL) − f(a)| < δ
3
. Since xL is an element in the subsequence of {xi}i∈Z+ , we have xL

satisfying |f(xL)−xL| < εL. By the randomness of ε1, ε2, · · · , we choose εL to be δ
3
. Besides,

we have the inequality |xL − a| < δ
3
where we choose ϵ = δ

3
.

Lastly, we get

δ =
δ

3
+

δ

3
+

δ

3
> |f(a)− f(xL)|+ |f(xL)− xL|+ |xL − a| ⩾ |f(a)− a|

By the randomness of δ, we have f(a) = a (we can choose δ = |f(a)−a|
2

to get a contradiction
if not). Also notice that this trick of contradiction is not applicable directly to the condition
of our theorem |f(x)−x| < ε because for each ε there are different x satisfying the inequality.
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According to the lemma, we want to use Hex theorem to show that ∀ε > 0,∃x ∈ I2, s.t.|f(x)−
x| < ε, which then gives a fixed point.

Theorem 3.4 (Hex implies Brouwer).

Proof. By [M] theorem 27.6 and the continuity of f in the compact metric space I2, we
see that f is uniformly continuous. Therefore, by definition, given ε > 0, ∃δ > 0 such that
δ < ε√

2
(this can be done by taking whichever smaller) and |x−x′| < δ ⇒ |f(x)−f(x′)| < ε√

2
.

Given δ we find by ε, we can find a k such that 1
k
< δ and take a Hex board of this size

Bk. We make the Hex theorem get involved by regarding the Hex board a greater version of
I2, or more mathematically by scaling the Hex board to I2. We define the following scaling
function r:

r : Bk → I2

z 7→ z

k

Thus, we want to see how the composite f ◦ r behave by the Hex theorem. Testing if the set
{x ∈ I2||f(x)−x| < ε} ≠ ∅ is then converted to be on the set A = {z ∈ Bk||f◦r(z)− z

k
| < ε}.

We define four sets than can cover the complement of set A in Bk to correspond to the
horizontal and vertical players in the hex theorem and want to show that the four sets
cannot cover the whole Bk, which leave spaces for A to take elements. The fact that some
sets even bigger than the complement of A in Bk cannot cover Bk suffices to show that Ac

itself cannot cover Bk.
Let the component function of f : I2 → I2 be f1 and f2 such that f(x) = f(x1, x2) =
(f1(x), f2(x)) = (f1(x1, x2), f2(x1, x2)) for x = (x1, x2). Notice that the metric used in the
set A is a Euclidean metric, and then

Ac = {z ∈ Bk||f ◦ r(z)− f ◦ r(z)| ⩾ ε} =
{
z ∈ Bk||f(

z

k
)− z

k
| ⩾ ε

}
=

{
z ∈ Bk|

∣∣∣f1(z
k
)− z1

k

∣∣∣2 + ∣∣∣f2(z
k
)− z2

k

∣∣∣2 ⩾ ε2
}

Let

H+ =

{
z|f1(z/k)− z1/k ⩾

ε√
2

}
H− =

{
z|z1/k − f1(z/k) ⩾

ε√
2

}
V + =

{
z|f2(z/k)− z2/k ⩾

ε√
2

}
V − =

{
z|z2/k − f2(z/k) ⩾

ε√
2

}
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Let H = H+ ∪H− and V = V + ∪ V −. We see that

H =

{
z|f1(z/k)− z1/k >

ε√
2

}
∪
{
z|f1(z/k)− z1/k < − ε√

2

}
=

{
z||f1(z/k)− z1/k| >

ε√
2

}
V =

{
z|f2(z/k)− z2/k ⩾

ε√
2

}
∪
{
z|f2(z/k)− z2/k < − ε√

2

}
=

{
z||f2(z/k)− z2/k| ⩾

ε√
2

}
Also,

Ac =

{
z ∈ Bk|

∣∣∣f1(z
k
)− z1

k

∣∣∣2 + ∣∣∣f2(z
k
)− z2

k

∣∣∣2 ⩾ ε2
}

⊆ H ∪ V

(that’s because if z /∈ H then one of the two squares is smaller than ε2

2
then it must be the

case z ∈ N to make the other square greater than ε2

2
to possibly make the sum of the two

square greater than ε2, namely z ∈ V , and vice versa)
To show that the four sets cannot cover Bk, we need to show that they are not contiguous.

Definition 3.5. A pair of subsets A and B of a graph are said to be contiguous if there
exists a ∈ A and b ∈ B such that a and b are adjacent.

Let z ∈ H+, z′ ∈ H−. By definition 3.4, z and z′ being adjacent means |z − z′| = 1.
WLOG, let z′1 − z1 = 1. We proceed the proof showing that they should not be adjacent
by contradiction. Suppose they are adjacent and hence z′1 − z1 = 1. Then in the board Bk

where we choose 1/k < δ < ε√
2
, we have z′1/k − z1/k = 1/k < ε√

2
. Thus,

z1/k − z′1/k > − ε√
2
⇒ z1/k − z′1/k ⩾ − ε√

2
(1)

Since z ∈ H+, z′ ∈ H−,

f1

(z
k

)
− z1

k
⩾

ε√
2

z′1
k

− f1

(
z′

k

)
⩾

ε√
2

which gives

f1

(z
k

)
− z1

k
+

z′1
k

− f1

(
z′

k

)
⩾ 2

ε√
2

(2)

Adding inequalities (1) and (2) gives

f1

(z
k

)
− f1

(
z′

k

)
⩾

ε√
2

However, by the uniform continuity,

z′1
k

− z1
k

< δ <
ε√
2
⇒|f(z/k)− f(z′/k)|

=

√∣∣∣∣f1 (zk)− f1

(
z′

k

)∣∣∣∣2 + ∣∣∣∣f2 (zk)− f2

(
z′

k

)∣∣∣∣2 < ε√
2

(3)
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but

f1

(z
k

)
− f1

(
z′

k

)
⩾

ε√
2
⇒

∣∣∣∣f1 (zk)− f1

(
z′

k

)∣∣∣∣ ⩾ f1

(z
k

)
− f1

(
z′

k

)
⩾

ε√
2

⇒
∣∣∣∣f1 (zk)− f1

(
z′

k

)∣∣∣∣2 ⩾ ε2

2

which is contradictory to inequality (3). Thus, z and z′ cannot be adjacent and thus H+ and
H− cannot be contiguous. It can be similarly shown that V + and V − are not contiguous
too. Suppose Q is a connected set contained in H. Since non-contiguousness clearly implies
disconnectedness, we see that Q must lie entirely in H+ or H− by [M] Lemma 23.2. Also
notice that H+ does not meet the boundary E = 0 × I because there is no element in I2,
which is the codomain of f , that has horizontal coordinate greater than 1 by a nonzero ε√

2
.

Similarly H− does not meet W . Thus, Q, which is either in H+ or H− cannot meet both E
and W . It can be similarly argued that V contains no connected set meeting N and S too.
Therefore, H and V do not cover Bk, for if they are, the fact that there is no path meeting
either pair of banks, which contradicts the Hex Theorem.
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4 Brouwer ⇒ Hex

To complete the proof of equivalence between Hex and Brouwer, we need to do this last
piece: showing that Brouwer implies Hex.

Theorem 4.1 (Brouwer implies Hex).

We first have some preparations for proving the theorem. Notice the fact that any maps f
from Bk into R2 extends to a continuous simplicial (or piecewise linear) map f̂ on I2k where
I2k is the k × k square in R2. Namely, if

x =
3∑

i=1

λiz
i (4)

where

λi ⩾ 0 and
3∑

i=1

λi = 1 (5)

f̂(x) :=
3∑

i=1

λif(z
i) (6)

We then prove a lemma about this.

Lemma 4.2. Let z1, z2, z3 be the vertices of a triangle △ in R2, and let p̂ be the simplicial
extension of a map p defined by p(zi) = zi + vi where vi (i = 1, 2, 3) are given vectors. Then
p̂ has a fixed point iff 0 is in the convex hull of {v1, v2, v3}.

Proof. Let x and λi be those in (4) and (5). By convexity, x ∈ △. By (6), we have

p̂(x) =
3∑

i=1

λip(z
i) =

3∑
i=1

λi(z
i + vi) =

3∑
i=1

λiz
i +

3∑
i=1

λiv
i = x+

3∑
i=1

λiv
i (7)

Thus, x is fixed in p̂ if and only if p̂(x) = x. By (7), this means

x = x+
3∑

i=1

λiv
i ⇔

3∑
i=1

λiv
i = 0

By definition of the convex hull of a set X, which is the set of all convex combinations of
points in X, we see that since

∑3
i=1 λiv

i is such a combination by (5), 0 is in the convex hull
of the set {v1, v2, v3}.
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Now we shall start proving theorem 4.1.

Proof. Let H and V be a partition of the Bk. Namely, H ∩ V = ∅ and H ∪ V = Bk. We
define Ŵ , Ê, N̂ , and Ŝ as follow (by using the symbol a 99Kh b to represent there there is an
H-path h connecting a and b):

Ŵ = {v ∈ Bk|∃w ∈ W, v 99KH w}
Ŝ = {v ∈ Bk|∃s ∈ S, v 99KV s}
Ê = H − Ŵ

N̂ = V − Ŝ

Intuitively, Ŵ and Ŝ are the sets in H and V that is attached to (touched by) the boundary
W and S, respectively. The following is a demonstrative example where Ŵ = H1, Ŝ =
V1, Ê = H − Ŵ = H2, N̂ = V − Ŝ = V2.

Figure 7: A demonstrative example of the four sets defined

We see that by definition, Ŵ and Ê (and similarly N̂ and Ŝ) are not contiguous because
for if they are, then by definition 3.5, there is an edge ab connecting a ∈ Ŵ and b ∈ Ê and
∃w ∈ W s.t. a 99KH w, which then causes a contradiction: the edge ab can be included into
the H-path h to form a path h′ such that b 99KH w, making b ∈ Ŵ , but b ∈ H − Ŵ = Ê.

Let e⃗1 = î = (1, 0) and e⃗2 = ĵ = (0, 1) be the standard basis of R2, and we define f : Bk → Bk

by

z = (z1, z2) 7→ z + e⃗1 = (z1 + 1, z2), if z ∈ Ŵ ;

z = (z1, z2) 7→ z − e⃗1 = (z1 − 1, z2), if z ∈ Ê;

z = (z1, z2) 7→ z + e⃗2 = (z1, z2 + 1), if z ∈ Ŝ;

z = (z1, z2) 7→ z − e⃗1 = (z1, z2 − 1), if z ∈ N̂ .

We first need to show that the map f is well-defined for the four operations ±e⃗i do not
make the image out of bound (namely, f(z) ∈ Bk for z ∈ Bk). For z ∈ Ŵ , the only possible
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scenario that +e⃗1 can make f(z) goes outside of Bk is when z is on the right-most boundary
E (i.e. z1 = k). However, the assumption we made in this process of contradiction proof
is that there is no H-path connecting W and E, rendering it impossible for Ŵ to include
an element on the boundary E (if so, the element can be connected to W by definition of
the set Ŵ , contradictory to our assumption). For the operation −e⃗1, we need to show that
Ê does not include elements on the boundary W to see that the operation does not make
the image exceed of the board’s left-most boundary. Notice that Ê includes exactly all the
vertices in H that can not be connected to W by an H-path. Therefore, if Ŵ has an element
w on W, w cannot be connected to W, which is absurd since w already arrives at W without
any path needed.
It can be analogously shown that the other two operations on the vertical direction do no
exceed the board too.
We prove a lemma following the non-contiguousness of Ŵ -Ê and N̂ -Ŝ.

Lemma 4.3. Given a triangle △ in R2 with vertices z1, z2, z3 that are mutually adjacent to
each other in Bk, when computing the image of the triangle under f , there will never be one
of the three vertices zj translated by operation +e⃗i and another zk translated by −e⃗i (i = 1, 2
and j ̸= k ∈ {1, 2, 3}).

Figure 8: A triangle with vertices z1, z2, z3

Proof. Since each vertex in the triangle △ is adjacent to the other two, the whole triangle
never lies in both Ŵ and Ê or in both N̂ and Ŝ due to the non-contiguousness of Ŵ -Ê and
N̂ -Ŝ. Notice that the operations by f is conditioned by where z belongs (Ŵ , Ê, N̂ , Ŝ), and
then the conclusion of the lemma is clear.

An immediate corollary is that the whole triangle will be translated by unit vectors that
both lie in one quadrant of R2 because all other possible combinations of different vectors
that can be used in during mapping are

1. first quadrant: +(1, 0) = (1, 0),+(0, 1) = (0, 1)

2. second quadrant: −(1, 0) = (−1, 0),+(0, 1) = (0, 1)

3. first quadrant: −(1, 0) = (−1, 0),−(0, 1) = (0,−1)

4. second quadrant: +(1, 0) = (1, 0),−(0, 1) = (0,−1)

We complete the proof of Hex theorem by contradiction. The assumption of the contradiction
is that there is no H-path connecting E and W AND there is no V-path connecting N and
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S. The fact we will build to contradict Brouwer fixed-point theorem (Theorem 3.2) is that
there is no fixed point of the continuous f̂ on I2k , where f̂ is the simplicial extension of f on
I2k . We will show that by Lemma 4.2 and Lemma 4.3 we proved.

To be more specific, the “given vectors” in lemma 4.2 can be one of the following groups
(recall the above list of two vectors in each of the four quadrants we made):

1. group 1: two vectors in one of the quadrants plus one vector duplicating one in these
two chosen vectors.

2. group 2: all three vectors operated upon the vertices are the same single vector chosen
from ±e⃗i (i = 1, 2).

Since all of the possible groups of three vector operations belong to one quadrant, the convex
hull of the three vectors do not include 0, because the only combination that can make it
zero is λ1 = λ2 = λ3 = 0, which is not a convex combination as (5). Lemma 4.2 then shows
that there is no fixed point for f̂ over I2k , which contradicts to Brouwer fixed-point theorem.
The assumption, which is the negation of the conclusion of Hex theorem, is thus false. We’re
done.
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